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Introduction

Marius and Bordeaux

Dear all,
it is a great pleasure for me to participate to Mariusfest in Groningen. To start
with, I would like like to say some words about the long-standing
relationships between Marius and Bordeaux. Indeed, in the eighties, as I
worked in Bordeaux with Reversat under Fresnel’s supervision, Marius
visited us for one year on a CNRS position. Then, he gave lectures on rigid
analytic geometry and organized a seminar on Drinfeld’s modules and related
topics, which gives birth to a book in collaboration with Jean Fresnel on rigid
analytic geometry. This book met great success, as proved by its new enlarged
edition in 2004. This was the opportunity for our team to learn algebraic and
arithmetic geometry, which had a very strong influence on our mathematical
lives. From then on, Marius got used to visit Bordeaux and Toulouse, as
Reversat moved there. It proved to be a fruitful collaboration insofar as he
wrote many papers with Fresnel, Liu and Reversat.
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Introduction

Last Thursday, I got a phone call from Reversat. He feels very sorry not to be
here with us to pay tribute to Marius whom he considered, to some extent, as
his maths ”guru”. My talk deals with the semi stable reduction theorem for
curves, a key result in arithmetic geometry for which Marius gave a rigid
analytic proof at the beginning of the eighties.
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Introduction

Notations

(K,v) is a (discretely) valued complete (or henselian) field.

OK denotes its valuation ring.

MK is the maximal ideal of OK

π is a uniformizing element in the discretely valued case

k := OK/MK ,the residue field, is algebraically closed of char. p > 0

λ = ζ −1 where ζ is a primitive p-th root of 1.
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Introduction

Abelian varieties

Theorem

(Grothendieck) Let A be an abelian variety over K. There is a finite separable
extension K ′/K such that the neutral component of the special fiber of the
Néron model A ′0 of A′ = A×K′ over OK′ is semi-abelian (i.e.
0 → T → A ′0 × k → B → 0 where T is a torus and B is an abelian variety
over k). We say that A has semi-stable reduction over K ′.
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Introduction

Abelian varieties

Theorem

(Grothendieck) Let A be an abelian variety over K. There is a finite separable
extension K ′/K such that the neutral component of the special fiber of the
Néron model A ′0 of A′ = A×K′ over OK′ is semi-abelian (i.e.
0 → T → A ′0 × k → B → 0 where T is a torus and B is an abelian variety
over k). We say that A has semi-stable reduction over K ′.

Let m ≥ 3 and prime to p, if the points of m-torsion are rational over K
then A has semi-stable reduction over K.
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Introduction

Abelian varieties

Theorem

(Grothendieck) Let A be an abelian variety over K. There is a finite separable
extension K ′/K such that the neutral component of the special fiber of the
Néron model A ′0 of A′ = A×K′ over OK′ is semi-abelian (i.e.
0 → T → A ′0 × k → B → 0 where T is a torus and B is an abelian variety
over k). We say that A has semi-stable reduction over K ′.

Let m ≥ 3 and prime to p, if the points of m-torsion are rational over K
then A has semi-stable reduction over K.

Moreover (see Deschamps 81) there is a K-subscheme mE of the
K-scheme mA of m division point of A such that A has semi-stable
reduction over K iff the points of mE are K-rational (note that mE =mA
when A has good reducton over K (Serre-Tate 68)).
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Introduction

Curves

Definition

A curve X/k is semi-stable if it is reduced and if its singularities are ordinary
double points. It is stable if it is semi-stable, connected, projective, pa(X) ≥ 2
and irreducible components ' P1

k intersect other irreducible components in at
least 3 points.
A curve C/K has semi-stable reduction (resp. stable reduction) if there is a
model C over SpecOK with semi-stable (resp. stable) special fiber Cs over k.
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Curves

Definition

A curve X/k is semi-stable if it is reduced and if its singularities are ordinary
double points. It is stable if it is semi-stable, connected, projective, pa(X) ≥ 2
and irreducible components ' P1

k intersect other irreducible components in at
least 3 points.
A curve C/K has semi-stable reduction (resp. stable reduction) if there is a
model C over SpecOK with semi-stable (resp. stable) special fiber Cs over k.

Theorem

(Deligne-Mumford 69). Let C be a smooth, projective, geometrically
connected curve of genus g ≥ 2 over K. Then there is K ′/K finite separable
such that C×K ′ has a unique stable model C over OK′ . The special fiber
C × k doesn’t depend on K ′/K, we refer to it as the potential stable
reduction of C.
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Introduction

Curves

Definition

A curve X/k is semi-stable if it is reduced and if its singularities are ordinary
double points. It is stable if it is semi-stable, connected, projective, pa(X) ≥ 2
and irreducible components ' P1

k intersect other irreducible components in at
least 3 points.
A curve C/K has semi-stable reduction (resp. stable reduction) if there is a
model C over SpecOK with semi-stable (resp. stable) special fiber Cs over k.

Theorem

(Deligne-Mumford 69). Let C be a smooth, projective, geometrically
connected curve of genus g ≥ 2 over K. Then there is K ′/K finite separable
such that C×K ′ has a unique stable model C over OK′ . The special fiber
C × k doesn’t depend on K ′/K, we refer to it as the potential stable
reduction of C.

C has stable reduction over K iff JacC has semi-stable reduction over K.
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Introduction

Monodromy

Monodromy

Let X be an abelian variety or a curve over K.
There is a minimal (unique) extension K ′/K such that X×K ′ has stable
reduction. We call it the finite monodromy extension, its Galois group
Gal(K ′/K) is the monodromy group and its p-Sylow subgroup Gal(K ′/K)w

the wild monodromy group.
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Introduction

Monodromy

Monodromy

Let X be an abelian variety or a curve over K.
There is a minimal (unique) extension K ′/K such that X×K ′ has stable
reduction. We call it the finite monodromy extension, its Galois group
Gal(K ′/K) is the monodromy group and its p-Sylow subgroup Gal(K ′/K)w

the wild monodromy group.

The quotient group Gal(K′/K)
Gal(K′/K)w

is cyclic of order e the prime to p part of

[K′ : K]. It corresponds to the tame cyclic extension K ′t := K(π1/e) ⊂ K′

(the tame monodromy extension).
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Monodromy problems

Monodromy problems

Problem

0. Give algorithms to calculate monodromy groups

Michel Matignon (IMB) Semi-stable reduction and maximal monodromy MariusFest,Groningen, April 2007 8 / 32



Monodromy problems

Monodromy problems

Problem

0. Give algorithms to calculate monodromy groups

1. Which group (resp. p-group) can occur as a monodromy group
Gal(K ′/K) (resp. wild monodromy group Gal(K ′/K)w)?
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Monodromy problems

Problem

0. Give algorithms to calculate monodromy groups

1. Which group (resp. p-group) can occur as a monodromy group
Gal(K ′/K) (resp. wild monodromy group Gal(K ′/K)w)?

For curves one can fix the type of the potential stable reduction
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Monodromy problems

Monodromy problems

Problem

0. Give algorithms to calculate monodromy groups

1. Which group (resp. p-group) can occur as a monodromy group
Gal(K ′/K) (resp. wild monodromy group Gal(K ′/K)w)?

For curves one can fix the type of the potential stable reduction

2. For a given dimension for abelian varieties or a given genus for
curves what are the groups in 1. which are maximal?
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Monodromy problems Base field

Base field

The answer certainly depends on the field K.
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Monodromy problems Base field

Base field

The answer certainly depends on the field K.

char.K = p > 0 (equal characteristic case). Then K = k((T)) and
K′t = k((T1/e)) is again a power series field.
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Base field

The answer certainly depends on the field K.

char.K = p > 0 (equal characteristic case). Then K = k((T)) and
K′t = k((T1/e)) is again a power series field.

