# $p$-adic dynamical systems of finite order 

Michel Matignon

Institut of Mathematics, University Bordeaux 1

ANR Berko

## Abstract

In this lecture we intend to study the finite subgroups of the group Aut ${ }_{R} R[[Z]]$ of $R$-automorphisms of the formal power series ring $R[[Z]]$.

## Notations

$(K, v)$ is a discretely valued complete field of inequal characteristic $(0, p)$. Typically a finite extension of $\mathbb{Q}_{p}^{u n r}$.
$R$ denotes its valuation ring.
$\pi$ is a uniformizing element and $v(\pi)=1$.
$k:=R / \pi R$, the residue field, is algebraically closed of char. $p>0$
$\left(K^{\text {alg }}, v\right)$ is a fixed algebraic closure endowed with the unique prolongation of the valuation $v$.
$\zeta_{p}$ is a primitive $p$-th root of 1 and $\lambda=\zeta_{p}-1$ is a uniformizing element of $\mathbb{Q}_{p}\left(\zeta_{p}\right)$.

## Introduction

Let us cite J. Lubin (Non archimedean dynamical sytems. Compositio 94). "Some of the standard and well-established techniques of local arithmetic geometry can also be seen as involving dynamical systems.

## Introduction

Let us cite J. Lubin (Non archimedean dynamical sytems. Compositio 94).
"Some of the standard and well-established techniques of local arithmetic geometry can also be seen as involving dynamical systems.
Let $K / \mathbb{Q}_{p}$ be a finite extension. For a particular formal group $F$ (the so called Lubin-Tate formal groups) we get a representation of $\operatorname{Gal}\left(K^{a l g} / K\right)$ from the torsion points of a particular formal group $F$ over $R$ the valuation ring of $K$.

## Introduction

Let us cite J. Lubin (Non archimedean dynamical sytems. Compositio 94).
"Some of the standard and well-established techniques of local arithmetic geometry can also be seen as involving dynamical systems.
Let $K / \mathbb{Q}_{p}$ be a finite extension. For a particular formal group $F$ (the so called Lubin-Tate formal groups) we get a representation of $\operatorname{Gal}\left(K^{a l g} / K\right)$ from the torsion points of a particular formal group $F$ over $R$ the valuation ring of $K$. They occur as the roots of the iterates of $[p]_{F}(X)=p X+\ldots$, the endomorphism of multiplication by $p$.

## Introduction

Let us cite J. Lubin (Non archimedean dynamical sytems. Compositio 94).
"Some of the standard and well-established techniques of local arithmetic geometry can also be seen as involving dynamical systems.
Let $K / \mathbb{Q}_{p}$ be a finite extension. For a particular formal group $F$ (the so called Lubin-Tate formal groups) we get a representation of $\operatorname{Gal}\left(K^{a l g} / K\right)$ from the torsion points of a particular formal group $F$ over $R$ the valuation ring of $K$.
They occur as the roots of the iterates of $[p]_{F}(X)=p X+\ldots$, the endomorphism of multiplication by $p$.
They occur aswell as the fix points of the automorphism (of formal group) given by $[1+p]_{F}(X)=F\left(X,[p]_{F}(X)\right)=(1+p) X+\ldots .$,

## Introduction

Let us cite J. Lubin (Non archimedean dynamical sytems. Compositio 94).
"Some of the standard and well-established techniques of local arithmetic geometry can also be seen as involving dynamical systems.
Let $K / \mathbb{Q}_{p}$ be a finite extension. For a particular formal group $F$ (the so called Lubin-Tate formal groups) we get a representation of $\operatorname{Gal}\left(K^{a l g} / K\right)$ from the torsion points of a particular formal group $F$ over $R$ the valuation ring of $K$.
They occur as the roots of the iterates of $[p]_{F}(X)=p X+\ldots$, the endomorphism of multiplication by $p$.
They occur aswell as the fix points of the automorphism (of formal group) given by $[1+p]_{F}(X)=F\left(X,[p]_{F}(X)\right)=(1+p) X+\ldots .$,
In these lectures we focuss our attention on power series $f(Z) \in R[[Z]]$ such that $f(0) \in \pi R$ and $f^{\circ n}(Z)=Z$ for some $n>0$.

## Introduction

Let us cite J. Lubin (Non archimedean dynamical sytems. Compositio 94).
"Some of the standard and well-established techniques of local arithmetic geometry can also be seen as involving dynamical systems.
Let $K / \mathbb{Q}_{p}$ be a finite extension. For a particular formal group $F$ (the so called Lubin-Tate formal groups) we get a representation of $\operatorname{Gal}\left(K^{a l g} / K\right)$ from the torsion points of a particular formal group $F$ over $R$ the valuation ring of $K$.
They occur as the roots of the iterates of $[p]_{F}(X)=p X+\ldots$, the endomorphism of multiplication by $p$.
They occur aswell as the fix points of the automorphism (of formal group) given by $[1+p]_{F}(X)=F\left(X,[p]_{F}(X)\right)=(1+p) X+\ldots .$,
In these lectures we focuss our attention on power series $f(Z) \in R[[Z]]$ such that $f(0) \in \pi R$ and $f^{\circ n}(Z)=Z$ for some $n>0$. This is the same as considering cyclic subgroups of $\mathrm{Aut}_{R} R[[Z]]$.

## Introduction

Let us cite J. Lubin (Non archimedean dynamical sytems. Compositio 94).
"Some of the standard and well-established techniques of local arithmetic geometry can also be seen as involving dynamical systems.
Let $K / \mathbb{Q}_{p}$ be a finite extension. For a particular formal group $F$ (the so called Lubin-Tate formal groups) we get a representation of $\operatorname{Gal}\left(K^{a l g} / K\right)$ from the torsion points of a particular formal group $F$ over $R$ the valuation ring of $K$. They occur as the roots of the iterates of $[p]_{F}(X)=p X+\ldots$, the endomorphism of multiplication by $p$.
They occur aswell as the fix points of the automorphism (of formal group) given by $[1+p]_{F}(X)=F\left(X,[p]_{F}(X)\right)=(1+p) X+\ldots .$,
In these lectures we focuss our attention on power series $f(Z) \in R[[Z]]$ such that $f(0) \in \pi R$ and $f^{\circ n}(Z)=Z$ for some $n>0$. This is the same as considering cyclic subgroups of $\mathrm{Aut}_{R} R[[Z]]$. More generally we study finite order subgroups of the group $\mathrm{Aut}_{R} R[[Z]]$ throughout their occurence in "arithmetic geometry".

## Generalities

## The ring $R[[Z]]$

## Generalities

The ring $R[[Z]]$
Definition
Distinguished polynomials. $P(Z) \in R[Z]$ is said to be distinguished if $P(Z)=Z^{n}+a_{n-1} Z^{n-1}+\ldots+a_{0}, a_{i} \in \pi R$

## Generalities

The ring $R[[Z]]$
Definition
Distinguished polynomials. $P(Z) \in R[Z]$ is said to be distinguished if $P(Z)=Z^{n}+a_{n-1} Z^{n-1}+\ldots+a_{0}, a_{i} \in \pi R$

## Theorem

Weierstrass preparation theorem. $\operatorname{Let} f(Z)=\sum_{i \geq 0} a_{i} Z^{i} \in R[[Z]] a_{i} \in \pi R$ for $0 \leq i \leq n-1 . a_{n} \in R^{\times}$. The integer $n$ is the Weierstrass degree for $f$.

## Generalities

The ring $R[[Z]]$
Definition
Distinguished polynomials. $P(Z) \in R[Z]$ is said to be distinguished if $P(Z)=Z^{n}+a_{n-1} Z^{n-1}+\ldots+a_{0}, a_{i} \in \pi R$

## Theorem

Weierstrass preparation theorem. $\operatorname{Let} f(Z)=\sum_{i \geq 0} a_{i} Z^{i} \in R[[Z]] a_{i} \in \pi R$ for $0 \leq i \leq n-1 . a_{n} \in R^{\times}$. The integer $n$ is the Weierstrass degree for $f$. Then $f(Z)=P(Z) U(Z)$ where $U(Z) \in R[[Z]]^{\times}$and $P(Z)$ is distinguished of degree $n$ are uniquely defined.

## Generalities

The ring $R[[Z]]$
Definition
Distinguished polynomials. $P(Z) \in R[Z]$ is said to be distinguished if $P(Z)=Z^{n}+a_{n-1} Z^{n-1}+\ldots+a_{0}, a_{i} \in \pi R$

Theorem
Weierstrass preparation theorem. $\operatorname{Let} f(Z)=\sum_{i \geq 0} a_{i} Z^{i} \in R[[Z]] a_{i} \in \pi R$ for $0 \leq i \leq n-1$. $a_{n} \in R^{\times}$. The integer $n$ is the Weierstrass degree for $f$. Then $f(Z)=P(Z) U(Z)$ where $U(Z) \in R[[Z]]^{\times}$and $P(Z)$ is distinguished of degree $n$ are uniquely defined.

## Lemma

Division lemma. $f, g \in R[[Z]] f(Z)=\sum_{i \geq 0} a_{i} Z^{i} \in R[[Z]] a_{i} \in \pi R$ for $0 \leq i \leq n-1$. $a_{n} \in R^{\times}$There is a unique $(q, r) \in R[[Z]] \times R[Z]$ with $g=q f+r$

## Open disc

## Let $X:=\operatorname{Spec} R[[Z]]$.

## Open disc

Let $X:=\operatorname{Spec} R[[Z]]$.
Closed fiber $X_{s}:=X \times_{R} k=\operatorname{Spec} k[[Z]]$ : two points generic point $(\pi)$ and closed point $(\pi, Z)$

## Open disc

Let $X:=\operatorname{Spec} R[[Z]]$.
Closed fiber $X_{s}:=X \times_{R} k=\operatorname{Spec} k[[Z]]$ : two points generic point $(\pi)$ and closed point $(\pi, Z)$

Generic fiber $X_{K}:=X \times_{R} K=\operatorname{Spec} R[[Z]] \otimes_{R} K$.
Note that $R[[Z]] \otimes_{R} K=\left\{\sum_{i} a_{i} Z^{i} \in K[[Z]] \mid \inf _{i} v\left(a_{i}\right)>-\infty\right\}$.

## Open disc

Let $X:=\operatorname{Spec} R[[Z]]$.
Closed fiber $X_{s}:=X \times_{R} k=\operatorname{Spec} k[[Z]]$ : two points generic point $(\pi)$ and closed point $(\pi, Z)$

Generic fiber $X_{K}:=X \times_{R} K=\operatorname{Spec} R[[Z]] \otimes_{R} K$. Note that $R[[Z]] \otimes_{R} K=\left\{\sum_{i} a_{i} Z^{i} \in K[[Z]] \mid \inf _{i} v\left(a_{i}\right)>-\infty\right\}$.
generic point $(0)$ and closed points $(P(Z))$ where $P(Z)$ is an irreducible distinguished polynomial.

## Open disc

Let $X:=\operatorname{Spec} R[[Z]]$.
Closed fiber $X_{s}:=X \times_{R} k=\operatorname{Spec} k[[Z]]$ : two points generic point $(\pi)$ and closed point $(\pi, Z)$

Generic fiber $X_{K}:=X \times_{R} K=\operatorname{Spec} R[[Z]] \otimes_{R} K$. Note that $R[[Z]] \otimes_{R} K=\left\{\sum_{i} a_{i} Z^{i} \in K[[Z]] \mid \inf _{i} v\left(a_{i}\right)>-\infty\right\}$.
generic point ( 0 ) and closed points $(P(Z))$ where $P(Z)$ is an irreducible distinguished polynomial.
$X_{\left(K^{a l g}\right)} \simeq\left\{z \in K^{a l g} \mid v(z)>0\right\}$ is the open disc in $K^{\text {alg }}$ so that we can identify
$X_{K}=R[[Z]] \otimes_{R} K$ with $\frac{X_{\left(K^{a l g}\right)}}{\operatorname{Gal}\left(K^{a l g} / K\right)}$.

## Open disc

Let $X:=\operatorname{Spec} R[[Z]]$.
Closed fiber $X_{s}:=X \times_{R} k=\operatorname{Spec} k[[Z]]$ : two points generic point $(\pi)$ and closed point $(\pi, Z)$

Generic fiber $X_{K}:=X \times_{R} K=\operatorname{Spec} R[[Z]] \otimes_{R} K$.
Note that $R[[Z]] \otimes_{R} K=\left\{\sum_{i} a_{i} Z^{i} \in K[[Z]] \mid \inf _{i} v\left(a_{i}\right)>-\infty\right\}$.
generic point ( 0 ) and closed points $(P(Z))$ where $P(Z)$ is an irreducible distinguished polynomial.
$X_{\left(K^{a l g}\right)} \simeq\left\{z \in K^{a l g} \mid v(z)>0\right\}$ is the open disc in $K^{\text {alg }}$ so that we can identify
$X_{K}=R[[Z]] \otimes_{R} K$ with $\frac{X_{\left(K^{a l g)}\right.}}{\operatorname{Gal}\left(K^{a l g} / K\right)}$.
Although $X=\operatorname{Spec} R[[Z]]$ is a minimal regular model for $X_{K}$ we call it the open disc over $K$.

## $\operatorname{Aut}_{R} R[[Z]]$

Let $\sigma \in \operatorname{Aut}_{R} R[[Z]]$ then

- $\sigma$ is continuous for the $(\pi, Z)$ topology.
- $(\pi, Z)=(\pi, \sigma(Z))$
- $R[[Z]]=R[[\sigma(Z)]]$
- Reciprocally if $Z^{\prime} \in R[[Z]]$ and $(\pi, Z)=\left(\pi, Z^{\prime}\right)$ i.e. $Z^{\prime} \in \pi R+Z R[[Z]]^{\times}$, then $\sigma(Z)=Z^{\prime}$ defines an element $\sigma \in \operatorname{Aut}_{R} R[[Z]]$
- $\sigma$ induces a bijection $\tilde{\sigma}: \pi R \rightarrow \pi R$ where $\tilde{\sigma}(z):=(\sigma(Z))_{Z=z}$
- $\tilde{\tau \boldsymbol{\sigma}}(z)=\tilde{\sigma}(\tilde{\tau}(z))$.


## Structure theorem

Let $r: R[[Z]] \rightarrow R /(\pi)[[z]]$, be the canonical homomorphism induced by the reduction $\bmod \pi$.
It induces a surjective homomorphism $r: \operatorname{Aut}_{R} R[[Z]] \rightarrow \operatorname{Aut}_{k} k[[Z]]$. $N:=\operatorname{ker} r=\left\{\sigma \in \operatorname{Aut}_{R} R[[Z]] \mid \sigma(Z)=Z \bmod \pi\right\}$.

