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Faculté des Sciences Appliquées

Construction and analysis of compact

residual discretizations for conservation

laws on unstructured meshes

Mario Ricchiuto

May 2005
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Prof. Deconinck, H. (von Karman Institute for Fluid Dynamics, promotor)
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Summary

This thesis presents the construction, the analysis and the verification of compact
residual discretizations for the solution of conservation laws on unstructured meshes.
The schemes considered belong to the class of residual distribution (RD) or fluctuation
splitting (FS) schemes. The methodology presented relies on three main elements

1. Construction of compact linear first-order stable schemes for linear hyperbolic
PDEs;

2. A positivity preserving procedure mapping stable first-order linear schemes onto
nonlinear second-order schemes with non-oscillatory shock capturing capabilities;

3. A conservative formulation enabling to extend the schemes to nonlinear CLs.

These three design steps and the underlying theoretical tools are discussed in depth.
The nonlinear RD schemes resulting from this construction are tested on a large set of
problems involving the solution of scalar models, and systems of CLs. This extensive
verification fills the gaps left open, where no theoretical analysis can be performed.
Results are presented on the Euler equations of a perfect gas, on a two-phase flow
model with highly nonlinear thermodynamics and on the shallow-water equations. On
irregular grids, the schemes proposed yield quite accurate and stable solutions even on
very difficult computations. These results are more accurate than the ones given by FV
and WENO schemes. Moreover, our schemes have a compact nearest-neighbor stencil.
This encourages to further develop our approach, toward the design of robust very
high-order schemes for complex applications. These schemes would represent a very
appealing alternative, both in terms of accuracy and efficiency, to now classical FV and
ENO/WENO discretizations. A better understanding of the dissipation properties of
the nonlinear discretizations proposed in the thesis might lead to further improvements
in efficiency rendering the schemes very competitive also with respect to very high-order
DG schemes.
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never forget the warm hospitality I always enjoyed in Bordeaux. I’m sure that work-
ing with him will be pleasant and rewarding. I’m also grateful to Prof. P.L. Roe and
to Dr. T.J. Barth for the useful and stimulating discussions we had in several occasions.
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Chapter 1

Introduction

1.1 Motivation

The development of high-order algorithms for the simulation of compressible flows
in complex domains and on arbitrary meshes is one of the most important research
topics in Computational Fluid Dynamics. The continuous growth of the available
computing power allows to increase the complexity of the flow configurations object of
the simulations. However, improvements in the efficiency, flexibility and robustness of
the numerical algorithms are needed to fully exploit this computational potential.

It is generally agreed that, when dealing with complex geometries and flow patterns,
the use of unstructured grids is somewhat mandatory. Compared to structured and
multi-block structured grids, the generation of unstructured meshes, or more generally
hybrid unstructured/structured meshes, can in fact be highly automated and needs
a considerably lower degree of user-input and, consequently, time [16]. Moreover,
unstructured mesh generation lends itself very naturally to solution-dependent local
refinement and adaptation, which are known to improve the simulation output, at the
same time reducing the number of elements/nodes needed to achieve a fixed level of
accuracy [16, 17, 22]. As a consequence, the design of new numerical algorithms for
the simulation of compressible flow is largely oriented to formulations well suited for
unstructured grids (see e.g. the volumes [22, 21]).

An abstract model for the fluid-mechanics equations is given by a so-called Conserva-
tion Law (CL): a Partial Differential Equation (PDE) stating the conservation of some
unknowns over a given region of space and time. The design of new numerical schemes
for compressible flow simulations often starts with the study of simple CLs for which
one has more information on the properties of the exact solution. It is generally ac-
cepted that state of the art numerical methods for conservation laws on unstructured
grids are not entirely satisfactory. The need of more flexible, accurate and robust

1



Chapter 1. Introduction

solution algorithms for the analysis of large and complex systems is what drives the
development of new techniques. Accuracy, robustness and efficiency requirements lead
to the following design constraints :

Accuracy It should be possible to increase the accuracy of the approximation in a
relatively simple way, without introducing expensive reconstruction steps. More-
over, due to the fact that unstructured grids can be quite irregular (especially
in 3D), the accuracy of the method should be as insensitive as possible to the
regularity of the mesh;

Stability Conservation laws admit weak solutions containing discontinuities. These
solutions are piece-wise smooth without strong oscillations in correspondence of
the singularities. The numerical method must be able to handle discontinuities
without polluting the solution with spurious oscillations. Additionally, weak solu-
tions of CLs also verify additional constraints imposed by the existence of a (van-
ishing) dissipative mechanism1. This gives an additional stability requirement for
the numerical method. Ideally, the stability of the scheme (non-oscillatory char-
acter and energy/entropy stability) should be parameter free, that is, it should
not depend on constants which are difficult to optimize in a general way;

Efficiency A numerical method should allow a fast and efficient implementation, par-
ticularly on parallel platforms. From this point of view, the main requirements
are simplicity and compactness. A compact method is one that, to compute the
value of the unknowns in a certain mesh location, only uses information contained
in the closest grid-entities. In parallel implementations, this allows to minimize
the overhead due to inter-processor communication. Compactness is equivalent
to the locality of the discretization procedure.

On unstructured meshes, state of the art Finite Volume (FV) schemes are accepted
to have strong deficiencies as far as accuracy and efficiency are concerned. This is
related to several factors. First of all, in multiple dimensions most FV schemes are
designed by applying their onedimensional formulation along particular mesh directions
(edges, edge normals, etc...). This often reduces dramatically the accuracy on irregular
meshes. Moreover, the construction of second or higher-order schemes necessitates the
local reconstruction of polynomials of the proper degree. This renders the schemes
non-compact, hence less efficient. Even though there have been attempts to design
truly multidimensional finite volume schemes (see [111, 107] and references therein for
example) and improved high order FV schemes for unstructured meshes [24, 23, 20, 25],
the main deficiencies remain. These deficiencies are not cured by the very high-order
extensions obtained using the ENO/WENO philosophy (see the reviews [157, 158] and
references therein), which are based on even more complex polynomial reconstructions.

A more promising approach is the one at the basis of the so-called residual-based dis-
cretizations. Even though different in spirit, all residual-based schemes can be seen
as some weighted-residual approximation of the conservation law. The advantage of
this approach is that it can reproduce exactly solutions in function spaces determined

1The entropy inequality implied by the second principle of thermodynamics is an example
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by the type of interpolation used for the unknowns on the mesh. Since this is true
(almost) independently on the regularity of the grid, these methods are particularly
well suited to work on unstructured meshes. Moreover, the accuracy of the schemes
can be increased just by improving the approximation of the unknowns. However, dif-
ferently from the ENO/WENO approach, these approximations are not reconstructed
but defined a-priory on the elements of the grid. This makes residual methods very
compact and efficiently parallelizable. Most residual schemes, in fact, compute the
value of the solution in a given location of the mesh only using the information stored
in immediately adjacent mesh entities.

Examples of residual methods are stabilized Finite Element (FE) schemes [94, 97,
95, 96, 102, 103, 166], Discontinuous Galerkin (DG) schemes (see [42] and references
therein), the Residual-Based Compact (RBC) schemes of [109] and the Residual Distri-
bution (RD) schemes (see [55, 9] and references therein). The application of the RBC
method is currently limited to structured meshes, even though promising results on un-
structured grids exist [43]. The DG schemes have shown impressive results. Being based
on a stabilized Galerkin approach, as stabilized FE schemes, they have well defined
local energy (and entropy) stability properties, which can be easily proved. However,
the stabilization mechanism used in DG is based on FV-like numerical fluxes. This,
as remarked in [8, 10, 9], has the effect of spoiling their residual character. Moreover,
the design of non-oscillatory DG schemes relies either on the use of FV limiters, which
can reduce dramatically their accuracy or, as stabilized FE schemes, on the use of
discontinuity capturing operators [97, 166, 72, 19]. This technique basically reduces to
adding strongly dissipative terms in localized regions where the gradient of the solution
is large. This approach, if on one hand allows to prove the global L∞ stability of the
solution [166], on the other hand does not fully guarantee its local monotonicity. More
importantly, these shock-capturing (SC) terms depend on tunable constants which are
difficult to determine in a general way. The RD method, while based on a variable
representation similar to the one used in the standard FE approach, allows to design
nonlinear schemes with a true residual character and at the same time guaranteeing by
construction the preservation of the local monotonicity of the approximation.

As a motivational example, we compare three different schemes on the solution of a
2D conservation law which is a variant of Burger’s equation:

ut +

(
u2

2

)

x

+

(
u2

2

)

y

= 0 ,

where the sub-scripts denote partial derivatives. We consider the solution of the last
equation on a spatial domain given by a square of side 2, with the initial state depicted
on the left on figure 1.1: at time t = 0, u is zero everywhere, except in a small square of
side 0.5, in which u = 1. The final time of the simulation is t = 1. On the right, on figure
1.1, we report a reference solution computed with the nonlinear RD scheme proposed
in [8] on a fine unstructured mesh (∆x ≈ 1/160). The initial discontinuity evolves
in a twodimensional solution, composed of an expansion-like structure (straight lines),
across which the solution is piecewise linear, and of a curved discontinuity propagating
toward the upper-right corner of the domain (thick curve).
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Figure 1.1: 2D Burger’s equation. Initial (left) and reference (right) solution at t = 1

On figure 1.2 we report contour plots of numerical results obtained, on a coarser un-
structured mesh (∆x ≈ 1/40), with the RD scheme of [8], with a stabilized FE scheme
(Taylor-Galerkin + SUPG + shock capturing (SC)), and with the FV scheme of [24]
(with second order Runge-Kutta time integration).
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Figure 1.2: 2D Burger’s equation: isolines of numerical solutions at t = 1. Top: RD
scheme [8]. Bottom-Left: FE scheme with SC operator. Bottom-Right: FV scheme
[24]
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The global features of the solution are captured by all methods. However, the FV
scheme gives a poorer resolution of both the expansion (the lines are not as straight
as in the other plots) and of the discontinuity, which is thicker than in the other
results. The FE results are better, however negative values and small oscillations are
obtained. The RD solution instead shows a very sharp and monotone capturing of the
discontinuity. The expansion lines remain straight for longer than in the FE solution,
almost until the line of symmetry of the solution. The analysis is confirmed by the plots
on figure 1.3, where the numerical solutions on the line y = 0.4 are compared with the
reference. We see the poorer resolution of the FV scheme and the under-shoots in the
FE solution. It might be argued that the finite element results could be improved by a
more careful choice of the SC parameter, governing the amount of nonlinear dissipation
introduced across the discontinuity. However, this is precisely the reason why the RD
scheme of [8] is more convenient. It guarantees the preservation of the monotonicity
of the solution, while being as compact and accurate as the FE scheme, and more
accurate than the FV scheme. Most importantly, it is completely parameter free.
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Figure 1.3: 2D Burger’s equation: solution at y = 0.4 and t = 1. Top: RD scheme [8].
Bottom-Left: FE scheme with SC operator. Bottom-Right: FV scheme [24]

5



Chapter 1. Introduction

1.2 Objectives and scopes of the present work

The objective of this thesis is to construct and analyze discretization techniques for
the numerical solution of conservation laws on unstructured grids. These methods are
based on the concept of Residual Distribution (RD), introduced in [150] by P.L. Roe
who refers to it as to the of Fluctuation-Splitting (FS) approach. In this manuscript,
we refer equivalently to this methodology as RD or FS. The work presented in this
thesis unifies results obtained in the last years at the von Karman Institute for Fluid
Dynamics and at the Université de Bordeaux I and, more importantly, proposes new
developments leading to accurate and robust solution algorithms for very general steady
and time-dependent CLs. The algorithms are systematically analyzed, tested and, when
possible, compared to more traditional schemes. The simple motivational example
discussed before shows some of the advantages of the RD approach. The objective
of this thesis is to propose a general conservative formulation of RD able to handle
complex CLs. At the same time we try to provide an improved understanding of
the properties of upwind FS discretizations. Lastly, the performances of the new
conservative discretization procedure are evaluated in a very extensive way, and by
keeping a fair and honest eye on the results. Hereafter we recall the background of our
work, give further motivation for the study presented and finally discuss in some detail
its major contributions.

1.2.1 Historical overview and literature survey on RD

The fluctuation splitting concept, introduced by P.L. Roe in the early eighties [150], has
opened the way to a totally new generation of schemes for the solution of conservation
laws on unstructured meshes. Since the very first multidimensional upwind schemes
developed by Roe [148, 149], and Roe and Sidilkover [151, 160], FS schemes have grown
thanks to the efforts of the research groups of the University of Michigan [172, 117,
122, 124, 123, 136], led by Roe, of the von Karman Institute for Fluid Dynamics[163,
54, 58, 154, 155, 127, 129, 130, 28, 100, 155, 179, 48, 175, 53, 50, 51, 134, 65], under the
supervision of H. Deconinck, of the Université de Bordeaux [4, 7, 119, 3, 8, 10, 6, 9],
under the guidance of R. Abgrall, of the Politecnico di Bari [62, 61, 63, 60, 41, 40],
under the lead of M. Napolitano, of the University of Leeds (M. Hubbard) [91, 92,
76] and of Lund (D. Caraeni) [33, 37], and of many others [87, 86, 186], often in a
collaborative effort [131, 39, 165, 164, 139, 56, 57, 120, 12, 90]. The schemes have
been proved to be accurate and robust enough to represent a real alternative to FV
and FE schemes for the computation of steady compressible flow on unstructured
meshes. Their higher accuracy and compact character makes them very efficient when
compared to FV schemes [186, 49], especially on parallel platforms [172, 99, 176].
Moreover, the possibility of constructing parameter free non-oscillatory schemes leads
to an increased reliability, with respect to FE . Preliminary results on more complex
flow models such as the Magneto-Hydrodynamics (MHD) equations, or two-phase flow
models have confirmed this potential.
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1.2.2 Open issues

Some important issues still need to be studied, in order for RD schemes to be com-
petitive with the DG and RBC schemes appeared in literature lately, and to be able to
correctly approximate weak solutions of steady and time-dependent systems of prac-
tical interest such as the Euler equations for gases in thermochemical equilibrium or
with more complex forms of thermodynamics, or multi-phase flow models. Among
these issues, the most relevant ones are an efficient, stable and accurate extension of
the method to the time-dependent case, a conservative formulation allowing to han-
dle general forms of thermodynamics, the development of a well-understood proce-
dure for the systematic construction of nonlinear high-order schemes yielding a stable
and non-oscillatory approximation of discontinuities, a consistent procedure to extend
these nonlinear schemes to inhomogeneous problems, viscous problems and to accuracy
higher than two. A discussion of these issues is given in the following subsections.

Residual distribution for time-dependent problems

The use of the FS approach for time-dependent simulations has seen a very strong
progress in the last years and it is still an intense research topic. The main objective
of this research is the construction of a framework within which it is possible to obtain
discretizations retaining the residual character of steady RD, as well as to design linear
first-order schemes with stable and non-oscillatory shock capturing properties, to be
used as a basis for the construction of monotone nonlinear high-order discretizations.
It has been always known that in their basic formulation RD schemes cannot be more
than first order accurate in time-dependent computations, due to an inconsistent spatial
discretization. Early attempts to cure this problem have resorted to a Petrov-Galerkin
(PG) FE formulation leading to the introduction of a FE mass-matrix [113, 71]. This
approach is very effective in the construction of linear second-order schemes but it
leaves open the issue of the construction of non-oscillatory discretizations, since the
PG analogy does not apply to linear monotone RD schemes. Similarly, in [34, 35,
36, 33, 37, 38], Caraeni and his collaborators have presented schemes in which the
time-derivative is consistently included in the definition of the residual. The authors
are able to construct in this way second-order schemes for time-dependent calculations
and have also proposed an extension of their approach allowing to achieve third-order of
accuracy on structured meshes. As in the case of the PG schemes, this technique does
not generalize to linear monotone FS schemes and hence it does not allow to construct
non-oscillatory approximations of discontinuous solutions. Both the PG schemes and
the schemes of Caraeni can be shown to belong to a general family of discretizations
making use of a FE-like mass-matrix consistent with the spatial discretization [62, 61].
Two more approaches can be found in literature to apply RD schemes for unsteady
simulations. The first relies on the use of the FS formulation of the Lax-Wendroff
(LW) scheme [129, 90, 60, 143]. This scheme can be shown to be second order in space
and time on structured meshes [143]. However, this property cannot be proved on truly
unstructured meshes on which, as we will show, a consistent construction leads also for
the LW scheme to the introduction of a mass-matrix.
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The study of FS-type discretizations of time-dependent CLs has led at last to the
space-time formulation of RD. Two different, though similar in spirit, research lines
have appeared in literature. One is due to the work reported in [46, 53, 47] in which the
authors have written the solution of the time-dependent problem as a sequence of steady
problems on space-time slabs discretized with space-time linear elements (triangles for
a 1D CL and tetrahedra for 2D problems). The use of standard RD schemes in each
space-time slab, allows to obtain discretizations retaining all the properties of the
steady schemes. The time-marching character of the procedure is guaranteed by the
use of upwind RD schemes and by the satisfaction of a time-step constraint. In the
references, the authors also propose a double-layer formulation in which, by solving
at once for the values of the unknown in two successive time levels, unconditionally
monotone and second order nonlinear schemes can be designed. Although this approach
allows to construct schemes with all the desired properties and to make use of all
the numerical artillery developed for the steady case, it has the drawback of being
inherently complex and expensive due to the introduction of time as an additional
independent unknown, to the generation and storage of the space-time mesh, and to
the need of solving for a number of unknowns larger than the number of nodes in
the spatial grid, even in its single-layer formulation. A space-time formulation of
residual distribution making use of prismatic space-time elements has been instead
proposed in [7, 119, 8]. In the references, the authors design both linear second-order
and linear non-oscillatory FS schemes for time-dependent CLs. As before, the space-
time formulation allows to make use of all the tools developed for steady simulations.
The use of prismatic elements, guarantees that the number of unknowns is, in the basic
formulation of the method, equal to the number of nodes of the grid. At steady-state,
the schemes of [7, 119, 8] reduce to known steady RD schemes. However, the linear
first-order monotone schemes they propose are constrained by a time-step limitation.
Using a double layer formulation similar to the one introduced in [46, 53, 47], this
limitation has been overcome in [119, 8, 120], where unconditionally monotone and
stable nonlinear second-order schemes are presented. Note that the extension of the
space-time schemes of [46, 53, 47] to prismatic space-time meshes has been reported in
[51]. The framework proposed in [119, 8, 120] and [51] is, at the moment, the only one
allowing to design schemes retaining all the properties of steady RD. It also allows
to benefit from the tools developed for steady calculations and to construct linear and
nonlinear non-oscillatory schemes in a natural and consistent way.

Residual distribution and conservation

The need of a generalized conservative formulation of RD stems from the fact that the
computation of discontinuous solutions free of numerical oscillations heavily relies on
the use of the first-order N scheme [177, 148, 149]. This scheme makes extensive use of
the non-conservative quasi-linear form of the equations and cannot be conservative un-
less a multidimensional Roe linearization is used for the flux Jacobians. Unfortunately,
this linearization is only available on simplicial elements and when the underlying
thermodynamics are simple [56]. This has limited the application of RD mainly to the
computation of flows of perfect gases on triangular (in 2D) and tetrahedral (in 3D)
meshes. The first attempts to solve this issue have been based on ad-hoc corrections of
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a non-conservative formulation of the scheme, as for example in [92, 48]. However, the
way in which these corrections have to be included into the discretization is somewhat
arbitrary. A more consistent framework has been proposed in [4]. In the reference, the
authors introduce a class of non-conservative discretizations based on Gauss volume
integration of the quasi-linear form in entropy variables. Using the properties of the
Gaussian integration they are able to prove that their schemes indeed converge to the
correct weak-solutions. They show how to use their approach to design an N scheme
based on the adaptive quadrature of the quasi-linear form of the Euler equations in
symmetrizing variables. This technique can be extended to any system of conservation
laws with a convex entropy extension, thus solving the problem of the application of
RD in absence of a conservative linearization. The approach of [4] is based on sound
mathematical arguments. Global entropy stability on fine meshes can be shown for the
N scheme proposed in the reference, while its L∞ stability can be proved using a wave
decomposition technique [10, 9, 118]. The numerical results confirm the theoretical
analysis performed in the paper. However, this technique has the drawback of being
quite expensive since the number of quadrature points needed to achieve the correct
approximation of a shock can be large. A simpler, yet effective, technique has been
proposed in [50]. The idea is to approximate directly the integral form of the equa-
tions to define the residual. In this way discrete conservation is always guaranteed,
provided that a consistency constraint is respected. The authors have introduced the
terminology CRD to denote their schemes, indicating that conservation is guaranteed
by the definition of the residual as the contour integral of the fluxes on the boundary
of the elements of the grid, as opposed to the LRD schemes for which conservation is
guaranteed by the conservative linearization. In the paper it is shown how to construct
a conservative variant of the N scheme which does not need a Roe linearization. When
applied to the Euler equations, this CRD N scheme shows performances identical to
the standard LRD N scheme of [177]. Compared to the scheme of [4], the CRD N
scheme is more efficient and computationally cheaper due to the fact that a few Gaus-
sian points are needed on each edge of the grid elements to compute the residual, while
the flux Jacobians are evaluated in a single state. No particular theoretical properties
have been proved for the CRD N scheme. The application of this technique to the
solution of the ideal MHD equations is shown in [50], while its use to construct FS
schemes on meshes composed of quadrilateral elements has been reported in [134, 63].

Design of high-order nonlinear RD schemes

Nonlinear schemes are needed to combine high-order of accuracy and monotonicity,
as stated by Godunov’s theorem [77]. Unfortunately, the construction of high-order
nonlinear FS schemes for systems is yet another open problem. The success of the PSI
scheme of Struijs [162] for the solution of scalar steady advection is still far from being
achieved for nonlinear systems and issues of robustness and generality are still to be
solved. Different techniques can be found in literature. One of these is based on the
combination of a linear second-order scheme with a linear monotone scheme (usually
the N scheme) through some variant of the Flux-Corrected-Transport (FCT) technique
[71, 62, 61, 90, 60, 143, 190]. The main problem with this approach is that it generally
shows a lack of robustness and it is theoretically very unsatisfactory due to its non-
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compact character. A different way of constructing nonlinear RD discretizations is to
blend locally the N scheme with a second-order linear scheme. The local nature of the
blending preserves the compactness, while a proper design of the blending function can
guarantee both high-order of accuracy and a non-oscillatory approximation of shocks.
The definition of this function is not easy. An ad-hoc definition, which however has
proved to be numerically very effective, is proposed in [177, 154], while a more involved
construction, based on positivity and entropy stability considerations, can be found in
[3]. In terms of accuracy these blended schemes are very competitive with high-order
finite volume schemes [3, 9]. Nevertheless, a more robust and general approach has been
proposed lately by Abgrall et al. in [10, 8, 9, 118, 12]. The basic idea of the technique
introduced in the references is to generate nonlinear schemes by locally mapping the
residual of a linear non-oscillatory scheme. The nonlinearity is hidden in the mapping
which has the property of preserving the sign of its arguments. In simple cases, this
can be shown to preserve the monotone character of the discretization. The application
of this technique to steady and time-dependent conservation laws has shown improved
robustness and accuracy with respect to the blending approach [10, 9, 118, 8].

Extension to inhomogeneous and viscous problems

Real life applications involve the solution of systems of CLs containing (physical) vis-
cous dissipation and source terms. In order to be able to successfully extend FS
schemes to the solution of inhomogeneous and viscous conservation laws, a proper the-
oretical framework needs to be developed. In the case of homogeneous problems, the
mathematical definition of monotonicity and of a monotone scheme is not easy, even
for simple (scalar) CLs. This is due to the different structure of the mathematical
problem that, strictly speaking, does not express anymore simple conservation of the
unknown, due to the interaction with the forcing term. As a consequence the design of
non-oscillatory discretizations is not at all trivial. This topic has been rarely consid-
ered in the RD literature. Some comments can be found in [151, 58], but a systematic
study has never been attempted.

Concerning the extension to viscous problems, the analogy between RD schemes and
FE has allowed in the past to devise schemes for advective-diffusive problems and,
ultimately, for the Navier-Stokes equations. However, as shown by the work of [124],
the interaction between the discrete transport (advective) operator and the discrete
viscous operator has not been properly addressed in the major FS literature. The
extension to the time-dependent case has never been studied, in particular for the
nonlinear space-time RD schemes recently developed [8, 51].

Very high-order RD schemes

The FS approach gives a natural framework for the construction of schemes of accuracy
higher than two, as shown by the results of [12, 9, 139]. However, the full capabilities
of the schemes are yet to be exploited. In [12, 9] third and fourth order schemes
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are presented, together with a construction allowing to achieve any order of accuracy.
Unfortunately, the nonlinear schemes proposed in the references are far from retaining
all the properties of their second-order versions, and work is still needed in this sense.

1.2.3 The contribution of this thesis

This thesis is an attempt to deal with some of the issues described in the previous
subsections by combining and analyzing some of the ideas present in literature, at the
same time proposing new concepts. As an output of this process, we propose a very
general conservative framework within which we construct non-oscillatory high-order
nonlinear RD schemes for steady and time-dependent conservation laws. Our approach
is based on three main elements:

1. A positivity theory allowing to design discretizations verifying a discrete maxi-
mum principle and uniform L∞ stability;

2. A technique allowing to generate, starting from first-order linear positive schemes,
nonlinear positive second-order schemes;

3. A conservative formulation enabling to extend these schemes to nonlinear CLs.

The development of each of these design stages has led to the following main contribu-
tions of our work.

• Introduction of a general framework for the positivity and energy stability anal-
ysis of explicit and implicit compact cell-vertex schemes for the solution of the
advection equation on unstructured meshes. The positivity analysis includes so-
lution independent source terms;

• Detailed analysis of FS discretizations, including a discussion on geometrical con-
structions allowing to design positive nonlinear schemes. Several yet unpublished
properties of these schemes are discussed;

• Construction of nonlinear positive RD schemes by means of the mapping tech-
nique proposed in [10, 12]. This approach allows to construct, in more general
settings, analogs of the PSI scheme of Stuijs [165]. In this thesis we analyze the
stability and the well-posedness of these schemes;

• The extension to scalar nonlinear CLs, is achieved by using the CRD technique
[50]. The positivity and the (entropy) dissipation properties of the schemes are
studied;

• Extension of the conservative schemes to the approximation of time-dependent
weak solutions of CLs;
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• Construction of nonlinear, high-order, non-oscillatory, conservative schemes for
the solution of steady and time-dependent CLs on unstructured meshes. This
is achieved by applying the limiting approach of [10, 12] to conservative CRD
variants of the linear N scheme. The conservative formulation of the N scheme
guarantees the well-posedness of the procedure;

• Evaluation of the schemes on the Euler equations;

• Evaluation of the schemes on a two-phase flow model;

• Evaluation of the schemes on the shallow-water equations. The RD approach
developed here is proved to preserve exactly the so-called lake-at-rest solutions;

This work means to asses in an honest way the performances of the schemes proposed,
as well as of the available RD technology, employed to construct them. By no means
the thesis aims at convincing the reader that what we propose is the absolute best at
the moment. Our objective is to point out clearly the main advantages of the RD
approach while trying to understand, by analytical means and numerical simulations,
the main weaknesses of the constructions presented. The thesis focuses on the case of
twodimensional CLs, however, the theory easily generalizes to three space dimensions.

1.3 Structure of the manuscript

The organization of the manuscript has been conceived keeping in mind the modeling
steps which lead, starting from a physical problem, to a discrete solution verifying
certain properties. In particular, the idea behind the structure of the thesis is to
first present the continuous problem which needs to be solved, then to introduce the
framework of a discrete space and discrete unknowns and finally to discuss and validate
the discretization approach. It is hoped that this translates in a unique flow of concepts
allowing to understand why some analytical tools are used and on what grounds some
properties are claimed to be important. To this end we have chosen to

1. Introduce in Chapter 2 the abstract model of a hyperbolic conservation law. At
this stage, the most general case considered is that of hyperbolic problem with a
solution independent source term. This chapter serves to present the definition of
the weak exact solution to the continuous problem and to show that this solution
is subject to certain stability constraints, which can guarantee its existence1,
uniqueness and physical relevance. This chapter also serves to introduce part of
the notation used in the thesis;

2. Present in Chapter 3 the preliminary steps needed to translate the continuous
problem into an algebraic equation: mesh and discrete unknowns. Also this
chapter serves to introduce part of the notation used throughout the manuscript;

1in the cases in which it can be proved
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3. Introduce in Chapter 4 an abstract prototype for compact cell-vertex discretiza-
tions of steady linear scalar problems. The formalism used in this chapter is tai-
lored for RD schemes, however it encompasses also other schemes of the FE and
FV type. The goal of this chapter is to show under which conditions the discrete
solution enjoys stability properties similar to the ones of the exact solution. The
content of this chapter is somewhat abstract, it allows however to shorten the
analysis of the schemes presented in the next chapters and to introduce, in the
linear scalar case, concepts which can then be formally extended to the more
complex cases considered later;

4. Describe in Chapter 5 the basics of the FS approach. This part of the the-
sis is meant to introduce the basic philosophy behind the construction of FS
discretizations. We focus on linear scalar advection, trying to pay as much as
possible attention to geometrical aspects of the discretization, so to give a more
understandable presentation. However, theoretical issues are covered as well.
This chapter also allows to introduce in a simpler way the construction of non-
linear RD. Illustrative computational examples are given;

5. Discuss in Chapter 6 the extension of the schemes to the solution of scalar
steady nonlinear CLs. This chapter allows to present conservative RD discretiza-
tions and analyze their properties in the relatively simple framework of a scalar
problem, simplifying the task of their analysis in the system case, where many
concepts extend formally. Illustrative computational examples are given;

6. Discuss in Chapter 7 the consistent extension of the conservative schemes to
time-dependent nonlinear scalar conservation laws. As the previous one, this
chapter allows to discuss and analyze the schemes in a relatively simple frame-
work. Illustrative computational examples are given;

7. Describe in Chapter 8 the extension of the schemes to systems. The extension
is presented first for linear symmetric systems and then for systems of nonlinear
CLs. Few additional theoretical results have to be introduced in this chapter,
while other properties can be extended formally or with little modifications;

8. Discuss in Chapter 9 some issues related to the implementation of the schemes in
the case of systems. This chapter also allows to summarize the whole discretiza-
tion strategy and clearly describe the schemes actually used for the applications
of the following chapters;

9. Evaluate the schemes on the solution of the Euler equations for a perfect gas in
Chapter 10. Several test problems are considered and, when possible, compar-
isons are made with FV schemes;

10. Evaluate the schemes on the solution of a two-phase flow model in Chapter 11.
Several test problems are considered;

11. Evaluate the schemes on the solution of the shallow-water equations in Chapter
12. In this case, the schemes developed in this thesis can be shown to have
some very important properties, related to the type of solutions the shallow-
water equations admit. After discussing these theoretical aspects, several test
problems are considered;
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12. Summarize the results of the thesis and its main achievements. Underline the
current limitations of the approach proposed and show some of the ways left open
by this work together with the ones opened, proposing some possible routes to
improve and extend the work presented.