In order to answer question 1, it is sufficient to answer question 2.
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Monodromy problems Base field

Base field

The answer certainly depends on the field K.

char.K = p > 0 (equal characteristic case). Then K = k((T)) and
K′t = k((T1/e)) is again a power series field.

In order to answer question 1, it is sufficient to answer question 2.

Indeed if G = Gal(K ′/K) for some K-curve C with genus g then any
subgroup H ⊂ G is the monodromy group of the K ′H-curve
C×K′H and K′H is a power series field isomorphic to K.
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Monodromy problems Base field

char.K = 0 and char. k = p > 0 (inequal characteristic case)

Michel Matignon (IMB) Semi-stable reduction and maximal monodromy MariusFest,Groningen, April 2007 10 / 32



Monodromy problems Base field

char.K = 0 and char. k = p > 0 (inequal characteristic case)

Let Kt/K the maximal tame extension. For a curve C/K, the extension
K′Kt/Kt is called the wild monodromy extension. Its Galois group is
isomorphic to Gal(K ′/K)w.
So for wild monodromy, it is equivalent to answer our problem over K or
Kt.
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Monodromy problems Base field

char.K = 0 and char. k = p > 0 (inequal characteristic case)

Let Kt/K the maximal tame extension. For a curve C/K, the extension
K′Kt/Kt is called the wild monodromy extension. Its Galois group is
isomorphic to Gal(K ′/K)w.
So for wild monodromy, it is equivalent to answer our problem over K or
Kt.

If, as in the equal characteristic case, we want a fixed base field, there is
a natural one K := (FrW(k))t (it doesn’t matter if it is not discretely
valued); but this time the answer to question 2 doesn’t solve question 1.
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Abelian varieties Elliptic curves

Elliptic curves

Monodromy groups

Following Silverberg-Zarhin 04, we define the following set of groups

Σp(0,0) = {1}

Σp(1,0) = {C2}
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Abelian varieties Elliptic curves

Elliptic curves

Monodromy groups

Following Silverberg-Zarhin 04, we define the following set of groups

Σp(0,0) = {1}

Σp(1,0) = {C2}

We denote Σ(0,1) = {C2,C3,C4,C6}, then
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Abelian varieties Elliptic curves

Elliptic curves

Monodromy groups

Following Silverberg-Zarhin 04, we define the following set of groups

Σp(0,0) = {1}

Σp(1,0) = {C2}

We denote Σ(0,1) = {C2,C3,C4,C6}, then

Σ2(0,1) = Σ(0,1)∪{Q8,SL2(F3)},

Σ3(0,1) = Σ(0,1)∪C3 o C4

Σp(0,1) = Σ(0,1) for p ≥ 5
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Abelian varieties Elliptic curves

Elliptic curves

Monodromy groups

Following Silverberg-Zarhin 04, we define the following set of groups

Σp(0,0) = {1}

Σp(1,0) = {C2}

We denote Σ(0,1) = {C2,C3,C4,C6}, then

Σ2(0,1) = Σ(0,1)∪{Q8,SL2(F3)},

Σ3(0,1) = Σ(0,1)∪C3 o C4

Σp(0,1) = Σ(0,1) for p ≥ 5

If E/K is an elliptic curve with non semi-stable reduction then (Serre 72,
Kraus 90, Cali 04), the monodromy group Gal(K ′/K) ∈ Σp(0,1) if the
reduction is potentially good and ∈ Σp(1,0) if the reduction is potentially
multiplicative. Conversely the groups listed above occur in this way.
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Abelian varieties Elliptic curves

It follows that the wild monodromy group Gal(K ′/K)w belongs to

{1} for p ≥ 5.

{1},{C3} for p = 3

{1},{C2},{C4},{Q8} for p = 2.
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Abelian varieties Elliptic curves

It follows that the wild monodromy group Gal(K ′/K)w belongs to

{1} for p ≥ 5.

{1},{C3} for p = 3

{1},{C2},{C4},{Q8} for p = 2.

When p = 2, let K = Q2 and Kunr the maximal Kraus (90) has shown that the
groups in this list are the monodromy groups Gal(K ′Kunr/Kunr for elliptic
curves over K = Q2.
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Abelian varieties Elliptic curves

It follows that the wild monodromy group Gal(K ′/K)w belongs to

{1} for p ≥ 5.

{1},{C3} for p = 3

{1},{C2},{C4},{Q8} for p = 2.

When p = 2, let K = Q2 and Kunr the maximal Kraus (90) has shown that the
groups in this list are the monodromy groups Gal(K ′Kunr/Kunr for elliptic
curves over K = Q2.

Moreover Kraus (90) and Cali (04) give an algorithm to calculate Gal(K ′/K)
for K an unramified extension of Q2.
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Abelian varieties Abelian varieties

Abelian varieties

Silverberg-Zarhin (98 to 04) found conditions on the monodromy group
Gal(K ′/K) for an abelian variety A/K.
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Abelian varieties Abelian varieties

Abelian varieties

Silverberg-Zarhin (98 to 04) found conditions on the monodromy group
Gal(K ′/K) for an abelian variety A/K.

For L/K finite, we denote by tL (resp. aL) the toric (resp. abelian) rank of the
special fibre of the Néron model of A×L.
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Abelian varieties Abelian varieties

Abelian varieties

Silverberg-Zarhin (98 to 04) found conditions on the monodromy group
Gal(K ′/K) for an abelian variety A/K.

For L/K finite, we denote by tL (resp. aL) the toric (resp. abelian) rank of the
special fibre of the Néron model of A×L.

By the functoriality of Néron model, for all prime ` 6= p there is an injection
Gal(K ′/K) ↪→ GltK′−tK (Z)×Sp2(aK′−aK)(Q`)
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Abelian varieties Abelian varieties

Abelian varieties

Silverberg-Zarhin (98 to 04) found conditions on the monodromy group
Gal(K ′/K) for an abelian variety A/K.

For L/K finite, we denote by tL (resp. aL) the toric (resp. abelian) rank of the
special fibre of the Néron model of A×L.

By the functoriality of Néron model, for all prime ` 6= p there is an injection
Gal(K ′/K) ↪→ GltK′−tK (Z)×Sp2(aK′−aK)(Q`)

where the first projection is independent of ` and the second one has a
characteristic polynomial with integer coefficients, independent of `.
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Abelian varieties Abelian varieties

Abelian varieties

Silverberg-Zarhin (98 to 04) found conditions on the monodromy group
Gal(K ′/K) for an abelian variety A/K.

For L/K finite, we denote by tL (resp. aL) the toric (resp. abelian) rank of the
special fibre of the Néron model of A×L.

By the functoriality of Néron model, for all prime ` 6= p there is an injection
Gal(K ′/K) ↪→ GltK′−tK (Z)×Sp2(aK′−aK)(Q`)

where the first projection is independent of ` and the second one has a
characteristic polynomial with integer coefficients, independent of `.

They deduce bounds on the order (resp. the largest prime divisor of the order)
of the monodromy group.
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Abelian varieties Abelian surfaces

Abelian surfaces

In the case of abelian surfaces, as in the case of elliptic curves, this leads to a
restricted list of finite groups which are liable to occur as monodromy groups
over some local field K.
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Abelian varieties Abelian surfaces

Abelian surfaces

In the case of abelian surfaces, as in the case of elliptic curves, this leads to a
restricted list of finite groups which are liable to occur as monodromy groups
over some local field K.
For the wild monodromy groups their list is the set of the subgroups of:

{1} for p ≥ 7.