Proposition
Let $G \subset$ Aut $_{R} R[[Z]]$ be a subgroup with $|G|<\infty$, then $G$ contains a unique $p$-Sylow subgroup $G_{p}$ and $C$ a cyclic subgroup of order e prime to $p$ with $G=G_{p} \rtimes C$. Moreover there is a parameter $Z^{\prime}$ of the open disc such that $C=<\sigma>$ where $\sigma\left(Z^{\prime}\right)=\zeta_{e} Z^{\prime}$.

## The proof uses several elementary lemmas

Lemma

- Let $e \in \mathbb{N}^{\times}$and $f(Z) \in \operatorname{Aut}_{R} R[[Z]]$ of order e and $f(Z)=Z \bmod Z^{2}$ and then $e=1$.

The proof uses several elementary lemmas
Lemma

- Let $e \in \mathbb{N}^{\times}$and $f(Z) \in \operatorname{Aut}_{R} R[[Z]]$ of order e and $f(Z)=Z \bmod Z^{2}$ and then $e=1$.
- Let $f(Z)=a_{0}+a_{1} Z+\ldots \in R[[Z]]$ with $a_{0} \in \pi R$ and for some $e \in \mathbb{N} *$ let $f^{\circ e}(Z)=b_{0}+b_{1} Z+\ldots$, then $b_{0}=a_{0}\left(1+a_{1}+\ldots .+a_{1}^{e-1}\right) \bmod a_{0}^{2} R$ and $b_{1}=a_{1}^{e} \bmod a_{0} R$.

The proof uses several elementary lemmas

## Lemma

- Let $e \in \mathbb{N}^{\times}$and $f(Z) \in \operatorname{Aut}_{R} R[[Z]]$ of order e and $f(Z)=Z \bmod Z^{2}$ and then $e=1$.
- Let $f(Z)=a_{0}+a_{1} Z+\ldots \in R[[Z]]$ with $a_{0} \in \pi R$ and for some $e \in \mathbb{N} *$ let $f^{\circ e}(Z)=b_{0}+b_{1} Z+\ldots$, then $b_{0}=a_{0}\left(1+a_{1}+\ldots .+a_{1}^{e-1}\right) \bmod a_{0}^{2} R$ and $b_{1}=a_{1}^{e} \bmod a_{0} R$.
- Let $\sigma \in \operatorname{Aut}_{R} R[[Z]]$ with $\sigma^{e}=I d$ and $(e, p)=1$ then $\sigma$ has a rational fix point.

The proof uses several elementary lemmas

## Lemma

- Let $e \in \mathbb{N}^{\times}$and $f(Z) \in \operatorname{Aut}_{R} R[[Z]]$ of order e and $f(Z)=Z \bmod Z^{2}$ and then $e=1$.
- Let $f(Z)=a_{0}+a_{1} Z+\ldots \in R[[Z]]$ with $a_{0} \in \pi R$ and for some $e \in \mathbb{N} *$ let $f^{\circ e}(Z)=b_{0}+b_{1} Z+\ldots$, then $b_{0}=a_{0}\left(1+a_{1}+\ldots .+a_{1}^{e-1}\right) \bmod a_{0}^{2} R$ and $b_{1}=a_{1}^{e} \bmod a_{0} R$.
- Let $\sigma \in \operatorname{Aut}_{R} R[[Z]]$ with $\sigma^{e}=I d$ and $(e, p)=1$ then $\sigma$ has a rational fix point.
- Let $\sigma$ as above then $\sigma$ is linearizable.


## Proof

## The case $|G|=e$ is prime to $p$.

## Proof

The case $|G|=e$ is prime to $p$.
Claim. $G=<\sigma>$ and there is $Z^{\prime}$ a parameter of the open disc such that $\sigma\left(Z^{\prime}\right)=\theta Z^{\prime}$ for $\theta$ a primitive $e$-th root of 1.In other words $\sigma$ is linearizable.

## Proof

The case $|G|=e$ is prime to $p$.
Claim. $G=\left\langle\sigma>\right.$ and there is $Z^{\prime}$ a parameter of the open disc such that $\sigma\left(Z^{\prime}\right)=\theta Z^{\prime}$ for $\theta$ a primitive $e$-th root of 1.In other words $\sigma$ is linearizable. $N \cap G=\{1\}$. By item $4, \sigma \in G$ is linearisable and so for some parameter $Z^{\prime}$ one can write $\sigma\left(Z^{\prime}\right)=\theta Z^{\prime}$ and if $\sigma \in N$ we have $\sigma(Z)=Z \bmod \pi R$, and as $(e, p)=1$ it follows that $\sigma=I d$.

## Proof

The case $|G|=e$ is prime to $p$.
Claim. $G=\left\langle\sigma>\right.$ and there is $Z^{\prime}$ a parameter of the open disc such that $\sigma\left(Z^{\prime}\right)=\theta Z^{\prime}$ for $\theta$ a primitive $e$-th root of 1.In other words $\sigma$ is linearizable. $N \cap G=\{1\}$. By item $4, \sigma \in G$ is linearisable and so for some parameter $Z^{\prime}$ one can write $\sigma\left(Z^{\prime}\right)=\theta Z^{\prime}$ and if $\sigma \in N$ we have $\sigma(Z)=Z \bmod \pi R$, and as $(e, p)=1$ it follows that $\sigma=I d$.
The homomorphism $\varphi: G \rightarrow k^{\times}$with $\varphi(\sigma)=\frac{r(\sigma)(z)}{z}$ is injective (apply item 1 to the ring $R=k$ ). The result follows.

## General case.

## General case.

## From the first part it follows that $N \cap G$ is a $p$-group.

## General case.

From the first part it follows that $N \cap G$ is a $p$-group.
Let $\bar{G}:=r(G)$. This is a finite group in $\operatorname{Aut}_{k} k[[z]]$.

## General case.

From the first part it follows that $N \cap G$ is a $p$-group.
Let $\bar{G}:=r(G)$. This is a finite group in $\operatorname{Aut}_{k} k[[z]]$.
Let $\bar{G}_{1}:=\operatorname{ker}\left(\varphi: \bar{G} \rightarrow k^{\times}\right)$given by $\varphi(\sigma)=\frac{\sigma(z)}{z}$

## General case.

From the first part it follows that $N \cap G$ is a $p$-group.
Let $\bar{G}:=r(G)$. This is a finite group in $\operatorname{Aut}_{k} k[[z]]$.
Let $\bar{G}_{1}:=\operatorname{ker}\left(\varphi: \bar{G} \rightarrow k^{\times}\right)$given by $\varphi(\sigma)=\frac{\sigma(z)}{z}$ this is the $p$-Sylow subgroup of $\bar{G}$.

## General case.

From the first part it follows that $N \cap G$ is a $p$-group.
Let $\bar{G}:=r(G)$. This is a finite group in $\operatorname{Aut}_{k} k[[z]]$.
Let $\bar{G}_{1}:=\operatorname{ker}\left(\varphi: \bar{G} \rightarrow k^{\times}\right)$given by $\varphi(\sigma)=\frac{\sigma(z)}{z}$
this is the $p$-Sylow subgroup of $\bar{G}$.
In particular $\frac{\bar{G}}{\bar{G}_{1}}$ is cyclic of order $e$ prime to $p$.

## General case.

From the first part it follows that $N \cap G$ is a $p$-group.
Let $\bar{G}:=r(G)$. This is a finite group in $\operatorname{Aut}_{k} k[[z]]$.
Let $\bar{G}_{1}:=\operatorname{ker}\left(\varphi: \bar{G} \rightarrow k^{\times}\right)$given by $\varphi(\sigma)=\frac{\sigma(z)}{z}$
this is the $p$-Sylow subgroup of $\bar{G}$.
In particular $\frac{\bar{G}}{\bar{G}_{1}}$ is cyclic of order $e$ prime to $p$.
Let $G_{p}:=r^{-1}\left(\bar{G}_{1}\right)$, this is the unique $p$-Sylow subgroup of $G$ as $N \cap G$ is a $p$-group.

## General case.

From the first part it follows that $N \cap G$ is a $p$-group.
Let $\bar{G}:=r(G)$. This is a finite group in $\operatorname{Aut}_{k} k[[z]]$.
Let $\bar{G}_{1}:=\operatorname{ker}\left(\varphi: \bar{G} \rightarrow k^{\times}\right)$given by $\varphi(\sigma)=\frac{\sigma(z)}{z}$
this is the $p$-Sylow subgroup of $\bar{G}$.
In particular $\frac{\bar{G}}{\bar{G}_{1}}$ is cyclic of order $e$ prime to $p$.
Let $G_{p}:=r^{-1}\left(\bar{G}_{1}\right)$, this is the unique $p$-Sylow subgroup of $G$ as $N \cap G$ is a $p$-group.
Now we have an exact sequence $1 \rightarrow G_{p} \rightarrow G \rightarrow \frac{\bar{G}}{\bar{G}_{1}} \simeq \mathbb{Z} / e \mathbb{Z} \rightarrow 1$. The result follows by Hall's theorem.

## Remark.

## Let $G$ be any finite $p$-group.

## Remark.

Let $G$ be any finite $p$-group.
There is a dvr, $R$ which is finite over $\mathbb{Z}_{p}$ and an injective morphism $G \rightarrow \operatorname{Aut}_{R} R[[Z]$ which induces a free action of $G$ on $\operatorname{Spec} R[Z] \times K$ and which is the identity modulo $\pi$.

## Remark.

Let $G$ be any finite $p$-group.
There is a dvr, $R$ which is finite over $\mathbb{Z}_{p}$ and an injective morphism $G \rightarrow \operatorname{Aut}_{R} R[[Z]$ which induces a free action of $G$ on $\operatorname{Spec} R[Z] \times K$ and which is the identity modulo $\pi$.

In particular the extension of dvr
$R[Z]_{(\pi)} / R[Z Z]_{(\pi)}^{G}$
is fiercely ramified.

## The local lifting problem

Let $G$ be a finite $p$-group. The group $G$ occurs as an automorphism group of $k[[z]]$ in many ways.

## The local lifting problem

Let $G$ be a finite $p$-group. The group $G$ occurs as an automorphism group of $k[[z]]$ in many ways.

This is a consequence of the Witt-Shafarevich theorem on the structure of the Galois group of a field $K$ of characteristic $p>0$.

## The local lifting problem

Let $G$ be a finite $p$-group. The group $G$ occurs as an automorphism group of $k[[z]]$ in many ways.

This is a consequence of the Witt-Shafarevich theorem on the structure of the Galois group of a field $K$ of characteristic $p>0$.

This theorem asserts that the Galois group $I_{p}(K)$ of its maximal $p$-extension is pro- $p$ free on $|K / \wp(K)|$ elements (as usual $\wp$ is the operator Frobenius minus identity).

## The local lifting problem

Let $G$ be a finite $p$-group. The group $G$ occurs as an automorphism group of $k[[z]]$ in many ways.

This is a consequence of the Witt-Shafarevich theorem on the structure of the Galois group of a field $K$ of characteristic $p>0$.

This theorem asserts that the Galois group $I_{p}(K)$ of its maximal $p$-extension is pro- $p$ free on $|K / \wp(K)|$ elements (as usual $\wp$ is the operator Frobenius minus identity).

We apply this theorem to the power series field $K=k((t))$. Then $K / \wp(K)$ is infinite so we can realize $G$ in infinitely many ways as a quotient of $I_{p}$ and so as Galois group of a Galois extension $L / K$.

## The local lifting problem

Let $G$ be a finite $p$-group. The group $G$ occurs as an automorphism group of $k[[z]]$ in many ways.

This is a consequence of the Witt-Shafarevich theorem on the structure of the Galois group of a field $K$ of characteristic $p>0$.

This theorem asserts that the Galois group $I_{p}(K)$ of its maximal $p$-extension is pro- $p$ free on $|K / \wp(K)|$ elements (as usual $\wp$ is the operator Frobenius minus identity).

We apply this theorem to the power series field $K=k((t))$. Then $K / \wp(K)$ is infinite so we can realize $G$ in infinitely many ways as a quotient of $I_{p}$ and so as Galois group of a Galois extension $L / K$.

The local field $L$ can be uniformized: namely $L=k((z))$. If $\sigma \in G=\operatorname{Gal}(L / K)$, then $\sigma$ is an isometry of $(L, v)$ and so $G$ is a group of $k$-automorphisms of $k[[z]]$ with fixed ring $k[[z]]^{G}=k[[t]]$.

## Definition

The local lifting problem for a finite $p$-group action $\left.G \subset \mathrm{Aut}_{k} k[z]\right]$ is to find a dvr, $R$ finite over $W(k)$ and a commutative diagram


A $p$-group $G$ has the local lifting property if the local lifting problem for all actions $G \subset \mathrm{Aut}_{k} k[[z]]$ has a positive answer.

## Inverse Galois local lifting problem for $p$-groups

Let $G$ be a finite $p$-group, we have seen that $G$ occurs as a group of $k$-automorphism of $k[[z]]$ in many ways,

## Inverse Galois local lifting problem for $p$-groups

Let $G$ be a finite $p$-group, we have seen that $G$ occurs as a group of $k$-automorphism of $k[[z]]$ in many ways, so we can consider a weaker problem than the local lifting problem.

## Inverse Galois local lifting problem for $p$-groups

Let $G$ be a finite $p$-group, we have seen that $G$ occurs as a group of $k$-automorphism of $k[[z]]$ in many ways,
so we can consider a weaker problem than the local lifting problem.

## Definition

For a finite $p$-group $G$ we say that $G$ has the inverse Galois local lifting property if there exists a dvr, $R$ finite over $W(k)$, a faithful action $i: G \rightarrow \mathrm{Aut}_{k} k[[z]]$ and a commutative diagram


## Sen's theorem

Let $G_{1}(k):=z k[[z]]$ endowed with composition law. We write $v$ for $v_{z}$. The following theorem was conjectured by Grothendieck.

## Sen's theorem

Let $G_{1}(k):=z k[[z]]$ endowed with composition law. We write $v$ for $v_{z}$. The following theorem was conjectured by Grothendieck.

Theorem
Sen (1969). Let $f \in G_{1}(k)$ such that $f^{\circ p^{n}} \neq \operatorname{Id}$. Let $i(n):=v\left(f^{\circ p^{n}}(z)-z\right)$, then $i(n)=i(n-1) \bmod p^{n}$.

## Sen's theorem

Let $G_{1}(k):=z k[[z]]$ endowed with composition law. We write $v$ for $v_{z}$. The following theorem was conjectured by Grothendieck.

Theorem
Sen (1969). Let $f \in G_{1}(k)$ such that $f^{\circ p^{n}} \neq \operatorname{Id}$. Let $i(n):=v\left(f^{\circ p^{n}}(z)-z\right)$, then $i(n)=i(n-1) \bmod p^{n}$.

Sketch proof (Lubin 95). The proof is interesting for us because it counts the fix points for the iterates of a power series which lifts $f$.