Almost every chapter is ended by a summary recalling the main results and ideas
presented. It is evident that the thesis has not an old-vs-new structure, new and old
results being interlaced in the manuscript in order to obtain a coherent presentation.
Practically all the analysis is performed in the scalar case, which is the only one in which
a rigorous theoretical framework can be developed, the analysis of systems being more
technical and less well understood. This probably makes the first half of the manuscript
somewhat hard to digest. However, it allows to present the theory in a simpler setting,
where geometrical analogies often help its understanding. It also allows to split this
thesis in two halves which can be read almost independently:

(a) The reader interested in the theoretical analysis and construction of the schemes
will find all the details in Chapter 2 to Chapter 8;

(b) The reader interested in the numerical applications can skip the first eight chap-
ters. Chapter 9 gives an in depth summary of the computational techniques
used allowing to go directly to Chapter 10, Chapter 11 and Chapter 12
devoted the evaluation of the schemes on different systems of CLs. If needed,
references to the appropriate sections in the first half of the thesis are given.
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Chapter 2

Conservation laws: continuous
problem and related stability

This thesis consider the numerical approximation of solutions of the following system
of conservation laws:

∂u

∂t
+ ∇ · F = S(x, y) on ΩT = Ω × [0, tf ] ⊂ R

d × R
+ , (2.1)

where u : ΩT 7→ R
m is an m-vector of conserved quantities, F : R

m 7→ R
m×d is

the tensor of the conservative fluxes, S : Ω 7→ R
m is an m-vector of source terms

independent on u and ΩT = Ω× [0, tf ] ⊂ R
d×R

+ is the space-time domain over which
solutions are sought. System (2.1) is also equipped with a set of boundary conditions
(BC) on ∂ΩT (or on properly defined portions of this set), and with an initial solution

u(x1, . . . , xd, t = 0) = u0(x1, . . . , xd) . (2.2)

Throughout the thesis, we focus on the twodimensional case d = 2 and

F(u) = (F(u), G(u)) , and ~x = (x1, x2) = (x, y) , (2.3)

however the theory presented easily extends to three space dimensions. We assume
that the system is hyperbolic, that is, for any given direction ~ξ = (ξ1, ξ2) ∈ R

2, the
matrix

K(~ξ,u) =
∂F(u)

∂u
ξ1 +

∂G(u)

∂u
ξ2 (2.4)

admits a complete set of real eigenvalues and linearly independent eigenvectors. As we
will see shortly, this condition can be deduced by a more general property of the system,
however it has been postulated here for sake of clarity. In particular, everywhere in
the text, we shall denote by Λ(~ξ,u) the diagonal matrix of the eigenvalues of K(~ξ,u)

and by R(~ξ,u) the matrix of its right eigenvectors, so that

K(~ξ,u) = R(~ξ,u) Λ(~ξ,u)R(~ξ,u)−1 .
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Chapter 2. Conservation laws: continuous problem and related stability

We also introduce the matrices

Λ(~ξ,u)+ = diag {max(0, λk)}mk=1 Λ(~ξ,u)− = diag {min(0, λk)}mk=1

and
|Λ(~ξ,u)| = diag {|λk|}mk=1 = Λ(~ξ,u)+ − Λ(~ξ,u)− ,

where λk is the k-th eigenvalue of K(~ξ,u). The positive and negative parts and the

absolute value of K(~ξ,u) are then defined as

K(~ξ,u)± = R(~ξ,u) Λ(~ξ,u)± R(~ξ,u)−1, |K(~ξ,u)| = R(~ξ,u) |Λ(~ξ,u)|R(~ξ,u)−1. (2.5)

Clearly one has

K(~ξ,u) = K(~ξ,u)+ +K(~ξ,u)−, |K(~ξ,u)| = K(~ξ,u)+ −K(~ξ,u)− . (2.6)

The objective of this chapter is to characterize solutions of (2.1). We will briefly
recall some stability conditions allowing, in some cases, to guarantee the existence
of such solutions and their physical relevance. This, is believed, will be useful to
justify and understand the need of requiring certain properties to be satisfied by the
discrete solution. Since the thesis also considers simpler CLs, the discussion will be
done in an increasingly level of complexity, starting from the simplest first-order scalar
transport equation to arrive at the end at (2.1). Throughout the text we try to focus
on the aspects which are in practice most relevant for the analysis of the schemes.
The discussion is far from being a general review of the theory of the solutions of
conservation laws for which an extensive bibliography is given in the text. In particular,
several aspects related to functional analysis are omitted or simplified giving however
appropriate references where a rigorous presentation can be found. As done for (2.1),
the notation used throughout the manuscript is introduced along the discussion.

2.1 The scalar advection equation

We start considering the scalar advection equation

∂u

∂t
+ ~a · ∇u = S(x, y) on ΩT ⊂ R

2 × R
+ , (2.7)

with ~a = (a1, a2) ∈ R
2 constant. Equation (2.7) can be recast in a form similar to

(2.1), assuming m = 1, u = u ∈ R, F(u) = F(u) = ~a u and S(x, y) = S(x, y). Given
a smooth initial solution u0(x, y), a regular enough function1 u(x, y, t) verifying (2.7)
in a pointwise manner and such that u(x, y, 0) = u0(x, y), is called a classical solution.
Exact solutions to this problem can be precisely represented [70, 174, 67, 14, 137]. In
the homogeneous case S(x, y) = 0, one easily shows that (2.7) is equivalent to

du(x(t), y(t), t)

dt
= 0

1u0(x, y) ∈ C1(R2) and u(x, y, t) ∈ C1(ΩT ) is a natural requirement for this problem
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2.1. The scalar advection equation

on the so-called characteristic curves Γ~ζ parametrized by (x(t), y(t), t) with

d(x(t), y(t))

dt
= ~a, (x(0), y(0)) = ~ζ . (2.8)

The solution is constant along characteristic curves (in this case straight lines) and can
be written in closed form as [70, 174, 67, 14, 137]

u(x(t), y(t), t) = u0(~ζ) . (2.9)

This corresponds to the propagation of the initial data in space-time along the direction
(~a, 1) ∈ R

2 × R. These solutions can be further characterized as follows:

Maximum principle Since the initial data are simply propagating in space-time, one
has trivially

inf
Ω
u0(x, y) ≤ u(x, y, t) ≤ sup

Ω
u0(x, y) . (2.10)

Last inequality is known as the maximum principle.

Energy conservation (and stability) Simple arguments (see e.g [152]) can be used
to show that1 the following principle of conservation of energy holds for the
solution:

‖u(t)‖L2 = ‖u0‖L2 , (2.11)

where ‖(·)‖L2 denotes the standard L2 norm on Ω:

‖(·)‖2
L2 =

∫

Ω

(·)2 dx dy .

Note that energy growth in time would correspond to an unstable behavior, while
energy stability implies the inequality [70, 174, 152, 67, 14, 137]

‖u(t)‖L2 ≤ ‖u0‖L2 , (2.12)

The stability associated to (2.12) corresponds to the presence of a dissipative
phenomenon [70, 174, 152, 67, 14, 137].

Inhomogeneous case Consider now the case S = S(x, y) 6= 0, with

sup
R2

|S(x, y)| <∞ .

It is easy to check that in this case the exact solution becomes

u(x, y, t) = u0(~ζ) +

t∫

0

S(x(s), y(s)) ds ,

with (x(s), y(s)) respecting (2.8). In this case, we do not have, strictly speaking,
a maximum principle, however at tf <∞, the following stability estimate holds

inf
Ω
u0(x, y) + tf inf

Ω
S(x, y) ≤ u(x, y, tf) ≤ sup

Ω
u0(x, y) + tf sup

Ω
S(x, y) (2.13)

1without taking into account the BCs, or assuming homogeneous BCs
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Chapter 2. Conservation laws: continuous problem and related stability

Similarly, an energy estimate can be derived (see e.g. the lecture notes [152]):

‖u(tf)‖2
L2(Ω) ≤ etf ‖u0‖2

L2(Ω) +

tf∫

0

etf−s‖S(x(s), y(s))‖2
L2(Ω) . (2.14)

Weaker regularity Even though classical solutions must have enough regularity for
(2.7) to hold in each point, it is easily shown that (2.9) makes sense also if
the initial data, hence the solution, have little regularity or even discontinuous.
Similarly, the bounds on the solution and the energy estimates can be derived
with much weaker assumptions. The definition of a weak solution, will be given
shortly, in the more general context of a nonlinear conservation law.

Note that the theory extends easily to the case ~a = ~a(x, y) ∈ C1(R2)2 [152].

2.2 Scalar nonlinear conservation laws

Consider now the nonlinear scalar problem

∂u

∂t
+ ∇ · F(u) = 0 on ΩT ⊂ R

2 × R
+ , (2.15)

obtained from (2.1) when m = 1, u = u ∈ R, F(u) = F(u) = (F (u), G(u)) ∈ R
2 and

S = S = 0. Last equation can be written in the following quasi-linear form

∂u

∂t
+ ~a(u) · ∇u = 0 ,

having introduced the Jacobian vector

~a(u) =

(
dF (u)

du
,
dG(u)

du

)
. (2.16)

Last equation is formally similar to (2.7). Classical solutions of (2.15) can be repre-
sented exactly as the solutions of the advection equation. In particular, introducing
the characteristic curves Γ~ζ parametrized by (x(t), y(t), t) with

d(x(t), y(t))

dt
= ~a(u(x(t), y(t), t)), (x(0), y(0)) = ~ζ ,

a solution of (2.15) is

u(x(t), y(t), t) = u0(~ζ) .

Moreover, since u is constant along each characteristic, so is ~a(u), hence the character-
istic curves are straight lines. However, since the slope of the characteristics depends
on the initial data u0(x, y), even for a smooth initial solution, characteristic lines can
cross. At the intersections no unique solution can exist in general, hence classical so-
lutions exist up to the time t∗ in which two characteristics cross for the first time.
This limitation is overcome by introducing a more general concept of solution. The
discussion of the next sections, follows [156, 25, 67, 68].

18



2.2.1. Weak solutions

2.2.1 Weak solutions

The notion of a weak solution is introduced to cope with the fact that classical solutions
exist only until a finite time t∗. A function u ∈ L∞(ΩT ) is a weak solution if it satisfies
(2.15) and the initial condition in the sense of distributions [70, 174, 13, 31, 67, 137]:

∫

ΩT

(
u
∂ϕ

∂t
+ F · ∇ϕ

)
dx dy dt+

∫

Ω

u0ϕ(x, y, 0) dx dy = 0 ∀ϕ ∈ C1
0 (ΩT ) . (2.17)

While classical solutions are also weak solutions of the problem, condition (2.17) en-
larges the set of possible admissible solutions to the set of bounded functions. However,
additional constraints are needed to guarantee the uniqueness of the the solution. As
the particular case F = ~au, weak solutions of (2.7) are also defined by (2.17).

2.2.2 Conservation

A whole class of weak solutions is given by functions which are piecewise smooth
[156, 25]. Smooth regions are separated by discontinuities which can be characterized
precisely. For simplicity, consider the case in which there exist ΩL and ΩR, subsets of
ΩT such that

ΩL ∪ ΩR = ΩT , ΩL ∩ ΩR = ∅,
with Ω the closure of a set Ω1. Given a function u ∈ C1(Ωk), k = L,R, then u is a weak
solution of (2.15) if it is a classical solution in ΩL and ΩR and if on the surface SLR
separating the two sets it respects the following Rankine-Hugoniot jump condition:

ntLR [u]LR = [F(u)]LR · ~nLR , (2.18)

with (~nLR,−ntLR) ∈ R
2 ×R the space-time unit normal to SLR, and [(·)] = (·)R − (·)L

the jump of a quantity across SLR in the direction of (~nLR,−ntLR). Condition (2.18)
states the conservation of u across a discontinuity and it constrains the speed at which
the discontinuity can move for a given jump of the unknown. The jump condition
is however not enough to uniquely determine the solution. There are in literature
classical examples showing that in some cases there exist infinite sets of piecewise
smooth functions respecting (2.18) and (2.15) (see [156, 25, 110, 68] for example).

2.2.3 Entropy and dissipation

Consider the regularized problem

∂uµ

∂t
+ ∇ · F(uµ) = µ∆uµ

1the smallest closed set containing Ω (or the intersection of all the closed sets containing Ω)
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Chapter 2. Conservation laws: continuous problem and related stability

Solutions of (2.15) can be seen as the limit of the solutions of this regularized equation
for vanishing values of the viscosity µ > 0. The Laplacian operator on the right-hand-
side of last equation, models a dissipative phenomenon. For this equation, it is possible
to prove that unique smooth solutions do exist [67, 68]. Next, we introduce the concept
of a convex entropy pair (H(u), G(u)), where H(u) is an entropy function and G(u) the
corresponding entropy flux, such that

dG
du

=
dH
du

dF
du

,
d2H
du2

> 0 (2.19)

Multiplying the regularized problem by dH/du, using (2.19) and integrating by parts
one obtains

dH
du

∂uµ

∂t
+
dH
du

∇ · F(uµ) = µ
dH
du

∆uµ

∂H(uµ)

∂t
+ ∇ · G(uµ) = µ∆H(uµ) −

≥0︷ ︸︸ ︷
µ
d2H
du2

∇uµ · ∇uµ

∂H(uµ)

∂t
+ ∇ · G(uµ) ≤ µ∆H(uµ)

If we now take the limit µ → 0, the entropy pair respects, in a weak or distributional
sense [70, 174, 152, 13, 31, 67, 137]

∂H(u)

∂t
+ ∇G(u) ≤ 0 . (2.20)

This leads to the concept of an entropy weak solution (or vanishing viscosity solution).
In particular, a weak solution is said to be an entropy weak solution or vanishing
viscosity solution of (2.15) if for all convex entropy pairs (H(u),G(u)) and ∀ϕ ∈ C1

0 (ΩT )

∫

ΩT

(
H(u)

∂ϕ

∂t
+ G(u) · ∇ϕ

)
dx dy dt+

∫

Ω

H(u0)ϕ(x, y, 0) dx dy ≥ 0 . (2.21)

It is possible to prove that entropy solutions are unique [105, 84, 104, 156, 25, 110].

2.2.4 Max principle

The dissipation mechanism implied by the entropy inequality represents in itself a sta-
bility condition which ultimately leads to the uniqueness of weak solutions. Moreover,
these solutions can be shown to have a set of properties guaranteeing their bounded-
ness and continuous dependence on the initial data (see [156, 25, 110] and references
therein). In particular, they respect the maximum principle (2.10).
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2.3. Linear symmetric hyperbolic systems

2.3 Linear symmetric hyperbolic systems

We now consider a system of PDEs of the form

∂u

∂t
+A1

∂u

∂x
+A2

∂u

∂y
= S(x, y) on ΩT ⊂ R

2 × R
+ , (2.22)

with constant symmetric matrices Aj , ∀j. Note that the hyperbolic character of the
system is guaranteed by the symmetry of the matrices. The characterization of the
solutions of such a system is more technical than in the case of the advection equation.
However, it is known that, in the homogeneous case, the system admits simple wave
solutions propagating at finite speeds which are related to the eigenvalues of the ma-
trices A1 and A2. We shall just mention that for (2.22), the existence and uniqueness
of the solutions is also proved by resorting to energy estimates [67, 14, 137, 75, 74]. We
recall that for (2.22) energy conservation reads

‖u(t)‖2
L2(Ω) = ‖u0‖2

L2(Ω) , (2.23)

while energy dissipation (or stability) implies

‖u(t)‖2
L2(Ω) ≤ ‖u0‖2

L2(Ω) . (2.24)

Concerning the existence of a maximum principle, as argued in [10, 9], the analysis of
the initial value problem given by (2.22) with piecewise smooth initial data [1] shows
that the solutions are also piecewise smooth with limited oscillations in correspondence
of discontinuities. This justifies the use of analytical techniques aiming at proving that
discrete approximations of solutions of (2.22) satisfy some L∞ stability criterion.

2.4 Nonlinear systems of conservation laws

Finally, we consider the case of a system of conservation laws

∂u

∂t
+ ∇ · F = 0 on ΩT = Ω × [0, tf ] ⊂ R

d × R
+ ,

with F = (F,G). We assume that the system is equipped with a convex entropy
extension so that one also has the additional scalar inequality

∂H(u)

∂t
+ ∇ · G(u) ≤ 0 , (2.25)

with H : R
m 7→ R a convex entropy function and G : R

m 7→ R
2 the entropy flux:

∂G(u)

∂u
=
∂H(u)

∂u

∂F(u)

∂u
= vT (u)

∂F(u)

∂u
, (2.26)

where the superscript T denotes the transpose operator and having introduced the
vector of entropy variables

v(u) =
∂H(u)

∂u

T

. (2.27)

21



Chapter 2. Conservation laws: continuous problem and related stability

The convexity of H(u) guarantees that the inverse Hessian matrix

A0 =

(
∂2H(u)

∂u2

)−1

(2.28)

is positive definite and that the mapping u 7→ v is invertible. Note that A0 is sym-
metric by definition. The existence of (at least one) convex entropy pair for physically
derived systems of conservation laws is known [83, 167, 168, 68]. As the scalar conser-
vation law (2.15), a system of CLs admits smooth classical solutions. In particular, the
symmetrization theory for first-order systems of conservation laws (see [78, 121] and
also [83, 167, 168] and references therein) ensures that, under the change of variables
u 7→ v with v given by (2.27), the system can be written into the symmetric form

A0
∂v

∂t
+A1

∂v

∂x
+A2

∂v

∂y
= 0 , A1 =

∂F

∂v
, A1 =

∂G

∂v
(2.29)

with Aj symmetric ∀j = 1, 2 and A0 symmetric positive definite and given by (2.28). As
in the case of a linear system, the symmetry of the Aj matrices implies the hyperbolic
character of the problem. Classical solutions can be characterized as the solution of a
linear symmetric system of PDEs. In particular, there exist simple wave-like solutions
corresponding to the propagation of the initial data at finite speeds depending on
the eigenvalues of the Jacobians Aj . However, as for equation (2.15), the nonlinear
character of the system leads in finite time to the formation of singular solutions. To
cope with this situation, weak solutions are introduced.

Weak solutions As in the scalar case, a bounded vector function u with components
in L∞(ΩT ) is called a weak solution of the system if ∀ϕ ∈ C1

0 (ΩT )

∫

ΩT

(
u
∂ϕ

∂t
+ F · ∇ϕ

)
dx dy dt+

∫

Ω

u0ϕ(x, y, 0) dx dy = 0 . (2.30)

Conservation A first characterization of weak solutions is obtained by considering
piecewise smooth functions. If ΩL and ΩR are two subsets of ΩT such that their
intersection is the empty set and that ΩL∪ΩR = ΩT , then u is a weak solution if
u ∈ C1(Ωk)m, k = L,R, if it is a classical solution in both sub-domains, and if on
the surface SLR separating ΩL and ΩR it respects (with the notation of (2.18))

ntLR [u]LR = [F(u)]LR · ~nLR , (2.31)

As before, this condition expresses the conservation of u across a discontinuity.
As easily verified for e.g. the Euler equations for a perfect gas, if (2.25) is not
taken into account, for a given initial condition several weak solutions can be
found. A classical example is that of the so-called expansion shock solutions.

Entropy and dissipation Also for a system, the existence of an entropy inequality
guarantees that a (stabilizing) dissipative mechanism determines the structure of
the solution. To see this, introduce the regularized problem [171]

∂uµ

∂t
+ ∇ · F(uµ) = µ∇ · (P (u,∇u)∇uµ) ,
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2.5. Summary

with P (u,∇u) a viscosity matrix verifying

A0 P = (A0 P )T positive definite

with A0 as in (2.28). Proceeding as in the scalar case, one gets

vT
∂uµ

∂t
+ vT∇ · F(uµ) = µvT∇ · (P A0∇v)

∂H(uµ)

∂t
+ ∇ · G(uµ) = µ∇ · (vT P A0∇v) −

≥0︷ ︸︸ ︷
µ(∇v)TP A0∇v

∂H(uµ)

∂t
+ ∇ · G(uµ) ≤ µ∇ · (vT P A0∇v)

Weak solutions of the nonlinear system of CLs are then obtained as the limit
of the solutions of the regularized problem for vanishing values of the viscosity
µ > 0. Note that, in this limit, last inequality reduces precisely to (2.25). As in
in scalar case, the limit is intended in a distributional sense: a weak solution is
an entropy weak solution, or vanishing viscosity solution, if for all convex entropy
pairs (H(u),G(u)) and ∀ϕ ∈ C1

0 (ΩT )

∫

ΩT

(
H(u)

∂ϕ

∂t
+ G(u) · ∇ϕ

)
dx dy dt+

∫

Ω

H(u0)ϕ(x, y, 0) dx dy ≥ 0 . (2.32)

In the case of a system of conservation laws, even for entropy weak solutions the
question of uniqueness is nontrivial, however see [169, 170, 171].

Maximum principle and inhomogeneous problems For systems of CLs the ques-
tion of the existence of a maximum principle is non-trivial. However, the piecewise
smooth characterization discussed before allows and justifies, at least in princi-
ple, to look for numerical techniques guaranteeing limited (or no) oscillations at
discontinuities. The same arguments hold for the inhomogeneous case

2.5 Summary

We have introduced the mathematical problem at the core of this work with the ob-
jective of reviewing some of the stability properties of its exact solutions and to justify
the design constraints imposed on the numerical schemes proposed in the thesis. The
most important concepts introduced can be summarized as follows:

• Classical (pointwise) solutions to the differential problems can exist in general
only in a bounded portion of the domain. The more appropriate and general
concept of weak solution has been introduced;

• Existence and uniqueness of the solutions of the continuous problem need (or
imply) the existence of some vanishing dissipative phenomenon. In the linear
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Chapter 2. Conservation laws: continuous problem and related stability

case, this is measured by energy inequalities bounding the evolution of the energy
(L2 norm) of the solution or requiring this quantity to be non-increasing. In the
nonlinear case, similar arguments lead to the existence of convex entropy pairs
so that unique solutions are subject to an entropy stability statement;

• The unknowns of the problem often respect an L∞ stability criterion, the max-
imum principle. This principle can be derived in a rigorous manner for scalar
equations, while for systems the non-oscillatory character of the solution has been
justified more heuristically. Even so, it appears reasonable to design methods for
the approximation of weak solutions which produce (L∞−)stable solutions with
no spurious oscillations in presence of discontinuities;
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Chapter 3

Discrete approximation: grid,
geometry and unknowns

The thesis presents and analyzes numerical discretization techniques for the solution
of the model problem (2.1) on unstructured meshes. Before introducing the schemes
considered in this work, this chapter illustrates how the spatial and temporal domains
are discretized. In particular, throughout the manuscript the expressions irregular
unstructured triangulation and structured triangulation will be often used. To clarify
the difference between these two types of meshes used in the numerical experiments,
we show here, once and for all, the mesh topologies we refer to.

Figure 3.1: Unstructured (left) and structured (right) triangulation

Independently on the geometry of the problem at hand, whenever we refer to an un-
structured discretization, we refer to a grid with the topology on the left on figure 3.1,
obtained using a basic Weatherhill algorithm [17, 16]. These meshes have a roughly
isotropic character, as far as size and angles are concerned. However, they present
a somewhat random irregularity in the nodal connectivity, and consequently element
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Chapter 3. Discrete approximation: grid, geometry and unknowns

sizes and angles can vary considerably in a local neighborhood. This is well depicted in
the left picture, where we have highlighted regions in which the number of neighbors
of a node changes from four to eight. Structured triangulations are instead obtained
simply by cutting into triangles meshes composed of squares. This is done always using
the right-running diagonals, as on the right on figure 3.1. Except for one computation,
discussed in chapter 10, we have never used any type of local refinement.

3.1 Mesh geometry

Consider a discretization of the spatial domain Ω composed by non overlapping tri-
angular elements. We will denote the grid by Th, h being a reference element length,
which is, for the grids used in this thesis, the (constant) mesh spacing on the boundary
of Ω. We denote by E the generic triangle in Th and by |E| its area. For all the grids
considered here, the following regularity is assumed

0 < C1 ≤ sup
E∈Th

h2

|E| ≤ C2 <∞ , (3.1)

for finite positive constants C1, C2. This corresponds to the fact that no vanishing area
elements are present, as well as no very acute (or obtuse) angles. Given a node j in an
element E, ~nj denotes the inward pointing vector normal to the edge of E opposite to
j, scaled by the length of the edge (left on figure 3.2).

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

i

j

k
E

Di

Si

i~nj

Figure 3.2: Median dual cell Si and nodal normal ~nj

Note that since E has a closed boundary one has

∑

j∈E

~nj = 0 (3.2)

When no confusion is generated, we will locally number as (1, 2, 3) the nodes of the
generic triangle. For every node i in the mesh, Di denotes the subset of triangles
containing i. By abuse of notation, we will say that j ∈ Di if node j belongs to an
element E ∈ Di. We then denote by Si the median dual cell obtained by joining the
gravity centers of the triangles in Di with the midpoints of the edges meeting in i, as
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3.2. Variable and flux approximation

illustrated on the right on figure 3.2. The area of Si is

|Si| =
∑

E∈Di

|E|
3

, (3.3)

We use the notation χS , S ⊂ Ω, to denote the characteristic function of a subset S:

χS(x, y) =

{
1 if (x, y) ∈ S
0 otherwise

(3.4)

The temporal domain [0, tf ] is subdivided by a sequence of M discrete time levels {t1 =
0, t2, . . . , tn, tn+1, . . . , tM = tf}. The schemes we consider allow, known the solution at
a certain time tn, to compute its approximation at time tn+1. As a consequence, in
most of the following chapters we focus our attention on the generic space-time slab
Ω × [tn, tn+1]. The time-width of the slab is given by the time-step

∆t = tn+1 − tn . (3.5)

3.2 Variable and flux approximation

Once the spatial and temporal domain have been discretized, we introduce a discrete
representation of the unknowns. The schemes developed in this thesis are based on a
continuous approximation of the unknowns. In both the linear and the nonlinear case,
this representation is constructed starting from the knowledge of the nodal values of
the primary unknowns. It is perhaps best to distinguish between linear and nonlinear
problems, since in the latter case different possibilities can (and will) be exploited. In
particular, in this thesis we refer to the set of primary unknowns, as to the variables
whose representation on the mesh is analytically known.

3.2.1 Discrete approximation of the unknowns: linear case

In the linear case, that is in the case of the scalar advection equation (2.7) or of the
linear system (2.22), we will use as primary unknowns the variables u and u respectively.
In the following we refer always to the vector unknowns u and, if not stated otherwise,
it is assumed that the scalar case is formally obtained by replacing the u vector by the
scalar u. Let {ψi}i∈Th

denote the continuous piecewise linear basis functions typically
used in P 1 Finite Element methods, respecting

ψi(xj , yj) = δij ∀i, j ∈ Th, ∇ψi|E =
~ni

2|E| ,
∑

j∈E

ψj = 1 ∀E ∈ Th (3.6)

with δij Kroenecker’s delta. Given the nodal values {ui(t) = u(xi, yi, t)}i∈Th
, we

introduce the following continuous numerical approximation of u in space

uh(x, y, t) =
∑

i∈Th

ψi(x, y)ui(t) . (3.7)
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Chapter 3. Discrete approximation: grid, geometry and unknowns

The discrete representation of the initial solution reads

u0
h(x, y) =

∑

i∈Th

ψi(x, y)u0
i =

∑

i∈Th

ψi(x, y)u0(xi, yi) . (3.8)

For time-dependent computations, we will instead need a second-order accurate discrete
representation on the space-time slab Ω× [tn, tn+1]. In this thesis, for linear problems,
this representation is given by

uh(x, y, t) =
t− tn

∆t
un+1 +

tn+1 − t

∆t
un with





un = uh(x, y, tn)

un+1 = uh(x, y, tn+1)
(3.9)

3.2.2 Discrete approximation of the unknowns: nonlinear case

In the nonlinear case, we need a discrete representation of both the unknowns and of
the fluxes. In this case, and in particular for systems, different choices are possible.
We denote by w the generic set of primary unknowns. For example, in the case of
nonlinear systems, we have at least the two possible choices w = u, the vector of
conserved variables, and w = v, the entropy variables. Other choices are possible and
will be presented in the text when and if needed. Moreover, by analogy with the system
case, also for a scalar conservation law, we define the entropy variable

v =
dH(u)

du
(3.10)

for a given entropy pair (H(u),G(u)). As in the linear case, we introduce the represen-
tation of w in space

wh(x, y, t) =
∑

i∈Th

ψi(x, y)wi(t) . (3.11)

It is intended, that the other variables are obtained as uh = u(wh). As in the linear
case, the discrete initial solution is taken to be

w0
h(x, y) =

∑

i∈Th

ψiw
0
i =

∑

i∈Th

ψiw (u0(xi, yi)) . (3.12)

In time-dependent computations, we will use, on the space-time slab Ω× [tn, tn+1], the
second-order approximation

wh =
t− tn

∆t
wn+1 +

tn+1 − t

∆t
wn with





wn = wh(x, y, tn)

wn+1 = wh(x, y, tn+1)
(3.13)

The other variables are obtained as uh = u(wh). The scalar case is obtained as the
particular case u = u ∈ R. For nonlinear problems we also need an approximation of
the fluxes. Generally, it will be assumed that Fh = F(wh). However, it is useful to
also introduce the following piecewise linear in time representation [8]

F
h =

t− tn

∆t
F(wn+1) +

tn+1 − t

∆t
F(wn) . (3.14)
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3.3. Flux Jacobians

Both in the linear and in the nonlinear case, we denote by Sh(x, y) the discrete ap-
proximation of the source term, given by

Sh =
∑

i∈Th

ψiSi (3.15)

3.3 Flux Jacobians

The schemes we will present in this thesis make use of information contained in the
eigenstructure of the Jacobians of the fluxes. For completeness, we introduce the related
labeling in this chapter. Using the notation of (2.4), on each element E we define the
set of matrices

Kj =
1

2
K(~nj,u) , (3.16)

where u is an average value of u over E that we leave, for the moment, unspecified.
Note that, for simplicity of notation, we omit to use a superscript E (or subscript

E) referring to the element in which Kj is defined, this being always clear from the
context. Relation (3.2) implies that

∑

j∈E

Kj = 0 (3.17)

Similarly to what we have done in chapter 2, we also introduce the multidimensional
upwind parameters (see equation (2.5))

K±
j = RjΛ

±
j (Rj)

−1 =
1

2
K±(~nj ,u) , (3.18)

and the absolute value matrix

|Kj | =
1

2
|K(~nj,u)| . (3.19)

Note that the analytical form of the Jacobians also depends on the choice of the primary
variables. Unless stated otherwise, we will always keep the notation introduced here,
also if the Kj matrix has been computed using flux Jacobians with respect to variables
different from the conserved ones. Note also that (3.17) implies

∑

j∈E

K+
j = −

∑

j∈E

K−
j =

1

2

∑

j∈E

|Kj| (3.20)

We introduce an additional set of Jacobians which will be useful in the presentation of
the space-time schemes of [51]. In particular, denoting the m ×m identity matrix by
I, we first define the following matrices

K̃j =
∆t

2
Kj +

|E|
3

I , K̂j =
∆t

2
Kj −

|E|
3

I . (3.21)
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Chapter 3. Discrete approximation: grid, geometry and unknowns

The relation between the K̃j and K̂j matrices and the Jacobians of the space-time flux
(F ,u) can be found in [51] and will be discussed later. We note that

∑

j∈E

(
K̃j + K̂j

)
= 0 (3.22)

It can be easily verified that these matrices share with the Kj matrices (3.16) the same
right and left eigenvectors and one can write

K̃j = RjΛ̃j(Rj)
−1 , K̂j = RjΛ̂j(Rj)

−1 (3.23)

with

Λ̃j =
∆t

2
Λj +

|E|
3

I , Λ̂j =
∆t

2
Λj −

|E|
3

I (3.24)

We define then the space-time multidimensional upwind parameters [51]

K̃±
j = RjΛ̃

±
j (Rj)

−1 , K̂±
j = RjΛ̂

±
j (Rj)

−1 (3.25)

Due to (3.22), we can write the relation

∑

j∈E

(
K̃+
j + K̂+

j

)
= −

∑

j∈E

(
K̃−
j + K̂−

j

)
=

1

2

∑

j∈E

(
|K̃j | + |K̂j |

)
(3.26)

3.3.1 Scalar Jacobians

In the scalar case, the flux Jacobians are vectors in R
2. We define the analog of (3.16)

and of its positive and negative parts as

k+
j = max(0, kj), k−j = min(0, kj) ; kj =

~a(u) · ~nj
2

, (3.27)

with ~a as in (2.16) or, in the case of the advection equation (2.7), given. The state
u is an average of uh over the element whose properties we leave unspecified for the
moment. Relations (3.17) and (3.20) are true also in the scalar case, with the obvious
changes in notation.

