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Introduction

Abstract

In this lecture we intend to study the finite subgroups of the group AutR R[[Z]]
of R-automorphisms of the formal power series ring R[[Z]].
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Introduction

Notations

(K,v) is a discretely valued complete field of inequal characteristic (0,p).
Typically a finite extension of Qunr

p .

R denotes its valuation ring.

π is a uniformizing element and v(π) = 1.

k := R/πR,the residue field, is algebraically closed of char. p > 0

(Kalg,v) is a fixed algebraic closure endowed with the unique prolongation of
the valuation v.

ζp is a primitive p-th root of 1 and λ = ζp−1 is a uniformizing element of
Qp(ζp).
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Introduction

Introduction

Let us cite J. Lubin (Non archimedean dynamical sytems. Compositio 94).

” Some of the standard and well-established techniques of local arithmetic
geometry can also be seen as involving dynamical systems.

Let K/Qp be a finite extension. For a particular formal group F (the so called
Lubin-Tate formal groups) we get a representation of Gal(Kalg/K) from the
torsion points of a particular formal group F over R the valuation ring of K.
They occur as the roots of the iterates of [p]F(X) = pX+ ..., the
endomorphism of multiplication by p.
They occur aswell as the fix points of the automorphism (of formal group)
given by [1+p]F(X) = F(X, [p]F(X)) = (1+p)X+ ....”
In these lectures we focuss our attention on power series f (Z) ∈ R[[Z]] such
that f (0) ∈ πR and f ◦n(Z) = Z for some n > 0. This is the same as
considering cyclic subgroups of AutR R[[Z]]. More generally we study finite
order subgroups of the group AutR R[[Z]] throughout their occurence in
”arithmetic geometry”.
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Introduction

Generalities

The ring R[[Z]]

Definition
Distinguished polynomials. P(Z) ∈ R[Z] is said to be distinguished if
P(Z) = Zn +an−1Zn−1 + ...+a0, ai ∈ πR

Theorem

Weierstrass preparation theorem. Let f (Z) = ∑i≥0 aiZi ∈ R[[Z]] ai ∈ πR for
0≤ i≤ n−1. an ∈ R×. The integer n is the Weierstrass degree for f .
Then f (Z) = P(Z)U(Z) where U(Z) ∈ R[[Z]]× and P(Z) is distinguished of
degree n are uniquely defined.

Lemma

Division lemma. f ,g ∈ R[[Z]] f (Z) = ∑i≥0 aiZi ∈ R[[Z]] ai ∈ πR for
0≤ i≤ n−1. an ∈ R× There is a unique (q,r) ∈ R[[Z]]×R[Z] with g = qf + r
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Introduction

Open disc

Let X := SpecR[[Z]].

Closed fiber Xs := X×R k = Speck[[Z]] : two points generic point (π) and
closed point (π,Z)

Generic fiber XK := X×R K = SpecR[[Z]]⊗R K.
Note that R[[Z]]⊗R K = {∑i aiZi ∈ K[[Z]] | infi v(ai)>−∞}.

generic point (0) and closed points (P(Z)) where P(Z) is an irreducible
distinguished polynomial.

X(Kalg) ' {z ∈ Kalg | v(z)> 0} is the open disc in Kalg so that we can identify

XK = R[[Z]]⊗R K with
X
(Kalg)

Gal(Kalg/K)
.

Although X = SpecR[[Z]] is a minimal regular model for XK we call it the
open disc over K.
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Automorphism group

AutR R[[Z]]

Let σ ∈ AutR R[[Z]] then

σ is continuous for the (π,Z) topology.

(π,Z) = (π,σ(Z))

R[[Z]] = R[[σ(Z)]]

Reciprocally if Z′ ∈ R[[Z]] and (π,Z) = (π,Z′) i.e. Z′ ∈ πR+ZR[[Z]]× ,
then σ(Z) = Z′ defines an element σ ∈ AutR R[[Z]]

σ induces a bijection σ̃ : πR→ πR where σ̃(z) := (σ(Z))Z=z

˜τσ(z) = σ̃(τ̃(z)).
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Automorphism group Finite order subgroups

Structure theorem

Let r : R[[Z]]→ R/(π)[[z]], be the canonical homomorphism induced by the
reduction mod π .
It induces a surjective homomorphism r : AutR R[[Z]]→ Autk k[[Z]].
N := kerr = {σ ∈ AutR R[[Z]] | σ(Z) = Z mod π}.

