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Abstract

This paper is a continuation of earlier work [6] in which we presented an automatic
domain decomposition method for the solution of gas dynamics problems which require
a localized resolution of the kinetic scale. The basic idea is to couple the macroscopic
hydrodynamics model and the microscopic kinetic model through a buffer zone in
which both equations are solved. Discontinuities or sharp gradients of the solution
are responsible for locally strong departures to local equilibrium which require the
resolution of the kinetic model. The buffer zone is drawn around the kinetic region by
introducing a cut-off function, which takes values between zero and one and which is
identically zero in the fluid zone and one in the kinetic zone. In the present paper, we
specifically consider the possibilty of moving the kinetic region or creating new kinetic
regions, by evolving the cut-off function with respect to time. We present algorithms
which perform this task by taking into account indicators which characterize the non-
equilibrium state of the gas. The method is shown to be highly flexible as it relies on
the time evolution of the buffer cut-off function rather than on the geometric definition
of a moving interface which requires remeshing, by contrast to many previous methods.
Numerical examples are presented which validate the method and demonstrate its
performances.

Keywords: kinetic-fluid coupling, multiscale problems, Boltzmann equation, fluid-
dynamic limit.

1 Introduction

In this work we consider the numerical simulation of fluid flows in rarefied regimes. In this
situation the Navier-Stokes or the Euler equations do not provide a satisfactory description
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of the physical system and a kinetic description through the Boltzmann equation becomes
necessary. In practice, we are primarily interested in the macroscopic scales of the problems
but the solution of the microscopic model is necessary to obtain the correct representation
of the physical phenomena. From the computational side, the numerical solution through
such microscopic models remains nowadays too expensive even with the use of super-
computers.

The most widely used numerical method for the Boltzmann equation is the Direct
Simulation Monte-Carlo (DSMC) method (see [11], [13], [2] [24], [25], [9], [26]). It has
many advantages in terms of computational efficiency for large dimensional problems and
in terms of flexibility for enforcing physical properties such as conservation laws. On the
other hand, these methods are only poorly accurate. They generate large fluctuations as
compared to deterministic methods and the convergence rate is in general quite slow.

In situations close to thermodynamical equilibrium, the cost of direct Monte Carlo sim-
ulations increases. For this reason, domain decomposition techniques have been proposed
in the literature (see [1], [21], [16], [17], [7], [10]). They allow a more efficient treatment
of the regions close to thermodynamical equilibrium. Automatic domain decomposition
methods have also been proposed, (see e.g. [15] or [28]). Indeed, in many situations,
the resolution of the kinetic equations in the whole computational domain is unnecessary
because the Euler or Navier-Stokes equations provide a sufficiently accurate solution, ex-
cept in small zones like shock layers where departure from thermodynamical equilibrium
is strong.

The present work is a contribution in this direction. We propose a numerical method
for the resolution of the Boltzmann-BGK equation coupled with the compressible Euler
equations through a domain decomposition technique. The validity of BGK model is
sometimes questionnable. However it provides a cheaper model than the full Boltzmann
equation, in particular close to the fluid regime where the DSMC method is extremely
expensive. Anyhow, our approach can be applied to the full Boltzmann model as well
without any change, and our choice of the BGK equation is just a matter of convenience.
We could also choose the Navier-Stokes model instead of the Euler model as a fluid model.

This paper is an extension of an earlier work [6], in which the domain decomposition
technique is used to couple the BGK equation and the compressible Euler equations. In
this earlier work, a buffer zone is introduced. In this buffer zone, the transition from
the Boltzmann model to the hydrodynamic one and vice-versa is gradual. Therefore, in
the buffer zone, both models are solved and the solution of the problem is obtained as
the combination of the kinetic and fluid solutions. The buffer zone is materialized by a
cut-off function which defines the gradual transition from one model to the other one.
Additionally, the introduction of the cut-off makes each of the models degenerate at the
boundary of the buffer zone. In this way, no interface condition is needed.

In the present work, we propose a methodology to allow for the time evolution of
the buffer zone between the kinetic and fluid models. In this way, we can follow in time
the regions where discontinuities or sharp gradients of the solution occur, and solve the
microscopic model in these regions, while, in the rest of the domain, we can use the
macroscopic model. Thanks to this technique, it is possible to use as small a microscopic
domain as possible, and to achieve considerable computational speedup compared with a
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steady interface coupling strategy. An important point in implementing this method is to
use adequate criteria which allow to reliably identify the zones for which the microscopic
model is necessary. Another novelty of the present work is to propose the use of a new
indicator, the equilibrium fraction, which has been introduced in the works of Dimarco
and Pareschi in [9].

The main features of the method can be summarized as follows:

• The domain is divided in regions where the solution is computed through kinetic
equations and in regions where the solution is computed through Euler equations
and in buffer zones where both model are used.

• During the simulation the zones move according to some equilibrium criteria in order
to solve the kinetic model only where it is necessary.

• The utilized criteria are combinations of:

– Checking the value of the Knudsen number against an adequate threshold value

– Checking the values of the gradients of the macroscopic quantities (density,
momentum) against an adequate threshold value

– Measuring the equilibrium fraction in the kinetic zone.

The article is organized as follows. In section 2, we introduce the Boltzmann-BGK
equations and its properties. In section 3, we present the coupling method and in sec-
tion 4 the numerical schemes. Section 5 is devoted to the illustration of the equilibrium
identification criteria. Several test problems which demonstrate the capabilities of the
method are presented in section 6. Some final considerations and future developments are
discussed in section 7.

2 Boltzmann-BGK Equation

2.1 The model

We consider the Boltzmann-BGK equation

∂tf + v · ∇xf =
1
τ

(Mf − f), (1)

with the initial condition
f(x, v, t = 0) = f0(x, v), (2)

where f = f(x, v, t) is a non negative function describing the time evolution of the distri-
bution of particles which move with velocity v ∈ R3 in the position x ∈ Ω ⊂ R3 at time
t > 0. In the BGK equation the collisions are modeled by a relaxation towards the local
thermodynamical equilibrium defined by the Maxwellian distribution function Mf . The
local Maxwellian function is defined by

Mf = Mf [%, u, T ](v) =
%

(2πθ)3/2
exp

(

−|u− v|2

2θ

)

, (3)
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where % and u are the density and mean velocity while θ = RT with T the temperature
of the gas and R the gas constant. The macroscopic values %,u and T are related to f by:

% =
∫

R3

fdv, u =
∫

R3

vfdv, θ =
1
3%

∫

R3

|v − u|2fdv. (4)

The energy E is defined as

E =
1
2

∫

R3

|v|2fdv =
1
2
%|u|2 +

3
2
%θ. (5)

The parameter τ > 0 is the relaxation time. In this paper, we use the common choice
τ = (µp ) where µ = µref · (θ/θref )ω is the viscosity and p is the pressure. We refer to
section 6 for the numerical value of µref , θref and ω. Finally we define the kinetic entropy
of f by

H(f) =
∫

R3

f log fdv. (6)

Now, if we consider the BGK equation (1), multiply it by 1, v, 1
2 |v

2| (the so-called
collision invariants), and integrate wit respect to v, we obtain the following balance laws:

∂%

∂t
+∇x · (%u) = 0,

∂%u

∂t
+∇x · (%u⊗ u+ P ) = 0,

∂

∂t
E +∇x · (Eu+ Pu+ q) = 0,

(7)

which express the conservation of mass, momentum and energy, in which P =
∫

(v −
u) ⊗ (v − u)f dv is the pressure tensor while q =

∫

1
2(v − u)|v − u|2 dv is the heat flux.

