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Abstract

Since their development at the end of the 50s, panel methods were widely used for the fast
simulation of aerospace objects reentry. Although improvements were proposed for the continuum
regime formulations, the bridging functions usually employed in the transitional regime did not
go through major changes since then. With the current interest in designing Very Low Earth
Orbit (VLEO) satellites and more efficient reentry vehicles, a greater level of preciseness is now
required for the fast computation of the aerodynamic (AED) and aerothermodynamic (ATD)
wall quantities in rarefied regime. In this context, this paper presents a new way of dealing with
the major limitations of the bridging methods by using Machine Learning (ML) based surrogate
models. Hence, kriging models are first developed to compute the pressure and heat flux stagnation
coefficients (Cp,stag, Ch,stag) in the transitional regime and Artificial Neural Networks (ANN) are
then trained to compute the pressure, friction and heat flux coefficient distributions (Cp, Cf , Ch)
in any point of an object surface in the rarefied portion of its reentry. Both models are finally
evaluated by comparison with DSMC computations representative of reentry conditions.

Keywords: Surrogate models, Aerothermodynamic, Aerodynamic, Rarefied hypersonic flow,
Earth reentry

1. Introduction

Recent progress in air-breathing electric propulsion make Very Low Earth Orbit (VLEO)
satellites a reality in the upcoming years [1]. In this context, orbits as low as 100 km are deemed
possible for Earth Observation (EO) satellites [2, 3, 4]. In such conditions, the drag and heat
flux estimations are paramount for the proper design of such satellites. In the meantime, the
development of efficient and reusable reentry vehicles manoeuvrable at high altitudes requires an
accurate computation of the aerodynamic coefficients for a precise prediction of their trajectory.
Since high fidelity tools cannot be used to simulate the whole life cycle of a satellite nor the
aerodynamic (AED) and aerothermodynamic (ATD) constraint at every moment of an object’s
reentry, reentry codes are usually used instead.

There are two categories of reentry codes. The first one is called oriented object codes which are
the most common and which directly compute integrated drag CD and heat flux CH coefficients
for some predefined geometries. The second category corresponds to spacecraft oriented codes.
These are based on panel methods [5, 6, 7] whose strength is to rapidly compute the AED and
ATD coefficients of any object and at any instant of its reentry. In this aim, according to the
rarefaction regime (free molecular to continuum), the corresponding simplified formulations are
used to compute local quantities (Cp, Cf , Ch) that can be integrated over the surface to obtain
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global coefficients (CL, CD, etc.). In the transitional regime, bridging functions fb(·) are used
according to the following relationship:

Cx,trans = Cx,cont + (Cx,fm − Cx,cont)fb(Kn), (1)

where Kn is the Knudsen number that measures the degree of rarefaction of the gas, and the
bridging function verifies fb(Kncont) = 0, fb(Knfm) = 1 where Kncont and Knfm are the Knudsen
numbers indicating the limits of the continuum and free molecular regime respectively. Moreover,
Cx,trans is any global or local coefficient in the transitional regime (i.e. such as Kncont ≤ Kn ≤
Knfm) and Cx,cont, Cx,fm respectively denote the value in the continuum and free molecular regimes.

Since the first bridging function proposed by Martino [8], several formulations were derived
[9, 10, 11, 12, 13]. Their application to flight data [14] have for instance proved the relevance of such
method for the reconstruction of the CA/CN ratio measured during the Viking I entry of the Mars
atmosphere. Nevertheless, when the bridging function is not parametrized for a specific object,
its generalisation capacities suffer from the relative aspect of the rarefaction parameter (Kn =
λ∞/Lref) which is highly dependent on the choice of the reference length. Moreover, the non-
absolute value of the continuum and free molecular limits in terms of Knudsen number is another
important limitation. Finally, as evident from equation (1), the error due to the distribution
formulations in the limit regimes fatally propagates through the transitional regime.

Thus, in the aim of improving the preciseness of the panel methods in the rarefied regime,
efforts were carried out by Falchi in the frame of his PhD [15, 16, 17, 18]. However, Falchi’s work
mostly focuses on sharp geometries (cube, cylinder, . . .) characteristic of debris shapes while in
our work, we are more concerned with aerodynamic shapes. The last decades, Machine Learning
(ML) based techniques became highly popular in engineering [19, 20] and especially in fluid
mechanics where both global [21] and local [22] surrogate models were developed for hypersonic
conditions. More recently, reduced models were even built for hypersonic rarefied conditions.
Indeed, in [23], Walsh et al. trained Radial Basis Functions (RBF) to reduce the drag coefficient
through shape optimisation of VLEO satellites. In [24], Sia and Mehta built kriging models for the
drag coefficient computation of simple debris shapes (cube, sphere, cylinder) and neural networks
for the computation of their heat flux distribution. Nonetheless, these models are restrictive and
expensive in the sense that for each geometry at a fixed attitude, 100 DSMC computations are
used to build the corresponding kriging and neural network models.

In this work, the objective was to develop surrogate models theoretically applicable to any
kind of geometry and to any level of rarefaction. Hence, a two-step approach was adopted. The
first step consists in computing the stagnation pressure and heat flux as a function of the flight
conditions with kriging models. Then, Artificial Neural Networks (ANN) are fed with the adequate
stagnation quantities and geometric variables in order to compute the pressure, friction and heat
flux coefficients at any point on the surface of the geometry. The paper is organized as follows.
The first sections give an overview of all the computational techniques involved in this work.
Hence the current approaches and their limitations are first introduced. Then, the chosen machine
learning methods are briefly described. This part ends with the presentation of the computational
approaches used for the training and the evaluation of the developed surrogates. In the next
section, the design variables and the Design of Experiments (DOE) are discussed and described.
In the fifth section, the results of all surrogate models are presented and compared to the results
obtained with the Direct Simulation Monte-Carlo (DSMC) code SPARTA [25] and the vehicle
oriented reentry code ARES [7]. Finally, the limits and advantages of the newly designed models
are discussed in the conclusion where perspectives are drawn.

2. The pannel methods: principles and limitations

Examples of object and vehicle oriented reentry codes are given in [6, 18]. In this section,
we only consider the ONERA reentry code ARES which serves to illustrate the panel methods
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and the limitations that we are looking to improve. ARES, which was formerly known as MU-
SIC/FAST [7], is a spacecraft oriented code divided in four solvers:

(i) ATMOS: which gathers several Terrestrial and Martian atmospheric models.

(ii) FAST: which contains the AED and ATD models.

(iii) MODETHEC: which models the 3D heat transfer inside the materials and their potential
thermo-chemical degradation.

(iv) MUSIC: a Guidance Navigation and Control (GNC) flight dynamics code capable of mo-
delling controlled and uncontrolled orbital and reentry flight phases.

The coupling of all these instances enable the fast modelling of a complete space mission and the
panel methods which are discussed hereafter are part of the FAST code.

2.1. Panel methods main principle

When considering a discretized geometry, each surface element constitutes a panel. For each
panel, one can compute its local inclination angle θ as the angle between the outward normal ~n of
the element and the freestream velocity ~U∞ (Figure 1). As done in this work, it is often easier to
work with the local incidence angle α = π/2− θ. From the local incidence angle, is is possible to
determine whether an element is impinged by the incoming flow or whether it lies in the shadow
of the freestream (Figure 2). In case of a complex geometry, some elements may lie in the shadow
of other parts and the local angle of incidence alone does not suffice. Sophisticated projection
methods can then be used in complements [7].

Figure 1 – Local inclination angle θ for a given panel. Figure 2 – Freestream impinged elements (grey) and
shadow elements (black) for the IXV flying with a 47◦

angle of attack.

In ARES, the local curvature radius Rn,loc can also be computed at each element and a stag-
nation detection algorithm automatically identifies the position of the stagnation point according
to the flight attitude [7].

Once all panels have been adequately characterized, the panel methods described in the next
sections can be applied.

