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ORDER p AUTOMORPHISMS OF THE OPEN DISC
OF A p -ADIC FIELD

BARRY GREEN AND MICHEL MATIGNON

0. Introduction

Let k be an algebraically closed field of characteristic p > 0, and let R be a
complete discrete valuation ring dominating the ring of Witt vectors W (k). Let π
denote a uniformizing parameter of R, and let Ralg be the integral closure in a
fixed algebraic closure of K := Fr(R). Throughout the paper we shall assume that
R contains a prescribed primitive p-th root of unity, which we denote by ζ.

In our previous paper [G-M], we were concerned with liftings of G-Galois covers
of proper smooth curves over k to G-Galois covers of curves over R. There we
showed that this problem is of local nature and so the crucial study is that of G-
covers R[[Z]]/R[[Z]]G which induce G-covers k[[z]]/k[[z]]G mod π, i.e. determination
of the automorphism groups G of k[[z]] which can be lifted to automorphism groups
of R[[Z]]. Another weaker question is to ask what the finite groups which occur as
subgroups of AutRR[[Z]] with no inertia at (π) are.

We were able to show that the local lifting for p2-cyclic covers is always possible;
the key point was to produce enough automorphisms of order p of R[[Z]] which
are p-powers. This confirmed our conviction that the objects to be studied are
automorphisms of order p, which is the aim of this paper.

Now we describe the content of the paper. In §II we explain that this study is
that of R-automorphisms σ ∈ AutRR[[Z]] with series representation

σ(Z) = ζZ(1 + a1Z + · · ·+ amZm + · · · ) ∈ R[[Z]],

such that the p-th iterate σp(Z) = Z. Our programme is to classify such automor-
phisms up to a change of parameter.

Such an automorphism σ acts naturally on Do := Spec R[[Z]] giving the following
geometric data: let Fσ be the set of points fixed by σ, i.e. the roots in the maximal
ideal of Ralg of the series σ(Z) − Z. It is shown that they are simple roots and
in the sequel we shall only consider those σ for which Fσ = {Z0, ..., Zm} is non-
empty and for convenience the Zi are R-rational. We can attach Hurwitz data,
Hσ = (h0, ..., hm) ∈ (Z/pZ)m+1, to the fixed points of an order p automorphism,
which gives the list of exponents of ζ which occur in the series representation of the
action of σ on the tangent space of the fixed points.
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We then consider the minimal semi-stable model f : (Do, Fσ) → Do of the p -adic
open disc Do

K for which the points in Fσ specialize to distinct smooth points. The
morphism f is a composition of blowing-ups at closed points. We intend to describe
the morphism:

ϕ : (Do, Fσ) → (Do, Fσ)/〈σ〉 := D′o.
Let Do

s (resp. D′os) denote the special fibre, which is a tree of projective lines
that will be oriented positively with respect to the original generic point (π) of Do

s

in Do by the blowing up process. Each successive blowing up enlarges the tree
representing the special fibre by a copy of P1

k attached to the previous tree at a
double crossing point. In this way we have a canonical infinite point, ∞, on each
irreducible component of Do

s (resp. D′os), namely the first closed point we meet
in an injective path from the root (π). On the special fibres ϕs : Do

s → D′os is a
homeomorphism. Let Ei, E′i (resp. Pα, P ′α) be the terminal (resp. the internal)
components of Do

s and D′os. The canonical infinite points on these components are
denoted by ∞i (resp. ∞α).

Fixing notation in order to explain the main results of the paper, let {Zi,j, 0 ≤
j ≤ mi} be the set of fixed points of σ whose specialization zi,j lies in Ei with
image ti,j := ϕs(zi,j) ∈ E′i, and let hi,j be the Hurwitz data at Zi,j . By studying
the variation of the different along paths of the special fibre, we show (Proposition
II.1.2) that the points fixed by σ specialize to the terminal components.

Following this we study the differential data that can be associated to each
irreducible component of the special fibre D′os. The result proved here (Theorem
III.2.1) is the main theorem of the paper; using it we show that if 0 < m < p, then
Do

s has only one component and consequently the fixed points are all equidistant.
More precisely, given an internal component P ′α let tα,n ∈ P ′α, 1 ≤ n ≤ nα, be
its crossing points. To each point tα,n we associate the terminal components E′i,
indexed by i ∈ In, which are connected to tα,n by a positive path. We set mα,n+1 :=∑

i∈In
(mi + 1). Then:

Theorem III.2.1. There exist functions ūi ∈ k(E′i) with ord∞i ūi = 0, such
that the differentials ωi = dūi have divisor support in {ti,j}j ∪ {∞i} and satisfy
ordti,j ωi ≡ hi,j − 1 mod p and ord∞i ωi = mi − 1. Moreover, (mi, p) = 1 and∑

j hi,j ≡ 0 mod p.

There exist functions ūα ∈ k(P ′α) such that the differentials ωα = dūα have
divisor support in the points {tα,n}n ∪ {∞α}, ordtα,n ωα = −(mα,n + 1) < 0 and
ord∞α ωα = −2 +

∑
n(mα,n + 1). Moreover, (−1 +

∑
n(mα,n + 1), p) = 1 and

(mα,n, p) = 1.

The differentials come from the equations of the cover ϕs : Do
s → D′os. The proof

of this requires an analysis of the degeneration of µp-torsors of punctured closed
discs. Namely, the variation of the degree of the different over concentric discs
(Proposition III.1.2.), which we combine in the case where the µp-torsor is induced
by σ as above, with the study of the different of the discrete valuations at the
generic points of irreducible components in Do

s . A first notable application is the
following:

Theorem III.3.1. Let σ be an order p automorphism of Do := Spec R[[Z]] having
m + 1 geometric fixed points and suppose 0 < m < p. Then Do

s has only one
component, which is a projective line; i.e. the fixed points are all equidistant.

Matignon Michel
Version française                                                                               
Comme il est indiqué dans la thèse de Yannick Henrio, il faut corriger l'énoncé du théorème 2.1. 
Dans le cas des bouts $E'_i$ la fonction ${\overline u_i }$ est uniquement définie modulo la multiplication par une puissance $p$-ième aussi la différentielle logarithmique $\omega_i:=\frac{d{\overline u_i }}{{\overline u_i }}$ est uniquement définie et son diviseur est 
$(m_i-1)\infty_i-\sum_jt_{i,j}$, de plus le résidu $\res_{t_{i,j}}\omega_i=h_{i,j} \mod p$. 


Traduction
As indicated in Yannick Henrio's thesis, 
we have to correct the statement of the theorem 2.1. 
In the case of the ends $E'_i$ the function ${overline u_i }$ is only defined modulo the multiplication by a power $p$-th so the logarithmic differential $\omega_i:=\frac{d{overline u_i }}$ is only defined and its divisor is 
$(m_i-1)\infty_i-\sum_jt_{i,j}$, moreover the residue $\res_{t_{i,j}}\omega_i=h_{i,j} \mod p$. 
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Moreover, one can show that up to automorphism of the affine line, the special-
ization of the fixed points ((m + 1)-tuples) on this projective line belong to a finite
set. For automorphisms σ with no inertia at (π), the radius of the closed disc which
corresponds to this component is 1

mv(ζ − 1), and this provides us with a hint for
the description of the conjugacy class in AutRR[[Z]] of such σ. In the final section
we prove:

Theorem V.6.3.1. For 0 < m < p, modulo a change of parameter, there are only
a finite number of order p automorphisms of the open disc with no inertia at (π),
i.e. in AutR R[[Z]] there is only a finite set of conjugacy classes of such order p
automorphisms. Moreover, they occur when considering the p-cyclic covers of P1

Qur
p

with potentially good reduction of type Am, and are defined by the equation Y p =∏
0≤i≤m

(1−TiX)hi , where (Ti)i ∈ (Zp
ur)m+1 are in m+1 distinct classes mod p and

satisfy h0T
k
0 +h1T

k
1 + · · ·+hmT k

m = 0, 0 ≤ k ≤ m−1, for (hi)0≤i≤m ∈ (Z\pZ)m+1.

We remark that the situation in the case m > p is far from understood; in this
case transposing Deuring’s theory of normal forms for elliptic curves (p = 2, m = 3)
to p-cyclic covers of P1 we show that trees with more than one terminal component
occur naturally (§III.5).

In §IV we give applications of the previous sections to the local lifting question;
namely, we show:

Proposition IV.1.1. If p is 2 or 3 and G = (Z/pZ)2, then there is a G-cover
k[[z]]/k[[z]]G which can be lifted to a G-cover R[[Z]]/R[[Z]]G, where R =
Zp[(ζ − 1)1/(p−1)].

And concerning meta-cyclic groups we prove the following:

Proposition IV.2.2.2. Let G = 〈σ, τ〉, with o(σ) = p, o(τ) = p−1 and τστ−1 =
σh−1

(h is a primitive (p− 1)-th root of 1 modulo p). If p > 2, then there is a G-
cover k[[z]]/k[[z]]G, which can be lifted to a G-cover R[[Z]]/R[[Z]]G, for R = Zp[ζ] and
ζ a primitive p-th root of 1.

Section V is concerned with an attempt to parametrize automorphisms of order p
of the open disc (resp. those with no inertia at (π)) and to describe their conjugacy
classes in AutRR[[Z]]. Roughly speaking we look at the relation

σ(Z) = ζZ(1 + a1Z + · · ·+ amZm + · · · ) ∈ R[[Z]]

in terms of the ai considered as indeterminates and expand the p-th iterate as a
series

σp(Z) = Z(1 + E1Z + · · ·+ EnZn + · · · ),
where En ∈ Zp[ζ][ai]. The object we study is the common zero set (ai ∈ R)i∈N of
the En. We show that if we give weight i to ai, then En is a homogeneous form of
weight n in the ai, which is due to the action of Gm on the parameter Z. Moreover,
the group of parameters U1(R[[Z]]) := Z(1+ZR[[Z]]) acts on σ via conjugation, and
so induces an action on En when taking the p-th iterate. One shows that Ep is an
invariant form.

We conclude this study with a description of conjugacy classes in the cases m = 0
and 0 < m < p with no inertia at (π).

This paper is a revised version of a preprint we distributed in 1996; at that time
we were only able to prove Theorem III.3.1 for m = 2, 3 and 4 in the case where there
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is no inertia at (π); our method was based on the study of semi-stable reduction
of p-cyclic covers of P1

K and gave us enough confidence to pose this theorem as a
conjecture. In November 1996, M. Raynaud ([Ra4]) communicated a proof sketch
to us in the general case. This provided the framework for further study of order
p automorphisms into which the examples we had treated previously fit perfectly.
We are very grateful to M. Raynaud for giving us the opportunity to present his
proof here and thank him for helpful discussions. We are also grateful to the referee
for the many helpful suggestions he made, and in particular for pointing out to us
how to use formal groups in order to produce order pn automorphisms of the p -adic
open disc.

I. Notation and the geometry of p -adic discs

In this section we intend to fix the notation.

1. p -adic open (resp. closed) discs.

1.1. Open discs. Recall that by using the Weierstrass Preparation Theorem [B],
Chap. 7, p. 38, we can describe the geometry of the R-scheme Do := Spec R[[Z]].
Namely, the special fibre Do

s := Do×Rk has only one closed point which corresponds
to the ideal (π, Z) of R[[Z]], and the closed points of the generic fibre, Do

K :=
Do ×R K, correspond to the irreducible distinguished polynomials of R[[Z]]. These
polynomials have roots in the maximal ideal of the integral closure Ralg of R in
the algebraic closure Kalg. This allows us to identify Do

K with the open disc {z ∈
Ralg | v(z) > 0} modulo Galois action, where v is the unique extension of the v-adic
valuation on K to Kalg.

The v-adic distance on the open disc {z ∈ Ralg | v(z) > 0} induces a distance
on the set Do(K) of K-rational points of Do which is independent of the choice of
parameter Z of R[[Z]].

When speaking about the open disc over R in the sequel, we shall refer to Do or
Do

K without distinction.

1.2. Closed discs. These are defined in the same way as above, but replacing R[[Z]]
by R〈Z〉 := {∑n≥0 anZn | v(an) → ∞} and Do by Dc. Note that the localisation
at π is the Tate algebra K〈Z〉 and so Dc

K is a closed disc.
In the following paragraphs everything settled for an open disc can be transposed

to the case of a closed disc; this is left to the reader.

2. Semi-stable models of marked p -adic open (resp. closed) discs and
oriented trees. Let F := {(si)0≤i≤m : Spec K → Do} be a finite set of rational
points in Do

K . The pair (Do, F ) is called a marked open disc. Assume that m > 0,
let Zi = si(K) and choose ρ ∈ R so that v(ρ) := inf0≤j≤m v(Zj − Zi) is the radius
of the smallest closed disc containing all the Zi. Observe that v(ρ) is independent
of i. Let bDo be the blowing up of Do with respect to the ideal (ρ, Z − Z0). The
special fibre is a projective line attached to the original generic point (π) of Do

s in
Do. Let zi := sp Zi be the specialization of Zi in bDo

s := bDo ×R k; the formal fibre
at zi is the class of Zi mod ρ and if there is another Zj in the Zi class, then the
process can be repeated with a new blowing up until we get a model Do of the open
disc Do

K with m + 1 sections ∫i : Spec R → Do extending the si and giving m + 1
(smooth) points in the special fibre.
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By construction the special fibre Do
s gives a tree of projective lines linked to the

original generic point (π) by double crossing points, and this enables us to orient
the tree starting from this “root” point. Each successive blowing up enlarges the
tree representing the special fibre by a copy of P1

k attached to it at a double crossing
point. In this way we have a canonical infinite point, ∞, on each component P1

k,
namely the first closed point of this component we meet in an injective path starting
from the root (π). We shall denote the terminal components by Ei and by Pα the
internal components.

