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Abstract

We propose a way to derive Bhatnagar-Gross-Krook and Fokker-Planck models of the Boltz-
mann equation for rarefied flows of thermally perfect gases. These models can allow for various
internal energies (rotation, vibration, electronic), which is required for high temperature flows,
like in atmospheric reentry problems. However, our models do not contain any internal degrees
of freedom: instead, they are accounted for by a mesoscopic approach. The molecular velocity
is the only kinetic variable in the models, that makes their computational complexity similar
to that of simple monoatomic gases. Moreover, we prove that these models satisfy conservation
and entropy properties (H-theorem), and we derive their corresponding compressible Euler and
Navier-Stokes asymptotics. gases.
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1 Introduction

Gas flows in high altitude aerodynamics, in low pressure devices, or in micro systems, are often
in a rarefied regime: the mean free path of gas molecules is of the same order of magnitude as a
relevant macroscopic length scale. In such cases, the flow cannot be accurately described by the
macroscopic Navier-Stokes equations. Instead, the Boltzmann equation of gas kinetic theory is a
more relevant model. This equation was first derived by Boltzmann for a monoatomic gas, and
later extended to mixtures [1], then to polyatomic molecules with internal energy and to gases with
chemical reactions [2].

Numerical simulations of rarefied gas flows is a difficult task, due to the large number of degrees
of freedom of gas molecules. The Direct Simulation Monte Carlo (DSMC) is the most frequently
used method for such simulations [3, 4, 5, 6] : it combines deterministic transport of particles
and stochastic collision algorithms that make it partially independent of the number of degrees
of freedom of gas molecules. However, it is interesting to use other methods, especially for the
transitional regime, between rarefied and continuous regimes, in which the number of molecules
can be too large for DSMC. It can also be difficult for DSMC to capture small thermal fluctuations
in gas micro flows due to a large statistical numerical noise. For such problems, it is attractive
to directly solve the Boltzmann equation itself [7]: it gives very accurate numerical methods, but
generally limited to simple monoatomic gases. In particular, simulating polyatomic gases is still
nowadays much too computationally expensive with such deterministic methods.

However, the Boltzmann equation can be strongly simplified: the idea of model equations like
Bhatnagar-Gross-Krook (BGK) [8] or Fokker-Plank models [9] is to simplify the collision process,
while the transport process and gas surface interactions are not modified. In the BGK model,
collisions are taken into account by a relaxation of the distribution function to the Maxwellian
equilibrium. In the Fokker-Plank model, collisions are modeled by a diffusion process of the molec-
ular velocity. With some further modifications [10, 11, 12, 13], it can be shown analytically that
these model equations give the same solution as the Boltzmann equation in the dense regime, and
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numerical simulations show that they are often sufficiently accurate in rarefied regimes, for a much
lower computational cost than that of Boltzmann based numerical methods.

These models have recently been extended to more complex gases: polyatomic gases with
rotational [14, 15] and vibrational nonequilibrium [5, 6, 16, 17, 18, 19, 20, 21]. However, these
models are still computationally expensive due to the large number of degrees of freedom induced
by the polyatomic structure of gas molecules. But a very interesting feature of these model equations
is that their mathematical structure permits a reduction of this complexity: the internal energy
variables can be easily eliminated by a simple integration (this reduction was proposed in [22] for
a reduced model in a one dimensional shock wave problem), which leads to a reduced model that
has more or less the same complexity as a model for a monoatomic gas, while it still accounts
for molecular energy transfers between internal modes. These reduced models can then be viewed
as intermediate models between fully kinetic Boltzmann like models and Navier-Stokes like fluid
models.

While mathematical results for existence and uniqueness of solutions of such models is a very
difficult task (see [23] for instance), there is a very simple tool that gives some nonlinear stability:
the so called H-theorem, originally proved by Boltzmann for his equation. This theorem gives a
non linear functional (related to the macroscopic entropy of thermodynamics) that satisfies a local
dissipation law. Since most of BGK and Fokker-Planck like models satisfy such an H-theorem,
reduced models naturally inherit this property: the integration process with respect to the internal
variables is compatible with the H-theorem, since it is mainly based on convexity arguments.

In this paper, we show that these reduced models can be derived a priori, without any reduction
of a fully kinetic model. Here, we only use the functional relation between the internal energy of
the gas and its temperature, which is generally given by statistical physics, thermodynamics or by
measurements. This approach does not require a precise description of the internal structure of
gas molecules: it can then be applied to any polyatomic thermally perfect gas for which degrees of
freedom of rotation or vibration (with harmonic or anharmonic oscillator model) can be activated.
Consequently, these models can now be viewed as direct mesoscopic models, and not only as reduced
models. Moreover, we are able to prove that these models satisfy an H-theorem. This is indeed the
main innovation of our paper: we derive a general entropy functional for our models that does not
require to know the entropy functional of a superior fully kinetic model.

The outline of our paper is as follows. In section 2, we introduce relations between internal
energy of the gas and its temperature, we define a corresponding macroscopic entropy, we define
the distribution functions of mass and energy required to describe the gas at a kinetic level, and
we introduce our kinetic entropy functional on which our models are based on. In section 3 and 4,
we propose BGK and Fokker-Planck models for these distributions. In section 5, we derive the
macroscopic Euler and Navier-Stokes limits of these models. In section 6, our models are extended
to take into account independent internal energies: the gas is then described with a distribution
function for each internal energy. Our last section 7 is devoted to conclusion and perspectives.
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2 Thermally perfect gas: energies, entropies, and distribution
functions

2.1 Some elements of thermodynamics of thermally perfect gases

A thermally perfect gas is a gas satisfying the perfect gas law P = ρRT where P is the pressure, ρ
the density and T the temperature, with R the gas constant per unit mass. Its energy e depends
on the temperature, either linearly, like for polyatomic rotating molecules, or non linearly, like for
vibrating molecules. Its heat capacities are constant (for linear energy) or temperature dependent
(for non linear energy).