For the space-time multidimensional upwind parameters one has in the scalar case

k̃+
j = max(0, k̃j) , k̃−j = min(0, k̃j) with k̃j =

∆t

2
kj +

|E|
3

(3.28)

and

k̂+
j = max(0, k̂j) , k̂−j = min(0, k̂j) with k̂j =

∆t

2
kj −

|E|
3

(3.29)

Relations (3.22) and (3.26) apply also in this case, with obvious changes in notation.

30



Chapter 4

Prototype compact discrete
approximation for steady
advection

This chapter is devoted to the derivation of discrete analogs of the maximum principle
and energy stability criteria introduced in chapter 2 for exact solutions of the linear
advection equation. This will be done for a general abstract prototype encompassing
the FS schemes object of the thesis, and other methods as well. In particular, here we
consider cell-vertex compact discretizations that, when computing steady-state solu-
tions of the advection equation (2.7), and neglecting terms arising from the boundary
conditions, can be recast in the following abstract form:

|Si|
dui
dt

= −
∑

E∈Di

φEi = −
∑

E∈Di

∑

j∈E
j 6=i

cEij(ui − uj) , ∀i ∈ Th (4.1)

with ui(t = 0) = u0(xi, yi). The abstract scheme (4.1) is the most compact discretiza-
tion one can have, since it only involves the nearest neighboring nodes of node i. We
will see that this representation is particularly well suited for the RD schemes devel-
oped in the thesis. However, we will also show that it encompasses linear FE schemes
and some first-order FV schemes. A precise definition of a RD scheme will be instead
given in the next chapter. For the moment, we only assume that (4.1) is consistent
with the advection equation (2.7):

Assumption (Consistency). It is possible to find a consistent approximation of the
unknown uh(x, y), or equivalently of the flux Fh(x, y) = (~au)h(x, y), such that scheme
(4.1) verifies

∑

i∈Th

∑

E∈Di

φEi =

∮

∂Ω

Fh · n̂ dl , (4.2)

with n̂ the exterior unit normal to ∂Ω.
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Chapter 4. Prototype compact discrete approximation for steady advection

Moreover, without loss of generality, we will assume that the consistency requirement
is verified on subsets of Ω as well, and in particular that

Assumption (Local Consistency). It is possible to find a consistent approximation
of the unknown uh(x, y), or equivalently of the flux Fh(x, y) = (~au)h(x, y), such that
∀E ∈ Th scheme (4.1) verifies

∑

j∈E

φEj =

∮

∂E

Fh · n̂E dl , (4.3)

with n̂E the exterior unit normal to ∂E.

We recall that (4.1) does not take into account terms arising from the boundary con-
ditions, which are neglected in the analysis of this chapter. As we will show in the
next chapter, local consistency is verified by all the FE and FV schemes represented
by (4.1) and, by construction, by RD schemes. We also mention that, if the local
consistency (4.3) is verified, under a continuity hypothesis on the φEi s, and assuming
that the consistent approximation of the flux Fh is continuous across triangle edges, it
can be proved [5, 6, 9] that

Theorem (Lax-Wendroff theorem for prototype scheme). Given bounded initial
data u0 ∈ L∞(R2), a square integrable function u ∈ L2(R2 × R

+), and a constant C
depending on u0 and u such that the approximation uh(x, y, t) obtained from (4.1)
verifies

sup
h

sup
(x,y,t)

|uh| ≤ C lim
h→0

‖uh − u‖L2
loc

(R2×R+) = 0 ,

then u is a weak solution of the problem, in the sense of (2.17).

As we will see in the next chapter, the hypotheses at the basis of this result apply to
RD schemes as well as to FE and to FV schemes that can be recast in form (4.1). In
this chapter, we shall recall conditions under which the solutions obtained with this
abstract scheme respect discrete analogs of the maximum principle (2.10) and of the
energy stability condition (2.12).

4.1 Positive cell-vertex schemes on unstructured grids

In this section we consider the design of monotone schemes on unstructured meshes.
Conditions are given on the cEij coefficients in (4.1) in order to be able to prove that
the numerical solution obtained respects discrete analogs of the maximum principle
(2.10). The first part of the analysis is a re-adaptation to the case of our cell-vertex
prototype (4.1) of the theory of positive coefficient schemes on unstructured meshes,
discussed for FV schemes in [20, 25] (see also [161]). We then extend the theory to
implicit two-level schemes and to non-homogeneous problems where the source term
does not depend on the solution.
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4.1.1. Discrete maximum principle: explicit case

The analysis starts with a very important property of (4.1): the so-called Local Ex-
tremum Diminishing (LED) property:

Proposition 4.1.1 (LED property). The prototype scheme (4.1) is Local Extremum
Diminishing (LED), i.e. in the numerical solution local maxima are non-increasing and
local minima are non-decreasing, if

c̃ij =
∑

E∈Di ∩Dj

cEij ≥ 0 , ∀j ∈ Di, j 6= i and ∀i ∈ Th (4.4)

Proof. From property (4.4) it follows that

dui
dt

= − 1

|Si|
∑

E∈Di

∑

j∈E
j 6=i

cEij(ui − uj) =

− 1

|Si|
∑

j∈Di

j 6=i


 ∑

E∈Di ∩Dj

cEij


 (ui − uj) = − 1

|Si|
∑

j∈Di

j 6=i

c̃ij(ui − uj)

is negative or zero if ui is a local maximum (ui ≥ uj) and it is positive or zero if ui is
a local minimum (ui ≤ uj), hence the result.

The LED property guarantees that local extrema are kept bounded by the numerical
scheme. A stronger requirement, often used in the construction of nonlinear schemes,
is trivially obtained by asking each cEij to be positive on every element E, leading to a
sub-element LED property:

Corollary 4.1.2 (Sub-element LED). Scheme (4.1) is LED if

cEij ≥ 0 ∀j ∈ E and ∀E ∈ Di . (4.5)

In order to obtain an estimate on the discrete solution, the LED condition is not enough
and fully discrete versions of (4.1) need to be considered. In this work, three types
of two-level explicit and implicit time discretizations are analyzed: explicit (forward)
Euler (FE), implicit (backward) Euler (BE), Crank-Nicholson (CN ) and trapezium
rule. For linear problems, the last two are equivalent. For clarity, we analyze the
explicit scheme first. This part of the theory is a re-adaptation to our cell-vertex
framework of the analysis reported in [20, 25]. We then extend the theory to the
implicit case and to the non-homogeneous one.

4.1.1 Discrete maximum principle: explicit case

Consider the fully discrete version of (4.1) obtained with the explicit FE scheme:

un+1
i = uni − ∆t

|Si|
∑

E∈Di

φFE
i = uni − ∆t

|Si|
∑

E∈Di

∑

j∈E
j 6=i

cEij(u
n
i − unj ) . (4.6)
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Chapter 4. Prototype compact discrete approximation for steady advection

We have the following result.

Proposition 4.1.3 (Positivity-Local Discrete Maximum Principle). The space-
time discrete analog of (2.7) in the time interval [tn, tn+1] represented by (4.6), verifies
the local space-time maximum principle

ũni ≤ un+1
i ≤ Ũni , (4.7)

with
ũni = min

j∈Di

unj Ũni = max
j∈Di

unj , (4.8)

if the LED condition (4.4) holds and under the time-step restriction

∆t ≤ |Si|∑
j∈Di

j 6=i

c̃ij
∀i ∈ Th (4.9)

Proof. Rewriting (4.6) as

un+1
i = uni − ∆t

|Si|
∑

j∈Di

j 6=i

c̃ij(u
n
i − unj ) =


1 − ∆t

|Si|
∑

j∈Di

j 6=i

c̃ij


 uni +

∆t

|Si|
∑

j∈Di

j 6=i

c̃iju
n
j = ciiu

n
i +

∑

j∈Di

j 6=i

ciju
n
j =

∑

j∈Di

ciju
n
j ,

properties (4.4) and (4.9) guarantee that for all i and j, cij ≥ 0, hence:

∑

j∈Di

cij


 ũni ≤ un+1

i ≤


∑

j∈Di

cij


 Ũni .

Using the fact that, trivially, ∑

j∈Di

cij = 1 , (4.10)

we obtain the proof.

A scheme of the form (4.6) respecting proposition 4.1.3 is said to be positive. As done
for the LED property, we introduce a local form of positivity, which will be useful later
for the construction of compact nonlinear schemes. In particular, using (3.3) we can
rewrite (4.1) as:

|Si|un+1
i =

∑

E∈Di

( |E|
3
uni − ∆t φFE

i

)
⇒ un+1

i =
∑

E∈Di

|E|
3|Si|

uEi , (4.11)

with

uEi = uni − 3∆t

|E| φ
FE
i = uni − 3∆t

|E|
∑

j∈E
j 6=i

cEij(u
n
i − unj ) . (4.12)

With this notation we introduce the following result.
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4.1.2. Discrete maximum principle: implicit case

Proposition 4.1.4 (Local Positivity-Discrete maximum principle). The space-
time discrete analog of (2.7) given by (4.6) exhibits the local maximum discrete prin-
ciple (4.7), if it verifies the sub-element LED condition (4.5) and under the time-step
restriction

∆t ≤ |E|
3
∑
j∈E
j 6=i

cEij
∀i ∈ Th (4.13)

Proof. One easily checks that the hypotheses of proposition 4.1.3 are verified under the
assumptions made here.

A scheme respecting proposition 4.1.4 is said to be locally positive. Last proposition
states that local positivity implies positivity. Two important consequences have to be
recalled. The first is that, thanks to the positivity of the c̃ij coefficients implied by
condition (4.4), we have [25, 20]:

Proposition 4.1.5 (Steady-state discrete maximum principle). Under the hy-
pothesis that the c̃ij coefficients in (4.4) are all positive, the steady limit of (4.6) verifies
the local maximum principle in space given by:

min
j∈Di

j 6=i

u∗j ≤ u∗i ≤ max
j∈Di

j 6=i

u∗j (4.14)

where the superscript ∗ denotes the steady limit

u∗j = lim
n→∞

unj .

The second and more important consequence is that the solution respects at all times
a discrete analog of (2.10) [25, 20]:

Theorem 4.1.6 (L∞−stability). If the hypotheses of proposition 4.1.3 are verified
in all the time slabs {[tn, tn+1]}n=0,...,M−1, then scheme (4.6) is L∞−stable and the
following bounds hold for its numerical solution:

min
i∈Th

u0
i ≤ unj ≤ max

i∈Th

u0
i , ∀i ∈ Th, n ∈ [1,M ] . (4.15)

4.1.2 Discrete maximum principle: implicit case

We consider now the case in which (4.1) is integrated in time using an implicit scheme.
This part of the analysis will be very important in the construction of monotone schemes
for time-dependent computations. In particular, in this section we consider the analysis
of the implicit backward Euler scheme (BE)

|Si|(un+1
i − uni ) = −∆t

∑

E∈Di

φBE
i = −∆t

∑

E∈Di

∑

j∈E
j 6=i

cEij(u
n+1
i − un+1

j ) , (4.16)
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Chapter 4. Prototype compact discrete approximation for steady advection

and of the implicit Crank-Nicholson (CN ) scheme

|Si|(un+1
i −uni ) = −∆t

∑

E∈Di

φCNi = −∆t
∑

E∈Di

∑

j∈E
j 6=i

cEij

(
un+1
i + uni

2
−
un+1
j + unj

2

)
(4.17)

Note that in the linear case considered here, the CN scheme is equivalent to the so-
called trapezium time integration scheme

|Si|(un+1
i − uni ) = −∆t

∑

E∈Di

φFE
i + φBE

i

2
. (4.18)

Denoting by Un and Un+1 the arrays containing the nodal values of u at time tn and
tn+1 respectively, the implicit schemes presented can all be recast in the form:

AUn+1 = BUn , (4.19)

where the A and B matrices are sparse with a fill-in pattern given by the connectivity
graph of the grid1. The entries of these matrices depend on the cEij coefficients, on
the time-step and on Si. These entries can be expressed in a general unified form
introducing the θ−scheme [99]:

|Si|(un+1
i − uni ) = −∆t

∑

E∈Di

(
(1 − θ)φFE

i + θφBE
i

)
. (4.20)

The θ−scheme, can be recast as in (4.19) with A and B given by

Aii = |Si| + θ∆t
∑

E∈Di

∑
j∈E
j 6=i

cEij , Aij = −θ∆t ∑
E∈Di

∑
j∈E
j 6=i

cEij

Bii = |Si| − (1 − θ)∆t
∑

E∈Di

∑
j∈E
j 6=i

cEij , Bij = (1 − θ)∆t
∑

E∈Di

∑
j∈E
j 6=i

cEij

(4.21)

Clearly, the BE scheme is obtained for θ = 1 and the CN scheme corresponds to the
choice θ = 1/2. Now we can prove

Proposition 4.1.7 (Positivity- Discrete Maximum Principle). The space-time
discrete analog of (2.7) in the time interval [tn, tn+1] represented by the θ−scheme
(4.20), verifies the global discrete space-time maximum principle

unmin = min
j∈Th

unj ≤ un+1
i ≤ max

j∈Th

unj = unmax , (4.22)

and the local discrete space-time maximum principle given by

ui = min
{
uni , min

j∈Di

j 6=i

(unj , u
n+1
j )

}
≤ un+1

i ≤ max
{
uni ,max

j∈Di

j 6=i

(unj , u
n+1
j )

}
= U i (4.23)

1i.e in general Alm (and Blm) is non-zero only if there is at least one element E ∈ Th such that
both nodes l and m belong to E
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4.1.2. Discrete maximum principle: implicit case

if the LED condition (4.4) holds and under the time-step restriction

|Si| − (1 − θ)∆t
∑

E∈Di

∑

j∈E
j 6=i

cEij ≥ 0 ∀i ∈ Th (4.24)

In particular, the BE scheme (4.16) verifies (4.22) and (4.23) ∀∆t > 0, while the time-
step restriction of the CN scheme is twice less severe than the one guaranteeing the
positivity of the FE scheme, equation (4.9).

Proof. The proof is obtained by noting that the LED condition (4.4) guarantees that
Aii ≥ 0 and Aij ≤ 0 ∀j 6= i independently on ∆t. Moreover, A is diagonally dominant
since

|Aii| −
∑

j∈Di

j 6=i

|Aij | = |Si| > 0 .

Hence, A is an M−matrix and is diagonally dominant. This implies that A is invertible
and A−1 is positive [108]: A−1

ij ≥ 0 ∀i, j. Consider now the array Umin having the same

length of Un and Un+1 but with elements all equal to unmin. Thanks to the time-step
restriction (4.24), we have Bij ≥ 0 ∀i, j, hence

(BUn)i ≥ (BUmin)i ∀i ∈ Th

since uni ≥ unmin ∀i ∈ Th. Moreover

(BUmin)i =
∑

j∈Di

Bijunmin = |Si|unmin =
∑

j∈Di

Aiju
n
min = (AUmin)i

Since AUn+1 = BUn, this shows that

(AUn+1)i ≥ (AUmin)i ∀i ∈ Th

The positivity of A−1 ≥ 0 implies the left inequality in (4.22). The right inequality is
obtained considering the array Umax with entries all equal to unmax and proceeding in
a similar way.

As in the case of the steady-state maximum principle (4.14), the local bounds are a
consequence of the positivity of the c̃ij coefficients. In fact, given Un+1, on has for a
node i:

Aiiu
n+1
i +

∑

j∈Di

j 6=i

Aiju
n+1
j =

(
|Si| + θ∆t

∑

j∈Di

j 6=i

c̃ij

)
un+1
i − θ∆t

∑

j∈Di

j 6=i

c̃iju
n+1
j =

Biiuni +
∑

j∈Di

j 6=i

Bijunj =
(
|Si| − (1 − θ)∆t

∑

j∈Di

j 6=i

c̃ij

)
un+1
i + (1 − θ)∆t

∑

j∈Di

j 6=i

c̃iju
n
j
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Chapter 4. Prototype compact discrete approximation for steady advection

Thanks to the positivity of the c̃ijs and to the time-step restriction (4.24), and using
the definition of U i (equation (4.23)), one has

(
|Si| + θ∆t

∑

j∈Di

j 6=i

c̃ij

)
un+1
i =

(
|Si| − (1 − θ)∆t

∑

j∈Di

j 6=i

c̃ij

)
un+1
i + (1 − θ)∆t

∑

j∈Di

j 6=i

c̃iju
n
j + θ∆t

∑

j∈Di

j 6=i

c̃iju
n+1
j ≤

(
|Si| + θ∆t

∑

j∈Di

j 6=i

c̃ij

)
U i (4.25)

which gives the right bound in (4.23). The left bound is obtained in a similar way. In
the case of the BE scheme one has θ = 1, hence (4.24) is satisfied ∀∆t > 0. Setting
θ = 1/2 in (4.24), we obtain for the CN scheme

∆t ≤ 2
|Si|∑

E∈Di

∑
j∈E
j 6=i

cEij
= 2

|Si|∑
j∈Di

j 6=i

c̃ij
,

where the left hand side is exactly twice as large as the one in (4.9).

An implicit scheme respecting proposition 4.1.7 will be said to be positive. Next, we
note that the components of the A and B matrices can be decomposed as a sum of
local contributions:

A =
∑

E∈Th

AE , B =
∑

E∈Th

BE

where Aij ,Bij = 0 ∀i, j /∈ E, and for i, j ∈ E one has

AE
ii =

|E|
3

+ θ∆t
∑
j∈E
j 6=i

cEij , AE
ij = −θ∆t ∑

j∈E
j 6=i

cEij

BEii =
|E|
3

− (1 − θ)∆t
∑
j∈E
j 6=i

cEij , BEij = (1 − θ)∆t
∑
j∈E
j 6=i

cEij

(4.26)

Trivially

Proposition 4.1.8 (Local Positivity - Discrete Maximum Principle). The
space-time discrete analog of (2.7) in the time interval [tn, tn+1] represented by the
θ−scheme (4.20), verifies the global space-time discrete maximum principle (4.22) and
the local space-time discrete maximum principle (4.23) if the sub-element LED condi-
tion (4.5) holds and under the time-step restriction

|E|
3

− (1 − θ)∆t
∑

j∈E
j 6=i

cEij ≥ 0 ∀i ∈ E and ∀E ∈ Th (4.27)
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4.2. Energy stability

In particular, the BE scheme (4.16) verifies (4.22) and (4.23) ∀∆t > 0, while the time-
step restriction of the CN scheme is twice less severe than the one guaranteeing the
local positivity of the FE scheme, equation (4.13).

Proof. The sub-element LED condition implies the LED condition and (4.27) implies
(4.24). Application of proposition 4.1.7 yields the result. As before, if the local LED
condition holds, then the implicit BE scheme is positive ∀∆t > 0, while for the CN
scheme we have the time-step restriction

∆t ≤ 2
|E|

3
∑
j∈E
j 6=i

cEij
∀i ∈ Th

which is precisely twice less strict than (4.13).

Implicit schemes verifying proposition 4.1.8 are said to be locally positive. Clearly, last
proposition shows that local positivity implies positivity. It must be remarked that it
seems quite disappointing that an implicit scheme must respect a time-step restriction
of the same order as the one of the explicit FE scheme in order to preserve the L∞

stability of the discretization. Unfortunately, it can be shown that, as far as high-
order time-integration schemes are concerned, this strict limitation has a quite general
character [27]. We will discuss this issue in some more detail later when presenting
the space-time schemes. Here we add that, as in the case of the explicit scheme, the
LED property implies that the θ−scheme satisfies the steady state maximum discrete
principle of proposition 4.1.5 and moreover

Theorem 4.1.9 (L∞−stability). If the hypotheses of proposition 4.1.7 are verified
in all the time slabs {[tn, tn+1]}n=0,...,M−1, then scheme (4.20) is L∞−stable and the
numerical solution respects bounds (4.15).

4.2 Energy stability

As seen in §2.1, the advection equation is characterized by a bound on the L2 norm
of its exact solutions: the energy. At the discrete level, this translates into a stability
criterion: stable schemes are the ones for which the energy attains its maximum value at
t = 0. Hence, the energy is dissipated by stable discretizations. In this section we give
estimates for the evolution in time of the energy of the solution obtained by scheme
(4.1). The analysis is partly inspired by [18]. We start by rewriting the prototype
scheme in the compact vector form

D|Si|
dU

dt
= −CU , (4.28)

where D|Si| is the diagonal matrix of the median dual areas, U is the array containing
the nodal values ui ∀i ∈ Th and the form of matrix C are given by the c̃ij coefficients
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Chapter 4. Prototype compact discrete approximation for steady advection

of the LED condition (4.4):

Cii =
∑

j∈Di

j 6=i

c̃ij , Cij = −c̃ij = −
∑

E∈Di∩Dj

cEij . (4.29)

Introducing the discrete analog of the energy of the solution

Eh =
UT D|Si| U

2
, (4.30)

the energy dissipation of the schemes can be characterized by analyzing

dEh
dt

= −UT C + CT
2

U = −UT MEh U . (4.31)

We start giving the following definition.

Definition 4.2.1 (Energy stable scheme - semi-discrete form). The prototype
scheme in semi-discrete form (4.1) is energy stable if the symmetric matrix MEh is
positive semi-definite, hence

dEh
dt

= −UT MEh U ≤ 0 .

It is common experience that schemes yielding monotone numerical solutions, such as
LED and positive schemes, also exhibit a dissipative behavior, i.e. sharp profiles of
the solution are smeared as if a viscous diffusion mechanism was present. In order to
characterize our prototype scheme from the energy point of view, we look at the form
of the MEh matrix. In particular, from (4.31) and (4.29) we have

MEh

ii =
∑

j∈Di

j 6=i

c̃ij , MEh

ij = −1

2
(c̃ij + c̃ji) = −

∑

E∈Di∩Dj

cEij + cEji
2

.

For LED schemes MEh has positive entries on the diagonal and negative off-diagonal
terms. However, this is not enough to ensure the positive semi-definiteness, unless the
matrix is also irreducibly diagonally dominant [26]. In particular, some of the schemes
we consider in this thesis can be characterized by the following property.

Proposition 4.2.2 (Energy stability of LED schemes - semi-discrete case).
A scheme of the form (4.1) verifying the LED condition (4.4) is energy stable in the
sense of definition 4.2.1 if

∑

j∈Di

j 6=i

c̃ij =
∑

j∈Di

j 6=i

c̃ji ∀i ∈ τh (4.32)
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4.2. Energy stability

Proof. We start by recasting the quadratic form on the right hand side in (4.31) as

UT MEh U =
∑

i∈Th

{
ui

( ∑

j∈Di

j 6=i

c̃ij

)
ui − ui

∑

j∈Di

j 6=i

c̃ij + c̃ji
2

uj

}
=

∑

i∈Th

∑

j∈Di

j 6=i

ui
c̃ij + c̃ji

2
(ui − uj) +

∑

i∈Th

ui

( ∑

j∈Di

j 6=i

c̃ij − c̃ji
2

)
ui

Rewriting the first term in the last expression as a sum involving mesh edges we get:

UT MEh U =

≥0︷ ︸︸ ︷
1

2

∑

i,j∈Th

Di∩Dj 6=0

(ui − uj)
c̃ij + c̃ji

2
(ui − uj) +

∑

i∈Th

ui

( ∑

j∈Di

j 6=i

c̃ij − c̃ji
2

)
ui

Due to the satisfaction of the LED condition (4.4), the first sum is always non-negative.
If MEh is diagonally dominant, then

|MEh

ii | −
∑

j∈Di

j 6=i

|MEh

ij | =
∑

j∈Di

j 6=i

c̃ij −
1

2

∑

j∈Di

j 6=i

(c̃ij + c̃ji) =
1

2

∑

j∈Di

j 6=i

(c̃ij − c̃ji) ≥ 0,

hence UT MEh U ≥ 0 and the scheme is guaranteed to be stable. In particular, LED
schemes respecting (4.32) are energy stable.

We recall that the cell-vertex prototype analyzed in this chapter does not take into
account terms arising from the boundary conditions. Complete energy stability esti-
mates will have to be derived by combining proposition 4.2.2 with these terms. Some
examples showing how boundary conditions can be included in the analysis will be
given in the next chapter. Here, instead, we will give a more local characterization of
the stability of the schemes. We start recalling the following result [18]

Lemma 4.2.3 (Energy equivalence - Barth, 1996). Two matrix operators L1 and
L2 for which

L1U = L2U

are energy equivalent.

Proof. Trtivially: UT (L1 + LT1 )U = UT (L1U) + (L1U)TU = UT (L2U) + (L2U)TU ,
and hence UT (L1 + LT1 )U = UT (L2 + LT2 )U

Barth’s lemma has two important consequences. The first is the following property.

Proposition 4.2.4. Schemes of the form (4.1) respecting (4.32) are energy equivalent
to the semi-discrete evolution schemes

|Si|
dui
dt

= −
∑

E∈Di

∑

j∈E
j 6=i

(
cEij(ui − uj) −

1

2
(cEij − cEji)ui

)
∀ i ∈ Th
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with associated matrix energy operator M
Eh

with entries

M
Eh

ii =
∑

j∈Di

j 6=i

c̃ij + c̃ji
2

, M
Eh

ij = − c̃ij + c̃ji
2

. (4.33)

LED schemes are energy stable with respect to the equivalent energy operator M
Eh

.

The energy equivalence lemma and proposition 4.2.4 finally allow to give a local char-
acterization of the energy stability of the schemes. To do this, we use the fact that
(4.1) is obtained as a sum of elemental contributions:

UTD|Si|
dU

dt
=
∑

i∈Th

ui|Si|
dui
dt

=
∑

i∈Th

∑

E∈Di

ui
|E|
3

dui
dt

=
∑

E∈Th

∑

i∈E

ui
|E|
3

dui
dt

and finally

UTD|Si|
dU

dt
=
∑

E∈Th

UTEDE
dUE
dt

(4.34)

with UE the array containing the three nodal values of the unknown in the vertices
of E and DE the diagonal matrix of |E|/3. Using the local numbering (u1, u2, u3) for
these quantities, one easily checks that

|E|
3

dul
dt

= −φEl , l = 1, 2, 3 =⇒ UTEDE
dUE
dt

= −UTEΦE

with ΦE = [φE1 , φ
E
2 , φ

E
3 ]T . Dropping for clarity the sub and super-scripts E, we define

the local energy on an element as

E =
UTDU

2
, (4.35)

where we recall that in the last expression (and in the following ones) U = UE and
D = DE (and similarly for all the other quantities). Next, we note that

Φ = CU

with
Cii =

∑

j∈E
j 6=i

cEij , and Cij = −cEij ∀i, j = 1, 2, 3

The evolution of the local energy is then governed by

dE
dt

= −UT C + CT
2

U = −UTM U , (4.36)

where, trivially

MEh =
∑

E∈Th

M . (4.37)

We define a locally energy stable scheme as follows.
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4.2. Energy stability

Definition 4.2.5 (Locally Energy stable scheme - semi-discrete form). The
prototype scheme in semi-discrete form (4.1) is locally energy stable if the symmetric
matrix M is positive semi-definite, hence

dE
dt

= −UTM U ≤ 0 .

Due to (4.34) and (4.37), we have the following trivial proposition:

Proposition 4.2.6. Local energy stability implies energy stability.