2.2. Transitional regime

As discussed in introduction, a lot of bridging functions were developed during the pre 2000s
space exploration period. For all local quantities (Cp, Cf , Ch), ARES uses Blanchard’s generalized
sinn bridging functions of expression [12]:

fb(Kn) = sinn (π[a1 + a2 log(Kn)]) ,

n = a3 + a4 log(Kn),
(2)
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where (ai)i=1..4 are parameters of adjustment dependent on the considered local quantity and that
were calibrated for a sphere in transitional regime [7]. Hence, with this function and equation (1),
any quantity computed at one panel in the continuum and free molecular regime can be expressed
at any Kn across the transitional regime.

In the context of bridging functions, the continuum and free molecular limits can be hard to
track and the choice of Kncont and Knfm is therefore crucial. As indicated in literature, in the case
of the Viking I reentry [14], Kncont = 2× 10−3 and Knfm = 25 were used while sometimes other
values such as Kncont = 10−3, Knfm = 10 [11] or even Knfm = 100 [12] were preferred. Hence,
this choice is somehow arbitrary which is why the most conservative values (Kncont = 10−3,
Knfm = 100) are used in ARES. Nevertheless, the relevance of the bridging estimation relies
on the Knudsen number definition which, according to the selected reference length (Lref), can
significantly fluctuate. For instance for the DLR hypersonic transport system Spaceliner [26], the
nose radius Rn is about 0.2 m while the total length of the vehicle L is of the order of 60 m. In
this case, the unique level of rarefaction resulting from a given altitude can be represented by two
radically different Knudsen numbers. In this case, an arbitrary choice for the reference length is
left to the code user.

2.3. Free molecular regime

In the absence of chemical surface reactions, surface properties can be analytically determined
by balancing the incident and reflected fluxes of normal momentum (pressure), of tangential
momentum (friction) and of kinetic plus internal energy (heat flux) [27]. Since the incident fluxes
are at equilibrium, the velocity distribution function is a Maxwellian and they can easily be
computed. However, the reflected fluxes are not trivial and a gas-surface interaction law is used
to express the reflected flux as a function of the incident flux and the reflected flux at thermal
equilibrium with the wall. For a Maxwell interaction law of accommodation coefficient w, the
following equations are obtained [27]:

Cp =
1

s2

[(

2− w√
π

s sin(α) +
w

2

√

Tw

T∞

)

exp(−s2 sin2(α))
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1

2

)

+
w

2

√
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s
√
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√
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−
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√
πs sin(α){1 + erf(s sin(α))}

]

− 1

2
exp(−s2 sin2(α))

)

, (5)

where Tw and T∞ respectively denote the wall and freestream temperatures, m and γ are the
mass and adiabatic coefficient of the gas, ρ∞ is the freestream density, s is the freestream speed
ratio:

s = U∞

√

m

2k T∞

, (6)

with k the Boltzmann constant and the erf(·) function is given by:

erf(x) =
2√
π

∫ x

0

exp(−t2)dt. (7)

In free molecular conditions (Kn ≫ 1), the wall quantities obtained by DSMC with the same
accommodation coefficient w exactly converge towards these analytical solutions.
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2.4. Continuum regime

In continuum regime, the friction contribution to the aerodynamic forces is negligible in com-
parison to the pressure contribution which is why Cf is simply neglected. For the pressure and
heat flux distributions, a two-step approach is employed: the stagnation value is computed first
and the distribution is computed afterwards.

As explained in [7], in ARES, the pressure stagnation value Cp,stag is computed from an
iterative procedure based on the Mollier table and the Rankine-Hugoniot equations. Then, the
distribution of Cp is obtained with the modified Newton method:

Cp = Cp,stag sin
2(α), (8)

when the panel is directly impinged by the flow and Cp = 0 (i.e. p = p∞) when the panel is in
the shadow (Figure 2).

For the stagnation heat flux, many correlation functions exist [18, 28] and most of them are
available in ARES [7]. Here, only the Johnston & Brandis formulation [29] is presented:

qstag = 7.455× 10−9ρ0.4705∞ U3.089
∞ R−0.52

n , (9)

where qstag has units of W/cm2, ρ∞ is expressed in kg/m3, U∞ in m/s and Rn in m. This correlation
was derived from around 340 CFD simulations with velocities comprised between 3 and 9.5 km/s
under a super-catalytic wall assumption. Still in ARES, the heat-flux distribution is then obtained
for any panel with Verant-Lefrançois formula:

q = qstag

(

p

pstag

)a(
Rn

Rn,loc

)b

, (10)

where the parameters a and b were obtained from 3D simulations of the IXV in continuum regime
and are given in [7]. Other simple formulations exist for the distribution like that in SCARAB

[6]:
q = qstag (0.1 + 0.9 sin(α)) , (11)

or that of Murzinov [30] that was recently used by Singh and Schwartzentruber [31]:

q = qstag (0.55− 0.45 cos(2α)) . (12)

These formulations are however very simplistic and cannot adequately represent complex distri-
butions for non-spherical shapes.

In case of a significant error in the wall quantities in continuum regime, it is fatally propagated
by the bridging function across the lower part of the transitional regime. For this reason and those
mentioned in section 2.2, ML techniques were investigated. Since, the two-step approach presented
in this section is particularly convenient, a similar procedure was adopted.

3. Machine learning based reduced models

Let xxx be a vector of design variables (inputs) and y the corresponding response (output)
obtained with a high fidelity code. The functional relationship between the inputs and output is
then:

y = f(xxx). (13)

The surrogate model of the code provides the approximation ŷ that is related to the inputs by
the relation :

ŷ = f̂(xxx). (14)
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and to the output by the relation :
y = ŷ + ǫ, (15)

where ǫ is the error due to both approximation and measurement [19]. The objective of metamo-
deling is then to build a collection of n sampling points xxx(i) and responses y(i) forming the plan
of experiments. This plan is finally used to train the metamodel to learn the relationship f̂(·)
between the inputs and outputs.

3.1. Response surface model

Response surface models (RSM) are simple surrogates which consist of a polynomial regres-
sion. Such models assume that the error ǫ is normally distributed with mean zero and standard
deviation σ [19]. The approximation is then defined by the order of the polynomial. In most cases,
RSM are linear (first order):

ŷ = β0 +
d
∑

i=1

βixi, (16)

or quadratic (second order):

ŷ = β0 +
d
∑

i=1

βixi +
d
∑

i=1

βiix
2
i +

d
∑

i=1

d
∑

j≥i

βijxixj. (17)

The parameter d is the number of design variables and the regression parameters βi and βij are
obtained by least squares regression by fitting the data (xxx(i), y(i)) [19, 21].

RSM models constitute a good way of identifying whether a simple polynomial approximation
is sufficient or if a more sophisticated learning method is required. In this work, it was used as a
comparative tool for the kriging method described in next section.

3.2. Kriging

Kriging is an interpolation method expressed as:

ŷ(xxx) = f(xxx) + z(xxx), (18)

where f(·) is a low-order polynomial which, in the case of ordinary kriging, as considered here,
reduces to a constant β0 to be determined. The z(·) function is a Gaussian stochastic function
which represents the realization of a random process with zero mean and variance σ2. Kriging is
then simply a mean with a random field given by:

ŷ(xxx) = β0 + z(xxx), (19)

where the stochastic process z(·) has covariance:

Cov(z) = σ2RRR(xi, xj), (20)

with RRR(xi, xj) the correlation matrix of size n × n and n the number of sample points. The
correlation matrix is generally written:

RRR(xxx(i),xxx(j)) = exp

(

d
∑

l=1

θl|x(i)
l − x

(j)
l |p

)

. (21)

A full interpretation of the weight factors θ and of the parameter p is available in [20]. In practice,
large values of θl indicate a strong correlation, i.e. sensitivity to the lth design parameter and p
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reflects the smoothness of the approximation [21]. Although p can be adjusted according to the
data, it is often taken as an integer. Hence, when p = 1, the correlation function RRR (also called
kernel) is absolute exponential and when p = 2, the kernel is Gaussian. The parameters σ2, β0

and θ are then computed as maximum likelihood estimates (MLE) [20, 21]:

β̃0 =
(

1
tRRR−1

1
)−1

1
tRRR−1yyy, (22)

σ̃2 =
1

n
(yyy − 1β̃0)

tRRR−1(yyy − 1β̃0), (23)

with 1 a 1×n vector of ones. The optimal weight vector θ̃ is the one that maximizes the reduced
likelihood:

n

2
ln(σ̃2)− 1

2
ln(RRR). (24)

It is usually determined thanks to an optimization procedure. Finally, the kriging model, which
consists in the optimal response at a new point xxx∗, is given by the mean of the Gaussian process
conditioned by the vector of responses yyy and writes [20]:

ŷ(xxx∗) = β̃0 + rrr(xxx∗)tRRR−1(yyy − 1β̃0), (25)

where rrr(xxx∗) is the correlation vector between xxx∗ and all sampling points. The variance of this
Gaussian process is given by:

σ̂(xxx∗) = σ̃2
(

1− rrr(xxx∗)tRRR−1rrr(xxx∗)
)

, (26)

and is a way of quantifying the confidence in the kriging model.
When dealing with noisy data, one might prefer a regressing kriging instead of an interpolating

kriging. Such model can easily be obtained by introducing a constant λ in equations (25)-(28)
[20]:

ŷ(xxx∗) = β̃0 + rrr(xxx∗)t(RRR−1 + λ̃)(yyy − 1β̃0), (27)

σ̂(xxx∗) = σ̃2
(

1− rrr(xxx∗)t(RRR−1 + λ̃)rrr(xxx∗)
)

, (28)

where λ̃ is the MLE of λ that can be determined via an optimization procedure analogous to the
one described earlier.

Because of the stochastic nature of the DSMC, the numerically derived quantities are noisy
and the regressing kriging was therefore employed for the computation of the stagnation pressure
and heat flux coefficients.

3.3. Artificial Neural Networks

Artificial Neural Network (ANN) are part of Deep Learning (DL), a subcategory of ML in
which the depth notion makes reference to the successive layers of representations usually learnt
by neural networks [32]. A short description of ANN is provided in [19] but the fast changes in
the field make it outdated so newer references such as Chollet’s book [32] are more relevant for
an accurate and exhaustive description of DL methods.

In the context of this work, the focus is given on a specific class of neural networks called
multilayer perceptron. Such networks are composed of fully connected (or dense) layers and, in the
case of a scalar regressing network, of a single output (Figure 3). The complexity of such network
is characterized by its number of hidden layers L and their respective numbers of neurons nl. In
the case of a feedforward network, the information travels directly from the input xxx = (x1, . . . , xd)
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to the outputs ŷ. For each neurone k ∈ J1, n1K of the first layer denoted (1), the inputs are reduced
and activated as follows:

z
(1)
k =

d
∑

i=1

w
(1)
k,ixi + b

(1)
k ,

s
(1)
k = σ(1)(z

(1)
k ),

(29)

where wk,i and bk respectively denote the weights and the bias of the kth neurone while σ(1)(·) is
the activation function of the first layer. Similarly, for the lth layer and its neurone k ∈ J1, nlK,
equation (31) becomes:

z
(l)
k =

nl−1
∑

i=1

w
(l)
k,is

(l−1)
i + b

(l)
k ,

s
(l)
k = σ(l)(z

(l)
k ).

(30)

The single output is finally given by the following equations:

z(L+1) =

nL
∑

i=1

w
(L+1)
i s

(L)
i + b(L+1),

ŷ = s(L+1) = σ(L+1)(z(L+1)).

(31)

In practice, the same activation functions (e.g. sigmoïd, ReLU, tanh) are used for all layers except
the last one where the identity function is preferred in case of scalar regression [32]. For each input,
the corresponding error E is then defined as:

E =
1

2
(y − ŷ)2, (32)

which is minimized by adjusting the weights and biases of the network. Usually, the error is
computed for a set of inputs called batch and for each network parameter, their contribution to

the error is estimated through the derivatives of the error

(

∂E

∂w
(l)
k,i

, ∂E

∂b
(l)
k

)

for k, i and l between 1

and nl, 1 and nl−1, and 1 and L + 1, respectively. The parameters are then updated after each
passing of a batch through the network according to the following relations:

w
(l)
k,i = w

(l)
k,i − λ

∂E

∂w
(l)
k,i

,

b
(l)
k = b

(l)
k − λ

∂E

∂b
(l)
k

,

(33)

where λ ∈ R
∗
+ is the learning rate (or step). Because the derivative computation can be tricky, they

are obtained with the chain rule which exploits a fundamental property of multivariate functions:
∂y
∂x

= ∂y
∂u

∂u
∂x

. This way, the backpropagation algorithm consists of calculating the derivative of the
error with respect to the output and to retropropagate it through the network neuron after neuron
and layer after layer. Finally when the batches are selected randomly, this parameters adjustment
procedure is called stochastic gradient descent (SGD). Optimizers can be used in order to make
the learning process more efficient and regularization techniques reduce the chances of overfitting

to the data [32].
As opposed to the network’s parameters (i.e. the values of the weights and biases), the hy-

perparameters refer to all the other adjustable parameters including the number of layers, the
number of neurons in each of them, the learning rate or the batch size. The determination of
an optimal architecture (i.e. set of hyperparameters) can be reached by trial and error or by
hyperparameter tuning [24, 32]. When dealing with small networks like in this case, the former
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Figure 3 – Graphical representation of a multilayer perceptron with a single output (inspired from [33]).

method is usually sufficient and was therefore employed.

ANN is a learning method capable of dealing with huge amount of data and robust to outliers.
It was therefore chosen as a regressing technique for the pressure, friction and heat flux distribution
computation.

4. High-fidelity fluid solvers

Now that the ML methods have been described, the next sections focus on the two high fidelity
methods that were used to generate the data necessary to train and evaluate them.

4.1. Direct Simulation Monte-Carlo with SPARTA

In rarefied conditions encountered at high altitude and characterized by low densities, the rate
of intermolecular collision is not high enough to maintain a state of equilibrium. A significant
deviation from such state leads to the failure of the Navier-Stokes equations and gas-kinetic
methods must be preferred. In this context, Bird’s DSMC [27] is the most popular method for the
simulation of hypersonic rarefied flows. This stochastic algorithm provides a numerical solution
of the Boltzmann equation for any Knudsen number. More details about DSMC and its current
issues are available in [27, 34, 35, 36] and its validation by comparison to experimental data was
investigated in [37, 38].

In order to guarantee the physical relevance of the results, several criteria must be met when
using DSMC. Hence, to prevent particles to interact with particles farther than a mean free path
away, the cell size (∆x) must be kept smaller than a fraction of the local mean free path (λ). In
the same way, to make sure that particles do not move over distances greater than a mean free
path, the time step (∆t) must be kept smaller than the local mean collision time (τcoll). Finally,
the statistical convergence requires that a certain number of particles (usually of the order of
ten) is contained in each cell. For all the DSMC computations performed with SPARTA [25]
in the frame of this work, a particular care was taken to satisfy these requirements. Since the
limiting and most critical criteria is generally the grid refinement, SPARTA adaptive refinement
procedure was used. This binary refinement procedure illustrated in [25, 38] enables to locally
refine the mesh where ∆x becomes greater than λ.

Unless specified otherwise, SPARTA’s following physical models were used. Since we are only
concerned with orbital reentry velocities (U∞ < 10 km/s), the ionization and radiative effects
were neglected and a five species air model was used. The chemical reactions were modelled
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with Bird’s TCE model [27] and Park’s kinetic rate of reactions. The rotational mode of energy
was assumed continuous with a constant number of collision (Zrot = 5) while the vibrational
mode was assumed discrete with a variable number of collision given by Millikan-White model
(Zvib = ZMW

vib (T )) [27, 34]. The translational-vibrational and translational-rotational energetic
transfers were simulated with the Borgnakke-Larsen algorithm and the No Time Counter (NTC)
selection procedure [27, 34]. Following the findings of a recent paper [38], the Variable Hard Sphere
(VHS) collision model was used with Stephani’s parameters [39]. Finally, the gas-surface chemical
reactions were not considered and the vehicles wall was assumed fully diffuse with a constant
temperature.

