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Monodromy and automorphism groups.

I R is a strictly henselian DVR of inequal
characteristic (0, p).
K := FrR ; for example K/Qur

p finite.
π a uniformizing parameter.
k := RK /πRK .
C/K smooth projective curve, g(C) ≥ 1.

I C has potentially good reduction over K if there is
L/K (finite) such that C ×K L has a smooth model
over RL. Then:

I There is a minimal extension L/K with this
property ; it is Galois and called the monodromy
extension.

I Gal(L/K ) is the monodromy group.
I Its p-Sylow subgroup is the wild monodromy

group .
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I The base change C ×K K alg induces an
homomorphism ϕ : Gal(K alg/K ) → Autk Cs, where
Cs is the special fiber of the smooth model over
RL and L = (K alg)ker ϕ.

I Let ` be a prime number, then,
n` := v`(|Gal(L/K )|) ≤ v`(|Autk Cs|).

I If ` /∈ {2, p}, then `n` is bounded by the maximal
order of an `-cyclic subgroup of GL2g(Z/`Z) i.e.
`n` ≤ O(g).

I If p > 2, then
np ≤ inf 6̀=2,p vp(|GL2g(Z/`Z)|) = a + [a/p] + ...,
where a = [ 2g

p−1 ].
This gives an exponential type bound in g for
|Autk Cs|. This justifies our interest in looking at
Stichtenoth ([St 73]) and Singh ([Si 73]).
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Theorem
([Ra 90]). Let YK → XK be a Galois cover with group
G. Let us assume that:

I G is nilpotent.
I XK has a smooth model X.
I The Zariski closure B of the branch locus BK in X

is étale over RK .

Then,

I the special fiber of the stable model YK is
tree-like, i.e. the Jacobian of YK has potentially
good reduction.

I Raynaud’s proof is qualitative and it seems difficult
to give a constructive one in the simplest cases.

I We have given in [Le-Ma3] such a proof in the
case of p-cyclic covers of the projective line.
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p-cyclic covers of the affine line

k is an algebraically closed of char. p > 0.
I f (X ) ∈ Xk [X ] monic,deg f = m > 1 prime to p,

monic.
I Cf : W p − W = f (X ). Let ∞ be the point of Cf

above X = ∞ and z a local parameter. Then,
g := g(Cf ) = p−1

2 (m − 1) > 0.
I G∞(f ) := {σ ∈ Autk Cf | σ(∞) = ∞}.
I G∞,1(f ) := {σ ∈ Autk Cf | v∞(σ(z) − z) ≥ 2} , the

p-Sylow.
I ([St 73]) Let g(Cf ) ≥ 2, then G∞,1(f ) is a p-Sylow

of Autk Cf .
I It is normal except for f (X ) = X m where m|1 + p.
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Structure of G∞,1(f )

I Let ρ(X ) = X , ρ(W ) = W + 1, then
< ρ >= G∞,2 ⊂ Z (G∞,1)

I 0 →< ρ >→ G∞,1 → V → 0,
V = {τy | τy(X ) = X + y , y ∈ k}.
f (X + y) = f (X ) + f (y) + (F − Id)(P(X , y)),
P(X , y) ∈ Xk [X ].
V ' (Z/pZ)v as a subgroup of k .

I Let τy(W ) := W + ay + P(X , y), ay ∈ Fp, then
[τy , τz ] = ρε(y ,z), where ε : V × V → Fp is an
alternating form.

I ε is non degenerated iff < ρ >= Z (G∞,1).
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Bounds for |G∞,1(f )|

Lemma
If f (X ) =

∑

1≤i≤m tiX i ∈ k [X ] is monic, then:
I ∆(f )(X , Y ) := f (X + Y ) − f (X ) − f (Y ) =

R(X , Y ) + (F − Id)(Pf (X , Y )),
where R ∈

⊕

bm
p c≤ipn(i)<m, (i ,p)=1 k [Y ]X ipn(i)

and

Pf ∈ Xk [X , Y ].

I Pf = (Id + F + ... + F n−1)(∆(f )) mod X [ m−1
p ]+1.