The minimality of the construction means that each terminal component contains
at least two points of the form ∫i(k), and each internal component contains at least
three points from the set consisting of the points of the form ∫i(k) and the crossing
points with other components. This model Do is uniquely defined and we call it
the minimal semi-stable model of the marked open disc (Do, F ).

3. Automorphisms of an open (resp. closed) disc and fixed points. Let σ
be an R-automorphism of R[[Z]]. Then σ is defined by a series

σ(Z) = a0 + a1Z + · · ·+ aiZ
i + · · · ,

and as it is an automorphism we must have a0 ∈ πR and a1 ∈ R×. Moreover σ
induces a Spec R automorphism of the open disc Do, which we call σ̃. For rational
points (Z − Z0) ∈ Do one has σ̃((Z − Z0)) = (Z − Z̃0), where Z̃0 =

∑∞
i=0 aiZ

i
0.

Such a point is a fixed point if and only if Z0 ∈ πR and Z0 =
∑∞

i=0 aiZ
i
0. More

generally, P ∈ Do is a fixed point if and only if P = (π, Z), (π), (0) or is of height
1 and P ⊃ (σ(Z) − Z). In the sequel we shall refer to this last set when we speak
about fixed points. Moreover, we use the terminology geometric fixed points and
denote by Fσ the points they define in the geometric generic fibre, i.e. the zeroes
in the maximal ideal of Ralg of the series σ(Z)−Z. Throughout the paper we shall
always work with R-automorphisms and so drop the reference to R.

II. Order p automorphisms of p -adic discs

1. Automorphisms of order p with fixed points, the semi-stable model
marked by the fixed points and variation of the different along a path.
If σ is an automorphism of R[[Z]] of order p, then it can happen that σ has no fixed
point. From now on we shall consider σ’s for which Fσ 6= 6©, say Fσ := {Z0, ..., Zm};
note that in [G-M] we have shown that if σ doesn’t induce the identity residually
(we say that σ has no inertia at (π)), then |Fσ| = m + 1, where m + 1 is the Hasse
conductor of σ mod π and (m, p) = 1. Moreover, as we are not working in a fixed
discrete valuation ring, for convenience of the calculus we shall often assume that
the Zi are in R and so we can consider the minimal semi-stable model (Do, Fσ) of
the marked open disc (Do, Fσ) (see I.2). We denote by ∫i : Spec R → Do the section
such that ∫i(K) = Zi. In this paragraph we describe the relevant elementary metric
facts on fixed points in terms of the oriented tree Do

s .
After a translation we shall center the disc Do in one of these points, say in

0 ∈ Fσ. Then it follows ([Co], Lemma 14, p. 245) that there is a primitive p-th root
ζ ∈ R giving the action of σ on the tangent space at 0, i.e.

σ(Z) = ζZ(1 + a1Z + a2Z
2 + · · · ).
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This gives

σ(Z)
Z

− 1 = (ζ − 1) + a1ζZ + a2ζZ2 + · · ·
= ζ(a0 + a1Z + a2Z

2 + · · · ),

where a0 = ζ−1(ζ − 1). In particular the roots of σ(Z) − Z are distinct and using
the Weierstrass Preparation Theorem we have the following factorisation:

σ(Z)
Z

− 1 = ζamfm(Z)u(Z),

where m = inf l≥0{l : v(al) ≤ v(ai) for all i}, u(Z) − 1 ∈ (π, Z) and fm(Z) is a
unitary distinguished polynomial of degree m, so that |Fσ | = m + 1. We remark
that the integer m is also referred to as the Weierstrass degree of the series σ(Z)

Z −1
in the literature.

Given Zi ∈ Fσ, we want to study the tree Do
s in a “neighborhood” of zi = ∫i(k).

As said previously, for convenience we can assume that Zi = 0. Given ρ ∈ Ralg

with v(ρ) ≥ 0, after enlarging R so that ρ ∈ R, we let vρ be the Gauss valuation
on Fr(R[[Z]]) relative to Z−Zi

ρ = Z
ρ and d(v(ρ)) be the degree of the different of

the vρ-valued extension Fr(R[[Z]])/ Fr(R[[Z]]〈σ〉). The Gauss valuation on Fr(R[[Z]])
relative to Z

ρ is defined by

vρ

( ∑
n≥0

anZn
)

:= inf
n≥0

(
v(an) + nv(ρ)

)
for

∑
n≥0

anZn ∈ R[[Z]] and extended to Fr(R[[Z]]) in the canonical way. We remark

that the residual extension is purely inseparable of degree p and Z
ρ generates the

valuation ring in Fr(R[[Z]]) over that of Fr(R[[Z]]〈σ〉). Therefore one has

d(v(ρ)) = (p− 1)vρ(
σ(Z)

Z
− 1)

= (p− 1) inf
n≥0

(v(ζ − 1), v(an) + nv(ρ)) ≤ v(p).

Let d(σ, Zi) be the graph of d(v(ρ)) for v(ρ) ∈ Q+. One has fm(Z) =
∏

Zj∈Fσ,j 6=i

(Z−Zj)

and it follows that d(σ, Zi) is piecewise linear with breaks in the set

{v(Zj − Zi), j 6= i} := {v(ρ1), v(ρ2), ..., v(ρ`i)},

where v(ρ1) < v(ρ2) < ... < v(ρ`i).
Let µk, 1 ≤ k ≤ `i, be the cardinality of the set of Zj ∈ Fσ such that

v(ρk) ≤ v(Zj − Zi) < ∞; in particular µ1 = m doesn’t depend on the center
Zi. Then the gradient of d(σ, Zi) in the Q-interval ]0, v(ρ1)[ is s1 := (p− 1)m and
in ]v(ρk), v(ρk+1)[ it is sk+1 := (p− 1)µk+1 < sk := (p− 1)µk.

Note that v(am) +
∑

j 6=i v(Zj − Zi) = v(ζ − 1) so d(0) = (p − 1)v(am) ≤
(p − 1)v(ζ − 1) = v(p) and for v(ρ) ≥ v(ρ`i) one has d(v(ρ)) = v(p). We can
represent the graph d(σ, Zi) as in Figure 1.
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v(   )ρ

Figure 1

From its definition it follows that d(0) is independent of the center Zi; so we can
assert:

Proposition 1.1. If we let µ`i+1 := 0, then∑
1≤j≤`i

(µj − µj+1)v(ρj) =
∑
j 6=i

v(Zj − Zi) = −v(am) + v(ζ − 1)

=
1

p− 1
(−d(0) + v(p))

is independent of i.

More generally we remark that if the two points Zi, Zj are near to each other,
the two graphs d(σ, Zi) and d(σ, Zj) look the same. Precisely, from the definition
of the different they coincide for v(ρ) ≤ v(Zi−Zj). In particular, in the case where
v(ρ`i) ≤ v(Zi − Zj) (see the definition above) it follows that d(σ, Zi) and d(σ, Zj)
are equal and so v(ρ`i) = v(ρ`j ), i.e. the fixed points which are in the immediate
neighborhood of Zi for the v-adic topology are equidistant and so a blowing up
of Do centered in the ideal (ρ`i , Z − Zi) distinguishes the specialization of these
points. In other words:

Proposition 1.2. The specializations of the fixed points in the minimal semi-stable
model (Do, Fσ) are in the terminal components.

Remark 1.3. The graph d(σ, Zi) describes the Newton polygon of the polynomial
(Z − Zi)fm(Z − Zi) and gives metric conditions on the minimal path on the tree
between ∞ and ∫i(k). Namely, the components we meet correspond to the breaks
v(ρk), 1 ≤ k ≤ `i, the value d(v(ρk)) to the different at the generic point of
the component and the graph in the interval ]v(ρk), v(ρk+1)[ to the variation of
the different in the formal fibre at the crossing point of the two corresponding
components (this is an open annulus centered in Zi).

Remark 1.4. Assume that the automorphism σ above is given by σ(Z) =
ζZ(1+a1Z + · · ·+amZm + · · · ), where ai ∈ Zp[ζ]. Then fm(Z) = ζ−1+b1Z + · · ·+
bmZm ∈ Zp[ζ][Z] is an Eisenstein polynomial and it follows that the fixed points
are in the immediate neighborhood of 0, so that they are equidistant and the tree
Do

s has only one component.
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2. Hurwitz data.

Definition 2.1. Let σ be an order p automorphism of the open disc such that Fσ =
{Z0, Z1, ..., Zm} 6= 6©. Then σ(Z−Zi) = f ′(Zi)(Z−Zi)(1+b1(Z−Zi)+ · · · ), where
f(Z) denotes the power series corresponding to the automorphism σ. As o(σ) = p it
follows that f ′(Zi) is a primitive p-th root of 1. We shall call the Hurwitz data of σ

the (m+1)-tuple of integers, Hσ = (h0, h1, ..., hm), such that f ′(Zi) = ζhi
−1

, where
the integers hi and their inverses are defined mod p and are distinct from the class
0 mod p. If e ∈ N with (e, p) = 1, then Hσe−1 = (eh0, eh1, ..., ehm). Hence, when
we speak of the Hurwitz data of the cover R[[Z]]/R[[Z]]〈σ〉 we mean the equivalence
class of Hσ modulo the multiplication by F×p .

As Hσ represents the action of σ on the tangent space at the fixed points, it
follows that this doesn’t depend on the choice of parameter for the open disc Do.

3. Automorphisms with no inertia at (π) and p-cyclic covers of P1
R. Order

p automorphisms of the open disc with no inertia at (π) can be compactified as
order p automorphisms of a complete smooth curve, and so doing generate p-cyclic
covers of P1

K . We characterise these among p-cyclic covers of P1
K in terms of their

semi-stable reduction. We shall then use p-cyclic covers of P1
K in order to produce

order p automorphisms of the open disc with given Hurwitz data.

3.1. Compactification process. We first introduce a definition which we shall use
throughout the paper:

Definition 3.1.1. Let k be an algebraically closed field of characteristic p > 0,
and let C be a smooth proper curve over k; let σ be a k-automorphism of C of
order p. We shall say that the p-cyclic cover C → C/〈σ〉 is of type Am if this is an
étale cover of the affine line and the Hasse conductor at ∞ is m + 1.

Theorem 3.1.2. Suppose R contains the p-th roots of unity and let σ be an auto-
morphism of order p of R[[Z]] with no inertia at (π). Then there is a p-cyclic cover
of P1

K which has good reduction mod π, whose special fibre is totally ramified at a
point, say ∞, i.e. is a p-cyclic cover of P1

k of type Am, and is such that the cover
induced at the formal fibre at ∞ is isomorphic to R[[Z]]/R[[Z]]〈σ〉.

Proof. The extension R[[Z]]/R[[Z]]〈σ〉 is k[[z]]/(k[[z]]〈σ〉 = k[[t]]) modulo (π). Generi-
cally k[[z]]/k[[t]] is defined by an Artin-Schreier equation xp−x = q(1/t), for a poly-
nomial q without p-powers and of degree, say m (so having Hasse conductor m+1).
If we set s = 1/t, then the extension of Dedekind domains k[s, x]/k[s] can be lifted to
an extension of affinoid algebras K〈S〉[X ]/K〈S〉, where [(λX +1)p− 1]/λp = Q(S)
for some polynomial Q of degree m which lifts q. This p-cyclic cover extends to the
disc |S| ≤ |π′|−1 for some |π′| < 1. Moreover, the germ of prolongation is unique
up to isomorphism (see [Ra1], Proposition 3.4.1) and determined by the extension
k[[z]]/k[[z]]〈σ〉, thus one can apply the Prolongation Lemma III.1.1 of [G-M] in order
to glue with the morphism of open discs R[[Z]]/R[[Z]]〈σ〉. This gives a p-cyclic cover
of P1

K which is étale outside |S| > 1, ramified at the set of fixed points of σ, and
which has good reduction given by the equation xp − x = q(s).

3.2. p-rank. In order to characterise the p-cyclic covers which occur in this way, we
recall some classical definitions concerning p-rank of curves (see [Ra2]).



ORDER p AUTOMORPHISMS OF THE OPEN DISC OF A p -ADIC FIELD 277

Let k be an algebraically closed field of characteristic p > 0. Let X be a proper
connected k-curve and JX be its jacobian variety. The p-rank rX of X is the
dimension of the étale cohomology group H1(X, Z/pZ) over Z/pZ.

Let µp be the kernel of the multiplication by p in Gm. The canonical isomor-
phism H1(X, Z/pZ) ' Hom(µp, JX), implies that rX is also the k-dimension of
H1(X,OX)ss, which by definition is the biggest k-vector space in H1(X,OX)
on which the Frobenius F of X is bijective. In particular rX ≤ gX , the genus
dimk H1(X,OX) of X.

