IBM and turbulent aerodynamics

- Work done with ONERA, PhD of Benjamin Constant
- Context

- IBM on non conformal meshes
 - Uses automatically generated structured Cartesian grids
 - Ghost-cells direct forcing approach to set up boundaries conditions
- Algebraic wall function for turbulent flows
 - Avoid a prohibitive number of cells close to the boundaries

IBM and turbulent aerodynamics

Figure : Direct forcing on an IB target point (A) using its corresponding image point (B).

Internetics methematics

Classical IBM treatment

- One or two rows of target points
- The solution is computed at B using interpolation from donor points
- A Newton's method on the wall function gives the friction velocity used to compute the tangential velocity at A
- Normal velocity is computed using linear interpolation
- Pressure is directly extrapolated
- Spalart pseudo-viscosity is computed using the mixing length assumption

Observations with the classical treatment

- Spurious oscillations on the wall
- Skin friction coefficient badly captured
- Grid refinement level change issues

Solution proposed

- > Impose near-wall spacing and chose a target y^+ for image points
- Compute a modeling height H_{mod} using a flat plate approximation
- > Define the number of target points according to H_{mod}

Developments

- Impose near-wall spacing and chose a target y⁺ for image points
- Compute a modeling height H_{mod}
- Define the number of target points according to H_{mod}

Publication

JCP 435(2021) 110240

Solves grid refinement level change issues