## Sen's theorem

Let $G_{1}(k):=z k[[z]]$ endowed with composition law. We write $v$ for $v_{z}$. The following theorem was conjectured by Grothendieck.

Theorem
Sen (1969). Let $f \in G_{1}(k)$ such that $f^{\circ p^{n}} \neq \operatorname{Id}$. Let $i(n):=v\left(f^{\circ p^{n}}(z)-z\right)$, then $i(n)=i(n-1) \quad \bmod p^{n}$.

Sketch proof (Lubin 95). The proof is interesting for us because it counts the fix points for the iterates of a power series which lifts $f$.
Let $X^{a l g}:=\left\{z \in K^{a l g} \mid v(z)>0\right\}$

## Sen's theorem

Let $G_{1}(k):=z k[[z]]$ endowed with composition law. We write $v$ for $v_{z}$. The following theorem was conjectured by Grothendieck.

## Theorem

Sen (1969). Let $f \in G_{1}(k)$ such that $f^{\circ p^{n}} \neq I d$. Let $i(n):=v\left(f^{\circ p^{n}}(z)-z\right)$, then $i(n)=i(n-1) \bmod p^{n}$.

Sketch proof (Lubin 95). The proof is interesting for us because it counts the fix points for the iterates of a power series which lifts $f$.
Let $X^{a l g}:=\left\{z \in K^{a l g} \mid v(z)>0\right\}$
Let $F(Z) \in R[[Z]]$ such that

- $F(0)=0$ and $F^{\circ p^{n}}(Z) \neq Z \bmod \pi R$
- The roots of $F^{\circ p^{n}}(Z)-Z$ in $X^{a l g}$ are simple.

Then $\forall m$ such that $0<m \leq n$ one has $i(m)=i(m-1) \bmod p^{m}$ where $i(n):=v\left(\tilde{F}^{\circ p^{n}}(z)-z\right)$ is the Weierstrass degree of $F^{\circ p^{n}}(Z)-Z$.

## Proof:

Claim: let $Q_{m}(Z):=\frac{F^{\text {op }}(Z)-Z}{F^{\circ p^{n-1}}(Z)-Z} \in R[[Z]]$

## Proof:

Claim: let $Q_{m}(Z):=\frac{F^{o p^{n}}(Z)-Z}{F^{\text {op }}}(Z)-Z \quad \in[[Z]]$
For this we remark that if $F^{\circ p^{m-1}}(Z)-Z=\left(Z-z_{0}\right)^{a} V(Z)$ with $a>1$ and $z_{0} \in X^{\text {alg }}$, then $F^{\circ p^{m}}(Z)-Z=\left(Z-z_{0}\right)^{a} W(Z)$ i.e. the multiplicity of fix points increases in particular the roots of $F^{\circ p^{m-1}}(Z)-Z$ are simple as those of $F^{\circ p^{n}}(Z)-Z$.

## Proof:

Claim: let $Q_{m}(Z):=\frac{F^{\circ p^{n}}(Z)-Z}{F^{\circ p^{n-1}}(Z)-Z} \in R[[Z]]$
For this we remark that if $F^{\circ p^{m-1}}(Z)-Z=\left(Z-z_{0}\right)^{a} V(Z)$ with $a>1$ and $z_{0} \in X^{\text {alg }}$, then $F^{\circ p^{m}}(Z)-Z=\left(Z-z_{0}\right)^{a} W(Z)$ i.e. the multiplicity of fix points increases in particular the roots of $F^{\circ p^{m-1}}(Z)-Z$ are simple as those of $F^{\circ p^{n}}(Z)-Z$.

It follows that the series $Q_{i}(Z)$ for $1 \leq i \leq n$ have distinct roots.

## Proof:

Claim: let $Q_{m}(Z):=\frac{F^{\circ p^{n}}(Z)-Z}{F^{\circ p^{n-1}}(Z)-Z} \in R[[Z]]$
For this we remark that if $F^{\circ p^{m-1}}(Z)-Z=\left(Z-z_{0}\right)^{a} V(Z)$ with $a>1$ and $z_{0} \in X^{\text {alg }}$, then $F^{\circ p^{m}}(Z)-Z=\left(Z-z_{0}\right)^{a} W(Z)$ i.e. the multiplicity of fix points increases in particular the roots of $F^{\circ p^{m-1}}(Z)-Z$ are simple as those of $F^{\circ p^{n}}(Z)-Z$.

It follows that the series $Q_{i}(Z)$ for $1 \leq i \leq n$ have distinct roots.
Let $z_{0}$ with $Q_{m}\left(z_{0}\right)=0$ then $z_{0}, F\left(z_{0}\right), \ldots, F^{\circ p^{m}-1}\left(z_{0}\right)$ are distinct roots of $Q_{m}(Z)$.

Reversely if $\left|\left\{z_{0}, F\left(z_{0}\right), \ldots, F^{\circ p^{m}-1}\left(z_{0}\right)\right\}\right|=p^{m}$ and if $F^{\circ p^{m}}\left(z_{0}\right)=z_{0}$, then $z_{0}$ is a root of $Q_{m}(Z)$.

Reversely if $\left|\left\{z_{0}, F\left(z_{0}\right), \ldots, F^{\circ p^{m}-1}\left(z_{0}\right)\right\}\right|=p^{m}$ and if $F^{\circ p^{m}}\left(z_{0}\right)=z_{0}$, then $z_{0}$ is a root of $Q_{m}(Z)$.

In other words $z_{0}$ is a root of $Q_{m}(Z)$ iff $\left|\operatorname{Orb} z_{0}\right|=p^{m}$.

Reversely if $\left|\left\{z_{0}, F\left(z_{0}\right), \ldots, F^{\circ p^{m}-1}\left(z_{0}\right)\right\}\right|=p^{m}$ and if $F^{\circ p^{m}}\left(z_{0}\right)=z_{0}$, then $z_{0}$ is a root of $Q_{m}(Z)$.

In other words $z_{0}$ is a root of $Q_{m}(Z)$ iff $\left|\operatorname{Orb} z_{0}\right|=p^{m}$.
It follows that the Weierstrass degree $i(m)-i(m-1)$ of $Q_{m}(Z)$ is $0 \bmod p^{m}$. Now Sen's theorem follows from the following

Lemma
$k$ be an algebraically closed field of char. $p>0$

Reversely if $\left|\left\{z_{0}, F\left(z_{0}\right), \ldots, F^{\circ p^{m}-1}\left(z_{0}\right)\right\}\right|=p^{m}$ and if $F^{\circ p^{m}}\left(z_{0}\right)=z_{0}$, then $z_{0}$ is a root of $Q_{m}(Z)$.

In other words $z_{0}$ is a root of $Q_{m}(Z)$ iff $\left|\operatorname{Orb} z_{0}\right|=p^{m}$.
It follows that the Weierstrass degree $i(m)-i(m-1)$ of $Q_{m}(Z)$ is $0 \bmod p^{m}$. Now Sen's theorem follows from the following

Lemma
$k$ be an algebraically closed field of char. $p>0$ $f \in k[[z]]$ with $f(z)=z \bmod \left(z^{2}\right)$, and $n>0$ such that $f^{\circ p^{n}}(z) \neq z$.

Reversely if $\left|\left\{z_{0}, F\left(z_{0}\right), \ldots, F^{\circ p^{m}-1}\left(z_{0}\right)\right\}\right|=p^{m}$ and if $F^{\circ p^{m}}\left(z_{0}\right)=z_{0}$, then $z_{0}$ is a root of $Q_{m}(Z)$.
In other words $z_{0}$ is a root of $Q_{m}(Z)$ iff $\left|\operatorname{Orb} z_{0}\right|=p^{m}$.
It follows that the Weierstrass degree $i(m)-i(m-1)$ of $Q_{m}(Z)$ is $0 \bmod p^{m}$. Now Sen's theorem follows from the following

Lemma
$k$ be an algebraically closed field of char. $p>0$ $f \in k[[z]]$ with $f(z)=z \bmod \left(z^{2}\right)$, and $n>0$ such that $f^{\circ p^{n}}(z) \neq z$.
There is a complete dvr $R$ with

Reversely if $\left|\left\{z_{0}, F\left(z_{0}\right), \ldots, F^{\circ p^{m}-1}\left(z_{0}\right)\right\}\right|=p^{m}$ and if $F^{\circ p^{m}}\left(z_{0}\right)=z_{0}$, then $z_{0}$ is a root of $Q_{m}(Z)$.
In other words $z_{0}$ is a root of $Q_{m}(Z)$ iff $\left|\operatorname{Orb} z_{0}\right|=p^{m}$.
It follows that the Weierstrass degree $i(m)-i(m-1)$ of $Q_{m}(Z)$ is $0 \bmod p^{m}$. Now Sen's theorem follows from the following

Lemma
$k$ be an algebraically closed field of char. $p>0$
$f \in k[[z]]$ with $f(z)=z \bmod \left(z^{2}\right)$, and $n>0$ such that $f^{\circ p^{n}}(z) \neq z$.
There is a complete dvr $R$ with
char. $R>0$ and $R /(\pi)=k$ and

Reversely if $\left|\left\{z_{0}, F\left(z_{0}\right), \ldots, F^{\circ p^{m}-1}\left(z_{0}\right)\right\}\right|=p^{m}$ and if $F^{\circ p^{m}}\left(z_{0}\right)=z_{0}$, then $z_{0}$ is a root of $Q_{m}(Z)$.

In other words $z_{0}$ is a root of $Q_{m}(Z)$ iff $\left|\operatorname{Orb} z_{0}\right|=p^{m}$.
It follows that the Weierstrass degree $i(m)-i(m-1)$ of $Q_{m}(Z)$ is $0 \bmod p^{m}$. Now Sen's theorem follows from the following

Lemma
$k$ be an algebraically closed field of char. $p>0$
$f \in k[[z]]$ with $f(z)=z \bmod \left(z^{2}\right)$, and $n>0$ such that $f^{\circ p^{n}}(z) \neq z$.
There is a complete dvr $R$ with char. $R>0$ and $R /(\pi)=k$ and $F(Z) \in R[[Z]]$ with $r(F)=f$ such that $F^{\circ p^{n}}(Z)-Z$ has simple roots in $X^{\text {alg }}$.

## Hasse-Arf theorem

## Notations.

## Hasse-Arf theorem

Notations.
$O_{K}$ is a complete dvr with $K=\operatorname{Fr} O_{K}$.

## Hasse-Arf theorem

Notations.
$O_{K}$ is a complete dvr with $K=\operatorname{Fr} O_{K}$. $L / K$ is a finite Galois extension with group $G$.

## Hasse-Arf theorem

Notations.
$O_{K}$ is a complete dvr with $K=\operatorname{Fr} O_{K}$. $L / K$ is a finite Galois extension with group $G$. $O_{L}$ is the integral closure of $O_{K}$.

## Hasse-Arf theorem

Notations.
$O_{K}$ is a complete dvr with $K=\operatorname{Fr} O_{K}$. $L / K$ is a finite Galois extension with group $G$. $O_{L}$ is the integral closure of $O_{K}$. $\pi_{K}, \pi_{L}$ uniformizing elements, $k_{K}, k_{L}$ the residue fields

## Hasse-Arf theorem

Notations.
$O_{K}$ is a complete dvr with $K=\operatorname{Fr} O_{K}$. $L / K$ is a finite Galois extension with group $G$. $O_{L}$ is the integral closure of $O_{K}$.
$\pi_{K}, \pi_{L}$ uniformizing elements, $k_{K}, k_{L}$ the residue fields The residual extension $k_{L} / k_{K}$ is assumed to be separable.

## Hasse-Arf theorem

Notations.
$O_{K}$ is a complete dvr with $K=\operatorname{Fr} O_{K}$.
$L / K$ is a finite Galois extension with group $G$.
$O_{L}$ is the integral closure of $O_{K}$.
$\pi_{K}, \pi_{L}$ uniformizing elements, $k_{K}, k_{L}$ the residue fields
The residual extension $k_{L} / k_{K}$ is assumed to be separable.
There is a filtration $\left(G_{i}\right)_{i \geq-1}$ with $G_{i}:=\left\{\sigma \in G \mid v_{L}\left(\sigma\left(\pi_{L}\right)-\pi_{L}\right) \geq i+1\right\}$

## Hasse-Arf theorem

Notations.
$O_{K}$ is a complete dvr with $K=\operatorname{Fr} O_{K}$.
$L / K$ is a finite Galois extension with group $G$.
$O_{L}$ is the integral closure of $O_{K}$.
$\pi_{K}, \pi_{L}$ uniformizing elements, $k_{K}, k_{L}$ the residue fields
The residual extension $k_{L} / k_{K}$ is assumed to be separable.
There is a filtration $\left(G_{i}\right)_{i \geq-1}$ with $G_{i}:=\left\{\sigma \in G \mid v_{L}\left(\sigma\left(\pi_{L}\right)-\pi_{L}\right) \geq i+1\right\}$ $G=G_{-1} \supset G_{0} \supset G_{1} \ldots$

## Hasse-Arf theorem

Notations.
$O_{K}$ is a complete dvr with $K=\operatorname{Fr} O_{K}$.
$L / K$ is a finite Galois extension with group $G$.
$O_{L}$ is the integral closure of $O_{K}$.
$\pi_{K}, \pi_{L}$ uniformizing elements, $k_{K}, k_{L}$ the residue fields
The residual extension $k_{L} / k_{K}$ is assumed to be separable.
There is a filtration $\left(G_{i}\right)_{i \geq-1}$ with $G_{i}:=\left\{\sigma \in G \mid v_{L}\left(\sigma\left(\pi_{L}\right)-\pi_{L}\right) \geq i+1\right\}$
$G=G_{-1} \supset G_{0} \supset G_{1} \ldots$
$G_{i} \triangleleft G$

## Hasse-Arf theorem

Notations.
$O_{K}$ is a complete dvr with $K=\operatorname{Fr} O_{K}$.
$L / K$ is a finite Galois extension with group $G$.
$O_{L}$ is the integral closure of $O_{K}$.
$\pi_{K}, \pi_{L}$ uniformizing elements, $k_{K}, k_{L}$ the residue fields
The residual extension $k_{L} / k_{K}$ is assumed to be separable.
There is a filtration $\left(G_{i}\right)_{i \geq-1}$ with $G_{i}:=\left\{\sigma \in G \mid v_{L}\left(\sigma\left(\pi_{L}\right)-\pi_{L}\right) \geq i+1\right\}$
$G=G_{-1} \supset G_{0} \supset G_{1} \ldots$
$G_{i} \triangleleft G$
$G / G_{0} \simeq \operatorname{Gal}\left(k_{L} / k_{K}\right)$