Furthermore the following inequality expresses the dissipation of entropy:

∂t

(∫

f log f dv
)

+∇x ·
(∫

vf log f dv
)

≤ 0. (8)

System (7) is not closed, since it involves other moments of the distribution function than
just %, %u and E.

The MaxwellianMf can be characterized as the unique solution of the following entropy
minimization problem

H(Mf ) = min{H(f), f ≥ 0 s.t.
∫

R3

mf dv = %} (9)

where m and % are the vectors of the collision invariants and of the first three moments
of f respectively:

m(v) = (1, v,
1
2
|v|2), % = (%, %u,E) (10)

This is the well-known local Gibbs principle, and it expresses that the local thermody-
namical equilibrium state minimizes the entropy of all the possible states subject to the
constraint that its moments % are prescribed.
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Formally as ε → 0 the function f tends to Maxwellian. In this limit, it is possible to
compute the moments P and q of f in terms of %, %u and E. In this way, one can close
the system of balance laws (7) and get the Euler system of compressible gas dynamics
equations

∂%

∂t
+∇x · (%u) = 0,

∂%u

∂t
+∇x · (%u⊗ u+ pI) = 0,

∂E

∂t
+∇x · ((E + p)u) = 0,

p = %θ, E =
3
2
%θ +

1
2
%|u|2.

(11)

2.2 Boundary Conditions

Eq. (1) must be supplemented with boundary conditions for x ∈ ∂Ω and for v · n ≥ 0
where n denotes the unit normal, pointing inside the domain. The boundary conditions
are expressed as follows:

|v · n|f(v) =
∫

v∗·n<0
|v∗ · n|K(v∗ → v)f(v∗)dv∗ , (12)

where v∗ is the particle velocity after its interaction with the boundary. The entering flux
is described as a function of the outgoing flux modified by the boundary kernel K. Such
a definition of the boundary condition preserve the mass if and only if

K(v∗ → v) ≥ 0,
∫

v∗·n≥0
K(v∗ → v)dv = 1. (13)

Usually, the boundary condition is a convex combination of specular reflection and
total accomodation. Specular reflection is the process by which the incoming velocity (i.e.
after the interaction with the wall) is the symmetric of the outgoing velocity with respect
to the tangent plane to the wall. Total accomodation instead means that the outgoing
velocity loses the memory of the incoming velocity and is taken randomly according to a
Maxwellian distribution at the wall temperature. Let α be the fraction of particles which
suffer total accomodation and 1 − α that of specularly reflected particles. With these
assumptions, the boundary condition is written:

f(v) = (1− α)Rf(v)αMf(v), v · n(x) ≥ 0, (14)

with
Rf(v) = f(v − 2n(n · v)), Mf(v) = µMω(v). (15)

If we denote by uw and θw the wall velocity and temperature, Mw is given by

Mw[uw, θw](v) =
1

(2πθw)3/2
exp

(

−|uw − v|2

2θw

)

, (16)
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and µ is determined by mass conservation

µ

∫

v·n≥0
Mw(v)|v · n|dv =

∫

v·n<0
f(v)|v · n|dv. (17)

It is easy to show that this boundary condition enters the class of boundary conditions
of the type (12), with a suitably defined (and possibly distributional) kernel K. We
note that for α = 0 (pure specular reflection) the re-emitted particle have the same flow
of mass, energy and tangential momentum as the incoming molecules, while as soon as
α > 0 (partial or full accommodation) the re-emitted particle partly or completely lose
the memory of the incoming velocities. In particular, only mass is conserved.

3 The coupling method

3.1 Decomposition of the kinetic equation

For sake of simplicity we describe the method proposed in [6] in one space and velocity
dimensions. It can be easily extended to a generic N-dimensional setting. Also different
meshes for the cut-off function and for the other variables can be used.

We denote the buffer interval by [a, b], and we introduce a cut-off function h(x, t) such
that

h(x, t) =







1, for x ≤ a
0, for x ≥ b
0 ≤ h(x, t) ≤ 1, for x ∈ [a, b]

(18)

For instance, h can be chosen piecewise linear in [a, b]:

h(x, t) =
x− b
a− b

for x ∈ [a, b].

We define two distribution functions such that fR = hf while fL = (1− h)f . We look
now for an evolution equation for fR and for fL. We write

∂tfR = ∂t(hf) = f ∂th+ h∂tf,

∂tfL = ∂t((1− h)f) = −f ∂th+ (1− h)∂tf.

Thus multiplying the Boltzmann-BGK equation (1) by h and 1 − h respectively, (1) can
be rewritten in the following form

∂tfR = f ∂th+ h(−v∂xf +
1
τ

(Mf − f)),

∂tfL = −f ∂th+ h(−v∂xf +
1
τ

(Mf − f)),

which finally leads to the following system for fL and fR:

∂tfR + hv∂xfR + hv∂xfL =
h

τ
(Mf − f) + f∂th, (19)

∂tfL + (1− h)v∂xfL + (1− h)v∂xfR =
1− h
τ

(Mf − f)− f∂th, (20)

f = fR + fL (21)
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with initial data

fR(x, v, 0) = h(x, 0)f(x, v, 0) , fL(x, v, 0) = (1− h(x, 0))f(x, v, 0). (22)

It is important to note that if f = fL + fR is the solution of (1) with initial data (2), then
(fL, fR) is the solution of (19-20) with initial data (22) and conversely.

3.2 Kinetic-Hydrodynamic coupling

We refer to [6] for more detail about the derivation that follows. Let us assume that the
domain can be subdivided in two regions: in one of the regions, the distribution function
is close to a local Maxwellian while in the other, it is far from it. We choose to set h = 0 in
the region where f is close to the Maxwellian. Therefore, fL = f is close to its associated
Maxwellian MfL = Mf and we can replace the Boltzmann equation by the Euler equations
without making any significant error. We also suppose that in the buffer zone, fL remains
close to the equilibrium and thus, it can be replaced by MfL in the whole interval x < b.

Replacing fL by MfL in (20) and taking the hydrodynamic moments (mass, momentum
and energy), leads to the following modified Euler system defined in the interval x ≤ b:

∂%L
∂t

+ (1− h)∂x(%LuL) = −(1− h)∂x

(∫

R
vfR dv

)

− %∂th,

∂%LuL
∂t

+ (1− h)∂x(%Lu2
L + pL) = −(1− h)∂x

(∫

R
v2fR dv

)

− %u∂th,

∂EL
∂t

+ (1− h)∂x((EL + pL)uL) = −(1− h)∂x

(∫

R
v
|v|2

2
fR dv

)

− E∂th,

(23)

with initial data
(%L, uL, θL)|(x,0) = (1− h|(x,0))(%, u, θ)|(x,0).