Proposition

Let G⊂ AutR R[[Z]] be a subgroup with |G|< ∞, then G contains a unique
p-Sylow subgroup Gp and C a cyclic subgroup of order e prime to p with
G = Gp oC. Moreover there is a parameter Z′ of the open disc such that
C =< σ > where σ(Z′) = ζeZ′.
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Automorphism group Finite order subgroups

The proof uses several elementary lemmas

Lemma

Let e ∈ N× and f (Z) ∈ AutR R[[Z]] of order e and f (Z) = Z mod Z2 and
then e = 1.

Let f (Z) = a0 +a1Z + ... ∈ R[[Z]] with a0 ∈ πR and for some e ∈ N∗ let
f ◦e(Z) = b0 +b1Z + ..., then b0 = a0(1+a1 + ....+ae−1

1 ) mod a2
0R and

b1 = ae
1 mod a0R.

Let σ ∈ AutR R[[Z]] with σ e = Id and (e,p) = 1 then σ has a rational fix
point.

Let σ as above then σ is linearizable.
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Automorphism group Finite order subgroups

Proof

The case |G|= e is prime to p.

Claim. G =< σ > and there is Z′ a parameter of the open disc such that
σ(Z′) = θZ′ for θ a primitive e-th root of 1.In other words σ is linearizable.

N∩G = {1}. By item 4, σ ∈ G is linearisable and so for some parameter Z′

one can write σ(Z′) = θZ′ and if σ ∈ N we have σ(Z) = Z mod πR, and as
(e,p) = 1 it follows that σ = Id.

The homomorphism ϕ : G→ k× with ϕ(σ) = r(σ)(z)
z is injective (apply item 1

to the ring R = k).
The result follows.
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Automorphism group Finite order subgroups

General case.

From the first part it follows that N∩G is a p-group.

Let G := r(G). This is a finite group in Autk k[[z]].

Let G1 := ker(ϕ : G→ k×) given by ϕ(σ) = σ(z)
z

this is the p-Sylow subgroup of G.

In particular G
G1

is cyclic of order e prime to p.

Let Gp := r−1(G1), this is the unique p-Sylow subgroup of G as N∩G is a
p-group.

Now we have an exact sequence 1→ Gp→ G→ G
G1
' Z/eZ→ 1. The result

follows by Hall’s theorem.

Michel Matignon (IMB) p-adic dynamical systems of finite order ANR Berko,Bordeaux, June 2011 11 / 33



Automorphism group Finite order subgroups

General case.

From the first part it follows that N∩G is a p-group.

Let G := r(G). This is a finite group in Autk k[[z]].

Let G1 := ker(ϕ : G→ k×) given by ϕ(σ) = σ(z)
z

this is the p-Sylow subgroup of G.

In particular G
G1

is cyclic of order e prime to p.

Let Gp := r−1(G1), this is the unique p-Sylow subgroup of G as N∩G is a
p-group.

Now we have an exact sequence 1→ Gp→ G→ G
G1
' Z/eZ→ 1. The result

follows by Hall’s theorem.

Michel Matignon (IMB) p-adic dynamical systems of finite order ANR Berko,Bordeaux, June 2011 11 / 33



Automorphism group Finite order subgroups

General case.

From the first part it follows that N∩G is a p-group.

Let G := r(G). This is a finite group in Autk k[[z]].

Let G1 := ker(ϕ : G→ k×) given by ϕ(σ) = σ(z)
z

this is the p-Sylow subgroup of G.

In particular G
G1

is cyclic of order e prime to p.

Let Gp := r−1(G1), this is the unique p-Sylow subgroup of G as N∩G is a
p-group.

Now we have an exact sequence 1→ Gp→ G→ G
G1
' Z/eZ→ 1. The result

follows by Hall’s theorem.

Michel Matignon (IMB) p-adic dynamical systems of finite order ANR Berko,Bordeaux, June 2011 11 / 33



Automorphism group Finite order subgroups

General case.

From the first part it follows that N∩G is a p-group.

Let G := r(G). This is a finite group in Autk k[[z]].

Let G1 := ker(ϕ : G→ k×) given by ϕ(σ) = σ(z)
z

this is the p-Sylow subgroup of G.

In particular G
G1

is cyclic of order e prime to p.

Let Gp := r−1(G1), this is the unique p-Sylow subgroup of G as N∩G is a
p-group.