## Hasse-Arf theorem

Notations.
$O_{K}$ is a complete dvr with $K=\operatorname{Fr} O_{K}$.
$L / K$ is a finite Galois extension with group $G$.
$O_{L}$ is the integral closure of $O_{K}$.
$\pi_{K}, \pi_{L}$ uniformizing elements, $k_{K}, k_{L}$ the residue fields
The residual extension $k_{L} / k_{K}$ is assumed to be separable.
There is a filtration $\left(G_{i}\right)_{i \geq-1}$ with $G_{i}:=\left\{\sigma \in G \mid v_{L}\left(\sigma\left(\pi_{L}\right)-\pi_{L}\right) \geq i+1\right\}$
$G=G_{-1} \supset G_{0} \supset G_{1} \ldots$
$G_{i} \triangleleft G$
$G / G_{0} \simeq \operatorname{Gal}\left(k_{L} / k_{K}\right)$
$G / G_{1}$ is cyclic with order prime to char. $k_{K}$

## Hasse-Arf theorem

Notations.
$O_{K}$ is a complete dvr with $K=\operatorname{Fr} O_{K}$.
$L / K$ is a finite Galois extension with group $G$.
$O_{L}$ is the integral closure of $O_{K}$.
$\pi_{K}, \pi_{L}$ uniformizing elements, $k_{K}, k_{L}$ the residue fields
The residual extension $k_{L} / k_{K}$ is assumed to be separable.
There is a filtration $\left(G_{i}\right)_{i \geq-1}$ with $G_{i}:=\left\{\sigma \in G \mid v_{L}\left(\sigma\left(\pi_{L}\right)-\pi_{L}\right) \geq i+1\right\}$
$G=G_{-1} \supset G_{0} \supset G_{1} \ldots$
$G_{i} \triangleleft G$
$G / G_{0} \simeq \operatorname{Gal}\left(k_{L} / k_{K}\right)$
$G / G_{1}$ is cyclic with order prime to char. $k_{K}$
If char. $k_{K}=0$ the group $G_{1}$ is trivial

## Hasse-Arf theorem

Notations.
$O_{K}$ is a complete dvr with $K=\operatorname{Fr} O_{K}$.
$L / K$ is a finite Galois extension with group $G$.
$O_{L}$ is the integral closure of $O_{K}$.
$\pi_{K}, \pi_{L}$ uniformizing elements, $k_{K}, k_{L}$ the residue fields
The residual extension $k_{L} / k_{K}$ is assumed to be separable.
There is a filtration $\left(G_{i}\right)_{i \geq-1}$ with $G_{i}:=\left\{\sigma \in G \mid v_{L}\left(\sigma\left(\pi_{L}\right)-\pi_{L}\right) \geq i+1\right\}$
$G=G_{-1} \supset G_{0} \supset G_{1} \ldots$
$G_{i} \triangleleft G$
$G / G_{0} \simeq \operatorname{Gal}\left(k_{L} / k_{K}\right)$
$G / G_{1}$ is cyclic with order prime to char. $k_{K}$
If char. $k_{K}=0$ the group $G_{1}$ is trivial
If char. $k_{K}=p$ the group $G_{1}$ is a $p$-group.

## Hasse-Arf theorem

Notations.
$O_{K}$ is a complete dvr with $K=\operatorname{Fr} O_{K}$.
$L / K$ is a finite Galois extension with group $G$.
$O_{L}$ is the integral closure of $O_{K}$.
$\pi_{K}, \pi_{L}$ uniformizing elements, $k_{K}, k_{L}$ the residue fields
The residual extension $k_{L} / k_{K}$ is assumed to be separable.
There is a filtration $\left(G_{i}\right)_{i \geq-1}$ with $G_{i}:=\left\{\sigma \in G \mid v_{L}\left(\sigma\left(\pi_{L}\right)-\pi_{L}\right) \geq i+1\right\}$
$G=G_{-1} \supset G_{0} \supset G_{1} \ldots$
$G_{i} \triangleleft G$
$G / G_{0} \simeq \operatorname{Gal}\left(k_{L} / k_{K}\right)$
$G / G_{1}$ is cyclic with order prime to char. $k_{K}$
If char. $k_{K}=0$ the group $G_{1}$ is trivial
If char. $k_{K}=p$ the group $G_{1}$ is a $p$-group.
$G_{i} / G_{i+1}$ is a $p$ elementary abelian group.

## The different ideal $\mathscr{D}_{L / K} \subset O_{L}$.

## The different ideal $\mathscr{D}_{L / K} \subset O_{L}$.

Under our hypothesis there is $z \in O_{L}$ such that $O_{L}=O_{K}[z]$, then $\mathscr{D}_{L / K}=\left(P^{\prime}(z)\right)$ where $P$ is the irreducible polynomial of $z$ over $K$.

## The different ideal $\mathscr{D}_{L / K} \subset O_{L}$.

Under our hypothesis there is $z \in O_{L}$ such that $O_{L}=O_{K}[z]$, then $\mathscr{D}_{L / K}=\left(P^{\prime}(z)\right)$ where $P$ is the irreducible polynomial of $z$ over $K$. It follows that $v_{L}\left(\mathscr{D}_{L / K}\right)=\sum_{i \geq 0}\left(\left|G_{i}\right|-1\right)$

The different ideal $\mathscr{D}_{L / K} \subset O_{L}$.
Under our hypothesis there is $z \in O_{L}$ such that $O_{L}=O_{K}[z]$, then $\mathscr{D}_{L / K}=\left(P^{\prime}(z)\right)$ where $P$ is the irreducible polynomial of $z$ over $K$. It follows that $v_{L}\left(\mathscr{D}_{L / K}\right)=\sum_{i \geq 0}\left(\left|G_{i}\right|-1\right)$

## Ramification jumps

The different ideal $\mathscr{D}_{L / K} \subset O_{L}$.
Under our hypothesis there is $z \in O_{L}$ such that $O_{L}=O_{K}[z]$, then $\mathscr{D}_{L / K}=\left(P^{\prime}(z)\right)$ where $P$ is the irreducible polynomial of $z$ over $K$.
It follows that $v_{L}\left(\mathscr{D}_{L / K}\right)=\sum_{i \geq 0}\left(\left|G_{i}\right|-1\right)$

## Ramification jumps

An integer $i \geq 1$ such that $G_{i} \neq G_{i+1}$ is a jump.

The different ideal $\mathscr{D}_{L / K} \subset O_{L}$.
Under our hypothesis there is $z \in O_{L}$ such that $O_{L}=O_{K}[z]$, then $\mathscr{D}_{L / K}=\left(P^{\prime}(z)\right)$ where $P$ is the irreducible polynomial of $z$ over $K$.
It follows that $v_{L}\left(\mathscr{D}_{L / K}\right)=\sum_{i \geq 0}\left(\left|G_{i}\right|-1\right)$

## Ramification jumps

An integer $i \geq 1$ such that $G_{i} \neq G_{i+1}$ is a jump.
Moreover if $G_{t} \neq G_{t+1}=1$ then $i=t \bmod p$.

The different ideal $\mathscr{D}_{L / K} \subset O_{L}$.
Under our hypothesis there is $z \in O_{L}$ such that $O_{L}=O_{K}[z]$, then
$\mathscr{D}_{L / K}=\left(P^{\prime}(z)\right)$ where $P$ is the irreducible polynomial of $z$ over $K$.
It follows that $v_{L}\left(\mathscr{D}_{L / K}\right)=\sum_{i \geq 0}\left(\left|G_{i}\right|-1\right)$

## Ramification jumps

An integer $i \geq 1$ such that $G_{i} \neq G_{i+1}$ is a jump.
Moreover if $G_{t} \neq G_{t+1}=1$ then $i=t \bmod p$.
Sen's theorem implies Hasse-Arf theorem for power series.
Theorem
Hasse-Arf. Let $i \geq 1$ such that $G_{i} \neq G_{i+1}$ then $\varphi(i):=\frac{1}{\left|G_{0}\right|}\left(\sum_{0 \leq j \leq i}\left|G_{j}\right|\right)$ is an integer.

The different ideal $\mathscr{D}_{L / K} \subset O_{L}$.
Under our hypothesis there is $z \in O_{L}$ such that $O_{L}=O_{K}[z]$, then
$\mathscr{D}_{L / K}=\left(P^{\prime}(z)\right)$ where $P$ is the irreducible polynomial of $z$ over $K$.
It follows that $v_{L}\left(\mathscr{D}_{L / K}\right)=\sum_{i \geq 0}\left(\left|G_{i}\right|-1\right)$

## Ramification jumps

An integer $i \geq 1$ such that $G_{i} \neq G_{i+1}$ is a jump.
Moreover if $G_{t} \neq G_{t+1}=1$ then $i=t \bmod p$.
Sen's theorem implies Hasse-Arf theorem for power series.
Theorem
Hasse-Arf. Let $i \geq 1$ such that $G_{i} \neq G_{i+1}$ then $\varphi(i):=\frac{1}{\left|G_{0}\right|}\left(\sum_{0 \leq j \leq i}\left|G_{j}\right|\right)$ is an integer.

## Corollary

When $G$ is a p-group which is abelian then for $s<t$ are two consecutive jumps $G_{s} \neq G_{s+1}=\ldots=G_{t} \neq G_{t+1}$ one has $s=t \bmod \left(G: G_{t}\right)$.

## Proposition

Let $G \subset$ Aut $_{k} k[[z]]$ a finite group. Then $k[[z]]^{G}=k[[t]]$ and $k((z)) / k((t))$ is Galois with group $G$.

## Proposition

Let $G \subset \operatorname{Aut}_{k} k[[z]]$ a finite group. Then $k[[z]]^{G}=k[[t]]$ and $k((z)) / k((t))$ is Galois with group $G$.

Proof. This is a special case of the following theorem.

## Theorem

Let $A$ be an integral ring and $G \subset \operatorname{Aut}_{A} Z[[Z]]$ a finite subgroup then $A[[Z]]^{G}=A[[T]]$. Moreover $T:=\prod_{g \in G} g(Z)$ works.

When $A$ is a noetherian complete integral local ring the result is due to Samuel.

## The local lifting problem for $G \simeq \mathbb{Z} / p \mathbb{Z}$

## Proposition

Let $k$ be an algebraically closed of char. $p>0$. Let $\sigma \in$ Aut $_{k} k[[z]]$ with order $p$. Then there is $m \in \mathbb{N}^{\times}$prime to $p$ such that $\sigma(z)=z\left(1+z^{m}\right)^{-1 / m}$.

## The local lifting problem for $G \simeq \mathbb{Z} / p \mathbb{Z}$

## Proposition

Let $k$ be an algebraically closed of char. $p>0$. Let $\sigma \in \operatorname{Aut}_{k} k[[z]]$ with order $p$. Then there is $m \in \mathbb{N}^{\times}$prime to $p$ such that $\sigma(z)=z\left(1+z^{m}\right)^{-1 / m}$.

Proof: Artin-Schreier theory gives a parametrization for $p$-cyclic extensions in char. $p>0$. There $f \in k((z))$ such that $\operatorname{Tr}_{k((z)) / k((t))} f=1$.

## The local lifting problem for $G \simeq \mathbb{Z} / p \mathbb{Z}$

## Proposition

Let $k$ be an algebraically closed of char. $p>0$. Let $\sigma \in \operatorname{Aut}_{k} k[[z]]$ with order $p$. Then there is $m \in \mathbb{N}^{\times}$prime to $p$ such that $\sigma(z)=z\left(1+z^{m}\right)^{-1 / m}$.

Proof: Artin-Schreier theory gives a parametrization for $p$-cyclic extensions in char. $p>0$. There $f \in k((z))$ such that $\operatorname{Tr}_{k((z)) / k((t))} f=1$.
Let $x:=-\sum_{1 \leq i \leq p} i \sigma^{i}(f)$, then $\sigma(x)=x+1$ and so $y:=x^{p}-x \in k((t))$ and so $k((z))=k((t))[z]$ and $X^{p}-X-y$ is the irreducible polynomial of $x$ over $k((t))$.

## The local lifting problem for $G \simeq \mathbb{Z} / p \mathbb{Z}$

## Proposition

Let $k$ be an algebraically closed of char. $p>0$. Let $\sigma \in \operatorname{Aut}_{k} k[[z]]$ with order $p$. Then there is $m \in \mathbb{N}^{\times}$prime to $p$ such that $\sigma(z)=z\left(1+z^{m}\right)^{-1 / m}$.

Proof: Artin-Schreier theory gives a parametrization for $p$-cyclic extensions in char. $p>0$. There $f \in k((z))$ such that $\operatorname{Tr}_{k((z)) / k((t))} f=1$. Let $x:=-\sum_{1 \leq i \leq p} i \sigma^{i}(f)$, then $\sigma(x)=x+1$ and so $y:=x^{p}-x \in k((t))$ and so $k((z))=k((t))[z]$ and $X^{p}-X-y$ is the irreducible polynomial of $x$ over $k((t))$. We write $y=\sum_{i \geq i_{0}} a_{i} t^{i}$. By Hensel's lemma we can assume that $a_{i}=0$ for $i \geq 0$. Now we remark that for $i=p j$ we can write $a_{i}=b_{j}^{p}$ and that $a_{p j} / t^{p j}=b / t^{j}+\left(b / t^{j}\right)^{p}-b / t^{j}$ and finally we can assume that $y=\left(b / t^{m}\right)(1+t P(t))$ for some $b \in k^{*}$ and $P(t) \in k[t]$ and $(m, p)=1$.

## The local lifting problem for $G \simeq \mathbb{Z} / p \mathbb{Z}$

## Proposition

Let $k$ be an algebraically closed of char. $p>0$. Let $\sigma \in \operatorname{Aut}_{k} k[[z]]$ with order $p$. Then there is $m \in \mathbb{N}^{\times}$prime to $p$ such that $\sigma(z)=z\left(1+z^{m}\right)^{-1 / m}$.

Proof: Artin-Schreier theory gives a parametrization for $p$-cyclic extensions in char. $p>0$. There $f \in k((z))$ such that $\operatorname{Tr}_{k((z)) / k((t))} f=1$. Let $x:=-\sum_{1 \leq i \leq p} i \sigma^{i}(f)$, then $\sigma(x)=x+1$ and so $y:=x^{p}-x \in k((t))$ and so $k((z))=k((t))[z]$ and $X^{p}-X-y$ is the irreducible polynomial of $x$ over $k((t))$. We write $y=\sum_{i \geq i_{0}} a_{i} t^{i}$. By Hensel's lemma we can assume that $a_{i}=0$ for $i \geq 0$. Now we remark that for $i=p j$ we can write $a_{i}=b_{j}^{p}$ and that $a_{p j} / t^{p j}=b / t^{j}+\left(b / t^{j}\right)^{p}-b / t^{j}$ and finally we can assume that $y=\left(b / t^{m}\right)(1+t P(t))$ for some $b \in k^{*}$ and $P(t) \in k[t]$ and $(m, p)=1$. Then changing $t$ by $t /\left(b(1+t P(t))^{1 / m}\right.$ we can assume that $f=1 / t^{m}$.