Unfortunately, we are not able to characterize the local stability of a scheme. However,
we can construct a local criterion to check the global stability of the discretization.
First of all we note that the entries of the matrix M are

Mii =
∑

j∈E
j 6=i

cEij , Mij = −1

2

(
cEij + cEji

)
,

hence for schemes respecting the sub-element LED condition (4.5), M has all positive
diagonal elements and all non-positive off-diagonal terms. This can be used to prove
the following property.

Proposition 4.2.7 (Energy stability and sub-element LED - semi-discrete
case). A scheme of the form (4.1) verifying the sub-element LED condition (4.5) and
condition (4.32) is energy stable. Moreover, it is locally energy stable with respect to

the equivalent energy operator M
Eh

.

Proof. The first assertion is a consequence of the fact that schemes respecting the sub-
element LED condition are LED, hence they satisfy proposition 4.2.2. To obtain the
second assertion, we note that:

M
Eh

=
∑

E∈Th

M

with

M ii =
∑

j∈E
j 6=i

1

2

(
cEij + cEji

)
, M ij = −1

2

(
cEij + cEji

)
.

Due to the sub-element LED condition M defines a non-negative quadratic form. In
particular, the local energy balance reads

dE
dt

= −UTM U = −1

2

∑

i,j∈E

(ui − uj)
cEij + cEji

2
(ui − uj) ≤ 0 ∀E ∈ Th ,

showing that the local LED condition and the diagonal dominance condition (4.32)

imply the local stability of the scheme with respect to M
Eh

.
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Chapter 4. Prototype compact discrete approximation for steady advection

4.2.1 Fully discrete case

The analysis of the previous section has allowed to characterize the dissipative char-
acter of the spatial discretizations represented by the prototype (4.1). However, the
stability of the discretization has also to take into account the discretization of the time
derivative. For the schemes considered here, this can be done in a general way noting
that the θ−scheme (4.20) encompasses the explicit FE scheme (θ = 0), the implicit BE
scheme (θ = 1) and the CN scheme (θ = 1/2). We have the following result.

Proposition 4.2.8 (Discrete energy stability - θ−scheme). The family of schemes
represented by the θ−scheme (4.20) verify the following fully discrete energy balance

En+1
h = Enh −∆t

(
θUn+1 + (1 − θ)Un

)T
MEh

(
θUn+1 + (1 − θ)Un

)
− (2θ−1)ǫh (4.38)

with the discrete time energy production ǫh given by

ǫh =
1

2

(
Un+1 − Un

)T
D|Si|

(
Un+1 − Un

)
≥ 0 .

The time discretization has a stabilizing effect for θ > 1/2 and a destabilizing effect for
θ < 1/2. In particular, the explicit FE time discretization has the maximum energy
destabilizing character and the implicit BE scheme is the most stable. The CN scheme
is the only one preserving the dissipation properties of the spatial discretization. For
this reason the CN scheme is said to be energy conservative.

Proof. The proof reduces to showing that the balance (4.38) is true. The remaining
assertions are trivially verified by analyzing the sign of the additional term in the
balance, governed by the quantity 2θ − 1. The energy balance is easily obtained by
first noting that

θun+1
i + (1 − θ)uni =

un+1
i + uni

2
+ (2θ − 1)

un+1
i − uni

2
∀i ∈ Th

Upon multiplication of (4.20) by θun+1
i + (1 − θ)uni , and summing the expression thus

obtained to its transpose, we obtain the desired result.

Note that, as a consequence of the last proposition, while implicit schemes with θ > 1/2
might stabilize space discretizations which, by themselves, are not energy stable, the
use of the FE scheme (or in general of schemes with θ < 1/2) might spoil the energy
stability of the spatial discrete operator. These competitive effects can be controlled
by changing the magnitude of the time-step. For energy stable space discretizations,
one might then seek a limiting value of ∆t for the time discretization guaranteeing the
stability. This study, not undertaken here, can lead sometimes to time-steps constraints
for energy stability which are stricter than the ones proved to yield the L∞ stability
of the space discretization (see e.g. [171]).
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4.3. Stability: the inhomogeneous case

4.3 Stability: the inhomogeneous case

The analysis of the non-homogeneous case

∂u

∂t
+ ~a · ∇u = S(x, y) (4.39)

is considered here. In particular, we derive some L∞ bounds on the discrete solution,
while we give no discrete energy estimates for which one can refer for example to
[152, 30]. As in chapter 2, we assume that S(x, y) is uniformly bounded

sup
Ω

|S(x, y)| <∞ .

We will consider schemes that, when used to discretize (4.39), can be recast in the form

|Si|
dui
dt

= −
∑

E∈Di

φEi = −
∑

E∈Di

∑

j∈E
j 6=i

cEij(ui − uj) +
∑

E∈Di

∑

j∈E

|E|cSijSj , (4.40)

with Sj = S(xj , yj). The discretization of the source-term might be somehow de-
pendent on the discrete advective operator. Hence the cSij might depend on ~a. As a
consequence, we will not require that

∑

j∈E

cSij = 1 .

However, we do require some form of consistency of the discretization, without loss of
generality expressed by

Assumption (Local Consistency - inhomogeneous case). For a given scheme
of the form (4.40), it is possible to find a consistent approximation of the unknown
uh(x, y), or equivalently of the flux Fh(x, y) = (~au)h(x, y), and of the source term Sh,
such that ∀E ∈ Th ∑

j∈E

φEj =

∮

∂E

Fh · n̂E dl −
∫

E

Sh dx dy , (4.41)

with n̂E the unit normal to ∂E.

As a consequence we have that
∑

i∈E

βS
i = 1 with βS

i =
∑

j∈E

cSij ∀i ∈ E . (4.42)

Similarly to what has been done in the homogeneous case, we will write (4.40) in the
compact vector notation

D|Si|
dU

dt
= −CU + CSS ,

with C given by (4.29) and CS given by

CS
ij =

∑

E∈Di∩Dj

|E|cSij = |Si|c̃Sij , c̃Sij =
∑

E∈Di∩Dj

|E|
|Si|

cSij (4.43)
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4.3.1 L
∞ stability: inhomogeneous case

Uniform bounds on the numerical solution can be derived as in the homogeneous case
with respect to one space-time slab. In particular, we will show some simple results
relative to the fully discrete analog of (4.40) obtained with the θ−scheme. Using the
c̃Sij defined in (4.43), the scheme reads

|Si|(un+1
i − uni ) = −∆t

∑

E∈Di

∑

j∈E
j 6=i

cEij
(
θ(un+1

i − un+1
j ) + (1 − θ)(uni − unj )

)

+ ∆t
∑

j∈Di

|Si|c̃SijSj (4.44)

After introducing the quantities Simin and Simax defined by

Simin =
∑

j∈Di

c̃Sij min
j∈Di

Sj , Simax =
∑

j∈Di

c̃Sij max
j∈Di

Sj

and Smin and Smax defined by

Smin = min
i∈Th

Simin, Smax = max
i∈Th

Simax

we prove that

Proposition 4.3.1 (L∞ bounds inhomogeneous case - θ−scheme). The space-
time discrete analog of (4.39) in the time-slab [tn, tn+1] given by the θ−scheme (4.20)
respects the bounds

unmin + ∆tSmin ≤ un+1
i ≤ unmax + ∆tSmax , (4.45)

with unmin and unmax as in (4.22), if the scheme is LED, if ∀E ∈ Th one has

0 ≤ c̃Sij <∞ ∀ i, j ∈ E

and under the time-step constraint (4.24). The explicit FE scheme obtained for θ = 0,
also respects the local bounds:

ũni + ∆tSimin ≤ un+1
i ≤ Ũni + ∆tSimax , (4.46)

with ũni and Ũni as in proposition 4.1.3.

Proof. As in the homogeneous case, the scheme can be rewritten in the vector form

AUn+1 = BUn + ∆t CSS

with A and B as in (4.21) and CS as in (4.43). Due to the LED condition, to the
time-step constraint and to the positivity of the bounded c̃Sij coefficients, both B and
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4.3.1. L∞ stability: inhomogeneous case

CS contain positive entries. Using (4.21) and the definitions of Smin and of unmin, we
obtain the estimates

(BUn + ∆t CSS)i =
∑

j∈Di

Bijunj + ∆t
∑

j∈Di

|Si|c̃SijSj ≥
( ∑

j∈Di

Bij
)
unmin + ∆t

∑

j∈Di

|Si|c̃Sij sup
j∈Di

Sj =

|Si|(unmin + ∆tSimin) ≥ |Si|(unmin + ∆tSmin)

Denoting by Umin the array with entries all equal to unmin + ∆tSmin and proceeding as
in the proof of proposition 4.1.7, we note that

(BUn + ∆t CSS)i ≥ |Si|(unmin + ∆tSmin) = (BUmin)i = (AUmin)i

due to the form of the entries of the A matrix. As a consequence, we have shown
that (AUn+1)i ≥ (AUmin)i ∀i ∈ Th. Using the fact that the LED condition guarantees
that A−1 only contains positive entries (see proof of proposition 4.1.7), we get the left
inequality in (4.45). The right inequality is obtained using the definition of unmax and
Smax and proceeding in a similar way. In the explicit case, A is diagonal and we can
derive the sharper bound:

un+1
i =

(
1 − ∆t

|Si|
∑

j∈Di

j 6=i

c̃ij

)
uni +

∑

j∈Di

j 6=i

c̃iju
n
j + ∆t

∑

j∈Di

c̃SijSj ≥

ũni + ∆t
∑

j∈Di

c̃Sij min
j∈Di

Sj = ũni + ∆tSimin

The right inequality in (4.46) is obtained in a similar way.

Clearly, we also have that

Proposition 4.3.2. The space-time discrete analog of (4.39) in the time-slab [tn, tn+1]
given by the θ−scheme (4.20) respects the bounds (4.45), and in the explicit case the
local bounds (4.46), if the sub-element LED condition is satisfied, under the time-step
constraint (4.27), and if

cSij ≥ 0 ∀ i, j ∈ E and ∀E ∈ Th

Application of proposition 4.3.1 over several space-time slabs yields:

Theorem 4.3.3 (L∞−stability - inhomogeneous case). If the hypotheses of propo-
sition 4.3.1 hold in all time slabs [tn, tn+1], n = 0, . . . ,M − 1 then ∀tn = n∆t scheme
(4.44) verifies the L∞ stability bounds

min
j∈Th

u0
i + tn Smin ≤ uni ≤ max

j∈Th

u0
i + tn Smax ∀ i ∈ Th
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Note that, also in the non-homogeneous case, the stability bounds are independent on
the mesh size h. In fact, the regularity of the mesh (3.1) implies that we can find
positive constants c1 and c2, bounded uniformly with respect to h, such that

c1
∑

E∈Di∩Dj

cSij min
j∈Di

Sj ≤
∑

E∈Di∩Dj

|E|
|Si|

cSij min
j∈Di

Sj =
∑

j∈Di

c̃Sij min
j∈Di

Sj = Simin

and that

c2
∑

E∈Di∩Dj

cSij max
j∈Di

Sj ≥
∑

E∈Di∩Dj

|E|
|Si|

cSij max
j∈Di

Sj =
∑

j∈Di

c̃Sij max
j∈Di

Sj = Simax

Lastly, we add that the analysis can be easily extended to the case S = S(x, y, t).

4.4 Accuracy and Godunov’s theorem

In the previous sections conditions have been given for the consistency and the stability
of the prototype scheme (4.1). Here, we will briefly consider the issue of the accuracy of
the approximation obtained by such a scheme. In particular, we will recall conditions
under which the approximation is second-order accurate at steady-state and show that,
as written in (4.1), the scheme does not allow, in general, to obtain second-order of
accuracy in time dependent computations. A more general formulation will have to be
considered later to achieve this accuracy. The analysis follows largely [9, 3, 12] and is
clearly tailored for the RD schemes we will present in the next chapter. However, the
hypotheses we will do are also valid for FE schemes, and for FV schemes, if properly
recast according to the abstract representation (4.1).

4.4.1 The steady case

To characterize the accuracy of the approximation, we will consider how well the scheme
reproduces the weak formulation of the problem in correspondence of a smooth solution
[9, 3, 12]. In particular, we start considering scheme (4.1) at steady-state

∑

E∈Di

φEi = 0 ∀ i ∈ Th

and analyze the expression ∑

i∈Th

ϕi

( ∑

E∈Di

φEi

)
= 0

where ϕ is a smooth compactly supported function ϕ ∈ C1
0 (Ω), and ϕi = ϕ(xi, yi). We

denote by ϕh the continuous piecewise linear approximation of ϕ obtained with the
basis functions (3.6)

ϕh =
∑

i∈Th

ψi ϕi
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4.4.1. The steady case

We suppose now that for our numerical representation of the unknown, ∇ · Fh is well
defined on each E ∈ Th, as it is the case e.g. for F = ~a uh with uh the continuous
piecewise linear interpolation of the nodal values, and that Fh is continuous across
triangle edges, as in the Lax-Wendroff theorem. Introducing in each E ∈ Th the
quantity ϕ, given by the arithmetic average of the nodal values of ϕh in E, using the
local consistency assumption and the linearity of ϕh, we can write

0 =
∑

i∈Th

ϕi

( ∑

E∈Di

φEi

)
=
∑

E∈Th

∑

i∈E

ϕiφ
E
i =

∑

E∈Th

∑

i∈E

ϕφEi +
∑

E∈Th

∑

i∈E

(ϕi − ϕ)φEi =

∑

E∈Th

ϕ

∫

E

∇ · Fh dx dy +
∑

E∈Th

∑

i∈E

(ϕi − ϕ)φEi =

∑

E∈Th

∫

E

ϕh∇ · Fh dx dy +
∑

E∈Th

∑

i∈E

(ϕi − ϕ)φEi =

∫

Ω

ϕh∇ · Fh dx dy +
∑

E∈Th

∑

i∈E

(ϕi − ϕ)φEi

Last equation represents the modified equation of our schemes. To see this more clearly
we note that for a smooth classical solution of the problem, we can certainly rewrite
the last expression as

∫

Ω

ϕh∇ · (Fh −F) dx dy +
∑

E∈Th

∑

i∈E

(ϕi − ϕ)φEi = 0

which expresses the error between the approximate weak formulation of the problem
and the analytical one. Proceeding as in [9, 3], we note that for a second-order accurate
flux approximation Fh, and due to the uniform boundedness of ∇ϕh, we have

∫

Ω

ϕh∇ · (Fh −F) dx dy = −
∫

Ω

∇ϕh · (Fh −F) dx dy = O(h2)

Hence, if the flux approximation Fh is second-order accurate, a condition for the
method to be second-order accurate is given by

∑

E∈Th

∑

i∈E

(ϕi − ϕ)φEi =
∑

i∈Th

∑

E∈Di

(ϕi − ϕ)φEi = O(h2)

Since the number of nodes in an element is bounded while the number of nodes in a
bounded domain is of O(h−2), second-order of accuracy requires that

(ϕi − ϕ)φEi = O(h4)

in correspondence of regions containing a smooth solution. Moreover, since ϕ ∈ C1
0

|ϕi − ϕ| ≤ ‖∇ϕ‖L∞(Ω)h = O(h) (4.47)

As a consequence we are led to [9, 3]
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Chapter 4. Prototype compact discrete approximation for steady advection

Proposition 4.4.1. A scheme of the form (4.1) verifying the local consistency (4.3)
for a continuous second-order accurate approximation of the flux Fh, is second-order
accurate at steady-state if

φEi = O(h3) (4.48)

Strictly speaking, the developments of this section are only exact for constant advection.
However, proceeding in a similar way in the general case, on a smooth solution one
easily gets to

0 =
∑

E∈Th

ϕ

∫

E

∇ · Fh dx dy +
∑

E∈Th

∑

i∈E

(ϕi − ϕ)φEi =

∑

E∈Th

ϕ

∫

E

∇ · (Fh −F) dx dy +
∑

E∈Th

∑

i∈E

(ϕi − ϕ)φEi =

∑

E∈Th

∫

E

ϕh∇ · (Fh −F) dx dy +
∑

E∈Th

∑

i∈E

(ϕi − ϕ)φEi +

∑

E∈Th

∫

E

(ϕ− ϕh)∇ · (Fh −F) dx dy

The regularity of ϕ (equation (4.47)), and the fact that Fh is a second-order accurate
approximation to F , lead to

∫

E

(ϕ− ϕh)∇ · (Fh −F) dx dy = O(h)O
( ∮

∂E

(Fh −F) · n̂ dl
)

= O(h4)

Since the number of elements in Th is of order O(h−2), one ends up with

∑

E∈Th

∫

E

ϕh∇ · (Fh −F) dx dy +
∑

E∈Th

∑

i∈E

(ϕi − ϕ)φEi = O(h2)

which ultimately leads to the same result of proposition 4.4.1.

4.4.2 Steady inhomogeneous case

In the case S(x, y) 6= 0, we proceed as before. In particular, for a smooth classical
solution, we can write for scheme (4.40)

∑

E∈Th

∫

E

ϕh∇ · (Fh −F) dx dy −
∑

E∈Th

∫

E

ϕ(Sh − S) dx dy +
∑

E∈Th

∑

i∈E

(ϕi − ϕ)φEi = 0

We note now that, due to the uniform boundedness of ϕh and of ∇ϕh, one has

ϕ− ϕh =
∑

j∈E

ψj(ϕ− ϕj) = O(h)
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4.4.3. Time-dependent computations

Hence, for a second-order accurate approximation of the source term Sh, and consid-
ering that the number of elements in a bounded domain is of O(h−2), we can write

∑

E∈Th

∫

E

ϕ(Sh − S) dx dy =
∑

E∈Th

∫

E

ϕh(Sh − S) dx dy + O(h3)

So that, up to O(h3), we obtain the modified equation

∫

Ω

ϕh∇ · (Fh −F) dx dy −
∫

Ω

ϕh(Sh − S) dx dy +
∑

E∈Th

∑

i∈E

(ϕi − ϕ)φEi = 0

As in the homogeneous case, if Fh and Sh are second-order accurate then

∫

Ω

ϕh∇ · (Fh −F) dx dy −
∫

Ω

ϕh(Sh − S) dx dy =

−
∫

Ω

∇ϕh · (Fh − F) dx dy −
∫

Ω

ϕh(Sh − S) dx dy = O(h2)

which is more than the O(h3) approximation of the modified equation and shows that,
as before, the scheme will be second-order accurate if

∑

E∈Th

∑

i∈E

(ϕi − ϕ)φEi = O(h2)

The same arguments used in the homogeneous case lead to

Proposition 4.4.2. A scheme of the form (4.40) verifying the local consistency (4.42)
for a continuous second-order accurate approximation of the flux Fh and of the source
term Sh, is second-order accurate at steady-state if

φEi = O(h3) (4.49)

4.4.3 Time-dependent computations

The analysis of the inhomogeneous case allows to make a small digression concerning
the time-dependent case. The analysis of this case, reported for example in [118, 8],
is formally identical to the one of the steady homogeneous case and will be briefly
considered in a later chapter. Here, we want to show that, as written in (4.1), the
scheme cannot be second-order accurate during transients, due to a lack of spatial
accuracy. In order to do this, we proceed as in the inhomogeneous case and write:

∑

i∈Th

ϕi|Si|
dui
dt

+
∑

i∈Th

ϕi

( ∑

E∈Di

φEi

)
= 0
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Chapter 4. Prototype compact discrete approximation for steady advection

As before, we manipulate this expression to get

0 =
∑

i∈Th

ϕi|Si|
dui
dt

+
∑

i∈Th

ϕi

( ∑

E∈Di

φEi

)
=

∑

i∈Th

∑

E∈Di

ϕi
|E|
3

dui
dt

+
∑

i∈Th

ϕi

( ∑

E∈Di

φEi

)
=
∑

E∈Th

∑

i∈E

ϕi

( |E|
3

dui
dt

+ φEi

)
=

∑

E∈Th

ϕ
∑

i∈E

( |E|
3

dui
dt

+ φEi

)
+
∑

E∈Th

∑

i∈E

(ϕi − ϕ)

( |E|
3

dui
dt

+ φEi

)
=

∑

E∈Th

∫

E

ϕ

(
∂uh
∂t

+ ∇ · Fh
)
dx dy +

∑

E∈Th

∑

i∈E

(ϕi − ϕ)

( |E|
3

dui
dt

+ φEi

)

with uh the piecewise linear continuous interpolation of the nodal values ui (see equa-
tion (3.7)). If we assume that for a smooth classical solution of the problem u, given
the second-order accurate approximation uh, we also have1

∂(uh − u)

∂t
= O(h2)

then, as in the inhomogeneous case, we get (up to O(h3))

∫

Ω

ϕh

(
∂(uh − u)

∂t
+ ∇ · (Fh −F)

)
dx dy +

∑

E∈Th

∑

i∈E

(ϕi − ϕ)

( |E|
3

dui
dt

+ φEi

)
= 0

As before, this modified equation gives a condition for the second-order of accuracy of
the scheme. In particular, noting that

∫

Ω

ϕh

(
∂(uh − u)

∂t
+ ∇ · (Fh −F)

)
dx dy =

∫

Ω

ϕh
∂(uh − u)

∂t
dx dy −

∫

Ω

∇ϕh · (Fh −F) dx dy = O(h2)

then second-order of accuracy will be obtained if

∑

E∈Th

∑

i∈E

(ϕi − ϕ)

( |E|
3

dui
dt

+ φEi

)
= O(h2)

which, once more, leads to the condition

|E|
3

dui
dt

+ φEi = O(h3) .

However, unless the solution is changing very slowly in time, the first term in last
expression will be always of O(h2), hence

1it would perhaps be more correct to assume ∂(u − uh)/∂t = O(h2)f(t), however we keep the
O(h2) to simplify the presentation
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4.4.4. Linear schemes and Godunov’s theorem

Proposition 4.4.3. Given an unstructured discretization of the spatial domain Ω, a
scheme of the form (4.1) verifying the local consistency (4.3) for a continuous second-
order accurate approximation of the flux Fh, is first-order accurate in space in time-
dependent computations.

As it was mentioned in the introduction, there have been studies in literature aiming
at constructing schemes which apparently are exceptions to last proposition. With
the exception of one result published very recently in [62], these Lax-Wendroff type of
schemes have only shown second-order of accuracy on structured triangulations [90, 60].
As shown in [143] on structured grids a fortunate error cancellation occurs, leading to
a second-order discretization. As we will show later, a consistent construction leads to
the introduction of a mass matrix also for these schemes. Even though the analysis of
this section is not very rigorous, its final output has indeed a general (and well known)
character. Note also that the analysis only takes into account the accuracy in in space:
scheme (4.1) lacks spatial accuracy in the time-dependent case. Hence, high-order
time integration cannot cure this problem. Different forms of schemes will have to be
considered to be able to retain second-order of accuracy in unsteady computations.

4.4.4 Linear schemes and Godunov’s theorem

We end this chapter by recalling a result which is a generalization of Godunov’s theorem
[77] to the scheme analyzed in this chapter. First, we give the following definition

Definition 4.4.4 (Linear scheme). A scheme of the form (4.1) is said to be linear
if all the cEij are independent on the numerical solution.

Finally we have the following theorem [126, 9, 118].

Theorem 4.4.5. No linear scheme of the form (4.1) can be simultaneously positive
and second-order accurate.
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Chapter 4. Prototype compact discrete approximation for steady advection

4.5 Summary

We have introduced a prototype compact scheme for scalar advection and analyzed
under which conditions the scheme respects discrete analogs of the stability properties
of exact solutions. Conditions for achieving second-order of accuracy have been also
shown. The main results are summarized hereafter.

• The solution exhibits a discrete maximum principle, provided that the coeffi-
cients in the discretization verify a positivity condition, and under a time-step
restriction;

• The time-step restrictions also apply to implicit schemes, with the exception of
backward Euler time integration;

• The L∞ stability has been extended to inhomogeneous problems where the source
term does not depend on the solution;

• Positive schemes also respect some form of energy stability. However, when dis-
cretizing the time derivative, additional terms appear in the energy balance which
can stabilize or destabilize the schemes;

• Second-order accurate schemes for steady inhomogeneous problems can be con-
structed. A condition ensuring this level of accuracy has been given;

• The prototype scheme considered in this chapter cannot be second-order accurate
during transients. This is due to a lack of accuracy in space, hence high-order
time integration does not solve the problem;

• Linear schemes can either be L∞−stable or second-order accurate due to Go-
dunov’s theorem.

Once more we remark that, even though the prototype scheme presented fits perfectly
in the residual distribution framework considered in the thesis, a large number of FV
and FE schemes are included in this abstract model, as we will show in the next
chapter. This gives more generality to our analysis.
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Chapter 5

RD/FS schemes for steady
advection

In this chapter we finally introduce the schemes which are at the basis of our work:
the Residual Distribution (RD) or Fluctuation Splitting (FS) schemes. We start by
giving a precise definition of what a RD scheme is. It will be immediately clear that
(4.1) is indeed a prototype for these schemes, although a subtle difference in the role of
the consistency condition (4.3) exists. To show this, we give examples of FV and FE
schemes which, although constructed on completely different grounds, can be recast
into the RD formalism. Finally, we present the multidimensional upwind schemes at
the basis of this work. Throughout the presentation, we focus as much as possible
on geometrical aspects of the discretization, even though some theoretical issues are
covered as well. Illustrative computational examples are given at the end of the chapter
to experimentally visualize the differences between the schemes presented.

5.1 RD/FS: definition and generalities

We define here schemes for the numerical solution of the scalar advection equation

∂u

∂t
+ ~a · ∇u = S(x, y) on Ω × [0, tf ]

on an unstructured discretization of the spatial domain Ω. Note that in this chapter, as
in the following ones, we will make extensive use of the notation introduced in chapter
2, chapter 3 and chapter 4, to which the reader is referred for clarifications.

Given an initial solution u0(x, y), in this thesis we are interested in the following class
of discretizations
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Chapter 5. RD/FS schemes for steady advection

Definition 5.1.1 (Residual Distribution/Fluctuation Splitting scheme). A
Residual Distribution or Fluctuation Splitting scheme is defined as a scheme that,
given the continuous approximation of the initial solution u0

h as in equation (3.8),
given the continuous approximation of the unknown uh as in (3.7), and the continuous
approximation of the source term Sh (3.15), evolves in time the nodal values of uh as
follows

1. ∀E ∈ Th compute the residual or fluctuation

φh =

∫

E

(~a · ∇uh − Sh) dx dy =

∫

∂E

Fh · n̂ dl −
∫

E

Sh dx dy (5.1)

2. ∀E ∈ Th distribute fractions of φh to each node of E. Denoting by φi the split
residual or local nodal residual for node i ∈ E, by construction one must have

∑

j∈E

φj = φh (5.2)

Equivalently, denoting by βi the distribution coefficient of node i:

βi =
φi
φh

(5.3)

one must have by construction

∑

j∈E

βj = 1 (5.4)

3. ∀i ∈ Th assemble the elemental contributions from all E ∈ Di and evolve ui in
time according to (see equation (4.1))

|Si|
dui
dt

+
∑

E∈Di

φi = 0 (5.5)

Note that, to simplify the notation, in the previous definition the superscript E has
been removed from the local nodal residual φi. The element E of the mesh to which
this quantity refers is always clear from the context. It is evident that definition 5.1.1
would reduce to the prototype (4.1) unless the continuity of uh (and more generally
of the flux Fh = (~a u)h) and the consistency requirement (5.2) were not imposed
by construction. In other words, for these FS schemes the prototype (4.1) with the
consistency assumption (4.3) verified for a continuous numerical approximation of the
flux Fh (as required by the Lax-Wendroff theorem), is a natural generalization.

We give in the following sections an overview of the properties of RD schemes. Even
though references are given throughout the text, it is best for the interested reader to
consult the extensive bibliography given in chapter 1 for a comprehensive historical
overview, and for a relatively up-to-date list of papers describing the most recent
developments.

56



5.1.1. The residual

5.1.1 The residual

For this simple problem, it is possible to express the fluctuation φh in a closed form
allowing to give a first description of the potential of the RD approach. We start by
noting that, for the numerical approximation of the unknown uh given in (3.7), in each
element E ∈ Th the gradient of uh is constant and given by (see also equation (3.6))

∇uh|E =
∑

j∈E

uj
~nj

2|E| (5.6)

Hence, for a constant advection speed ~a, in the homogeneous case the residual can be
expressed using the kj parameters introduced in chapter 3 (equation (3.27)):

φh =
∑

j∈E

kj uj . (5.7)

Note that, due to their definition, the kj parameters can be used as sensors to dis-
tinguish between down-stream and up-stream nodes. In particular, kj > 0 only if ~a
is oriented as ~nj , hence only if node j is down-stream. For scalar advection, the case
~a = ~a(x, y) is treated similarly, using in the computations of the kj parameters the
average value

a =
1

|E|

∫

E

~a(x, y) dx dy (5.8)

For this reason, in the following we shall assume that ~a is constant over E, implicitly
assuming that the linearization (5.8) has been used in the general case.

Expression (5.7) can be recast in an interesting alternate form. In particular, using the
upwind parameters (3.27) and the identity (3.20), one has

φh =
∑

j∈E

k+
j uj +

∑

j∈E

k−j uj =
(∑

j∈E

k+
j

)(∑

j∈E

N k+
j uj +

∑

j∈E

N k−j uj

)

having introduced the quantity

N =
(∑

j∈E

k+
j

)−1

= −
(∑

j∈E

k−j

)−1

=
1

2

(∑

j∈E

|kj |
)−1

> 0 (5.9)

Defining the inflow and outflow states of element E

uin =

∑
j∈E

k−j uj

∑
j∈E

k−j
= −

∑

j∈E

N k−j uj and uout =
∑

j∈E

N k+
j uj (5.10)

the residual can be written as [129]

φh =
(∑

j∈E

k+
j

)
(uout − uin) . (5.11)

First of all, we note that uin and uout are a convex combination of the nodal values
{uj}j∈E , hence they are bounded by the minimum and maximum value of uh over E.
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Chapter 5. RD/FS schemes for steady advection

Proposition 5.1.2. The inflow/outflow state defined by equation (5.10) respects

min
j∈E

uj ≤ uin ≤ max
j∈E

uj (5.12)

min
j∈E

uj ≤ uout ≤ max
j∈E

uj (5.13)

A neat geometrical interpretation of (5.11) can be given by noting that the inflow and
outflow states represent the values of uh in the most upstream (resp. most downstream)
node of the E, with respect to the streamline cutting the triangle [129, 28]:

uout = uh(~xout), ~xout =
∑
j∈E

Nk+
j ~xj

uin = uh(~xin), ~xin = − ∑
j∈E

Nk−j ~xj

As a consequence, the residual (5.11) represents a onedimensional balance along ζ,
the streamline cutting the element. Clearly, this framework gives the basis, at least
in principle, for a truly multidimensional generalization of concepts derived from the
study of onedimensional advection. In particular, as depicted in figure 5.1, we can
distinguish two situations, depending on how ~a is oriented in E.

i

i

ζ

ζ

j

k
~a

~a

uin uk = uin

uj = uout

uout

Figure 5.1: Inflow and outflow state. One-target (left) and two-target element (right)

If ~a points in the direction of a single point of E, as in the left picture on the figure,
then this point coincides with the outflow point and is the only downstream point. In
this situation the element is said to be a one-target element. Conversely, if ~a points in
the direction of one of the edges of E, as in the right picture, then there is only one
upstream point coinciding with the inflow point. In this situation the element is said
to be a two-target element. If E is one-target, then there is a node j such that

kj = k+
j > 0, k−j = 0 and kl = k−l < 0, k+

l = 0 ∀l 6= j

Similarly, if E is two-target, then there is a node k such that

kk = k−k < 0, k+
k = 0 and kl = k+

l > 0, k−l = 0 ∀l 6= k

This distinction allows to build discretizations taking into account in a real multidi-
mensional way the propagation of the information described by the advection equation.
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5.1.2. A residual property: linearity preserving schemes

In the inhomogeneous case, using (3.15) one easily shows that

φh =
∑

j∈T

kj uj −
∑

j∈T

|E|
3

Sj . (5.14)

It might seem useful to manipulate this expression, using the information on the di-
rection of the advection speed, in order to distinguish between upstream nodes and
downstream nodes also for the source term. In practice this complication has not given
way to successful schemes [173], or not yet at least.