Assume that the curve X is reduced with only ordinary double points as sin-
gularities (a semi-stable curve). To this curve one associates a graph ΓX whose
vertices are the irreducible components of X and whose edges correspond to the
double points. If X̃ is the normalisation of X, then rX = rX̃ + dimZ H1(ΓX , Z)
and in particular rX = 0 if and only if the p-rank of each normalised irreducible
component is 0 and the graph ΓX is a tree.

Assume now that X is a smooth proper connected curve and is a p-cyclic cover
of P1

k. One has rX − 1 = p(0 − 1) + r(p − 1), where r is the number of ramified
points (Deuring-Šafarevič formula [D1], [Sa]; see [Cr] for a modern treatment). In
particular rX = 0 if and only if r = 1; in other words if and only if the cover is totally
ramified, say at ∞, and so is given by an Artin-Schreier equation xp − x = q(1/t),
where q is a polynomial which can be taken without p-powers and of degree, say,
m (so having conductor m + 1 at ∞). This is a p-cyclic cover of P1

k of type Am.
Hence we have proved that:

Proposition 3.2.1. The p-cyclic covers of P1
K which occur in the theorem above

are those which have good reduction with p-rank equal to 0.

Remark 3.2.2. One cannot expect a characterisation without fixing the type of
reduction (here potentially good reduction) because there are p-cyclic covers of P1

K

which have a semi-stable reduction with p-rank zero, but are not smooth (see [Ra3],
Theorem 2).

In conclusion, the theory of automorphisms of order p of the p -adic open disc
(with no inertia at (π)) is a by-product of the study of the semi-stable reduction of
p-cyclic covers of P1

K . In §§III and V we shall use this correspondence in order to
build and classify order p automorphisms of the open disc.

3.3. Examples.

3.3.1 [O-S-S] example. Let (m, p) = 1 and σ(Z) = Z(ζ + Zm)−1/m. Note that here
there is no ambiquity in the sense that among the m-th roots of ζ+Zm we mean the
one which expanded at 0 gives σ(Z) = ζ−1/mZ + · · · . Then o(σ) = p, the inertia
group of σ at (π) is trivial, Fσ consists of m + 1 fixed points, the oriented tree Do

s

has one component (compare with Remark 1.4. above) and Hσ = (−m, 1, 1, ..., 1),
i.e. at least m values are the same. (See Figure 2.)

Proof. Consider the Artin-Schreier cover xp − x = 1
tm that we lift to

(λX + 1)p − 1
λp

=
1

T m

(here λ := ζ − 1). This is a p-cyclic cover of P1 with good reduction of type
Am, moreover Z = X−1/m is a parameter for the disc over |T | < 1. Let σ be the
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m+1

Do
0

s

(1/m)v(  )λ

d(  , 0)   graphσ

. .
. .

.
v(p)

d(v(  ))ρ

ρv(   )

m(p-1)

Figure 2

automorphism such that σ(λX + 1) = ζ(λX + 1). Then

σ(Z)
Z

= (ζ + Zm)−1/m, with series f(Z) = Z(ζ + Zm)−1/m = ζ−1/mZ + · · ·
and

Fσ := {0} ∪ {m-th roots of −λ}.
In order to describe Hσ one can easily calculate the derivative f ′ at the fixed points.
Also, in the sequel we use the global equation between X and T in order to calculate
locally the action of σ on the tangent spaces at the ramification locus. One obtains
Hσ = (−m, 1, 1, . . . , 1).

3.3.2. Automorphisms of order p which are p-powers. Here we use [G-M]: Let
(m1, p) = 1 and consider the extension of k[[t]] defined by

xp − x = c(t−pm1 ,−t−m1),

where c(x, y) := [(x + y)p − xp + (−y)p]/p and the conductor is

m + 1 = pm1(p− 1) + m1 + 1.

Note that σ(x) = x + 1 is the p-th power of the automorphism defined by

τ(t−m1 ) = t−m1 + 1, τ(x) = x− c(t−m1 , 1).

We could lift in the manner of [O-S-S], but prefer to lift τ, i.e. we lift σ as a p-power.
Consider the p-cyclic cover of P1 defined by the equation(

λX + Expp(
µ

T m1
)
)p = (1 +

λ

T m1
) Expp(µpY )

where Y =
(
( λ

T m1 +1)p−1
)
/λp, λ = ζp

(2)−1, π := ζ(2)−1 and µ = Logp(1+π) (here
ζ(2) denotes a primitive p2-root of unity and we use the notation Gp to indicate the
truncation at Zp of G ∈ R[[Z]]).

The branch locus is

{0} ∪ { roots of T m1 = −λ} ∪ { roots of Expp(µpY ) = 0}
so over the open disc |T | < 1, the generic different dη = (1+m1+p(p−1)m1)(p−1)
and the special different ds = (m + 1)(p − 1) are equal. It follows (see [G-M],
I.3.4) that the cover is of type Am and above the disc |T | < 1 we have a disc
with parameter Z = X−1/m, and a Galois generator is given by σ(X) = ζX +
Expp( µ

T m1 ).
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As the roots giving the branch locus at a finite distance are simple it follows as
in the preceding case that Hσ = (−m, 1, 1, . . . , 1).

Representative diagram (geometry of Fσ). We intend to represent Fσ inside
the generic fibre DK , using the following convention: Open (resp. closed) discs are
represented by dotted ( resp. solid) circles. Moreover, the class of a point in a given
closed disc is represented by an open disc with the same radius centered at a point
of the closed disc. (See Figure 3.)

The graphs d(σ, Z0) and d(σ, Zj) are shown in Figure 4.

3.3.3. Automorphisms of order p` and Lubin-Tate formal groups. We would like
to thank the referee for pointing out the following method of producing order p`

automorphisms of p -adic open discs without inertia at π, for ` ≥ 1. Although these
automorphisms have quite special numerical data, for ` ≥ 3 this is the only way we
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know of producing such automorphisms. Although we will concentrate on the case
` = 1 below, the reader may easily adapt the reasoning to the general case. Our
reference to formal groups is [H].

Let K be a finite totally ramified degree n extension of Qp[ζ], where ζ is a prim-
itive p-th root of unity. Let R be the ring of integers in K and π be a uniformizing
parameter. We consider the series

f(Z) := Z +
Zp

π
+ ... +

Zpk

πk
+ ... ∈ K[[Z]],

observing the important fact that f(Z) converges on the open disc {z ∈ K | v(z) >
0}.

Then (see [H], p. 46)

F (Z1, Z2) := f−1(f(Z1) + f(Z2)) ∈ R[[Z1, Z2]]

and

[π]F (Z) := f−1(πf(Z)) ∈ R[[Z]],

and so defines a Lubin-Tate formal group, i.e., [π]F (Z) ≡ πZ mod Z2 and [π]F (Z)≡
Zp mod π. It is easily seen that for any a ∈ R there is a unique series [a]F (Z) ∈
R[[Z]] such that [a]F (F (Z1, Z2)) = F ([a](Z1), [a](Z2)) and [a]F (Z) ≡ aZ mod Z2.
Moreover, the map a → [a]F (Z) defines an injective homomorphism from R to
the endomorphism ring of the formal group law F (Z1, Z2). Hence, in particular,
σ(Z) := [ζ](Z) = f−1(ζf(Z)) is an order p-automorphism of R[[Z]].

We now describe the fixed points of σ(Z) and the corresponding Hurwitz data.
Using the equality ζ − 1 = uπn for some unit u ∈ R, it follows that [ζ − 1](Z) ≡
(ζ−1)Z mod Z2 and that [ζ−1](Z) ≡ Zpn

mod π. One deduces that σ(Z)−Z has
Weierstrass degree pn (see II.1) and so σ has pn fixed points. If we let z be such a
fixed point, then the relation f(σ(Z)) = ζf(Z) shows that z is a root of f(Z) in the
open disc (although the converse is false). Moreover, differentiating and evaluating
at z one obtains f ′(z)σ(Z)′Z=z = ζf ′(z), and as f ′(z) ≡ 1 mod π, it follows that
σ(Z)′Z=z = ζ, i.e. Hσ = (1, 1, ..., 1).

Now we describe the geometry of Fσ : First we remark that it is easy to describe
the zeroes of f(Z) inside the open disc. Indeed, examining the Newton polygon of
the Laurent series f(Z) we see that the non-trivial zeroes lie on circles centered at
0 and having radii v(z) = 1/(n(p− 1)2pm−1), for any 1 ≤ m. On each such circle
there are pm−pm−1 zeroes and an exercise shows that these points are in p distinct
classes counting the zero class. Moreover, the geometry in each class mimics that
in the zero class. In fact the congruence σ(Z) ≡ Zpn

mod π shows that the zeroes
z of f(Z), which are also fixed points of σ, have radius v(z) > 1/(n(p− 1)2pn). As
pn = 1 + (p− 1) + (p2 − p) + · · ·+ (pn − pn−1) it follows that the fixed points of σ
are exactly 0 and the zeroes of f on the circles of radius v(z) = 1/(n(p− 1)2pm−1)
about 0, for 1 ≤ m ≤ n. It follows that the oriented tree Do

s is characterized by the
property that on each internal component there are p new branching components
and that there are p fixed points on each terminal component. (One could equally
well say that the dual graph is a tree having valency p at each vertex.) Note that
each oriented path of maximal length has n edges, which is the same as asserting
that the graphs d(σ, Zi) have n breaks. Moreover, these graphs all coincide and
this gives us a way of producing trees of arbitrary length.

The oriented tree for Do
s is represented in Figure 5.
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III. Geometry of the fixed points of order p automorphisms

The aim of this section is to define geometric data associated with the minimal
semi-stable model (Do, Fσ). Namely, we want to describe the morphism

(Do, Fσ) → (Do, Fσ)/〈σ〉.
We first give the equation of a µp-torsor over a punctured closed disc which is
trivial mod π, and combining this with our study of the variation of the different
in II.1, we are able to describe the µp-torsors which occur in the case of order p
automorphisms.

1. Degeneration of µp-torsors over a punctured closed disc. Recall that R
contains ζ, a primitive p-th root of unity. The following proposition is a geomet-
ric version of known results on the classification of p-cyclic extensions of discrete
valuation rings with non-perfect residue fields.

Proposition 1.1. Let A := R〈T 〉, Dc := Spec A and ϕ : X → Dc be a normal
generic µp-torsor (i.e. a µp-torsor on some open U ⊂ Dc) such that Xs is reduced
and the branch locus Br strictly contains V (π). Let ∆ ∈ R[T ] be unitary such
that the branch locus BrK of ϕK is V (∆). We write X = Spec B and let d(0) be
the degree of the different of the extension OX,π/ODc,π, where OX,π (resp. ODc,π)
denotes the local ring of X (resp. Dc) at (π). Then, after suitably enlarging R, two
cases can occur:

1. µp-type degeneration: d(0) = v(p) := e. An equation of the torsor is Y p = u
where u ∈ A[ 1

∆ ]×. Let ū be the image of u in k(t) := Fr
(
A/(π)

)
. Then ū /∈ k(t)p is

uniquely defined up to multiplication by a p-power. Moreover, A[ 1
∆ ][Y ] is integrally

closed and so ϕ−1(Dc \ V (∆)) = Spec A[ 1
∆ ][Y ].

2. αp-type degeneration: d(0) < v(p) = e. There is a unitary polynomial ∆1 ∈
R[T ] such that V ((π, ∆1)) = V ((π, ∆)), and an equation for the torsor is Y p =
1 + πptu ∈ A[ 1

∆1
]×, where u ∈ A[ 1

∆ ]. Here ū /∈ k(t)p is uniquely defined up to
addition of a p-power. It follows that A[ 1

∆1
][Y−1

πt ] is integrally closed, so

ϕ−1
s (Dc

s \ V ((π, ∆))) = Spec(A/(π))[
1
∆̄

][
(Y − 1

πt

)
].

Moreover, 0 < t < e
p−1 and d(0) = e− (p− 1)t.
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Proof. By Kummer theory the torsor is defined by an equation Y p = UP, where U
is a unit in A congruent to 1 mod π, the polynomial P =

∏
i,j(T −Ti,j)ni,j ∈ R[T ],

with ni,j ∈ N \ pN, and the pairwise distinct Ti,j ∈ R are listed in such a way that
Ti1,j1 and Ti2,j2 are in the same class mod π if and only if i1 = i2. Now we can
distinguish two cases:

1) There exists i such that p -
∑

j ni,j . Then OX,π = ODc,π[Y ] and d(0) is
the valuation of the derivative pY p−1, i.e. d(0) = v(p). Let ∆ =

∏
i,j(T − Ti,j).

Then ϕ is étale outside V (π∆), so ϕ−1(Dc \ V (π∆)) = Spec KA[ 1
∆ ][Y ], and as

OX,π = ODc,π[Y ], it follows that ϕ−1(Dc \ V (∆)) = Spec A[ 1
∆ ][Y ].

2) P is a p-th power mod π, i.e. ni = 1
p

∑
j nij ∈ N. Then setting

∆ =
∏
i,j

(T − Ti,j) and P ? :=
∏
i

(T − Ti,0)ni ,

it follows that UP = UP ?p P
P ?p = P ?p(1+πs1P1), where P1 ∈ A[ 1

∆ ], P1 6≡ 0 mod π
and s1 ∈ N×.