## The local lifting problem for $G \simeq \mathbb{Z} / p \mathbb{Z}$

## Proposition

Let $k$ be an algebraically closed of char. $p>0$. Let $\sigma \in \operatorname{Aut}_{k} k[[z]]$ with order $p$. Then there is $m \in \mathbb{N}^{\times}$prime to $p$ such that $\sigma(z)=z\left(1+z^{m}\right)^{-1 / m}$.

Proof: Artin-Schreier theory gives a parametrization for $p$-cyclic extensions in char. $p>0$. There $f \in k((z))$ such that $\operatorname{Tr}_{k((z)) / k((t))} f=1$.
Let $x:=-\sum_{1 \leq i \leq p} i \sigma^{i}(f)$, then $\sigma(x)=x+1$ and so $y:=x^{p}-x \in k((t))$ and so $k((z))=k((t))[z]$ and $X^{p}-X-y$ is the irreducible polynomial of $x$ over $k((t))$. We write $y=\sum_{i \geq i_{0}} a_{i} t^{i}$. By Hensel's lemma we can assume that $a_{i}=0$ for $i \geq 0$. Now we remark that for $i=p j$ we can write $a_{i}=b_{j}^{p}$ and that $a_{p j} / t^{p j}=b / t^{j}+\left(b / t^{j}\right)^{p}-b / t^{j}$ and finally we can assume that $y=\left(b / t^{m}\right)(1+t P(t))$ for some $b \in k^{*}$ and $P(t) \in k[t]$ and $(m, p)=1$. Then changing $t$ by $t /\left(b(1+t P(t))^{1 / m}\right.$ we can assume that $f=1 / t^{m}$. An exercise shows that $z^{\prime}:=x^{-1 / m} \in k((z))$ is a uniformizing parameter. As $\sigma\left(z^{\prime}\right)=(x+1)^{-1 / m}$, the result follows.

## Proposition

## Let $\zeta_{p}$ be a primitive $p$-th root of 1 in $K^{\text {alg }}$ and $m>0$ and prime to $p$.

## Proposition

Let $\zeta_{p}$ be a primitive $p$-th root of 1 in $K^{\text {alg }}$ and $m>0$ and prime to $p$. Let $F(Z):=\zeta_{p} Z\left(1+Z^{m}\right)^{-1 / m}$, it defines an order $p$ automorphism $\Sigma \in \operatorname{Aut}_{R} R[[Z]]$ for $R=W(k)\left[\zeta_{p}\right]$ and $r(\Sigma(Z))=\sigma(z)$.

## Proposition

Let $\zeta_{p}$ be a primitive $p$-th root of 1 in $K^{\text {alg }}$ and $m>0$ and prime to $p$. Let $F(Z):=\zeta_{p} Z\left(1+Z^{m}\right)^{-1 / m}$, it defines an order $p$ automorphism $\Sigma \in \operatorname{Aut}_{R} R[[Z]]$ for $R=W(k)\left[\zeta_{p}\right]$ and $r(\Sigma(Z))=\sigma(z)$.
In other words $\Sigma$ is a lifting of $\sigma$.

## Proposition

Let $\zeta_{p}$ be a primitive $p$-th root of 1 in $K^{\text {alg }}$ and $m>0$ and prime to $p$.
Let $F(Z):=\zeta_{p} Z\left(1+Z^{m}\right)^{-1 / m}$, it defines an order $p$ automorphism
$\Sigma \in \operatorname{Aut}_{R} R[[Z]]$ for $R=W(k)\left[\zeta_{p}\right]$ and $r(\Sigma(Z))=\sigma(z)$.
In other words $\Sigma$ is a lifting of $\sigma$.
Proof: $\Sigma\left(Z^{m}\right)=\zeta_{p}^{m} \frac{Z^{m}}{1+Z^{m}}$ is an homographical transformation on $Z^{m}$ of order $p$.

## Proposition

Let $\zeta_{p}$ be a primitive $p$-th root of 1 in $K^{\text {alg }}$ and $m>0$ and prime to $p$.
Let $F(Z):=\zeta_{p} Z\left(1+Z^{m}\right)^{-1 / m}$, it defines an order $p$ automorphism
$\Sigma \in \operatorname{Aut}_{R} R[[Z]]$ for $R=W(k)\left[\zeta_{p}\right]$ and $r(\Sigma(Z))=\sigma(z)$.
In other words $\Sigma$ is a lifting of $\sigma$.
Proof: $\Sigma\left(Z^{m}\right)=\zeta_{p}^{m} \frac{Z^{m}}{1+Z^{m}}$ is an homographical transformation on $Z^{m}$ of order $p$. So $\Sigma^{p}(Z)=\theta Z$ with $\theta^{m}=1$.

## Proposition

Let $\zeta_{p}$ be a primitive $p$-th root of 1 in $K^{\text {alg }}$ and $m>0$ and prime to $p$.
Let $F(Z):=\zeta_{p} Z\left(1+Z^{m}\right)^{-1 / m}$, it defines an order $p$ automorphism
$\Sigma \in \operatorname{Aut}_{R} R[[Z]]$ for $R=W(k)\left[\zeta_{p}\right]$ and $r(\Sigma(Z))=\sigma(z)$.
In other words $\Sigma$ is a lifting of $\sigma$.
Proof: $\Sigma\left(Z^{m}\right)=\zeta_{p}^{m} \frac{Z^{m}}{1+Z^{m}}$ is an homographical transformation on $Z^{m}$ of order $p$. So $\Sigma^{p}(Z)=\theta Z$ with $\theta^{m}=1$.
Now we remark that $\Sigma(Z)=\zeta_{p}(Z) \bmod Z^{2}$ and so $\Sigma^{p}(Z)=Z \bmod Z^{2}$. ///

## Proposition

Let $\zeta_{p}$ be a primitive $p$-th root of 1 in $K^{\text {alg }}$ and $m>0$ and prime to $p$.
Let $F(Z):=\zeta_{p} Z\left(1+Z^{m}\right)^{-1 / m}$, it defines an order $p$ automorphism
$\Sigma \in \operatorname{Aut}_{R} R[[Z]]$ for $R=W(k)\left[\zeta_{p}\right]$ and $r(\Sigma(Z))=\sigma(z)$.
In other words $\Sigma$ is a lifting of $\sigma$.
Proof: $\Sigma\left(Z^{m}\right)=\zeta_{p}^{m} \frac{Z^{m}}{1+Z^{m}}$ is an homographical transformation on $Z^{m}$ of order $p$. So $\Sigma^{p}(Z)=\theta Z$ with $\theta^{m}=1$.
Now we remark that $\Sigma(Z)=\zeta_{p}(Z) \bmod Z^{2}$ and so $\Sigma^{p}(Z)=Z \bmod Z^{2}$. ///
The geometry of fix points.

## Proposition

Let $\zeta_{p}$ be a primitive $p$-th root of 1 in $K^{\text {alg }}$ and $m>0$ and prime to $p$.
Let $F(Z):=\zeta_{p} Z\left(1+Z^{m}\right)^{-1 / m}$, it defines an order $p$ automorphism
$\Sigma \in \operatorname{Aut}_{R} R[[Z]]$ for $R=W(k)\left[\zeta_{p}\right]$ and $r(\Sigma(Z))=\sigma(z)$.
In other words $\Sigma$ is a lifting of $\sigma$.
Proof: $\Sigma\left(Z^{m}\right)=\zeta_{p}^{m} \frac{Z^{m}}{1+Z^{m}}$ is an homographical transformation on $Z^{m}$ of order $p$. So $\Sigma^{p}(Z)=\theta Z$ with $\theta^{m}=1$.
Now we remark that $\Sigma(Z)=\zeta_{p}(Z) \bmod Z^{2}$ and so $\Sigma^{p}(Z)=Z \bmod Z^{2}$. ///
The geometry of fix points.
$\operatorname{Fix} \Sigma=\left\{z \in X^{a l g} \mid z=\zeta_{p} z\left(1+z^{m}\right)^{-1 / m}\right\}$ then

## Proposition

Let $\zeta_{p}$ be a primitive $p$-th root of 1 in $K^{\text {alg }}$ and $m>0$ and prime to $p$.
Let $F(Z):=\zeta_{p} Z\left(1+Z^{m}\right)^{-1 / m}$, it defines an order $p$ automorphism
$\Sigma \in \operatorname{Aut}_{R} R[[Z]]$ for $R=W(k)\left[\zeta_{p}\right]$ and $r(\Sigma(Z))=\sigma(z)$.
In other words $\Sigma$ is a lifting of $\sigma$.
Proof: $\Sigma\left(Z^{m}\right)=\zeta_{p}^{m} \frac{Z^{m}}{1+Z^{m}}$ is an homographical transformation on $Z^{m}$ of order $p$. So $\Sigma^{p}(Z)=\theta Z$ with $\theta^{m}=1$.
Now we remark that $\Sigma(Z)=\zeta_{p}(Z) \bmod Z^{2}$ and so $\Sigma^{p}(Z)=Z \bmod Z^{2}$. ///
The geometry of fix points.
$\operatorname{Fix} \Sigma=\left\{z \in X^{a l g} \mid z=\zeta_{p} z\left(1+z^{m}\right)^{-1 / m}\right\}$ then
$\operatorname{Fix} \Sigma=\{0\} \cup\left\{\theta_{m}^{i}\left(\zeta_{p}^{m}-1\right)^{1 / m}\right\}, 1 \leq i \leq m, \theta_{m}$ is a primitive $m$-th root of 1 .

## Proposition

Let $\zeta_{p}$ be a primitive $p$-th root of 1 in $K^{\text {alg }}$ and $m>0$ and prime to $p$.
Let $F(Z):=\zeta_{p} Z\left(1+Z^{m}\right)^{-1 / m}$, it defines an order $p$ automorphism
$\Sigma \in \operatorname{Aut}_{R} R[[Z]]$ for $R=W(k)\left[\zeta_{p}\right]$ and $r(\Sigma(Z))=\sigma(z)$.
In other words $\Sigma$ is a lifting of $\sigma$.
Proof: $\Sigma\left(Z^{m}\right)=\zeta_{p}^{m} \frac{Z^{m}}{1+Z^{m}}$ is an homographical transformation on $Z^{m}$ of order $p$. So $\Sigma^{p}(Z)=\theta Z$ with $\theta^{m}=1$.
Now we remark that $\Sigma(Z)=\zeta_{p}(Z) \bmod Z^{2}$ and so $\Sigma^{p}(Z)=Z \bmod Z^{2}$. ///
The geometry of fix points.
$\operatorname{Fix} \Sigma=\left\{z \in X^{a l g} \mid z=\zeta_{p} z\left(1+z^{m}\right)^{-1 / m}\right\}$ then
$\operatorname{Fix} \Sigma=\{0\} \cup\left\{\theta_{m}^{i}\left(\zeta_{p}^{m}-1\right)^{1 / m}\right\}, 1 \leq i \leq m, \theta_{m}$ is a primitive $m$-th root of 1 .
The mutual distances are all equal ; this is the equidistant geometry.

## Geometric method.

## Geometric method.

We can mimic at the level of $R$-algebras what we have done for $k$-algebras. Namely one can deform the isogeny $x \rightarrow x^{p}-x$ in $X \rightarrow \frac{(\lambda X+1)^{p}-1}{\lambda^{p}}$.

## Geometric method.

We can mimic at the level of $R$-algebras what we have done for $k$-algebras. Namely one can deform the isogeny $x \rightarrow x^{p}-x$ in $X \rightarrow \frac{(\lambda x+1)^{p}-1}{\lambda^{p}}$. So we can lift over $R$ any dvr finite over $W(k)\left[\zeta_{p}\right]$ at the level of fields $x^{p}-x=1 / t^{m}$ in
(*) $\quad \frac{(\lambda X+1)^{p}-1}{\lambda^{p}}=\frac{1}{\Pi_{1 \leq i \leq m}\left(T-t_{i}\right)}$ with $t_{i} \in X^{a l g}$

## Geometric method.

We can mimic at the level of $R$-algebras what we have done for $k$-algebras. Namely one can deform the isogeny $x \rightarrow x^{p}-x$ in $X \rightarrow \frac{(\lambda X+1)^{p}-1}{\lambda^{p}}$. So we can lift over $R$ any dvr finite over $W(k)\left[\zeta_{p}\right]$ at the level of fields $x^{p}-x=1 / t^{m}$ in
(*) $\frac{(\lambda X+1)^{p}-1}{\lambda^{p}}=\frac{1}{\Pi_{1 \leq i \leq m}\left(T-t_{i}\right)}$ with $t_{i} \in X^{\text {alg }}$
${ }^{(*)}$ defines a $p$-cyclic cover of $\mathbb{P}_{K}^{1}$ which is highly singular.

## Geometric method.

We can mimic at the level of $R$-algebras what we have done for $k$-algebras. Namely one can deform the isogeny $x \rightarrow x^{p}-x$ in $X \rightarrow \frac{(\lambda X+1)^{p}-1}{\lambda^{p}}$.
So we can lift over $R$ any dvr finite over $W(k)\left[\zeta_{p}\right]$ at the level of fields $x^{p}-x=1 / t^{m}$ in
(*) $\quad \frac{(\lambda X+1)^{p}-1}{\lambda^{p}}=\frac{1}{\Pi_{1 \leq i \leq m}\left(T-t_{i}\right)}$ with $t_{i} \in X^{\text {alg }}$
${ }^{(*)}$ defines a $p$-cyclic cover of $\mathbb{P}_{K}^{1}$ which is highly singular.
Take the normalisation of $\mathbb{P}_{R}^{1}$, we get generically a $p$-cyclic cover $C_{\eta}$ of $\mathbb{P}_{K}^{1}$ whose branch locus $B r$ is given by the roots of $\left(\prod_{1 \leq i \leq m}\left(T-t_{i}\right)\right)\left(\lambda^{p}+\prod_{1 \leq i \leq m}\left(T-t_{i}\right)\right)$ with prime to $p$ multiplicity.

## We would like a smooth $R$-curve.

## We would like a smooth $R$-curve.

We calculate the genus.

## We would like a smooth $R$-curve.

We calculate the genus.
$2\left(g\left(C_{\eta}\right)-1\right)=2 p(0-1)+|B r|(p-1)+m(p-1)$

We would like a smooth $R$-curve.
We calculate the genus.
$2\left(g\left(C_{\eta}\right)-1\right)=2 p(0-1)+|B r|(p-1)+m(p-1)$
The special fiber $C_{s}$ is reduced and geometric genus
$2\left(g\left(C_{s}\right)-1\right)=2 p(0-1)+(m+1)(p-1)$

We would like a smooth $R$-curve.
We calculate the genus.
$2\left(g\left(C_{\eta}\right)-1\right)=2 p(0-1)+|B r|(p-1)+m(p-1)$
The special fiber $C_{s}$ is reduced and geometric genus
$2\left(g\left(C_{s}\right)-1\right)=2 p(0-1)+(m+1)(p-1)$
and it is smooth iff $|\operatorname{Br}|(p-1)+m(p-1)=(m+1)(p-1)$.