{C5} for p = 5

{C3 ×C3} for p = 3

{(Q8 ×Q8)o C2} for p = 2 where C2 exchanges the Q8 factors.
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Abelian varieties Abelian surfaces

Realization

Silverberg-Zarhin (04) show that the restricted list is fully realizable over
F

alg
p ((T)).
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Silverberg-Zarhin (04) show that the restricted list is fully realizable over
F

alg
p ((T)).

There are three main ingredients in their proof:
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Abelian varieties Abelian surfaces

Realization

Silverberg-Zarhin (04) show that the restricted list is fully realizable over
F

alg
p ((T)).

There are three main ingredients in their proof:

1. It is sufficient to realize maximal groups (this is due to the equal
characteristic case).
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Abelian varieties Abelian surfaces

Realization

Silverberg-Zarhin (04) show that the restricted list is fully realizable over
F

alg
p ((T)).

There are three main ingredients in their proof:

1. It is sufficient to realize maximal groups (this is due to the equal
characteristic case).

2. The description of the absolute Galois group of k((t)) for k an
algebraically closed field of char. p > 0.
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Abelian varieties Abelian surfaces

Realization

Silverberg-Zarhin (04) show that the restricted list is fully realizable over
F

alg
p ((T)).

There are three main ingredients in their proof:

1. It is sufficient to realize maximal groups (this is due to the equal
characteristic case).

2. The description of the absolute Galois group of k((t)) for k an
algebraically closed field of char. p > 0.

3. A cohomological argument in order to twist abelian varieties, namely:
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Abelian varieties Abelian surfaces

Theorem

Let K be a local field with an algebraically closed residue field of char. p > 0.
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Abelian varieties Abelian surfaces

Theorem

Let K be a local field with an algebraically closed residue field of char. p > 0.
Let B be an abelian variety over K with semi-stable reduction. Let K ′/K be a
finite Galois extension with group G.
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Abelian varieties Abelian surfaces

Theorem

Let K be a local field with an algebraically closed residue field of char. p > 0.
Let B be an abelian variety over K with semi-stable reduction. Let K ′/K be a
finite Galois extension with group G.
For i : G ↪→ Aut(B), an injective homomorphism we denote by c the cocycle
defined by the composition
Gal(Ks/K) → Gal(K ′/K) = G ↪→ Aut(B).
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Abelian varieties Abelian surfaces

Theorem

Let K be a local field with an algebraically closed residue field of char. p > 0.
Let B be an abelian variety over K with semi-stable reduction. Let K ′/K be a
finite Galois extension with group G.
For i : G ↪→ Aut(B), an injective homomorphism we denote by c the cocycle
defined by the composition
Gal(Ks/K) → Gal(K ′/K) = G ↪→ Aut(B).
Let A the K-abelian variety which is the twist of B by the cocycle c; then K ′/K
is the monodromy extension for A.
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Abelian varieties Abelian surfaces

Theorem

Let K be a local field with an algebraically closed residue field of char. p > 0.
Let B be an abelian variety over K with semi-stable reduction. Let K ′/K be a
finite Galois extension with group G.
For i : G ↪→ Aut(B), an injective homomorphism we denote by c the cocycle
defined by the composition
Gal(Ks/K) → Gal(K ′/K) = G ↪→ Aut(B).
Let A the K-abelian variety which is the twist of B by the cocycle c; then K ′/K
is the monodromy extension for A.

Most of the realizations given by Silverberg-Zarhin are in equal characteristic
p > 0.
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Abelian varieties Abelian surfaces

Theorem

Let K be a local field with an algebraically closed residue field of char. p > 0.
Let B be an abelian variety over K with semi-stable reduction. Let K ′/K be a
finite Galois extension with group G.
For i : G ↪→ Aut(B), an injective homomorphism we denote by c the cocycle
defined by the composition
Gal(Ks/K) → Gal(K ′/K) = G ↪→ Aut(B).
Let A the K-abelian variety which is the twist of B by the cocycle c; then K ′/K
is the monodromy extension for A.

Most of the realizations given by Silverberg-Zarhin are in equal characteristic
p > 0.
They ask for inequal characteristic realizations.
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Galois covers of the projective line over a p-adic field Raynaud’s theorem

Raynaud’s theorem (90)

Theorem

Let YK → XK be a Galois cover with group G. Let us assume that:
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G is nilpotent.
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Raynaud’s theorem (90)

Theorem

Let YK → XK be a Galois cover with group G. Let us assume that:

G is nilpotent.

XK has a smooth model X over OK .

The Zariski closure B of the branch locus BK in X is étale over OK .
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Galois covers of the projective line over a p-adic field Raynaud’s theorem

Raynaud’s theorem (90)

Theorem

Let YK → XK be a Galois cover with group G. Let us assume that:

G is nilpotent.

XK has a smooth model X over OK .

The Zariski closure B of the branch locus BK in X is étale over OK .

Then, the intersection graph of the potential stable reduction of YK is a tree
i.e. the Jacobian of YK has potentially good reduction.
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Galois covers of the projective line over a p-adic field Raynaud’s theorem

Raynaud’s theorem (90)

Theorem

Let YK → XK be a Galois cover with group G. Let us assume that:

G is nilpotent.

XK has a smooth model X over OK .

The Zariski closure B of the branch locus BK in X is étale over OK .

Then, the intersection graph of the potential stable reduction of YK is a tree
i.e. the Jacobian of YK has potentially good reduction.

Raynaud’s proof is geometric, it uses the existence of potential stable
reduction and works by induction on the size of the group G. It doesn’t give
any information on the monodromy extension. It seems difficult to give a
constructive proof in the simplest cases.
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Galois covers of the projective line over a p-adic field Raynaud’s theorem

Raynaud’s theorem (90)

Theorem

Let YK → XK be a Galois cover with group G. Let us assume that:

G is nilpotent.

XK has a smooth model X over OK .

The Zariski closure B of the branch locus BK in X is étale over OK .

Then, the intersection graph of the potential stable reduction of YK is a tree
i.e. the Jacobian of YK has potentially good reduction.

Raynaud’s proof is geometric, it uses the existence of potential stable
reduction and works by induction on the size of the group G. It doesn’t give
any information on the monodromy extension. It seems difficult to give a
constructive proof in the simplest cases.
In Lehr-Matignon (06) we give a proof in the case of p-cyclic covers of the
projective line.

Michel Matignon (IMB) Semi-stable reduction and maximal monodromy MariusFest,Groningen, April 2007 17 / 32



Galois covers of the projective line over a p-adic field Automorphisms of curves

Monodromy

Let C/K a curve. From the unicity of the stable model C we deduce a faithful
action of the monodromy group on the potential stable reduction of C:

Gal(K ′/K) ↪→ Autk(C × k).
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Galois covers of the projective line over a p-adic field Automorphisms of curves

Monodromy

Let C/K a curve. From the unicity of the stable model C we deduce a faithful
action of the monodromy group on the potential stable reduction of C:

Gal(K ′/K) ↪→ Autk(C × k).

Gal(K ′/K) is a semi-direct product of a cyclic group of order prime to p and a
p group.
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Galois covers of the projective line over a p-adic field Automorphisms of curves

Bounds on monodromy groups for potentially good
reduction

Assume that C × k is smooth of genus g ≥ 2, (potentially good reduction).
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Bounds on monodromy groups for potentially good
reduction

Assume that C × k is smooth of genus g ≥ 2, (potentially good reduction).

Write |Gal(K ′/K)| = epw with (e,p) = 1.
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Bounds on monodromy groups for potentially good
reduction

Assume that C × k is smooth of genus g ≥ 2, (potentially good reduction).