Now an equation of our µp-torsor is Y p
1 = 1 + πs1P1 ∈ A[ 1

∆ ]×. Let λ = ζ − 1 and
write Y1 = λX1 +1. Then (λX1+1)p−1

λp = πs1

λp P1. As the inertia group at π is the full
group 〈µp〉, it follows that v(πs1

λp ) < 0, i.e. s1 < pe
p−1 . Moreover s1 = pt1, t1 ∈ N,

for otherwise we contradict the reducedness of Xs.
If P1 is a p-power mod π we write P1 = −Q1

p + πR1, where Q1, R1 ∈ A[ 1
∆ ],

and then Y1
p = 1 − πpt1Q1

p + πpt1+1R1. As v(pπpt1 ) ≥ pt1 + 1, one can write
Y p

1 = (1 − πt1Q1)p + πpt1+1R2, for R2 ∈ A[ 1
∆ ]. Setting c := 1 + πt1Q1 it follows

that (cX1)p = (1 − (πt1Q1)2)p + πpt1+1R2(1 + πt1Q1)p = 1 + πs2P2, with P2 ∈
A[ 1

∆ ] 6= 0 mod π and s2 > pt1. Note that c has no reason to be invertible in A[ 1
∆ ],

nevertheless mod π its zero set lies in V ((π, ∆)) and so for suitable ∆1 as in the
statement of 2) one has 1 + πs2P2 ∈ A[ 1

∆1
]×.

Now as for s1 one proves that s2 = pt2 with t2 ∈ N and 0 < t1 < t2 < e
p−1 .

So after a finite number of steps, for suitable ∆1 as in the statement of 2) we
get the desired form of the equation, Y p = 1 + πptu ∈ A[ 1

∆1
]×, where u is not a

p-th power mod π. By setting Y = πtZ + 1 it follows that Zp = u mod π, and if
f(Z) := (πtZ+1)p−1

πpt −u, then f ′(Z) = p
π(p−1)t (πtZ +1)p−1, so that d(0) = v( p

π(p−1)t )
as announced.

Suppose we have another equation Y ′p = 1 + πpsv for the torsor, where v is not
a p-power mod π. Then s = t, via calculation of the different. Moreover,

1 + πptv

1 + πptu
= 1 + πpt(v − u) + something small

is a p-power in Fr(A) and so the equation Zp = 1+πptv
1+πptu is reducible. It follows that

v − u is a p-power mod π.
The remaining assertions follow from similar valuation theoretic arguments to

those of case 1) and are left to the reader.

In the case of αp degeneration we can study the gradient of the different for
concentric closed discs.

Proposition 1.2. We keep the same hypotheses as above and assume the degen-
eration is of αp-type. Let ωα := dū. Then ωα is uniquely determined, has its set
of poles in V (∆̄), and if m0 + 1 is the order of a pole, then (m0, p) = 1. After a
translation we can assume that 0 ∈ V (∆) gives a pole in reduction. Let ρ ∈ Ralg.
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Then after enlarging the base ring, the degree of the different d(v(ρ)) in the torsor
above the annulus of zero thickness v(T ) = v(ρp), centered in 0 ∈ V (∆), is a linear
function of gradient (p− 1)m0 for v(ρ) small enough.

Proof. Suppose Y p = 1 + πptu is an equation of the torsor such that ū has a pole
at 0 of order m0. Then if p|m0, after multiplying the equation defining the torsor
by

(1− c
πt

T m0/p
)p,

for conveniently chosen c ∈ Ralg, we get a new equation and in reduction a pole
of order smaller than m0. Hence after iteration of this procedure we can assume
that (m0, p) = 1 and so ωα has the good order at 0. Now one can write u = P

∆0∆1

where P ∈ A, ∆0 =
∏

0≤j≤m0

(T −T0,j) with v(T0,j) > 0, and ∆1 =
∏
i>0

(T −Ti,j) with

v(Ti,j) = 0. Moreover in reduction P and ∆0∆1 are coprime. Suppose T = ρpS.
Then for pv(ρ) < inf v(T0,j) it follows that u = ρ−pm0( 1

Sm0 + something small);
here we mean small for the S-Gauss valuation. As (m0, p) = 1, it follows that if we
replace Y by πtρ−m0Z +1 in the equation of the torsor we get an integral equation
for Z and from this we deduce d(v(ρ)) = d(0) + (p− 1)m0v(ρ) as claimed.

2. The geometric tree of an order p automorphism. Now we present the
principal theorem of this paper, first recalling the notations for convenience.

Let σ be an order p automorphism of Do := Spec R[[Z]], with a non-empty set Fσ

of geometric fixed points. Do denotes the minimal semi-stable model of the marked
open disc (Do, Fσ) (cf. II.1) and ϕ : Do → Do/〈σ〉 := D′o. The special fibres Do

s

(resp. D′os) are endowed with tree structure and oriented from the original generic
point (π) of Do

s in Do (cf. I.2). Moreover, they are homeomorphic via ϕs.
Let Ei, E′i (resp. Pα, P ′α) denote the terminal (resp. the internal) components

of Do
s and D′os. The canonical infinite points on these components determined by the

tree structure are denoted by ∞i (resp. ∞α). Suppose {Zi,j , 0 ≤ j ≤ mi} is the set
of σ’s fixed points whose specialization zi,j lies in Ei and let Ti,j = ϕ(Zi,j), ti,j :=
ϕs(zi,j) ∈ E′i and hi,j be the Hurwitz data at Zi,j . Given an internal component P ′α
let tα,n ∈ P ′α, 1 ≤ n ≤ nα, be its crossing points. To each point tα,n we associate
the terminal components E′i, indexed by i ∈ In, which are connected to tα,n by a
positive path. We set mα,n + 1 :=

∑
i∈In

(mi + 1). Then:

Theorem 2.1. There exist functions ūi ∈ k(E′i) with ord∞i ūi = 0, such that the
differentials ωi = dūi have divisor support in {ti,j}j ∪{∞i} and satisfy ordti,j ωi ≡
hi,j − 1 mod p and ord∞i ωi = mi − 1. Moreover, (mi, p) = 1 and

∑
j hi,j ≡

0 mod p.
There exist functions ūα ∈ k(P ′α) such that the differentials ωα = dūα have

divisor support in the points {tα,n}n ∪ {∞α}, ordtα,n ωα = −(mα,n + 1) < 0 and
ord∞α ωα = −2 +

∑
n(mα,n + 1). Moreover, (−1 +

∑
n(mα,n + 1), p) = 1 and

(mα,n, p) = 1.

Proof. We first prove the result for the terminal components. From Proposition
II.1.2 we know that for given i the fixed points Zi,j have equal mutual distance.
Hence an equation for the torsor induced by σ above the closed disc Spec R〈T 〉
corresponding to Ei \ {∞i} is

Xp = ui ∈ R〈T 〉,

Michel Matignon
Version française                                                                               
Comme il est indiqué dans la thèse de Yannick Henrio, il faut corriger l'énoncé du théorème 2.1. 
Dans le cas des bouts $E'_i$ la fonction ${\overline u_i }$ est uniquement définie modulo la multiplication par une puissance $p$-ième aussi la différentielle logarithmique $\omega_i:=\frac{d{\overline u_i }}{{\overline u_i }}$ est uniquement définie et son diviseur est 
$(m_i-1)\infty_i-\sum_jt_{i,j}$, de plus le résidu $\res_{t_{i,j}}\omega_i=h_{i,j} \mod p$. 
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with ui =
∏

j(T−Ti,j)ni,j (1+ something small), (ni,j , p) = 1 and the Ti,j in distinct
classes. Moreover, as the equation is defined modulo multiplication by p-th powers
it follows that the indices ni,j are equal mod p to the Hurwitz data hi,j .

Now we know (Proposition III.1.1) that outside ∞i and the specialization ti,j
of Ti,j , the equation mod π defines a smooth k-curve. It follows that the divisor
of ωi := dūi has support in {∞i} ∪ {ti,j}j. For the rest of the assertion we re-
mark that ord∞i ūi ≡ 0 mod p; otherwise we can assume that (ord∞i ūi, p) = 1
so ord∞i ωi = ord∞i ūi − 1 and −2 = deg ωi =

∑
j(ni,j − 1) + ord∞i ūi − 1; i.e.

mi = 0 which contradicts the minimality of Do. So ord∞i ūi ≡ 0 mod p, and
this implies that

∑
j hi,j ≡ 0 mod p, moreover the same calculation now gives

ord∞i ωi ≡ mi − 1 mod p. By multiplying ui by a suitable p-power of T we can
assume that ord∞i ūi =

∑
j ni,j = 0 and ord∞i ω = mi − 1.

Now we prove the result for the internal components. By consideration of the
variation of the different along a path (see II.1), it follows that the µp-torsor over
the closed disc corresponding to Pα \ {∞α} is of αp-type (see Proposition III.1.1),
and we have an equation Xp = 1 + πptαuα. We know, by Proposition III.1.1, that
after writing X = πtαZ +1 this equation induces the equation zp = ūα of the cover
Pα/P ′α, outside the crossing points tα,j and ∞α. As Pα is a projective line it follows
that this equation defines a smooth k-curve outside the crossing points tα,j and ∞α.
Hence ωα := dūα has divisor support in tα,j and ∞α. In order to calculate the order
in tα,j we use Proposition III.1.2, which expresses the gradient of variation of the
different near the boundary as (p− 1)(− ordtα,j ωα − 1). On the other hand in II.1
we show that the gradient is (p− 1)mα,n where mα,n + 1 is the number of σ fixed
points which specialize to points of the tree after tα,n, so ordtα,n ωα = −(mα,n +1).

Corollary 2.2. Let σ be an order p automorphism of Do := Spec R[[Z]] with m+1
geometric fixed points. Then m = 0 or (m, p) = 1.

3. Geometric trees in case m ≤ p + 1. As an application of Theorem III.2.1 we
prove:

Theorem 3.1. Let σ be an order p automorphism of Do := Spec R[[Z]] having m+1
geometric fixed points and suppose 0 < m < p. Then Do

s has only one component,
which is a projective line; i.e. the fixed points are all equidistant.

Proof. Assume that 1 < m < p and that the tree Do
s has more than one terminal

component. Choose a path originating at ∞ (which is given by the original closed
point (π, Z)) of maximal length. At the end of the path we have an internal
component P ′α with only terminal components, say E′i, 1 ≤ i ≤ I and I > 1,
due to the minimality of the model. Let t be a parameter for P ′α \ {∞α} and
t = ti be the crossing points, all of them assumed to be distinct from 0, after a
possible translation. Then ωα = dūα and we can assume that the poles of ūα, which
are contained in {ti}i, have orders mi which are prime to p (see the notations in
Theorem III.2.1). We can write

ūα =
P (t)∏

i(t− ti)mi
.

As ωα has a zero at ∞α of order −2+
∑

i(mi +1) > 0, it follows that ūα is defined
at ∞α, so deg P ≤ n :=

∑
i mi. Changing ūα to aūα+b if necessary, one can assume
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that

ūα =

∏
1≤j≤n(1− ajs)∏

i(1− tis)mi

where s = t−1 is a parameter at ∞α.
The Taylor expansion at s = 0 gives

1 + cs−1+
∑

i(mi+1)(1 + o(s)) + r(s)

where the differential d(r) = 0. Now we remark that
∑

i(mi + 1) ≤ m + 1 < p + 1,
i.e. −1 +

∑
i(mi + 1) < p, and so we can assume that r(s) = 0. Examining the

identity ∏
1≤j≤n

(1− ajs) = (1 + cs−1+
∑

i(mi+1)(1 + o(s)))(
∏
i

(1− tis)mi)

together with the inequality n =
∑

i mi < −1+
∑

i(mi +1) we deduce that ūα = 1,
which is a contradiction.

Remark 3.1.1. In order to achieve the result in the proof above we could also remark
that t → uα defines a cover of P1

k, whose branch locus is given by the image of the
support of duα, i.e. 0,∞. Moreover, the ramification indices are the set of mi and
−1 +

∑
(mi + 1) ≤ m < p, so the cover is a tame cover of P1

k \ {0,∞}. Now we
know that such a cover is as in char. 0, i.e. it is cyclic, so totally ramified. In
particular above ∞ there is only one point; consequently uα has only 1 pole, which
contradicts the minimality of the model.

Following the same line of reasoning from Theorem III.2.1 we deduce:

Theorem 3.2. Let σ be an order p automorphism of Do := Spec R[[Z]] with m + 1
geometric fixed points. If m = p + 1, then the tree Do

s has at most two terminal
components.

Proof. Assume m = p+1 and that the tree has at least 3 terminal components and
consider a path of maximal length. If we get the same picture as in the preceding
theorem with I > 2, then n =

∑
i mi ≤ p+2−I < p, giving the same contradiction.

If we get I = 2, then necessarily at least 2 fixed points specialize to another terminal
component and then (m1 + 1) + (m2 + 1) ≤ p + 2− 2 = p. Once more we have the
same contradiction.

Remark 3.2.1. One can give examples with m = p + 1 and 2 terminal components;
for an example see III.5 below.

Now we can describe the trees which occur in the m < p case. Precisely, we
describe the trees marked by the specialization of the fixed points.

