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3Introduction

➠ study new systems of micro-pumps by using properties of
rarefied gases

➠ simplified mathematical and physical models

➠ numerical simulations
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4Thermal creep flow and pumping effect

➠ Rarefied gas: Kn = mean free path
characteristic length = λ

D
≈ 1
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λ

D

➠ the density of the gas is small enough

➠ or the width of the channel is small enough
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5Thermal creep flow and pumping effect

➠ apply a temperature gradient on the wall
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6Thermal creep flow and pumping effect

➠ on the walls: particles coming from the right have more
energy than particles coming from the left
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Tlow

THigh

➠ the gas gives a net momentum from right to left to the walls
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6Thermal creep flow and pumping effect

➠ the walls are fixed: by reaction, the gas moves from the left
to the right
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➠ this is the thermal creep flow



(Summary) (Perspectives)L. Mieussens - Nano-Brixen’07

7Thermal creep flow and pumping effect

➠ the thermal creep flow disappears if λ
D
→ 0 (fluid regime)

➠ known as “thermal transpiration” since Reynolds (1888),
Maxwell (1889), Knudsen (1910)

➠ Sone (1966): analytical demonstration of the thermal creep
flow by asymptotic theory
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8Thermal creep flow and pumping effect

➠ natural application:
create flow and pumping effect without moving mechanical
part

➠ physical conditions: rarefied regime

Kn =
mean free path

characteristic length
is not too small

➟ weak pressure gas

➟ or small devices: Micro-Electro-Mechanical-Systems
(MEMS)
(e.g.: air at atmospheric pressure ⇒ width ≈ 0.1µm)
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9Pumping effect

Tlow

pL pR

THigh

➠ thermal creep flow ⇒ a flow is generated, and a pressure
difference is obtained (pR > pL)

➠ problem:

➟ very weak effect: velocity u is small

➟ u depends on the temperature gradient

➟ a very large temperature gradient is technologically

impossible
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10Pumping effect

➠ idea: maintain the two tanks at the same temperature

➠ increase and decrease the wall temperature

THigh

TlowTlow

pL pR

➠ two opposed thermal creep flows

➠ no pressure difference
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11Pumping effect

➠ how to get a net flow with two opposed temperature
gradients ?

➠ idea: use a ditch (Aoki, Sone et al, 1996)
THigh

Tlow Tlow

pL pR

➟ the opposit flow is confined to the ditch

➟ there is a global mass flow

➟ a pumping effect is possible

➟ similar idea by Knudsen (1910)
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12Pumping effect

➠ more efficiency of the pump with a cascade system: Knuden
compressor

THigh
Tlow

THigh
Tlow

THigh
Tlow

THigh
Tlow

pR

THigh
Tlow Tlow

pL

➠ experiments and numerical simulations (Aoki, Sone et al.),

➠ mathematical modeling (Aoki, Degond)
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13A new Knudsen compressor: the project

➠ new (simpler) idea: channel with varying curvature
(Aoki-Degond-LM-Takata-Yoshida)

B

D

LS

TH

R

TL

TL

A

TH TL

TL TH

TH TL

TL

TLTH TL

TL

TL

TH

TH

TH

THTL

TL

N units

➠ project: numerical simulations and mathematical modeling
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14A new Knudsen compressor: simulations

➠ steady 2D kinetic simulations: standard method is DSMC →
very expensive (slow flow)

➠ instead: deterministic kinetic simulations

➠ for large number of units: asymptotic model (small width
approximation)



(Summary) (Perspectives)L. Mieussens - Nano-Brixen’07

15Kinetic theory

➠ monoatomic gas: distribution function of molecular
velocities F (t, x, v)

➠ defined such as F (t, x, v)dxdv = mass of molecules that at
time t have position x ± dx and velocity v ± dv

➠ macroscopic quantities: moments of F w.r.t v

mass density ρ =

∫

R3

F (t, x, v) dv,

momentum ρu =

∫

R3

vF (t, x, v) dv,

total energy E =

∫

R3

1
2
|v|2F (t, x, v) dv.
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16Kinetic theory