Write |Gal(K ′/K)| = epw with (e,p) = 1.

Then the tame monodromy group is cyclic of order e ≤ 4g+2.
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Galois covers of the projective line over a p-adic field Automorphisms of curves

Bounds on monodromy groups for potentially good
reduction

Assume that C × k is smooth of genus g ≥ 2, (potentially good reduction).

Write |Gal(K ′/K)| = epw with (e,p) = 1.

Then the tame monodromy group is cyclic of order e ≤ 4g+2.

By Stichtenoth (73), Nakajima (87) one has:
pw ≤ max{4g, 4p

(p−1)2 g2}
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Galois covers of the projective line over a p-adic field Automorphisms of curves

Bounds on monodromy groups for potentially good
reduction

Assume that C × k is smooth of genus g ≥ 2, (potentially good reduction).

Write |Gal(K ′/K)| = epw with (e,p) = 1.

Then the tame monodromy group is cyclic of order e ≤ 4g+2.

By Stichtenoth (73), Nakajima (87) one has:
pw ≤ max{4g, 4p

(p−1)2 g2}

In the case of potential stable reduction with trivial toric part, one can
prove using the action on ` torsion point of Pic0(C) with ` 6= 2,p that
w ≤ a+[a/p]+ ..., with a = [ 2g

p−1 ], is an optimal bound.
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Galois covers of the projective line over a p-adic field Automorphisms of curves

Maximal curves in char.p > 0

Definition

Let C/k a curve of genus g ≥ 2 and G ⊂ Autk(C).
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Galois covers of the projective line over a p-adic field Automorphisms of curves

Maximal curves in char.p > 0

Definition

Let C/k a curve of genus g ≥ 2 and G ⊂ Autk(C). We say that (C,G) is a big
action if G is a p-group and |G|

g > 2p
p−1 .

Michel Matignon (IMB) Semi-stable reduction and maximal monodromy MariusFest,Groningen, April 2007 20 / 32



Galois covers of the projective line over a p-adic field Automorphisms of curves

Maximal curves in char.p > 0

Definition

Let C/k a curve of genus g ≥ 2 and G ⊂ Autk(C). We say that (C,G) is a big
action if G is a p-group and |G|

g > 2p
p−1 .

Theorem

Lehr-Matignon (05) Let (C,G) a big action. Then |G|

g2
C
≥ 4

(p−1)2 iff there is

Σ(F) ∈ k{F} and f = cX +XΣ(F)(X) ∈ k[X] with C ' Cf : Wp −W = f (X).
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Maximal curves in char.p > 0

Definition

Let C/k a curve of genus g ≥ 2 and G ⊂ Autk(C). We say that (C,G) is a big
action if G is a p-group and |G|

g > 2p
p−1 .

Theorem

Lehr-Matignon (05) Let (C,G) a big action. Then |G|

g2
C
≥ 4

(p−1)2 iff there is

Σ(F) ∈ k{F} and f = cX +XΣ(F)(X) ∈ k[X] with C ' Cf : Wp −W = f (X).
Moreover there are two possibilities for G:
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Maximal curves in char.p > 0

Definition

Let C/k a curve of genus g ≥ 2 and G ⊂ Autk(C). We say that (C,G) is a big
action if G is a p-group and |G|
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p−1 .
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Lehr-Matignon (05) Let (C,G) a big action. Then |G|
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C
≥ 4

(p−1)2 iff there is

Σ(F) ∈ k{F} and f = cX +XΣ(F)(X) ∈ k[X] with C ' Cf : Wp −W = f (X).
Moreover there are two possibilities for G:

|G|

g2
C

= 4p
(p−1)2 and G = G∞,1(f ) the p-Sylow subgroup of Autk(Cf ).
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action if G is a p-group and |G|
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≥ 4

(p−1)2 iff there is

Σ(F) ∈ k{F} and f = cX +XΣ(F)(X) ∈ k[X] with C ' Cf : Wp −W = f (X).
Moreover there are two possibilities for G:

|G|

g2
C

= 4p
(p−1)2 and G = G∞,1(f ) the p-Sylow subgroup of Autk(Cf ). For

degΣ(F) = s, it is the extraspecial group of order p2s+1 and exponent p
for p > 2.
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Galois covers of the projective line over a p-adic field Automorphisms of curves

Maximal curves in char.p > 0

Definition

Let C/k a curve of genus g ≥ 2 and G ⊂ Autk(C). We say that (C,G) is a big
action if G is a p-group and |G|

g > 2p
p−1 .

Theorem

Lehr-Matignon (05) Let (C,G) a big action. Then |G|

g2
C
≥ 4

(p−1)2 iff there is

Σ(F) ∈ k{F} and f = cX +XΣ(F)(X) ∈ k[X] with C ' Cf : Wp −W = f (X).
Moreover there are two possibilities for G:

|G|

g2
C

= 4p
(p−1)2 and G = G∞,1(f ) the p-Sylow subgroup of Autk(Cf ). For

degΣ(F) = s, it is the extraspecial group of order p2s+1 and exponent p
for p > 2.
|G|

g2
C

= 4
(p−1)2 and G ⊂ G∞,1(f ) has index p.
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Galois covers of the projective line over a p-adic field Monodromy polynomial

Monodromy polynomial

Let C −→ P1
K be birationally given by the equation:

Zp
0 = f (X0) = ∏1≤i≤m(X0 − xi)

ni ∈ OK[X0], (ni,p) = 1 and
(n := deg f ,p) = 1, v(xi − xj) = v(xi) = 0 for i 6= j.

Michel Matignon (IMB) Semi-stable reduction and maximal monodromy MariusFest,Groningen, April 2007 21 / 32



Galois covers of the projective line over a p-adic field Monodromy polynomial

Monodromy polynomial

Let C −→ P1
K be birationally given by the equation:

Zp
0 = f (X0) = ∏1≤i≤m(X0 − xi)

ni ∈ OK[X0], (ni,p) = 1 and
(n := deg f ,p) = 1, v(xi − xj) = v(xi) = 0 for i 6= j.

f ′(Y)/f (Y) = S1(Y)/S0(Y), (S0(Y),S1(Y)) = 1; then deg(S1(Y)) = m−1
and deg(S0(Y)) = m .
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Monodromy polynomial

Let C −→ P1
K be birationally given by the equation:

Zp
0 = f (X0) = ∏1≤i≤m(X0 − xi)

ni ∈ OK[X0], (ni,p) = 1 and
(n := deg f ,p) = 1, v(xi − xj) = v(xi) = 0 for i 6= j.

f ′(Y)/f (Y) = S1(Y)/S0(Y), (S0(Y),S1(Y)) = 1; then deg(S1(Y)) = m−1
and deg(S0(Y)) = m .

f (X +Y) = f (Y)((1+a1(Y)X + ...+ar(Y)Xr)p −∑r+1≤i≤n Ai(Y)Xi),
where r +1 = [n/p], ai(Y),Ai(Y) ∈ K(Y).
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Galois covers of the projective line over a p-adic field Monodromy polynomial

Monodromy polynomial

Let C −→ P1
K be birationally given by the equation:

Zp
0 = f (X0) = ∏1≤i≤m(X0 − xi)

ni ∈ OK[X0], (ni,p) = 1 and
(n := deg f ,p) = 1, v(xi − xj) = v(xi) = 0 for i 6= j.

f ′(Y)/f (Y) = S1(Y)/S0(Y), (S0(Y),S1(Y)) = 1; then deg(S1(Y)) = m−1
and deg(S0(Y)) = m .

f (X +Y) = f (Y)((1+a1(Y)X + ...+ar(Y)Xr)p −∑r+1≤i≤n Ai(Y)Xi),
where r +1 = [n/p], ai(Y),Ai(Y) ∈ K(Y).