We would like a smooth $R$-curve.
We calculate the genus.
$2\left(g\left(C_{\eta}\right)-1\right)=2 p(0-1)+|B r|(p-1)+m(p-1)$
The special fiber $C_{s}$ is reduced and geometric genus
$2\left(g\left(C_{s}\right)-1\right)=2 p(0-1)+(m+1)(p-1)$
and it is smooth iff $|\operatorname{Br}|(p-1)+m(p-1)=(m+1)(p-1)$.
This is the case when the $t_{i}$ are all equal. For example for (**) $\quad \frac{(\lambda X+1)^{p}-1}{\lambda^{p}}=\frac{1}{T^{m}}$

We would like a smooth $R$-curve.
We calculate the genus.
$2\left(g\left(C_{\eta}\right)-1\right)=2 p(0-1)+|B r|(p-1)+m(p-1)$
The special fiber $C_{s}$ is reduced and geometric genus
$2\left(g\left(C_{s}\right)-1\right)=2 p(0-1)+(m+1)(p-1)$
and it is smooth iff $|\operatorname{Br}|(p-1)+m(p-1)=(m+1)(p-1)$.
This is the case when the $t_{i}$ are all equal. For example for (**) $\quad \frac{(\lambda X+1)^{p}-1}{\lambda^{p}}=\frac{1}{T^{m}}$
When we consider the cover between the completion of the local rings at the closed point $(\pi, T)$ we recover the order $p$ automorphism $\in \operatorname{Aut}_{R} R[[Z]]$ considered above.

## $p^{n}$-cyclic groups

## Oort conjecture.

## $p^{n}$-cyclic groups

## Oort conjecture.

There is a conjecture named in the litterature "Oort conjecture" which states that the local lifting problem for the group $\mathbb{Z} / p^{n} \mathbb{Z}$ as a positive answer.

## $p^{n}$-cyclic groups

## Oort conjecture.

There is a conjecture named in the litterature "Oort conjecture" which states that the local lifting problem for the group $\mathbb{Z} / p^{n} \mathbb{Z}$ as a positive answer.

The conjecture was set after global considerations relative to the case $n=1$ which we have seen is elementary in the local case and so works in the global case due to a local-global principle.

## $p^{n}$-cyclic groups

## Oort conjecture.

There is a conjecture named in the litterature "Oort conjecture" which states that the local lifting problem for the group $\mathbb{Z} / p^{n} \mathbb{Z}$ as a positive answer.

The conjecture was set after global considerations relative to the case $n=1$ which we have seen is elementary in the local case and so works in the global case due to a local-global principle.
It became serious when a proof along the lines of the geometric method described above was given in the case $n=2$.

## $p^{n}$-cyclic groups

## Oort conjecture.

There is a conjecture named in the litterature "Oort conjecture" which states that the local lifting problem for the group $\mathbb{Z} / p^{n} \mathbb{Z}$ as a positive answer.

The conjecture was set after global considerations relative to the case $n=1$ which we have seen is elementary in the local case and so works in the global case due to a local-global principle.

It became serious when a proof along the lines of the geometric method described above was given in the case $n=2$.

Recently a proof was announced by Obus and Wewers for the case $n=3$ and for $n>3$ under an extra condition (see the recent survey A. Obus: The (local) lifting problem for curves, arXiv 8 May 2011).

## $p^{n}$-cyclic groups

## Oort conjecture.

There is a conjecture named in the litterature "Oort conjecture" which states that the local lifting problem for the group $\mathbb{Z} / p^{n} \mathbb{Z}$ as a positive answer.

The conjecture was set after global considerations relative to the case $n=1$ which we have seen is elementary in the local case and so works in the global case due to a local-global principle.
It became serious when a proof along the lines of the geometric method described above was given in the case $n=2$.

Recently a proof was announced by Obus and Wewers for the case $n=3$ and for $n>3$ under an extra condition (see the recent survey A. Obus: The (local) lifting problem for curves, arXiv 8 May 2011).

In the next paragraph we give a method using formal groups which gives a positive answer to the inverse Galois problem for cyclic p-groups.

## $p^{n}$-cyclic groups

## Oort conjecture.

There is a conjecture named in the litterature "Oort conjecture" which states that the local lifting problem for the group $\mathbb{Z} / p^{n} \mathbb{Z}$ as a positive answer.

The conjecture was set after global considerations relative to the case $n=1$ which we have seen is elementary in the local case and so works in the global case due to a local-global principle.

It became serious when a proof along the lines of the geometric method described above was given in the case $n=2$.

Recently a proof was announced by Obus and Wewers for the case $n=3$ and for $n>3$ under an extra condition (see the recent survey A. Obus: The (local) lifting problem for curves, arXiv 8 May 2011).

In the next paragraph we give a method using formal groups which gives a positive answer to the inverse Galois problem for cyclic p-groups.

We illustrate this method in the case $n=1$.

## $p^{n}$-cyclic groups and formal groups

## Notations

## $p^{n}$-cyclic groups and formal groups

## Notations <br> $K$ is a finite totally ramified extension of $\mathbb{Q}_{p}\left[\zeta_{p}\right]$ of degree $n$.

## $p^{n}$-cyclic groups and formal groups

## Notations

$K$ is a finite totally ramified extension of $\mathbb{Q}_{p}\left[\zeta_{p}\right]$ of degree $n$.
$R:=O_{K}$ and $\pi$ a uniformising parameter.

## $p^{n}$-cyclic groups and formal groups

## Notations

$K$ is a finite totally ramified extension of $\mathbb{Q}_{p}\left[\zeta_{p}\right]$ of degree $n$.
$R:=O_{K}$ and $\pi$ a uniformising parameter.
$f(Z):=\sum_{i \geq 0} \frac{Z^{p^{k}}}{\pi^{k}} \in K[[Z]]$

## $p^{n}$-cyclic groups and formal groups

## Notations

$K$ is a finite totally ramified extension of $\mathbb{Q}_{p}\left[\zeta_{p}\right]$ of degree $n$.
$R:=O_{K}$ and $\pi$ a uniformising parameter.
$f(Z):=\sum_{i \geq 0} \frac{Z^{p^{k}}}{\pi^{k}} \in K[[Z]]$
(the series $\exp (f(Z)$ is the so-called Artin-Hasse exponential)

## $p^{n}$-cyclic groups and formal groups

## Notations

$K$ is a finite totally ramified extension of $\mathbb{Q}_{p}\left[\zeta_{p}\right]$ of degree $n$.
$R:=O_{K}$ and $\pi$ a uniformising parameter.
$f(Z):=\sum_{i \geq 0} \frac{Z^{p^{k}}}{\pi^{k}} \in K[[Z]]$
(the series $\exp (f(Z)$ is the so-called Artin-Hasse exponential)
$F\left(Z_{1}, Z_{2}\right):=f^{\circ-1}\left(f\left(Z_{1}\right)+f\left(Z_{2}\right)\right) \in K\left[\left[Z_{1}, Z_{2}\right]\right]$

## $p^{n}$-cyclic groups and formal groups

## Notations

$K$ is a finite totally ramified extension of $\mathbb{Q}_{p}\left[\zeta_{p}\right]$ of degree $n$.
$R:=O_{K}$ and $\pi$ a uniformising parameter.
$f(Z):=\sum_{i \geq 0} \frac{Z^{p^{k}}}{\pi^{k}} \in K[[Z]]$
(the series $\exp (f(Z)$ is the so-called Artin-Hasse exponential)
$F\left(Z_{1}, Z_{2}\right):=f^{\circ-1}\left(f\left(Z_{1}\right)+f\left(Z_{2}\right)\right) \in K\left[\left[Z_{1}, Z_{2}\right]\right]$
$[\pi]_{F}(Z):=f^{\circ-1}(\pi f(Z)) \in K[[Z]]$.

## $p^{n}$-cyclic groups and formal groups

## Notations

$K$ is a finite totally ramified extension of $\mathbb{Q}_{p}\left[\zeta_{p}\right]$ of degree $n$.
$R:=O_{K}$ and $\pi$ a uniformising parameter.
$f(Z):=\sum_{i \geq 0} \frac{Z^{p^{k}}}{\pi^{k}} \in K[[Z]]$
(the series $\exp (f(Z)$ is the so-called Artin-Hasse exponential)
$F\left(Z_{1}, Z_{2}\right):=f^{\circ-1}\left(f\left(Z_{1}\right)+f\left(Z_{2}\right)\right) \in K\left[\left[Z_{1}, Z_{2}\right]\right]$
$[\pi]_{F}(Z):=f^{\circ-1}(\pi f(Z)) \in K[[Z]]$.
The main result is that $F\left(Z_{1}, Z_{2}\right) \in R\left[\left[Z_{1}, Z_{2}\right]\right]$ and $[\pi]_{F}(Z) \in R[[Z]]$.

## $p^{n}$-cyclic groups and formal groups

## Notations

$K$ is a finite totally ramified extension of $\mathbb{Q}_{p}\left[\zeta_{p}\right]$ of degree $n$.
$R:=O_{K}$ and $\pi$ a uniformising parameter.
$f(Z):=\sum_{i \geq 0} \frac{Z^{p^{k}}}{\pi^{k}} \in K[[Z]]$
(the series $\exp (f(Z)$ is the so-called Artin-Hasse exponential)
$F\left(Z_{1}, Z_{2}\right):=f^{\circ-1}\left(f\left(Z_{1}\right)+f\left(Z_{2}\right)\right) \in K\left[\left[Z_{1}, Z_{2}\right]\right]$
$[\pi]_{F}(Z):=f^{\circ-1}(\pi f(Z)) \in K[[Z]]$.
The main result is that $F\left(Z_{1}, Z_{2}\right) \in R\left[\left[Z_{1}, Z_{2}\right]\right]$ and $[\pi]_{F}(Z) \in R[[Z]]$.
Moreover $[\pi]_{F}(Z)=\pi Z \bmod Z^{2}$ and $[\pi]_{F}(Z)=Z^{p} \bmod \pi$

## $p^{n}$-cyclic groups and formal groups

## Notations

$K$ is a finite totally ramified extension of $\mathbb{Q}_{p}\left[\zeta_{p}\right]$ of degree $n$.
$R:=O_{K}$ and $\pi$ a uniformising parameter.
$f(Z):=\sum_{i \geq 0} \frac{Z^{p^{k}}}{\pi^{k}} \in K[[Z]]$
(the series $\exp (f(Z)$ is the so-called Artin-Hasse exponential)
$F\left(Z_{1}, Z_{2}\right):=f^{\circ-1}\left(f\left(Z_{1}\right)+f\left(Z_{2}\right)\right) \in K\left[\left[Z_{1}, Z_{2}\right]\right]$
$[\pi]_{F}(Z):=f^{\circ-1}(\pi f(Z)) \in K[[Z]]$.
The main result is that $F\left(Z_{1}, Z_{2}\right) \in R\left[\left[Z_{1}, Z_{2}\right]\right]$ and $[\pi]_{F}(Z) \in R[[Z]]$.
Moreover $[\pi]_{F}(Z)=\pi Z \bmod Z^{2}$ and $[\pi]_{F}(Z)=Z^{p} \bmod \pi$
It follows that for all $a \in R$ there is $[a]_{F}(Z) \in R[[Z]]$ such that $[a]_{F}\left(F\left(Z_{1}, Z_{2}\right)\right)=F\left([a]_{F}\left(Z_{1}\right),[a]_{F}\left(Z_{2}\right)\right)$ and $[a]_{F}(Z)=a Z \bmod Z^{2}$.

## $p^{n}$-cyclic groups and formal groups

## Notations

$K$ is a finite totally ramified extension of $\mathbb{Q}_{p}\left[\zeta_{p}\right]$ of degree $n$.
$R:=O_{K}$ and $\pi$ a uniformising parameter.
$f(Z):=\sum_{i \geq 0} \frac{Z^{p^{k}}}{\pi^{k}} \in K[[Z]]$
(the series $\exp (f(Z)$ is the so-called Artin-Hasse exponential)
$F\left(Z_{1}, Z_{2}\right):=f^{\circ-1}\left(f\left(Z_{1}\right)+f\left(Z_{2}\right)\right) \in K\left[\left[Z_{1}, Z_{2}\right]\right]$
$[\pi]_{F}(Z):=f^{\circ-1}(\pi f(Z)) \in K[[Z]]$.
The main result is that $F\left(Z_{1}, Z_{2}\right) \in R\left[\left[Z_{1}, Z_{2}\right]\right]$ and $[\pi]_{F}(Z) \in R[[Z]]$.
Moreover $[\pi]_{F}(Z)=\pi Z \bmod Z^{2}$ and $[\pi]_{F}(Z)=Z^{p} \bmod \pi$
It follows that for all $a \in R$ there is $[a]_{F}(Z) \in R[[Z]]$ such that $[a]_{F}\left(F\left(Z_{1}, Z_{2}\right)\right)=F\left([a]_{F}\left(Z_{1}\right),[a]_{F}\left(Z_{2}\right)\right)$ and $[a]_{F}(Z)=a Z \bmod Z^{2}$.
Then $a \in R \rightarrow[a]_{F}(Z)$ is an injective homomorphism of $R$ into $E n d_{F}$.

## $p^{n}$-cyclic groups and formal groups

## Notations

$K$ is a finite totally ramified extension of $\mathbb{Q}_{p}\left[\zeta_{p}\right]$ of degree $n$.
$R:=O_{K}$ and $\pi$ a uniformising parameter.
$f(Z):=\sum_{i \geq 0} \frac{Z^{p^{k}}}{\pi^{k}} \in K[[Z]]$
(the series $\exp (f(Z)$ is the so-called Artin-Hasse exponential)
$F\left(Z_{1}, Z_{2}\right):=f^{\circ-1}\left(f\left(Z_{1}\right)+f\left(Z_{2}\right)\right) \in K\left[\left[Z_{1}, Z_{2}\right]\right]$
$[\pi]_{F}(Z):=f^{\circ-1}(\pi f(Z)) \in K[[Z]]$.
The main result is that $F\left(Z_{1}, Z_{2}\right) \in R\left[\left[Z_{1}, Z_{2}\right]\right]$ and $[\pi]_{F}(Z) \in R[[Z]]$.
Moreover $[\pi]_{F}(Z)=\pi Z \bmod Z^{2}$ and $[\pi]_{F}(Z)=Z^{p} \bmod \pi$
It follows that for all $a \in R$ there is $[a]_{F}(Z) \in R[[Z]]$ such that $[a]_{F}\left(F\left(Z_{1}, Z_{2}\right)\right)=F\left([a]_{F}\left(Z_{1}\right),[a]_{F}\left(Z_{2}\right)\right)$ and $[a]_{F}(Z)=a Z \bmod Z^{2}$.
Then $a \in R \rightarrow[a]_{F}(Z)$ is an injective homomorphism of $R$ into End $_{F}$.
For example $\sigma(Z):=\left[\zeta_{p}\right]_{F}(Z)=f^{\circ-1}\left(\zeta_{p} f(Z)\right)$ is an order $p$-automorphism of $R[[Z]]$ which is not trivial $\bmod \pi$ and with $p^{n}$ fix points whose geometry is well understood.