Now we have an exact sequence 1→ Gp→ G→ G
G1
' Z/eZ→ 1. The result

follows by Hall’s theorem.

Michel Matignon (IMB) p-adic dynamical systems of finite order ANR Berko,Bordeaux, June 2011 11 / 33



Automorphism group Finite order subgroups

General case.

From the first part it follows that N∩G is a p-group.

Let G := r(G). This is a finite group in Autk k[[z]].

Let G1 := ker(ϕ : G→ k×) given by ϕ(σ) = σ(z)
z

this is the p-Sylow subgroup of G.

In particular G
G1

is cyclic of order e prime to p.

Let Gp := r−1(G1), this is the unique p-Sylow subgroup of G as N∩G is a
p-group.

Now we have an exact sequence 1→ Gp→ G→ G
G1
' Z/eZ→ 1. The result

follows by Hall’s theorem.

Michel Matignon (IMB) p-adic dynamical systems of finite order ANR Berko,Bordeaux, June 2011 11 / 33



Automorphism group Finite order subgroups

General case.

From the first part it follows that N∩G is a p-group.

Let G := r(G). This is a finite group in Autk k[[z]].

Let G1 := ker(ϕ : G→ k×) given by ϕ(σ) = σ(z)
z

this is the p-Sylow subgroup of G.

In particular G
G1

is cyclic of order e prime to p.

Let Gp := r−1(G1), this is the unique p-Sylow subgroup of G as N∩G is a
p-group.

Now we have an exact sequence 1→ Gp→ G→ G
G1
' Z/eZ→ 1. The result

follows by Hall’s theorem.

Michel Matignon (IMB) p-adic dynamical systems of finite order ANR Berko,Bordeaux, June 2011 11 / 33



Automorphism group Finite order subgroups

General case.

From the first part it follows that N∩G is a p-group.

Let G := r(G). This is a finite group in Autk k[[z]].

Let G1 := ker(ϕ : G→ k×) given by ϕ(σ) = σ(z)
z

this is the p-Sylow subgroup of G.

In particular G
G1

is cyclic of order e prime to p.

Let Gp := r−1(G1), this is the unique p-Sylow subgroup of G as N∩G is a
p-group.

Now we have an exact sequence 1→ Gp→ G→ G
G1
' Z/eZ→ 1. The result

follows by Hall’s theorem.

Michel Matignon (IMB) p-adic dynamical systems of finite order ANR Berko,Bordeaux, June 2011 11 / 33



Automorphism group Finite order subgroups

General case.

From the first part it follows that N∩G is a p-group.

Let G := r(G). This is a finite group in Autk k[[z]].

Let G1 := ker(ϕ : G→ k×) given by ϕ(σ) = σ(z)
z

this is the p-Sylow subgroup of G.

In particular G
G1

is cyclic of order e prime to p.

Let Gp := r−1(G1), this is the unique p-Sylow subgroup of G as N∩G is a
p-group.

Now we have an exact sequence 1→ Gp→ G→ G
G1
' Z/eZ→ 1. The result

follows by Hall’s theorem.

Michel Matignon (IMB) p-adic dynamical systems of finite order ANR Berko,Bordeaux, June 2011 11 / 33



Automorphism group Finite order subgroups

Remark.

Let G be any finite p-group.

There is a dvr, R which is finite over Zp and an injective morphism
G→ AutRR[[Z]] which induces a free action of G on SpecR[[Z]]×K and which
is the identity modulo π .

In particular the extension of dvr
R[[Z]](π)/R[[Z]]G(π)
is fiercely ramified.
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Lifting problems

The local lifting problem

Let G be a finite p-group. The group G occurs as an automorphism group of
k[[z]] in many ways.

This is a consequence of the Witt-Shafarevich theorem on the structure of the
Galois group of a field K of characteristic p > 0.

This theorem asserts that the Galois group Ip(K) of its maximal p-extension is
pro-p free on |K/℘(K)| elements (as usual ℘ is the operator Frobenius minus
identity).

We apply this theorem to the power series field K = k((t)). Then K/℘(K) is
infinite so we can realize G in infinitely many ways as a quotient of Ip and so
as Galois group of a Galois extension L/K.