4.2. Computational Fluid Dynamics with CASL

In near continuum conditions (Kn < 10−2), the computational cost of the DSMC computation
is generally prohibitive. For such conditions, the stagnation pressure and heat flux were then
obtained with the CFD code CASL.

CASL is the 1D spheric equivalent of the CFD code CELHyO [40, 41]. It was recently used
by Van Ghele for the study of the Intermediate eXperimental Vehicle (IXV) in continuum regime
[42]. The particularity of CASL is that it is capable of precisely computing the heat flux and
pressure at the stagnation point of any geometry assimilated to the equivalent sphere of nose
radius Rn equals to the stagnation curvature radius. For the present computations, the Navier-
Stokes equations were solved with an implicit time step and a second order HUS-Van-Leer scheme
in space.

In accordance to the DSMC computations, no surface reactions was considered and a five
species air model was used. Because of the negligible influence of simulating the vibrational
mode (effect smaller than 5% on the stagnation heat flux), the flow was assumed in thermal
equilibrium and Park’s kinetic rate of reaction was used to simulate the chemical nonequilibrium.
The species viscosity was computed with Blottner’s model and the mixture viscosity was modeled
with Armaly-Sutton’s formula. The diffusion was obtained with Gubernatis formula and the
thermal conductivity with Wilke’s and Montchick’s [43].

5. Reduced models generation

As mentioned in the introduction, two categories of surrogate models were developed in this
work. The first category computes the pressure and heat flux coefficients at the stagnation point
while the second locally compute the pressure, heat-flux and friction coefficient value at any
location of the geometry. For each kind of model, this section presents the selected variables of
design and the structure of the DOE employed for the training and validation.

5.1. Surrogate models for the stagnation pressure and heat flux coefficients

5.1.1. Design variables

In order to build accurate surrogate models for the stagnation pressure and heat flux coef-
ficients, the first question is to determine what minimal amount of geometric and atmospheric
quantities is necessary. In hypersonic rarefied conditions, the most relevant non-dimensional num-
bers are the Knudsen and Mach numbers. In addition, the literature and the engineering models
introduced in section 2 show that in continuum regime, the stagnation heat flux can be computed
from contextual quantities (e.g. ρ∞, U∞, Rn). Similarly, in free molecular regime, the expression
of the stagnation heat flux can be derived from equation (5) with α = 0◦. Under the hypersonic
and fully diffuse wall assumptions (i.e. s ≫ 1 and w = 1), it only depends on U∞, Rs,air and T∞.
For the pressure coefficient, the same observation holds and in the transitional regime, only the
Knudsen number is needed to propagate the values of the continuum and free molecular regimes.
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Since the Knudsen and the Mach numbers encompass all the environmental values and accor-
ding to the ML principle which recommends to avoid redundant information among the design
variables, these two numbers appear as the most natural candidates.

Finally, by noticing that the reference length Lref used in the Knudsen number calculation
depends on the context, the following choice Lref = 2Rn (with Rn the stagnation point curva-
ture) allows for the most relevant geometric quantity to be included in the design variables. The
surrogates models for both coefficients have the following form:

Ĉh/p,stag = f̂(Kn,M∞) = f̂

(

λVHS
N2,∞

2Rn

,
U∞√

γ Rsair T∞

)

. (34)

In order to avoid any ambiguity about the value of Rn and to reduce the computational cost of
the simulations, the database described in next section was built with a unit sphere (Rn = 1 m)
in hypersonic rarefied regime.

5.1.2. Design of experiments

Once the design variables are selected, the next step consists in generating the appropriate
numerical database to explore the plan of experiments. In order to create a DOE (Kn,M∞)
corresponding to rarefied reentry conditions, the exploration domain must first be limited in
terms of objects size and atmospheric conditions. Considering the frame of this study, the following
conditions were chosen:

• The objects size varies between 0.1 and 50 m.
• The altitudes are comprised between 200 and 85 km.
• The reentry velocity goes from 6 to 10 km/s.

By using the US62 (h < 90 km) and Jacchia77 (h ≥ 90 km) atmospheric models [44, 45], the
associated numeric density n∞ and atmospheric temperature T∞ give the following conditions:

• M∞ ∈ [8; 14], Kn ∈ [4; 1980] at 200 km.
• M∞ ∈ [22; 37], Kn ∈ [1.4× 10−4; 7× 10−2] at 200 km.

These limits define the physical domain illustrated in grey on Figure 4. Because the temperature
can vary at a fixed altitude and considering the limiting Knudsen number in continuum regime
(Kn ≃ 10−3) and in free molecular regime (Kn ≃ 100), the following domain is obtained:

• For Kn = 100, M∞ ∈ [8; 20].
• For Kn = 10−3, M∞ ∈ [20; 40].

However, because of the non-linear variation of T∞ between the considered altitudes, the domain
of experiments simply limited by these boundaries is not relevant as is. This aspect is illustrated
in Figure 4 where several limit points obtained at altitudes between 200 and 85 km are plotted
in black. The domain of experiments represented in red dashed line on the same Figure was then
considered instead.

A 25 points latin hypercube sampling (LHS) plan was then constructed inside this domain.
Because the physical domain is not canonical, a logarithmic bilinear transformation was built to
go from one reference frame to another. The obtained DOE in the canonical and physical reference
frames is represented in Figures 5 and 6.

Because (Kn,M∞) 7→ (U∞, T∞, n∞, XO2 , XN2 , XO) is a non-bijective application, the atmos-
pheric and flight conditions were obtained with the following procedure:

(i) The temperature T∞ is assumed constant and equal to 160 K.

(ii) The geometries are all spheres of unit radius (Rn = 1 m).

(iii) The mean free path λVHS
N2,∞

and the numeric density n∞ are obtained from (Kn,Rn, T∞).

(iv) Knowing n∞, the compositions (XO2 , XN2 , XO) are interpolated from the Jacchia77 atmos-
pheric table.
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Figure 4 – Physical and experiments domains.

Figure 5 – LHS DOE in the canonical reference frame. Figure 6 – LHS DOE in the physical reference frame.

(v) The specific gas constant Rs,air is then computed and its combination with T∞ and M∞

gives U∞.

(vi) The wall temperature Tw is finally estimated from radiative equilibrium according to Moss
method [46], with a constant emissivity ǫw = 0.85.

The conditions of the 25 training points resulting from this method are given in Table 1. For the
most rarefied conditions (Kn ≥ 10−2), 2D-axisymmetric DSMC computations were performed
with SPARTA. As discussed in section 4.1, a particular care was taken to ensure the respect
of the convergence metrics. Hence, for the most rarefied simulation (Kn = 67), the time step,
grid size and number of particles per cell along the stagnation line where chosen as follows:
∆t = 5× 10−4τcoll,∞, ∆x = 0.005λ∞ and Np/c > 10. For the case Kn = 1.4× 10−2, the time step
and grid size were taken ∆t = min(τcoll)/5, ∆x = λ∞/4 and an automatic refinement procedure
was set up to reduce ∆x up to 8 times where λ/∆x ≤ 1.5. Examples of results are shown in
Figures 7 and 8. For the near-continuum conditions (10−3 < Kn < 10−2), the simulations were
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performed with CASL in the numerical conditions described in section 4.2.