## Obstructions to the local lifting problem

There is a local version of the criterium of good reduction which involves degrees of differents.

## Obstructions to the local lifting problem

There is a local version of the criterium of good reduction which involves degrees of differents.

Proposition
Let $A=R[[T])$ and $B$ be a finite $A$-module and a normal integral local ring.

## Obstructions to the local lifting problem

There is a local version of the criterium of good reduction which involves degrees of differents.

Proposition
Let $A=R[[T])$ and $B$ be a finite $A$-module and a normal integral local ring. Set $A_{K}:=A \otimes_{R} K$ and $B_{K}:=B \otimes_{R} K$,

## Obstructions to the local lifting problem

There is a local version of the criterium of good reduction which involves degrees of differents.

Proposition
Let $A=R[[T])$ and $B$ be a finite $A$-module and a normal integral local ring.
Set $A_{K}:=A \otimes_{R} K$ and $B_{K}:=B \otimes_{R} K$, $A_{0}:=A / \pi A$ and $B_{0}:=B / \pi B$.

## Obstructions to the local lifting problem

There is a local version of the criterium of good reduction which involves degrees of differents.

## Proposition

Let $A=R[[T])$ and $B$ be a finite $A$-module and a normal integral local ring.
Set $A_{K}:=A \otimes_{R} K$ and $B_{K}:=B \otimes_{R} K$, $A_{0}:=A / \pi A$ and $B_{0}:=B / \pi B$.
We assume that $B_{0}$ is reduced and that $B_{0} / A_{0}$ is generically étale.

## Obstructions to the local lifting problem

There is a local version of the criterium of good reduction which involves degrees of differents.

## Proposition

Let $A=R[[T])$ and $B$ be a finite $A$-module and a normal integral local ring.
Set $A_{K}:=A \otimes_{R} K$ and $B_{K}:=B \otimes_{R} K$, $A_{0}:=A / \pi A$ and $B_{0}:=B / \pi B$.
We assume that $B_{0}$ is reduced and that $B_{0} / A_{0}$ is generically étale.
Let $B_{0}^{\text {alg }}$ the $B_{0}$ integral closure and $\delta_{k}(B):=\operatorname{dim}_{k} B_{0}^{\text {alg }} / B_{0}$.

## Obstructions to the local lifting problem

There is a local version of the criterium of good reduction which involves degrees of differents.

## Proposition

Let $A=R[[T])$ and $B$ be a finite $A$-module and a normal integral local ring.
Set $A_{K}:=A \otimes_{R} K$ and $B_{K}:=B \otimes_{R} K$, $A_{0}:=A / \pi A$ and $B_{0}:=B / \pi B$.
We assume that $B_{0}$ is reduced and that $B_{0} / A_{0}$ is generically étale.
Let $B_{0}^{\text {alg }}$ the $B_{0}$ integral closure and $\delta_{k}(B):=\operatorname{dim}_{k} B_{0}^{\text {alg }} / B_{0}$.
Let $d_{\eta}$ resp. $d_{s}$ the degree of the generic resp. special different.

## Obstructions to the local lifting problem

There is a local version of the criterium of good reduction which involves degrees of differents.

## Proposition

Let $A=R[[T])$ and $B$ be a finite $A$-module and a normal integral local ring.
Set $A_{K}:=A \otimes_{R} K$ and $B_{K}:=B \otimes_{R} K$, $A_{0}:=A / \pi A$ and $B_{0}:=B / \pi B$.
We assume that $B_{0}$ is reduced and that $B_{0} / A_{0}$ is generically étale.
Let $B_{0}^{\text {alg }}$ the $B_{0}$ integral closure and $\delta_{k}(B):=\operatorname{dim}_{k} B_{0}^{\text {alg }} / B_{0}$.
Let $d_{\eta}$ resp. $d_{s}$ the degree of the generic resp. special different.
Then $d_{\eta}=d_{s}+2 \delta_{k}(B)$ and $d_{\eta}=d_{s}$ iff $B=R[[Z]]$.

## Application: the local lifting problem for $G=(\mathbb{Z} / p \mathbb{Z})^{2}$

## The ramification filtration.

## Application: the local lifting problem for $G=(\mathbb{Z} / p \mathbb{Z})^{2}$

## The ramification filtration.

$G=G_{0}=G_{1}=\ldots=G_{m_{1}} \nsupseteq G_{m_{1}+1} \supset \ldots \supset G_{m_{2}} \supseteq G_{m_{2}+1}=0$

## Application: the local lifting problem for $G=(\mathbb{Z} / p \mathbb{Z})^{2}$

## The ramification filtration.

$G=G_{0}=G_{1}=\ldots=G_{m_{1}} \nsupseteq G_{m_{1}+1} \supset \ldots \supset G_{m_{2}} \supseteq G_{m_{2}+1}=0$
The extension is birationnaly defined by $k((z))=k((t))\left[x_{1}, x_{2}\right]$ where

## Application: the local lifting problem for $G=(\mathbb{Z} / p \mathbb{Z})^{2}$

## The ramification filtration.

$G=G_{0}=G_{1}=\ldots=G_{m_{1}} \supseteq G_{m_{1}+1} \supset \ldots \supset G_{m_{2}} \nsupseteq G_{m_{2}+1}=0$
The extension is birationnaly defined by $k((z))=k((t))\left[x_{1}, x_{2}\right]$ where $x_{1}^{p}-x_{1}=1 / t^{m_{1}^{\prime}}, x_{2}^{p}-x_{2}=a_{m_{2}^{\prime}} / t^{m_{2}^{\prime}}+\ldots+a_{1} / t$

## Application: the local lifting problem for $G=(\mathbb{Z} / p \mathbb{Z})^{2}$

## The ramification filtration.

$G=G_{0}=G_{1}=\ldots=G_{m_{1}} \nsupseteq G_{m_{1}+1} \supset \ldots \supset G_{m_{2}} \nsupseteq G_{m_{2}+1}=0$
The extension is birationnaly defined by $k((z))=k((t))\left[x_{1}, x_{2}\right]$ where $x_{1}^{p}-x_{1}=1 / t^{m_{1}^{\prime}}, x_{2}^{p}-x_{2}=a_{m_{2}^{\prime}} / t^{m_{2}^{\prime}}+\ldots+a_{1} / t$ where $m_{1}^{\prime} \leq m_{2}^{\prime}$ are prime to $p, a_{m_{2}^{\prime}} \in k^{\times}$and $a_{m_{2}^{\prime}} \notin \mathbb{F}_{p}$ if $m_{1}^{\prime}=m_{2}^{\prime}$.

## Application: the local lifting problem for $G=(\mathbb{Z} / p \mathbb{Z})^{2}$

## The ramification filtration.

$G=G_{0}=G_{1}=\ldots=G_{m_{1}} \nsupseteq G_{m_{1}+1} \supset \ldots \supset G_{m_{2}} \nsupseteq G_{m_{2}+1}=0$
The extension is birationnaly defined by $k((z))=k((t))\left[x_{1}, x_{2}\right]$ where $x_{1}^{p}-x_{1}=1 / t^{m_{1}^{\prime}}, x_{2}^{p}-x_{2}=a_{m_{2}^{\prime}} / t^{m_{2}^{\prime}}+\ldots .+a_{1} / t$ where $m_{1}^{\prime} \leq m_{2}^{\prime}$ are prime to $p, a_{m_{2}^{\prime}} \in k^{\times}$and $a_{m_{2}^{\prime}} \notin \mathbb{F}_{p}$ if $m_{1}^{\prime}=m_{2}^{\prime}$. One can show that $m_{1}=m_{1}^{\prime}$ and $m_{2}=m_{2}^{\prime} p-m_{1}^{\prime}(p-1)$. Then $d_{s}=\left(m_{1}+1\right)\left(p^{2}-1\right)+\left(m_{2}-m_{1}\right)(p-1)$.

## Application: the local lifting problem for $G=(\mathbb{Z} / p \mathbb{Z})^{2}$

## The ramification filtration.

$G=G_{0}=G_{1}=\ldots=G_{m_{1}} \nsupseteq G_{m_{1}+1} \supset \ldots \supset G_{m_{2}} \nsupseteq G_{m_{2}+1}=0$
The extension is birationnaly defined by $k((z))=k((t))\left[x_{1}, x_{2}\right]$ where $x_{1}^{p}-x_{1}=1 / t^{m_{1}^{\prime}}, x_{2}^{p}-x_{2}=a_{m_{2}^{\prime}} / t^{m_{2}^{\prime}}+\ldots .+a_{1} / t$ where $m_{1}^{\prime} \leq m_{2}^{\prime}$ are prime to $p, a_{m_{2}^{\prime}} \in k^{\times}$and $a_{m_{2}^{\prime}} \notin \mathbb{F}_{p}$ if $m_{1}^{\prime}=m_{2}^{\prime}$. One can show that $m_{1}=m_{1}^{\prime}$ and $m_{2}=m_{2}^{\prime} p-m_{1}^{\prime}(p-1)$. Then $d_{s}=\left(m_{1}+1\right)\left(p^{2}-1\right)+\left(m_{2}-m_{1}\right)(p-1)$.
Let $R[[Z]] / R[[T]]$ be a lifting then
$d_{\eta}=\left(m_{1}^{\prime}+1-d\right) p(p-1)+\left(m_{2}^{\prime}+1-d\right) p(p-1)+d p(p-1)$, where $d$ is the number of branch points in common in the lifting of the two basis covers.

## Application: the local lifting problem for $G=(\mathbb{Z} / p \mathbb{Z})^{2}$

## The ramification filtration.

$G=G_{0}=G_{1}=\ldots=G_{m_{1}} \nsupseteq G_{m_{1}+1} \supset \ldots \supset G_{m_{2}} \nsupseteq G_{m_{2}+1}=0$
The extension is birationnaly defined by $k((z))=k((t))\left[x_{1}, x_{2}\right]$ where $x_{1}^{p}-x_{1}=1 / t^{m_{1}^{\prime}}, x_{2}^{p}-x_{2}=a_{m_{2}^{\prime}} / t^{m_{2}^{\prime}}+\ldots .+a_{1} / t$ where $m_{1}^{\prime} \leq m_{2}^{\prime}$ are prime to $p, a_{m_{2}^{\prime}} \in k^{\times}$and $a_{m_{2}^{\prime}} \notin \mathbb{F}_{p}$ if $m_{1}^{\prime}=m_{2}^{\prime}$. One can show that $m_{1}=m_{1}^{\prime}$ and $m_{2}=m_{2}^{\prime} p-m_{1}^{\prime}(p-1)$. Then $d_{s}=\left(m_{1}+1\right)\left(p^{2}-1\right)+\left(m_{2}-m_{1}\right)(p-1)$.
Let $R[[Z]] / R[[T]]$ be a lifting then
$d_{\eta}=\left(m_{1}^{\prime}+1-d\right) p(p-1)+\left(m_{2}^{\prime}+1-d\right) p(p-1)+d p(p-1)$, where $d$ is the number of branch points in common in the lifting of the two basis covers.
A necessary and sufficient condition is that $d_{s}=d_{\eta}$ i.e. $d p=\left(m_{1}+1\right)(p-1)$. In particular $m_{1}=-1 \bmod p$, this is an obstruction to the local lifting problem when $p>2$.

## The inverse local lifting problem for $G=(Z / p Z)^{n}, n>1$

The condition $d p=\left(m_{1}+1\right)(p-1)$ is not easy to realize because the geometry of branch points is rigid as we will see in the last lecture.

## The inverse local lifting problem for $G=(Z / p Z)^{n}, n>1$

The condition $d p=\left(m_{1}+1\right)(p-1)$ is not easy to realize because the geometry of branch points is rigid as we will see in the last lecture. Nevertheless one can show that the inverse Galois problem for $G=(Z / p Z)^{n}$ has a positive answer.

## The inverse local lifting problem for $G=(Z / p Z)^{n}, n>1$

The condition $d p=\left(m_{1}+1\right)(p-1)$ is not easy to realize because the geometry of branch points is rigid as we will see in the last lecture. Nevertheless one can show that the inverse Galois problem for $G=(Z / p Z)^{n}$ has a positive answer.
Here is a proof in the case $p=2$ and $n=3$. It depends on the following lemma
Lemma
$p=2$, and let

## The inverse local lifting problem for $G=(Z / p Z)^{n}, n>1$

The condition $d p=\left(m_{1}+1\right)(p-1)$ is not easy to realize because the geometry of branch points is rigid as we will see in the last lecture. Nevertheless one can show that the inverse Galois problem for $G=(Z / p Z)^{n}$ has a positive answer.
Here is a proof in the case $p=2$ and $n=3$. It depends on the following lemma
Lemma
$p=2$, and let
$Y^{2}=f(X)=\left(1+\alpha_{1} X\right)\left(1+\alpha_{2} X\right)\left(1+\left(\alpha_{1}^{1 / 2}+\alpha_{2}^{1 / 2}\right)^{2} X\right)$

## The inverse local lifting problem for $G=(Z / p Z)^{n}, n>1$

The condition $d p=\left(m_{1}+1\right)(p-1)$ is not easy to realize because the geometry of branch points is rigid as we will see in the last lecture. Nevertheless one can show that the inverse Galois problem for $G=(Z / p Z)^{n}$ has a positive answer.
Here is a proof in the case $p=2$ and $n=3$. It depends on the following lemma

## Lemma

$p=2$, and let
$Y^{2}=f(X)=\left(1+\alpha_{1} X\right)\left(1+\alpha_{2} X\right)\left(1+\left(\alpha_{1}^{1 / 2}+\alpha_{2}^{1 / 2}\right)^{2} X\right)$
with $\alpha_{i} \in W(k)^{\text {alg }}$ and let $a_{i} \in k$ the reduction of $\alpha_{i}$ mod $\pi$. We assume that $a_{1} a_{2}\left(a_{1}+a_{2}\right)\left(a_{1}^{2}+a_{2}^{2}+a_{1} a_{2}\right) \neq 0$.