I Let us denote by Adf (Y ) the content of
R(X , Y ) ∈ k [Y ][X ].

I Adf (Y ) is an additive and separable polynomial.
I Z (Adf (Y )) ' V.
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Let m − 1 = `ps with (`, p) = 1.
I ([St 73]) |G∞,1| = p deg Adf ≤ p(m − 1)2, i.e.

|G∞,1|

g2 ≤ 4p
(p−1)2 .

I ([St 73]) s = 0 i.e. (m − 1, p) = 1, then |G∞,1| = p.
I If s > 0,

I ` > 1, p = 2, then |G∞,1|
g ≤ 2

3 .

I ` > 1, p > 2, then |G∞,1|
g ≤ p

p−1 .

I ([St 73]) ` > 1, m = 1 + ps, then |G∞,1|
g ≤ 2ps p

p−1

(with equality for f (X ) = X 1+ps
).
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Characterization of G∞,1(f )

I We consider the extensions of type
0 → N ' Z/pZ → G → (Z/pZ)n → 0 (note that
G∞,1(f ) is an extension of this type). Then
G′ ⊂ N ⊂ Z (G).

I If G′ = Z (G), G is called extraspecial.
I Then, |G| = p2s+1 and there are 2 isomorphism

classes for a given s.
I If p > 2, we denote by E(p3) (resp. M(p3)) the

non abelian group of order p3 and exponent p
(resp. p2). Then, G ' E(p3) ∗E(p3) ∗ ... ∗ E(p3) or
M(p3) ∗ E(p3) ∗ ... ∗ E(p3), according as the
exponent is p or p2.

I If p = 2, then G ' D8 ∗ D8 ∗ ... ∗ D8 or
Q8 ∗ D8 ∗ ... ∗ D8 (in both cases, the exponent is
22).

I If G′ ⊂ Z (G), G is a subgroup of an extraspecial
group E with Z (E) = N ⊂ G.
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I If p = 2, then G ' D8 ∗ D8 ∗ ... ∗ D8 or
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22).

I If G′ ⊂ Z (G), G is a subgroup of an extraspecial
group E with Z (E) = N ⊂ G.
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I Theorem
([Le-Ma 1]). Let f (X ) = XΣ(F )(X ) ∈ Xk [X ],
Σ(F ) =

∑

0≤i≤s aiF i ∈ k{F} an additive
polynomial with deg f = 1 + ps. Then,

I Adf (Y ) = F s(
∑

0≤i≤s(ai F i + F−iai)(Y )), a
palyndromic polynomial.

I G∞,1(f ) is an extraspecial group with cardinal
p2s+1 and exponent p for p > 2, and of type
Q8 ∗ D8 ∗ ... ∗ D8 for p = 2.

I Theorem
([Le-Ma 1]). If G is an extension of type
0 → Z/pZ → G → (Z/pZ)n → 0, there is
f ∈ Xk [X ] with G ' G∞,1(f ).

I Sketch proof: Extraspecial groups with exponent
p2 are realized by a modification by a Witt cocycle
of the polynomial f in the theorem above.

I We can see G as a subgroup of an extraspecial
group E , then we realize E with fE and a suitable
modification of f E will limit G∞,1(fE ) to G.
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Big actions (I)

I Theorem
([Le-Ma 1]). Let f (X ) ∈ Xk [X ] with (deg f , p) = 1.

If |G∞,1|
g > p

p−1 (2
3 for p = 2), then

f (X ) = cX + XΣ(F )(X ) ∈ k [X ].

I Sketch proof: One shows that monomials in f with
a degree /∈ 1 + pN will limit the degree of Adf .

I Let (C, G) with G ⊂ Autk C. We say that (C, G) is
a big action if G is a p-group and
(N) gC > 0 and |G|

gC
> 2p

p−1 .