M∞ Kn n∞ (·/m3) XO2 XN2 XO U∞ (m/s) Tw (K)

CFD

28.4 1.4× 10−3 4.69× 1020 0.221 0.779 0 7214 1597
36.9 1.8× 10−3 3.59× 1020 0.221 0.779 0 9383 1881
20.4 2.6× 10−3 2.49× 1020 0.221 0.779 0 5199 1154
24 4.7× 10−3 1.40× 1020 0.221 0.779 0 6108 1212
30 8.1× 10−3 8.08× 1019 0.221 0.779 0 7636 1337

DSMC

33.9 1.4× 10−2 4.76× 1019 0.233 0.767 0.009 8643 1384
38.5 2.4× 10−2 2.75× 1019 0.196 0.786 0.018 9830 1411
19.01 3.4× 10−2 1.91× 1019 0.186 0.785 0.029 4890 798
23.4 5.1× 10−2 1.27× 1019 0.178 0.784 0.038 6017 885
29.3 6.9× 10−2 9.45× 1018 0.170 0.784 0.0460 7547 1011
13.0 1.6× 10−1 4.18× 1018 0.147 0.779 0.074 3371 499
35.2 2.2× 10−1 3.00× 1018 0.133 0.774 0.093 9161 1009
24.1 3.8× 10−1 1.72× 1018 0.114 0.765 0.121 6324 672
17.3 4.1× 10−1 1.61× 1018 0.112 0.763 0.125 4559 517
30.0 9.5× 10−1 6.91× 1017 0.089 0.741 0.170 7993 633
10.8 1.2 5.38× 1017 0.085 0.733 0.182 2886 284
36.0 2.0 3.22× 1017 0.077 0.714 0.209 9675 601
24.4 2.9 2.25× 1017 0.072 0.697 0.231 6601 413
15.2 5.8 1.12× 1017 0.064 0.661 0.275 4141 253
27.7 8.9 7.33× 1016 0.058 0.634 0.308 7634 347
30.8 14.1 4.63× 1016 0.052 0.601 0.347 8561 336
18.6 22.8 2.87× 1016 0.046 0.561 0.393 5240 220
10.3 30.9 2.12× 1016 0.042 0.538 0.420 2913 171
13.3 45.6 1.43× 1016 0.036 0.491 0.473 3824 176
17.4 67.0 9.75× 1015 0.032 0.460 0.508 5071 184

Conditions obtained with T∞ = 160 K, Kn = λVHS

N2,∞
/(2Rn) and Rn = 1 m.

Table 1 – Atmospheric conditions of the flight points used for the training of the kriging models.

For the validation, Singh and Schwartzentruber work [31] provided 29 points inside our plan
of experiments for the validation of the Ch,stag prediction model. In addition, 23 validation points
for both the Cp,stag and Ch,stag prediction models were extracted from the DSMC 3D database
(denoted DB 3D) that was used for the training of the neural network models (see section 5.2.2).
For each of these simulations performed with 3D geometries (Apollo, OREX and IXV), the cor-
responding Kn was computed from the stagnation curvature Rn. These validation points are
represented in Figure 9.
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Figure 7 – Temperature field and wall heat flux for the
DSMC simulation of the M∞ = 30.8, Kn = 14.1 case.

Figure 8 – Temperature field and wall heat flux for the
DSMC Simulation of the M∞ = 33.9, Kn = 1.4× 10−2

case.

Figure 9 – Validation points.

5.2. Reduced models for the distributions of pressure, friction and heat flux coefficients

Since most reentry vehicles can be divided in three main categories (see Table 2), this section
presents a way to build reduced models as generic as possible by considering only three geometries
belonging to each of these categories.

Types of geometry Examples of vehicles
Sphere-cone OREX, Stardust, Ram-C, Pathfinder
Transportation vehicle IXV, Space Shuttle, Spaceliner
Reentry probe Apollo, ARD, Orion, Crew Dragon

Table 2 – Reentry vehicle typology.
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5.2.1. Design variables

In complement to the distribution formulas presented in section 2, the analysis of atmospheric
reentries (Apollo 6, Apollo AS-202, OREX and the IXV) performed in the frame of previous
studies [37, 38] enabled the identification and confirmation of the most relevant design variables
that are to be accounted for in our new models. This analysis is presented below.

For the pressure coefficient, the modified Newton method indicates that only Cp,stag and α are
required to compute the Cp distribution in the continuum regime. In the free molecular regime,
the pressure depends on some atmospheric variables (T∞, ρ∞, U∞), on the accommodation coef-
ficient w and on the local incidence angle α. For both formulations, the stagnation value Cp,stag

corresponds to the elements where α = 90◦ which is why these two quantities must be included
in the new model. As for the accommodation coefficient, although its impact in highly rarefied
conditions is significant, gas-surface interaction are assumed fully diffuse in this work and this
parameter was not considered. For the investigated vehicles (Apollo, OREX, IXV), the corres-
ponding reentries in rarefied conditions did not evidence the need to include any other parameter
and a model of the form Ĉp = f̂(Cp,stag, α)Ĉp = f̂(Cp,stag, α)Ĉp = f̂(Cp,stag, α) was considered.

For the heat flux coefficient in continuum regime, the distribution formulations introduced in
section 2.4 all depend on the stagnation coefficient Ch,stag and on the local incidence angle α. The
most complete formulation of Vérant-Lefrançois also depends on the local curvature via the ratio
Rn/Rn,loc. In free molecular regime, similarly to the pressure distribution, the distribution depends
on the local incidence angle, the accommodation coefficient and some atmospheric variables. For
the same reasons, the design variables must include α and Ch,stag while w was not accounted for. In
addition, the observation of the heat flux distribution at various altitudes along the IXV windward
centerline [38] shows how the level of rarefaction changes its behaviour. Indeed, for Kn ≤ 10−1,
the heat flux decreases along the windward as the distance to the stagnation point (here denoted
dstag) increases while this effect is not visible in highly rarefied conditions. Another rarefaction
effect is observed at the vehicle’s shoulder where the peak of heat flux strongly rises when Kn
diminishes. Assuming that the rarefaction level can be described by Ch,stag, only the parameters
Rn/Rn,loc and dstag were included to the design variables. In order to ensure the model’s stability
even for particular cases where Rn/Rn,loc → ∞, the following limiter was implemented:

[

Rn

Rn,loc

> 10

]

⇒
[

Rn

Rn,loc

= 10

]

. (35)

Finally, a model of the form Ĉh = f̂(Ch,stag, α, dstag, Rn/Rn,loc)Ĉh = f̂(Ch,stag, α, dstag, Rn/Rn,loc)Ĉh = f̂(Ch,stag, α, dstag, Rn/Rn,loc) was investigated.

The friction coefficient is, a priori, a more complex quantity to deal with. Indeed, in conti-
nuum regime, no generic formulation exists. In free molecular regime, an analytical formulation
analogous to that of the pressure and heat flux was introduced in section 2.3. It depends on α
and on some atmospheric quantities. However, in this case, the stagnation value is zero and the
same approach as that used for Cp and Ch cannot be transposed. In addition, the observation
of the friction distribution along the IXV windward centerline [38] suggests that the rarefaction
level and Rn/Rn,loc influence Cf while the role of dstag is not evident from these results. A model

of the form Ĉf = f̂(Ch,stag, α, Rn/Rn,loc)Ĉf = f̂(Ch,stag, α, Rn/Rn,loc)Ĉf = f̂(Ch,stag, α, Rn/Rn,loc) was then investigated.

At this stage, one notices that none of the considered model explicitly includes Kn and that
the rarefaction level is assumed to be measured by the stagnation values. Furthermore, the three
distribution models are scalar regressing models and any regressing surrogate could have been
employed instead. Nevertheless, the reduced model design phase evidenced issues related to the
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structure and size of the training database ; this is why neural networks emerged as the most
suitable candidate.

5.2.2. Design of experiments

As opposed to the kriging models introduced in section 5.1 where the design variables (Kn,M∞)
are global, the input parameters for the Cp, Ch, and Cf distributions are local. An immediate
consequence of this difference is that instead of having one sampling point per simulation, each
result provides as many sampling points as there are of surface elements on the considered geo-
metry. Indeed, each element of the surface mesh has its own set of values (α, dstag, Rn/Rn,loc).
However, since each model depends on a stagnation quantity (Cp,stag, Ch,stag) and that each si-
mulation only provides one value for each of them, the exploration of the plan of experiments is
much less extensive in this dimension.