Under these assumptions, we have f = fR +MfL , where fR is a solution of:

∂tfR + hv∂xfR + hv∂xM [%L, uL, θL] =
h

τ
(Mf − f) + f∂th, (24)

in the interval x ≥ a. The coupling model consists of system (23) for the hydrodynamic
moments in the region x ≤ b and eq. (24) for the kinetic distribution function in the
region x ≥ a.

When h = 0, system (23) coincides with system (11) because fR = 0 and fL = MfL .
Moreover no boundary condition is needed at the boudary x = b because h = 1 at this
point, and the factors in front of the spatial derivatives of (23) vanish (in other words,
the spatial derivatives are degenerate at x = b for the fluid model). A similar remark
is true for fR. Indeed, when h = 0, fR = 0 and no boundary condition is needed for
the kinetic equation at x = a because h = 0 at this point and the factor in front of the
spatial derivatives in (24) vanishes. In the buffer zone [a, b], the solution of the full kinetic
problem f is computed as the sum of the Maxwellian MfL and of the function fR. To
summarize, the solution of the full kinetic problem is given by fR if x > b, by MfL if x < a
and by MfL + fR if x ∈ [a, b].
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An important feature of the method is that it is very easy to divide the domain in
more than two zones. Thus we can define as many buffers and as many kinetic regions as
necessary if the macroscopic model fails to give the correct solution in different parts of
the domain which are far apart from each other. In this latter case, the function h is still a
piecewise linear function but there are multiple buffer zones [aj , bj ]. Additionally, we can
create new buffer zones and new kinetic zones during the simulation. For this purpose,
one can update the cut-off function h according to convenient criteria to a new value and
reset fR = hf and fL = (1− h)f at the time when h is changed. The way in which new
zones are created is detailed in the next section. In the last section this technique will be
tested on shock tube problems.

4 Numerical approximation of the coupled model

In this section we extend the simple numerical scheme proposed in [6] for the case of a
steady buffer zone to the dynamical buffer zone case considered here. We also introduce
a new scheme based on a time splitting of the equations which is able to circumvent
some numerical problems that are observed with a direct discretization of the equations.
Finally, we introduce a different, more efficient kinetic scheme for the solution of the Euler
equations. The scheme will be shown in the last section to dramatically increase the
efficiency of the code.

4.1 Velocity discretization

We introduce a Cartesian grid V of N nodes vk = k∆v + a, where k is a bounded index,
∆v is the grid step, and a is a constant. We denote the discrete collision invariants by
mk = (1, vk, 1

2 |v
2
k|). The continuous distribution function f is approximated by a discrete

velocity model (fk(t, x))k, where fk(t, x) ≈ f(x, vk, t). The fluid quantities are obtained
from fk thanks to discrete summations on V:

%(t, x) =
∑

k

mkfk(t, x) ∆v. (25)

The discrete velocity BGK model consists of a set of N evolution equations for fk:

∂tfk + vk · ∇xfk =
1
τ

(Ek[%]− fk), (26)

where Ek[%] is an approximation of Mf such that (26) satisfies the same properties of
conservation (7) and entropy (8) as the continuous model (1). Namely we have

Ek[%] = exp(α(%) ·mk), (27)

where α(%) solves the nonlinear equation
∑

k

mk exp(α(%) ·mk) ∆v = %. (28)
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These equations can be solved by a Newton algorithm. In the velocity continuous case the
parameters α are

α =

(

log

(

%

(2πθ)
1
2

− |u|
2

2θ

)

,
u

θ
,−1

θ

)

(29)

This discretization (existence, uniqueness, convergence) has been mathematically studied
in [18, 20].

4.2 Space and time discretization of the kinetic part

According to the previous section, the velocity discretized version of (24) is

∂tfk,R + hvk∂xfk,R + hvk∂xEk[%L] =
h

τ
(Ek[%]− fk) + fk∂th, (30)

where fk,R is an approximation of fR(t, x, vk), and Ek[%L] is an approximation of M [%L, uL,
θL] defined as in (27)–(28) with % replaced by %L. Finally, fk is the global distribution
defined as in the continuous case by fk = fk,R + Ek[%L], and the corresponding global
Maxwellian Ek[%] is defined accordingly with % being the moments of fk.

Consider a spatial Cartesian uniform grid defined by nodes xi = i∆x and a time
discretization tn = n∆t. If fni = (fnk,i)k is an approximation of (fk(tn, xi)), the moments
of fni are %ni =

∑

k mkf
n
i ∆v. The corresponding discrete equilibrium is Ek[%ni ] is defined

as in (27)–(28)
Eq. (30) constitutes a set of linear hyperbolic equations with source terms. The

transport part is simply a linear convection equation and can be approximated by any
standard finite volume scheme. For the discretization in time we use an explicit Euler
method. The scheme finally reads

fn+1
k,i,R = fnk,i,R − hn+1

i

∆t
∆x

(

φi+1/2(fnk,R)− φi−1/2(fnk,R)
)

− hn+1
i

∆t
∆x

(

φi+1/2(Ek[%nL])− φi−1/2(Ek[%nL])
)

(31)

+ hn+1
i

∆t
τni

(

Ek[%ni ]− fnk,i
)

+ fnk,i(h
n+1
i − hni ).

For every grid function (gk,i)k,i, the numerical fluxes are defined by

φi+1/2(gk) =
1
2

(vkgk,i+1 + vkgk,i − |vk|(gk,i+1 − gk,i)) . (32)

The updated value of the function hn+1
i is computed, with the criteria described in sec-

tion 5, at the beginning of each time step. Thus at time step n+ 1, we compute hn+1 and
next we compute the new value of fR. The time step is computed through an estimate of
the CFL number:

∆t
(

max
i

(
1
τni

) + max
k

(

|vk|
∆x

))

< 1. (33)

9



4.3 Space and time discretization for the hydrodynamic part

A simple kinetic scheme for (23) is obtained by first discretizing (20) as we did for (19)
in the section above. Then like in the continuous case, we take the moments of the
corresponding discrete equation, and fnL,k,i is replaced by Ek[%nL,i]. This leads to

%n+1
i,L = %ni,L − (1− hn+1

i )
∆t
∆x

∑

k

mk

(

φi+1/2(Ek[%nL])− φi−1/2(Ek[%nL])
)

∆v

− (1− hn+1
i )

∆t
∆x

∑

k

mk

(

φi+1/2(fnk,R)− φi−1/2(fnk,R)
)

∆v (34)

− (hn+1
i − hni )%ni .

Again we first compute hn+1 at the beginning of the time step and afterwards, we advance
%L in time. The severe time restrictions which occur with the kinetic scheme due to the
relaxation parameter ε, do not occur with the hydrodynamic model. Thus, it would be
possible to use different time steps for the fluid and kinetic parts of the model. We leave
the implementation of this improvement to future work.