It follows from ([Na 87]) that there is ∞ ∈ C, with
I C → C/G ' P1

k −∞ is étale and G = G∞,1.
I G∞,2 6= G∞,1 and C/G∞,2 ' P1

k
I Then, G∞,1/G∞,2 acts as a group of translations

of the affine line C/G∞,2 − {∞}.
I Transfert of condition (N) to quotients. Let

(C, G) a big action, if H C G and if g(C/H) > 0,
then (C/H, G/H) is a big action.
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Condition (N) and G2

In this section (C, G) is a big action. Let Gi be the
lower ramification groups.

I Let H C G and H with index p in G2 (H exists!),
then (C/H, G/H) is a big action.

I (G/H)2 = G2/H ' Z/pZ.
I There is S(F ) ∈ k{F},

f1 = cX + XΣ(F )(X ) ∈ k [X ] with C/H ' Cf1 .
I If G2 ' (Z/pZ)t , then k(C) = k(X , W1, ..., Wt ) and

℘(W1, ..., Wt ) = (f1(X ), f2(X ), ..., ft (X )) ∈ (k [X ])t

I f1(X ), .., ft (X ) are Fp-free mod ℘(k [X ]).
I The group extension

0 → G2 → G1 → V = (Z/pZ)v → 0 induces a
representation ρ : V → Glt (Fp)

I dual to the one given by V acting via translation:
(v ∈ V )× (f1(X ), f2(X ), ..., ft (X )) mod ℘(k [X ])t →
→ (f1(X + v), f2(X + v), ..., ft (X + v))
mod ℘(k [X ])t
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I Imρ is a unipotent subgroup of Glt(Fp) which is
the identity iff G2 ⊂ Z (G). In this case
fi(X ) = ciX + XΣi(F )(X ) where Σi(F ) ∈ k{F}
and v ∈ V is a commun zero to the palyndromic
polynomials Adfi ∈ k{F , F−1}.

I Let f1 := X (αF )(X ) = αX 1+p with αp + α = 0 ;
then Adf1 = Y p2

− Y .
I Let f2 := X 1+2p − X 2+p, then
I f2(X + Y ) − f2(X ) − f2(Y ) = 2(Y p − Y )X 1+p +

(Y − Y p2
)X 2p + (Y 2p2

− Y 2 + 2Y 1+p − 2Y p+p2
)X p

mod ℘(k [X , Y ])
I If y ∈ Z (Adf1) = Fp2 one has

f2(X + y) = 2(yp−y)
α f1(X ) + f2(X ) + ℘(P2).

I y → 2(yp−y)
α is a non zero linear form over Fp2 with

value in Fp.
I |G| = p2p2 and g = p−1

2 (p + p ∗ 2p).
I

|G|
g = 2p

p−1
p2

1+2p .

I
|G|
g2 = 4p

(p−1)2
p

(1+2p)2 .
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I Theorem
([Le-Ma 4]) Assume G2 is non abelian, then
G2 = G′.

I Sketch proof: If G′ 6= G2, there is H C G with
G′ ⊂ H ⊂ G2 and [G2 : H] = p.
(C/H, G/H) is abig action ;

I C/H : W p − W = f := XΣ(F )(X ),
deg(f ) = 1 + ps.

I (AutC/H)∞,1 := E is extraspecial with order
p2s+1.

I G/H is abelian and normal in E .
I ([Hu 67] Satz 13.7 p. 353) |G/H| ≤ ps+1 and so

|G/H|/g(C/H) ≤ 2ps+1

(p−1)ps = 2p
p−1 , a contradiction.

We deduce the following corollary from ([Su 86]
4.21 p.75).

I Corollary
If |G2| = p3, then G2 is abelian.
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Riemann surfaces
I In characteristic 0, an analogue of big actions is

given by the actions of a finite group G on a
compact Riemann surface C with gC ≥ 2 such
that |G| = 84(gC − 1) (we say that C is an
Hurwitz curve) ([Co 90]).

I Let us mention Klein’s quartic (G ' PSL2(F7)) ([El
99]).

I The Fricke-Macbeath curves with genus 7
(G ' PSL2(F8)) ([Mc] 65).