➠ temperature T defined by E = 1
2
ρ|u|2 + 3

2
ρRT

➠ equilibrium state: Maxwellian distribution, depends only on
v, ρ, u, T

M[ρ, u, T ](v) =
ρ

(2πRT )
3

2

exp

(

−|v − u|2
2RT

)

u

F

M

2
√

RT

v
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17Kinetic theory

➠ evolution of F described by a kinetic equation

∂tF + v · ∇xF
︸ ︷︷ ︸

transport

= Q(F )
︸ ︷︷ ︸

collisions

➠ Q(F ) is the Boltzmann collision operator, but often the
simpler BGK model is used:

Q(F ) = ν(M[ρ, u, T ] − F )

effect of collisions = relaxation of F towards the
Maxwellian equilibrium
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18Deterministic numerical method

➠ main ingredients: [LM (JCP 00)]

➟ plane flow: 2D BGK Model

➟ conservative and entropic velocity discretization

➟ space discretization: finite volume, curvilinear grids

➟ time discretization: backward Euler (transient solutions),

linearized implicit scheme (steady flows)
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19Deterministic numerical method

➠ new features: [Aoki-Degond-LM (JCP 07)]

➟ reduced distribution technique: v ∈ R
2 instead of R

3

➟ implicit boundary conditions (faster convergence to

steady state)

➠ parallel implementation (Open-MP)

➠ typical simulation for 1 unit: 400 × 100 space cells, 40 × 40

discrete velocities
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20Numerical method: reduced distribution technique

➠ F is independent of z ⇒ the transport operator does not

contain explicitely the velocity vz.

➠ define the reduced distribution function

f(t, x, y, vx, vy) =

∫

R

F dvz, and integrate BGK w.r.t vz

∂tF + v · ∇xF = ν(M[ρ, u, T ] − F )

⇓
∫

R
. dvz

∂tf + v · ∇xf = ν(M [ρ, u, T ] − f),

where M [ρ, u, T ] is the reduced Maxwellian defined by

M [ρ, u, T ] =

∫

R

M[ρ, u, T ] dvz =
ρ

2πRT
exp

(

− (vx − ux)2 + (vy − uy)2

2RT

)

,
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21Numerical method: reduced distribution technique

but T cannot be defined through f only:

E = 1
2
ρ|u|2 + 3

2
ρRT

=

∫

R3

1
2
|v|2F (t, x, v) dv

=

∫

R3

1
2
|v2

x + v2
y + v2

z |F (t, x, v) dv

=

∫

R2

1
2
|v2

x + v2
y|f(t, x, v) dvxdvy +

∫

R2

g(t, x, v) dvxdvy

where g(t, x, y, vx, vy) =

∫

R

1
2
v2

zF dvz.
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22Numerical method: reduced distribution technique

➠ as for f , an equation for g is derived

➠ finally, we get the coupled system of kinetic equations:

∂tf + v · ∇xf = ν(M [ρ, u, T ] − f),

∂tg + v · ∇xg = ν(RT
2

M [ρ, u, T ] − g),

and the macroscopic quantities are obtained through f and g by

ρ =

∫

R2

f dv2, ρu =

∫

R2

vf dv2,

1

2
ρ|u|2 +

3

2
ρRT =

∫

R2

(1
2
|v|2f + g) dv2.



(Summary) (Perspectives)L. Mieussens - Nano-Brixen’07

23Numerical method: velocity discretization

➠ for given ρ, u, T , the Maxwellian M [ρ, u, T ] satisfies

conservation:
∫

R2

( 1
v

1

2
|v|2

)

M [ρ, u, T ] dv =
( ρ

ρu
1

2
ρ|u|2+ρRT

)

entropy:
∫

R2

M [ρ, u, T ] log M dv = min

{∫

R2

f log f dv

}

➠ R
2 is truncated to [vmin, vmax]

2 and discretized by (vk)
N
k=1

➠

∫

R2

f dv is replaced by
N∑

k=1

fk∆v

➠ we can define (Mk)
N
k=1 that satisfies discrete conservation

and entropy properties (⇒ existence and convergence results)
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24Numerical method: space discretization

equation for f : finite volumes, upwind scheme, curvilinear grid

∂tf + v · ∇xf = ν(M [ρ, u, T ] − f),

↓
∂tfk,i,j + 1

∆x
(φi+ 1

2
,j(fk) − φi− 1

2
,j(fk)) + 1

∆y
(φi,j+ 1

2

(fk) − φi,j− 1

2

(fk))