The local field L can be uniformized: namely L = k((z)). If
σ ∈ G = Gal(L/K), then σ is an isometry of (L,v) and so G is a group of
k-automorphisms of k[[z]] with fixed ring k[[z]]G = k[[t]].
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Lifting problems

Definition
The local lifting problem for a finite p-group action G⊂ Autk k[[z]] is to find a
dvr, R finite over W(k) and a commutative diagram

Autkk[[z]] ← AutRR[[Z]]
↑ ↗
G

A p-group G has the local lifting property if the local lifting problem for all
actions G⊂ Autk k[[z]] has a positive answer.
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Lifting problems

Inverse Galois local lifting problem for p-groups

Let G be a finite p-group, we have seen that G occurs as a group of
k-automorphism of k[[z]] in many ways,

so we can consider a weaker problem than the local lifting problem.

Definition
For a finite p-group G we say that G has the inverse Galois local lifting
property if there exists a dvr, R finite over W(k), a faithful action
i : G→ Autk k[[z]] and a commutative diagram

Autkk[[z]] ← AutRR[[Z]]
i ↑ ↗
G
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Lifting problems Sen’s theorem

Sen’s theorem

Let G1(k) := zk[[z]] endowed with composition law. We write v for vz.
The following theorem was conjectured by Grothendieck.

Theorem

Sen (1969). Let f ∈ G1(k) such that f ◦p
n 6= Id. Let i(n) := v(f ◦p

n
(z)− z), then

i(n) = i(n−1) mod pn.

Sketch proof (Lubin 95). The proof is interesting for us because it counts the
fix points for the iterates of a power series which lifts f .

Let Xalg := {z ∈ Kalg | v(z)> 0}
Let F(Z) ∈ R[[Z]] such that

F(0) = 0 and F◦p
n
(Z) 6= Z mod πR

The roots of F◦p
n
(Z)−Z in Xalg are simple.

Then ∀m such that 0 < m≤ n one has i(m) = i(m−1) mod pm where
i(n) := v(F̃◦p

n
(z)− z) is the Weierstrass degree of F◦p

n
(Z)−Z.
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Lifting problems Sen’s theorem

Proof:

Claim: let Qm(Z) := F◦p
n
(Z)−Z

F◦pn−1
(Z)−Z

∈ R[[Z]]

For this we remark that if F◦p
m−1

(Z)−Z = (Z− z0)
aV(Z) with a > 1 and

z0 ∈ Xalg, then F◦p
m
(Z)−Z = (Z− z0)

aW(Z) i.e. the multiplicity of fix points
increases in particular the roots of F◦p

m−1
(Z)−Z are simple as those of

F◦p
n
(Z)−Z.

It follows that the series Qi(Z) for 1≤ i≤ n have distinct roots.

Let z0 with Qm(z0) = 0 then z0,F(z0), ...,F◦p
m−1(z0) are distinct roots of

Qm(Z).
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Lifting problems Sen’s theorem

Reversely if |{z0,F(z0), ...,F◦p
m−1(z0)}|= pm and if F◦p

m
(z0) = z0, then z0 is

a root of Qm(Z).

In other words z0 is a root of Qm(Z) iff |Orbz0|= pm.

It follows that the Weierstrass degree i(m)− i(m−1) of Qm(Z) is 0 mod pm.
Now Sen’s theorem follows from the following

Lemma
k be an algebraically closed field of char. p > 0
f ∈ k[[z]] with f (z) = z mod (z2), and n > 0 such that f ◦p

n
(z) 6= z.

There is a complete dvr R with
char.R > 0 and R/(π) = k and
F(Z) ∈ R[[Z]] with r(F) = f such that F◦p

n
(Z)−Z has simple roots in Xalg.
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Lifting problems Hasse-Arf theorem

Hasse-Arf theorem

Notations.

OK is a complete dvr with K = FrOK .
L/K is a finite Galois extension with group G.
OL is the integral closure of OK .
πK ,πL uniformizing elements, kK ,kL the residue fields
The residual extension kL/kK is assumed to be separable.
There is a filtration (Gi)i≥−1 with Gi := {σ ∈ G | vL(σ(πL)−πL)≥ i+1}
G = G−1 ⊃ G0 ⊃ G1...
Gi CG
G/G0 ' Gal(kL/kK)
G/G1 is cyclic with order prime to char. kK

If char. kK = 0 the group G1 is trivial
If char. kK = p the group G1 is a p-group.
Gi/Gi+1 is a p elementary abelian group.
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Lifting problems Hasse-Arf theorem

The different ideal DL/K ⊂ OL.