I Let C be an Hurwitz curve with genus gC . Let
n > 1 and Cn the maximal unramified Galois
cover whose group is abelian with exponent n.
The Galois group of Cn/C is (Z/nZ)2gC . It follows
from the unicity of Cn that the k -automorphisms of
C have n2g prolongations to Cn. Therefore
gCn − 1 = n2g(gC − 1) and n2g |Autk C| ≤ |Autk Cn|,
where |Autk Cn| ≥ 84(gCn − 1) ; Cn is an Hurwitz
curve ([Mc] 61).
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Ray class fields

I If (C, G) is a big action then C → C/G is an étale
cover of the affine line whose group is a p-group ;
it follows that the Hasse-Witt invariant of C is
zero ; therefore, in order to adapt the previous
proof to char. p > 0, one needs to accept
ramification. This is done with the so called ray
class fields of function fields over finite fields.

I Let K := Fq(X ) where q = pe, S the set of finite
rational places (X − v), v ∈ Fq and m ∈ N. Let
K alg be an algebraic closure. Let K m

S ⊂ K alg, the
biggest abelian extension L of K with conductor
≤ m∞ and such that the places in S are
completely decomposed.
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I ([La 99], [Au 00]) The constant field of Km
S is Fq

and GS(m) := Gal(K m
S /K ) ' (1 + TFq[[T ]])/ <

1 + T mFq[[T ]], 1 − vT , v ∈ Fq >, is a p-group.
I ([Le-Ma 4]) Let Cm/Fq be the smooth projective

curve with function field Km
S . The translations

X → X + v , v ∈ Fq stabilize S and ∞ ; they can
be extended to Fq-automorphisms of K m

S . In this
way, we get an action of a p-group G(m) on Cm

with 0 → GS(m) → G(m) → Fq → 0
I ([Au 00]) If nm := |GS(m)|, then

gCm = 1 + nm(−1 + m/2) − (1/2)
∑

0≤j≤m−1 nj ≤
nm(−1 + m/2)
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I
|G(m)|

gCm
≥ nmq

nm(−1+m/2) = q
−1+m/2 . This is a “big

action” as soon as q
−1+m/2 > 2p

p−1 (we have
G2 = GS(m))

I Let Nq := |Cm(Fq)|. Then, Nq = 1 + |G(m)|, and
the quotient |G(m)|

gCm
∼ Nq

gCm
.

I ([La 99]) If q = pe,m2 := pde/2e+1 + p + 1 is the
smallest conductor m such that the exponent of
Gm

S is > p.
I If e > 2, (Cm2 , G(m2)) is a big action and G2 is

abelian with exponent p2.
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Big actions (II)
From now on, k is any algebraically closed field
and (C, G) is a big action.

I If G2 ' Z/pnZ, then n = 1 ([Le-Ma 4]).
I Sketch proof: Let H = Gpn−2

2 then (C/H, G/H) is a
big action, so one can assume that n = 2. Then
C → C/G2 is given by ℘(W0, W1) = (f0, f1) with
f0 = XΣ(F )(X ), deg f0 = 1 + ps.

I Let v ∈ V := Z (Adf0) and P ∈ k [X ] with
f0(X + v) = f0(X ) + ℘(P) alors f1(X + v)− f1(X ) =

`(v)f0(X ) + 1
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∑

1≤i≤p−1
(−1)i−1

i v iX p−i+ps+1

mod X ps+1
where ` : V → Fp is a linear form.
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expect for its p-rank a lower bound in O(log(gC)).
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Maximal curves (I)
Let us assume that (C, G) is a big action.

I Let i0 with G2 = G3 = .... = Gi0 % Gi0+1. Then
g(C/Gi0+1) = 1

2(|G2/Gi0+1| − 1)(i0 − 1).

I If 0 < M ≤ |G|

g2
C

, then

I |Gi0+1| ≤
1
M

|G/Gi0+1|

g2
C/Gi0+1

≤ 1
M

4|G2/Gi0+1|

(|G2/Gi0+1|−1)2 .

I Theorem
([Le-Ma 1]) If |G|

g2
C
≥ 4

(p−1)2 there is Σ(F ) ∈ k{F}

and f = cX + XΣ(F )(X ) ∈ k [X ] with C ' Cf .
Moreover there are two possibilities for G:

I
|G|

g2
C

= 4p
(p−1)2 and G = G∞,1(f ) or

I
|G|

g2
C

= 4
(p−1)2 and G ⊂ G∞,1(f ) has index p.