5.1.2 A residual property: linearity preserving schemes

Consider a steady homogeneous problem admitting a smooth exact solution u. If the
advection speed verifies ∇ · ~a = 0, the definition of the residual gives

φh =

∫

E

~a · ∇uh dx dy =

∫

E

∇ · (~auh) dx dy =

∫

E

∇ · (~auh − ~au) dx dy =

∮

∂E

(uh − u)~a · n̂ dl = O(h3)

since u is a smooth solution, |∂E| = O(h) and ~a is bounded. Similarly, for a non-
homogeneous problem admitting a smooth steady solution, the element residual reads

φh =

∫

E

(~a · ∇uh − Sh) dx dy =

∫

E

(∇ · (~auh) − Sh) dx dy =

∫

E

(∇ · (~auh − ~au) − (Sh − S)) dx dy =

∮

∂E

(uh − u)~a · n̂ dl −
∫

E

(Sh − S) dx dy = O(h3) + O(h4) = O(h3)

These estimates, combined with propositions 4.4.1 and 4.4.2, lead to the result that if
the distribution coefficients (5.3) are uniformly bounded with respect to the solution
and the data of the problem, then one has

φi = βiφ
h = O(h3)

hence the scheme is second-order accurate at steady-state [3, 9, 12]:

Definition 5.1.3 (Linearity Preserving scheme). A RD scheme is linearity pre-
serving (LP) if its distribution coefficients are uniformly bounded with respect to the
solution and the data of the problem:

max
E∈Th

max
j∈E

|βj | < C <∞ ∀ φh, uh, ~a, u0
h, . . .

Linearity preserving schemes are second-order accurate at steady-state by construction.
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Chapter 5. RD/FS schemes for steady advection

As shown in chapter 4, second-order of accuracy is obtained only at steady-state.
However, the idea of a distribution of the residual with bounded coefficients is at the
basis of the construction of all high-order RD schemes, since it allows to build accurate
discretizations just by properly defining the fluctuation φh. We recall that, due to
Godunov’s theorem, these schemes cannot be also positive, unless some nonlinearity is
introduced, that is, some dependence of the distribution coefficients on the solution.

5.2 Finite Volume schemes in FS formalism

After having precisely defined a RD scheme, we show that some discretization tech-
niques, constructed on completely different grounds, can be recast into a FS formalism,
justifying the introduction of the abstract model (4.1). In particular, we recall in this
section a well known equivalence between first-order finite volume schemes on the me-
dian dual cell [17, 19, 20, 23, 24, 25] and RD. The analysis follows [5, 6].
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Figure 5.2: FV scheme. Neighboring cells Si and Sj (left) and cell normals (right)

Consider then a piecewise constant numerical approximation u′h ∈ Sh, with

Sh = {u′h;u′h|Si
is constant ∀i ∈ Th} (5.15)

The FV semi-discrete counterpart of the scalar advection equation reads

|Si|
dui
dt

= −
∮

∂Si

Fh(u′h) · n dl = −
∑

lij∈∂Si

∫

lij

H(ui, uj) · nij dl

where H(u, v) is the FV numerical flux, lij is the portion of ∂Si separating Si from Sj
(see left picture on figure 5.2), and nij is the exterior unit normal to ∂Si on lij . We
are interested in first-order schemes for which last expression becomes

|Si|
dui
dt

= −
∑

lij∈∂Si

Hh(ui, uj) · ~nij

with the scaled exterior normal ~nij = |lij |nij , as in the right picture on figure 5.2.
With reference to this picture, we can easily recast the right hand side in last equation
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5.2. Finite Volume schemes in FS formalism

as a sum of contributions coming from elements in Di:

|Si|
dui
dt

= −
∑

E∈Di

∑

j∈E
j 6=i

H(ui, uj) · ~nij

This already shows that the scheme can be written with the abstract formalism of
(4.1). Moreover, thanks to the consistency property of the FV flux

H(u, u) = F(u) = ~au

we can add, in each element E, flux contributions coming from the portions of the
edges of E contained in Si, since they cancel identically when summing over all the
elements in Di (see right picture on figure 5.2):

∑

E∈Di

∑

j∈E
j 6=i

H(ui, ui) ·
~nj
2

= F(ui) ·
∑

E∈Di

∑

j∈E
j 6=i

~nj
2

= F(ui) ·
∑

E∈Di

~ni
2

= 0

hence

|Si|
dui
dt

= −
∑

E∈Di

∑

j∈E
j 6=i

(
H(ui, uj) · ~nij −H(ui, ui) ·

~nj
2

)

Moreover, due to the definition of the median dual cell, we also have (see figure 5.2)

∑

j∈E
j 6=i

~nj
2

= −~ni
2

=
∑

j∈E
j 6=i

~nij (5.16)

leading to

|Si|
dui
dt

= −
∑

E∈Di

∑

j∈E
j 6=i

(H(ui, uj) −H(ui, ui)) · ~nij

We consider now the family of flux functions defined as

H(ui, uj) =
F(ui) + F(uj)

2
· ~nij −

1

2
D(ui, uj)(uj − ui) (5.17)

with D(ui, uj) a dissipation matrix (e.g. Roe’s absolute value matrix [147]) satisfying
the symmetry condition D(ui, uj) = D(uj , ui). With this definition the FV scheme
can be written as

|Si|
dui
dt

=−
∑

E∈Di

φi = −1

2

∑

E∈Di

∑

j∈E
j 6=i

((F(uj) −F(ui)) · ~nij −D(ui, uj)(uj − ui)) (5.18)

In order for last expression to define a FS scheme, the φis must verify the consistency
condition (5.2), for a continuous approximation of the flux Fh. Hence, we compute

∑

i∈E

φi =
∑

i∈E

1

2

∑

j∈E
j 6=i

((F(uj) −F(ui)) · ~nij −D(ui, uj)(uj − ui)) =

∑

i∈E

1

2

∑

j∈E
j 6=i

(F(uj) −F(ui)) · ~nij
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Chapter 5. RD/FS schemes for steady advection

since the dissipation terms cancel mutually when summing over the nodes, thanks to
the symmetry of D(ui, uj). Finally, using the relation ~nij = −~nji and (5.16), one easily
shows that ∑

i∈E

φi =
∑

i∈E

1

2
F(ui) · ~ni

which, in the homogeneous case, corresponds to (5.1) integrated exactly for a continu-
ous piecewise linear approximation of the flux Fh. This shows that any finite volume
scheme operating on the median dual cells with numerical flux function of the type
(5.17) is equivalent to the RD scheme with the local nodal residuals (implicitly) de-
fined in (5.18), obtained with a continuous linear approximation of the flux. Note that
the analysis is general and can be extended to nonlinear problems and systems. More-
over, as shown in [5, 6], it applies to general FV numerical fluxes and not only to (5.18).
Surprisingly, starting from the piecewise constant FV approximation we have arrived
to a scheme based on a continuous flux approximation which, moreover, respects all the
hypotheses of the Lax-Wendroff theorem for the prototype scheme (4.1) (see chapter 4
and [5, 6]). Concerning this theorem, we also mention the early work of [133].

5.2.1 The upwind FV scheme: positivity and energy stability

For scalar advection, the most natural choice for H(u, v), is the upwind flux

H(ui, uj) =
F(ui) + F(uj)

2
· ~nij −

1

2

∣∣∣∣
∂F
∂u

· ~nij
∣∣∣∣
ij

(uj − ui)

which for this linear problem reduces to

H(ui, uj) = kij
(ui + uj)

2
− |kij |

2
(uj − ui), kij = ~a · ~nij (5.19)

Hence, the FV semi-discrete equation becomes

|Si|
dui
dt

= −
∑

E∈Di

φi = −
∑

E∈Di

∑

j∈E
j 6=i

(
kij

(uj − ui)

2
− |kij |

2
(uj − ui)

)

which finally leads to the upwind FV −RD scheme defined by the split residuals [129]

φFV−RD
i = −

∑

j∈E
j 6=i

k−ij(ui − uj) (5.20)

Scheme (5.20) is of the form (4.1) with cEij = −k−ij ≥ 0, hence it respects the sub-element
LED condition, hence it verifies propositions 4.1.3, 4.1.4, 4.1.7, 4.1.8 and 4.1.5, and
theorems 4.1.6 and 4.1.9, and the related stability bounds. In particular, the time-step
restriction for its positivity reads

∆t ≤ |Si|
(1 − θ)

∑
E∈Di

∑
j∈E
j 6=i

−k−ij
θ ∈ [0, 1). (5.21)
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5.2.1. The upwind FV scheme: positivity and energy stability

Similarly, its local positivity is constrained by

∆t ≤ |E|
3(1 − θ)

∑
j∈E
j 6=i

−k−ij
θ ∈ [0, 1), ∀i ∈ E ∀E ∈ Th. (5.22)

The upwind FV −RD scheme is unconditionally positive when backward Euler time-
integration is used in (5.5). For this scheme the distribution coefficients are not explic-
itly defined. Instead, they have to be computed as

βFV−RD
i =

φFV−RD
i

φh

Since βFV−RD
i is not guaranteed to be bounded as φh → 0, the scheme is not LP , in

accordance with Godunov’s theorem. However, we note that

∑

j∈E

(cEij − cEji) = −
∑

j∈E

(k−ij − k−ji) = −1

2

∑

j∈E

(kij − |kij | − kji + |kji|) =

− 1

2

∑

j∈E

(kij − |kij | + kij + |kij |) = −
∑

j∈E

kij = ki

since kij = −kji and making use of (5.16) and of the definitions of kij and ki, equations
(5.19) and (3.27) respectively.

Closed hull

Di

i

i

E1

E2

~n1

~n2

∂Ω

∂Ω

Figure 5.3: Closed hull around node i

Since the hull composed by the edges opposite to i is closed (see left picture on figure
5.3), then for constant scalar advection

∑

E∈Di

ki =
1

2
~a ·

∑

E∈Di

~ni = 0

which proves that the upwind FV − RD scheme respects the energy stability criteria
of propositions 4.2.2 and 4.2.7 and of proposition 4.2.8 in the fully discrete case. Note
that, with reference to the right picture on figure 5.3, for a boundary node i ∈ ∂Ω the
last sum is not zero but it is given by:

∑

E∈Di

ki = −1

2
~a · (~n1 + ~n2)
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Chapter 5. RD/FS schemes for steady advection

with the inward normals ~n1 and ~n2 scaled by the length of the edges. In particular,
one easily shows that, when included in the energy balance, these terms give a second-
order approximation of the energy flux across ∂Ω, so that the global energy estimate
becomes (see equation (4.31) and proposition 4.2.7)

dEh
dt

= −UTMEh
U − 1

2

∮

∂Ω

uh(~a · n̂)uh dl

with n̂ the exterior unit normal to ∂Ω and M
Eh

positive semi-definite. How to handle
the extra BCs terms will be shown in the next section.

5.3 Central schemes and FE

In this section we consider a second family of schemes which originally are not formu-
lated as FS schemes but that fall in the RD formalism. They are all variations of a
central scheme obtained by equi-distributing the residual to the nodes of an element. In
particular, we show that among these schemes, the LP ones are finite element schemes.

5.3.1 The central RD scheme and the Galerkin FE method

We consider first the Galerkin FE scheme. For steady constant advection, and neglect-
ing the BC terms, the scheme reads

∫

Ω

ψi~a · ∇uh dx dy = 0 ∀i ∈ Th (5.23)

where the ψis are the linear basis functions introduced in chapter 2, and the approx-
imation of the unknown uh is as in (3.7). In the case of a constant advection speed,
using the compactness of the support of the basis functions and (3.6), the Galerkin
scheme can be immediately recast as

∑

E∈Di

1

3
φh = 0 ∀i ∈ Th

which is nothing else but the steady-state discrete approximation of the advection
equation with the LP fluctuation splitting scheme with distribution coefficients

βC
i =

1

3
(5.24)

This centered RD scheme is then exactly equivalent to the FE Galerkin scheme, if the
advection speed ~a is constant.
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5.3.2. Petrov-Galerkin schemes in RD form

5.3.2 Petrov-Galerkin schemes in RD form

The Galerkin method is known to be unstable when approximating the advection equa-
tion. Consider then the stabilized Petrov-Galerkin (PG) schemes, obtained by adding
to the Galerkin discretization a so-called streamline dissipation term [72, 94, 97, 98,
96, 102, 103, 166]:

∫

Ω

ψi~a · ∇uh dx dy +
∑

E∈Th

∫

E

τ(~a · ∇ψi)(~a · ∇uh) dx dy

︸ ︷︷ ︸
PG streamline dissipation

= 0 ∀i ∈ Th (5.25)

In the case of a constant advection speed ~a, proceeding as before, we quickly arrive to

0 =
∑

E∈Di

1

3
φh +

∑

E∈Di

τ
ki

2|E|φ
h =

∑

E∈Di

φC
i +

∑

E∈Di

τ
ki

2|E|φ
h ∀i ∈ Th (5.26)

Which shows the equivalence of stabilized Petrov-Galerkin FE schemes with the class
of linearity preserving RD schemes defined by the distribution coefficients

βPG
i =

1

3
+ τ

ki
2|E| τ ≥ 0 (5.27)

Note that the schemes are indeed consistent thanks to relation (3.17). This analogy
is of course known for a long time (see for example [127, 39, 176, 129] and references
therein). We remark, however, that strictly speaking, the analogy is an equivalence
only in the constant coefficients case, while in general the RD scheme and the FE
schemes give different discrete equations, since the integrals in (5.25) no more reduce
to (5.26). Note also that the streamline dissipation terms, introduce some kind of
upwind bias in the distribution, since we have

βPG
i > βC

i if i is downstream, hence ki > 0

βPG
i < βC

i if i is upstream, hence ki < 0

The stabilization mechanism introduced by this upwind bias is better understood by
looking at the energy stability of the schemes. This will be also useful to gain more
understanding of the multidimensional upwind schemes we are going to introduce in
the next section, and also in view of the nonlinear analysis we will perform in the next
chapter.

5.3.2.1 PG schemes: energy stability

Being LP, the PG-RD schemes are not LED. However, they have well known energy
stability properties that we will recall here. To derive an energy estimate we start by
constructing the local energy production (4.36)

dEPG

dt
=
dEC

dt
− ǫPG = −

∑

i∈E

∑

j∈E

1

3
uikjuj −

∑

i∈E

∑

j∈E

ui
kiτkj
2|E| uj (5.28)
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Chapter 5. RD/FS schemes for steady advection

Due to the properties of the basis functions, if ~a is constant, one easily shows that

∑

i∈E

∑

j∈E

1

3
uikjuj =

∫

E

uh~a · ∇uh dx dy

Moreover, the second term can be written as

ǫPG =
1

2|E|



k1u1

k2u2

k3u3



T 

τ 0 0
0 τ 0
0 0 τ





k1u1

k2u2

k3u3


 ≥ 0 if τ ≥ 0 (5.29)

which shows that the upwind bias introduced by the streamline diffusion operator adds
a stabilizing dissipation mechanism1. Indeed, assembling the contributions of all the
elements in the mesh, the energy balance becomes (see also equation (4.31))

dEPG
h

dt
= −

∑

E∈Th

∫

E

uh~a · ∇uh dx dy −
∑

E∈Th

ǫPG = −
∫

Ω

uh~a · ∇uh dx dy − ǫPG
h (5.30)

with
ǫPG
h =

∑

E∈Th

ǫPG ≥ 0

This only shows that a dissipative mechanism is present, unless the boundary con-
ditions are taken into account. For simplicity, we suppose that homogeneous BCs
are prescribed. To be completely faithful to the FE formulation, the BCs should be
included in the variational formulation (5.25) using the admissibility condition [19]

min(~a · n̂, 0)u = (~a · n̂)−u = 0 on ∂Ω

with n̂ the unit exterior normal to ∂Ω. However, here we suppose that the BCs are
imposed in a strong nodal sense, such that

∮

∂Ω

uh(~a · n̂)−uh dl = 0 (5.31)

either because we impose uh = 02 or because (~a · n̂)− = 0. We then rewrite the energy
estimate (5.30) as

dEPG
h

dt
= −

∫

Ω

uh~a · ∇uh dx dy − ǫPG
h = −1

2

∮

∂Ω

uh(~a · n̂)uh dl − ǫPG
h =

− 1

2

∮

∂Ω

uh|~a · n̂|uh dl −
∮

∂Ω

uh(~a · n̂)−uh dl − ǫPG
h

where the identity ~a · n̂ = 2(~a · n̂)− + |~a · n̂| has been used. Finally, using the strong
BCs (5.31), we obtain the energy stability estimate

dEPG
h

dt
= −1

2

∮

∂Ω

uh|~a · n̂|uh dl − ǫPG
h ≤ 0 (5.32)

1hence the name...
2which we are allowed to do only if (~a · n̂)− 6= 0
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5.3.3. The Rusanov scheme

As already remarked, a faithful analysis would have included the boundary conditions
directly into the variational formulation. This, however, would have led precisely to
estimate (5.32) [19]. The most important point of the analysis is that it shows that
the total energy production can be split into the energy dissipation introduced by
the upwind biasing (ǫPG

h ) plus the energy production due to the centered discretization
terms. The latter is then simplified taking into account the boundary conditions, finally
obtaining an energy stability estimate. This observation will be useful in the analysis
of the stability of the multidimensional upwind schemes.

5.3.3 The Rusanov scheme

Among central RD schemes, there exists also a LED scheme known as the Rusanov’s
(Rv) scheme [9, 10], and defined by the split residuals

φRv
i =

1

3
φh +

1

3
α
∑

j∈E
j 6=i

(ui − uj), α ≥ max
j∈E

|kj | > 0 (5.33)

The Rv scheme is then obtained from the centered scheme by adding to it a stabilizing
term, as shown in the next sections.

5.3.3.1 Rv scheme: positivity and energy stability

We start by rewriting (5.33) as

φRv
i =

1

3

∑

j∈E

kjuj +
1

3
α
∑

j∈E
j 6=i

(ui − uj) =

− 1

3

∑

j∈E
j 6=i

kj(ui − uj) +
1

3
α
∑

j∈E
j 6=i

(ui − uj) =

1

3

∑

j∈E
j 6=i

(α − kj)(ui − uj)

where (3.17) has been used in the second equality. Last expression shows that Rv
scheme can be recast as in (4.1) with 3cEij = (α − kj) ≥ 0 by definition of α. As
a consequence, the scheme respects the sub-element LED condition, hence it verifies
propositions 4.1.3, 4.1.4, 4.1.7, 4.1.8 and 4.1.5, and theorems 4.1.6 and 4.1.9, and the
related stability bounds. In particular, the time-step restriction for its positivity reads

∆t ≤ 3|Si|
(1 − θ)

∑
E∈Di

∑
j∈E
j 6=i

(α− kj)
θ ∈ [0, 1). (5.34)
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Similarly, its local positivity is constrained by

∆t ≤ |E|
(1 − θ)

∑
j∈E
j 6=i

(α − kj)
θ ∈ [0, 1), ∀i ∈ E ∀E ∈ Th. (5.35)

The Rv scheme is unconditionally positive when backward Euler time-integration is
used in (5.5). As for the upwind FV −RD scheme, the distribution coefficients of the
Rv scheme are not guaranteed to be bounded, hence the scheme is not LP.

The energy stability of the Rv scheme can be easily shown noting that

dERv

dt
= −

∑

i∈E

∑

j∈E

1

3
uikjuj −

1

3

∑

i∈E

∑

j∈E

uiα(ui − uj) =
dEC

dt
− ǫRv (5.36)

with the dissipation term reading

ǫRv =
1

3



u1 − u2

u1 − u3

u2 − u3



T 

α 0 0
0 α 0
0 0 α





u1 − u2

u1 − u3

u2 − u3


 ≥ 0 if α ≥ 0 (5.37)

Proceeding as for the PG scheme, we obtain the energy estimate

dERv
h

dt
= −

∫

Ω

uh~a · ∇uh dx dy − ǫRv
h = −1

2

∮

∂Ω

uh(a · n̂)uh dl − ǫRv
h

with
ǫRv
h =

∑

E∈Th

ǫRv

Writing the boundary integral as

−1

2

∮

∂Ω

uh(a · n̂)uh dl = −1

2

∮

∂Ω

uh|a · n̂|uh dl −
∮

∂Ω

uh(a · n̂)−uh dl

and using the BCs (5.31), we finally obtain the energy stability estimate

dERv
h

dt
= −1

2

∮

∂Ω

uh|a · n̂|uh dl − ǫRv
h ≤ 0 (5.38)

While the streamline dissipation of the PG scheme (5.25) has a residual character, since
it is proportional to the residual through uniformly bounded coefficients, the dissipation
of the Rv scheme is not residual, and it has a completely isotropic character.

5.4 Multidimensional Upwind schemes

We finally introduce the schemes which are at the basis of the developments of the
thesis. They are built on ideas which are peculiar to the FS framework and can
hardly be incorporated in completely different set-ups. We consider here the so-called
multidimensional upwind schemes defined as follows.
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5.4. Multidimensional Upwind schemes

Definition 5.4.1. A FS scheme is multidimensional upwind (MU) if

(i) in a 1-target element E, if kj > 0 and ki, kk < 0, then: φj = φh and φi = φk = 0

(ii) in a 2-target element E, if kk < 0 and ki, kj > 0, then: φk = 0

Going back to the onedimensional analogy of figure 5.1, it is clear that MU schemes
reduce to 1D upwind schemes along the streamline cutting the triangle. In particular,
all the information contained in the fluctuation is sent downstream to the outflow point.
As a consequence, all MU schemes are equivalent in the one-target case, in which the
outflow point actually coincides with one of the points of the element. Conversely, in
the two-target case, the information has to be split between the two nodes downstream.
Clearly this is an important simplification from the point of view of the design of the
schemes, since different MU schemes are defined just by choosing different distribution
strategies in the two-target case. Moreover, the geometrical framework described in
figure 5.1 allows to perform this choice on the basis of heuristics making use of the
directional propagation of the information which characterizes exact solutions. There
is quite a number of possible choices one can make as shown in [129, 91, 148, 149]. Here
we will present and analyze in more detail two of these possibilities, which probably
have had the greatest success. However, before going into the details of the definition
of these two schemes, we recall the following simple result.

Proposition 5.4.2 (MU schemes, LED and LP property: 1-target case). In
a 1-target element, MU schemes are LP and respect the sub-element LED condition.

Proof. Let (1, 2, 3) be the nodes of the 1-target triangle E and suppose 1 is the only
downstream node: k1 > 0, k2, k3 < 0. Linearity preservation is shown by

β1 = 1, β2 = β3 = 0

which are clearly uniformly bounded. The local LED condition can be shown by noting
that φ2 = φ3 = 0 while, due to (3.17) (see also (5.5) and (4.1))

φ1 = φh = −k2(u1 − u2) − k3(u1 − u3) = cE12(u1 − u2) + cE13(u1 − u3)

with cE12 and cE13 positive by hypothesis.

Note that last proposition is not in contradiction with Godunov’s theorem, since the
LED property (hence positivity) and the sub-element LED property (hence local pos-
itivity) would require the positivity of the coefficients in all the elements of the mesh,
which obviously are not all 1-target. Similarly, LP schemes must have bounded coef-
ficients in all E ∈ Th. Only one (or none) of the two properties (LED or LP) can be
retained in the two-target case.
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5.4.1 The LDA scheme

The LDA (Low Diffusion A) is the most successful linear linearity preserving MU
scheme. It is defined by the following distribution coefficients:

βLDA
i = k+

i N = k+
i

(∑

j∈E

k+
j

)−1

≥ 0 . (5.39)

In the homogeneous case, (5.11) gives for the local nodal residuals

φLDA
i = βLDA

i φh = k+
i (uout − uin) (5.40)

It is clearly LP , since βLDA
i remains bounded independently on φh, which implies

φi = O(h3). One can also easily check that it does not respect the LED condition
[129]. In the 2-target case, the LDA scheme admits a simple geometrical interpretation
[129, 91, 148]. With reference to figure 5.4, we define the sub-triangles T423 and T143.
Simple trigonometry shows that

|T423| =
l34k1

‖~a‖ , |T143| =
l34k2

‖~a‖ and |E| = |T423| + |T143| =
l34(k1 + k2)

‖~a‖

As a consequence, the distribution coefficients of the two downstream nodes 1 and 2
can be written as the area ratios

βLDA
1 =

k1

k1 + k2
=

|T423|
|E| , βLDA

2 =
k2

k1 + k2
=

|T143|
|E|

The closer the outflow point is to node 1, the closer |T423| is to |E| and |T143| to zero.
Hence, the 1-target distribution is reached continuously with respect to the orientation
of ~a. This geometrical representation extends to the inhomogeneous case, in which the
definition of the scheme remains unchanged but the residual is given by (5.14).

1

2

T143

T423

l34

~a

3 ≡ in

4 ≡ out

Figure 5.4: Geometry of FS schemes. LDA in the 2-target case
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5.4.1. The LDA scheme

5.4.1.1 LDA scheme: energy stability

Consistently with Godunov’s theorem, the scheme does not respect any of the positivity
(or LED) criteria discussed in chapter 4. The energy analysis of the scheme does not
lead to a clear proof of stability [9, 4], however, it reveals an interesting form of the
energy balance of the LDA scheme in the homogeneous case. In particular, if (1, 2, 3)
are the nodes of element E, using the definition of φLDA

i and expressions (5.7) and
(5.11), we can writhe the local energy balance (4.36) as follows

dELDA

dt
= −

(
UT (CLDAU) + (CLDAU)TU

)
= −uout

(∑

j∈E

k+
j

)
(uout − uin)

with U = [u1, u2, u3]T and (CLDA)ij = βLDA
i kj . Simple manipulations lead to the more

convenient expression

dELDA

dt
= −1

2

centered scheme︷ ︸︸ ︷
(uout + uin)

(∑

j∈E

k+
j

)
(uout − uin)

− 1

2

≥0︷ ︸︸ ︷
(uout − uin)

(∑

j∈E

k+
j

)
(uout − uin)

= − (uout + uin)

2

(∑

j∈E

k+
j

)
(uout − uin) − ǫLDA (5.41)

As for the PG and the Rv scheme, the energy balance reveals that the energy produc-
tion of the LDA scheme can be split into a stabilizing term related to the dissipative
mechanism of the multidimensional upwinding plus a centered term. However, in this
case the central discretization acts along the streamline which renders the analysis less
clear. Denoting by ζE the segment of streamline joining uin and uout and by ζ the
stream-aligned coordinate running from uin to uout, we have that

(uout + uin)

2

(∑

j∈E

k+
j

)
(uout − uin) =

∫

ζE

uha
∗ ∂uh
∂ζ

dζ, a∗ =
∑

j∈E

k+
j

so that, assembling the contributions from all the elements of the mesh, we get

dELDA
h

dt
= −

∑

E∈Th

∫

ζE

uha
∗ ∂uh
∂ζ

dζ − ǫLDA
h (5.42)

with
ǫLDA
h =

∑

E∈Th

ǫLDA ≥ 0

The energy balance (5.42) shows clearly the analogy with the same expression for the
PG scheme (5.30). However, in this case it is not clear at all how the first term could
be reduced to a boundary integral, so that the BCs can be introduced into the analysis,
eventually leading to an energy stability proof. Lastly, we remark that, as for the PG
scheme, the dissipation term of the LDA scheme also has a residual character, due to
the fact that the LDA scheme is LP .
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5.4.2 The N scheme

The N (Narrow) scheme is definitely the most successful first-order scheme designed for
the solution of the advection equation. Firstly proposed by Roe [148], it has been since
then the basis for the construction of LP nonlinear positive discretizations. Moreover,
thanks to its MU character it has the lowest numerical dissipation among first-order
schemes (see e.g. [126, 176]). It is defined by the following local nodal residuals:

φN
i = k+

i (ui − uin) . (5.43)

Being MU , the N scheme differs from the LDA scheme only in the 2-target case, in
which it admits a simple geometrical representation. With reference to figure 5.5, we
introduce the vectors ~a1 and ~a2, parallel to the edges 31 and 32 respectively, such that
~a1 + ~a2 = ~a. Simple algebra shows that

φh(~a) =

∫

E

~a · ∇uh dx dy = φh(~a1) + φh(~a2) = k1(u1 − u3) + k2(u2 − u3)

which immediately gives for the N scheme

φN
1 = k1(u1 − u3) = φh(~a1), φN

2 = k2(u2 − u3) = φh(~a2)

In the 2-target case, the scheme reduces to first-order upwinding along the edges of the
element meeting in the inflow point. As the FV−RD and Rv schemes, the distribution
coefficients of the N scheme can be unbounded as φh → 0, hence the scheme is not LP.