For instance, for rotating diatomic molecules, the specific energy reads e(T ) = 5
2RT while for

vibrational diatomic molecules in case of the harmonic oscillator model, it reads e(T ) = 5
2RT +

RT0
exp(T0/T )−1 , where T0 is the characteristic vibrational temperature. If the electronic energy has to

be taken into account, e(T ) is obtained directly from spectroscopic measurements.
In order to develop general BGK and Fokker-Planck models that can allow for such temperature

dependence of the specific energy in non equilibrium flows, we need to define different tempera-
tures for translational and internal degrees of freedom. Then from now on, we assume a general
temperature law of specific energy e, and we assume that it can be decomposed into

e(T ) = etr(T ) + eint(T ),

where etr(T ) = 3
2RT is the translational kinetic energy (the energy associated to movement in

the three directions of space), while eint(T ) is some given energy that corresponds to the internal
degrees of freedom of molecules. Moreover we also assume that eint is an increasing function of T ,
and hence e is an increasing function too. Consequently, we can define the inverse functions Tint,
Ttr, and T that map any given energy E to the corresponding temperatures. In other words, for
any energy E, we define the temperatures

Tint = Tint(E), Ttr = Tint(E), and T = T(E), (1)

such that eint(Tint) = E, etr(Ttr) = E and e(T ) = E. We shall also need the specific heat
corresponding to the internal energy, which is defined by

cintv (T ) =
deint(T )

dT
, (2)

so that the global specific heat is cv(T ) = de(T )
dT = 3

2R+ cintv (T ).
We also define the corresponding specific entropies str and sint by

dstr
dE

=
1

Ttr(E)
, and

dsint
dE

=
1

Tint(E)
, (3)

see some expressions for rotational and vibrational case in section 6.4. The global entropy is
defined by ds = dstr + dsint − Rdρ/ρ, and since at equilibrium, Ttr = Tint = T , these definitions
are compatible with the usual Gibbs relation ds = de

T −R
dρ
ρ .

We now have all the necessary tools to construct our BGK and Fokker-Planck models.
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2.2 Reduced distribution functions and local equilibrium

We define F (t, x, v) the mass density of molecules with position x and velocity v, and G(t, x, v)
their internal energy density. In other words, the mass and internal energy of molecules in a volume
element dx around x with velocity in dv around v are Fdxdv and Gdxdv, respectively.

The macroscopic mass density ρ, velocity u, and energy densities ρEtr, ρEint, and ρE are defined
by

ρ = 〈F 〉 , ρu = 〈vF 〉 ,

ρEtr =

〈
1

2
|v − u|2F

〉
, ρEint = 〈G〉 ,

ρE =

〈
1

2
|v − u|2F

〉
+ 〈G〉 ,

(4)

where we use the notation 〈ψ〉 =
∫
ψ dv for any velocity dependent function ψ. The equilibrium

temperature is defined by
T = T(E). (5)

At equilibrium, the mass and internal energy distributions are Maxwellian: we have F =
M [F,G] and G = eint(T )M [F,G], where

M [F,G](v) =
ρ

√
2πRT

3 exp

(
−|u− v|

2

2RT

)
. (6)

2.3 Reduced vs fully kinetic models

Usually, mass and energy densities F and G are obtained by reduction of a single mass density
that depends on internal microscopic energy modes. For instance, in case of rotational and discrete
vibrational energy modes, one can define the kinetic mass density F(t, x, v, ε, i) such that

F (t, x, v) =
+∞∑
i=0

∫
R3

F(t, x, v, ε, i) dε and G(t, x, v) =
+∞∑
i=0

∫
R3

(ε+ iRT0)F(t, x, v, ε, i) dε.

While the fully kinetic distribution F is obviously more accurate than reduced distributions F
and G, we point out other elements of comparisons between both descriptions:

• Macroscopic quantities: the macroscopic quantities ρ, u, T corresponding to F are the same
as that given by F and G.

• Computational cost: a fully kinetic model for F requires to discretize a huge phase space: at
least 8-dimensional for x, v, ε and i, and even more in case of electronic energy levels. This is
why a deterministic simulation based on phase space discretization of the fully kinetic model
is still nowadays computationally too expensive, even with modern large scale computers.
At the contrary, using a reduced model for a deterministic simulation is possible, for the
same computational cost as a simple monoatomic gas flow simulation (see [24]): indeed, the
reduced model corresponding to F and G (see sections 3 and 4) requires to discretize the
usual position-velocity phase space, which is 6-dimensional only.
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• Information loss: only higher order moments with respect to the internal energy variables
cannot be defined with F and G. But these moments are generally not quantities of interest
in practical applications. Moreover, even if some solid wall interaction models with internal
energy exchanges can be taken into account only with a fully kinetic distribution, standard
diffuse and Maxwell boundary conditions are compatible with reduced distributions.

Finally, we mention that the novelty of our approach is that we derive reduced models directly,
without using any fully kinetic model. These models can be viewed as direct mesoscopic models.
Our approach is guided by the macroscopic energy laws of perfect gases, and is independent of
continuous or discrete representations of microscopic energy levels.

2.4 Conservation and entropy

Standard Gaussian integrals (see section B) show that the local equilibrium distributions have
the same moments as F and G, as it is stated in the following proposition.
Proposition 2.1 (Conservation properties).

〈M [F,G]〉 = ρ, 〈vM [F,G]〉 = ρu,〈
1

2
|v − u|2M [F,G]

〉
= ρEtr, 〈eint(T )M [F,G]〉 = ρEint,〈

1

2
|v − u|2M [F,G]

〉
+ 〈eint(T )M [F,G]〉 = ρE.

We now define an entropy functional as a function of F and G and we state some of its useful
properties in the following proposition.

Proposition 2.2 (Entropy). The entropy functional H(F,G) is

H(F,G) = 〈H(F,G)〉 , where H(F,G) = F log(F )− F 1

R
sint

(
G

F

)
. (7)

1. The partial derivatives of H are:

D1H(F,G) = 1+log(F )+
G

RTint(G/F )F
− 1

R
sint

(
G

F

)
, D2H(F,G) = − 1

RTint(G/F )
. (8)

2. We note H =
(
D11H(F,G) D12H(F,G)
D12H(F,G) D22H(F,G)

)
the Hessian matrix of H. Its components are

D11H(F,G) =
1

F
+

G2

F 3cintv (Tint(G/F ))RT2
int(G/F )

,

D12H(F,G) = D21H(F,G) = − G

F 2cintv (Tint(G/F ))RT2
int(G/F )

D22H(F,G) =
1

cintv (Tint(G/F ))RT2
int(G/F )F

.