Under our hypothesis there is z ∈ OL such that OL = OK [z], then
DL/K = (P′(z)) where P is the irreducible polynomial of z over K.
It follows that vL(DL/K) = ∑i≥0(|Gi|−1)
Ramification jumps
An integer i≥ 1 such that Gi 6= Gi+1 is a jump.
Moreover if Gt 6= Gt+1 = 1 then i = t mod p.

Sen’s theorem implies Hasse-Arf theorem for power series.

Theorem

Hasse-Arf. Let i≥ 1 such that Gi 6= Gi+1 then ϕ(i) := 1
|G0|(∑0≤j≤i |Gj|) is an

integer.

Corollary
When G is a p-group which is abelian then for s < t are two consecutive
jumps Gs 6= Gs+1 = ...= Gt 6= Gt+1 one has s = t mod (G : Gt).
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Lifting problems Hasse-Arf theorem

Proposition

Let G⊂ Autk k[[z]] a finite group. Then k[[z]]G = k[[t]] and k((z))/k((t)) is
Galois with group G.

Proof. This is a special case of the following theorem.

Theorem
Let A be an integral ring and G⊂ AutA Z[[Z]] a finite subgroup then
A[[Z]]G = A[[T]]. Moreover T := ∏g∈G g(Z) works.

When A is a noetherian complete integral local ring the result is due to
Samuel.
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Lifting problems Cyclic groups

The local lifting problem for G' Z/pZ

Proposition

Let k be an algebraically closed of char. p > 0. Let σ ∈ Autk k[[z]] with order
p. Then there is m ∈ N× prime to p such that σ(z) = z(1+ zm)−1/m.

Proof: Artin-Schreier theory gives a parametrization for p-cyclic extensions in
char. p > 0. There f ∈ k((z)) such that Trk((z))/k((t)) f = 1.
Let x :=−∑1≤i≤p iσ i(f ), then σ(x) = x+1 and so y := xp− x ∈ k((t)) and so
k((z)) = k((t))[z] and Xp−X−y is the irreducible polynomial of x over k((t)).
We write y = ∑i≥i0 aiti. By Hensel’s lemma we can assume that ai = 0 for
i≥ 0. Now we remark that for i = pj we can write ai = bp

j and that
apj/tpj = b/tj +(b/tj)p−b/tj and finally we can assume that
y = (b/tm)(1+ tP(t)) for some b ∈ k∗ and P(t) ∈ k[t] and (m,p) = 1.
Then changing t by t/(b(1+ tP(t))1/m we can assume that f = 1/tm.
An exercise shows that z′ := x−1/m ∈ k((z)) is a uniformizing parameter. As
σ(z′) = (x+1)−1/m, the result follows.
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Lifting problems Cyclic groups

Proposition

Let ζp be a primitive p-th root of 1 in Kalg and m > 0 and prime to p.

Let F(Z) := ζpZ(1+Zm)−1/m, it defines an order p automorphism
Σ ∈ AutR R[[Z]] for R = W(k)[ζp] and r(Σ(Z)) = σ(z).
In other words Σ is a lifting of σ .

Proof: Σ(Zm) = ζ m
p

Zm

1+Zm is an homographical transformation on Zm of order p.
So Σp(Z) = θZ with θ m = 1.
Now we remark that Σ(Z) = ζp(Z) mod Z2 and so Σp(Z) = Z mod Z2. ///

The geometry of fix points.

FixΣ = {z ∈ Xalg | z = ζpz(1+ zm)−1/m} then

FixΣ = {0}∪{θ i
m(ζ

m
p −1)1/m}, 1≤ i≤ m, θm is a primitive m-th root of 1.

The mutual distances are all equal ; this is the equidistant geometry.
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Lifting problems Cyclic groups

Geometric method.

We can mimic at the level of R-algebras what we have done for k-algebras.
Namely one can deform the isogeny x→ xp− x in X→ (λX+1)p−1

λ p .

So we can lift over R any dvr finite over W(k)[ζp] at the level of fields
xp− x = 1/tm in
(∗) (λX+1)p−1

λ p = 1
∏1≤i≤m(T−ti)

with ti ∈ Xalg

(*) defines a p-cyclic cover of P1
K which is highly singular.

Take the normalisation of P1
R, we get generically a p-cyclic cover Cη of P1

K
whose branch locus Br is given by the roots of
(∏1≤i≤m(T− ti))(λ p +∏1≤i≤m(T− ti)) with prime to p multiplicity.
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Lifting problems Cyclic groups

We would like a smooth R-curve.