1

2

~a

~a2

~a1

3 ≡ in

out

Figure 5.5: Geometry of FS schemes. N in the 2-target case
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5.4.2. The N scheme

5.4.2.1 N scheme: positivity and energy stability

The N scheme can be easily checked to respect the local LED condition:

φN
i = k+

i ui +
∑

j∈E

k+
i Nk

−
j uj = −

∑

j∈E

k+
i Nk

−
j ui +

∑

j∈E

k+
i Nk

−
j uj =

−
∑

j∈E
j 6=i

k+
i Nk

−
j (ui − uj) =

∑

j∈E
j 6=i

cEij(ui − uj)

with cEij = −k+
i Nk

−
j ≥ 0. Hence, the N scheme verifies propositions 4.1.3, 4.1.4, 4.1.7,

4.1.8 and 4.1.5, and theorems 4.1.6 and 4.1.9, and the related stability bounds. In
particular, the time-step restriction for its positivity reads

∆t ≤ |Si|
(1 − θ)

∑
E∈Di

k+
i

θ ∈ [0, 1). (5.44)

Similarly, its local positivity is constrained by

∆t ≤ |E|
3(1 − θ)k+

i

θ ∈ [0, 1), ∀i ∈ E|ki > 0, ∀E ∈ Th. (5.45)

These constraints can be shown to be larger than the corresponding ones of the upwind
FV −RD scheme and of the Rv scheme [126, 129] (equations (5.21)-(5.22) and (5.34)-
(5.35) respectively). The N scheme is unconditionally positive when backward Euler
time-integration is used in (5.5). In addition to this, we note that
∑

j∈E
j 6=i

(cEij − cEji) = −
∑

j∈E
j 6=i

(k+
i Nk

−
j − k+

j Nk
−
i ) = −

∑

j∈E

(k+
i Nk

−
j − k+

j Nk
−
i ) = k+

i + k−i = ki

which, as in the case of the upwind FV−RD scheme cancels identically when summed
over the elements of Di, in the case of constant advection. As a consequence the scheme
respects the energy stability criteria of propositions 4.2.2 and 4.2.7 and proposition 4.2.8
in the fully discrete case. In particular, it can be easily shown that the equivalent local
matrix energy operator of the N scheme is given by (see proposition 4.2.7 and [4, 18, 9])

M
N

=
1

2



k1

k2

k3


N



k1

k2

k3



T

+

1

2



k+
1 0 0
0 k+

2 0
0 0 k+

3


− 1

2



k+
1

k+
2

k+
3


N



k+
1

k+
2

k+
3



T

+

1

2




−k−1 0 0
0 −k−2 0
0 0 −k−3


− 1

2




−k−1
−k−2
−k−3


N




−k−1
−k−2
−k−3



T

(5.46)

Boundary terms can be included in the analysis as in the case of the FV −RD scheme
and treated as done for the Galerkin and SUPG schemes.
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5.4.3 Relations between the N and LDA schemes: dissipation

Before discussing nonlinear FS discretizations, we will elaborate on the relations be-
tween the N and the LDA schemes in the 2-target case. The results presented here
will be very useful later in this chapter and also in the following ones. Moreover, they
lead us to a formulation of the N scheme which will be used in the inhomogeneous case
and will be very important in the case of nonlinear CLs. In particular, we want to
show that in the 2-target case, the N scheme can be written as the LDA scheme plus
an anisotropic dissipation term. To do this, we make the following observation. The
definition of the inflow state (5.10) is such that, for the N scheme, one has automatically

φh =
∑

j∈E

φN
j

However, as an exercise we can try to reverse things and, given the residual φh, compute
uin by requiring the satisfaction of the RD consistency constraint (5.2). In formulas:

∑

j∈E

k+
j (uj − uin) = φh =⇒ uin = N

(∑

j∈E

k+
j uj − φh

)
. (5.47)

Clearly, if φh is given by (5.7), using the relation kj = k+
j + k−j , we get back (5.10).

However, we can obtain additional information by using (5.47) in (5.43):

φN
i = k+

i (ui − uin) = k+
i ui − k+

i

=uout︷ ︸︸ ︷∑

j∈E

Nk+
j uj +

=φLDA
i︷ ︸︸ ︷

k+
i Nφ

h

and finally
φN
i = φLDA

i + dN
i , dN

i = k+
i (ui − uout) (5.48)

Clearly, the term dN
i is such that the local LED condition is verified, as shown in the

previous section. Moreover, the definition of uout ensures that
∑

j∈E

dN
j = 0 (5.49)

We can say more about this term if we write the local energy balance of the N scheme.
Denoting by (1, 2, 3) the nodes of the element, we define the vector dN = [dN

1 , d
N
2 , d

N
3 ]T

given by:

dN = DNU, DN =



k+
1 0 0
0 k+

2 0
0 0 k+

3


−



k+
1

k+
2

k+
3


N



k+
1

k+
2

k+
3



T

(5.50)

The matrix DN is clearly symmetric. Moreover, it is also positive semi-definite, as
shown by the fact that

ǫN = UTDNU = (u1 − u2)k+
1 Nk

+
2 (u1 − u2) + (5.51)

(u1 − u3)k+
1 Nk

+
3 (u1 − u3) +

(u2 − u3)k+
2 Nk

+
3 (u2 − u3) ≥ 0
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5.4.4. An N scheme for inhomogeneous advection

Last equation shows that the additional term dN
i is indeed a dissipation term, in par-

ticular that the N scheme is more dissipative than the LDA scheme [3, 9]. In formulas
(see equations (4.36),(5.41) and (5.48)):

dEN

dt
=
dELDA

dt
− ǫN ≤ dELDA

dt
. (5.52)

Note that the dissipation terms dN
i do not have a residual character and are quite

anisotropic, acting essentially in the cross-wind direction.

5.4.4 An N scheme for inhomogeneous advection

The analysis of the last section gives a possible extension of the N scheme to the
case S(x, y) 6= 0. In particular, just by requiring the N scheme to be formally given by
(5.43) also in the inhomogeneous case, and requiring that the RD consistency condition
(5.2) is verified with respect to the complete element residual (5.14), we obtain again
equation (5.48). However, now the term φLDA

i also contains the terms coming from the
integral of S. Isolating these terms, we obtain

φN
i = k+

i (ui − uin) − βLDA
i

∑

j∈E

|E|
3

Sj (5.53)

Finally, our construction has led us back to the N scheme proposed in [151, 160] for
non-homogeneous advection, given precisely by (5.53). It respects by construction the
consistency conditions (4.42) with

βS
i = βLDA

i

Moreover, it can be recast as in (4.40) with

cSij = βLDA
i

|E|
3

≥ 0 .

The positivity of these coefficients implies that the scheme verifies the hypotheses of
propositions 4.3.1 and 4.3.2, and of theorem 4.3.3 and the related stability bounds.
Note that the geometrical interpretation given for the LDA scheme also applies to this
N scheme, as far as the distribution of the integral of the source term is concerned.

5.5 Nonlinear schemes

Nonlinear schemes are needed to combine linearity preservation and LED, as stated by
theorem 4.4.5. The interest in FS discretizations is largely due to the incredible success
of the nonlinear PSI scheme of Struijs [165]. For steady scalar advection, in fact, the PSI
scheme has been proved to be incredibly more accurate than second-order FV schemes
on irregular grids [165, 126, 129, 151, 160, 10, 9]. Its appeal is even greater considering
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Chapter 5. RD/FS schemes for steady advection

the fact that it is completely parameter free, thus better than FE schemes with shock-
capturing terms [126, 129, 39]. The problem is that, when dealing with inhomogeneous
or time-dependent problems and, more importantly, systems of conservation laws, the
extension of the PSI scheme is unclear. This has led to a large number of techniques to
design nonlinear FS schemes for which we refer to the discussion and to the references
presented in chapter 1. Here we discuss two of these approaches: the local blending
of a linear LP scheme with a linear LED one, and the nonlinear limiting of a LED
scheme into a LP one. We mainly consider discretizations which use as linear LED
scheme the N scheme, even though some comments are given on the use of Rv scheme
for this purpose.

5.5.1 Blended schemes

The local blending of a linear LP scheme with a linear LED scheme is one of the
techniques more diffused in literature. The blending has to be nonlinear in order to
be able to combine LED and linearity preservation. Given a LP scheme defined by
the split residuals φLP

i , and a linear first-order scheme verifying the sub-element LED
condition, defined by the local nodal residuals φLED

i , a blended scheme is defined by

φi = (1 − Θ(uh))φLP
i + Θ(uh)φLED

i (5.54)

where Θ(uh) is a blending parameter, depending on the local structure of the numerical
solution, which must ensure that φi = O(h3) in regions where uh is smooth, at the same
time ensuring in some way that the LED character of the first-order scheme prevails
across discontinuities. Even though the idea is quite simple, the design of Θ is not
trivial at all. As anticipated, here we mainly consider the case φLP

i = φLDA
i and

φLED
i = φN

i , which is the one mostly used in published works on RD (see [3, 155, 154,
55, 57, 86, 87] and references therein). In this case, the blending approach has an
interesting interpretation. In particular, using (5.48) we can write that

φi = (1 − Θ(uh))φLDA
i + Θ(uh)φN

i = (1 − Θ(uh))φLDA
i + Θ(uh)φLDA

i + Θ(uh)dN
i

leading finally to

φi = φLDA
i + Θ(uh)dN

i (5.55)

Hence, blending the LDA and the N scheme is equivalent to adding to the LDA scheme
a nonlinear dissipation term, proportional to the anisotropic extra dissipation of the
N scheme (5.48). This is of course analog to what is done in FE and, as in this case,
presents the degree of freedom of the definition of the nonlinear dissipation, in the RD
case of Θ(uh). Often, defining Θ in a very rigorous way, such that LED and linearity
preservation are analytically proved, might not be extremely important in practice.
This is shown by the fact that the heuristic definition of the blending parameter of
Deconinck and collaborators [55, 154, 155, 57]

Θ(uh) =
|φh|∑

j∈E
|φN
j |

∈ [0, 1] (5.56)
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5.5.2. The PSI scheme: limited nonlinear schemes

has given very good results in several fields of application [154, 87, 86, 9, 48, 52]. Note
that as defined in (5.56), Θ only guarantees that φi = O(h3) in smooth regions, but
there is no guarantee that the LED condition is verified, even for linear scalar advection.
A rigorous study of this problem is found in [3, 9]. In particular, in the reference it
is also shown that the PSI scheme of Struijs can be rewritten as a blended LDA/N
scheme, for a particular choice of Θ(uh).

5.5.1.1 Blended schemes and energy stability

When blending the LDA and the N scheme, the energy stability analysis benefits from
the analysis of the LDA scheme. With the notation of equation (5.42), the energy
balance is easily shown to be

dEh
dt

= −
∑

E∈Th

∫

ζE

uha
∗ ∂uh
∂ζ

dζ − ǫLDA
h −

∑

E∈Th

Θ ǫN (5.57)

with ǫN given by (5.51). As for the LDA scheme, it is not clear how to treat the first
term in the balance. A stable scheme could be obtained by blending the Rv scheme
(5.33) with the PG scheme (5.26), giving the local nodal residual:

φi = (1 − Θ)φPG
i + ΘφRv

i = φC
i + (1 − Θ)τ

ki
2|E| + ΘdRv

i

Using (5.32) and (5.38), the energy balance for this scheme reads

dEh
dt

= −1

2

∮

∂Ω

uh|~a · n̂|uh dl −
∑

E∈Th

(1 − Θ) ǫPG −
∑

E∈Th

Θ ǫRv ≤ 0

as long as Θ ∈ [0, 1]. Note however, that Θ normally is close to 1 only in correspondence
of discontinuities, so that this blended scheme fits really into the FE framework:

φi = central + energy stabilization + shock capturing

A construction more faithful to the FS philosophy will be described in the next section.

5.5.2 The PSI scheme: limited nonlinear schemes

As already said, the nonlinear PSI scheme of Struijs is the most successful RD scheme
ever designed. Its success is a consequence of the LED character of the scheme, together
with its linearity preservation, compactness and with the fact that it is completely
parameter free. Several generalizations of the scheme exist for scalar advection (see e.g.
[129]). However, the most general formulation is obtained introducing the framework
of the so-called limited schemes [129, 126, 9, 10, 12]. Consider a first-order linear FS
scheme, with split residuals φLED

i , verifying the sub-element LED condition. Suppose
then to have a continuous nonlinear mapping ϕ(x0, x1, x2, x3) : R

4 7→ R
3 such that

ϕ(x0, x1, x2, x3) = x0(y1, y2, y3) (5.58)
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with

xj =0 =⇒ yj = 0 ∀j = 1, 2, 3 (5.59)

xj(x0yj) ≥ 0 ∀j = 1, 2, 3 (5.60)

|yj| < ∞ ∀j = 1, 2, 3 (5.61)

y1 + y2 + y3 = 1 (5.62)

A limited FS scheme is obtained as

(φ1, φ2, φ3) = ϕ(φh, φLED
1 , φLED

2 , φLED
3 ) (5.63)

The properties of such a scheme are determined by those of the mapping. In particular,
(5.62) guarantees that the scheme verifies the consistency condition (5.2). Property
(5.61), together with (5.58), and with the continuity of the mapping, guarantees that
the scheme is LP . Moreover, conditions (5.59) and (5.60) guarantee that, if φh 6= 0,
then if φLED

j = 0 also φj = 0, otherwise one has

φj = x0yj =
x0yj
xj

xj = αjxj = αjφ
LED
j with αj =

x0yj
xj

≥ 0

hence, the resulting scheme also verifies the sub-element LED condition. There are
quite a number of constructions leading to functions ϕ verifying (5.58)-(5.62). A review
can be found in [9, 10, 12, 118]. In particular, starting from the N scheme, one obtains
the PSI scheme of Struijs with the choice

ϕ(x0, x1, x2, x3) =
x0∑

j=1,3

(x0xj)+
(
(x0x1)+, (x0x2)+, (x0x3)+

)
(5.64)

This formulation of the PSI scheme is known since long and it has been used to con-
struct limited LP nonlinear variants of the upwind FV −RD scheme (5.20) already in
[129, 126]. However, only lately this more general framework has emerged as a way of
constructing nonlinear schemes for time-dependent problems and systems [10]. In this
thesis, we make use of nonlinear schemes obtained applying (5.64) to the N scheme,
and the resulting scheme will be referred to as the limited N scheme. However, as
we will see, depending on the application, the definition of φN

i and of φh will change.
We also remark that (5.64) can be recast in the simpler form. In particular, for the
distribution coefficients of the limited scheme one can write

βi =
max(0, βN

i )∑
j=1,3

max(0, βN
j )
, βN

j =
φN
j

φh
(5.65)

which is how the limited N scheme is normally presented in literature [129, 126, 10, 12].
Compared to the blending approach, the nonlinear mapping has the advantage of re-
quiring only the evaluation of the local nodal residuals of the linear LED scheme.
Generally, mapping (5.64) works quite well in a large number of cases. The results of
this thesis confirm this quality. On very hard computations often the limited schemes
work quite well where the blended schemes fail [50, 9, 10]. However, it must be also
remarked that this mapping is known since a very long time and that improved con-
structions, leading to schemes significantly different from the ones obtained with (5.64)
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5.5.2. The PSI scheme: limited nonlinear schemes

still have to appear. It is expected that the study and the understanding of these non-
linear mappings might be one of the most important subjects of future research in
the FS community. Here we will give some conditions for the well-posedness of the
procedure, which where already underlined in [142, 141]. Finally, we discuss the issue
of the energy stability of these schemes, which, for the time being, seems to represent
the weak point of the whole construction.

5.5.2.1 Well-posedness of the mapping

We recall here the conditions for the well-posedness of the limiting procedure, as pre-
sented in [142, 141]. The construction discussed in the previous section seems to be
quite flexible, in the sense that, once a linear LED scheme is available and fed to the
mapping, one obtains a LED and LP scheme. The only important property of the
linear scheme is, from this point of view, the sign of its split residuals. Actually this
is not quite accurate. As we are going to show, the linear LED scheme has to satisfy
more conditions for the mapping to work. After discussing these conditions, we will
also give examples of schemes proposed in literature which try to violate them.

Consider then a linear first-order scheme respecting the sub-element LED condition.
Denote by φLED

i its local nodal residuals. Starting from this scheme, we want to find a
nonlinear mapping satisfying properties (5.58)-(5.62) and use it to construct a nonlinear
LP scheme which also respects the sub-element LED condition. Due to (5.58), we can
study the case φh 6= 0 since if φh = 0 we know that all the φis are zero for the nonlinear
scheme. Next we assume that

∑

j∈E

φLED
j = φ1 (5.66)

with φ1 not necessarily equal to φh. Even though for the scalar advection equation
considered in this chapter this seems unlikely to happen, in general this is possible.
Even in the simple case of pure advection, an example of such a situation is given by
the FV scheme (5.18) in the case ~a = ~a(x, y). In fact, if ∇ · ~a = 0, the finite volume
scheme gives

φ1 =

∮

∂E

Fh · n̂ dl =

∮

∂E

(~a(x, y)u)h · n̂ dl

with a continuous piecewise linear approximation of the flux Fh, which does not nec-
essarily lead to (5.7) obtained by using the exact average of ~a(x, y) (equation (5.8)).

To derive conditions for the well-posedness of the limiting we recall here the properties
that the mapping has to satisfy. Since φh 6= 0 we can introduce the quantities

βLED
j =

φLED
j

φh
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We then rewrite (5.58)-(5.62) as follows:

ϕ(φh, φLED
1 , φLED

2 , φLED
3 ) = φh(β1, β2, β3) (lp0)

|βj | <∞ ∀j = 1, 2, 3 (lp1)

φLED
j = 0 ⇒ βj = 0 ∀j = 1, 2, 3 (p0)

βLED
j βj ≥ 0 ∀j = 1, 2, 3 (p1)

β1 + β2 + β3 = 1 (c)

where, conditions (lp0)-(lp1) guarantee that the nonlinear scheme is LP , (c) is the
consistency condition and (p0) and (p1) guaranteeing the local LED condition for the
nonlinear scheme. Note that (p1) is obtained by dividing (5.60) by (φh)2 > 0. We
now observe that, since condition (c) requires the sum of the nonlinear distribution
coefficients to be equal to 1, we must have at least one βj > 0. To have this, due
to the positivity conditions (p0)-(p1), we must have at least one linear distributions
coefficient βLED

j > 0. However, due to (5.66), these coefficients satisfy

∑

j∈E

βLED
j =

∑

j∈E

φLED
j

φh
=

∑
j∈E

φLED
j

φh
=
φ1

φh
= γ

If γ > 0, then at least on of the βLED
j s must be greater than zero. This ensures that

the consistency condition (c) can be satisfied. Conversely, if γ ≤ 0, we are likely to
encounter the unfortunate situation in which

βLED
j ≤ 0 ∀j ∈ E

In this case, we will not be able to satisfy (c), unless the positivity conditions (p0)-(p1)
are relaxed. This proves that

Proposition 5.5.1 (Well-posedness of the mapping - sufficient condition).
Given a linear scheme satisfying the sub-element LED condition, a condition to con-
struct a well-posed nonlinear mapping satisfying properties (5.58)-(5.62) is that

φh
∑

j∈E

φLED
j > 0 (5.67)

Clearly, we also have the (trivial) corollary

Corollary 5.5.2 (Well-posedness of the mapping). Given a linear scheme satis-
fying the sub-element LED condition, a sufficient condition to construct a well-posed
nonlinear mapping satisfying properties (5.58)-(5.62) is that

∑

j∈E

φLED
j = φh (5.68)
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While one can ensure that the necessary condition holds, simply by requiring the
linear LED scheme to respect the RD consistency condition, the sufficient condition
of proposition 5.5.2 is in general impossible to ensure and can only be checked during
the simulation. Note also that we made no assumptions on the sign of the mapped
distribution coefficients βj . All the constructions presented in [10, 9, 118, 12] instead
assume that βj ≥ 0, which makes our analysis even more important.

5.5.2.2 Well-posed mappings: a counterexample

We give an example showing the importance of the analysis. In particular, we consider
the schemes proposed in [12] for the solution of the advection equation. In the reference,
the authors introduce a framework that allows to extend the accuracy of FS schemes
to more than second-order. This is achieved by introducing piecewise quadratic and
cubic approximations of the unknown, instead of the piecewise linear (3.7).

1

2

2

3 4

4

5

6

6

φ246

φ246
4

φ246
2

φ246
6

P 2 element with
P 1 sub-triangulation

Figure 5.6: P2 element (left) and sub-element distribution (right)

Without going into too much detail, consider the case of a parabolic interpolation of
the unknown, obtained by adding in each triangle of the mesh, the mid-points of the
edges of the element as unknowns (see figure 5.6). In this way, one obtains a mesh
of P 2 elements over which uh can be expressed as in (3.7), except that now the basis
functions ψi are parabolas. To obtain their schemes, in [12] the authors introduce
a sub-triangulation of these 6-nodes elements as shown in figure 5.6. On each sub-
triangle, the residual φh is computed according to (5.1) (with S = 0), using the local
parabolic representation of uh to have the increased accuracy. As before, one can show
that third-order schemes can be obtained by distributing φh with bounded coefficients.
In order to also have a LED-type scheme, they use the limiting technique described
in these pages. Let us consider, for example, what happens in the sub-triangle E246

depicted on the right on figure 5.6. The local residual of this sub-element is [12]

∫

E246

~a · ∇uh dx dy =

6∑

j=1

∫

E246

~a · ∇ψjuj dx dy
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Hence, due to the parabolic interpolation φ246 cannot by written using an expression
similar to (5.7), involving only nodes 2, 4 and 6. As a consequence, one does not
know how to design on E246 a scheme similar to the N scheme (5.43), respecting the
sufficient condition (5.68). The authors have instead applied the limiting to the first-
order N scheme constructed on E246 as if the unknown would vary linearly between
the local values (u2, u4, u6). This case, then, fits precisely into the analysis made here.
In particular, using (5.43) and (5.7), we have

φN,246
2 + φN,246

4 + φN,246
6 = k246

2 u2 + k246
2 u2 + k246

4 u4 + k246
6 u6 = φ1

where the k246
j parameters are computed using the local geometry of E246, and with

φ1 6= φ246 in general, since φ1 corresponds to (5.1) computed with a local linear in-
terpolation, while φ246 is obtained using the parabolic interpolation over the 6-nodes
element. In particular, the authors of [12] apply to this local N scheme the mapping
of the PSI given by (5.65). The analysis performed here shows that, Since the neces-
sary condition (5.67) cannot be ensured a priory and since (5.67) does not hold, the
nonlinear scheme obtained in this way cannot satisfy the consistency condition (c) (or
equivalently (5.62)) and the LED condition (p1) (or equivalently (5.60)) at the same
time, everywhere on the mesh. Indeed, the authors remark that the higher accuracy
could not be observed unless (5.65) was modified as follows:

βi =
max(0, βN

i ) + ǫ∑
j

max(0, βN
j ) + 3ǫ

with ǫ a small number set to 10−10 in their calculations. This agrees perfectly with
our analysis. Going back to the sub-triangle E246, we can observe that: if φ1φ246 ≤ 0
with φN,246

j φ246 ≤ 0 ∀j = 2, 4, 6, application of (5.65) leads to β246
j = 0 ∀j = 2, 4, 6

for the nonlinear scheme, even if both φ246 and φ1 are non-zero. This introduces an
inconsistency in the scheme eventually spoiling its convergence with mesh refinement.
Conversely, applying the modified formula, the nonlinear scheme reduces in this case
to the central one which is consistent, however it is not LED. Hence, consistency has
been recovered but only relaxing the LED conditions, as predicted by our analysis.
This shows that, the extension of the limiting technique to more complex situations
needs a better understanding of the properties of the mappings.

5.5.2.3 Limited schemes and energy stability

Energy stability seems to be a weak point of the limited schemes. Their inherent
complexity makes a general analytical study very hard. To our knowledge, the only
existing result on the topic is due to Barth [18], and it is not a positive result. In the
reference, the PSI scheme of Struijs is analyzed in the simplest case: constant scalar
advection. In this case, the analysis is quite simple and will be briefly recalled hereafter.
Suppose to be in a 2-target element E. Let 1 and 2 be the downstream nodes. Hence,
k1, k2 > 0 and k3 < 0. Suppose also that φh > 0. The PSI scheme is obtained by
applying (5.65) to the N scheme (5.43). Obviously, since φN

i + φN
2 = φh, two things

can happen. Either both φN
i and φN

2 are positive, in which case one easily shown that

82



5.5.2. The PSI scheme: limited nonlinear schemes

(5.65) gives back the N scheme, or one of the N scheme local residuals is negative.
Suppose, for example, that φN

2 < 0. In this case, the limiting will send all the residual
to node 1. We can then look at the local energy production of the PSI scheme (4.36).
One easily shows that:

dEPSI

dt
= −1

2



u1

u2

u3



T 


2k1 k2 k3

k2 0 0
k3 0 0





u1

u2

u3




Using the energy equivalence lemma 4.2.3, we can study the energy of the equivalent
operator:

dEPSI

dt
= −1

2



u1

u2

u3



T 


2k1 k2 k3

k2 0 0
k3 0 0





u1

u2

u3


+

1

2



u1

u2

u3



T 

k1 0 0
0 k2 0
0 0 k3





u1

u2

u3




which gives

dEPSI

dt
= −1

2



u1

u2

u3



T 

k1 k2 k3

k2 −k2 0
k3 0 −k3





u1

u2

u3




Recall that for constant scalar advection the terms added vanishes identically when
assembling the contributions of all the elements. Straightforward calculations lead to

2
dEPSI

dt
= −k1(u1 − u3)2 − k2

(
(u1 − u3)2 − (u1 − u2)2

)

which shows that the scheme is stable if one of the following conditions is verified

1. [Necessary condition] k1(u1 − u3)2 + k2

(
(u1 − u3)2 − (u1 − u2)2

)
> 0

2. [Sufficient condition] |u1 − u3| > |u1 − u2|

Note that the relations φN
1 φ

h > 0, φN
2 φ

h < 0, and φh > 0, assumed by hypothesis,
are not enough to guarantee neither the sufficient nor the necessary condition for the
stability of the scheme [18]. Hence, when the limiting is reducing the number of nodes
to which the residual is distributed, sources of energy instability might be introduced.
As remarked in [18], this problem seems not to spoil the stability of the scheme in the
scalar case, in which the scheme shows no problems of convergence toward the steady-
state. A partial explanation of this can be that, for scalar problems, the PSI scheme
is equivalent to the blended scheme of [3], which has been shown to respect the energy
balance (5.57). Although (5.57) is not a real stability estimate, it shows that there is
indeed a dissipation mechanism which is associated to the upwinding. This analysis is
partially confirmed by the fact that the limited scheme obtained by applying (5.65) to
the Rv scheme (5.33) converges very poorly to steady-state, as shown in [10, 9, 118].
Since Rusanov’s scheme is not upwind, it is most of the times a 3-target scheme, in the
sense that it distributes the residual to all three nodes of the element. In this case, it
is more likely that the limiting will compress the distribution to two or even only one
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Chapter 5. RD/FS schemes for steady advection

node, probably introducing a destabilizing mechanism similar to the one seen for the
PSI scheme. This feature seems to be particularly important for systems.

We remark that in this respect nonlinear limited RD schemes are substantially different
from stabilized Galerkin FE schemes with nonlinear shock-capturing (SC). Indeed,
these SC terms have by construction a dissipative character. Hence, the energy stability
of the resulting schemes is quite clear, as the analysis of [19] shows. Nevertheless,
the L∞−stable character of nonlinear FE schemes in presence of discontinuities is
only recovered globally, thanks to the regularization of the solution introduced by
the additional nonlinear dissipation [166]. Conversely, nonlinear limited RD schemes
are constructed by imposing their local positivity. This guarantees the preservation
of the local monotonicity of the solution. However, a dissipative character can only
be achieved if the overall discretization maintains a marked upwind character. The
RD nonlinear limiting and the FE nonlinear SC are then two completely different
approaches to stabilize discontinuities. The first has a strong L∞ flavor, while the
second relies on a very strong L2 stabilization due to dissipation.

5.6 Illustrative examples

We show in this section some sample numerical results illustrating experimentally the
properties of some of the scheme presented. In particular, we will consider the solution
of the steady limit of the rotational advection equation

∂u

∂t
+ (y, 1 − x) · ∇u = S(x, y) on [0, 1] × [0, 1] ⊂ R

2

We present results on a homogeneous problem and on a non-homogeneous one. In
both cases, we discretize the spatial domain [0, 1] × [0, 1] with an irregular triangular
mesh (see figure 3.1) and use explicit FE Euler time-stepping (equation (4.6)) to march
toward the steady-state. Local time-stepping has been used, computing the time-step
as (see equations (4.9) and (5.44))

∆ti = 0.9
|Si|∑

E∈Di

k+
i

∀i ∈ Th

We discuss the results obtained with the LDA scheme (5.39), with the N scheme (5.48)
and with the limited variant of the N scheme obtained with mapping (5.65), which we
refer to as the LN scheme.