In such conditions and under the constraint of a reasonable number of simulations, a 27
computation DOE was built with the objective of homogeneously exploring the design space.
Hence, because varying thoroughly each geometric variable across its interval of variation (α ∈
[−90◦; 90◦], Rn/Rn,loc ∈ [0; 10], dstag ∈ [0; 4] m) is hard with a fixed set of only 3 geometries
(Apollo, OREX, IXV), the database was built in order to explore the design space at best and
at minimal cost. The 3D database was therefore computed from a pseudo-random sampling 1 of
a vehicle, an altitude (h ∈ [95; 150] km), a velocity (U∞ ∈ [6; 10] km/s) and an angle of attack
(AoA ∈ [0◦; 180◦]). For the three considered vehicles, this altitude interval offers a good coverage of
the transitional regime while enabling the respect of the DSMC convergence metrics. Concerning
the velocity interval, this choice is consistent with the range of orbital reentry velocities for which
ionization effects are negligible. Finally, for the angles of attack, although values greater than 45◦

are not relevant from a trajectory point of view, this choice allows us to take advantage of the
geometric diversity of the vehicles afterbody hence providing a better exploration of the design
space.

The corresponding atmospheric data were then extracted from the Jacchia77 model. In ad-
dition to these 27 simulations, 3 computations obtained in the frame of previous studies [37, 38]
were appended forming a training database of 30 simulations. This database is presented in Table
3 and illustrated in Figure 10. In the table, the non-indicated Kn correspond to special cases a
flat face faces the upstream flow and thus for which no equivalent stagnation curvature is known.
In accordance with Cholet’s recommendations [32], a training-validation-test procedure was used.
Hence two complementary databases composed of respectively 5 and 8 computations were desi-
gned to validate and test the trained models. The corresponding simulations are listed in Table
4. The validation database was elaborated in order to promote the models performing the best in
challenging flight conditions. That is, it was made of simulations with specific altitudes and angles
of attack exhibiting phenomena hard to retrieve with panel methods. In the same way, the test
database was designed to ensure that the models performing the best on the validation database
also gave good results on different but similarly challenging flight conditions. In addition, new
geometries were included to the test database in order to evaluate the generalisation capacities
of the selected models. In particular, the Spaceliner was considered with the aim of identifying
the limits of the constructed models when dealing with geometries far greater than that of the
training database.

Again, the computations were performed in accordance with the models listed in section
4.1. Similarly to the 2D-axisymmetric computations, a particular care was taken to ensure the
respect of the DSMC metrics. Hence, for all simulations, the following criteria were imposed:
∆t ≤ min(τcoll)/5, ∆x ≤ λ∞/4. An adaptive refinement allowing to divide ∆x down to ∆x/8

1. The sampling was constrained so that altitudes could only be multiple of 5 km and velocities were rounded
to one decimal. The sampling was also biased with respect to the altitude and the angle of attack so that altitudes
below 110 km and angle of attack smaller than 90◦ were more likely to be selected.
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was used and the number of numerical particles was increased until Np/c ≥ 10 in the front of the
body. Finally, for the particular case of the IXV, the flaps are responsible for specific phenomena
jeopardizing the proper learning of local features in their vicinity. This part of the geometry was
therefore truncated in the training database.

Id Vehicle Altitude (km) Velocity (km/s) Angle of Attack (◦) Kn M∞

1 IXV 95 9.4 60 2.1× 10−2 33.9
2 IXV 100 7.1 170 - 25.1
3 IXV 100 7.4 30 7.5× 10−2 26.2
4 IXV 110 9.3 20 4× 10−1 28.6
5 IXV 120 6.9 180 3.9× 10−1 17
6 IXV 130 7.0 30 5.4 14.6
7 ∗IXV 90 7.46 47 7.9× 10−3 28.2

8 OREX 100 8.5 130 - 30.1
9 OREX 105 6.2 100 - 21.1
10 OREX 140 8.9 110 - 16.4
11 OREX 95 7.5 20 1.6× 10−2 27.1
12 OREX 110 9.5 10 2.5× 10−1 29.2
13 OREX 120 8.0 40 4.1× 10−1 19.8
14 OREX 100 8.5 30 4.2× 10−2 30.1
15 OREX 105 6.2 0 1× 10−1 21.1
16 OREX 140 8.9 10 6.6 16.4

17 Apollo 95 7.6 100 5.8× 10−2 27.4
18 Apollo 105 6.0 90 3.7× 10−1 20.4
19 Apollo 105 9.7 140 5.6× 10−1 32.9
20 Apollo 110 8.2 80 9.3× 10−1 25.2
21 Apollo 130 9.2 150 18 19.2
22 Apollo 140 7.4 120 6.2 13.7
23 Apollo 150 9.5 40 35.2 16
24 Apollo 120 9.0 40 3.2 22.2
25 Apollo 95 7.0 20 4.7× 10−3 25.3
26 Apollo 105 8.0 30 1.8× 10−1 27.2
27 Apollo 105 6.5 0 2.9× 10−2 22.1
28 Apollo 110 8.6 180 1.5 26.5
29 ∗Apollo 200 9.6 -25 65.4 13
30 ∗Apollo 95 8.3 -19.4 4.0× 10−3 30

∗Simulations performed in the frame of the Apollo [37] and IXV [38] reentry analysis.

Table 3 – Training database for the neural network models.
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Figure 10 – Representation of the training dataset for the Ch model.
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Id Vehicle Altitude (km) Velocity (km/s) Angle of Attack (◦) Kn M∞

Validation

A ∗IXV 105 7.5 45 1.3× 10−1 26.9
B ∗OREX 101 7.5 0 4.3× 10−2 26.1
C ∗Apollo 105 8.3 -25.2 9.6× 10−2 28.1
D ∗Apollo 115 9.6 -25 4.5× 10−1 26.3
E ∗Apollo 170 9.6 -25 25.1 14.4

Test

I ∗Apollo 100 8.3 -24.6 3.3× 10−2 29.3
II ∗Apollo 130 9.6 -25 2.6 20.1
III ∗IXV 115 7.4 47 9.1× 10−1 20.3
IV ∗OREX 105 7.5 0 8.9× 10−2 25.1
V Sphere 110 8 0 3.3× 10−1 24.6
VI Ram-C 105 10 0 8.4× 10−1 34
VII Orion 100 7.6 -25 4.5× 10−2 26.9
VIII Spaceliner 150 7 45 70.3 16

∗Simulations performed in the frame of the Apollo, OREX [37] and IXV [38] reentry analysis.

Table 4 – Validation and test databases for the neural network models.

6. Results

This section first presents the results obtained with the kriging models for the Cp,stag and
Ch,stag coefficients. Then, the Cp, Ch and Cf distributions obtained with the neural networks are
discussed.

6.1. Stagnation coefficients

The LHS DOE introduced in section 5.1 and the various surrogate models discussed in this
section (i.e. RSM and kriging) were built with SMT, an open access toolbox [47, 48] co-developed
by several research teams including NASA, the University of Michigan, ISAE-SUPAERO and
ONERA.

6.1.1. Results for Cp,stag

The results obtained with several kriging and RMS models are summarized in Table 5 where
the RMSE and MRE respectively denote the root mean squared and mean relative errors defined
by the following expressions:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2, (36)

MRE =
1

n

n
∑

i=1

|yi − ŷi|
yi

, (37)

where n is the number of validation points, (yi)i=1..n are the values obtained by numerical model-
ling and (ŷi)i=1..n are the values predicted by the surrogates.