We calculate the genus.

2(g(Cη)−1) = 2p(0−1)+ |Br|(p−1)+m(p−1)

The special fiber Cs is reduced and geometric genus
2(g(Cs)−1) = 2p(0−1)+(m+1)(p−1)

and it is smooth iff |Br|(p−1)+m(p−1) = (m+1)(p−1).

This is the case when the ti are all equal. For example for
(∗∗) (λX+1)p−1

λ p = 1
Tm

When we consider the cover between the completion of the local rings at the
closed point (π,T) we recover the order p automorphism ∈ AutR R[[Z]]
considered above.
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Lifting problems Cyclic groups

pn-cyclic groups

Oort conjecture.

There is a conjecture named in the litterature ”Oort conjecture” which states
that the local lifting problem for the group Z/pnZ as a positive answer.

The conjecture was set after global considerations relative to the case n = 1
which we have seen is elementary in the local case and so works in the global
case due to a local-global principle.

It became serious when a proof along the lines of the geometric method
described above was given in the case n = 2.

Recently a proof was announced by Obus and Wewers for the case n = 3 and
for n > 3 under an extra condition (see the recent survey A. Obus: The (local)
lifting problem for curves, arXiv 8 May 2011).

In the next paragraph we give a method using formal groups which gives a
positive answer to the inverse Galois problem for cyclic p-groups.

We illustrate this method in the case n = 1.
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Lifting problems Cyclic groups

pn-cyclic groups and formal groups

Notations

K is a finite totally ramified extension of Qp[ζp] of degree n.
R := OK and π a uniformising parameter.

f (Z) := ∑i≥0
Zpk

πk ∈ K[[Z]]
(the series exp(f (Z) is the so-called Artin-Hasse exponential)
F(Z1,Z2) := f ◦−1(f (Z1)+ f (Z2)) ∈ K[[Z1,Z2]]
[π]F(Z) := f ◦−1(πf (Z)) ∈ K[[Z]].
The main result is that F(Z1,Z2) ∈ R[[Z1,Z2]] and [π]F(Z) ∈ R[[Z]].
Moreover [π]F(Z) = πZ mod Z2 and [π]F(Z) = Zp mod π

It follows that for all a ∈ R there is [a]F(Z) ∈ R[[Z]] such that
[a]F(F(Z1,Z2)) = F([a]F(Z1), [a]F(Z2)) and [a]F(Z) = aZ mod Z2.
Then a ∈ R→ [a]F(Z) is an injective homomorphism of R into EndF.
For example σ(Z) := [ζp]F(Z) = f ◦−1(ζpf (Z)) is an order p-automorphism of
R[[Z]] which is not trivial mod π and with pn fix points whose geometry is
well understood.
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Lifting problems p-elementary groups

Obstructions to the local lifting problem

There is a local version of the criterium of good reduction which involves
degrees of differents.

Proposition

Let A = R[[T]) and B be a finite A-module and a normal integral local ring.
Set AK := A⊗R K and BK := B⊗R K,
A0 := A/πA and B0 := B/πB.
We assume that B0 is reduced and that B0/A0 is generically étale.
Let Balg

0 the B0 integral closure and δk(B) := dimk Balg
0 /B0.

Let dη resp. ds the degree of the generic resp. special different.
Then dη = ds +2δk(B) and dη = ds iff B = R[[Z]].
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Let A = R[[T]) and B be a finite A-module and a normal integral local ring.
Set AK := A⊗R K and BK := B⊗R K,

A0 := A/πA and B0 := B/πB.
We assume that B0 is reduced and that B0/A0 is generically étale.
Let Balg

0 the B0 integral closure and δk(B) := dimk Balg
0 /B0.

Let dη resp. ds the degree of the generic resp. special different.
Then dη = ds +2δk(B) and dη = ds iff B = R[[Z]].
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Lifting problems p-elementary groups

Application: the local lifting problem for G = (Z/pZ)2

The ramification filtration.

G = G0 = G1 = ...= Gm1 ! Gm1+1 ⊃ ...⊃ Gm2 ! Gm2+1 = 0
The extension is birationnaly defined by k((z)) = k((t))[x1,x2] where
xp

1− x1 = 1/tm′1 , xp
2− x2 = am′2

/tm′2 + ....+a1/t
where m′1 ≤ m′2 are prime to p, am′2

∈ k× and am′2
/∈ Fp if m′1 = m′2.