4.4 An alternative scheme: time splitting

We propose here an alternative to the previous scheme which consists of a time splitting
scheme. With this scheme, the creation of new kinetic zones is simpler. It is based on
a time splitting between the time evolution of h on the one hand and the transport and
relaxation operators on the other hand. This splitting scheme reads:

First step: evolution of h:

f
n+ 1

2
k,i,R = fnk,i,R + fnk,i(h

n+1
i − hni ), (35)

%
n+ 1

2
i,L = %ni,L − (hn+1

i − hni )%ni , (36)

Second step: evolution of the kinetic and fluid eqs.

fn+1
k,i,R = f

n+ 1
2

k,i,R − h
n+1
i

∆t
∆x

(

φi+1/2(f
n+ 1

2
k,R )− φi−1/2(f

n+ 1
2

k,R )
)

− hn+1
i

∆t
∆x

(

φi+1/2(Ek[%
n+ 1

2
L ])− φi−1/2(Ek[%Ln+ 1

2 ])
)

(37)

+ hn+1
i

∆t

τ
n+ 1

2
i

(

Ek[%
n+ 1

2
i ]− fn+ 1

2
k,i

)

,

%n+1
i,L = %

n+ 1
2

i,L − (1− hn+1
i )

∆t
∆x

∑

k

mk

(

φi+1/2(Ek[%
n+ 1

2
L ])− φi−1/2(Ek[%

n+ 1
2

L ])
)

∆v

− (1− hn+1
i )

∆t
∆x

∑

k

mk

(

φi+1/2(f
n+ 1

2
k,R )− φi−1/2(f

n+ 1
2

k,R )
)

∆v. (38)
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The first step of this scheme can be further simplified by using the following remark:
since fn and fnR are supposed to approximate f(tn) and fR(tn), then we should have

fnR ≈ fR(tn) = h(tn)f(tn) ≈ hnfn. (39)

Consequently, if we assume that fnR is exactly hnfn, then (35) reads

f
n+ 1

2
k,i,R = hn+1

i fnk,i, (40)

and in the same way we can obtain %
n+ 1

2
i,L = (1− hn+1

i )%ni .
Thus relation (37) now reads

fn+1
k,i,R = hn+1

i

{

fnk,i −
∆t
∆x

(

φi+1/2(f
n+ 1

2
k,R )− φi−1/2(f

n+ 1
2

k,R )
)

− ∆t
∆x

(

φi+1/2(Ek[%
n+ 1

2
L ])− φi−1/2(Ek[%

n+ 1
2

L ])
)

+
∆t

τ
n+ 1

2
i

(

Ek[%
n+ 1

2
i ]− fn+ 1

2
k,i

)







.

(41)

We recall that f
n+ 1

2
i,k = f

n+ 1
2

i,k,R + Ek[%
n+ 1

2
i,L ]. But, we have

Ek[%
n+ 1

2
i,L ] = Ek[(1− hn+1

i )%ni ] = (1− hn+1
i )Ek[%ni ],

because the equilibria are degree 1 homogeneous functions of %. Then, with (40), we have:

f
n+ 1

2
i,k = hn+1

i fni,k + (1− hn+1
i )Ek[%ni ]. (42)

However, according to the derivation of the coupling model the kinetic distribution func-
tion in the buffer zone must be close to the equilibrium. Assume again an exact equality,
we have fni,k = Ek[%ni ]. Inserting this relation into (42), we deduce that

f
n+ 1

2
i,k = fni,k. (43)

Note that relation (43) is very natural, since it means that f is not changed by the evolution
of the buffer zone. With this identity and the linearity of the fluxes with respect to the
distribution function, we use (41) to rewrite fn+1

k,i,R as

fn+1
k,i,R = hn+1

i

(

fnk,i −
∆t
∆x

(

φi+1/2(fnk )− φi−1/2(fnk )
)

+
∆t
τni

(

Ek[%ni ]− fnk,i
)

)

,

:= hn+1
i f̃n+1

k,i ,

where f̃n+1
k,i appears to be like an approximation of f(tn+1) by an explicit time discretiza-

tion. This means that our assumption (39) is also valid at time tn+1. We can of course
obtain similar relations for %n+1

i,L .
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In summary, the time splitting scheme is written as follows:

First step (modified and simplified):

f
n+ 1

2
k,i,R = hn+1

i fnk,i, (44)

%
n+ 1

2
i,L = (1− hn+1

i )%ni , (45)

Second step (unchanged):

fn+1
k,i,R = f

n+ 1
2

k,i,R − h
n+1
i

∆t
∆x

(

φi+1/2(f
n+ 1

2
k,R )− φi−1/2(f

n+ 1
2

k,R )
)

− hn+1
i

∆t
∆x

(

φi+1/2(Ek[%
n+ 1

2
L ])− φi−1/2(Ek[%Ln+ 1

2 ])
)

(46)

+ hn+1
i

∆t

τ
n+ 1

2
i

(

Ek[%
n+ 1

2
i ]− fn+ 1

2
k,i

)

,

%n+1
i,L = %

n+ 1
2

i,L − (1− hn+1
i )

∆t
∆x

∑

k

mk

(

φi+1/2(Ek[%
n+ 1

2
L ])− φi−1/2(Ek[%

n+ 1
2

L ])
)

∆v

− (1− hn+1
i )

∆t
∆x

∑

k

mk

(

φi+1/2(f
n+ 1

2
k,R )− φi−1/2(f

n+ 1
2

k,R )
)

∆v. (47)

In this way, at any location in space, according to certain criteria which are detailed
below, the scheme can shift from a fluid model to a kinetic one and vice-versa.

4.5 An alternative scheme for the fluid equations

Our final goal is a more efficient method for computing rarefied gas dynamics problems
than a full microscopic scheme, while maintaining the same accuracy. To this aim a
fast numerical scheme for the fluid part of the coupling method, based on the kinetic
scheme of Perthame [27] has been implemented. In the last section, we will observed that
considerable speedup is obtained using this method compared with the scheme (34).

In this scheme, the true Maxwellian is replaced by the square-shaped function MP [%] =
aχ(v)−b≤v−u≤b, where χ(v) is a non negative function such that χ(v) = 1 if u ∈ [−b, b] and
0 elsewhere. The coefficients a and b are computed so that the moment vector of MP [%] is
exactly %. Then, the Euler fluxes are approximated by using a kinetic flux vector splitting
based on the exact integration of this approximate Maxwellian. This scheme applied to
the fluid part of the coupling model then reads:

%n+1
i,L − %ni,L

∆t
=− (1− hn+1

i )

(

Fi+1/2(%nL)−Fi−1/2(%nL)
)

∆x

−
(1− hn+1

i )
∆x

∑

k

mk

(

φi+1/2(fnk,R)− φi−1/2(fnk,R)
)

∆v

+
(hn+1
i − hni )

∆t
%ni , (48)
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where Fi+1/2(%L) =
∫

v<0 vmMP [%i+1] dv +
∫

v>0 vmMP [%i] dv.
However, for a fair analysis of the behavior of the coupling method, we used the scheme

(34) in almost all the tests cases. Indeed, this scheme is constructed from the discrete
moments of the scheme for the kinetic part (we could say that the schemes for both parts
are ’compatible’). In this way, we avoid sources of discrepancies due to a change of the
nature of the scheme for the hydrodynamic parts and our observations can really focus on
the behaviour of the coupling model.