5.6.1 Rotational advection: homogeneous case

We consider the homogeneous advection of the inlet profile given by

u(x, y = 0) = u0(x)





cos2(π(x − 0.3)/0.4) if 0.1 ≤ x ≤ 0.5
1 if 0.7 ≤ x ≤ 0.9
0 otherwise
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5.6.2. Rotational advection with a source term

The spatial domain is discretized with an irregular grid with reference element size
h = 1/50. The exact solution can be computed with the method of characteristics (see
§2.1) and can be easily seen to be given by

u = u(r, θ) = u0(r) ∀θ with





r =
√

(x− 1)2 + y2

x = 1 − r cos θ
y = r sin θ

The computation is started setting as initial solution u = 0 everywhere, except on
the lower boundary y = 0, where the exact solution is imposed. We plot on the left
on figure 5.7 the convergence histories of the L1 norm of the spatial residual for the
N, LDA and LN scheme. All the schemes converge quickly to steady-state. On the
right in the same figure we compare the profile of the numerical solutions at the outlet
boundary x = 1 with the exact one: the LDA scheme reproduces perfectly the smooth
part of the solution while giving oscillations in correspondence of the discontinuity;
the N scheme reproduces poorly both parts of the solution, however it does not shown
any sign of oscillations; the limited N scheme gives both a good approximation of the
smooth profile and a sharp and monotone discontinuity.
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Figure 5.7: Homogeneous advection. Left: convergence histories. Right: solution at
outlet boundary x = 1. Solid line: exact. Solid line with triangles: LDA scheme.
Squares: N scheme. Dashed line with black circles: LN scheme

5.6.2 Rotational advection with a source term

We discuss here a more interesting case involving a discontinuous source term

S(x, y) =

{
10 if r ≤ 0.25
0 otherwise

, r =
√

(x− 0.5)2 + (y − 0.3)2

On the inflow boundary y = 0 we set the solution to

u(x, y = 0) = u0(x)

{
−5 if 0.3 ≤ x ≤ 0.8
0 otherwise
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Chapter 5. RD/FS schemes for steady advection

The exact solution, computed using the method of characteristics, has a somewhat
complex structure. due to the interaction of the inlet profile with the source term. For
this reason, an irregular grid with h = 1/100 has been used in the computations. A
contour plot of the exact solution on the mesh is reported on the left in figure 5.8. The
computations have been started by setting as initial solution u = 0 everywhere, except
on the inflow boundary. The convergence histories of the LDA, N and LN scheme are
reported on the right on figure 5.8. No convergence problems are encountered. The
solution obtained with the LDA scheme is reported on figure 5.9. On the left picture we
see the contour plot of the unknown u. The general structure of the solution is correct,
however we clearly see the formation of numerical oscillations, as a consequence of
the non-LED character of the scheme. On the right picture we compare the solution
profile at x = 1 with the exact one. As before, while smooth regions of the solution are
very well reproduced, in correspondence of sharp fronts spurious oscillations appear.
We then report, on figure 5.10, the solution obtained with the N scheme. As in the
homogeneous case, this scheme gives a quite poor reproduction of the structure of the
exact solution. Sharp fronts are smeared over quite a few cells. However, the N scheme
gives a monotone approximation of the unknown also in vicinity of discontinuities.
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Figure 5.8: Non-homogeneous advection: exact solution (left) and convergence (right)
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5.6.2. Rotational advection with a source term

These observations are confirmed by looking at the right picture on figure 5.10, where
the numerical solution at x = 1 is compared with the exact one: the smooth region is
poorly resolved and jumps are smeared over several cells. Nevertheless, no oscillations
whatsoever are present in the results, confirming the theoretical analysis.
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Figure 5.9: Non-homogeneous advection: LDA scheme. Left: contour plot of the
solution. Right: solution at the outlet boundary x = 1
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Figure 5.10: Non-homogeneous advection: N scheme. Left: contour plot of the solution.
Right: solution at the outlet boundary x = 1

At last we report, in figure 5.11, the results obtained with the limited N scheme. From
the contour plot on the left picture we can see that the scheme gives a smooth and
accurate reproduction of the exact solution, without any sign of numerical oscillations.
The distribution of u at the outflow boundary x = 1 confirm this. Discontinuities are
kept quite sharp and absolutely no oscillations can be seen. The smooth regions are
well reproduced, perhaps not as well as with the LDA scheme, but this is a price we can
pay to gain the satisfaction of the discrete maximum principle. Overall, the solution is
quite accurate and clean.
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Figure 5.11: Non-homogeneous advection: LN scheme. Left: contour plot of the solu-
tion. Right: solution at the outlet boundary x = 1

5.7 Summary

This chapter has finally considered the definition of schemes for the solution of the
advection equation. After defining in a general way what we intend for a FS scheme,
an overview has been given of several particular ways of deriving the discrete equations.
The main results of the chapter can be summarized as follows.

• A less abstract solution procedure for the advection equation has been given. The
schemes considered all fit into the abstract framework of (4.1). In particular, we
have shown that not only FS schemes can be modeled by this prototype but also
first-order FV schemes on the median dual cell and FE schemes;

• The definition of a RD scheme has allowed to define a particular type of second-
order discretizations: the linearity preserving schemes. This concept will be
always at the basis of the construction of high-order FS schemes;

• An overview of schemes has been given showing how, in practice, the theoretical
properties discussed in chapter 4 are checked for each of them;

• The concept of multidimensional upwinding has been introduced. Examples of
MU schemes have been given: the LDA and the N scheme;

• Manipulating the local energy balance of MU schemes we have shown that the
multidimensional upwinding indeed introduces a dissipation mechanism. How-
ever, even though we are able to write the energy balance in a way formally
similar to what is done for PG finite element schemes with streamline dissipa-
tion, the non-conventional character of the MU dissipation mechanism does not
allow to derive a precise stability estimate;

• The relations between the LDA and N schemes, in terms of their dissipative
character, have been underlined;

88



5.7. Summary

• The construction of nonlinear schemes has been analyzed. Blended schemes and
limited schemes have been considered.

• The construction of limited nonlinear schemes has been studied, showing that for
its well-posedness the underlying linear positive scheme must satisfy some local
consistency with the element residual;

• The issue of the energy stability of nonlinear RD schemes has been reviewed.
The analysis of the stability of the limited schemes shows that sources of energy
instability can be introduced by the mapping procedure. However, we have also
shown that the MU character of these schemes, and of the blended schemes
as well, introduces a dissipative mechanism that, for scalar problems, seems to
dominate. Hence, upwinding is one of the keys to stability;

• Illustrative computational examples have been given, confirming the theoretical
analysis of this chapter and of chapter 4, both in the case of homogeneous and
inhomogeneous advection.
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Chapter 6

Nonlinear scalar conservation
laws: CRD schemes

This chapter is devoted to the extension of the FS schemes presented in chapter 5 to
the solution of the steady limit of scalar nonlinear conservation laws of the type:

∂u

∂t
+ ∇ · F(u) = 0 on Ω ⊂ R

2 (6.1)

As seen in chapter 2, the solution of such a nonlinear problem has to be defined in a weak
sense, due to the fact that, even if the initial and boundary data are smooth, nonlinear
conservation laws evolve discontinuous solutions in a finite time. We will start with
a motivational example to explain how this translates into a design criterion for the
numerical schemes. This example will allow to introduce the concept of a conservative
discretization. The first half of the chapter is then devoted to the presentation and
the analysis of RD schemes for nonlinear conservation laws which satisfy this criterion.
The second half of the chapter instead considers the stability of the conservative FS
scheme presented, with respect to their dissipative character which is related, for a
nonlinear conservation law, to the satisfaction of a discrete entropy inequality.

6.1 Conservative and non-conservative schemes

As a motivational example, consider the solution of (6.1) with the exponential flux

F(u) = (eu, u) .
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Chapter 6. Nonlinear scalar conservation laws: CRD schemes

In particular, consider the case in which Ω = [−0.025, 1.2]× [0, 0.5] with BCs:

u(x, y = 0) =

{
sin(2πx) if 0 ≤ x ≤ 1
0 otherwise

u(−0.025, y) = 0

(6.2)

On a fine unstructured discretization of Ω (h = 1/200), we computed a reference steady
solution of this problem with a nonlinear scheme we will describe in the following
sections. A contour plot of this solution is reported in figure 6.1.
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Figure 6.1: Nonlinear CL with exponential flux. Contours of the reference solution

From the plot, we see that, even if the boundary data are continuous, with piecewise
continuous derivatives, the solution contains a shock which develops at a finite and
relatively small distance from the lower boundary, where the smooth data are imposed.
Suppose now that we are going to solve this problem with one of the RD schemes
presented in chapter 5. For example we might want to use the limited N scheme,
in order to achieve a monotone capturing of the shock. To do this, we have to be
able to apply the N scheme (5.43) and then use mapping (5.65). Equation (6.1) is
formally different from the advection equation, however, we can write it in a similar
form, introducing the Jacobian of the flux ~a(u):

∂u

∂t
+ ~a(u) · ∇u = 0, ~a(u) =

∂F(u)

∂u
= (eu, 1)

This equation could be treated as an advection equation with varying advection speed.
As observed in §5.1.1, we can locally average this speed and then apply the schemes, as
they have been described in chapter 5. In the generic element E of the mesh, suppose
then to average the speed as

a =
1

3

∑

j∈E

~a(uj)

which is a second-order accurate approximation of (5.8). After having locally linearized
the problem, we can apply the FS schemes described in the previous chapter, comput-
ing the element residual as (5.7) and then distributing it using the limited N scheme.
Since we are not using the conservative form of the problem in the discretization but
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6.1. Conservative and non-conservative schemes

its quasi-linear form, we refer to this scheme as to the non-conservative LN scheme,
or LN-NC scheme. The contour plot of the steady solution obtained in this way is
reported on the left in figure 6.2. The result looks indeed very similar to the reference
solution. However, a closer inspection will reveal that some important differences are
present. In particular, on the right in figure 6.2, we have reported a close up of the
shock in correspondence of the upper boundary.
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Figure 6.2: Nonlinear CL with exponential flux. Contour plot of the solution obtained
with the non-conservative LN scheme (left). Wrong shock angle (right)

Next to the result obtained with the non-conservative LN scheme, we have plotted a
line indicating the position and the angle of the shock in the reference solution. Even
though the same mesh has been used to compute these results, the LN-NC scheme
seems to mispredict these features. This is confirmed if one looks at the profile of u
along the boundary y = 0.5. In particular, on figure 6.3 we compare with the reference
the distribution of the unknown along this line, computed with the LN-NC scheme on
a coarser mesh (h = 0.015) and on the fine mesh (h = 1/200). We clearly see that the
LN-NC scheme consistently gives a wrong result.
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Figure 6.3: Nonlinear CL with exponential flux : conservation error. Solution at y = 0.5
obtained with the LN-NC scheme on the coarse mesh (left) and on the fine mesh (right)
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To understand the reason of this inconsistency, we have to recall the characterization
of solutions to nonlinear conservation laws given in §2.2.2. There, we considered weak
solutions which are piecewise smooth and separated by a discontinuity across which the
local Rankine-Hugoniot jump conditions (2.18) are respected. As remarked in §2.2.2,
these conditions enforce across a discontinuity the conservation of the unknown. The
solution of our motivational example fits perfectly into this characterization. Since
the problems seems to arise in correspondence of the discontinuity, we have a good
hint that the non-conservative LN scheme behaves differently from the scheme used
to compute the reference solution, with respect to the approximation of the Rankine-
Hugoniot conditions. In particular, we know that across the discontinuity, the relevant
form of the equation is the conservation law form. Hence, a proper definition of the
element residual would take this into account, in formula

φCL =

∫

E

∇ · F(uh) dx dy =

∮

∂E

F(uh) · n̂ dl

where the super-script CL indicates that the residual is computed integrating the con-
servation law form (or divergence form) of the equation. What we have done is to
linearize the problem and use the linearity of uh, as follows

φNC =

∫

E

∇ · F(uh) dx dy =

∫

E

~a(uh) · ∇uh dx dy =



∫

E

~a(uh) dx dy


 · ∇uh|E ≈

inexact !︷ ︸︸ ︷
|E|
3

∑

j∈E

~a(uj) ∇uh|E 6= φCL

We see that, since the linearization we introduced for ~a is inexact, we spoil the equiv-
alence between the divergence form of the equation and its quasi-linear form. Hence,
we do not approximate correctly the Rankine-Hugoniot conditions across the shock,
thus obtaining a wrong result. The expression non-conservative scheme will then be
used to refer to a scheme which is not capable of reproducing conditions (2.18) at the
discrete level, rather then to a scheme built on the quasi-linear form of the equation.

6.2 Conservative RD formulations: CRD and QRD

We start with the following definition

Definition 6.2.1 (Conservative RD scheme). A RD scheme is conservative if
there exist a continuous approximation of the flux Fh such that

φh =

∮

∂E

Fh · n̂ dl (6.3)

This definition ensures that, across a stationary discontinuity, the steady limit of (2.18)
is consistently reproduced by the element residual. In [5, 6] it is proved that under
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6.2.1. The QRD formulation

assumptions of continuity of the split residuals and of the flux Fh, conservative RD
schemes respect a Lax-Wendroff theorem. The non-conservative LN scheme does not
verify definition 6.2.1, due to the introduction of the approximate Jacobian lineariza-
tion. Hence, it does not respect the Lax-Wendroff theorem and, as a consequence, it
converges to a wrong solution, as seen from the example.

Unfortunately, we have arrived to a problem of incompatibility between the use of the
CL form of the equation, needed to guarantee the approximation of the correct weak
solution, and the use the flux Jacobians, needed in the definition of the kj parameters
used in the distribution of the residual. This incompatibility is particularly important if
we want to make use of the limited N scheme. In this case, in fact, on one hand we need
to be able to use the N scheme which, as originally formulated (see equations (5.43)
and (5.11) or (5.7)), is largely based on the use of the quasi-linear form of the problem.
It might be argued that a conservative nonlinear scheme could be constructed starting
from a non-conservative N scheme. This would be the case if the element residual φh

was computed in a conservative way, e.g. using contour integration of the fluxes, while
the N scheme local nodal residuals were computed using an inexact linearization of
the quasi-linear form. This case, however, would fall into the analysis of §5.5.2.1 and
§5.5.2.2. In particular, the limiting procedure would not be well posed. Hence, we
need to satisfy the conservation requirements and the conditions for the well-posedness
of the limiting procedure (equations (5.67) and (5.68)). To cope with this issue, two
solutions have been proposed which we present in the following subsections.

6.2.1 The QRD formulation

The analysis of the non-conservative scheme used to solve our motivational example
leads to an idea which has been used in [4] to construct a class of FS schemes based
on the use of the quasi-linear form of the equation but guaranteeing a correct approx-
imation of weak solutions of the nonlinear problem. To describe this approach, using
the local regularity of F(uh), we start by rewriting the element residual φh as

φh =

∮

∂E

F(uh) · n̂ dl =

∫

E

∇ · F(uh) dx dy =

∫

E

~a(uh) · ∇uh dx dy =



∫

E

~a(uh) dx dy


 · ∇uh|E = |E|ã · ∇uh|E =

∑

j∈E

k̃juj

where now, we suppose that

ã =
1

|E|

∫

E

~a(uh) dx dy

is computed exactly. These schemes fit into the framework of definition 6.2.1 with
Fh = F(uh), and uh piecewise linear, as in (3.7). This means that conservative RD
schemes can be built if an exact mean-value linearization of the Jacobian is used.
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The derivation of such a linearization can be difficult and in the case of a system of
conservation laws almost impossible. This has motivated the authors of [4] to introduce
an approximate mean-value linearization obtained with the Gaussian integration

a = |E|
NQ∑

l=1

ωl~a(u(xl, yl)), (xl, yl) ∈ E (6.4)

where ωl is the quadrature weight corresponding to the l-th Gaussian point (xl, yl). As
a consequence, the local residual can be expressed as

φh =
∑

j∈E

kjuj =

∫

E

∇ · F(uh) dx dy + RNQ (6.5)

with RNQ the conservation error due to the approximate integration of ~a(uh). The
properties of the Gaussian integration, namely the behavior of the quadrature error,
allows the authors of [4] to prove that

(a) provided that the number of quadrature points NQ is large enough, the con-
servation error due to the approximate integration is strictly smaller than the
discretization error of the schemes;

(b) Lax-Wendroff theorem: provided that the number of quadrature points NQ is
large enough and under some continuity assumptions on the split residuals φi,
RD schemes based on the approximate Gaussian quadrature of the quasi-linear
form of the problem converge to the correct weak solutions.

For brevity, we will refer to the schemes obtained using this approach as to the QRD
schemes, since conservation and convergence to the correct weak solutions is guaranteed
by the accurate Quadrature of the quasi-linear form. Computationally speaking, QRD
schemes can be quite expensive, due to the evaluation of the Jacobians in NQ Gaussian
points and to the fact that NQ has to be large enough to guarantee the quadrature error
to be small enough [4]. However, due to the equivalence between the (approximate)
linearized quasi-linear form and the conservation law form of the problem, the schemes
presented in chapter 5 can be immediately used for the solution of nonlinear CLs,
the main problem being solved with the introduction of the conservative mean-value
Jacobians. Moreover, the analysis of the discretization is formally identical to the linear
case. In particular, even if we do not reserve a detailed discussion to this aspect, we
stress that all the LED schemes presented in chapter 5, namely the upwind FV −RD
scheme, the Rv scheme and the N scheme, are still LED in the nonlinear case and they
still respect the same positivity criteria and related stability bounds. Concerning their
dissipation properties, as seen in chapter 2 the energy stability has to be replaced by
the entropy stability, which is more appropriate in the nonlinear case. This topic will
be covered later with some detail. Lastly, we note that the QRD formulation solves at
once not only the conservation problem but also the problem of guaranteeing the well-
posedness of the limiting procedure, since once we locally linearize the equation, we can
apply the N scheme as formulated in (5.43) which now respects (5.68) by construction.
In particular, the reference solution of figure 6.1 has been computed with the limited
N scheme constructed by integrating (6.4) with a 4 points formula.
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6.2.2 The CRD formulation

While being mathematically sound, the QRD approach has in its cost a major weakness
which becomes even more important when dealing with systems of CLs, as we will see
later. A simpler solution has been proposed in [50], and it is the one used in this thesis.
The first element of the construction is the definition of the element residual. Given a
continuous approximation of the flux Fh, we compute φh as

φh =

∮

∂E

Fh · n̂ dl =

3∑

lj=1

F lj · ~nlj with F lj =

NC∑

p=1

ωpFh(xp, yp), (xp, yp) ∈ lj (6.6)

where l1, l2 and l3 are the edges of E, ~nlj is the exterior normal to lj , scaled by
the length of the edge, and ωp is the weight of the p-th quadrature point on lj . As
before, the computation of the residual is based on a quadrature formula, however,
differently from the QRD case, given a quadrature formula which is at least exact for a
linear flux Fh, definition (6.6) satisfies by construction (6.3), more accurate quadrature
corresponding to a more accurate reconstruction of Fh on the edges of the element.
For example, if Fh = F(uh), with uh linear, the application of Simpson’s quadrature
formula on lj corresponds to a parabolic representation of F using its values in the
limiting nodes of lj and in the midpoint. Not to be misled by this observation, note
that this does not mean that we can increase the accuracy of the schemes by selecting
a more accurate formula, since the values of F in internal points of lj are evaluated
using the linear variation of uh between the extremities of the edge, which ultimately
limits the accuracy we can achieve to second-order. In particular, recalling the analysis
of §4.4.1 (equation (4.48)), second-order conservative schemes can be obtained already
evaluating (6.6) with the trapezium rule. As in [50], we refer to schemes based on this
definition of the residual as to CRD schemes, since conservation is guaranteed by the
use of Contour integration for the evaluation of φh. Definition (6.6) of the residual
ensures conservation, however we need to specify how the flux Jacobians can be used
to distribute φh, to complete the CRD formulation of the schemes.

6.2.2.1 Linearity preserving schemes

The case of LP schemes is quite simple, since these schemes are defined by

φi = βiφ
h

with βi uniformly bounded and respecting the consistency condition
∑

j∈E

βj = 1

by construction. The dependence of the distribution coefficients on the kj parameters
does not alter any of these two properties (boundedness and consistency). In particular,
we can use for the computation of the βis the parameters

kj =
~a(uE) · ~nj

2
(6.7)
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with uE an arbitrary average of uh over E. For example, one easily checks that consis-
tency is guaranteed for the LDA scheme (5.39) and for the SUPG-like schemes (5.27).
To distinguish between this case and the QRD case, we will denote by βi the distribu-
tion coefficients evaluated making use of the kj parameters based on the approximate
quadrature (6.4), while keeping the notation βi for the ones making use of (6.7). Ob-
viously, in general

βi 6= βi

6.2.2.2 The N scheme

The basic idea that led the authors of [50] to the formulation of the CRD approach
is contained in equation (5.47) and in the analysis of §5.4.3. We will recall here this
idea and also show some of its implications and relations with previously published
techniques. The basic observation done in [50] is that the conditions





φN
i = k+

i (ui − uin)

φh =
∑
j∈E

φN
j

(6.8)

uniquely define uin. In particular, if kj is computed using an arbitrary average uE as
in (6.7), and φh is given by (6.6), the definition

uin =
(∑

j∈E

k+
j

)−1(∑

j∈E

k+
j uj − φh

)
= N

(∑

j∈E

k+
j uj − φh

)
(6.9)

gives the unique state uin guaranteeing that a scheme formally identical to the N scheme
(5.43) satisfies the RD consistency condition with respect to the conservative definition
(6.6) of the residual. The analysis of §5.4.3, however, enables to say something more.
In particular, in this thesis, we refer to the CRD N scheme, as to the scheme defined
by the local nodal residuals

φN−CRD
i = φLDA−CRD

i + dN−CRD
i (6.10)

where the dissipation terms dN−CRD
i are given by

dN−CRD
i =

∑

j∈E

k+
i Nk

+
j (ui − uj) = k+

i (ui − uout) (6.11)

with ∑

j∈E

dN−CRD
j = 0 (6.12)

Clearly, the satisfaction of the RD consistency condition for the LDA scheme being
guaranteed independently on how we evaluate the kj parameters, and condition (6.12)
also being always respected, formulating the N scheme as the LDA plus dissipation gives
a natural way of extending the scheme to situations in which the residual φh is defined
in a way as general as possible. A second interpretation of this formulation of the N
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scheme is the one already given in [44], linking the CRD approach to the techniques
proposed in [92, 48]. In the last references the authors propose an approach allowing
to use the N scheme without having to resort to exact mean-value linearizations of the
flux Jacobians. The idea is to define the local nodal residuals as

φN−Ccorr

i = k+
i (ui − uin) + βiǫF , uin = −

∑

j∈E

k−j Nuj

where the first term represents the non-conservative scheme obtained by blindly apply-
ing (5.43) with the kj parameters computed using an inexact linearization, as in (6.7).
The second term, instead, is a conservative correction proportional to the error

ǫF = φh −
∑

j∈T

k+
j (uj − uin) = φh −

∑

j∈T

kjuj

with φh given for example by (6.6). In this formulation, the distribution coefficients
βi used to split the conservation error remain somehow undefined. In [92, 48], several
choices have been tested. However, as observed in [44], if we use βi = βLDA

i to distribute
the error, then, using the definition of βLDA

i (equation (5.39)), and relation (5.11):

φN−Ccorr

i = k+
i (ui − uin) + βLDA

i

(
φh −

∑

j∈T

kjuj

)
=

βLDA
i φh + k+

i (ui − uin) − βLDA
i

∑

j∈T

kjuj =

φLDA−CRD
i + k+

i (ui − uin) − k+
i N

(∑

j∈T

k+
j

)
(uout − uin) =

φLDA−CRD
i + k+

i (ui − uin) − k+
i (uout − uin) = φLDA−CRD

i + dN−CRD
i = φN−CRD

i

This shows the equivalence of the conservative correction technique of [92, 48] with
the CRD formulation of the N scheme. In particular that the distribution of the
conservation error is uniquely determined by the constraint that the resulting scheme
is of the form (6.10) (or equivalently (5.43)).

Formulating the N scheme as the LDA scheme plus dissipation gives a flexible way of
changing the definition of the residual φh while keeping fixed the dissipation that the
scheme adds to the LDA. In §5.4.4 this has been used to design an extension of the N
scheme to advection problems with solution independent source terms. In that case, we
have still been able to prove the L∞ stability of the resulting scheme. Unfortunately,
we cannot do the same for the CRD N scheme, for which, instead, we have a negative
result. To present this result, we assume that

Assumption 6.2.2 (Bridge between QRD and CRD schemes). Given a NC-
points line quadrature formula used to evaluate (6.6), it is possible to find a NQ-surface
quadrature rule to be used in (6.4), such that the equivalence

3∑

lj=1

NC∑

p=1

ωpF(up,lj ) · ~nlj = |E|
NQ∑

l=1

ωl~a(ul) · ∇ uh|E =
∑

j∈E

kjuj (6.13)

holds up to the smallest between the quadrature error in (6.6), the error in (6.5) and
the discretization error of the schemes.
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This equivalence sets a connection between the QRD and the CRD approaches. In
particular, QRD schemes are the only CRD schemes for which the average speed used
to compute the kj parameters coincides with the conservative mean-value linearized
speed. Using this equivalence, we can now prove the following negative result.

Proposition 6.2.3 (CRD N scheme and sub-element LED). The CRD N scheme
(6.10) cannot be proved to respect the sub-element LED condition. In particular, the
scheme is prone to the violation of this condition in multiple-target elements.

Proof. The proof is obtained by exploiting the equivalence between the residual evalu-
ated with the contour integral and the one obtained with the mean-value linearization
of the Jacobians. In particular, this equivalence allows to recast the local nodal resid-
uals of the CRD N scheme as

φN−CRD
i = k+

i N
∑

j∈E

kjuj +
∑

j∈E
j 6=i

k+
i Nk

+
j (ui − uj)

with kj evaluated using the conservative mean-value Jacobians. Since the kjs sum up
to zero over an element (see (3.17)), we can rewrite las expression as

φN−CRD
i =

∑

j∈E
j 6=i

k+
i Nkj(uj − ui) +

∑

j∈E
j 6=i

k+
i Nk

+
j (ui − uj) =

∑

j∈E
j 6=i

k+
i Nk

+

j (uj − ui) +
∑

j∈E
j 6=i

k+
i Nk

−
j (uj − ui) +

∑

j∈E
j 6=i

k+
i Nk

+
j (ui − uj) =

∑

j∈E
j 6=i

k+
i N(k+

j − k
+

j )(ui − uj) −
∑

j∈E
j 6=i

k+
i Nk

−
j (ui − uj)

Last expression shows that whenever kj = kj , as in the linear case or with QRD
schemes, the scheme reduces to its standard expression, which verifies the sub-element

LED condition with cEij = −k+

i Nk
−
j ≥ 0. In general, however, we have

cEij = k+
i N(k+

j − k
+

j ) −

≥0︷ ︸︸ ︷
k+
i Nk

−
j

Since the sign of the first term on the right hand side is unknown, we cannot prove the
sub-element LED condition. Consider now the multiple-target situation ki, ki, kj > 0
for a node j 6= i. In this case we have

cEij = k+
i N(k+

j − k
+

j )

where the beneficial effect of the second term has disappeared. The sign of cEij could
be either positive or negative, depending on the local structure of the solution and on
the average used for the evaluation of kj . Hence, the scheme is particularly prone to
the violation of the local LED condition in multiple-target elements.
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From the theoretical point of view, this result is quite disappointing, since it seems to
spoil our hopes of constructing a non-oscillatory approximation of nonlinear CLs. In
particular, while on twodimensional triangular grids the non-LED character of the CRD
N scheme could be limited to a few 2-target elements, in three space dimensions things
could get much worse due to the presence of a larger number of 2-target tetrahedra and
of 3-target elements which are not present in 2D. Perhaps surprisingly, these effects
have never been observed in any numerical calculation both in two and three space
dimensions, for scalar problems and also for systems of conservation laws [50, 44].
Similarly, the extension of this scheme to meshes composed of quadrilaterals [134, 63]
has shown quite a non-oscillatory character of the numerical solutions, both for scalar
problems and for systems. We believe that the monotone resolution of discontinuities
observed in practice is due partly to a compensation of the local violation of the LED
condition predicted by proposition 6.2.3 when assembling the contributions of all the
elements surrounding a node, and more importantly to the dissipative character of the
scheme, related to the form of the dN−CRD

i terms (6.11). This last effect is probably
enough to dissipate local new extrema eventually appearing in the numerical solution.
The results of this thesis contribute to confirm the robustness of the CRD N scheme.

More importantly, the scheme verifies by construction the sufficient condition for the
well-posedness of the limiting (equation (5.68)). Hence, we can apply mapping (5.65)
to obtain a LP nonlinear scheme. In this this thesis, we give extensive numerical
evidence of the reliability, robustness and accuracy of this CRD limited N scheme.

6.2.2.3 Rusanov’s scheme

The extension of the Rv scheme to the CRD framework is quite immediate, due to the
fact that this scheme is formulated as the central scheme plus an isotropic dissipation
term. Hence we have

φRv−CRD
i =

1

3
φh + dRv−CRD

i , dRv−CRD
i =

1

3
α
∑

j∈E
j 6=i

(ui − uj) (6.14)

Differently from the N scheme, due to the isotropic character of dRv−CRD
i the Rv

scheme respects the sub-element LED criterion if α is large enough as shown by

φRv−CRD
i =

∑

j∈E
j 6=i

cEij(ui − uj), cEij =
1

3
(α− kj)

However, we will not use the Rv scheme for the construction of a limited nonlinear
scheme. The reason of this choice is basically the lack of a sufficient understanding of
the properties of the limited schemes. As already remarked in §5.5.2.2, the dissipation
properties of these nonlinear schemes are very unclear at the moment. The available
technology works best with schemes with a pronounced upwind character. It would be
however of great practical importance to be able to extend this technology to simpler
first-order schemes, such as (6.14).
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6.3 Conservative residual distribution and entropy

The stability of schemes approximating nonlinear CLs is characterized by the satisfac-
tion of a discrete analog of the entropy inequality (2.20). As we saw in §2.2.3, in the
continuous case this inequality corresponds to the presence of a vanishing dissipative
mechanism which uniquely determines the exact weak solution of the problem. Sim-
ilarly, in the discrete case the satisfaction of this stability criterion is related to the
presence of a dissipation mechanism acting on the discrete unknown. The analysis of
this section partly follows [5, 6, 4]. In particular, let us consider a convex entropy
pair (H(u),G(u))1 supplementing equation (6.1), such that weak exact solutions of the
problem satisfy in a weak sense

∂H(u)

∂t
+ ∇ · G(u) ≤ 0 (6.15)

As anticipated in §3.2.2, in order to study the entropy stability of RD discretizations,
we introduce the entropy variable v defined as

v =
dH(u)

du

The analysis of the stability of the schemes will be performed by assuming that v is
used as a primary variable (see §3.2). In particular, given the initial data u0(x, y), we
will analyze the RD prototype written in terms of the entropy variable v:

|Si|
du(vi)

dt
+
∑

E∈Di

φi(vh), (6.16)

with vh piecewise linear as in (3.11) and with

∑

j∈E

φj(vh) =

∫

E

∇ · F(vh) dx dy (6.17)

with F(vh) = F(u(vh)). Also note that, as anticipated in §3.3, in the following pages
we keep the notation ~a(v) = ~a(u(v)) and kj for the flux Jacobian and the upwind
parameters, which are now computed using flux derivatives with respect to v.

The semi-discrete entropy balance for RD schemes in entropy variable is obtained by
multiplying by vi the semi-discrete RD evolution equation for node i and summing
over all the nodes of the mesh:

∑

i∈Th

vi|Si|
du(vi)

dt
+
∑

i∈Th

∑

E∈Di

viφi(vh) = 0

Due to the definition of v, last expression is a second-order approximation of the global
entropy evolution equation

∫

Ω

dH(vh)

dt
+
∑

E∈Th

∑

j∈E

vjφj(vh)

1see the definition given in §2.2.3, equation (2.19)
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Introducing the local entropy production of a scheme

ΦE
H(vh) =

∑

j∈E

vjφj(vh) (6.18)

a general entropy balance for RD scheme is obtained:

∫

Ω

dH(vh)

dt
+
∑

E∈Th

ΦE
H(vh) = 0 (6.19)

Last equation gives a criterion to determine whether a scheme is stable or not.