There is a unique α such that r < pα < n < pα+1
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Monodromy polynomial

Let C −→ P1
K be birationally given by the equation:

Zp
0 = f (X0) = ∏1≤i≤m(X0 − xi)

ni ∈ OK[X0], (ni,p) = 1 and
(n := deg f ,p) = 1, v(xi − xj) = v(xi) = 0 for i 6= j.

f ′(Y)/f (Y) = S1(Y)/S0(Y), (S0(Y),S1(Y)) = 1; then deg(S1(Y)) = m−1
and deg(S0(Y)) = m .

f (X +Y) = f (Y)((1+a1(Y)X + ...+ar(Y)Xr)p −∑r+1≤i≤n Ai(Y)Xi),
where r +1 = [n/p], ai(Y),Ai(Y) ∈ K(Y).

There is a unique α such that r < pα < n < pα+1

There is T(Y) ∈ OK [Y] with Apα (Y) = −
( 1/p

pα−1

)p
. S1(Y)pα

+pT(Y)

S0(Y)pα .
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Galois covers of the projective line over a p-adic field Monodromy polynomial

Monodromy polynomial

Let C −→ P1
K be birationally given by the equation:

Zp
0 = f (X0) = ∏1≤i≤m(X0 − xi)

ni ∈ OK[X0], (ni,p) = 1 and
(n := deg f ,p) = 1, v(xi − xj) = v(xi) = 0 for i 6= j.

f ′(Y)/f (Y) = S1(Y)/S0(Y), (S0(Y),S1(Y)) = 1; then deg(S1(Y)) = m−1
and deg(S0(Y)) = m .

f (X +Y) = f (Y)((1+a1(Y)X + ...+ar(Y)Xr)p −∑r+1≤i≤n Ai(Y)Xi),
where r +1 = [n/p], ai(Y),Ai(Y) ∈ K(Y).

There is a unique α such that r < pα < n < pα+1

There is T(Y) ∈ OK [Y] with Apα (Y) = −
( 1/p

pα−1

)p
. S1(Y)pα

+pT(Y)

S0(Y)pα .

L (Y) := S1(Y)pα
+pT(Y). This is a polynomial of degree pα(m−1)

which is called the monodromy polynomial of f (Y).
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Galois covers of the projective line over a p-adic field Marked stable model

Special fiber of the easy model

By easy model, we mean the OK-model COK defined by
Zp

0 = f (X0) = ∏1≤i≤m(X0 − xi)
ni ∈ OK [X0].

Figure: COK ⊗OK k −→ P1
k with singularities and branch locus
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Galois covers of the projective line over a p-adic field Marked stable model

Stable model

Theorem

The components with genus > 0 of the marked stable model of C
correspond bijectively to the Gauss valuations vXj with ρjXj = X0 − yj,
where yj is a zero of the monodromy polynomial L (Y)
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Galois covers of the projective line over a p-adic field Marked stable model

Stable model

Theorem

The components with genus > 0 of the marked stable model of C
correspond bijectively to the Gauss valuations vXj with ρjXj = X0 − yj,
where yj is a zero of the monodromy polynomial L (Y)

ρj ∈ OK
alg satisfies v(ρj) = max{ 1

i v
(

λ p

Ai(yj)

)

for r +1 ≤ i ≤ n}.
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Galois covers of the projective line over a p-adic field Marked stable model

Stable model

Theorem

The components with genus > 0 of the marked stable model of C
correspond bijectively to the Gauss valuations vXj with ρjXj = X0 − yj,
where yj is a zero of the monodromy polynomial L (Y)

ρj ∈ OK
alg satisfies v(ρj) = max{ 1

i v
(

λ p

Ai(yj)

)

for r +1 ≤ i ≤ n}.

The dual graph of the special fiber of the marked stable model of C is an
oriented tree whose ends are in bijection with the components of genus
> 0.
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Galois covers of the projective line over a p-adic field Potentially good reduction

Potentially good reduction with small conductor

Let p = 3 and K ⊂ Qp
t
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Galois covers of the projective line over a p-adic field Potentially good reduction

Potentially good reduction with small conductor

Let p = 3 and K ⊂ Qp
t

f (X0) = (1+X0 +X3
0)(1+X0)

2
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Galois covers of the projective line over a p-adic field Potentially good reduction

Potentially good reduction with small conductor

Let p = 3 and K ⊂ Qp
t

f (X0) = (1+X0 +X3
0)(1+X0)

2

f ′(X0)
f (X0)

=
2X3

0
(1+X0+X3

0)(1+X0)
mod 3,
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Galois covers of the projective line over a p-adic field Potentially good reduction

Potentially good reduction with small conductor

Let p = 3 and K ⊂ Qp
t

f (X0) = (1+X0 +X3
0)(1+X0)

2

f ′(X0)
f (X0)

=
2X3

0
(1+X0+X3

0)(1+X0)
mod 3,

It follows that the special fiber of the easy model C ⊗OK k has only one cusp
and hence is a good candidate for having potentially good reduction.
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Galois covers of the projective line over a p-adic field Potentially good reduction

Potentially good reduction with small conductor

Let p = 3 and K ⊂ Qp
t

f (X0) = (1+X0 +X3
0)(1+X0)

2

f ′(X0)
f (X0)

=
2X3

0
(1+X0+X3

0)(1+X0)
mod 3,

It follows that the special fiber of the easy model C ⊗OK k has only one cusp
and hence is a good candidate for having potentially good reduction.

Note that m = 4,n = 5 and so pα = 3
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Galois covers of the projective line over a p-adic field Potentially good reduction

Potentially good reduction with small conductor

Let p = 3 and K ⊂ Qp
t

f (X0) = (1+X0 +X3
0)(1+X0)

2

f ′(X0)
f (X0)

=
2X3

0
(1+X0+X3

0)(1+X0)
mod 3,

It follows that the special fiber of the easy model C ⊗OK k has only one cusp
and hence is a good candidate for having potentially good reduction.

Note that m = 4,n = 5 and so pα = 3

Using Maple we solve the equation
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Galois covers of the projective line over a p-adic field Potentially good reduction

Potentially good reduction with small conductor

Let p = 3 and K ⊂ Qp
t

f (X0) = (1+X0 +X3
0)(1+X0)

2

f ′(X0)
f (X0)

=
2X3

0
(1+X0+X3

0)(1+X0)
mod 3,

It follows that the special fiber of the easy model C ⊗OK k has only one cusp
and hence is a good candidate for having potentially good reduction.

Note that m = 4,n = 5 and so pα = 3

Using Maple we solve the equation

f (X +Y) := s0 + s1X + s2X2 + s3X3 + s4X4 +X5 =
s0((1+a1X)3 +A2X2 +A3X3 +A4X4 +A5X5)
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Galois covers of the projective line over a p-adic field Potentially good reduction

The monodromy polynomial is the simplified numerator N3 of A3:
L (Y) = 64Y9 +18Y8 +45Y7 +72Y6 +27Y4 +27Y2 +54Y +27 mod 34

Michel Matignon (IMB) Semi-stable reduction and maximal monodromy MariusFest,Groningen, April 2007 25 / 32



Galois covers of the projective line over a p-adic field Potentially good reduction

The monodromy polynomial is the simplified numerator N3 of A3:
L (Y) = 64Y9 +18Y8 +45Y7 +72Y6 +27Y4 +27Y2 +54Y +27 mod 34

The Newton polygon has only one slent and so the roots yi,1 ≤ i ≤ 9
have valuation 1

3 v(3).
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Galois covers of the projective line over a p-adic field Potentially good reduction

The monodromy polynomial is the simplified numerator N3 of A3:
L (Y) = 64Y9 +18Y8 +45Y7 +72Y6 +27Y4 +27Y2 +54Y +27 mod 34

The Newton polygon has only one slent and so the roots yi,1 ≤ i ≤ 9
have valuation 1

3 v(3).