We have also observed that, although small, some oscillations appear inside the buffer
zone when the Perthame scheme is used. To circumvent this problem, we use the Perthame
scheme in the pure fluid region (i.e. h = 0) and we use the scheme (34) inside the buffer
zone. The transition between the fluid and kinetic models seems to be smoother if the
scheme for the fluid part in the buffer zone is compatible (in the above sense) with the
scheme for the kinetic part. Outside the buffer zone, it is possible to shift to any other
fluid scheme without noticeable errors.

A different approach to solve this compatibility problem would be to use the alterna-
tive coupling method proposed in [8] using a different decomposition of the distribution
function f . This investigation is in progress.

5 Moving Buffer and Kinetic zones

We have already mentionned the possibility of dividing the computational domain in
different regions with the introduction of several buffer and kinetic zones. Now we need
an algorithm for finding the correct locations of the zones and of their motions. To
this aim, we must decide where we need the microscopic model. Indeed, shock waves,
contact discontinuities or rarefaction waves that are responsible of local discontinuities
or sharp gradients do actually move in time. Thus, it is crucial to move the kinetic and
buffer regions simultaneously with these waves in order to represent the solution with
the appropriate model. Moreover we can achieve considerable computational speedup if
we can use narrower kinetic zones (even of width of a few mesh points if the situation
permits).

We have experimented different criteria in our simulations. Some of them can be
deduced from both the macroscopic and microscopic models while other ones only depend
on the microscopic model. Of course the second kind of criteria contain more information
but can only be accessed to in the kinetic region.

5.1 Microscopic Criteria

The most obvious indicator of the degree of rarefaction of a gas (but not of its closedness
to the local equilibrium), is the Knudsen number ε which is defined as the ratio of the
mean free path of the particles λ to a reference length L:

ε = λ/L,
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Figure 1: Distribution function as a combination of equilibrium and non-equilibrium parts:
representation (49) (left) and representation (51) (right).

where the mean free path is defined by

λ =
kT√
2πpσ2

c

,

with k the Boltzmann constant equal to 1.380062×10−23JK−1, p the pressure and σc the
collision diameter of molecules. The Knudsen number is determined through macroscopic
quantities and can be computed in the whole domain. However, it is well known that when
the flow is undisturbed even in a very rarefaction regime, the hydrodynamic approximation
is valid. Thus, we need a criterion to locate the discontinuities or sharp gradients inside
the domain.

In kinetic regions we can utilize a new indicator, which we will call the equilibrium
fraction, and which will tell us if the thermodynamical equilibrium hypothesis is correct
or not. The starting point is the following definition [9]:

Definition 1 Given a distribution function f(v), and a distribution function M(v), called
Maxwellian, we define ω(v) ∈ [0, 1] and f̃ ≥ 0 in the following way

ω(v) =







f(v)
M(v)

, f(v) ≤M(v) 6= 0

1, f(v) ≥M(v)

and
f̃(v) = f(v)− ω(v)M(v).

Thus f(v) can be represented as (figure 1)

f(v) = f̃(v) + ω(v)M(v). (49)
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If we take now
β = min

v
{ω(v)}, (50)

and
f̃(v) = f(v)− βM(v),

where βM(v) can be seen as the largest Maxwellian smaller than f(v). Thus the distri-
bution function f(v) can be written in the form [24, 25] (figure 1).

f(v) = f̃(v) + βM(v). (51)

After each time step, once the distribution function has been updated, we proceed to
the computation of β, analyze how it has evolved in the kinetic region during this time step
and decide accordingly how to move the various zones. For instance in the vicinity of a
shock wave, we expect β to be minimal. Thus a possible strategy is to set the kinetic region
around this minimum. This strategy will be explored in the numerical tests presented in
the last section.

In some cases, the parameter β may provide misleading information. One possible
reason for this inaccurate indication comes from the very small values of the distribution
function near the artificial boundaries of the velocity domain of the discrete Boltzmann-
BGK equation. Thus the computation of the equilibrium fraction near these boundaries
is very inaccurate and can lead to values of β much less than 1 which are meaningless.

Another type of inaccuracy occurs when f is very close to the local Maxwellian except
in a tiny region of velocity space (see e.g. the situation depicted in figure 1 (left)). This
very local departure can induce a small value of β while only a negligible fraction of the
particles (in other words, a negligible fraction of the local total mass) are concerned by
this departure to equilibrium. In this situation, we can still consider that the distribution
function is close to equilibrium and that β provides a misleading information.

One way to circumvent the problem is to take into account the relative weight of the
distribution function fi,k with respect to

∑

k fi,k. Another strategy is also to measure the
global mass of the equilibrium part, and which is given by

%E =
∫

R3

ω(v)M(v)dv,

which for the discrete velocity case becomes

%E =
∑

k∈K
ωkEk,

and to define a new equilibrium fraction indicator as

βM =
%E
%
.

The parameter βM gives us the ratio of mass of the equilibrium part to the total mass. It
may happen that β � 1 while βM ≈ 1.
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We finally observe that the parameter τ can also give us some useful information. If
we split the pure BGK equation in a transport step and in a relaxation step, the latter
reads

fn+ 1
2 = e−

∆t
τ f + (1− e−

∆t
τ )Mf . (52)

Thus, if τ is sufficient small compared to the other parameters, we can suppose that the
distribution function relaxes to a local Maxwellian, and the fluid model can be used. On
the other hand, the convection term is going to distort the distribution from equilibrium.
The strength of the convection term can be estimated by the following quantity:

τ
′

= v · ∇xf
f

.

However, while τ is a quantity that can be computed from macroscopic quantities, τ
′

is
not. In order to estimate the magnitude of τ

′
using only fluid quantities, we can measure

the rates of changes of macroscopic quantities linked to f such as density, momentum and
energy. Thus we can compare τ with the following quantities:

∇xF(%)
%

.

The investigation of the validity of these indicators will be the subject of future work.

5.2 Macroscopic Criteria

Of course, we cannot use the equilibrium function indicator in the whole domain, because
we can only access it in the kinetic region. Thus, we have to find other parameters that
can indicate a deviation from the thermodynamical equilibrium. The idea is to make use
of smoothness indicators which measure the roughness of the data. We look at the ratio
of consecutive gradients for the density

ψ(i) =
%(i)− %(i− 1)
%(i+ 1)− %(i)

,

and for the velocity

φ(i) =
u(i)− u(i− 1)
u(i+ 1)− u(i)

.

If ψ(i) and φ(i) are close to 1, then the data are smooth. while if ψ(i) or φ(i) are far
from unity, large variations of these quantities are present. We propose the value of such
indicators in order to locate large gradient zones.