One notices that all the reduced model have a similar level of performance which suggests
that a simple quasi-linear relation exists between Cp,stag and the design variables (Kn,M∞).
However, the comparison of the 3D results plotted in the canonical reference frame and that were
obtained with a linear RSM (Figure 11a) and with kriging using a Gaussian correlation (Figure
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11c) show radically different behaviour for an equivalent level of preciseness. Hence, in spite of
the small MRE for the linear model, the response is physically incorrect. In the same way, the
ordinary kriging with an exponential correlation function (Figure 11b) provides the lowest error
but the noisy response is inconsistent with the expected tendency. For the kriging models using a
Gaussian and matern52 2, as expected, the S shaped curve is visible for the greatest Mach numbers
(Figure 11d). As a consequence, these model seem more relevant despite their non-maximal level
of preciseness.

Surrogate model RMSE MRE (%)
Ordinary kriging with a Gaussian kernel 0.0197 1.494
Ordinary kriging with an exponential kernel 0.0184 1.376
Ordinary kriging with a matern52 kernel 0.0197 1.521
Linear RSM 0.0194 1.517
Quadratic RSM 0.0179 1.448

Table 5 – Errors in the Cp,stag prediction obtained with various reduced models.

Figure 11 – Stagnation pressure coefficients Cp,stag obtained with various surrogate models.

From a general perspective, the preciseness of the models could be due to the small variation
range of Cp,stag which only varies between 1.8 and 2.2 leaving little room for an absurd prediction.

2. The Matérn 5/2 kernel written matern52 is a specific correlation function of form:

r(xxx(i),xxx(j)) =
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√
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Nevertheless, the outliers circled in red in Figure 12 indicate that part of this error is due to
the stagnation point detection algorithm. Indeed, when handling noisy data coming from DSMC
computations, fluctuations in the pressure of the order of a few percent around the stagnation
point can result in the extraction of an erroneous value of Cp,stag, i.e. smaller than the actual
Cp,stag. For these 3 points for instance, the knowledge of the real value would slightly bring them
closer to the model response. Nonetheless, such adjustment would in fine only weakly affect the
MRE that is already smaller than 2%.

Figure 12 – Comparison of the real Cp,stag and the one predicted with kriging and the Gaussian kernel.

In order to quantify the benefit of this new model in comparison to the existing model, the
validation points were also simulated with ARES. For the 23 points of DB 3D, the simulations
were performed considering that each vehicle is simply represented by spheres of nose radius equal
to their stagnation curvature. For all cases (Figure 9), a MRE of 3.66% was obtained with the
existing model, which is a bit more than twice the error obtained with the statistical models.

Among the surrogate models investigated in this section, all of them perform better than
the one in ARES. However, only the kriging models with the Gaussian and matern52 correla-
tion functions have a physically relevant behaviour. The Gaussian correlation provides a level of
precision slightly better which is why it appears as the most suitable model.

6.1.2. Results for Ch,stag

For the stagnation heat flux coefficient, two databases were used for the validation. Thus,
data from Singh and Schwartzentruber [31] and 3D computations from the neural network training
database were employed. The results obtained with the surrogate models are summarized in Table
6. As opposed to the stagnation pressure coefficient, these errors show a significantly better level
of performance for the kriging models in comparison to the linear and quadratic RSM. Indeed,
the 3D view of the results in Figure 13 confirms the non-linear trend of the response. Since the
sampling point of Singh and Schwartzentruber database are more localized in the upper rarefied
region where Ch,stag has a quadratic tendency (Figure 14a), the quadratic model performs well
for this particular case. For the kriging models, a global S shape is observed as expected with a
small dependence on the Mach number. Again, the Gaussian kernel provides the smoothest and
the most relevant response while the exponential correlation function is, as expected, more noisy.

For Singh and Schwartzentruber database, Figure 14a shows that for the less rarefied points,
the discrepancy between the kriging prediction and the DSMC results increases. This underesti-
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Surrogate model
RMSE (%)
[Singh]

MRE (%)
[Singh]

RMSE
[DB 3D]

MRE(%)
[DB 3D]

Gaussian kriging 0.056 4.349 0.0541 6.046
Exponential kriging 0.064 5.534 0.0529 5.789
Matern52 kriging 0.0576 4.499 0.0531 5.803
Linear RSM 0.149 13.78 0.145 14.43
Quadratic RSM 0.0657 5.68 0.0798 9.146

Table 6 – Errors in the Ch,stag prediction obtained with various reduced models. The corresponding database is
indicated between brackets.

Figure 13 – Stagnation heat flux coefficients Ch,stag obtained with various surrogate models.

mation of the DSMC results is however not observed for the second database (Figure 14b). This
behaviour is probably due to the difference in the VHS collision model employed for the DSMC
simulations. Indeed, as explained in [31], the authors used Bird’s parameters which, as discussed
in [38], results in a greater heat flux than that obtained with Stephani’s set of parameters [39]
when Kn < 10−1. For the two databases, the mean relative error is of the order of 5% which is
quite remarkable given the wide variation range of Ch,stag.

Finally, similarly to the stagnation pressure coefficient, ARES was used to estimate the stag-
nation heat flux of the DB 3D validation points. For this quantity, several correlations exist in
the continuum regime which is why several formulations were tested. Since these are generally
obtained under a super-catalytic wall assumption, only the points of the database for which no
catalytic effects are expected were considered. A mean relative error comprised between 12.2 %
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Figure 14 – Comparison of the real Ch,stag and the one predicted with kriging and the Gaussian kernel for the
Singh and Schwartzentruber (left) and DB 3D (right) databases.

(Johnston and Brandis [29]) and 13.1 % (Sutton-Graves [49]) was obtained. This time again, the
mean relative error of the kriging models is half that of the existing model.

The models developed in this section constitute a first way of significant improvement with
respect to the existing models. Indeed, the kriging models obtained provide errors twice smaller
than that of ARES for both Cp,stag and Ch,stag. In both cases, the kriging model with a matern52
and a Gaussian correlation functions perform very well and provide a physically relevant tendency.
These models thus constitute a solid alternative to the currently employed models.
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6.2. Distribution coefficients

The neural networks disscussed in this section were built with the library keras [32, 50].
Once a specific architecture was chosen by evaluation on the validation database, the selected
network was finally tested by comparison with the DSMC results. Here, the test results are
presented in two ways. In one side, the distributions predicted by the networks are compared to
the DSMC distributions (left figures). In parallel, a qualitative comparison is made by plotting
the distributions obtained by DSMC, with ARES and with the networks in a normalized form
(i.e. divided by their respective maximal values) along the vehicles centerline (right figures). This
way, the tendencies can be compared independently from the error committed at the stagnation
point.

6.2.1. Results for Cp

The first network is of the form Ĉp = f̂(Cp,stag, α). Because of the simplicity of this formulation
and considering the good level of precision of the existing methods, a major improvement is not
expected for this model. The selected network is made of 3 hidden layers [32, 64, 128] with ReLU
activation functions. It was trained with an Adam Optimizer and weight decay regularization was
used to prevent the chances of overfitting [32].

Figure 15 shows the results for the 4 geometries the network was trained on (cases I to IV in
Table 4). For the Apollo case at 100 km (I), a good agreement is obtained. However, the DSMC
stagnation point differs from the elements where α is close to 90◦. For this reason, the peak of Cp

predicted by the reduced models (ANN and ARES) is further away from the DSMC peak. At
130 km (II), one observes the excellent agreement between all results.

For the IXV case (III), a good agreement is obtained between the DSMC and the ANN. In
addition, one denotes that the noisy DSMC values in the stagnation region are smoothed by the
reduced models. For both surrogate models, the tendencies are relevant and the ANN results
seem to underestimate the DSMC distribution while ARES has a tendency to overestimate it.
For OREX (IV), a very good agreement is observed between the ANN and the DSMC results. In
comparison to ARES, the results along the centerline indicate that the ANN performs slightly
poorer on the spherical part.