Using Magma, we check that the monodromy polynomial is irreducible
over Qtame

3 and as v(discr(L (Y)) = 27v(3), it follows that v(yi − yj) = 3
8 .
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The monodromy polynomial is the simplified numerator N3 of A3:
L (Y) = 64Y9 +18Y8 +45Y7 +72Y6 +27Y4 +27Y2 +54Y +27 mod 34

The Newton polygon has only one slent and so the roots yi,1 ≤ i ≤ 9
have valuation 1

3 v(3).

Using Magma, we check that the monodromy polynomial is irreducible
over Qtame

3 and as v(discr(L (Y)) = 27v(3), it follows that v(yi − yj) = 3
8 .

Moreover A2 = 5Y6+6Y5+9Y4+27Y3+27Y2+9Y
3(Y3+Y+1)f (Y)

and so for yi ∈ Z(L (Y)) we

get v(A2(yi)) ≥ v(3).
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L (Y) = 64Y9 +18Y8 +45Y7 +72Y6 +27Y4 +27Y2 +54Y +27 mod 34

The Newton polygon has only one slent and so the roots yi,1 ≤ i ≤ 9
have valuation 1

3 v(3).

Using Magma, we check that the monodromy polynomial is irreducible
over Qtame

3 and as v(discr(L (Y)) = 27v(3), it follows that v(yi − yj) = 3
8 .

Moreover A2 = 5Y6+6Y5+9Y4+27Y3+27Y2+9Y
3(Y3+Y+1)f (Y)

and so for yi ∈ Z(L (Y)) we

get v(A2(yi)) ≥ v(3).

A4 = 2+5Y
1+3Y+3Y2+2Y3+2Y4+Y5 and so v(A4(yi)) = 0
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The monodromy polynomial is the simplified numerator N3 of A3:
L (Y) = 64Y9 +18Y8 +45Y7 +72Y6 +27Y4 +27Y2 +54Y +27 mod 34

The Newton polygon has only one slent and so the roots yi,1 ≤ i ≤ 9
have valuation 1

3 v(3).

Using Magma, we check that the monodromy polynomial is irreducible
over Qtame

3 and as v(discr(L (Y)) = 27v(3), it follows that v(yi − yj) = 3
8 .

Moreover A2 = 5Y6+6Y5+9Y4+27Y3+27Y2+9Y
3(Y3+Y+1)f (Y)

and so for yi ∈ Z(L (Y)) we

get v(A2(yi)) ≥ v(3).

A4 = 2+5Y
1+3Y+3Y2+2Y3+2Y4+Y5 and so v(A4(yi)) = 0

a1 = 3+6Y+6Y2+8Y3+5Y4

3f (Y) and so v(a1(yi)) = v(yi) > 0
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have valuation 1

3 v(3).

Using Magma, we check that the monodromy polynomial is irreducible
over Qtame

3 and as v(discr(L (Y)) = 27v(3), it follows that v(yi − yj) = 3
8 .

Moreover A2 = 5Y6+6Y5+9Y4+27Y3+27Y2+9Y
3(Y3+Y+1)f (Y)

and so for yi ∈ Z(L (Y)) we

get v(A2(yi)) ≥ v(3).

A4 = 2+5Y
1+3Y+3Y2+2Y3+2Y4+Y5 and so v(A4(yi)) = 0

a1 = 3+6Y+6Y2+8Y3+5Y4

3f (Y) and so v(a1(yi)) = v(yi) > 0

Finally if we write X0 = rT + yi we get
f (X0) = f (yi)((1+a1(yi)rT)3 +A2(yi)r2T2 +A4(yi)r4T4 +A5(yi)r5T5)
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Galois covers of the projective line over a p-adic field Potentially good reduction

Let Z := λW + f (yi)
1/3(1+a1(yi)rT) and r := λ 3/4 then

W3 −W = 2T4 mod λ
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Galois covers of the projective line over a p-adic field Potentially good reduction

Let Z := λW + f (yi)
1/3(1+a1(yi)rT) and r := λ 3/4 then

W3 −W = 2T4 mod λ

Let K′/K the monodromy extension, by the minimality
K′ ⊂ K(yi, f (yi)

1/3) for each i,1 ≤ i ≤ 9.
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Let Z := λW + f (yi)
1/3(1+a1(yi)rT) and r := λ 3/4 then

W3 −W = 2T4 mod λ

Let K′/K the monodromy extension, by the minimality
K′ ⊂ K(yi, f (yi)

1/3) for each i,1 ≤ i ≤ 9.

Let σ ∈ Gal(K ′/K) with σ(yi) = yj then σ acts trivially on the
coordinate X0 and so σ(T) = T +

yi−yj

r .
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Let K′/K the monodromy extension, by the minimality
K′ ⊂ K(yi, f (yi)

1/3) for each i,1 ≤ i ≤ 9.

Let σ ∈ Gal(K ′/K) with σ(yi) = yj then σ acts trivially on the
coordinate X0 and so σ(T) = T +

yi−yj

r .

For i 6= j, as v( yi−yj

r ) = 0, it follows that σ induces an automorphism of

the curve W3 −W = 2T4 over F
alg
3 , which is a translation on T .
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Galois covers of the projective line over a p-adic field Potentially good reduction

Let Z := λW + f (yi)
1/3(1+a1(yi)rT) and r := λ 3/4 then

W3 −W = 2T4 mod λ

Let K′/K the monodromy extension, by the minimality
K′ ⊂ K(yi, f (yi)

1/3) for each i,1 ≤ i ≤ 9.

Let σ ∈ Gal(K ′/K) with σ(yi) = yj then σ acts trivially on the
coordinate X0 and so σ(T) = T +

yi−yj

r .

For i 6= j, as v( yi−yj

r ) = 0, it follows that σ induces an automorphism of

the curve W3 −W = 2T4 over F
alg
3 , which is a translation on T .

In this way we get 9 distinct translations and as the full 3-Sylow
subgroup of automorphisms of the curve W 3 −W = 2T4 is the non
abelian group of order 33 and exponent 3 it follows that we get the full
3-Sylow subgroup.
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Galois covers of the projective line over a p-adic field Potentially good reduction

The same method works with f (X0) = 1+X3
0 +X4

0 .
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Galois covers of the projective line over a p-adic field Potentially good reduction

The same method works with f (X0) = 1+X3
0 +X4

0 .

Finally the two curves Z3 = 1+X3
0 +X4

0 and Z3 = (1+X0 +X3
0)(1+X0)

2

both have genus 3, maximal wild monodromy over Qtame
3 , and the same type

of potential stable reduction.
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The same method works with f (X0) = 1+X3
0 +X4

0 .

Finally the two curves Z3 = 1+X3
0 +X4

0 and Z3 = (1+X0 +X3
0)(1+X0)

2

both have genus 3, maximal wild monodromy over Qtame
3 , and the same type

of potential stable reduction.

Yet, as covers of P1
K , these two curves have different branch cycle descriptions

owing to the multiplicities in their defining equations.
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Galois covers of the projective line over a p-adic field Potentially good reduction

The same method works with f (X0) = 1+X3
0 +X4

0 .

Finally the two curves Z3 = 1+X3
0 +X4

0 and Z3 = (1+X0 +X3
0)(1+X0)

2

both have genus 3, maximal wild monodromy over Qtame
3 , and the same type

of potential stable reduction.