One can show that m1 = m′1 and m2 = m′2p−m′1(p−1). Then
ds = (m1 +1)(p2−1)+(m2−m1)(p−1).
Let R[[Z]]/R[[T]] be a lifting then
dη = (m′1 +1−d)p(p−1)+(m′2 +1−d)p(p−1)+dp(p−1), where d is the
number of branch points in common in the lifting of the two basis covers.
A necessary and sufficient condition is that ds = dη i.e. dp = (m1 +1)(p−1).
In particular m1 =−1 mod p, this is an obstruction to the local lifting
problem when p > 2.
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Lifting problems p-elementary groups

The inverse local lifting problem for G = (Z/pZ)n, n > 1

The condition dp = (m1 +1)(p−1) is not easy to realize because the
geometry of branch points is rigid as we will see in the last lecture.

Nevertheless one can show that the inverse Galois problem for G = (Z/pZ)n

has a positive answer.
Here is a proof in the case p = 2 and n = 3. It depends on the following lemma

Lemma
p = 2, and let
Y2 = f (X) = (1+α1X)(1+α2X)(1+(α

1/2
1 +α

1/2
2 )2X)

with αi ∈W(k)alg and let ai ∈ k the reduction of αi mod π . We assume that
a1a2(a1 +a2)(a2

1 +a2
2 +a1a2) 6= 0.

Then f (X) = (1+βX)2 +α1α2(α
1/2
1 +α

1/2
2 )2X3.

Set R := W(k)[21/3] and X = 22/3T−1, and Y = 1+βX+2Z
then Z2 +(1+22/3βT)Z = α1α2(α

1/2
1 +α

1/2
2 )2T−3 which gives mod π

z2 + z = a1a2(a1 +a2)
2t−3.
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Lifting problems p-elementary groups

The idea is to consider the compositum of three 2-cyclic covers of P1
K given by

Y2
1 = (1+α1X)(1+α2X)(1+(α

1/2
1 +α

1/2
2 )2X)

Y2
1 = (1+α2X)(1+α3X)(1+(α

1/2
2 +α

1/2
3 )2X)

Y2
1 = (1+α3X)(1+α1X)(1+(α

1/2
3 +α

1/2
1 )2X)

with a1 +a2 +a3 6= 0, 1+(a1 +a2 +a3)(a−1
1 +a−1

2 +a−1
3 ) 6= 0 and
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Geometry of order p-automorphisms of the disc

Minimal stable model for the pointed disc

From now we shall assume that σ is an order p-automorphism and the its fix
points are rational over K.

Proposition
Order p-automorphisms with one fix point are linearizable.

Now we assume that |Fixσ |= m+1 > 1 and Fixσ = {z0,z1, ...,zm}

Minimal stable model for the pointed disc (X,Fixσ)

The method:

Let v(ρ) = infi6=j{v(zi− zj)}= v(zi0− zi1)

A blowing up along the ideal (Z− zi0 ,ρ) induces a new model in which the
specialization map induces a non trivial partition on Fixσ .

An induction argument will produce a minimal stable model Xσ for the
pointed disc (X,Fixσ).

Michel Matignon (IMB) p-adic dynamical systems of finite order ANR Berko,Bordeaux, June 2011 32 / 33



Geometry of order p-automorphisms of the disc

Minimal stable model for the pointed disc

From now we shall assume that σ is an order p-automorphism and the its fix
points are rational over K.

Proposition
Order p-automorphisms with one fix point are linearizable.

Now we assume that |Fixσ |= m+1 > 1 and Fixσ = {z0,z1, ...,zm}

Minimal stable model for the pointed disc (X,Fixσ)

The method:

Let v(ρ) = infi6=j{v(zi− zj)}= v(zi0− zi1)

A blowing up along the ideal (Z− zi0 ,ρ) induces a new model in which the
specialization map induces a non trivial partition on Fixσ .

An induction argument will produce a minimal stable model Xσ for the
pointed disc (X,Fixσ).

Michel Matignon (IMB) p-adic dynamical systems of finite order ANR Berko,Bordeaux, June 2011 32 / 33



Geometry of order p-automorphisms of the disc

Minimal stable model for the pointed disc

From now we shall assume that σ is an order p-automorphism and the its fix
points are rational over K.

Proposition
Order p-automorphisms with one fix point are linearizable.