If ψ(i) < 0 or φ(i) < 0, then slopes at neighboring points have different signs which
indicates the existence of maxima or minima. On the other hand, if the gradient varies by
a factor 2 between two neighboring points, we suppose that the data become unsmooth.
Thus the threshold values which we have chosen for standard conditions are

ψ(i) < 0 or ψ(i) > 2, (53)
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and
φ(i) < 0 or φ(i) > 2, (54)

meaning that if either (53) or (54) is satisfied, we must shift (or stay) in the kinetic regime.
In rarefied regimes, a shock waves is not a discontinuity any longer, but rather a

region of large gradients. As a consequence, their localization becomes more difficult. The
same considerations hold for rarefaction waves and contact discontinuities for which the
gradients become smoother as the rarefaction increase. What happens in practice is that
the value of the smoothness indicators decrease in magnitude when the Knudsen number
increases. Thus we propose to link the value of the smoothness indicators to ε in such a
way that, also in the rarefied regime we cab identify a departure from equilibrium. To this
aim we propose that if ε > 10−4, the criterion for shifting to the kinetic model becomes

ψ(i) < 0.7 or ψ(i) > 1.2, (55)

and
φ(i) < 0.7 or φ(i) > 1.2, (56)

Of course, it could be necessary to reduce even more the interval of the fluid regime if the
gas is extremely rarefied. The indicator threshold could also be made dependent upon the
mesh size and the order of the numerical scheme.

Others indicators that could be used instead of the above defined smoothness indicators
are the gradient-length Knudsen numbers

εGL% = λ
|∇%|
%

, εGLu = λ
|∇u|
u

.

Threshold values for these parameters indicating the transition from continuum to to
kinetic regime which have been proposed in [17] and [15] are εGL < 0.05. It is argued that
in this way the error between a macroscopic and a microscopic model is less than 5% [29].

Remark 1 In principle, it is possible to use any type of numerical scheme for the solution
of the coupling model for both the fluid and kinetic regions. Thus if, for instance, we use
high resolution methods such as WENO schemes, we could utilize the smoother indicator
defined by measuring the sum of the L2 norms of all the derivatives of the interpolation
polynomial qk(x) over one cell Ij. The relation reads

ISk =
r−1
∑

l=1

∫ xj+1/2

xj−1/2

∆x2l−1(q(l)
k )2dx (57)

The value of the weights wk of the WENO method computed from the indicators ISk can
be used to identify a discontinuity.
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5.3 Adaptive Kinetic/Fluid Algorithm

We have just listed some macroscopic and microscopic criteria allowing to locate the zones
of strong departure to local thermodynamical equilibrium. Using the above criteria the
algorithm detailed below permits to move the kinetic regions and to create new kinetic
regions during the course of the simulation:

Algorithm for moving Kinetic-Fluid transition region: Assume fn, fnR,%
n
L, h

n and
hn+1 are known.

1. Identify the mesh points at which (53) or (54) are satisfied;

2. Check the values of the Knudsen number in the zones around the mesh points found
at step 1;

3. if the Knudsen number is greater then 10−4, change the threshold values to (55) and
(56) and go back to 1;

4. Put a kinetic region around the mesh points at which the smoothness indicators
exceed the corrected threshold value (this gives an updated hn+1);

5. Advance the coupled system in time by using scheme (31)–(34). If a new zone
has been created, it is simpler to use the splitting scheme (44)–(47). This gives
fn+1
R ,%n+1

L and fn+1.

6. Measure β and βM in the kinetic zone;

7. Compute hn+2 by using the values of β or βM . In our tests, we set hn+2
i = 1 if βi

or βM,i is lower than 0.95 and 0 elsewhere. Fixed size buffer zones are created to
smoothly pass from 1 to 0.

Remark 2 The value of the Knudsen number strongly depends on the choice of the ref-
erence length. In our tests, we choose the domain size as reference length. However, this
choice of reference length depends on the problem. A more universal Knudsen number can
be defined choosing the gradient length defined before as reference length.

6 Numerical tests

6.1 General setting

In this section, we present two numerical tests to illustrate the main features of the method.
First the performance of the scheme is tested on the unsteady shock test problem for which
the very simple structure of the solution makes the analysis easier. The second test problem
is the classical Sod shock tube problem, in which the presence of contact discontinuities
and rarefaction waves add new difficulties compared to the first problem. Both tests are
considered in one space dimension. On each figure, we display the result obtained with
the coupling model and with the hydrodynamic model. We do not show the solution of
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the full kinetic equation because it is very close to that of the coupling system for both
tests.

In order to obtain the correct equation of state, we use a one-dimensional velocity
space model which is able to account for three-dimensional velocity effects. The model
reads

∂t

(

F
G

)

+ v∂x

(

F
G

)

= ν

(

MF − F
TMF −G

)

.

It is obtained from the full three-dimensional Boltzmann-BGK system by means of a
reduction technique [14]. In this model, the fluid energy is given by

E =
∑

k∈K

1
2
v2
kFk +Gk.

In this way, we can recover the correct hydrodynamic limit given by the standard Euler
system even with a lower dimensional velocity space.

The collision frequency is given by ν = τ−1 = (µp )−1 where µ = µref · (θ/θref )ω with
µref = 2.117× 10−5 Pa/s and ω = 0.81. For our simulation we choose an Argon gas with
molecular mass equal to 6.63× 10−27 kg. This yields a value of the gas constant equal to
R ' 208.

The computational speedup compared with a full kinetic simulation is not very large
and mainly corresponds to the possibility of choosing larger timee steps for the hydrody-
namic part. This is due to the fact that the hydrodynamic scheme that we use is deduced
from the kinetic solver by taking discrete velocity moments. However, the coupling model
is not altered if we shift to a more efficient scheme for the hydrodynamic part. In this
case, considerable speedup can be achieved. In order to demonstrate this, we have re-
peated some of the tests with the scheme described in section 4.5. With this scheme, it is
possible to achieve a dramatic speedup.

However, we have made most tests using the unefficient scheme described in section
4.3 because this scheme is directly deduced from the scheme for the kinetic part by taking
discrete velocity moments. In this sense, the schemes for the kinetic and hydrodynamical
parts are ’compatible’. Choosing compatible schemes for the two parts allows to focus our
observations to the effect of the coupling model, thus reducing the discrepancies which
would originate from the choice of the numerical scheme for the hydrodynamic part.

The thickness of the buffer zones is fixed and taken in each test problem equal to
1.5 m, while the thickness of the kinetic and fluid regions vary according to the previously
described criteria and can shrink to zero.

6.2 Unsteady Shock Tests

We consider an unsteady shock that propagates from left to right. The shock is produced
by a specular wall at the left boundary x = −20. This is performed numerically by in-
troducing an incoming Maxwellian distribution in ghost cell beyond the boundary with
parameters %, u, T equal to the %(1), −u(1), T (1) where (%(1), u(1), T (1)) are the param-
eters in the first cell. At the right boundary (x = 20), we also add a ghost cell where, at
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each time step, we impose the macroscopic variables equal to %(t = 0), u(t = 0), T (t = 0)
and the distribution function equal to a Maxwellian corresponding to these parameters for
the kinetic scheme. The computation is stopped at the final time t = 0.04 s. There are
1000 cells in physical space and 140 cells in velocity space. Artificial boundaries in velocity
space are put at velocities equal to −3600 m/s and 3600 m/s. The cut-off function h is
initialized as h = 1 for x ranging from −20 to −17.5 = a1 (kinetic region), h = x−b1

a1−b1 with
b1 = −16 (buffer zone) and h = 0 for x > −16 (fluid region).