Proposition 3.3. Let σ be an order p automorphism of Do := Spec R[[Z]] with m+
1 > 1 geometric fixed points. As in III.2 let D′o := Do/〈σ〉. If m < p, then D′os has
only one component which is a projective line and is equipped with a canonical point
∞ given by the original closed point (π, Z). Let t be a parameter for this line minus
∞. We denote the specialization of the branch locus by Br := {t0, t1, t2, ..., tm}
where the ti are distinct. Then there is an (m + 1)-tuple (hi)i ∈ (Z \ pZ)m+1 such
that

∑
0≤i≤m

hi = 0 and

h0t
k
0 + h1t

k
1 + · · ·+ hmtkm = 0, 0 ≤ k ≤ m− 1.(∗)
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In particular if we fix t0 and t1 in Falg
p ⊂ k, then there are only a finite number of

solutions such that
∏
i<j

(ti − tj) 6= 0 and they are in Falg
p .

Proof. Let (hi)0≤i≤m be the Hurwitz data for σ as defined in II.2. Then by Theorem
III.2.1,

∑
i hi ≡ 0 mod p and hence we may normalize so that

∑
i hi = 0. Setting

s = t−1 there is a function ū :=
∏

0≤i≤m

(1− tis)hi such that ords=0 dū = m−1 (proof

of Theorem III.2.1). Considering the Taylor expansion of ū′
ū at s = 0, we obtain

the system of equations (∗) above.
Now we show that the m equations define a finite number of marked affine lines

as soon as t0 and t1 are fixed and distinct in Falg
p . Let (t0, ..., tm) be a solution of

(∗) such that
∏

i<j(ti − tj) 6= 0, and for t0 and t1 fixed we calculate the jacobian
determinant of h2t2

i + · · ·+hmtm
i = −(h0t0

i +h1t1
i), 1 ≤ i ≤ m− 1. Consider the

affine variety in the m−1 indeterminates, x2, x3, · · · , xm, defined by the equations
h2x2

i + · · · + hmxm
i = −(h0t0

i + h1t1
i), for 1 ≤ i ≤ m − 1, where t0 and t1 are

fixed and distinct. As m < p, using the jacobian determinant criterion it follows
that (t2, ..., tm) is a smooth point of this variety. It follows that the dimension of
the set of such solutions is zero and the finiteness follows.

4. Hurwitz data when m < p. When m = 1, up to multiplication by an element
in F×p , there is a unique possible (m + 1)-tuple determining the Hurwitz data and
the [O-S-S] example gives a realization. Now we would like to describe Hurwitz
data when 1 < m < p. Following II.3.1.2 and II.3.2.1 we know that this is strongly
related to the type of reduction of p-cyclic covers of P1.

Definition 4.1. Let 1 < m < p and hi ∈ Z\pZ for 0 ≤ i ≤ m, and suppose that∑
0≤i≤m hi = 0. We say that (h0, h1, h2, ..., hm) satisfies the condition (∗) if the

system of equations in Fp[X0, ..., Xm] :

h0X
k
0 + h1X

k
1 + · · ·+ hmXk

m = 0, 0 ≤ k ≤ m− 1,(∗)
has a solution (ti)i ∈ (Falg

p )m+1 in which all m + 1 components are distinct, i.e.
such that P ((ti)i) 6= 0, where P ((Xi)i) :=

∏
0≤i<j≤m

(Xi −Xj). Such a solution will be

called “a proper solution” of (∗).
Clearly “proper solutions” correspond to possible Hurwitz data. Here we can

prove the following:

Theorem 4.2. Let p be a prime, m an integer with 0 < m < p, and suppose
hi ∈ Z\pZ for 0 ≤ i ≤ m, with

∑
i hi = 0. We assume that condition (∗) is satisfied

and let (ti)i ∈ (Falg
p )m+1 be a proper solution of (∗) with (Ti)i ∈ (Zp

ur)m+1 a lifting.
Then the cover of P1

Qur
p

defined by the equation Y p =
∏

0≤i≤m

(1 − TiX)hi := f(X)

has potentially good reduction of type Am. This induces an order p automorphism
σ of the p -adic open disc over Zur

p [ζ] (for ζ a primitive p-th root of unity), which
is the formal fiber above ∞. It has no inertia at (π), the conductor is m + 1 and
the Hurwitz data is (h0, h1, ..., hm−1, hm).

Proof. First we prove that the cover Y p = f(X) has good reduction of type Am

over Zur
p [ζ]. Writing f(X) = 1 + s1X + s2X

2 + · · · + smXm + · · · ∈ Zur
p [[X ]], we

show that v(si) ≥ v(p) for i < m and v(sm) = 0. This result can be easily deduced
from induction formulas relating the elementary symmetric functions with Newton’s
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symmetric functions; here we give a proof which is in the spirit of Theorem III.2.1
and Proposition III.3.3.

Taking the logarithmic derivative one has

f ′(X)
f(X)

=
∑

0≤i≤m

−hiti
1− tiX

= −
∑

0≤i≤m
0≤j≤m−2

hit
j+1
i Xj −

∑
0≤i≤m

hit
m
i Xm−1

1− tiX

= −
∑

0≤i≤m

hit
m
i Xm−1

1− tiX
.

This last fraction, when expressed over the same denominator, is equal to
Xm−1N(X)∏

0≤i≤m

(1−tiX)
, where N(X) is a polynomial. Now we compare the degree at ∞

on each side: for f ′(X)

f(X)
it has to be negative (in fact −1) and on the right side it

is −1 + degN. This means that N(X) is a constant which we evaluate easily and
obtain − ∑

0≤i≤m

hit
m
i .

Note that
∑

0≤i≤m

hit
m
i 6= 0, for otherwise using (∗) this would imply that the

hi are all zero. Hence f ′(X) ≡ −(
∑

0≤i≤m

hit
m
i )Xm−1 (mod Xm), and as m < p

this implies v(si) ≥ v(p) for i < m and v(sm) = 0. Set X = λp/mS; then for
i < m, v(siλ

ip/m) > v(λp), and so if Y = λZ + 1, the equation of the cover
is (λZ+1)p−1

λp = (−1/m)(
∑

i hiT
m
i )Sm + something small. Now mod π for the S-

Gauss valuation we obtain zp− z = (−1/m)(
∑

i hit
m
i )Sm, which is a cover of P1 of

type Am.
Finally, we remark that the branch locus of the cover is concentrated in the

formal fibre at infinity, and so applying the local criterion of good reduction (see
[G-M], I.3.4), the cover of P1

Qur
p

has potentially good reduction of type Am and the
given Hurwitz data.

Remark 4.2.1. Observe that there is a canonical lifting, which we obtain by apply-
ing [Mi], Theorem 4.2, p.32, in order to lift the proper solution (ti)i ∈ (Falg

p )m+1

to a solution of (∗) in (Ti)i ∈ (Zp
ur)m+1; here we mean that

h0T
k
0 + h1T

k
1 + · · ·+ hmT k

m = 0, 0 ≤ k ≤ m− 1.

Note that (see proof above)

f ′(X)
f(X)

=
−(

∑
0≤i≤m

hiT
m
i )Xm−1∏

0≤i≤m

(1− TiX)

and so it follows that X → f(X) defines an étale (genus 0) cover of P1 \ {0, 1,∞}.
We next illustrate the (∗) condition:

4.3. The case m = 2, p > 2. In this case one can easily parametrize proper solutions
of (∗); namely up to homographical transformation one obtains (h0,−h1, h0 − h1)
and the cross-ratio [h0,−h1, h0 − h1,∞] = −h1

h0
.
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Now in the spirit of Theorem III.4.2 we consider the cover:

Y p = (1 + h0X)h0(1− h1X)h1(1 + (h0 − h1)X)−(h0+h1).

If we set W := −h1
h0

1−h1X
1+h0X , the equation of the cover becomes

Y p = (−1)h1
(h0 + h1)h0+h1

hh0
0 hh1

1

Wh1(1 −W )−(h0+h1).

In this special case this means that every p-cyclic cover of P1 with branch locus
{0, 1,∞} has potentially good reduction of type A2 (compare with [Co-Mc]), and so,
modulo a change of parameter, there is only a finite set of order p automorphisms
of a p -adic open disc with no inertia at (π) and 3 fixed points (see V.6.3 for a
generalisation).

4.4. Examples of (m + 1)-tuples with 2 < m < p which are not Hurwitz data. Here
we give an example for which (∗) is not satisfied.

Consider h1 = h2 = · · · = hm−1 = 1 and let hm be such that m − 1 + hm 6≡
0 mod p and h0 = −∑

1≤i≤m hi. Then if −hm ∈ {1, 2, ..., m− 2}, each solution of
the system of equations

h0X
k
0 + Xk

1 + Xk
2 + · · ·+ Xk

m−1 + hmXk
m = 0, for i = 1, . . . , m− 1,

in Falg
p satisfies Xi −X0 = 0 for some i, and so isn’t proper. In particular, (−m +

1 − hm, 1, ..., 1, hm) cannot occur as an (m + 1)-tuple of Hurwitz data, for −hm ∈
{1, 2, ..., m− 2}.
Proof. Set Yi = Xi −X0 for 1 ≤ i ≤ m. Then we can replace the system (∗) by the
system:

Y k
1 + Y k

2 + · · ·+ Y k
m−1 + hmY k

m = 0 for 1 ≤ k ≤ m− 1.(∗∗)
Assume there is a solution for which none of the Yi is 0; say Ym = 1. Setting
pk := Y k

1 + Y k
2 + · · ·+ Y k

m−1 for each k, we can use Newton’s formulas (m < p) in
order to calculate the values of the elementary symmetric functions sk.

For 1 ≤ k ≤ m− 1 one has:

pk − pk−1s1 + pk−2s2 + · · ·+ (−1)k−1p1sk−1 + (−1)kksk = 0,

where sk is the k-th elementary symmetric function on the Yi, 1 ≤ i ≤ m − 1. In
order to simplify the formuli we call h := −hm. Then replacing pk by its value h
we get:

h(1− s1 + s2 + · · ·+ (−1)k−1sk−1) + (−1)kksk = 0,

which immediately gives the following inductive formula:

sk =
h− k + 1

k
sk−1.

As s1 = h we obtain:

sk = h(h− 1)(h− 2) · · · (h− k + 1)/k!.

This means that for i = 1, ..., m− 1 the Yi are the roots of the polynomial

Y m−1 − s1Y
m−2 + · · ·+ (−1)m−1sm−1 = 0.

As sm−1 = 0 for h ∈ {1, 2, ..., m− 2}, the result follows.
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4.5. Critical locus for the condition (∗).
Proposition 4.5.1. Let 1 < m < p, and let Hi be indeterminates for 1 ≤ i ≤ m.
We consider the following polynomial in Fp[Hi]:

Q :=
∏

1≤n≤m

Qn,

where Qn :=
∏

(Hi1 + · · ·+ Hin) and the product is taken over the ik ∈ {1, ..., m},
i1 < i2 < ... < in. We define the critical locus for the condition (∗) to be the set of
m-tuples (h1, h2, ..., hm) ∈ Zm such that Q(hi) = 0. Take (hi) such that Q(hi) 6= 0;
then setting h0 = − ∑

1≤i≤m

hi, the system (∗)has only proper solutions in the sense of

III.4.1 and the trivial solution (0, 0, ..., 0). Moreover, (−∑
1≤i≤m hi, h1, h2, .., hm)

is the Hurwitz data for an order p automorphism of the p -adic open disc.

Proof. Let (h1, h2, ..., hm) ∈ Zm such that Q(hi) 6= 0 be given, and setting h0 =
− ∑

1≤i≤m

hi consider the system (∗) as defined in III.4.1. As done previously, set

Yi = Xi − X0 for 1 ≤ i ≤ m, replacing the system (∗) by the system (∗∗) h1Y
i
1 +

h2Y
i
2 + · · ·+hm−1Y

i
m−1+hmY i

m = 0 for 1 ≤ i ≤ m−1. By a dimension argument we
know that (∗∗)has at least one solution, say (y1, y2, ..., ym) ∈ Falg

p , which is distinct
from (0, 0, ..., 0). After a permutation of the yi, and the corresponding coefficient’s
in the system (∗∗) we can assume that

y1 = ... = yj1 ,

yj1+1 = ... = yj2 ,

etc.

where the lines correspond to the set of distinct values in the yi, i.e. yj1 , yj2 , ..., yjs ,
where js = m. Assume that

∏
i

yi

∏
i<j

(yi − yj) = 0 (see III.4.1).

There are two cases:

Case 1. One of the yji is zero; say for example that yjs = 0, then(∗∗)can be written
in the following way:

(h1 + · · ·+ hj1)yj1 + (hj1+1 + · · ·+ hj2)yj2 + · · ·
+(hjs−2+1 + · · ·+ hjs−1)yjs−1 = 0,

(h1 + · · ·+ hj1)y
2
j1 + (hj1+1 + · · ·+ hj2)y

2
j2 + · · ·

+(hjs−2+1 + · · ·+ hjs−1)y
2
js−1

= 0,

.

.

(h1 + · · ·+ hj1)y
m−1
j1

+ (hj1+1 + · · ·+ hj2)y
m−1
j2

+ · · ·
+(hjs−2+1 + · · ·+ hjs−1)y

m−1
js−1

= 0.

Now looking at the first s − 1 lines one gets a Vandermonde type system whose
determinant is non-zero. This contradicts Q(hi) 6= 0.

Case 2. None of the yi is zero. As
∏
i

yi

∏
i<j

(yi − yj) = 0 it follows that s < m; so

the same reasoning as above works.