= νi,j(Mk[ρi,j , ui,j , Ti,j ] − fk,i,j),

where the numerical fluxes are defined by

φi+ 1

2
,j(fk) = 1

2

(

vx,k(fk,i+1,j + fk,i,j) − |vx,k|(∆fk,i+ 1

2
,j − Φk,i+ 1

2
,j)

)

φi,j+ 1

2

(fk) = 1

2

(

vy,k(fk,i,j+1 + fk,i,j) − |vy,k|(∆fk,i,j+ 1

2

− Φk,i,j+ 1

2

)
)
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25Numerical method: time discretization

transient solutions: first order backward euler

1
∆t

(fn+1
k,i,j − fn

k,i,j) + 1
∆x

(φi+ 1

2
,j(f

n
k ) − φi− 1

2
,j(f

n
k ))

+ 1
∆y

(φi,j+ 1

2

(fn
k ) − φi,j− 1

2

(fn
k ))

= νn
i,j(Mk[ρ

n
i,j , u

n
i,j , T

n
i,j ] − fn

k,i,j)

stability if

∆t ≤ 1

maxi,j(νn
i,j)

and
∆t

∆x
≤ 1

maxk |vk|

restrictive condition for: rapid or dense flows, and steady state
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26Numerical method: time discretization

steady solutions: forward euler (implicit)

1
∆t

(fn+1
k,i,j − fn

k,i,j) + 1
∆x

(φi+ 1

2
,j(f

n+1
k ) − φi− 1

2
,j(f

n+1
k ))

+ 1
∆y

(φi,j+ 1

2

(fn+1
k ) − φi,j− 1

2

(fn+1
k ))

= νn
i,j(Mk[µ

n+1
i,j ] − fn+1

k,i,j )

then linearization:

Mk[µ
n+1
i,j ] ≈ Mk[µ

n
i,j] + ∂µMk[µ

n+1
i,j ](µn+1

i,j − µ
n
i,j)

where µ = (ρ, ρu, 1
2
ρ|u|2 + 3

2
ρRT )
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27Numerical method: time discretization

δ-matrix form of the scheme: set Un = ({fn
k,i,j}k,i,j, {gn

k,i,j}k,i,j)

Then the scheme is
(

I

∆t
+ T + B + Rn

)

δUn = RHSn,

where

➠ δUn = Un+1 − Un,

➠ I is the unit matrix,

➠ T contains the transport coefficients, (b. c. in in B)

➠ Rn is the Jacobian matrix of the collision operator,

➠ RHSn is the residual (transport and collision operators applied to Un).
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28Numerical method: linear system

(
I

∆t
+ T + B + Rn

)

δUn = RHSn,

➠ very large linear system

➠ sparse matrices

T = B = Rn =

➠ an adapted iterative solver is used
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29Numerical simulations

B

D

LS

TH

R

TL

TL

A

Basic unit of our devices : a hook shaped channel.
Three sizes: thick (D/R = 1), medium (0.5), thin (0.2)

Three Knudsen numbers: Kn = 1, 0.5, 0.1
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30Numerical simulations: Circulating flow
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31Numerical simulations: Circulating flow
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32Numerical simulations: Circulating flow
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33Numerical simulations: Circulating flow
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Mass flow rate in the ring-shaped channel as a function of the Knudsen number.

Each curve corresponds to one of the three different size of channel



(Summary) (Perspectives)L. Mieussens - Nano-Brixen’07

34Numerical simulations: Circulating flow

time evolution of the density and velocity fields + mass flow rate:
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35Numerical simulations: Micro-Pump
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36Numerical simulations: Micro-Pump

Pressure field in the closed cascade device: 2, 4, 8 and 16 units.
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37Numerical simulations: Micro-Pump
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38Numerical simulations: Micro-Pump
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39Numerical simulations: Micro-Pump

comparison BGK/DSMC
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40Asymptotic model

➠ problem: simulation impossible for a large number of units

➠ idea: develop a simplified mathematical model (asymptotic
analysis)

➠ result: fluid model (no particles), one space dimension only

➠ diffusion model, induced by the boundaries

➠ very fast simulations, arbitrary number of units
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41Asymptotic model

[Aoki-Degond-LM-Takata-Yoshida (MMS 07)]

BGK equation:

∂tf + v · ∇xf = Q(f),
D

Ω

C

x

s = 0

s

r

Local coordinates:

∂tf + (1 − κr)−1vs∂sf + vr∂rf + κ(1 − κr)−1vrvs∂vs
f

− κ(1 − κr)−1v2
s∂vr

f = Acρ(M [ρ, u, 2RT ] − f).

re-scaling: ε = D
Ls

� 1, t′ = ε2t and s′ = εs
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41Asymptotic model

[Aoki-Degond-LM-Takata-Yoshida (MMS 07)]

BGK equation:

∂tf + v · ∇xf = Q(f),
D

Ω

C

x

s = 0

s

r

Local coordinates:

ε2∂tf + ε(1 − κr)−1vs∂sf + vr∂rf + κ(1 − κr)−1vrvs∂vs
f

− κ(1 − κr)−1v2
s∂vr

f =
1

K0

ρ(M [ρ, u, T ] − f)

re-scaling: ε = D
Ls

� 1, t′ = ε2t and s′ = εs
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42Asymptotic model

conservation of the averaged density:

∂t% + ∂sj = 0,

where

%(s, t) =

∫ 1/2

−1/2

∫

R3

f(1−κr) dvdr and j(s, t) =
1

ε

∫ 1/2

−1/2

∫

R3

vsf dvdr

limit ε → 0 : 1D macroscopic model (variable s only)
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43Asymptotic model

Theorem (formal)

(i) % → ρ0, solution of

∂tρ0 + ∂sj1 = 0,

j1 =
√

TwMP ∂sρ0
︸ ︷︷ ︸

diffusion

+
ρ0√
Tw

(MP + MT )∂sTw

︸ ︷︷ ︸

drift=thermal creep !

,

(where MP and MT are non-linear functions of ρ0)

(original method: Babovski, Bardos, Platkowski (1991))

(ii) MP ≤ 0

(iii) % − ρ0 = O(ε2) and j − j1 = O(ε2)



(Summary) (Perspectives)L. Mieussens - Nano-Brixen’07

44Asymptotic model

ε2∂tf + ε(1 − κr)−1vs∂sf + vr∂rf + κ(1 − κr)−1vrvs∂vs
f

− κ(1 − κr)−1v2
s∂vr

f =
1

K0

ρ(M [ρ, u, T ] − f)

Hilbert expansion: f = f0 + εf1 + ε2f2 + ...

f0 = ρ0(s, t)M [1, 0, Tw(s)]

⇓

ρ0 to be determined, and j0 =
1

ε

∫ 1/2

−1/2

∫

R3

vsf0 dvdr = 0



(Summary) (Perspectives)L. Mieussens - Nano-Brixen’07

45Asymptotic model

ε2∂tf + ε(1 − κr)−1vs∂sf + vr∂rf + κ(1 − κr)−1vrvs∂vs
f

− κ(1 − κr)−1v2
s∂vr

f =
1

K0

ρ(M [ρ, u, T ] − f)

Hilbert expansion: f = f0 + εf1 + ε2f2 + ...

Lf1 = −(1 − κr)−1vs∂sf0 (1D linear kinetic eq.)

⇓
ρ1 = 0 and

j1(s, t) =

Z

1/2

−1/2

Z

R3

vsf1 dvdr =
p

TwMP ∂sρ0 +
ρ0√
Tw

(MP + MT )∂sTw



(Summary) (Perspectives)L. Mieussens - Nano-Brixen’07

46Asymptotic model

Numerical computations:

➠ MP and MT :
➟ depend only on s through K and κ

➟ are averaged fluxes given by solutions of auxiliary linear kinetic

problems, 1D in r, local in s

➟ these problems are numerically solved for many values of K and ε

➟ construction of a database for MP and MT
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47Asymptotic model

Numerical computations:

➠ discontinuity of the curvature is taken into account
(boundary layer corrector)

➠ the diffusion model is numerically solved

➠ comparison with a fully kinetic simulations (2D BGK)

➠ simulation of a 100 unit pump
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48Asymptotic model

Comparison with 2D BGK: circulating flow
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49Asymptotic model

Comparison with 2D BGK: circulating flow
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50Asymptotic model

Comparison with 2D BGK: micro-pump
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51Perspectives

➠ test different geometries

➠ optimization of the shape of the channel

➠ simulation of a 3D Knudsen pump (pipe):

➟ Derive a diffusion model

➟ Compute the transport coefficients

➠ experimental studies
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