Moreover, the second order derivatives satisfy the following equalities:

FD11H(F,G) +GD21H(F,G) = 1,

FD12H(F,G) +GD22H(F,G) = 0.
(9)
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3. The function (F,G) 7→ H(F,G) is convex.

Proof. First, note that even if G/F is velocity dependent, it has the dimension of a specific energy,
and hence the expressions sint(G/F ) and Tint(G/F ) make sense (see equations (1) and (3)). Points
1 and 2 are given by direct computations. The Hessian matrix is positive definite (its trace and
determinant are positive) so that H is convex.

Remark 2.1. One can note that since sint was defined up to a constant, the entropy is defined up
to a linear term, which is proportional to the mass. Since the mass is naturally conserved in our
models, this additional term plays no role in the proof of the H-theorem.

Proposition 2.3 (Minimization of H). Let (F,G) be a couple of reduced distributions, ρ, ρu, and
ρE its moments as defined by (4), and T its equilibrium temperature as defined by (5). Let S be
the convex set defined by

S =

{
(F1, G1) ≥ 0 such that 〈F1〉 = ρ, 〈vF1〉 = ρu,

〈
1

2
|v − u|2F1 +G1

〉
= ρE

}
.

1. The minimum of H on S is obtained for the couple (M [F,G], eint(T )M [F,G]), where M [F,G]
is the Maxwellian distribution defined in (6), while eint(T ) is the specific internal energy at
temperature T .

2. The following inequalities hold

0 ≥ H
(
M [F,G], eint(T )M [F,G]

)
−H(F,G)

≥ D1H(F,G)
(
M [F,G]− F

)
+D2H(F,G)

(
eint(T )M [F,G]−G

)
Proof. First, the set S is clearly convex, and it is non empty, since (M [F,G], eint(T )M [F,G])
realizes the moments ρ, ρu, and ρE (see proposition 2.1), and hence belongs to S. Now, we define
the following Lagrangian

L(F1, G1, α, β, γ) = 〈H(F1, G1)〉 − α(〈F1〉 − ρ)

− β · (〈vF1〉 − ρu)− γ
(〈

1

2
|v − u|2F1 +G1

〉
− ρE

)
for (F1, G1) ∈ S , α ∈ R, β ∈ R3, γ ∈ R. The entropy functional H can reach a minimum of S
when L has its first order partial derivatives equal to zero. This minimum is then characterized by
the following relations:

D1H(F1, G1) = α+ β · v + γ
1

2
|v|2, (10)

D2H(F1, G1) = γ, (11)

〈F1〉 − ρ = 0, , 〈vF1〉 − ρu = 0,

〈
1

2
|v − u|2F1 +G1

〉
− ρE = 0, (12)

where D1H and D2H are defined in (8).
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Relation (11) gives Tint(G/F ) = −1/(Rγ) and hence γ is non positive. Since Tint is a one-to-one
function, this gives G/F = eint(−1/(Rγ)). Then relation (10) shows that there exists real numbers
a, b, and one vector c ∈ R3, independent of v, such that:

F1 = a exp
(
c · v + b|v − u|2

)
.

It is then standard to use equations (12) to get F1 = M [F,G] and G1 = eint(T )M [F,G].
Finally point 2 is a direct consequence of the convexity of H and of the minimization property.

3 A reduced BGK model for thermally perfect gases

3.1 The model

The evolution of mass and energy distributions can be simply modeled by the BGK approach [8, 25]:
we assume that F and G relax to their local equilibrium M [F,G] and eint(T )M [F,G] with the same
relaxation time τ , and this gives

∂tF + v · ∇xF =
1

τ
(M [F,G]− F ) ,

∂tG+ v · ∇xG =
1

τ
(eint(T )M [F,G]−G),

(13)

where ρ, u, T , and M [F,G] are defined in (4–6).
We mention that similar models were recently obtained to take vibrational energy into account:

the same reduced model can be found in [26], and a microscopic (non reduced) ES-BGK model is
proposed in [19]. In this last case, if the model is reduced and the Prandtl number is taken as 1,
we get the same reduced BGK model as (13). However, in these papers, the authors are not able
to prove any H-theorem (only a local entropy dissipation can be proved). This is due to the fact
that their models are derived from a microscopic model with continuous vibrational energy that
does not has any entropy functional. Here, our derivation allows us to prove a H-theorem, as it is
shown below.

3.2 Properties of the reduced model

System (13) naturally satisfies local conservation laws of mass, momentum, and energy. Moreover,
the H-theorem holds with the entropy functional H. Indeed, we have the

Proposition 3.1. The reduced BGK system (13) satisfies the H-theorem

∂tH(F,G) +∇x · 〈vH(F,G)〉 ≤ 0,

where H(F,G) is the entropy functional defined in (7).

Proof.
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By differentiation we get

∂tH(F,G) +∇x · 〈vH(F,G)〉
= 〈D1H(F,G)(∂tF + v∇xF ) +D2H(F,G)(∂tG+ v∇xG)〉

=
1

τ
〈D1H(F,G)(M [F,G]− F ) +D2H(F,G)(eint(T )M [F,G]−G)〉

≤ 0

where we have used (13) to replace the transport terms by relaxation ones, and point 2 of propo-
sition 2.3 to obtain the inequality.

4 A Fokker-Planck model for thermally perfect gases

Here, we derive a reduced Fokker-Planck model, by analogy with the reduced BGK model (13)
and by using our previous work [15] on a Fokker-Planck model for polyatomic gases. We remind
that the original Fokker-Planck model for monoatomic gas can be derived from the Boltzmann
collision operator under the assumption of small velocity changes through collisions and additional
equilibrium assumptions (see [9]). In practice, the agreement of this model with the Boltzmann
equation is observed even when the gas is far from equilibrium (see [12], for instance).