I Note that the sequence pn

(pn−1)2 is decreasing and

that |Gi0+1| ∈ pN . We deduce bounds for
|G2/Gi0+1|, |Gi0+1| and so for |G2|.
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Maximal curves (II)

We still assume that (C, G) is a big action.
I One can push the “classification ” of big actions

up to the condition |G|

g2
C
≥ 4

(p2−1)2 . Namely

I One first show that |G2| divides p3.
I The condition G2 = G′

1 implies that G2 is abelian.
I Applying ([Mr 71]) to the case of abelian

extensions with group Z/pZ × Z/p2Z one shows
that G2 has exponent p (we have seen above that
G2 is cyclic iff G2 = Z/pZ).

I Theorem
([Le-Ma 4]) For all M > 0, the set |G|

g2
C

> M, for

(C, G) a big action with G2 abelian with exponent
p, is finite.
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Monodromy polynomial ([Le-Ma 3])

I Let C −→ P1
K birationally given by the equation:

Z p
0 = f (X0) =

∏

1≤i≤m(X0 − xi)
ni ∈ R[X0],

(ni , p) = 1 and (deg f , p) = 1,
v(xi − xj) = v(xi ) = 0 for i 6= j .

I f ′(Y )/f (Y ) = S1(Y )/S0(Y ), (S0(Y ), S1(Y )) = 1 ;
then deg(S1(Y )) = m − 1 and deg(S0(Y )) = m .

I f (X + Y ) = f (Y )((1 + a1(Y )X + ... + ar (Y )X r )p −
∑

r+1≤i≤n Ai(Y )X i), où r + 1 = [n/p],
ai(Y ), Ai(Y ) ∈ K (Y ).

I There is a unique α such that r < pα < n < pα+1

I There is T (Y ) ∈ R[Y ] with

Apα(Y ) = −
(

1
p

pα−1

)

p
.S1(Y )pα

+pT (Y )
S0(Y )pα .

I L(Y ) := S1(Y )pα

+ pT (Y ). This is a polynomial of
degree pα(m − 1) which is called the monodromy
polynomial of f (Y ).
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Special fiber of the easy model

We mean the R-model CR defined by
Z p

0 = f (X0) =
∏

1≤i≤m(X0 − xi)
ni ∈ R[X0] (cf. fig 1).

FIG.: CR ⊗R k −→ P1
k with singularities and branch locus
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I Theorem
([Le-Ma 3]) The components with genus > 0 of
the marked stable model of C correspond
bijectively to the Gauss valuations vXj

with
ρjXj = X0 − yj , where yj is a zero of the
monodromy polynomial L(Y )

I ρj ∈ Ralg satisfies

v(ρj ) = max{1
i v

(

λp

Ai (yj )

)

for r + 1 ≤ i ≤ n}.

I The dual graph of the special fiber of the marked
stable model of C is an oriented tree whose ends
are in bijection with the components of genus > 0.
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Potentially good reduction with m = 1 + ps

Theorem
([Le-Ma 3])

I p > 2, q = pn, n ≥ 1, K = Qur
p (pp/(q+1)) and

C −→ P1
K is birationally defined by the equation

Z p
0 = f (X0) = 1 + pp/(q+1)X q

0 + X q+1
0 .

I Then, C has potentially good reduction and L(Y )
is irreducible over K .

I The monodromy L/K is the extension of the
decomposition field of L(Y ) obtained by adjoining
the p-roots f (y)1/p , for y describing the zeroes of
L(Y ).