The initial conditions are such that mass density % = 5 × 10−7 kg/m3, mean velocity
u = −900 m/s and temperature T = 273 K. The Knudsen number ε at initialization is
equal to ε ' 5.5× 10−3. Since ε is not too small, this suggests us that a kinetic scheme is
necessary in some zones of the domain. When the simulation begins, a shock starts to form
and a non-equilibrium zone arises. We plot the solution after few time steps t = 2× 10−3

s for the density (figure 2, top) and velocity (figure 3, top) to show that the parameters
β and βM are less than 1 near the boundary (figure 4, top left). Then, the shock starts
to move towards the right and after few time steps, β and βM near the left boundary
tend to return to their original value 1. Sufficiently far away from the discontinuity, the
fluid approximation becomes valid. Thus, the algorithm automatically introduces a second
buffer zone [a2, b2] (figures 2–5, middle). On the left-hand side of point a2, h = 1 which
means that the fluid equations alone are solved. All regions move according to the value of
β computed in the kinetic zone. When β approaches the value 1 then h starts to diminish.
We finally plot the results at t = 0.04 s at the end of the simulation, for the density (figure
2, bottom), mean velocity (figure 3, bottom), β and βM (figure 4, bottom left), Knudsen
number (figure 4, bottom right) and smoothness indicators (figure 5, bottom).

We repeat the simulation increasing the initial density to the value % = 10−5 kg/m3.
This yields a different initial Knudsen number ε ' 2.7 × 10−4 and gives different results.
Now β and more importantly βM remain close to 1 also in the vicinity of the shock. This
means that the fluid equations must produce very similar results as the kinetic equations.
After a few time steps, when the shock is formed and starts to move, β ' 1 and βM ' 1
(figure 6, middle left). Then, the scheme automatically sets h = 0 and computes the
solution entirely with the macroscopic model. We display the density, velocity, Knudsen
number, equilibrium fractions β and βM , smoothness indicators ψ and φ when t = 2×10−3

s on figure 6, and when t = 0.02 s on figure 7. The final solution (t = 0.04) is very close
to the solution we can compute with a hydrodynamic scheme. So we do not display it.

We note that as reported in section 5.1 the parameter β gives sometimes results that
could suggest a strong departure to equilibrium while βM does not. The parameter βM
seems more accurate in describing the error between a fluid and a kinetic model.

6.3 Sod shock tube problem

We consider the classical Sod test with the same number of mesh points in physical and
velocity spaces as in the previous test (1000 points in physical space and 140 points in
velocity space). We only change the position of the artificial boundaries in velocity space
and set it now to the values −2000 m/s and 2000 m/s. The initial value are such that mass
density %L = 5 × 10−6 kg/m3, mean velocity uL = 0 m/s and temperature TL = 273.15
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K if −20 ≤ x ≤ 0, while %R = 5 × 0.125 × 10−6 kg/m3, uR = 0 m/s, TR = 218.4 K
if 0 ≤ x ≤ 20. The initial data for the kinetic model are taken in thermodynamical
equilibrium. The Knudsen numbers at the beginning of the simulation are εL ' 0.6×10−3

and εR ' 4.5 × 10−3 to the left and right hand sides of the discontinuity respectively.
We begin by defining a kinetic zone between the initial discontinuity (h = 1) and two
buffer zones to the right [a1, b1] and to the left [a2, b2] of it. In the rest of the domain the
solution is computed with the macroscopic model that corresponds to h = 0. We plot the
results in terms of the density (figure 8) and mean velocity (figure 9). We also display the
Knudsen number (figure 10 right) and the two equilibrium fractions β and βM (figure 10
left). The smoothness indicators for the density and velocity are shown on figure 11. For
each variable we plot the solution at three different times: t = 0.002 s (top), t = 0.015 s
(middle) and at t = 0.03 s (bottom). During the computation, we notice that the region
where β < 1 (figure 10 left, top and middle) grows. The algorithm makes the two buffer
zones move accordingly in order to keep this zone inside the kinetic area. The gas is too
rarefied and the rarefaction waves as well as the two other waves require the microscopic
model (figure 8 and 9, bottom).

We repeat the simulation with different initial densities: %L = 2 × 10−5 kg/m3 and
%R = 0.25 × 10−5 kg/m3. The two Knudsen numbers are εL ' 0.18 × 10−3 and εR '
1.1× 10−3. This leads to different final results. The initial cut-off function h is chosen as
previously, but now the Knudsen numbers are such that the distribution function relaxes
more rapidly towards equilibrium and the macroscopic model is sufficiently accurate except
in the vicinity of the contact discontinuity and shock wave. Again, we display the density
(figure 12), mean velocity (figure 13), Knudsen number (figure 14 right), equilibrium
fractions (figure 14 left) and smoothness indicators (figure 15) at the same instants as
in the previous simulation. At the beginning of the simulation, the rarefaction wave lies
within the kinetic region ( see figures 12-13 top, middle). As time evolves, the rarefaction
wave leaves the kinetic region to end in the fluid region (figures 12-13 bottom). The error
between the macroscopic and the microscopic models in this region is very small.

¿From our tests, we can conclude that the equilibrium parameter βM seems to be a
more precise indicator of local equilibrium than β. Using βM to characterize equilibrium
regions seems a promising strategy for the future developments of the coupling method
and application to numerical simulations of transition regimes from rarefied to dense flows.

6.4 Use of a different scheme for the fluid-dynamical part

In this section we show how the coupling model behaves when used in conjunction with a
different scheme for the fluid-dynamical part. We repeat the computations of the two pre-
vious sections, namely the unsteady shock test problem and the Sod shock tube problem.
For the unsteady shock test problem, the initial values are % = 5 × 10−6 kg/m3, mean
velocity u = −900 m/s and temperature T = 273 K, while for the Sod shock test problem,
they are %L = 2× 10−5 kg/m3, uL = 0 m/s, TL = 273.15 K and %R = 0.25× 10−5 kg/m3,
uL = 0 m/s, TL = 273.15 K. We use the same meshes in physical and velocity spaces as
previously. We only plot the results for the density and velocity at different time steps.
Figure 16 for the Sod shock tube problem and figure 17 for the unsteady shock problem
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show that the solution agrees well with the previous results except for small differences
due to the different numerical scheme. The computational time of the two simulations
on a 3 Ghz Athlon computer shows a speedup of 65 % for the Sod problem and of 40
% for the unsteady shock problem. This different speedup can be explained by the dif-
ferent sizes of the kinetic regions in the two tests, and also by the different time steps.
In the second test, the limitation of the time step due to convection (CFL condition)
and that coming from the relaxation are close. Therefore, the simulation times for the
macroscopic and microscopic models are closer than in the case of the Sod test. These
considerations suggest that the use of such a decomposition technique is very efficient in
regimes close to thermodynamical equilibrium in which however, Navier-Stokes or Euler
fail to accurately describe the flow. Such regimes are the so-called transitional regimes. Of
course, the computational time can be reduced even further for two or three dimensional
computations.