4.1 A reduced Fokker-Planck model

Now, the evolution of the mass and internal energy distributions F and G is governed by the
following model

∂tF + v · ∇xF = DF (F,G),

∂tG+ v · ∇xG = DG(F,G),
(14)

with

DF (F,G) =
1

τ

(
∇v ·

(
(v − u)F +RT∇vF

))
,

DG(F,G) =
1

τ

(
∇v ·

(
(v − u)G+RT∇vG

))
+

2

τ
(eint(T )F −G) ,

(15)

where the temperature is defined in (4). The elastic collisions are accounted for by the drift-diffusion
terms that make F and G relax to the local equilibrium, while the energy exchanges induced by
inelastic collisions are accounted for by the relaxation term.

4.2 Properties of the reduced model

Using direct calculations and dissipation properties as in [15] we can prove the following proposition.

Proposition 4.1. The collision operator conserves the mass, momentum, and energy:

〈(1, v)DF (F,G)〉 = 0 and

〈
1

2
|v|2DF (F,G) +DG(F,G)

〉
= 0,

the entropy functional H(F,G) satisfies the H-theorem:

∂tH(F,G) +∇x · 〈vH(F,G)〉 = D(F,G) ≤ 0,
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and we have the equilibrium property

(DF (F,G) = 0 and DG(F,G) = 0)⇔ (F = M [F,G] and G = eint(T )M [F,G]).

Proof. The conservation property is the consequence of direct integration of (15). The equilibrium
property can be proved as follows.

To make the notations simpler, M [F,G] will be simply denoted by M in the following. Then
the collision operators can be written in the compact form

DF (F,G) =
1

τ
∇v ·

(
M∇v

F

M

)
,

DG(F,G) =
1

τ
∇v ·

(
M∇v

G

M

)
+

2

τ
(eint(T )F −G) .

For DF (F,G), a simple integration by part gives〈
DF (F,G)

F

M

〉
= −1

τ

〈(
∇v

F

M

)T
M∇v

F

M

〉
,

and the integral in the right-hand side is a positive definite form. Consequently, if DF (F,G) = 0,
we necessarily have ∇v(F/M) = 0, and hence F = M .

For the equilibrium property of G, the proof is a bit more complicated. First, we have〈
DG(F,G)

G

eint(T )M

〉
= − 1

τeint(T )

〈(
∇v

G

M

)T
M∇v

G

M

〉
+

〈
2

τ
(eint(T )F −G)

G

eint(T )M

〉
.

Consequently, if DG(F,G) = 0, the right-hand side of the previous relation vanishes, and since
F = M , we get

1

eint(T )

〈(
∇v

G

M

)T
M∇v

G

M

〉
= 2

〈
(eint(T )M −G)

G

eint(T )M

〉
= −2

〈
(eint(T )M −G)2

1

eint(T )M

〉
+ 2 〈eint(T )M −G〉

≤ 2 〈eint(T )M −G〉 = 2ρ(eint(T )− Eint).

Now we can observe that ρeint(T )−Eint = 0. Indeed, note that F = M implies Etr = etr(T ), and
therefore we have

eint(T )− Eint = (eint(T ) + etr(T ))− (Eint + Etr),

= e(T )− E = 0,

by definition of T (see (1)). Consequently, we obtain

1

eint(T )

〈(
∇v

G

M

)T
M∇v

G

M

〉
≤ 0,

and again this gives G = eint(T )M , which concludes the proof of the equilibrium property.
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The proof of the H-theorem is much longer. First, by differentiation one gets that the quantity
D(F,G) = ∂tH(F,G) +∇x · 〈vH(F,G)〉 satisfies:

D(F,G) = 〈D1H(F,G)(∂tF + v · ∇xF ) +D2H(F,G)(∂tG+ v · ∇xG)〉
= 〈D1H(F,G)DF (F,G) +D2H(F,G)DG(F,G)〉 , (16)

from (13). Then the proof is based on the convexity of H(F,G): while for the BGK model we only
used the first derivatives of H, we now use the positive-definiteness of the Hessian matrix of H. To
do so we integrate by parts D(F,G) and multiply it by τ so that:

τD(F,G) =−
3∑
i=1

〈(∂viF )D11H(F,G) ((vi − ui)F +RT∂viF )〉

−
3∑
i=1

〈(∂viG)D21H(F,G) ((vi − ui)F +RT∂viF )〉

−
3∑
i=1

〈(∂viF )D12H(F,G) ((vi − ui)G+RT∂viG)〉

−
3∑
i=1

〈(∂viG)D22H(F,G) ((vi − ui)G+RT∂viG)〉

− 2

〈
(eint(T )F −G)

1

RTint(G/F )

〉

(17)

To use the positive definiteness of the Hessian matrix H of H, we introduce the following vector:

Vi = ((vi − ui)F +RT∂viF, (vi − ui)G+RT∂viG)

so that the partial derivatives of F and G read

(∂viF, ∂viG) =
1

RT
Vi − (

vi − ui
RT

F,
vi − ui
RT

G).

This is used in (17) to get

τD(F,G) =

3∑
i=1

〈(
vi − ui
RT

F

)
D11H(F,G) ((vi − ui)F +RT∂viF )

〉

+

3∑
i=1

〈(
vi − ui
RT

G

)
D21H(F,G) ((vi − ui)F +RT∂viF )

〉

+

3∑
i=1

〈(
vi − ui
RT

F

)
D12H(F,G) ((vi − ui)G+RT∂viG)

〉

+
3∑
i=1

〈(
vi − ui
RT

G

)
D22H(F,G) ((vi − ui)G+RT∂viG)

〉

−
3∑
i=1

〈
V T
i HVi

〉
− 2

〈
(eint(T )F −G)

1

RTint(G/F )

〉
.
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Now this expression can be considerably simplified by using property (9), and we get

τD(F,G) =
3∑
i=1

〈(
vi − ui
RT

)
((vi − ui)F +RT∂viF )

〉

−
3∑
i=1

V t
i HVi − 2

〈
(eint(T )F −G)

1

RTint(G/F )

〉
.