Note that in the previous example III.4.4 we meet the critical locus for (∗).
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4.6. If m 6∈ pZ, then (1, 1, ..., 1,−m) is Hurwitz data.

Proof. Take Y p = 1−Xm; this is the [O-S-S] example (see II.3.3).

4.7. Special Hurwitz data for m = p−2. There is a pleasing case where the condition
(∗) is always satisfied. Namely, let m = p − 2 and h ∈ Z be a primitive (p − 1)-th
root of unity mod p. Then

{h0, h1, ..., hp−3} = {1, h, h2, ..., hp−2}
is such that (t0, ..., tp−2) = (1, h, h2, ..., hp−2) ∈ Fp−1

p is a proper solution of the
corresponding system(∗), and by Theorem III.4.2 (1, h, h2, ..., hp−2) is Hurwitz data
for some order p automorphism. As h(p−1)/2 ≡ −1 mod p we meet the critical locus
for condition (∗).

In particular, lifting (t0, ..., tp−2) to (1, α, α2, ..., αp−2), for α ∈ Zp a primitive
(p − 1)-th root of unity such that h ≡ α mod p, it follows from Theorem III.4.2
that:

Proposition 4.7.1. Let α ∈ Zp be a primitive (p − 1)-th root of unity and h ∈ Z
with h ≡ α mod p. Then the cover of P1

Qp
given by the equation

Y p = (1 + X)(1 + αX)h(1 + α2X)h2
...(1 + αp−2X)hp−2

= g(X)

has potentially good reduction and defines an automorphism of Zp[ζ][[Z]], whose
Hurwitz data is (1, h, h2, ..., hp−2).

We shall use these covers in §IV.

5. Geometric trees in the case m > p. In this paragraph we intend to show
that in general the tree is not reduced to one component when m > p.

5.1. The case p = 2 and m = 3. In order to introduce the method we first recall
the case where p = 2 and m = 3 and show how this relates to what is known on
elliptic curves over 2-adic fields.

By virtue of the correspondence with p = 2-cyclic covers of P1
K we have to look

at the Legendre equation for elliptic curves, that is, the equation

Y 2 = X(X − 1)(X − ρ),

whose potential good reduction is read off from the 2-adic valuation of

j(ρ) =
28(ρ2 − ρ + 1)3

ρ2(ρ− 1)2
.

We will have potentially good reduction if and only if v(j(ρ)) ≥ 0, in which case
the j invariant of the curve in reduction is the image of j(ρ). Moreover, the 2-rank
is 0 if and only if the j invariant is residually 0; so we conclude that such a cover
will induce an automorphism of the type we desire if and only if v(j(ρ)) > 0. If
v(ρ) > 0, this means that 4v(2) > v(ρ). So we see immediately in the case p = 2 and
m = 3 that there are automorphisms for which the branch locus does not consist
of points of equal mutual distance. (See Figure 6.)

This is well understood from Deuring’s normal form (valid in char. 6= 3) ([D2],
see also [Si], Appendix A). Recall that over an algebraically closed field of char. 6= 3
any elliptic curve has a model Z2 + αXZ + Z = X3 for some α and the j invariant
is j = α3(α3−24)3

α3−27 . So over a 2-adic field this gives a smooth model, whose special
fiber has p-rank 0 (étale cyclic cover of A1 of conductor 4) if and only if v(α) > 0.
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Moreover, one can also describe the formal fiber at ∞. Namely, setting Y =
2Z +(1+αX) in the equation above, one obtains Y 2 = 4X3 +(1+αX)2 and so the
geometric tree corresponding to the formal fiber at ∞ is reduced to one component
if and only if v(α) ≥ 2

3v(2).

5.2. General case p < m. Now consider any p with m > p and call q the integral
part of m/p. Choose (αi)1≤i≤q in Ralg, v(αi) > 0, and consider the p-cyclic cover
of P1 defined by the equation:

Y p = λpXm + (1 + α1X + · · ·+ αqX
q)p

and set Y = λZ + 1 + α1X + · · · + αqX
q. Then mod π this induces the cover

zp − z = xm which is of type Am. Now the branch locus is given by ∞ and the
zeros of

λpXm + (1 + α1X + · · ·+ αqX
q)p

whose degree is m (note that a derivation shows that the roots are all distinct,
although in fact it is not necessary to say this); it follows that the cardinality of the
branch locus is at most m + 1 so the generic different is less than or equal to the
special different, hence they are equal and we have a good reduction of type Am.
Note that X−1 is a parameter for the disc at the bottom so we can directly read
the distance between fixed points from the size of the root of

λpXm + (1 + α1X + · · ·+ αqX
q)p = 0.

Note that ∞ is a fixed point. In order to simplify the situation, we assume that
αi = 0 for i > 1. Then a look at Newton’s polygon shows that if v(α1) < p

mv(λ),
the roots take two values and the tree is as shown in Figure 7.

Remark 5.2.1. Following Theorem 3.1 it is tempting to conjecture that if m > p
there is a bound for the number of terminal components which is given by the
integral part of m

p . The following example shows that here the answer is no.

Let p > 2 and following the notations in the proof of Theorem 3.1 we consider the
function over P1

k defined by uα := sp

1+sp−1+sp . The poles of uα are at p distinct points
with simple multiplicities (mi = 1). The differential duα has a zero at ∞ whose
order is 2p−2 = −2+

∑
i(mi +1). Therefore we expect an order p automorphism of

the open disc whose semi-stable tree has one internal and p terminal components,
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each containing the specialization of 2 fixed points. We construct such an example
below.

Let π be the uniformizing parameter for R and assume there is a positive integer
l such that |λ| < |π|l; this means in particular that the absolute ramification index
is big. We consider the following p-cyclic cover of P1

K :

Y p =
1 + Sp−1 + Sp + (πplSp + pπlS)

1 + Sp−1 + Sp
:= f(S).

Note that if we set Y = πlZ + 1, then in reduction for the S-Gauss valuation this
equation gives the equation:

zp =
sp

1 + sp−1 + sp
= uα.

Now we show that this cover has potentially good reduction of type Am for m =
2p− 1. We can write

f(S) = (1 + πlS)p − pπlS2 − · · · − pπ(p−1)lSp−1

− πpl S2p−1(1 + S)
1 + Sp−1 + Sp

− pπl Sp(1 + S)
1 + Sp−1 + Sp

.

Next we set S := ρT where ρ2p−1πpl = −λp. Then |pπlρp| = |λp|| λ
πl |

(p−1)2

2p−1 < |λp|
and |pπlρ2| = |λp|| λ

πl |
1

2p−1 < |λp|. Writing Y = λZ +(1+πlS), in reduction for the
T -Gauss valuation we obtain zp − z = t2p−1, which is of type Am for m = 2p− 1.
Now we remark that the generic cover is ramified at m + 1 points which lie in
the disc |T | > 1, so this cover has potentially good reduction (see [G-M], I.3.4).
Moreover, it follows from the choice of f(S) (each root of the numerator is close to
one from the denominator) that we get the desired tree.

IV. Local obstructions to the lifting

The aim of this section is to give obstructions for a given group of automorphisms
G of k[[z]] to be lifted to an automorphism group of the formal power series ring
R[[Z]], and to give examples of liftable groups.
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1. Abelian groups. We first recall that by [G-M] it is always possible to construct
liftings of pae-cyclic covers for a ≤ 2 and (e, p) = 1, and that this is an open question
for higher p-exponents. There we have also shown that for G = (Z/pZ)2, if the
lifting of a G-cover is possible, then there are serious geometric constraints on the
conductors of the p-cyclic subcovers. Moreover, these constraints imply a group
theoretic condition on G-covers for G = (Z/pZ)2 × Z/nZ to be liftable; namely,
that the primes dividing n are congruent to 1 mod p.

In this section we apply the previous sections to the local lifting question, in
particular studying the situation for p = 2 and 3. We also show that there are
obstructions to the liftability of certain meta-cyclic groups and finally we present
examples of meta-cyclic groups which can be lifted. As an application of III.5.2 we
first show:

Proposition 1.1. If p is 2 or 3 and G = (Z/pZ)2, then there is a G-cover
k[[z]]/k[[z]]G which can be lifted to a G-cover R[[Z]]/R[[Z]]G, where R = Zp[λ1/(p−1)]
and λ = ζ − 1.

Proof. The case p = 2 is considered in [G-M]. We assume that p = 3 and suppose
one cover is given by the equation Y 3

1 = λ3X2 + 1 (those of [O-S-S] type with
m1 = 2), and a second is of the type considered in III.5.2, i.e. Y 3

2 = λ3X4+(1+αX)3

(here the conductor is m2 + 1 = 5).
For the first cover the branch locus is located at∞, x1 = (−λ)−3/2 and x2 = −x1.

For the second we choose α in such a way that ∞ and x1 are in the branch locus;
namely we take α = (1 + λ)(−λ)1/2. One can check directly that x2 is not in the
branch locus (we further remark that v(α) < p

m2
v(λ) and that the geometry of the

branch locus is as in III.5.2). As the two branch loci meet in 2 = (p− 1)(m1 + 1)/p
points we can apply [G-M], Theorem I.5.1.

Remark. Recently Matignon [M] obtained a realisation of (Z/pZ)n as an automor-
phism group (without inertia at (π)) of the p -adic open disc for any p and n > 1.

2. Meta-cyclic groups.

2.1. Obstructions to lifting of covers. Suppose G = 〈τ, σ〉 with o(τ) = e for e prime
to p, o(σ) = p and τσ = (σ)aτ where a ∈ (Z/pZ)× is a primitive e-th root of unity
(so e|(p− 1)).

Assume that G is an automorphism group of k[[z]] which can be lifted to a
subgroup of AutRR[[Z]] and ζ ∈ R, where ζ is a primitive p-th root of 1 (this is
necessary when p > 0; see [Co], section 5).

We denote the liftings of τ and σ by the same letter. Let m+1 be the conductor
of σ. Then e|(m+1), because the group generated by τ acts on the set Fσ of σ fixed
points. Note that this action is free, otherwise by [Co], Lemma 14, p.245, we would
obtain a cyclic subgroup in G of order pe′ with 1 < e′|e (see also [O], example in
1.c, p.166, which is a global argument as opposed to the one we have given).

Application to Roquette’s curve. (Compare with [Ga], Ex. 3.9.) Suppose e = p− 1
and let P1

k be the projective line over k with coordinate x. We look at automorphisms
which fix the infinite point. We can realise the previous group G (e = p− 1) as a
group of automorphisms of P1

k fixing ∞ by taking σ(x) = x + 1 and τ(x) = a−1x;
so G ⊂ PGL2(Fp). The conductor of σ is 2, so if p > 3 one cannot lift the curve
(P1

k, G) over any R.
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A corollary is a local obstruction to the lifting in char. 0 of (C, Autk(C)) for
the Roquette curve C : y2 = xp − x. Recall that for p > 2, g(C) = (p− 1)/2 and
| AutkC| = 2p(p2 − 1); so | AutkC| > 84(g − 1) as soon as p > 3. This contradicts
the Hurwitz bound in char. 0 and so gives a global obstruction for the lifting in
char. 0. The local reason is the following: Let ι be the hyperelliptic involution.
Then C/〈ι〉 ' P1

k. Moreover the group PGL2(Fp) ⊂ AutkP1
k extends to a subgroup

of AutkC. So the lifting of (C, Autk(C)) would imply that of (P1
k, G), which is a

contradiction if p > 3.

2.2. Some meta-cyclic liftings. We can prove the following:

Proposition 2.2.1. Let p > 2 and G = 〈σ, τ〉, with o(σ) = p, o(τ) = 2 and
τστ−1 = σ−1. Then there is a G-cover k[[z]]/k[[z]]G which can be lifted to a G-cover
R[[Z]]/R[[Z]]G, where R = Zp[ζ] and ζ is a primitive p-th root of 1.

Proof. Consider the Artin-Schreier equation xp − x = 1/t with p > 2. We set
z = 1/x and consider the two automorphisms of k((z)) defined by the conditions:

σ(x) = x + 1, σ(t) = t and τ(t) = −t, τ(x) = −x.

One has

τστ−1(x) = τσ(−x) = τ(−x − 1) = x− 1

and so τστ−1 = σ−1. Let G := 〈σ, τ〉. The fixed field k((z))G is k((t2 = y)) where
one has (xp − x)2 = y−1.

Now we shall see that one can lift this cover to a Galois cover of P1
R for R = Zp[ζ].

We set λ = ζ − 1 and consider the equation:(
(λX + 1)p − 1

)
/λp = 1/T.(∗)

One can lift σ to

σ(X) = ζX + 1, σ(T ) = T,

and τ to

τ(T ) = −T − λp, τ(λX + 1) = (λX + 1)−1.

Then τ(X) = −X/(λX +1) and the relation between τ and σ is still satisfied. The
fixed field is K(T 2) and our G-cover is K(T 2)[X ] with equation(∗). Thus it induces
a G cover R[[Z]]/R[[Z]]G where Z = X−1.

Now we can mimic the previous proof in order to get other meta-cyclic groups;
here the lifting process is less evident and will depend on our knowledge of Hurwitz
data.