7 Conclusion

In this work we have proposed a new approach for the solution of rarefied gas dynamics
problems through a dynamic coupling of kinetic and fluid equations. This method extends
previous works [6] where a static coupling was considered. The main feature of the work
is that the two models are coupled in a region in which the full solution is recovered by
summing up the two (kinetic and fluid) contributions. One advantage of this technique
is that no boundary condition is needed at the boundary of each zone, by contrast to
conventional domain decomposition schemes. This makes the method very flexible. In
the present work, we have proposed a procedure to dynamically update the location of
the different fluid and kinetic regions. This allows a time adaptation of the domain de-
composition technique which dramatically increases the efficiency of the method. Another
important feature of the method which has been highlighted in the present work is the
possibility of creating new kinetic regions (in other words, the topology of the domain
decomposition itself can be dynamically updated). The combination of different criteria
both of macroscopic and microscopic nature allows to reliably detect the regions of sharp
gradients and discontinuities where the microscopic model must be solved and we can
define a priori the approximation tolerance that we decide to accept.

The last part of the paper is devoted to numerical tests in order to compare the
performances and results of the coupling method with respect to both the macroscopic
and microscopic models. Although only one-dimensional results have been presented, and
further tests must be performed to completely validate the method, the results look very
encouraging. The algorithm performs well with the two different numerical schemes that
have been experimented and significant computational speedup can be achieved without
compromising the accuracy of the results. Compared to a steady domain decomposition
method, the possibility of dynamically updating the kinetic region allows us to shrink the
kinetic zones to the region of interest at any time which results in considerably improved
efficiency.

In the future, the numerical tests need to be extended to two dimensional problems.
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The dynamic domain decomposition strategy will also be adapted to different coupling
methods such the localized kinetic upscaling method of Degond, Liu and Mieussens [8], or
the hybrid domain decomposition method developed by Dimarco and Pareschi [10] where
a Monte Carlo scheme is used to compute the solution of the Boltzmann-BGK equations.
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Figure 2: Unsteady Shock 1: Density profile at different times t = 0.002 (top), t = 0.02
(middle), t = 0.04 (bottom). The solid line is the solution of the coupling model, the
dotted line is that of the Euler system.
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Figure 3: Unsteady Shock 1: Velocity profile at different times t = 0.002 (top), t = 0.02
(middle), t = 0.04 (bottom). The solid line is the solution of the coupling model, the
dotted line is that of the Euler system.

26



−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

x(m)

β M
,β

kinetic

Hydro

b
u
f
f
e
r

β
β

M

−20 −15 −10 −5 0 5 10 15 20
0

1

2

3

4

5

6

x 10−3

x(m)

ε

kinetic

Hydro

b
u
f
f
e
r

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

x(m)

β M
,β

b
u
f
f
e
r

H

kinetic

Hydro

b
u
f
f
e
r

β
β

M

−20 −15 −10 −5 0 5 10 15 20
0

1

2

3

4

5

6

x 10−3

x(m)

ε

b
u
f
f
e
r

H

kinetic

Hydro

b
u
f
f
e
r

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

x(m)

β M
,β

b
u
f
f
e
r

Hydro

kinetic

Hydro

b
u
f
f
e
r

β
β

M

−20 −15 −10 −5 0 5 10 15 20
0

1

2

3

4

5

6

x 10−3

x(m)

ε

b
u
f
f
e
r

Hydro

kinetic

Hydro

b
u
f
f
e
r

Figure 4: Unsteady Shock 1: Equilibrium fraction profile (left), Knudsen number (right)
at different times t = 0.002 (top), t = 0.02 (middle), t = 0.04 (bottom).
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Figure 5: Unsteady Shock 1: Smoothness indicators for density (left) and velocity (right)
at different times t = 0.002 (top), t = 0.02 (middle), t = 0.04 (bottom)
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Figure 6: Unsteady Shock 2: Solution at t = 2 × 10−3. Density (top left), velocity
(top right), equilibrium fraction (middle left), Knudsen number (middle right), density
smoothness indicator (bottom left), velocity smoothness indicator (bottom right). The
small panels are a magnification of the solution close to the shock.
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Figure 7: Unsteady Shock 2: Solution at t = 0.02. Density (top left), velocity (top right),
equilibrium fraction (middle left), Knudsen number (middle right), density smoothness
indicator (bottom left), velocity smoothness indicator (bottom right). The small panels
are a magnification of the solution close to the shock.
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Figure 8: Sod test 1: Density profile at different times t = 0.002 (top), t = 0.015 (middle),
t = 0.03 (bottom). The solid line is the solution of the coupling model, the dotted line is
that of the Euler system.

31



−20 −15 −10 −5 0 5 10 15 20
−50

0

50

100

150

200

250

300

x(m)

ve
lo

ci
ty

b

u

f

f

e

r

Hydro

kinetic

Hydro

b

u

f

f

e

r

Coupling
Euler

−20 −15 −10 −5 0 5 10 15 20
−50

0

50

100

150

200

250

300

x(m)

ve
lo

ci
ty

b

u

f

f

e

r

Hydro

kinetic

Hydro

b

u

f

f

e

r

Coupling
Euler

−20 −15 −10 −5 0 5 10 15 20
−50

0

50

100

150

200

250

300

x(m)

ve
lo

ci
ty

b

u

f

f

e

r

Hydro

kinetic

b

u

f

f

e

r

Coupling
Euler

Figure 9: Sod test 1: Velocity profile at different times t = 0.002 (top), t = 0.015 (middle),
t = 0.03 (bottom). The solid line is the solution of the coupling model, the dotted line is
that of the Euler system.
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Figure 10: Sod test 1: Equilibrium fraction profile (left), Knudsen number (right) at
different times t = 0.002 (top), t = 0.015 (middle), t = 0.03 (bottom).
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Figure 11: Sod test 1: Smoothness indicators for density (left) and velocity (right) at
different times t = 0.002 (top), t = 0.015 (middle), t = 0.03 (bottom)
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Figure 12: Sod test 2: Density profile at different times t = 0.002 (top), t = 0.015 (middle),
t = 0.03 (bottom). The solid line is the solution of the coupling model, the dotted line is
that of the Euler system.
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Figure 13: Sod test 2: Velocity profile at different times t = 0.002 (top), t = 0.015
(middle), t = 0.03 (bottom). The solid line is the solution of the coupling model, the
dotted line is that of the Euler system.
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Figure 14: Sod test 2: Equilibrium fraction profile (left), Knudsen number (right) at
different times t = 0.002 (top), t = 0.015 (middle), t = 0.03 (bottom).
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Figure 15: Sod test 2: Smoothness indicators for density (left) and velocity (right) at
different times t = 0.002 (top), t = 0.015 (middle), t = 0.03 (bottom)
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Figure 16: Sod Test 3: Density (left), Velocity (right) profiles at different times t = 0.002
(top), t = 0.015 (middle), t = 0.03 (bottom). The solid line is the solution of the coupling
model, the dotted line is that of the Euler system.
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Figure 17: Unsteady shock test: Density (left), Velocity (right) profiles at different times
t = 0.002 (top), t = 0.02 (middle), t = 0.04 (bottom). The solid line is the solution of the
coupling model, the dotted line is that of the Euler system.
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