Then the first two terms are simplified by using an integration by parts to get

τD(F,G) =
2

RT
(ρEtr −

3

2
ρRT )−

3∑
i=1

V t
i HVi − 2

〈
(eint(T )F −G)

1

RTint(G/F )

〉
.

By using (1), the first term is equal to 2
RT ρ(eint(T )−Eint) = 2

RT 〈eint(T )F −G〉 (this is equivalent
to E = e(T ), which is true by definition of T ). The terms with the Hessian are clearly negative,
since H is positive definite (see the proof of proposition 2.2). Then we have

τD(F,G) ≤ 2

RT
〈eint(T )F −G〉 − 2

〈
(eint(T )F −G)

1

RTint(G/F )

〉
,

that can be factorized to find

τD(F,G) ≤ 2

〈
(eint(T )F −G)

(
1

RT
− 1

RTint(G/F )

)〉
.

We can now prove that the integrand of the right-hand side is non-positive. Indeed, assume for
instance that the second factor is non-positive, that is to say 1

RT −
1

RTint(G/F ) ≤ 0. Then T ≥
Tint(G/F ), and since eint is an increasing function of the temperature (see section 2.1), we get
eint(T ) ≥ eint(Tint(G/F )) = G/F . This is equivalent to eint(T )F −G ≥ 0, that is to say the first
factor of the integrand is non-negative. We get the same result in the opposite case. Consequently,
we have proved τD(F,G) ≤ 0, which concludes the proof.

5 Hydrodynamic limits for reduced models

With a convenient scaling, the relaxation time τ of the reduced BGK model (13) and the Fokker-
Planck model (14)) is replaced by Kn τ , where Kn is the Knudsen number, which can be defined as
a ratio between the mean free path and a macroscopic length scale. It is then possible to look for
macroscopic models derived from BGK and Fokker-Planck reduced models, in the asymptotic limit
of small Knudsen numbers. For convenience, these models are re-written below in non-dimensional
form. The BGK model is:

∂tF + v · ∇xF =
1

Kn τ
(M [F,G]− F ) ,

∂tG+ v · ∇xG =
1

Kn τ
(eint(T )M [F,G]−G),

(18)

where M [F,G] can be defined by (6) with R = 1. Similarly, the relations in section 2.1 between
the translational, internal, and total energies and the temperature, have to be read with R = 1 in
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non-dimensional variables. The Fokker-Planck model is

∂tF + v · ∇xF = DF (F,G),

∂tG+ v · ∇xG = DG(F,G),
(19)

with

DF (F,G) =
1

Kn τ

(
∇v ·

(
(v − u)F + T∇vF

))
,

DG(F,G) =
1

Kn τ

(
∇v ·

(
(v − u)G+ T∇vG

))
+

2

Kn τ
(eint(T )F −G) .

(20)

The conservation laws are obtained by multiplying the equation for F in (18) by 1, v, and 1
2 |v|

2

and then by integrating with respect to v. The equation for G is simply integrated and added to
the last equation. Conservation property 2.1 then gives

∂tρ+∇ · ρu = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇ · P (f) = 0,

∂tE +∇ · Eu+∇ · (P (f)u) +∇ · q(f) = 0,

(21)

where E = 〈12 |v|
2F + G〉v is the total energy density, P (f) = 〈(v − u)⊗ (v − u)F 〉 is the pres-

sure tensor, and q(f) =
〈
1
2 |v − u|

2(v − u)F + (v − u)G
〉

is the heat flux. The same conservation
equations are obtained for the Fokker-Planck model (19), for which we use proposition 4.1.

Then with standard asymptotic analysis, we can prove that two asymptotic macroscopic models
can be derived from our kinetic equations. These models are presented in the following two propo-
sitions: the first one for the compressible Euler asymptotics, the second one for the compressible
Navier-Stokes asymptotics. These two propositions are proved in appendix A.

Proposition 5.1. The mass, momentum, and energy densities of the solutions of the reduced
BGK (18) and Fokker-Planck (19) models satisfy the Euler equations up to O(Kn ):

∂tρ+∇ · ρu = 0,

∂tρu+∇ · (ρu⊗ u) +∇p = O(Kn ),

∂tE +∇ · (E + p)u = O(Kn ).

(22)

The non-conservative form of these equations is

∂tρ+∇ · ρu = 0,

ρ(∂tu+ (u · ∇)u) +∇p = O(Kn ),

∂tT + u · ∇T +
T

cv(T )
∇x · u = O(Kn ),

(23)

where cv(T ) = d
dT e(T ) is the heat capacity at constant volume.

Proposition 5.2. The moments of the solution of the BGK and Fokker-Planck kinetic models (18)
and (19) satisfy the compressible Navier-Stokes equations up to O(Kn 2):

∂tρ+∇ · ρu = 0,

∂tρu+∇ · (ρu⊗ u) +∇p = ∇ · σ +O(Kn 2),

∂tE +∇ · (E + p)u = −∇ · q +∇ · (σu) +O(Kn 2),

(24)
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where the viscous stress tensor and the heat flux are given by

σ = µ
(
∇u+ (∇u)T − 2

3
∇ · uI

)
+ ζ∇ · uI, and q = −κ∇T, (25)

and the values of the viscosity and heat transfer coefficients (in dimensional variables) are:

µ = τp, and κ = µcp(T ) for BGK,

µ =
1

2
τp, and κ =

2

3
µcp(T ) for Fokker-Planck,

(26)

while the volume viscosity coefficient is ζ = µ(23 − α), with α =
cp(T )
cv(T )

− 1 for both models, and

cp(T ) = d
dT (e(T ) + p/ρ) = cv(T ) + R is the heat capacity at constant pressure. Moreover, the

corresponding Prandtl number is

Pr =
µcp(T )

κ
= 1 for BGK, and

3

2
for Fokker-Planck. (27)

6 Extension of the model to different internal energies

6.1 Internal energies, distributions and entropies

We assume gas molecules have n different and independent internal energies, and we denote by
e1int, . . . , e

n
int the corresponding specific internal energies of the gas (like rotational, vibrational,

electronical energies, for instance). Each eiint is supposed to be an increasing function of the
temperature. The total energy is defined as e = etr +

∑n
i=1 e

i
int, and is also an increasing function

of the temperature.
Consequently, we can define the inverse functions Tiint and T that map any given energy E to

the corresponding temperatures. In other words, for any energy E, we define the temperatures

T iint = Tiint(E), and T = T(E), (28)

such that eiint(T
i
int) = E and e(T ) = E.