Proposition 2.2.2. Let G = 〈σ, τ〉, with o(σ) = p, o(τ) = p−1 and τστ−1 = σh−1

(h is a primitive (p − 1)-th root of 1 modulo p). If p > 2, then there is a G-cover
k[[z]]/k[[z]]G, which can be lifted to a G-cover R[[Z]]/R[[Z]]G, for R = Zp[ζ] and ζ a
primitive p-th root of 1.

Proof. First assume that we have such a lifting G := 〈σ, τ〉 ⊂ AutRR[[Z]]. Let
m + 1 be the conductor of σ, the fixed point set Fσ := {Z0, Z1, . . . , Zm} and
(h0, h1, . . . , hm) its Hurwitz data. As (p− 1)|(m + 1) (see 2.1 above), it is natural
to consider the first case which can occur, namely m = p − 2. Writing σ(Z) :=
f(Z) ∈ R[[Z]], we have τ(Z0) ∈ Fσ and f ′(τZ0) = f ′(Z0)h for each Z0 ∈ Fσ.
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This implies that the Hurwitz data (h0, h1, h2, ..., hm) is invariant with respect to
multiplication by h and this leads us (by III.4.7) to consider the cover

Y p = (1 + X)(1 + αX)h(1 + α2X)h2 · · · (1 + αp−2X)hp−2
:= g(T ),

which we already proved has good reduction of type Am over Zur [ζ]. Setting T :=
λp/(p−2)X−1 this cover induces a p-cyclic cover R[[Z]]/R[[T ]] over the open disc
|T | < 1. Denote by σ the order p automorphism of R[[Z]]/R[[T ]] such that σ(Y ) = ζY
and σ(T ) = T. Now let τ be the K-automorphism of K(X) defined by τ(X) = α−1X
(α is the primitive (p−1)-th root of unity such that α ≡ h mod p). Then we remark
that

τ(g(X)) = gh 1 + α−1X

(1 + αp−2X)hp−1 = (1 + α−1X)1−hp−1
.

As the factor (1 + α−1X)1−hp−1
is a non-trivial p power this allows us to extend τ

to an R-automorphism of K(X, Y ) by setting

τ(Y ) := P (X)Y h where P (X) := (1 + α−1X)(1−hp−1)/p.

We remark that τp−1(g(X)) = g(X) and so τp−1(Y )
Y ∈ K(X, Y ) is a p-th root of

1; specializing at T = ∞ this shows that τp−1 = 1, the identity of G. Moreover,
τστ−1(Y ) = τστp−2(Y ) = ζhp−2

Y. This is deduced as follows: writing τp−2(Y ) =
Y hp−2

F (X) for suitable F (X) it follows that τστ−1(Y ) = τσ(Y hp−2
F (X)) =

τ(ζhp−2
Y hp−2

F (X)) = ζhp−2
τ(Y hp−2

F (X)) = ζhp−2
Y and so τστ−1 = σh−1

. Note
that τ(R[[T ]]) = R[[T ]]; it follows that τ induces an R-automorphism of R[[Z]] and
G := 〈σ, τ〉 ⊂ AutRR[[Z]] has the desired property.

V. The moduli of order p automorphisms

This section is an attempt to parametrize automorphisms of R[[Z]] of order p
which admit 0 as a fixed point, so we shall fix a parameter Z for the disc and consider
those automorphisms which fix 0. In fact it is more convenient to parametrize the
group they generate by fixing the action on the tangent space. This will be done by
fixing a given primitive p-th root of unity ζ, and studying the relationship among
the coefficients in

σ(Z) = ζZ(1 + a1Z + · · ·+ amZm + · · · )
under iteration of σ (composition with itself). We set R := Zp[ζ] and view the ai

as indeterminates, so that σ(Z) ∈ R[ai]i[[Z]]. We express the p-th iterate as

σp(Z) = Z(1 + E1Z + · · ·+ EnZn + · · · ),
where En ∈ Zp[ζ][ai]i and for later use define E0 = 0. We denote by In the ideal of
R[a1, a2, . . . , an] generated by (Ej)0≤j≤n.

Proposition 1. Using the notations above, the Ei are homogeneous polynomials
of degree i in the aj with coefficients in R, where for each j, aj is given the weight
j. Moreover

i) E0 = E1 = . . . = Ep−1 = 0.
ii) Ep, Ep+1, . . . , E2p−1 ∈ R[a1, a2, . . . , ap], and more generally for each positive

integer n, Enp, Enp+1, . . . , E(n+1)p−1 ∈ R[a1, a2, . . . , anp].
iii) The coefficent of anp in Enp is p.
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Proof. Introducing a new variable X and replacing Z by XZ, in σ each ai is replaced
by aiX

i. After iteration one obtains En((aiX
i)i) = XnEn((ai)i) which shows that

after assigning weights the polynomials are homogeneous. Note that from this it
follows that En ∈ R[a1, . . . , an] and the coefficient of an in En is constant.

Proof of i). If we let B = R[a1, . . . , ap], then by truncation σ induces an endomor-
phism σ̃ of BZ⊕BZ2⊕· · ·⊕BZp. The characteristic polynomial is

∏
1≤i≤p

(X−ζi) =

Xp−1, and so by the Cayley-Hamilton Theorem σ̃p = 1, the identity. This is equiv-
alent to (i).

Proof of ii). In order to tackle assertion ii) of the proposition we first show:

Lemma 2. Let Jnp be the ideal of R[a1, . . . , as] generated by (Ejp)0≤j≤n. Then for
np < l < (n + 1)p one has El ∈ Jnp ⊗K =: KJnp, where K = Fr(R).

Proof of the lemma. We prove the lemma by induction, assuming it proved for
0 ≤ n′ < n and np < l′ < l. One has

σ(Z) ≡ ζZ(1 + a1Z + · · ·+ alZ
l) mod Z l+2

and by the inductive hypothesis

σp(Z) ≡ Z(1 + ElZ
l) mod (KJnp, Z

l+2).

Using the identity σ ◦ σp(Z) = σp ◦ σ(Z) one obtains

ζl+1ElZ
l+1 ≡ ζElZ

l+1 mod (KJkp, Z
l+2).

Since p 6 | l the result follows.

Returning to the proposition, assertion (ii) now follows from the fact that Enp ∈
R[a1, . . . , anp] and K[a1, . . . , anp] ∩R[a1, . . . , a(n+1)p] = R[a1, . . . , anp].

Proof of iii). It remains to prove that the coefficient of anp in Enp is p. From the
first part of the proposition we know that the coefficient is a constant. Let I be the
ideal (a1, . . . , anp−1, Z

np+2) in R[(ai)i][[Z]]. Then

σ(Z) ≡ ζZ(1 + anpZ
np) mod I,

and recurrently

σp(Z) ≡ ζpZ(1 + panpZ
np) mod I

≡ Z(1 + EnpZ
np) mod I,

finishing the proof.

Proposition 3. For each n ∈ N we denote the image of En in k[(ai)i] by Env.
Then

i) Eiv = 0, for 0 ≤ i ≤ p;
ii) Eiv ∈ k[a1, . . . , ap], for p + 1 ≤ i ≤ 2p, and more generally

Eiv ∈ k[a1, . . . , a(n−1)p],

for (n− 1)p + 1 ≤ i ≤ np.
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Proof. The only assertions which don’t follow directly from Proposition V.1 are
that Epv = 0 and Enpv ∈ k[a1, . . . , a(n−1)p] for n > 1. These follow from the
commutativity of σ and σp in k[[z]]. Namely, one has:

σp(z) = z(1 + Enpvznp + Enp+1vznp+1) mod (Inp−1v, znp+3)

and

σ(z) = z(1 + a1z + · · ·+ anp+1z
np+1) mod (Inp−1v, znp+3).

Therefore

σ ◦ σp(z) = z(1 + a1z + · · ·+ anp+1z
np+1)

× (1 + Enpvznp + Enp+1vznp+1) mod (Inp−1v, znp+3),

σp ◦ σ(z) = z(1 + a1z + · · ·+ anp+1z
np+1 + a1Enpz

np+1)

× (1 + Enpvznp + Enp+1vznp+1) mod (Inp−1v, znp+3)

and so a1Enpv ≡ 0 mod (Inp−1v). The result now follows from Proposition V.1.

4. An example. In order to illustrate the difficulties we present the first few Ei

expressions for the case p = 3: Setting λ = ζ − 1 one computes

E3 = (−a1a2 + a3
1)λ + 6a3

1 − 9a1a2 + 3a3,

E4 = (4a4
1 + 2a1a3 − 6a2

1a2)λ + 10a4
1 − 16a2

1a2 + 6a1a3,

E5 = (6a5
1 + 4a2

1a3 − a2a3 + 2a1a
2
2 − 11a3

1a2)λ + 8a5
1 − 13a3

1a2 + 6a2
1a3 − a1a

2
2,

E6 =
(− 12a3

1a3 − 6a4
1a2 − 4a1(a2a3 + a5) + a2

1(11a2
2 + 12a4) +

2a2a4 + 4a6
1 − 3a3

2

)
λ + 3a6 + · · · ,

...
E9 = . . . .

As E3v = 0 it follows that f1 := E3/λ ∈ R[a1, a2, a3].
We define f2 :=

(
E6 − (a1(a2

1 − a2) + a3)f1

)
/λ ∈ R[a1, . . . , a6] and f3 := E8.

Then

f1v = a1(a2
1 − a2),

f2v = 2(f1v)2 + (2a3
1 + a3)(−f1v) + a3a

3
1 + a2

3 + 2a2a4 + 2a1a5,

f3v = (a2 + a2
1)(f1v)2 + (a5

1 + 2a3a2 + a4 + 2a2a
3
1)(f1v) +

(a2
1 − a2)(a4(a2

1 + a2)− a2
3).

One checks that

E4v = a1(f1v),

E5v = 2(a2 − a2
1)(f1v),

E6v = (a1(a2
1 − a2) + a3)(f1v),

E7v = a1(f2v) + (2a4
1 + a3a1 + a4)(f1v)− a1(f1v)2,

E9v ∈ ((f1v), (f2v)), noting that a1f3v ∈ (f1v).
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Remark 4.1. Take p = 3, ζ a primitive 3-rd root of unity in R and m = 2 so that

σ(Z) = ζZ(1 + a1Z + a2Z
2 + a3Z

3 + · · · ), a1 ∈ πR, a2 ∈ R×.

Setting λ = ζ − 1 it follows that v(λ) = 1/2, where v is the normalized exponential
valuation on R. By Proposition V.1 and the example above it follows that

σ3(Z) = Z
(
1 + E3Z

3 + · · · )
with f1 := E3/λ ∈ Zp[λ][a1, a2, a3] and f1v = a1(a2

1 − a2). As σ has order 3 it
follows that E3 = 0 and so

a1(a2
1 − a2) = a1(a2

1 − a2)− f1 ∈ λZp[λ][a1, a2, a3].

Therefore v(a1(a2
1− a2)) ≥ v(λ) = 1/2 and as v(a1) > 0 and v(a2) = 0 we conclude

that v(a1) ≥ 1/2.
Looking at the Newton polygon for σ(Z) − Z, one deduces that the σ fixed

points are at mutual distance |λ|1/2; in this way we recover the very special case
p = 3, m = 2 of III.3.1. Knowledge of the Ep expressions implies analogous proofs
for p = 5, 7 and 11. It seems unreasonable to expect a proof of Theorem III.3.1 for
higher m by this method, nevertheless a characterisation of the Ep seems a very
interesting question which we shall return to at the end of this section.

Remark 4.2. The relation E3/λ ∈ R[a1, a2, a3] shows that in general one has π-
torsion in

R[a1, . . . , an]/In.

In order to find a flat R-model we consider In := InK ∩R[a1, . . . , an] and define

Xn := Spec R[a1, . . . , an]/In.

Here it is easy to describe the generic fibre of Xn. Indeed, by induction one deduces
from Proposition V.1.iii) that

Elp = palp + Pl

(
(ai)1≤i≤lp, (i,p)=1, (Ejp)1≤j<l

)
,

where Pl ∈ K[(ai)1≤i≤lp, (i,p)=1, (Ejp)1≤j<l]. From this it follows that one has an
equality of graded K-algebras

K[(ai)1≤i≤np, (i,p)=1, (Ejp)1≤j≤n] ∼= K[a1, a2, ..., anp],

where weight(ai) = i and weight(Ejp) = jp. The identification is given by sending
ai to ai for (i, p) = 1 and Elp to its expression as a polynomial in R[a1, . . . , anp]; in
the reverse direction the homomorphism is defined by sending alp to (1/p)(Elp−Pl).
Then

Xn(K) := Spec K[a1, . . . , an]/InK ∼= Spec K[Xj]j∈J ,

where J = {j < n, prime to p}.
The inclusion of ideals InR[a1, a2, ..., an+1] ⊂ In+1 induces an R-homomorphism

R[a1, a2, ..., an]/In −→ R[a1, a2, ..., an+1]/In+1

so that one can define:
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5. Definition. We define the “moduli space of order p automorphisms with fixed
points” of the open disc Spec R[[Z]] to be the R-scheme X := lim←− Xn, where the
projective limit is compatible with the ideal inclusions In ⊂ In+1.