Now we assume that |Fixσ |= m+1 > 1 and Fixσ = {z0,z1, ...,zm}

Minimal stable model for the pointed disc (X,Fixσ)

The method:

Let v(ρ) = infi6=j{v(zi− zj)}= v(zi0− zi1)

A blowing up along the ideal (Z− zi0 ,ρ) induces a new model in which the
specialization map induces a non trivial partition on Fixσ .

An induction argument will produce a minimal stable model Xσ for the
pointed disc (X,Fixσ).

Michel Matignon (IMB) p-adic dynamical systems of finite order ANR Berko,Bordeaux, June 2011 32 / 33



Geometry of order p-automorphisms of the disc

Minimal stable model for the pointed disc

From now we shall assume that σ is an order p-automorphism and the its fix
points are rational over K.

Proposition
Order p-automorphisms with one fix point are linearizable.

Now we assume that |Fixσ |= m+1 > 1 and Fixσ = {z0,z1, ...,zm}

Minimal stable model for the pointed disc (X,Fixσ)

The method:

Let v(ρ) = infi6=j{v(zi− zj)}= v(zi0− zi1)

A blowing up along the ideal (Z− zi0 ,ρ) induces a new model in which the
specialization map induces a non trivial partition on Fixσ .

An induction argument will produce a minimal stable model Xσ for the
pointed disc (X,Fixσ).

Michel Matignon (IMB) p-adic dynamical systems of finite order ANR Berko,Bordeaux, June 2011 32 / 33



Geometry of order p-automorphisms of the disc

Minimal stable model for the pointed disc

From now we shall assume that σ is an order p-automorphism and the its fix
points are rational over K.

Proposition
Order p-automorphisms with one fix point are linearizable.

Now we assume that |Fixσ |= m+1 > 1 and Fixσ = {z0,z1, ...,zm}

Minimal stable model for the pointed disc (X,Fixσ)

The method:

Let v(ρ) = infi6=j{v(zi− zj)}= v(zi0− zi1)

A blowing up along the ideal (Z− zi0 ,ρ) induces a new model in which the
specialization map induces a non trivial partition on Fixσ .

An induction argument will produce a minimal stable model Xσ for the
pointed disc (X,Fixσ).

Michel Matignon (IMB) p-adic dynamical systems of finite order ANR Berko,Bordeaux, June 2011 32 / 33



Geometry of order p-automorphisms of the disc

Minimal stable model for the pointed disc

From now we shall assume that σ is an order p-automorphism and the its fix
points are rational over K.

Proposition
Order p-automorphisms with one fix point are linearizable.

Now we assume that |Fixσ |= m+1 > 1 and Fixσ = {z0,z1, ...,zm}

Minimal stable model for the pointed disc (X,Fixσ)

The method:

Let v(ρ) = infi6=j{v(zi− zj)}= v(zi0− zi1)

A blowing up along the ideal (Z− zi0 ,ρ) induces a new model in which the
specialization map induces a non trivial partition on Fixσ .

An induction argument will produce a minimal stable model Xσ for the
pointed disc (X,Fixσ).

Michel Matignon (IMB) p-adic dynamical systems of finite order ANR Berko,Bordeaux, June 2011 32 / 33



Geometry of order p-automorphisms of the disc

Minimal stable model for the pointed disc

From now we shall assume that σ is an order p-automorphism and the its fix
points are rational over K.

Proposition
Order p-automorphisms with one fix point are linearizable.

Now we assume that |Fixσ |= m+1 > 1 and Fixσ = {z0,z1, ...,zm}

Minimal stable model for the pointed disc (X,Fixσ)

The method:

Let v(ρ) = infi6=j{v(zi− zj)}= v(zi0− zi1)

A blowing up along the ideal (Z− zi0 ,ρ) induces a new model in which the
specialization map induces a non trivial partition on Fixσ .

An induction argument will produce a minimal stable model Xσ for the
pointed disc (X,Fixσ).

Michel Matignon (IMB) p-adic dynamical systems of finite order ANR Berko,Bordeaux, June 2011 32 / 33



Geometry of order p-automorphisms of the disc

Geometry of order p-automorphisms of the disc

Proposition

The fix points specialize in Xσ in the terminal components.

Theorem
Let σ ∈ AutR R[[Z]] be an automorphism of order p such that
1 < |Fixσ |= m+1 < p,
r(σ) 6= Id.
Then the minimal stable model for the pointed disc (X,Fixσ) has only one
component.
There is a finite number of conjugacy classes of such automorphisms.
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