The corresponding specific heats are civ,int(T ) =
deiint(T )
dT . We can also define entropies s1int, . . . , s

n
int

associated to each energy by
dsiint(E)
dE = 1

Ti
int(E)

.

Then we define by F the kinetic mass distribution while G1, . . . , Gn are the distributions of
internal energies. The macroscopic mass density ρ, velocity u, and energy density ρE are obtained
through F and G1, . . . , Gn by

ρ = 〈F 〉 , ρu = 〈vF 〉 , ρE =

〈
1

2
|v − u|2F

〉
+

n∑
i=1

〈
Gi
〉
. (29)

Now it is possible to write a reduced entropy functional as a function of F and G1, . . . , Gn, as
it is shown in the following proposition.

Proposition 6.1 (Entropy). We define for F , G1, . . . , Gn the following reduced entropy functional

H(F,G1, . . . , Gn) =
〈
H(F,G1, . . . , Gn)

〉
, (30)
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where

H(F,G1, . . . , Gn) = F logF −
n∑
i=1

1

R
Fsiint

(
Gi

F

)
. (31)

1. The partial derivatives of H computed at (F,G1, . . . , Gn) are:

DFH = 1 + log(F ) +
n∑
i=1

(
Gi

RTiint(Gi/F )F
− 1

R
siint

(
Gi

F

))
,

DGiH = − 1

RTiint(Gi/F )
.

2. The second order derivatives of H, computed at (F,G1, . . . , Gn) are

DF,FH =
1

F
+

n∑
i=1

Gi
2

F 3civ,int(G
i/F )RTiint

2
(Gi/F )

,

DF,GiH = − Gi

F 2civ,int(G
i/F )RTiint

2
(Gi/F )

DGi,GjH =
1

Fciv,int(G
i/F )RTiint

2
(Gi/F )

δij

Moreover, we have the following equalities:

FDF,FH +
n∑
i=1

GiDF,GiH = 1, and FDF,GiH +GiDGi,GiH = 0, (32)

for every i.

3. The function (F,G1, . . . , Gn) 7→ H(F,G1, . . . , Gn) is convex.

4. Let F be a given mass distribution and G = (G1, . . . , Gn) a n-uple of n distributions of
internal energies. Let ρ, ρu, and ρE their moments as defined by (29). Let S be the convex
set of distributions that have the same moments, that is to say

S =

{
(F̃ , G̃) such that

〈
F̃
〉

= ρ,
〈
vF̃
〉

= ρu,

〈
1

2
|v − u|2F̃ +

n∑
i=1

G̃i

〉
= ρE

}
.

The minimum of H on S is obtained for (M [F,G], e1int(T )M [F,G], . . . , enint(T )M [F,G]) with

M [F,G] =
ρ

√
2πRT

3 exp

(
−|v − u|

2

2RT

)
. (33)

5. The following inequalities hold:

0 ≥ H(M [F,G], e1int(T )M [F,G], . . . , enint(T )M [F,G])−H(F,G)

≥ DFH(F,G)(M [F,G]− F ) +

n∑
i=1

DGiH(F,G)(eiint(T )M [F,G]−Gi).
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Proof. The proof is the same as the one with one internal energy, except for point 3, for which
the proof that the Hessian matrix H of H is positive definite is more difficult. Note that H is a
(n + 1) × (n + 1) matrix whose block H(2 : n + 1, 2 : n + 1) is diagonal with positive coefficients.
Then Sylvester criterion ensures that H is positive definite if its determinant is positive. This
determinant can be easily computed and we find

det(H) = DF,FH
n∏
i=1

DGi,GiH −
n∑
i=1

(DF,GiH)2
∏
i 6=j

DGj ,GjH.

Then we note that (32) imply

DF,GiH = −G
i

F
DGi,GiH and DF,FH =

1

F

(
1 +

n∑
i=1

G2
i

F
DGi,GiH

)
,

and we find

det(H) =
1

F

n∏
i=1

DGi,GiH

which is clearly positive, so that the Hessian is positive definite.

6.2 BGK model

The extension of our BGK model (13) to this new framework is readily obtained: we set

∂tF + v · ∇xF =
1

τ

(
M [F,G1, .., Gn]− F

)
, (34)

∂tG
i + v · ∇xGi =

1

τ
(eiint(T )M [F,G1, .., Gn]−Gi), for i = 1 to n (35)

where the reduced Maxwellian is

M [F,G1, .., Gn] =
ρ

√
2πRT

3 exp

(
−|v − u|

2

2RT

)
,

and the macroscopic quantities are defined by

ρ = 〈F 〉 , ρu = 〈vF 〉 , ρE =

〈
1

2
|v − u|2F

〉
+

n∑
i=1

〈
Gi
〉
, (36)

and T is defined by (28).
System (34–35) naturally satisfies local conservation laws of mass, momentum, and energy.

Moreover, the H-theorem holds, as it is stated below.

Proposition 6.2. The BGK system (34–35) satisfies the H-theorem

∂tH(F,G1, ..., Gn) +∇x ·
〈
vH(F,G1, ..., Gn)

〉
≤ 0,

where H(F,G1, ..., Gn) is the entropy functional defined in (30).

Moreover, we can prove that this BGK system has the same compressible Euler and Navier-
Stokes asymptotics as that given in Propositions 5.1 and 5.2 for the model with one single internal
energy. The proof is a simple extension of that given in appendix A.2.1 and is left to the reader.
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6.3 Fokker-Planck model

By analogy, we propose the following Fokker-Planck model:

∂tF + v · ∇xF = DF (F,G1, ..., Gn), (37)

∂tG
i + v · ∇xGi = DGi(F,Gi, ..., Gn), for i = 1 to n (38)

with

DF (F,G1, ..., Gn) =
1

τ

(
∇v ·

(
(v − u)F +RT∇vF

))
,

DGi(F,G1, ..., Gn) =
1

τ

(
∇v ·

(
(v − u)Gi +RT∇vGi

))
+

2

τ

(
eiint(T )F −Gi

)
,

(39)

where the macroscopic values are defined as in (36) and (28). Using direct calculations and dissi-
pation properties we can prove the following proposition.