Note that X (k) corresponds to automorphisms of order p (or the identity) of
k[[z]], and for R′/R a finite discrete valuation ring X (R′) corresponds bijectively
to automorphisms of order p of R′[[Z]] such that σ(Z) = ζZ + · · · . Moreover, the
[O-S-S] example (cf. III, 3.3.1) shows that any k-section of X extends to an R-
section:

Spec k −→ Xy ↗
Spec R

On the ideals this has the interpretation:√ ∑
n∈N×

Inpv =
√ ∑

n∈N×
Inpv.

6. Action via conjugation of the group U(R[[Z]]). Let R′ be a complete
discrete valuation ring dominating R. Then the group

U(R′[[Z]]) = {u0Z(1 + u1Z + · · · ) | ui ∈ R′, u0 unit}
acts via conjugation on X (R′). One expects a structural result concerning the
set of orbits through this action. These orbits can be seen as the automor-
phisms of order p without referring to a parameter centered in 0. Note that the
action of the homothety u0Z corresponds to an action of Gm and this explains
the homogeneity of Ei with respect to weight(ai) = i. The action of U1(R′[[Z]]) :=
{Z(1 + u1Z + · · · ) |ui ∈ R′} can be described as follows: Let

σ(Z) = ζZ(1 + a1Z + · · ·+ aiZ
i + · · · )

as above, and let

τ(Z) = Z(1 + t1Z + · · ·+ tiZ
i + · · · ) ∈ U1(R′[[Z]]);

one calculates τ−1στ(Z) = ζZ(1+Aτ
1Z + · · ·+Aτ

i Zi + · · · ), where Aτ
n ∈ Z[ζ, ai, ti]

is homogeneous of weight n if we give the weight i to ai and ti.
For example one gets:

Aτ
1 := a1 + (ζ − 1)t1,

Aτ
2 := (−2 + 2ζ)t1a1 + a2 + (−2ζ + 2)t21 + (ζ2 − 1)t2,

Aτ
3 := ζt1a

2
1 + (−3 + 2ζ)t1a2 + (5− 6ζ)t21a1 + (−5 + 5ζ)t31

+ (−2 + 3ζ2)t2a1 + (5 − 2ζ − 3ζ2)t1t2 + a3 + (−1 + ζ3)t3.

Now the action of τ on En is given by Eτ
n := En(Aτ

i ), which is no longer homo-
geneous in the ai. One can ask if there are invariant polynomials with respect to
this action. We have the following:

Proposition 6.1. The form Ep is invariant with respect to the action of U1(R′[[Z]]).

Proof. Let τ(Z) = Z(1 + t1Z + · · · + tiZ
i + · · · ) ∈ U1(R′[[Z]]). We remark that

mod Zp+2, τ commutes with ρ(Z) = Z(1 + aZp). The result now follows from
Proposition V.1.

Remark. Note that Zp[ζ][Ep/λ] ⊂ Zp[ζ][ai] is U1(Zp[ζ][[Z]]) invariant.
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6.2. Order p automorphisms with 1 fixed point.

Proposition 6.2.1. Let σ be an order p automorphism of R[[Z]] with only one
geometric fixed point. Then this point is R-rational and σ is linearizable, i.e. after
conjugation by some τ ∈ AutR R[[Z]] one has τστ−1(Z) = ζaZ, for some 0 < a < p.

Proof. Applying the Weierstrass Preparation Theorem it follows directly that if
there is only one fixed point it must be R-rational. Hence we can assume that
σ(Z) = ζZ(1 + a1Z + · · · ) ∈ R[[Z]], and then for all i ≥ 1, we must have ai ∈
λR, where λ = ζ − 1 (see II.1). We build τ by approximation. Let τ1(Z) :=
Z(1 + a1λ

−1Z). Then τ1στ−1
1 (Z) = ζZ(1 + b2λZ2) mod Z3. Now assume that we

have built τn(Z) such that τnστ−1
n (Z) = ζZ(1+bn+1λZn+1) mod Zn+2 and remark

that if (p, n+1) 6= 1, then it follows from Proposition V.1 that bn+1 = 0. Now assume
that (p, n + 1) = 1 and set ν(Z) := Z(1 + ζ−1

ζn+1−1bn+1Z
n+1). Then τn+1 := ντn

satisfies the congruence up to the level n + 1 and the sequence τn converges to
τ ∈ U1(R[[Z]]).

Remark 6.2.2. The same method of proof shows that any finite order automorphism
with only one geometric fixed point is linearizable.

6.3. Order p automorphisms with no inertia at (π) and 0 < m < p.

Theorem 6.3.1. For 0 < m < p, modulo a change of parameter, there are only
a finite number of order p automorphisms of the open disc with no inertia at (π),
i.e. in AutR R[[Z]] there is only a finite set of conjugacy classes of such order p
automorphisms. Moreover, they occur when considering the p-cyclic covers of P1

Qur
p

with potentially good reduction of type Am, and are defined by the equation Y p =∏
0≤i≤m

(1−TiX)hi , where (Ti)i ∈ (Zp
ur)m+1 are in m+1 distinct classes mod p and

satisfy h0T
k
0 +h1T

k
1 + · · ·+hmT k

m = 0, 0 ≤ k ≤ m−1, for (hi)0≤i≤m ∈ (Z\pZ)m+1.

Proof. Let σ be an order p automorphism of Do = Spec R[[Z]] with no inertia at
(π), conductor m+1 and (h0, ..., hm) its Hurwitz data with

∑
i hi = 0. By Theorem

II.3.1.2 σ corresponds to a generic µp-torsor of P1
K with equation:

Y p =
∏

0≤i≤m

(1−XiX)hi := f(X).

Moreover, as it has good reduction of type Am relative to some Gauss valuation, it
follows from Lemma V.6.3.2 below that there is an equation such that:
• v(Xi) ≥ 0 for each i, the Xi give m + 1 distinct points mod π, and one can

prescribe the classes X̄0 = t0 and X̄1 = t1 in Falg
p ;

• the Gauss valuation relative to T := λp/mX−1 induces the good reduction
and so f(X) = 1 + s1X + · · · + smXm + · · · satisfies v(sk) ≥ (m − k) p

mv(λ), for
1 ≤ k ≤ m and v(sm) = 0.

Let pk := h0X
k
0 + h1X

k
1 + · · · + hmXk

m for 0 ≤ k ≤ m. Then considering the
Newton formuli:

pk − pk−1s1 + pk−2s2 + · · ·+ (−1)k−1p1sk−1 + (−1)ksk = 0

and an inductive argument shows that v(pk) ≥ (m− k) p
mv(λ), for 1 ≤ k ≤ m, and

v(pm) = 0. This means that the Xi satisfy the system

h0X
k
0 + h1X

k
1 + · · ·+ hmXk

m = pk, 1 ≤ k ≤ m,(∗∗)
subject to the conditions v(Xi) ≥ 0, v(Xi −Xj) = 0 and v(pk) ≥ (m− k) p

mv(λ).
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Let (t0, t1, . . . , tm) be the residue classes of Xi mod π which give a proper solu-
tion of III.4.1(∗), and moreover are in Falg

p . By III.4.2.1 we can lift this solution to
(T0, T1, . . . , Tm) ∈ (Zur

p )m+1 such that the Ti satisfy the system

h0T
k
0 + h1T

k
1 + · · ·+ hmT k

m = 0, 1 ≤ k ≤ m− 1,

and by construction one has v(Ti −Xi) > 0 for 0 ≤ i ≤ m.
The next step is to inductively build an automorphism τ of the open disc

v(T = λp/mX−1) > 0 such that τ(λp/mTi) = λp/mXi. In order to simplify the
equations that follow we will write r := λp/m. Let

τ(T ) := rX0
T − rT1

rT0 − rT1
+ rX1

T − rT0

rT1 − rT0
∈ R[[T = rX−1]].

Then τ sends rT0 (resp. rT1) to rX0 (resp. rX1). Now assume we have found an
automorphism τn of R[[T ]] which satisfies τn(rTi) = rXi for i ≤ n−1. (Observe that
such an automorphism preserves the closed disc v(T ) ≥ v(r).) So applying Lemma
V.6.3.3 below, after a change of parameter we can assume that Ti = Xi for i ≤ n−1.
After renumbering we can assume that v(ρ) := v(Xn − Tn) = infn≤i≤m v(Xi − Ti)
and we show that v(ρ) ≥ (n− 1)v(r). If v(ρ) < (n− 1)v(r), then we can write the
system (∗∗) in the following way:

hn(Xk
n − T k

n ) + · · ·+ hm(Xk
m − T k

m) = pk, 1 ≤ k ≤ m− 1(∗ ∗ ∗)
and set h′i equal to the image of hi

Xi−Ti

ρ mod π. Then we remark that

Xk
i − T k

i

ρ
= kh′iT

k−1
i mod π

and as

v(
pk

ρ
) ≥ (m− k)v(r) − v(ρ) > (m− n + 1− k)v(r) ≥ 0,

the first m−n+1 equations of the system (∗∗∗) induce a Vandermonde type system
mod π with non-zero determinant. This contradicts the fact that the hi 6≡ 0 mod p.
Now if we consider

τn+1(T ) = T +
rXn − rTn∏

0≤i<n

(rTn − rTi)
∏

0≤i<n

(T − rTi) ∈ R[[T ]],

the conditions τn+1(Ti) = Xi are satisfied for i ≤ n. So we have two µp-torsors of
the open disc Spec R[[T ]] with the same branch locus, say Y p

1 =
∏

0≤i≤m

(1 − TiX)hi

and Y p
2 =

∏
0≤i≤m

(1 − TiX)hiU(T ), where U(T ) = 1 + something small. It follows

from Abhyankar’s lemma and purity of the branch locus that the compositum gives
p copies of the open disc. Hence the two torsors are equal (they have the same
Hurwitz data).

Lemma 6.3.2. Let C be a given generic µp-torsor of P1
K , which has good reduction

of type Am and suppose m < p. Then there is an equation of the torsor

Y p =
∏

0≤i≤m

(1−XiX)hi =: f(X)
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for Xi ∈ R reducing to m + 1 distinct classes mod π and such that the T -Gauss
valuation for T = λp/mX−1 induces the good reduction. Moreover, f(X) = 1 +
s1X+· · ·+smXm+· · · satisfies the inequalities v(sk) ≥ (m−k) p

mv(λ) for 1 ≤ k ≤ m
and v(sm) = 0.

Proof. The existence of an equation as above such that T = λp/mX−1 induces the
good reduction follows immediately from Theorem III.3.1. Now we prove that for
such an equation one has the desired inequalities. To do so we write:

f(X) = 1 + s1X + · · ·+ smXm + · · · ∈ R[[X ]]

= 1 + s1rT
−1 + · · ·+ smrmT−m + · · · ∈ R〈T−1〉

where r = λp/m. One has to prove that v(skrk) ≥ v(λp), for 1 ≤ k ≤ m, and
v(smrm) = v(λp) (i.e. v(sm) = 0). We prove this assertion by contradiction.

Let δ := inf1≤k≤m v(skrk), and suppose that δ < v(λp). Then there exists k0 < m

such that δ = v(sk0r
k0 ) < v(skrk) for k > k0. We write X = r

ρp

(
T
ρp

)−1
, with

0 < v(ρp) for ρ ∈ Ralg. We study f(X) on the closed disc v(T ) ≥ v(ρp) and so use
the writing:

f(X) = 1 + s1

( r

ρp

)( T

ρp

)−1 + s2

( r

ρp

)2( T

ρp

)−2 + · · · .

Now for 0 < v(ρp) small enough one has

inf
1≤k≤m

v
(
sk

( r

ρp

)k)
= v

(
sk0

( r

ρp

)k0)
< v(λp).

Then, by Proposition III.1.2 it follows that the gradient of the different above the
annulus v(T ) = v(ρp) for v(ρ) small enough is (p−1)k0. However, as the torsor has
good reduction of type Am it follows from II.1 that this gradient is in fact (p−1)m,
which is a contradiction. Therefore δ ≥ v(λp).

It remains to show that v(sm) = 0. Assume otherwise; then v(sm) > 0 and so
we have v(sk) > 0 for 1 ≤ k ≤ m which implies v(pk) > 0 for 1 ≤ k ≤ m where
pk = h0X

k
0 + · · · + hmXk

m. Letting ti denote the residue of Xi mod π, we obtain
the system

h0t
k
0 + h1t

k
1 + · · ·+ hmtkm = 0, 0 ≤ k ≤ m,

whose determinant is non-zero; this implies hi ≡ 0 mod p, which is a contradiction.

Lemma 6.3.3. Let 1 < m < p, and r = λp/m ∈ R. Let τ ∈ AutRR[[T ]] be such that
τ(T ) = a0 + a1T + · · · ∈ R[[T ]] and a0 ∈ rR. Suppose (X0, X1, . . . , Xm) ∈ Rm+1

satisfies the following conditions:
i) v(Xi) ≥ 0, v(Xi −Xj) = 0 for i 6= j,
ii) v(pkrk) ≥ v(λp) where pk := h0X

k
0 + h1X

k
1 + · · ·+ hmXk

m, 0 ≤ k ≤ m.

Then, if X ′i := r−1τ(rXi) = r−1(a0 + a1rXi + a2r
2X2

i + · · · ), the (m + 1)-tuple
(X ′0, X

′
1, . . . , X ′m) ∈ Rm+1 satisfies the same conditions.

The proof follows directly and is left to the reader.
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Mathématiques Pures de Bordeaux, UPRS-A 5467, C.N.R.S Université de Bordeaux
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