Yet, as covers of P1
K , these two curves have different branch cycle descriptions

owing to the multiplicities in their defining equations.

This suggests that we can refine the problem of realizing maximal wild
monodromy groups over Qtame

p and also prescribe the branch cycle
description.
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Galois covers of the projective line over a p-adic field Potentially good reduction

Potentially good reduction with m = 1+ps

Theorem

p ≥ 2, s ≥ 1, K = Qur
p (p1/(ps+1),ζ ), ζ a primitive p-th root of 1. and

C −→ P1
K is birationally defined by the equation

Zp = f (X0) = 1+p1/(ps+1)Xps

0 +Xps+1
0 .
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Potentially good reduction with m = 1+ps

Theorem

p ≥ 2, s ≥ 1, K = Qur
p (p1/(ps+1),ζ ), ζ a primitive p-th root of 1. and

C −→ P1
K is birationally defined by the equation

Zp = f (X0) = 1+p1/(ps+1)Xps

0 +Xps+1
0 .

Then, C has potentially good reduction with special fiber birational to
the curve wp −w = tps+1 and L (Y) is irreducible over K.
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Galois covers of the projective line over a p-adic field Potentially good reduction

Potentially good reduction with m = 1+ps

Theorem

p ≥ 2, s ≥ 1, K = Qur
p (p1/(ps+1),ζ ), ζ a primitive p-th root of 1. and

C −→ P1
K is birationally defined by the equation

Zp = f (X0) = 1+p1/(ps+1)Xps

0 +Xps+1
0 .

Then, C has potentially good reduction with special fiber birational to
the curve wp −w = tps+1 and L (Y) is irreducible over K.

The monodromy extension K ′/K is the decomposition field of L (Y)
obtained by adjoining the p-roots f (y)1/p, for y describing the zeroes of
L (Y).
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Galois covers of the projective line over a p-adic field Potentially good reduction

Potentially good reduction with m = 1+ps

Theorem

p ≥ 2, s ≥ 1, K = Qur
p (p1/(ps+1),ζ ), ζ a primitive p-th root of 1. and

C −→ P1
K is birationally defined by the equation

Zp = f (X0) = 1+p1/(ps+1)Xps

0 +Xps+1
0 .

Then, C has potentially good reduction with special fiber birational to
the curve wp −w = tps+1 and L (Y) is irreducible over K.

The monodromy extension K ′/K is the decomposition field of L (Y)
obtained by adjoining the p-roots f (y)1/p, for y describing the zeroes of
L (Y).

The monodromy group is the extraspecial group with exponent p and
order p2s+1 (which is maximal for this conductor).
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Galois covers of the projective line over a p-adic field Potentially good reduction

Comments on the proof

The proof involves the monodromy polynomial L (Y) in an indirect way.
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Galois covers of the projective line over a p-adic field Potentially good reduction

Comments on the proof

The proof involves the monodromy polynomial L (Y) in an indirect way.
In this case it is p-adically near from
L(Y) := s1(Y)ps

− (−1)ps
(−p)p+p2+...+ps

s0(Y)ps−1sps(Y)
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Galois covers of the projective line over a p-adic field Potentially good reduction

Comments on the proof

The proof involves the monodromy polynomial L (Y) in an indirect way.
In this case it is p-adically near from
L(Y) := s1(Y)ps

− (−1)ps
(−p)p+p2+...+ps

s0(Y)ps−1sps(Y)

We prove inductively that for y ∈ Z(L(Y)) and X = λ
p

1+ps T ,
f (X + y) = (s0(y)1/p +X(as(y,X))p +X1+ps

mod λ pMK , as(y,X) ∈ MK [T]
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Galois covers of the projective line over a p-adic field Potentially good reduction

Comments on the proof

The proof involves the monodromy polynomial L (Y) in an indirect way.
In this case it is p-adically near from
L(Y) := s1(Y)ps

− (−1)ps
(−p)p+p2+...+ps

s0(Y)ps−1sps(Y)

We prove inductively that for y ∈ Z(L(Y)) and X = λ
p

1+ps T ,
f (X + y) = (s0(y)1/p +X(as(y,X))p +X1+ps

mod λ pMK , as(y,X) ∈ MK [T]

Generalization

Let g(t) := t Σ(F)(t), where Σ(F) = u1F + ...+us−1Fs−1 +Fs ∈ k{F}.
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Comments on the proof

The proof involves the monodromy polynomial L (Y) in an indirect way.
In this case it is p-adically near from
L(Y) := s1(Y)ps

− (−1)ps
(−p)p+p2+...+ps

s0(Y)ps−1sps(Y)

We prove inductively that for y ∈ Z(L(Y)) and X = λ
p

1+ps T ,
f (X + y) = (s0(y)1/p +X(as(y,X))p +X1+ps

mod λ pMK , as(y,X) ∈ MK [T]

Generalization

Let g(t) := t Σ(F)(t), where Σ(F) = u1F + ...+us−1Fs−1 +Fs ∈ k{F}.
Let f (X0) =

1+ρ1U1X1+p
0 +ρ2U2X1+p2

0 + ....+ρs−1Us−1X1+ps−1

0 +p1/(ps+1)Xps

0 +Xps+1
0
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Comments on the proof

The proof involves the monodromy polynomial L (Y) in an indirect way.
In this case it is p-adically near from
L(Y) := s1(Y)ps

− (−1)ps
(−p)p+p2+...+ps

s0(Y)ps−1sps(Y)

We prove inductively that for y ∈ Z(L(Y)) and X = λ
p

1+ps T ,
f (X + y) = (s0(y)1/p +X(as(y,X))p +X1+ps

mod λ pMK , as(y,X) ∈ MK [T]

Generalization

Let g(t) := t Σ(F)(t), where Σ(F) = u1F + ...+us−1Fs−1 +Fs ∈ k{F}.
Let f (X0) =

1+ρ1U1X1+p
0 +ρ2U2X1+p2

0 + ....+ρs−1Us−1X1+ps−1

0 +p1/(ps+1)Xps

0 +Xps+1
0

with ρi = λ
ps−pi

1+ps and ui is the residual class of Ui.
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Galois covers of the projective line over a p-adic field Potentially good reduction

Comments on the proof

The proof involves the monodromy polynomial L (Y) in an indirect way.
In this case it is p-adically near from
L(Y) := s1(Y)ps

− (−1)ps
(−p)p+p2+...+ps

s0(Y)ps−1sps(Y)

We prove inductively that for y ∈ Z(L(Y)) and X = λ
p

1+ps T ,
f (X + y) = (s0(y)1/p +X(as(y,X))p +X1+ps

mod λ pMK , as(y,X) ∈ MK [T]

Generalization

Let g(t) := t Σ(F)(t), where Σ(F) = u1F + ...+us−1Fs−1 +Fs ∈ k{F}.
Let f (X0) =

1+ρ1U1X1+p
0 +ρ2U2X1+p2

0 + ....+ρs−1Us−1X1+ps−1

0 +p1/(ps+1)Xps

0 +Xps+1
0

with ρi = λ
ps−pi

1+ps and ui is the residual class of Ui.
Then, Zp

O = f (X0) has potentially good reduction with special fiber birationnal
to the curve wp −w = g(t) .
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Comments on the proof

The proof involves the monodromy polynomial L (Y) in an indirect way.
In this case it is p-adically near from
L(Y) := s1(Y)ps

− (−1)ps
(−p)p+p2+...+ps

s0(Y)ps−1sps(Y)

We prove inductively that for y ∈ Z(L(Y)) and X = λ
p

1+ps T ,
f (X + y) = (s0(y)1/p +X(as(y,X))p +X1+ps

mod λ pMK , as(y,X) ∈ MK [T]

Generalization

Let g(t) := t Σ(F)(t), where Σ(F) = u1F + ...+us−1Fs−1 +Fs ∈ k{F}.
Let f (X0) =

1+ρ1U1X1+p
0 +ρ2U2X1+p2

0 + ....+ρs−1Us−1X1+ps−1

0 +p1/(ps+1)Xps

0 +Xps+1
0

with ρi = λ
ps−pi

1+ps and ui is the residual class of Ui.
Then, Zp

O = f (X0) has potentially good reduction with special fiber birationnal
to the curve wp −w = g(t) .
The monodromy group is again the extraspecial group with exponent p and
order p1+2s (which is maximal for this conductor).
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Galois covers of the projective line over a p-adic field Genus 2

Genus 2 curves

Case p = 2 and m = 5 ( i.e. curves with genus 2 over a 2-adic field
⊂ Qtame

2 ).
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Genus 2 curves

Case p = 2 and m = 5 ( i.e. curves with genus 2 over a 2-adic field
⊂ Qtame

2 ).