Proposition 6.3. The collision operator conserves the mass, momentum, and energy:

〈
(1, v)DF (F,G1, ..., Gn)

〉
= 0 and

〈
1

2
|v|2DF ((F,G1, ..., Gn) +DGi(F,G1, ..., Gn)

〉
= 0,

the entropy functional H(F,G1, ..., Gn) satisfies the H-theorem:

∂tH(F,G1, ..., Gn) +∇x ·
〈
vH(F,G1, ..., Gn)

〉
≤ 0,

and we have the equilibrium property

(DF (F,G1, ..., Gn) = 0 and DGi(F,G1, ..., Gn) = 0) for every i

⇔ (F = M [F,G1, ..., Gn] and Gi = eiint(T )M [F,G1, ..., Gn]) for every i.

The proof is a simple extension of the proof of Proposition 4.1 and is left to the reader.
Moreover, we can prove that this BGK system has the same compressible Euler and Navier-

Stokes asymptotics as that given in Propositions 5.1 and 5.2 for the model with one single internal
energy. The proof is a simple extension of that given in appendix A.2.2 and is also left to the
reader.

6.4 Example: rotational and vibrational cases

We briefly explain how to apply our framework to a diatomic gas for which translational, rotational
and vibrational energies are taken into account, as defined by

etr(T ) =
3

2
RT, erot(T ) = RT, evib(T ) =

RT0

eT0/T − 1
, (40)

According to section 6.1 (we set n = 2 and we replace the index i = 1 by rot and i=2 by vib), the
associated macroscopic entropy for the internal degrees of freedom are

srot(E) = R ln(E), svib(E) =

(
E

T0
+R

)
ln

(
E +RT0
RT0

)
− E

T0
ln

(
E

RT0

)
, (41)
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which leads to the following kinetic entropy functional

H(F,Grot, Gvib)

=

〈
F log(F )− F s

rot

R

(
Grot

F

)
− F s

vib

R

(
Gvib

F

)〉
=

〈
F log(F ) + F ln

(
F

Grot

)
+ F ln

(
RT0F

RT0F +Gvib

)
+
Gvib

RT0
ln

(
Gvib

RT0F +Gvib

)〉
.

This is the same functional as that obtained in [21] for an ES-BGK model: however, in [21], the
functional was obtained through the reduction of a model with velocity and internal energy variables
(continuous rotational energy and discrete vibrational energy levels). Also note that in the case
of rotational energy only, we also recover the entropy functional of [14], also obtained through the
reduction of a fully kinetic model.

7 Conclusion and perspectives

In this paper, we have proposed to different models (BGK and Fokker-Planck) of the Boltzmann
equation for thermally perfect gases. These models can be viewed as intermediate models between
fully kinetic equations (with a kinetic variable for each degrees of freedom) and macroscopic equa-
tions, since they are based on distribution functions with only velocity as a kinetic variable. As
opposed to already existing models obtained by reduction of kinetic equations, our models do not
require any superior kinetic model. They can be obtained as soon as internal energies are known
as function of the temperature. Our model has been proved to satisfy conservation laws, and we
have been able to propose an entropy functional for which our models satisfy an H-theorem.

The low complexity of the reduced BGK model can make it attractive to be implemented in
a deterministic code, while the Fokker-Planck model can be easily simulated with a stochastic
method. Of course, since these models are based on a single time relaxation, they cannot allow for
multiple relaxation times scales. However, we believe it should be possible to extend these models
by using the ellipsoidal-statistical approach, like in [14, 13, 15, 20, 21].

Finally, we note that these models should be sufficiently accurate to simulate rarefied flows
with usual equilibrium inflow boundary conditions and Maxwell reflection at a solid wall. For more
complex boundary conditions with energy exchanges between different modes, a fully kinetic model
will be required.

A Derivation of the hydrodynamic limits

A.1 Euler limit

When Kn is very small, if all the time and space derivatives of F and G are O(1) with respect
to Kn (we exclude any initial layer and assume that the gradients lengths are larger than the
mean free path), then (18) implies F = M [F,G] + O(Kn ) and G = eint(T )M [F,G] + O(Kn ) so
that P (F ) = P (M [F,G]) + O(Kn ) = pI + O(Kn ) , where I is the unit tensor, and q(F,G) =
q(M [F,G], eint(T )M [F,G]) + O(Kn ) = O(Kn ), which gives the Euler equations (23). The same
analysis can be applied for the reduced Fokker-Planck model (19). Finally, the non conservative
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form is readily obtained from the conservative form. We also get the internal energy equation:

∂teint(T ) + u · ∇eint(T ) + T
cintv (T )

cv(T )
∇x · u = O(Kn ).

A.2 Navier-Stokes asymptotics

A.2.1 BGK model

The usual Chapman-Enskog method is applied as follows. We decompose F andG as F = M [F,G]+
KnF1 and G = eint(T )M [F,G] + KnG1, which gives

P (F ) = pI −KnP (F1), and q(F,G) = Kn q(F1, G1).

Then we have to approximate P (F1) and q(F1, G1) up to O(Kn ). This is done by using the previous
expansions and (13) to get

F1 = −τ(∂tM [F,G] + v · ∇xM [F,G]) +O(Kn ),

G1 = −τ(∂teint(T )M [F,G] + v · ∇xeint(T )M [F,G]) +O(Kn ).

This gives the following approximations

P (F1) = −τ 〈(v − u)⊗ (v − u)(∂tM [F,G] + v · ∇xM [F,G])〉+O(Kn ), (42)

and

q(F1, G1) =− τ
〈

(v − u)
1

2
|v − u|2(∂tM [F,G] + v · ∇xM [F,G])

〉
− τ 〈(v − u)(∂teint(T )M [F,G] + v · ∇xeint(T )M [F,G])〉+O(Kn ).