The results with respect to the new geometries (cases V to VIII, not included in the training
database) are represented in Figure 16. For the elementary case of a Sphere (V), an excellent
agreement is obtained with the ANN. One also notices that for the angles θ ≥ 50◦ along the
sphere, the ANN performs better than ARES. For Ram-C, the 9◦ sphere-cone (VI), an excellent
agreement is obtained with the two reduced models. For Orion (VII), a similar behaviour as that
of Apollo (III) is observed and, as expected, a better estimation is provided by the ANN model in
the shadow region where the results of ARES are compromised by the continuum regime Cp = 0
assumption. Finally for the Spaceliner, the distributions show that the ANN model slightly unde-
restimate the stagnation value (relative difference of 9%) because the stagnation point is located
in a region where α ≃ 76◦. Overall, the tendency is however excellent as opposed to that obtained
with ARES.

For the Cp coefficient, the results indicate that an equivalent level of preciseness is observed
for the ANN and ARES in most cases. However, since the new model does not suffer from the
continuum regime assumption (i.e. Cp = 0 in the shadow region), for such elements, it leads to
better results in the transitional regime. Finally, the analysis of the Spaceliner case suggests that
in spite of a training limited to 3 specific geometries, the ANN model is reliable even for radically
different geometries.
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Figure 15 – Comparison of the Cp coefficient obtained with the neural network (ANN), with SPARTA (DSMC)
and with ARES for Apollo (I-II), the IXV (III) and OREX (IV).
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Figure 16 – Comparison of the Cp coefficient obtained with the neural network (ANN), with SPARTA (DSMC)
and with ARES for a Sphere (V), Ram-C (VI), Orion (VII) and the Spaceliner (VIII).
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6.2.2. Results for Ch

The second network is of the form Ĉh = f̂(Ch,stag, α, dstag, Rn/Rn,loc). It is made of 4 hidden
layers [32, 64, 128, 256] and ReLU activation functions. The same optimizer and regularization
methods as for the Cp model were employed. Furthermore, as discussed at the end of section
6.1.2, the comparison between ARES and the DSMC computations are relevant only if catalytic
effects are negligible. For some cases, this is not true and only the ANN results are discussed.

Figure 17 shows the results for simulations I to IV. In the case of Apollo (I), the contours
indicate an excellent agreement for the peak of heat flux in the shoulder region. Further down
the spherical portion, a discrepancy is however noticeable. Overall, a good agreement is observed.
For the 130 km case (II), a good agreement is obtained but a small erroneous peak is predicted
with the ANN model leading to an overestimation of the heat flux.

For the IXV (III), the contours indicate a very good agreement in terms of amplitude in the
stagnation region. As for the results along the centerline, the results show an abusive dependence
of the response to dstag that is not expected for such level of rarefaction and that leads to the
underestimation of the DSMC results. For this case, ARES and the ANN predictions suffer from
an equivalent error relatively to the stagnation value. For the OREX case (IV), the contours
indicate a 3 to 8% relative difference between the ANN and DSMC results in the nose region. As
for the distribution tendency, the comparison with ARES shows a poorer behaviour along the
spherical section but a good capture of the heat flux diminution along the conical portion.

Concerning the new geometries, the results are given in Figure 18 and the following points
were noted. For the sphere (V), similarly to the OREX case (IV), a linear trend is observed in
the stagnation region where the heat flux is slightly underestimated. Further along the centerline
(θ ≥ 50◦), the behaviour is well reproduced with the ANN model and more accurately than with
ARES. For the Ram-C case (VI), a slight overestimation is observed in the stagnation region
(relative difference of 4%) but the overall tendency is well retrieved.

For Orion (VII), similarly to the Apollo (I) case, the peak of heat flux is precisely reproduced
and the same underestimation is noticed further down the spherical section. Finally for the Space-
liner (VIII), the results show that this time, the stagnation value is well retrieved but the overall
tendency is absurd. This aspect was actually expected since the ANN model uses an absolute
distance and was only trained with objects of size smaller than 4 m.

The results presented in this section suggest that the targeted dependency were quite well
assimilated for most cases. Indeed, as illustrated by the Apollo (III) and Orion (VI) cases, the
characteristic heat flux peak in the shoulder region of probes reentering in incidence is very well
reproduced by the ANN model while it constitutes a known limitation of the existing models
[7]. In the same way, the OREX case (IV) shows that the dependence to dstag along the conical
section, which is another limiting points of the current models, is well inferred by the ANN.
However, because altitudes around 100 km are more represented in the database, the rarefaction
dependence was not perfectly assimilated as evident from the Apollo (II) and IXV (III) cases.
This could be addressed by increasing the number of simulations at higher altitudes. Finally,
the Spaceliner points out the consequence of using an absolute distance as a design parameter
which suggests that some kind of non-dimensional parameter might be more appropriate to deal
with such geometries. Another possibility would be to include bigger geometries in the training
database. In first approach, scaling the Spaceliner dstag parameter according to the maximal value
in the training database yields a much better result (Figure 19).
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Figure 17 – Comparison of the Ch coefficient obtained with the neural network (ANN), with SPARTA (DSMC)
and with ARES for Apollo (I-II), the IXV (III) and OREX (IV).
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Figure 18 – Comparison of the Ch coefficient obtained with the neural network (ANN), with SPARTA (DSMC)
and with ARES for a Sphere (V), Ram-C (VI), Orion (VII) and the Spaceliner(VIII).
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Figure 19 – Comparison of the Ch coefficient obtained with the neural network (ANN), with SPARTA (DSMC)
and with ARES for the Spaceliner(VIII) and a scaled dstag parameter.

6.2.3. Results for Cf

The third and last model has the following form: Ĉf = f̂(Ch,stag, α, Rn/Rn,loc). The selected
architecture is made of 3 hidden layers [32, 64, 128] and the activation functions are ReLU
functions. Similarly to the two other networks, an Adam optimizer and weight decay were used.

Figure 20 gives the results for the first test simulations (I to IV). Similarly to what was
observed for Cp and the Apollo case at 100 km (I), the stagnation point is not exactly where
α ≃ 90◦ which is why the minimal value of Cf predicted with the reduced models is slightly
shifted away from that of the DSMC computation. As for the amplitude of the distribution
further down the spherical section, the ANN model is more precise relatively to the maximal
value in the shoulder region. At 130 km (II), a good agreement is observed for both ARES and
the ANN but the stagnation value predicted by the ANN is highly overestimated. For the IXV
(III) and OREX (IV) cases, the tendencies are accurately retrieved with the ANN model but the
value at the stagnation point is still overestimated.

For the new geometries (V to VIII) represented in Figure 21, the same observation is noted for
the sphere case (V) where the tendency is accurate but the stagnation value is again highly ove-
restimated. For the Ram-C case (VI) and similarly to ARES, an excellent agreement is obtained
with the ANN model. For Orion (VII), the same shifting of the stagnation point is observed but
overall, the ANN model is in much better agreement with the DSMC results than ARES. Finally
for the Spaceliner case (VIII), a similarly poor result is obtained with both ARES and the ANN.
This time, the effect of viscosity which results in the bended tendency along the centerline is not
captured by any of the reduced models. This behaviour is characteristic of physical phenomena
enhanced by long flat geometries and even with the addition of a distance parameter could hardly
be assimilated with the considered database.

As discussed in section 5.2.1, the friction coefficient Cf is particular in that it is characterized
by a zero value in the stagnation region. The adopted approach relies on the use of Ch,stag in order
to infer the appropriate behaviour according to the rarefaction level. Except for the particular case
of the Spaceliner, the expected behaviour was well retrieved but the ANN model also evidenced
a tendency to overestimate Cf in the stagnation region. Presently, no clear way of improvement
has emerged with respect to this problem. As for the Spaceliner, the poor results obtained with
both ARES and the ANN suggest that, for this kind of geometry promoting viscous effects, a
specifically trained model might be needed.
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Figure 20 – Comparison of the Cf coefficient obtained with the neural network (ANN), with SPARTA (DSMC)
and with ARES for Apollo (I-II), the IXV (III) and OREX (IV).
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Figure 21 – Comparison of the Cf coefficient obtained with the neural network (ANN), with SPARTA (DSMC)
and with ARES for a Sphere (V), Ram-C (VI), Orion (VII) and the Spaceliner(VIII).
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