There are 3 types of degeneration for the marked stable model.
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Galois covers of the projective line over a p-adic field Genus 2

Genus 2 curves

Case p = 2 and m = 5 ( i.e. curves with genus 2 over a 2-adic field
⊂ Qtame

2 ).

There are 3 types of degeneration for the marked stable model.

genus 1
curves

genus 1
curves

genus 2
curveP1

k

P1
k

Type 1
Gal(K′/K)w ↪→ Q8 ×Q8 Gal(K′/K)w ↪→ (Q8 ×Q8)oZ/2Z Gal(K′/K)w ↪→ Q8 ∗D8

original component

Type 2

original component
P1

k
original component

P1
k

Type 3
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Galois covers of the projective line over a p-adic field Genus 2

C −→ P1
K is birationally defined by the equation Zp

0 = f (X0) with
f (X0) = 1+b2X2

0 +b3X3
0 +b4X4

0 +X5
0 ∈ OK [X0].
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Galois covers of the projective line over a p-adic field Genus 2

C −→ P1
K is birationally defined by the equation Zp

0 = f (X0) with
f (X0) = 1+b2X2

0 +b3X3
0 +b4X4

0 +X5
0 ∈ OK [X0].

Now, we see that the monodromy can be maximal for the 3 types of
degeneration.
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Galois covers of the projective line over a p-adic field Genus 2

C −→ P1
K is birationally defined by the equation Zp

0 = f (X0) with
f (X0) = 1+b2X2

0 +b3X3
0 +b4X4

0 +X5
0 ∈ OK [X0].

Now, we see that the monodromy can be maximal for the 3 types of
degeneration.

f (X0) = 1+23/5X2
0 +X3

0 +22/5X4
0 +X5

0 and K = Qur
2 (21/15);
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Galois covers of the projective line over a p-adic field Genus 2

C −→ P1
K is birationally defined by the equation Zp

0 = f (X0) with
f (X0) = 1+b2X2

0 +b3X3
0 +b4X4

0 +X5
0 ∈ OK [X0].

Now, we see that the monodromy can be maximal for the 3 types of
degeneration.

f (X0) = 1+23/5X2
0 +X3

0 +22/5X4
0 +X5

0 and K = Qur
2 (21/15);

C has a marked stable model of type 1.

Michel Matignon (IMB) Semi-stable reduction and maximal monodromy MariusFest,Groningen, April 2007 31 / 32



Galois covers of the projective line over a p-adic field Genus 2

C −→ P1
K is birationally defined by the equation Zp

0 = f (X0) with
f (X0) = 1+b2X2

0 +b3X3
0 +b4X4

0 +X5
0 ∈ OK [X0].

Now, we see that the monodromy can be maximal for the 3 types of
degeneration.

f (X0) = 1+23/5X2
0 +X3

0 +22/5X4
0 +X5

0 and K = Qur
2 (21/15);

C has a marked stable model of type 1.

Two irreducible components birational to E : w2 −w = t3
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Galois covers of the projective line over a p-adic field Genus 2

C −→ P1
K is birationally defined by the equation Zp

0 = f (X0) with
f (X0) = 1+b2X2

0 +b3X3
0 +b4X4

0 +X5
0 ∈ OK [X0].

Now, we see that the monodromy can be maximal for the 3 types of
degeneration.

f (X0) = 1+23/5X2
0 +X3

0 +22/5X4
0 +X5

0 and K = Qur
2 (21/15);

C has a marked stable model of type 1.

Two irreducible components birational to E : w2 −w = t3

The maximal wild monodromy group is ' Q8 ×Q8.
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Galois covers of the projective line over a p-adic field Genus 2

Let K = Qur
2 (a) with a9 = 2 and f (X0) = 1+a3X2

0 +a6X3
0 +X5

0.
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Let K = Qur
2 (a) with a9 = 2 and f (X0) = 1+a3X2

0 +a6X3
0 +X5

0.

C has a marked stable model of type 2.
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Let K = Qur
2 (a) with a9 = 2 and f (X0) = 1+a3X2

0 +a6X3
0 +X5

0.

C has a marked stable model of type 2.

Two irreducible components birational to E : w2 −w = t3

The maximal wild monodromy group is ' (Q8 ×Q8)oZ/2Z, where
Z/2Z exchanges the 2 factors.
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Galois covers of the projective line over a p-adic field Genus 2

Let K = Qur
2 (a) with a9 = 2 and f (X0) = 1+a3X2

0 +a6X3
0 +X5

0.

C has a marked stable model of type 2.

Two irreducible components birational to E : w2 −w = t3

The maximal wild monodromy group is ' (Q8 ×Q8)oZ/2Z, where
Z/2Z exchanges the 2 factors.

K = Qur
2 and f (X0) = 1+X4

0 +X5
0 .
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Galois covers of the projective line over a p-adic field Genus 2

Let K = Qur
2 (a) with a9 = 2 and f (X0) = 1+a3X2

0 +a6X3
0 +X5

0.

C has a marked stable model of type 2.

Two irreducible components birational to E : w2 −w = t3

The maximal wild monodromy group is ' (Q8 ×Q8)oZ/2Z, where
Z/2Z exchanges the 2 factors.

K = Qur
2 and f (X0) = 1+X4

0 +X5
0 .

C has potentially good reduction (i.e. is of type 3)
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Galois covers of the projective line over a p-adic field Genus 2

Let K = Qur
2 (a) with a9 = 2 and f (X0) = 1+a3X2

0 +a6X3
0 +X5

0.

C has a marked stable model of type 2.

Two irreducible components birational to E : w2 −w = t3

The maximal wild monodromy group is ' (Q8 ×Q8)oZ/2Z, where
Z/2Z exchanges the 2 factors.

K = Qur
2 and f (X0) = 1+X4

0 +X5
0 .

C has potentially good reduction (i.e. is of type 3)

One irreducible component birational to the genus 2 curve w2 −w = t5
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Galois covers of the projective line over a p-adic field Genus 2

Let K = Qur
2 (a) with a9 = 2 and f (X0) = 1+a3X2

0 +a6X3
0 +X5

0.

C has a marked stable model of type 2.

Two irreducible components birational to E : w2 −w = t3

The maximal wild monodromy group is ' (Q8 ×Q8)oZ/2Z, where
Z/2Z exchanges the 2 factors.

K = Qur
2 and f (X0) = 1+X4

0 +X5
0 .

C has potentially good reduction (i.e. is of type 3)

One irreducible component birational to the genus 2 curve w2 −w = t5

The maximal wild monodromy group is ' Q8 ∗D8.
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