## The inverse local lifting problem for $G=(Z / p Z)^{n}, n>1$

The condition $d p=\left(m_{1}+1\right)(p-1)$ is not easy to realize because the geometry of branch points is rigid as we will see in the last lecture. Nevertheless one can show that the inverse Galois problem for $G=(Z / p Z)^{n}$ has a positive answer.
Here is a proof in the case $p=2$ and $n=3$. It depends on the following lemma

## Lemma

$p=2$, and let
$Y^{2}=f(X)=\left(1+\alpha_{1} X\right)\left(1+\alpha_{2} X\right)\left(1+\left(\alpha_{1}^{1 / 2}+\alpha_{2}^{1 / 2}\right)^{2} X\right)$
with $\alpha_{i} \in W(k)^{\text {alg }}$ and let $a_{i} \in k$ the reduction of $\alpha_{i}$ mod $\pi$. We assume that $a_{1} a_{2}\left(a_{1}+a_{2}\right)\left(a_{1}^{2}+a_{2}^{2}+a_{1} a_{2}\right) \neq 0$.
Then $f(X)=(1+\beta X)^{2}+\alpha_{1} \alpha_{2}\left(\alpha_{1}^{1 / 2}+\alpha_{2}^{1 / 2}\right)^{2} X^{3}$.

## The inverse local lifting problem for $G=(Z / p Z)^{n}, n>1$

The condition $d p=\left(m_{1}+1\right)(p-1)$ is not easy to realize because the geometry of branch points is rigid as we will see in the last lecture. Nevertheless one can show that the inverse Galois problem for $G=(Z / p Z)^{n}$ has a positive answer.
Here is a proof in the case $p=2$ and $n=3$. It depends on the following lemma

## Lemma

$p=2$, and let
$Y^{2}=f(X)=\left(1+\alpha_{1} X\right)\left(1+\alpha_{2} X\right)\left(1+\left(\alpha_{1}^{1 / 2}+\alpha_{2}^{1 / 2}\right)^{2} X\right)$
with $\alpha_{i} \in W(k)^{\text {alg }}$ and let $a_{i} \in k$ the reduction of $\alpha_{i} \bmod \pi$. We assume that $a_{1} a_{2}\left(a_{1}+a_{2}\right)\left(a_{1}^{2}+a_{2}^{2}+a_{1} a_{2}\right) \neq 0$.
Then $f(X)=(1+\beta X)^{2}+\alpha_{1} \alpha_{2}\left(\alpha_{1}^{1 / 2}+\alpha_{2}^{1 / 2}\right)^{2} X^{3}$.
Set $R:=W(k)\left[2^{1 / 3}\right]$ and $X=2^{2 / 3} T^{-1}$, and $Y=1+\beta X+2 Z$

## The inverse local lifting problem for $G=(Z / p Z)^{n}, n>1$

The condition $d p=\left(m_{1}+1\right)(p-1)$ is not easy to realize because the geometry of branch points is rigid as we will see in the last lecture. Nevertheless one can show that the inverse Galois problem for $G=(Z / p Z)^{n}$ has a positive answer.
Here is a proof in the case $p=2$ and $n=3$. It depends on the following lemma
Lemma
$p=2$, and let
$Y^{2}=f(X)=\left(1+\alpha_{1} X\right)\left(1+\alpha_{2} X\right)\left(1+\left(\alpha_{1}^{1 / 2}+\alpha_{2}^{1 / 2}\right)^{2} X\right)$
with $\alpha_{i} \in W(k)^{\text {alg }}$ and let $a_{i} \in k$ the reduction of $\alpha_{i} \bmod \pi$. We assume that $a_{1} a_{2}\left(a_{1}+a_{2}\right)\left(a_{1}^{2}+a_{2}^{2}+a_{1} a_{2}\right) \neq 0$.
Then $f(X)=(1+\beta X)^{2}+\alpha_{1} \alpha_{2}\left(\alpha_{1}^{1 / 2}+\alpha_{2}^{1 / 2}\right)^{2} X^{3}$.
Set $R:=W(k)\left[2^{1 / 3}\right]$ and $X=2^{2 / 3} T^{-1}$, and $Y=1+\beta X+2 Z$
then $Z^{2}+\left(1+2^{2 / 3} \beta T\right) Z=\alpha_{1} \alpha_{2}\left(\alpha_{1}^{1 / 2}+\alpha_{2}^{1 / 2}\right)^{2} T^{-3}$ which gives $\bmod \pi$
$z^{2}+z=a_{1} a_{2}\left(a_{1}+a_{2}\right)^{2} t^{-3}$.

## The idea is to consider the compositum of three 2 -cyclic covers of $\mathbb{P}_{K}^{1}$ given by

The idea is to consider the compositum of three 2-cyclic covers of $\mathbb{P}_{K}^{1}$ given by $Y_{1}^{2}=\left(1+\alpha_{1} X\right)\left(1+\alpha_{2} X\right)\left(1+\left(\alpha_{1}^{1 / 2}+\alpha_{2}^{1 / 2}\right)^{2} X\right)$

The idea is to consider the compositum of three 2-cyclic covers of $\mathbb{P}_{K}^{1}$ given by

$$
\begin{aligned}
& Y_{1}^{2}=\left(1+\alpha_{1} X\right)\left(1+\alpha_{2} X\right)\left(1+\left(\alpha_{1}^{1 / 2}+\alpha_{2}^{1 / 2}\right)^{2} X\right) \\
& Y_{1}^{2}=\left(1+\alpha_{2} X\right)\left(1+\alpha_{3} X\right)\left(1+\left(\alpha_{2}^{1 / 2}+\alpha_{3}^{1 / 2}\right)^{2} X\right)
\end{aligned}
$$

The idea is to consider the compositum of three 2-cyclic covers of $\mathbb{P}_{K}^{1}$ given by

$$
\begin{aligned}
& Y_{1}^{2}=\left(1+\alpha_{1} X\right)\left(1+\alpha_{2} X\right)\left(1+\left(\alpha_{1}^{1 / 2}+\alpha_{2}^{1 / 2}\right)^{2} X\right) \\
& Y_{1}^{2}=\left(1+\alpha_{2} X\right)\left(1+\alpha_{3} X\right)\left(1+\left(\alpha_{2}^{1 / 2}+\alpha_{3}^{1 / 2}\right)^{2} X\right) \\
& Y_{1}^{2}=\left(1+\alpha_{3} X\right)\left(1+\alpha_{1} X\right)\left(1+\left(\alpha_{3}^{1 / 2}+\alpha_{1}^{1 / 2}\right)^{2} X\right)
\end{aligned}
$$

The idea is to consider the compositum of three 2-cyclic covers of $\mathbb{P}_{K}^{1}$ given by $Y_{1}^{2}=\left(1+\alpha_{1} X\right)\left(1+\alpha_{2} X\right)\left(1+\left(\alpha_{1}^{1 / 2}+\alpha_{2}^{1 / 2}\right)^{2} X\right)$ $Y_{1}^{2}=\left(1+\alpha_{2} X\right)\left(1+\alpha_{3} X\right)\left(1+\left(\alpha_{2}^{1 / 2}+\alpha_{3}^{1 / 2}\right)^{2} X\right)$ $Y_{1}^{2}=\left(1+\alpha_{3} X\right)\left(1+\alpha_{1} X\right)\left(1+\left(\alpha_{3}^{1 / 2}+\alpha_{1}^{1 / 2}\right)^{2} X\right)$
with $a_{1}+a_{2}+a_{3} \neq 0,1+\left(a_{1}+a_{2}+a_{3}\right)\left(a_{1}^{-1}+a_{2}^{-1}+a_{3}^{-1}\right) \neq 0$ and analoguous conditions as in the lemma.

The idea is to consider the compositum of three 2 -cyclic covers of $\mathbb{P}_{K}^{1}$ given by $Y_{1}^{2}=\left(1+\alpha_{1} X\right)\left(1+\alpha_{2} X\right)\left(1+\left(\alpha_{1}^{1 / 2}+\alpha_{2}^{1 / 2}\right)^{2} X\right)$ $Y_{1}^{2}=\left(1+\alpha_{2} X\right)\left(1+\alpha_{3} X\right)\left(1+\left(\alpha_{2}^{1 / 2}+\alpha_{3}^{1 / 2}\right)^{2} X\right)$ $Y_{1}^{2}=\left(1+\alpha_{3} X\right)\left(1+\alpha_{1} X\right)\left(1+\left(\alpha_{3}^{1 / 2}+\alpha_{1}^{1 / 2}\right)^{2} X\right)$ with $a_{1}+a_{2}+a_{3} \neq 0,1+\left(a_{1}+a_{2}+a_{3}\right)\left(a_{1}^{-1}+a_{2}^{-1}+a_{3}^{-1}\right) \neq 0$ and analoguous conditions as in the lemma.

Then any pair of 2-covers have in common 2 branch points and any triple of 2 -covers have in common 1 branch point. This insure that $d_{\eta}=d_{s}$

## Minimal stable model for the pointed disc

From now we shall assume that $\sigma$ is an order $p$-automorphism and the its fix points are rational over $K$.

Proposition
Order p-automorphisms with one fix point are linearizable.

## Minimal stable model for the pointed disc

From now we shall assume that $\sigma$ is an order $p$-automorphism and the its fix points are rational over $K$.

Proposition
Order p-automorphisms with one fix point are linearizable.

Now we assume that $|\operatorname{Fix} \sigma|=m+1>1$ and Fix $\sigma=\left\{z_{0}, z_{1}, \ldots, z_{m}\right\}$

## Minimal stable model for the pointed disc

From now we shall assume that $\sigma$ is an order $p$-automorphism and the its fix points are rational over $K$.

Proposition
Order p-automorphisms with one fix point are linearizable.

Now we assume that $|\operatorname{Fix} \sigma|=m+1>1$ and Fix $\sigma=\left\{z_{0}, z_{1}, \ldots, z_{m}\right\}$
Minimal stable model for the pointed disc $(X, \operatorname{Fix} \sigma)$

## Minimal stable model for the pointed disc

From now we shall assume that $\sigma$ is an order $p$-automorphism and the its fix points are rational over $K$.

Proposition
Order p-automorphisms with one fix point are linearizable.

Now we assume that $|\operatorname{Fix} \sigma|=m+1>1$ and Fix $\sigma=\left\{z_{0}, z_{1}, \ldots, z_{m}\right\}$
Minimal stable model for the pointed disc $(X, \operatorname{Fix} \sigma)$
The method:

## Minimal stable model for the pointed disc

From now we shall assume that $\sigma$ is an order $p$-automorphism and the its fix points are rational over $K$.

Proposition
Order p-automorphisms with one fix point are linearizable.

Now we assume that $|\operatorname{Fix} \sigma|=m+1>1$ and Fix $\sigma=\left\{z_{0}, z_{1}, \ldots, z_{m}\right\}$
Minimal stable model for the pointed disc $(X, \operatorname{Fix} \sigma)$
The method:
Let $v(\rho)=\inf f_{i \neq j}\left\{v\left(z_{i}-z_{j}\right)\right\}=v\left(z_{i_{0}}-z_{i_{1}}\right)$

## Minimal stable model for the pointed disc

From now we shall assume that $\sigma$ is an order $p$-automorphism and the its fix points are rational over $K$.

Proposition
Order p-automorphisms with one fix point are linearizable.

Now we assume that $|\operatorname{Fix} \sigma|=m+1>1$ and Fix $\sigma=\left\{z_{0}, z_{1}, \ldots, z_{m}\right\}$
Minimal stable model for the pointed disc $(X, \operatorname{Fix} \sigma)$
The method:
Let $v(\rho)=\inf _{i \neq j}\left\{v\left(z_{i}-z_{j}\right)\right\}=v\left(z_{i_{0}}-z_{i_{1}}\right)$
A blowing up along the ideal $\left(Z-z_{i_{0}}, \rho\right)$ induces a new model in which the specialization map induces a non trivial partition on Fix $\sigma$.

## Minimal stable model for the pointed disc

From now we shall assume that $\sigma$ is an order $p$-automorphism and the its fix points are rational over $K$.

Proposition
Order p-automorphisms with one fix point are linearizable.

Now we assume that $|\operatorname{Fix} \sigma|=m+1>1$ and Fix $\sigma=\left\{z_{0}, z_{1}, \ldots, z_{m}\right\}$
Minimal stable model for the pointed disc $(X, \operatorname{Fix} \sigma)$
The method:
Let $v(\rho)=\inf _{i \neq j}\left\{v\left(z_{i}-z_{j}\right)\right\}=v\left(z_{i_{0}}-z_{i_{1}}\right)$
A blowing up along the ideal $\left(Z-z_{i_{0}}, \rho\right)$ induces a new model in which the specialization map induces a non trivial partition on Fix $\sigma$.

An induction argument will produce a minimal stable model $\mathscr{X}_{\sigma}$ for the pointed disc ( $X$, Fix $\sigma$ ).

## Geometry of order p-automorphisms of the disc

Proposition

The fix points specialize in $\mathscr{X}_{\sigma}$ in the terminal components.

## Geometry of order p-automorphisms of the disc

Proposition
The fix points specialize in $\mathscr{X}_{\sigma}$ in the terminal components.

Theorem
Let $\sigma \in \operatorname{Aut}_{R} R[[Z]]$ be an automorphism of order $p$ such that

## Geometry of order p-automorphisms of the disc

Proposition
The fix points specialize in $\mathscr{X}_{\sigma}$ in the terminal components.

Theorem
Let $\sigma \in \mathrm{Aut}_{R} R[[Z]]$ be an automorphism of order $p$ such that
$1<\mid$ Fix $\sigma \mid=m+1<p$,

## Geometry of order p-automorphisms of the disc

Proposition
The fix points specialize in $\mathscr{X}_{\sigma}$ in the terminal components.

## Theorem

Let $\sigma \in \mathrm{Aut}_{R} R[[Z]]$ be an automorphism of order $p$ such that
$1<|\operatorname{Fix} \sigma|=m+1<p$, $r(\sigma) \neq I d$.

## Geometry of order p-automorphisms of the disc

Proposition
The fix points specialize in $\mathscr{X}_{\sigma}$ in the terminal components.

## Theorem

Let $\sigma \in \operatorname{Aut}_{R} R[[Z]]$ be an automorphism of order $p$ such that
$1<\mid$ Fix $\sigma \mid=m+1<p$,
$r(\sigma) \neq I d$.
Then the minimal stable model for the pointed disc $(X, F i x \sigma)$ has only one component.

## Geometry of order p-automorphisms of the disc

## Proposition

The fix points specialize in $\mathscr{X}_{\sigma}$ in the terminal components.

## Theorem

Let $\sigma \in \operatorname{Aut}_{R} R[[Z]]$ be an automorphism of order $p$ such that
$1<|\operatorname{Fix} \sigma|=m+1<p$,
$r(\sigma) \neq I d$.
Then the minimal stable model for the pointed disc ( $X$, Fix $\sigma$ ) has only one component.
There is a finite number of conjugacy classes of such automorphisms.