I The monodromy group is the extraspecial group
with exponent p2 and order pq2 (which is maximal
for this conductor).
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Curves of genus 2 ([Le-Ma 3])

I Case p = 2 and m = 5 ( i.e. curves with genus 2
over a 2-adic field ⊂ Qtame

2 ).
I There are 3 types of degeneration for the marked

stable model.
I

genus 1
curves

genus 1
curves

genus 2
curveP1

k

P1
k

Type 1
Gal(K ′/K )w ↪→ Q8 × Q8 Gal(K ′/K )w ↪→ (Q8 × Q8) o Z/2Z Gal(K ′/K )w ↪→ Q8 ∗ D8

original component

Type 2

original component
P1

k original component
P1

k

Type 3



Automorphisms

C. LEHR , M. MATIGNON

Plan

Introduction
Monodromy and automorphism groups

Automorphism groups
Covers of the affine line
Structure of G∞,1(f )
Bounds for |G∞,1(f )|
Characterization of G∞,1(f )

Actions of p-groups
Nakajima condition
More about G2
Riemann surfaces
Ray class fields
Big actions
Maximal curves

Monodromy
Marked stable model
Potentially good reduction
Genus 2

Références

Curves of genus 2 ([Le-Ma 3])

I Case p = 2 and m = 5 ( i.e. curves with genus 2
over a 2-adic field ⊂ Qtame

2 ).
I There are 3 types of degeneration for the marked

stable model.
I

genus 1
curves

genus 1
curves

genus 2
curveP1

k

P1
k

Type 1
Gal(K ′/K )w ↪→ Q8 × Q8 Gal(K ′/K )w ↪→ (Q8 × Q8) o Z/2Z Gal(K ′/K )w ↪→ Q8 ∗ D8

original component

Type 2

original component
P1

k original component
P1

k

Type 3



Automorphisms

C. LEHR , M. MATIGNON

Plan

Introduction
Monodromy and automorphism groups

Automorphism groups
Covers of the affine line
Structure of G∞,1(f )
Bounds for |G∞,1(f )|
Characterization of G∞,1(f )

Actions of p-groups
Nakajima condition
More about G2
Riemann surfaces
Ray class fields
Big actions
Maximal curves

Monodromy
Marked stable model
Potentially good reduction
Genus 2

Références

Curves of genus 2 ([Le-Ma 3])

I Case p = 2 and m = 5 ( i.e. curves with genus 2
over a 2-adic field ⊂ Qtame

2 ).
I There are 3 types of degeneration for the marked

stable model.
I

genus 1
curves

genus 1
curves

genus 2
curveP1

k

P1
k

Type 1
Gal(K ′/K )w ↪→ Q8 × Q8 Gal(K ′/K )w ↪→ (Q8 × Q8) o Z/2Z Gal(K ′/K )w ↪→ Q8 ∗ D8

original component

Type 2

original component
P1

k original component
P1

k

Type 3



Automorphisms

C. LEHR , M. MATIGNON

Plan

Introduction
Monodromy and automorphism groups

Automorphism groups
Covers of the affine line
Structure of G∞,1(f )
Bounds for |G∞,1(f )|
Characterization of G∞,1(f )

Actions of p-groups
Nakajima condition
More about G2
Riemann surfaces
Ray class fields
Big actions
Maximal curves

Monodromy
Marked stable model
Potentially good reduction
Genus 2

Références

I C −→ P1
K is birationally defined by the equation

Z p
0 = f (X0) with

f (X0) = 1 + b2X 2
0 + b3X 3

0 + b4X 4
0 + X 5

0 ∈ R[X0].
I Now, we see that the monodromy can be maximal

for the 3 types of degeneration.

I a) f (X0) = 1 + 23/5X 2
0 + X 3

0 + 22/5X 4
0 + X 5

0 and
K = Qur

2 (21/15) ;
I C has a marked stable model of type 1.
I The maximal monodromy group is ' Q8 × Q8.
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I b) Let K = Qur
2 (a) with a9 = 2 and

f (X0) = 1 + a3X 2
0 + a6X 3

0 + X 5
0 .

I C has a marked stable model of type 2.
I The maximal monodromy group is

' (Q8 × Q8) o Z/2Z, where Z/2Z exchanges the
2 factors.

I c) K = Qur
2 and . f (X0) = 1 + X 4

0 + X 5
0 .

I C has potentially good reduction (i.e. is of type 3)
I The maximal monodromy group is ' Q8 ∗ D8.
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