(43)

Now it is standard to write ∂tM [F,G] and ∇xM [F,G] as functions of derivatives of ρ, u, and T ,
and then to use Euler equations (22) to write time derivatives as functions of the space derivatives
only. After some algebra, we get

∂tM [F,G] + v · ∇xM [F,G] =
ρ

T
3
2

M0(V )

(
A · ∇T√

T
+B : ∇u

)
+O(Kn ), (44)

where

V =
v − u√
T
, M0(V ) =

1

(2π)
3
2

exp(−|V |
2

2
)

A =

(
|V |2

2
− 5

2

)
V, B = V ⊗ V −

(
1

cv(T )

1

2
|V |2 +

e′int(T )

cv(T )

)
I.

Then we introduce (44) into (42) to get

Pij(F1) = −τρT 〈ViVjBklM0〉 ∂xluk +O(Kn ),

where we have used the change of variables v 7→ V in the integral (the term with A vanishes due
to the parity of M0). Then standard Gaussian integrals (see appendix B) give

P (F1) = −µ
(
∇u+ (∇u)T − α∇ · u I

)
+O(Kn ),
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with µ = τρT and α =
cp(T )
cv(T )

− 1, which is the announced result, in a non-dimensional form.

For the heat flux, we use the same technique. First for eint(T )M [F,G] we obtain

∂t (eintM [F,G]) + v · ∇x (eintM [F,G]) =
ρ

T
3
2

M0(V )

(
Ã · ∇T√

T
+ B̃ : ∇u

)
+O(Kn ), (45)

where

Ã = eint(T )A+ V Te′int(T ), and B̃ = eint(T )B − T

cv(T )
e′int(T )I.

Then q(F1, G1) as given in (43) can be reduced to

qi(F1, G1) = −τρ
(
T

〈
1

2
|V |2ViAjM0

〉
−
〈
ViÃjM0

〉)
∂xjT.

Using again Gaussian integrals , we get

q(F1, G1) = −κ∇T,

where κ = µcp(T ).

A.2.2 Fokker-Planck model

Here, we rather use the decomposition F = M(1 + KnF1) and G = eintM(1 + KnG1), which gives

P (F ) = pI −KnP (MF1) and q(F,G) = Kn q(MF1, eintMG1),

in which, for clarity, the dependence of M on F and G has been omitted, and the dependence of
eint on T as well. Finding F1 and G1 is more complex than for the BGK model: however, the
computations are very close to what is done in the standard monoatomic Fokker-Planck model
(see [13] for instance), so that we only give the main steps here (see appendix B for details).

First, the decomposition is injected into (19) to get

DF (F,G) =
1

τ
MLF (F1),

DG(F,G) =
1

τ
eintMLG(F1, G1),

where LF and LG are linear operators defined by

LF (F1) =
1

M

(
∇v · (TM∇vF1)

)
,

LG(F1, G1) =
1

M

(
∇v · (TM∇vG1) + 2(F1 −G1)

)
.

(46)

Then Fokker-Planck equations (19) suggest to look for an approximation of F1 and G1 up to O(Kn )
as solutions of

∂tM + v · ∇xM =
1

τ
M [F,G]LF (F1)

∂teintM + v · ∇xeintM =
1

τ
eintM [F,G]LG(F1, G1).
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By using (44)-(45), these relations are equivalent, up to another O(Kn ) approximation, to

LF (F1) = τ

(
A · ∇T√

T
+B : ∇u

)
, and LG(F1, G1) =

τ

eint

(
Ã · ∇T√

T
+ B̃ : ∇u

)
, (47)

where A, B, Ã, and B̃ are the same as for the BGK equation in the previous section. Now we have
to solve (47) for F1 and G1.

First, we rewrite LF (F1) and LG(F1, G1), defined in (46), by using the change of variables
V = v−u√

T
to get

LF (F1) = −V · ∇V F1 +∇V · (∇V F1),

LG(F1, G1) = LF (G1) + 2(F1 −G1).

Then simple calculation of derivatives show that A, B, Ã, and B̃ satisfy the following properties

LF (A) = −3A, LF (B) = −2B, LF (V ) = −V.

Consequently, we look for F1 and G1 as solution of (47) under the following form

F1 = τaA · ∇T√
T

+ τbB : ∇u and G1 = τ
ã

eint
Ã · ∇T√

T
+ τ

b̃

eint
B̃ : ∇u,

and we find ã = a = −1/3 and b̃ = b = 1/2.
Finally, using these relations into P and q and using some Gaussian integrals (see appendix B)

give
P (MF1) = −µ

(
∇u+ (∇u)T − α∇ · u I

)
and q(MF1, eintMG1) = −κ∇T,

where α =
cp
cv
− 1, µ = τ

2ρT , and κ = 2
3µcp(T ), which is the announced result, in a non-dimensional

form.

B Gaussian integrals and other summation formula

In this section, we give some integrals and summation formula that are used in the paper.

First, we remind the definition of the absolute Maxwellian M0(V ) = 1

(2π)
3
2

exp(− |V |
2

2 ). We

denote by 〈φ〉 =
∫
R3 φ(V ) dV for any function φ. It is standard to derive the following integral

relations (see [1], for instance and note that some computations are redundant), written with the
Einstein notation:

〈M0〉V = 1,

〈ViVjM0〉V = δij , 〈V 2
i M0〉V = 1, 〈|V |2M0〉V = 3,

〈V 2
i V

2
j M0〉V = 1 + 2 δij , 〈ViVjVkVlM0〉V = δijδkl + δikδjl + δilδjk

〈ViVj |V |2M0〉V = 5 δij , 〈|V |4M0〉V = 15,

〈ViVj |V |4M0〉V = 35 δij , 〈|V |6M0〉 = 105,

while all the integrals of odd power of V are zero. From the previous Gaussian integrals, it can be
shown that for any 3× 3 matrix C, we have

〈ViVjCklVkVlM0〉V = Cij + Cji + Ciiδij .
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