Definition 6.3.1 (Entropy conservative RD scheme). A RD scheme in entropy
variable is entropy conservative if there is a continuous consistent approximation of
the entropy flux Gh such that

ΦE
H(vh) =

∫

E

∇ · Gh dx dy =

∮

∂E

Gh · n̂ dl (6.20)

The Lax-Wendroff theorem recalled in the beginning of chapter 4 guarantees that,
under the hypotheses of continuity of Gh and of the local nodal residuals φi(vh), the
discrete solution obtained with an entropy conservative scheme converges to a weak-
solution of the conservation law obtained taking the equal sign in (6.15) [5, 6]. Hence,
entropy conservative schemes satisfy (in a weak sense) an entropy equality. This means
that entropy conservative schemes are basically non-dissipative.

Definition 6.3.2 (Entropy stable RD scheme). A RD scheme in entropy variable
is entropy stable if there is a continuous consistent approximation of the entropy flux
Gh such that

ΦE
H(vh) =

∫

E

∇ · Gh dx dy + ǫEH =

∮

∂E

Gh · n̂ dl + ǫEH, ǫEH ≥ 0 (6.21)

The presence of the numerical dissipation ǫEH and the Lax-Wendroff theorem guarantee
that the discrete solution obtained with entropy stable schemes also satisfy the entropy
inequality (6.15) in a weak sense [5, 6]. Entropy stable schemes are the ones introducing
a vanishing dissipative mechanism into the discrete equations. As we will see, the
analysis of the entropy stability properties of RD schemes is very similar to the energy
stability analysis performed in chapter 5. However, differently from FE schemes, it is
hard to give for RD scheme a real stability proof, while it is generally possible to show
some weaker consistency with the entropy equality or inequality. This consistency not
constituting a real stability proof, it nevertheless shows the presence of a dissipative
mechanism acting on the discrete solution. In the following pages, we will only consider
linear schemes, the analysis of the nonlinear schemes being substantially similar to,
and as approximate as, their energy stability analysis reported in §5.5. We underline
once again that, theoretically speaking, the understanding of the stability properties
of nonlinear RD discretizations remains one of the most challenging open issues.
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6.3.1 Entropy stability, central RD schemes and FE

6.3.1.1 Galerkin FE and centered FS scheme

The case of a pure central scheme well describes the basic difference between the FE
discretization and the FS one. In particular, let us consider the local nodal residual
of the Galerkin scheme

φG
i =

∫

E

ψi∇ · F(vh) dx dy

with ψi the basis function of node i (see §3.2.1). The local entropy production of the
scheme is

ΦG
H =

∑

j∈E

vjψ
G
j =

∑

j∈E

∫

E

ψjvj∇ · F(vh) dx dy

We immediately recognize that, due to the definition of v

ΦG
H =

∫

E

vh∇ · F(vh) dx dy =

∫

E

∇ · G(vh) dx dy

Hence, with the obvious choice Gh = G(vh) the Galerkin FE scheme is entropy conser-
vative. Consider now the case of the central RD scheme

φC
i =

1

3

∫

E

∇ · Fh dx dy

One possibility we have is to use the CRD formulation of the scheme based on a
piecewise continuous linear flux Fh, in which case ∇ ·Fh is constant over E, giving for
the local entropy production

ΦC
H =

∫

E

∑

j∈E

vj
3
∇ · Fh dx dy =

∫

E

vh∇ · Fh dx dy

Even though formally similar to ΦG
H, this expression does not really define a continuous

approximation of the entropy flux Gh such that the conservative definition (6.20) is
respected, due to the poor approximation of F . However, using the equivalence of
assumption 6.2.2, we can write (see also [4])

ΦC
H =

∫

E

vha · ∇vh dx dy h→0−−−→
∫

E

v~a(v) · ∇v dx dy =

∫

E

∇ · G(v) dx dy

where a is the conservative mean-value linearized flux Jacobian. Hence, even though
not exactly entropy conservative, the central scheme gives an approximation consistent
with the entropy equality. For this reason, we introduce the following definitions.

Definition 6.3.3 (Entropy consistent scheme). A RD scheme is entropy consis-
tent if it is possible to show that

ΦE
H

h→0−−−→
∫

E

∇ · G(v) dx dy
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Definition 6.3.4 (Entropy dissipative scheme). A RD scheme is entropy dissi-
pative if it is possible to show that

ΦE
H = ΦE

G + ǫEH with ΦE
G

h→0−−−→
∫

E

∇ · G(v) dx dy

and with ǫEH ≥ 0.

Clearly, the central RD scheme is entropy consistent and non-dissipative. Schemes
which are more dissipative that the central scheme are entropy dissipative. Note that
the application of the dominated convergence theorem to an entropy dissipative scheme
implies that, if the scheme is convergent, than the solution obtained in the limit h→ 0
respects an entropy inequality (see [4] for more).

6.3.1.2 Streamline dissipation

An entropy stable scheme is the SUPG FE scheme [166, 72, 94, 97, 98, 96, 102, 103]

φSUPG
i = φG

i +

∫

E

τ (~a(vh) · ∇ψi) (~a(vh) · ∇vh) dx dy

In fact, proceeding as before, we have for the SUPG scheme

ΦSUPG
H = ΦG

H +

∫

E

τ
(∑

j∈E

~a(vh) · ∇ψjvj
)

(~a(vh) · ∇vh) dx dy

leading to

ΦSUPG
H = ΦG

H +

∫

E

τ (~a(vh) · ∇vh)2 dx dy =

∫

E

∇ · G(vh) dx dy + ǫSUPG
H

which shows the stability of the scheme. In the case of the linearity preserving RD PG
scheme with distribution coefficients (5.27), we have to make a distinction between the
QRD and the CRD formulations of the scheme. In this first case we have

φPG−QRD
i = φC

i + τ
ki

2|E|
∑

j∈E

kjuj = φC
i +

∫

E

τ (a · ∇ψi) (a · ∇vh) dx dy

giving the local entropy production

ΦPG−QRD
H = ΦC

H +

∫

E

τ (a · ∇vh)
2
dx dy = ΦC

H + ǫPG
H

However, for the CRD scheme defined by

φPG−CRD
i = φC

i + τ
ki

2|E|
∑

j∈E

kjuj = φC
i +

∫

E

τ (~a(vE) · ∇ψi) (a · ∇vh) dx dy
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we have the local entropy production

ΦPG−CRD
H = ΦC

H +

≥ or ≤ 0 ?︷ ︸︸ ︷∫

E

τ (~a(vE) · ∇vh) (a · ∇vh) dx dy

where, strictly speaking, due to the introduction of the inexact linearization of the
Jacobian ~a(vE), the streamline dissipation term is not guaranteed to locally dissipate
anymore, unless some hypotheses on the products kjkj are introduced. This means
that, while in its QRD formulation the PG scheme is entropy dissipative, the CRD
formulation does not guarantee the preservation of this property, unless the quadratic
form associated to the CRD streamline dissipation (see equation (5.29))

QPG =
τ

4|E|



v1
v2
v3



T 


2k1k1 k1k2 + k2k1 k1k3 + k3k1

k1k2 + k2k1 2k2k2 k2k3 + k3k2

k1k3 + k3k1 k2k3 + k3k2 2k3k3





v1
v2
v3




is positive.

6.3.1.3 The Rv scheme

In entropy variables, the Rv scheme reads

φRv
i = φC

i +
α

3

∑

j∈E
j 6=i

(vi − vj)

with
α > max

j∈E
kj > 0

The local entropy production is easily shown to be

ΦRv
H = ΦC

H + ǫRv
H , ǫRv

H =
1

3



v1 − v2
v1 − v3
v2 − v3



T 

α 0 0
0 α 0
0 0 α





v1 − v2
v1 − v3
v2 − v3


 ≥ 0

which proves the dissipative character of the scheme.

6.3.2 Entropy dissipation and MU schemes

The analysis of the LDA and N scheme is much more delicate and less developed. Some
results have been published in [3, 4, 9] a few of which will be recalled here. Things are
even more difficult in the case of the CRD schemes for which we cannot fully benefit
from the equivalence between the quasi-linear form of the problem and its CL form.
However, in simple configurations some results can be shown, as the following.
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Proposition 6.3.5 (Entropy dissipation of MU schemes: the 1-target case).
QRD MU schemes are locally entropy dissipative in the 1-target case. This applies to
CRD schemes only if kjkj > 0 ∀ j

Proof. To obtain the proof we recall that in a 1-target element all MU schemes dis-
tribute the whole residual to the only downstream node. Suppose then that node 1
coincides with the outflow node, such that k1 > 0, k2, k3 < 0 and

φ1 = φh, φ2 = φ3 = 0

We rewrite the scheme as φi = φC
i + (φi − φC

i ) so that the local entropy production is

ΦMU
H = ΦC

H + ǫMU
H

where ǫMU
H is given by

ǫMU
H =



v1
v2
v3



T

M̃



v1
v2
v3


 , M̃ =

1

3




2k1 2k2 2k3

−k1 −k2 −k3

−k1 −k2 −k3




Since we also have

ǫMU
H =



v1
v2
v3



T

M



v1
v2
v3


 , M =

M̃ + M̃T

2

we can prove that the scheme is dissipative by studying the properties of M:

M =
1

6




4k1 2k2 − k1 2k3 − k1

2k2 − k1 −2k2 −k2 − k3

2k3 − k1 −k2 − k3 −2k3




Since node 1 is downstream and nodes 2 and 3 are upstream, M has positive entries
on the diagonal and negative off-diagonal terms. Moreover, since k1 + k2 + k3 = 0, one
immediately checks that the row-sum of the elements of M is identically zero. Hence
M is positive semi-definite. This means that ǫMU

H ≥ 0, which proves that the scheme
is dissipative. Clearly, if kjkj > 0, CRD schemes will treat this element as 1-target,
and the analysis also applies to this case.

6.3.2.1 The LDA scheme

It is evident from proposition 6.3.5 that multidimensional upwinding has a beneficial
effect in terms of stabilization. However, the analysis of 2-target cases is not as easy as
in the 1-target case. In particular, the trick of comparing the schemes to the centered
distribution does not pay off. In its QRD formulation, the LDA scheme can still benefit
from the possibility of decomposing its entropy production in a term which acts in a
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central fashion along a local direction plus some dissipation (see §5.4.1.1, equations
(5.41) and (5.42)):

ΦLDA−QRD
H =

vout + vin
2

(∑

j∈E

k
+

j

)
(vout − vin) +

1

2
(vout − vin)

(∑

j∈E

k
+

j

)
(vout − vin)

where vout and vin denote the outflow and inflow states computed using the upwind
parameters kj , based on the conservative mean-value linearized Jacobian. As done in
the energy analysis of the scheme, we can introduce, locally in a 2-target element E, a
coordinate direction ζ such that the local entropy production becomes

ΦLDA−QRD
H =

∫

ζE

vh a
∗ ∂vh
∂ζ

dζ + ǫLDA−QRD
H , a∗ =

∑

j∈E

k
+

j (6.22)

with

ǫLDA−QRD
H =

1

2
(vout − vin)

(∑

j∈E

k
+

j

)
(vout − vin) ≥ 0

As in the linear case, the integral in (6.22) is formally similar to the entropy production
of a onedimensional central scheme acting on ζE . It is however unclear how this term
can be recast in a form giving back the integral of the divergence of the entropy flux,
when summing all the elemental contributions. However, equation (6.22) shows the
dissipative effects of the MU . As in the case of the PG scheme, when using the CRD
formulation of the scheme things become less clear, due to the introduction of the
inexact linearization of the flux Jacobian. For completeness, we report hereafter the
local production of entropy of the scheme:

ΦLDA−CRD
H = vout

(∑

j∈E

k
+

j

)
(vout − vin) (6.23)

where the equivalence of assumption 6.2.2 has been used to obtain the right-hand side.
The basic problem is now that the upwinding direction depends on the flux Jacobian.
The use of the inexact linearization for the distribution introduces then a direction
parallel to ~a(vE), on which the states vout and vin lay, different from the direction
determined by a, on which the states vout and vin lay. This makes impossible the use
of the 1D analogy discussed for the QRD scheme.

6.3.2.2 The N scheme

The case of the N scheme is of course very interesting, since this scheme is the basis
of all the constructions of high-order discretizations. Being MU , the scheme respects
proposition 6.3.5. However, in the 2-target case, rewriting the N scheme as a central
distribution plus extra terms does not lead to an immediate proof of the dissipative
character of the scheme. In the QRD case, this can be shown in a slightly more
elaborate way. Following [4, 9], we recall that the energy matrix operator of the N
scheme can be written as

MN−QRD = D
N−QRD

+
1

2



k1 0 0

0 k2 0

0 0 k3
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with D
N−QRD

the equivalent entropy operator (see §5.4.2.1, equation (5.46))

D
N−QRD

=
1

2



k1

k2

k3


N



k1

k2

k3



T

+

1

2



k

+

1 0 0

0 k
+

2 0

0 0 k
+

3


− 1

2



k

+

1

k
+

2

k
+

3


N



k

+

1

k
+

2

k
+

3




T

+

1

2




−k−1 0 0

0 −k−2 0

0 0 −k−3


− 1

2




−k−1
−k−2
−k−3


N




−k−1
−k−2
−k−3




T

From the energy analysis, we know that D
N−QRD

defines a dissipative operator. How-
ever, in the nonlinear case, the additional diagonal matrix defining MN−QRD does not
cancel when assembling the global entropy balance, due to the variation of a in space.
Hence, the local entropy production of the scheme is

ΦN−QRD
H =

1

2

∑
j∈E

vjkjvj + ǫN−QRD
H ,

ǫN−QRD
H =



v1
v2
v3



T

D
N−QRD



v1
v2
v3


 ≥ 0

(6.24)

One can now prove that the scheme is entropy consistent. In view of an important
remark related to the CRD variant of the N scheme, we report here one key element
of the proof, due to [4]. In particular, we recall the following lemma (see [4, 9]).

Lemma 6.3.6 (Abgrall and Barth, 2002). Given a bounded time tf > 0, with
tf = N∆t, and the bounded sequence of continuous piecewise linear functions vh(x, y, t)
with vh(x, y, tn = n∆t) = vnh such that

sup
h

sup
(x,y,t)

‖vh(x, y, t)‖ ≤ C, lim
h→0

‖vh − v‖L2
loc

(Ω×[0,tf ]) = 0

with C a constant independent of h and ∆t, then

lim
h→0

N∑

n=0

∆t
∑

E∈Th

|E|
∑

i,j∈E

‖vni − vnj ‖ = 0

In particular, given σ(1, 2, 3), a circular permutation of the indices of the nodes of an
element E, the two piecewise constant functions

v′h =
∑

i∈Th

∑

E∈Di

χSi∩E v
n
i

and
ṽh =

∑

i∈Th

∑

E∈Di

χSi∩E v
n
σ(i)

converge to the same limit v of vh, as h→ 0.
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Note that the the quantity χS used in the definition of v′h and ṽh is the characteristic
function (3.4). Using the last result, one can prove that

Proposition 6.3.7 (QRD N scheme and entropy dissipation). The QRD N
scheme with exact integration of the flux Jacobian is entropy dissipative. In particular:

∑

E∈Th

1

2

∑

j∈E

vjkjvj
h→0−−−→

∫

Ω

∇ · G(v) dx dy

Proof. See [4, 9].

The extension of the result to the QRD case with approximate mean-value Jacobian
linearization is given in [4]. For the CRD N scheme things are different, since (6.24)
no longer holds. However, using (6.10) and (5.50), we can write

ΦN−CRD
H =

∫

E

vh∇ · F(vh) dx dy + ǫN−CRD
H , ǫN−CRD

H ≥ 0 (6.25)

with

ǫN−CRD
H =



v1
v2
v3



T

DN−CRD



v1
v2
v3


 ≥ 0

and the symmetric dissipation matrix DN−CRD given by (see (5.50))

DN−CRD =



k+
1 0 0
0 k+

2 0
0 0 k+

3


−



k+
1

k+
2

k+
3


N



k+
1

k+
2

k+
3



T

In equation (6.25), we have introduced the piecewise constant function

vh =
∑

E∈Th

χE
∑

j∈E

βLDA
j vj

The reason for writing ΦN−CRD
H as in (6.25) and for reporting lemma 6.3.6 is that, by

using this lemma and condition (5.4), one could prove that

vh
h→0−−−→ v

which would constitute a proof of the fact that the CRD N scheme is entropy dissipative.
The reason why we do not put this assertion in a formal proposition is that as we can
use lemma 6.3.6 to show that vh → v for vh defined using the distribution coefficients
of the LDA scheme, we could prove similar propositions for any scheme to which we
add or subtract entropy dissipative terms corresponding to some LP scheme. Even
though the arguments to show that the CRD N scheme is dissipative seem correct,
some details are missing or not well understood. Nevertheless, (6.25) shows that a
degree of entropy dissipation is indeed present in the discretization.
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6.3.3 Time integration

We make in this section a short digression related to the entropy dissipative properties
of the fully discrete equations obtained when integrating (6.16) in time. In order to do
this, we note that given two discrete time levels tn and tn+1, one can write [171],

Hn+1
i −Hn

i =

tn+1∫

tn

dH(vi(τ))

dt
dτ

Using the definition of v, and making the change of variable

ξ =
t− tn+1/2

∆t
, tn+1/2 =

tn + tn+1

2

we have the two equivalent expressions

Hn+1
i −Hn

i =

+1/2∫

−1/2

vi(ξ)
du(vi(ξ))

dξ
dξ =

+1/2∫

−1/2

vi(ξ)a0(vi(ξ))
dvi(ξ)

dξ
dξ (6.26)

Fully discrete entropy balances can be derived by a proper choice of vi(ξ) and by simple
manipulations of (6.26).

6.3.3.1 Explicit FE time-integration

Taking in (6.26)

vi(ξ) =
vn+1
i + vni

2
+ ξ(vn+1

i − vni )

one easily shows that

vni (un+1
i − uni ) = Hn+1

i −Hn
i − ǫFE

i

with ǫFE
i the entropy production in time of the forward Euler scheme, given by

ǫFE
i =

+1/2∫

−1/2

(
1

2
+ ξ

)
(vn+1
i − vni )a0(vi(ξ))(v

n+1
i − vni ) dξ ≥ 0 (6.27)

As a consequence, the fully discrete RD entropy balance becomes:
∑

i∈Th

|Si|(Hn+1
i −Hn

i ) = −∆t
∑

E∈Th

ΦE
H(vnh) +

∑

i∈Th

|Si|ǫFE
i (6.28)

As in the linear case (see prop 4.2.8), the explicit time integration adds an anti-
dissipative terms to the entropy balance. As remarked in §4.2.1, the competing effects
of the entropy dissipation of the spatial discretization and of the entropy production
of the explicit scheme can be controlled by the magnitude of the time-step ∆t. For
entropy dissipative discretizations, one may then look for a limiting value of the time-
step guaranteeing the dissipative character of the fully discrete equations. A discussion
on the topic can be found in [171].
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6.3.3.2 Implicit BE time-integration

With the same choice of vi(ξ) done for the FE scheme, one can show that

vn+1
i (un+1

i − uni ) = Hn+1
i −Hn

i + ǫBE
i

with ǫBE
i the entropy dissipation in time of the backward Euler scheme, given by

ǫBE
i =

+1/2∫

−1/2

(
1

2
− ξ

)
(vn+1
i − vni )a0(vi(ξ))(v

n+1
i − vni ) dξ ≥ 0 (6.29)

As a consequence, the fully discrete RD entropy balance becomes:
∑

i∈Th

|Si|(Hn+1
i −Hn

i ) = −∆t
∑

E∈Th

ΦE
H(vn+1

h ) −
∑

i∈Th

|Si|ǫBE
i (6.30)

As in the linear case (see prop 4.2.8), the fully implicit time integration adds an entropy
removing term which contributes to stabilize the discretization.

6.3.3.3 Trapezium time scheme and CN scheme

Note that combining (6.30) and (6.28) we easily obtain

∑

i∈Th

|Si|(Hn+1
i −Hn

i ) = −∆t

2

∑

E∈Th

(
ΦE

H(vnh ) + ΦE
H(vn+1

h )
)

+
∑

i∈Th

|Si|ǫTi (6.31)

with ǫTi the entropy production in time of the trapezium scheme, given by

ǫTi =
1

2
(ǫFE
i − ǫBE

i ) =

+1/2∫

−1/2

2ξ(vn+1
i − vni )a0(vi(ξ))(v

n+1
i − vni ) dξ

Depending on the solution, the sign of ǫTi can be either positive or negative, hence
producing or dissipating entropy. A scheme with entropy conservation properties can
instead be obtained by taking in (6.26)

ui(ξ) =
un+1
i + uni

2
+ ξ(un+1

i − uni ), vi(ξ) = v(ui(ξ))

leading to

Hn+1
i −Hn

i =
( 1/2∫

−1/2

v(ui(ξ))dξ
)

(un+1
i − uni ) = vCNi (un+1

i − uni )

Evaluating the spatial residuals in vCNh , we obtain a scheme which conserves entropy
in time: ∑

i∈Th

|Si|(Hn+1
i −Hn

i ) = −∆t
∑

E∈Th

ΦE
H(vCNh ) (6.32)

This Crank-Nicholson scheme is the only two-step time integration scheme which pre-
serves the entropy dissipation characteristics of the spatial discretization.
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6.4 Computational examples

We show here a few results obtained with the CRD schemes introduced in this chapter.
In particular, we consider again the solution of (6.1) with the exponential flux function
F = (eu, u). The definition of the problem and of the boundary conditions are the same
as in §6.1. We solve the problem with CRD N and LDA schemes and with the limited
CRD N scheme, obtained by applying (5.65) to the N scheme (6.10). The schemes
are written in terms of the conserved variable u and the residual is computed using
(6.6) with a second-order trapezium rule on each edge of the elements. The average
Jacobian needed for the evaluation of the kj parameters has been computed as in §6.1:

~aE =
1

3

∑

j∈E

~a(uj)

We integrate in time (5.5) using the explicit FE scheme with local time-stepping and
(see equations (4.9) and (5.44))

∆ti = 0.9
|Si|∑

E∈Di

k+
i

∀i ∈ Th

We compare the results obtained with the CRD schemes on an irregular grid with
h = 0.015, to the reference solution of §6.1, for completeness reported in figure 6.4.
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Figure 6.4: Nonlinear CL with exponential flux. Reference solution (left) and conver-
gence histories (right)

Recall that this solution has been computed on a finer unstructured mesh (h = 1/200)
with the limited N scheme based on the QRD formulation with 4 quadrature points in
(6.4). As initial solution we set u(x, y) = u(x, y = 0), with the latter as in (6.2). The
convergence history of the CRD schemes is reported on the right in figure 6.4, while
the results are given in figures 6.5, 6.6 and 6.7. On the left, in the figures, we plot the
contours of the steady solution u. On the right pictures, instead, we compare with the
reference the distribution of u along the upper boundary. First of all, we remark that
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no convergence problems are encountered and that all the schemes quickly reach the
steady-state. By looking at the left picture on figure 6.5, we can see that the CRD
N scheme gives a solution free of numerical oscillations. In particular, the shock is
monotonically captured, even though it is smeared over quite a few cells. The right
picture further proves the non-oscillatory character of the computed shock and also
it shows that its position and strength are correct, thus confirming the conservative
character of the scheme.
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Figure 6.5: Nonlinear CL with exponential flux. Solution obtained with the CRD N
scheme on the coarse mesh. Left: contour plot. Right: solution profile at y = 0.5

The numerical solution obtained with the CRD LDA scheme is instead reported in fig-
ure 6.6. The left picture shows a less diffused numerical shock, however, as expected,
oscillations are present in its proximity. The right picture shows the very sharp cap-
turing of the discontinuity. Some small oscillations are also visible. Also for the LDA,
position and strength of the shock are correct.
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Figure 6.6: Nonlinear CL with exponential flux. Solution obtained with the CRD LDA
scheme on the coarse mesh. Left: contour plot. Right: solution profile at y = 0.5
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At last we comment the results obtained with the limited scheme, reported in figure
6.7. The contour plot shows a very crisp resolution of the shock. No oscillations are
present in this result. The sharp approximation of the discontinuity is visible on the
right picture. The resolution of the shock and of the smooth part of the solution
are comparable with the ones obtained with the LDA scheme, except that the LN
scheme yields an oscillation free result. The conservative character of the scheme is
also confirmed.
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Figure 6.7: Nonlinear CL with exponential flux. Solution obtained with the CRD LN
scheme on the coarse mesh. Left: contour plot. Right: solution profile at y = 0.5

6.5 Summary

This chapter has added another block to the construction of conservative schemes for
nonlinear conservation laws. Its main contributions can be summarized as follows.

• With the help of a simple motivational example, we have introduced the need
of a numerical discretization able to reproduce the correct jump conditions in
correspondence of discontinuities: conservative RD schemes;

• We have given a precise definition of a conservative RD scheme and shown how
this definition leads to an incompatibility between the need of the use of the CL
form of the problem, required to satisfy conservation, and the need of using the
quasi-linear form of the equation to distribute the residual;

• We recalled the solution given in [4] to this incompatibility which has led to the
definition of the QRD approach. The main advantage of this approach is its
formal equivalence with the linear case which allows to apply immediately most
of the theory already developed;

• We have presented a simpler solution, namely the CRD approach of [50]. This
technique completely decouples the issues of conservation and upwinding by di-
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rectly using the CL form of the problem to define the local residual, while allowing
to use an arbitrary local linearization of the quasi-linear form by forcing the RD
consistency condition of the schemes;

• The extension of basic RD schemes to the CRD framework has been presented.
The key point of this framework, namely the CRD formulation of the N scheme,
has been discussed and compared to and other approaches. In particular, we
have shown that the CRD formulation becomes quite natural when writing the
N scheme as the LDA plus dissipation. We also recalled the analogy with the
conservative correction technique of [92, 48];

• We introduced an equivalence between the QRD and the CRD techniques. This
bridge has allowed to show that, in general, the CRD N scheme does not respect
the sub-element LED condition;

• We have discussed the entropy stability of the schemes. A general semi-discrete
RD entropy balance has been introduced and used to define stable schemes;

• The analysis of the centered scheme has led to weaker definitions of stability:
entropy consistency and entropy dissipation. Differently from entropy stability,
entropy dissipation is related to the capability of a scheme of adding dissipation
to a discrete approximation which converges to the integral of the divergence of
the entropy flux when the mesh is refined;

• The entropy stability of MU scheme has been studied. These schemes are entropy
dissipative in the 1-target case. This shows the stabilizing effect of the MU ;

• The cases of the LDA and N schemes have been considered in some detail. The
analysis of the nonlinear case is quite similar to the energy stability analysis for
the QRD schemes, particularly for the LDA scheme. The CRD formulation intro-
duces complications due to the presence of the inexact flux Jacobian linearization.
In the case of the N scheme, we have recalled the proof of its entropy dissipative
character when an exact mean-value linearization of the Jacobians is used, due
to [4]. Some elements that could allow the extension of the proof to the CRD
scheme have been given. However, details are still missing or not understood;

• The entropy dissipation introduced by the time integration scheme has been
briefly analyzed after [171]. As in the linear case, the implicit BE scheme is the
most stable, while the explicit FE scheme adds destabilizing terms to the discrete
entropy balance. The entropy conservative CN scheme has been presented;

• Illustrative computational results, involving the solution of a nonlinear CL with an
exponential flux, have been given. The results confirm the conservative character
of the CRD schemes. The non-oscillatory character of the CRD N scheme and of
its limited variant are also confirmed.
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Chapter 7

Time dependent problems:
conservative space-time RD

This chapter will add the missing brick needed to approximate nonlinear conservation
laws: a second-order non-oscillatory nonlinear scheme for time-dependent computations
on unstructured grids. Starting from an improved prototype compact discretization for
scalar advection we will arrive to a conservative formulation which, on one hand allows
to solve general CLs on unstructured meshes without the need of the introduction of
complex mean-value linearizations of the flux Jacobians and, on the other hand, permits
to construct well defined high-order nonlinear schemes which enjoy a true residual
property and yield approximations of weak solutions free of numerical oscillations. Part
of the material contained in this chapter is covered also in [7, 118, 8, 120, 47, 53, 44, 51]
as far as scalar advection is concerned, and in [141, 142] concerning the extension to
nonlinear conservation laws.

7.1 Time-dependent advection

We consider now the approximation of solutions of

∂u

∂t
+ ~a · ∇u = S(x, y) on ΩT = Ω × [0, tf ] ⊂ R

2 × R
+ (7.1)

in the time-dependent regime. Solutions of (7.1) are to be approximated on discretiza-
tions of ΩT which, as described in §3.1, can be decomposed into space-time slabs
Ω × [tn, tn+1] in which Ω is discretized by means of an unstructured grid composed of
triangular elements. The grid is denoted by Th. As in chapter 5, we will assume ~a
to be constant or, if ~a = ~a(x, y), to be locally replaced by a proper average on each
element E ∈ Th.
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In §4.4.3, we have shown that if (7.1) is approximated by a scheme of the form (4.1),
the spatial accuracy of the discretization is limited to first-order in time-dependent
calculations. The objective of this section is then to present a more general compact
prototype, which overcomes this limitation. All the schemes discussed in the previous
chapter are particular cases of this abstract discrete model but, as remarked, are only
first-order accurate in space. Second-order schemes encompassed by this new prototype
are only of the FE and FS type. Second-order accurate FV schemes, as well as higher
order ones, do not fit in this framework due to the non-compact character of the
reconstructions used to increase the accuracy. An exception to this is perhaps given by
the Spectral Volume schemes developed in [182, 183, 184, 185], which however we do not
consider here. One form of the RD schemes which fits into the new framework will then
be presented: the space-time schemes. The extension of the MU schemes of chapter 5
is presented and discussed. Most of the presentation is done in the homogeneous case
S = 0. However, the extension to the general case is also underlined.

7.1.1 An improved prototype for unsteady simulations

In the homogeneous case, we will consider here schemes approximating (7.1) which can
be recast in the following semi-discrete form:

∑

E∈Di

∑

j∈E

mE
ij

duj
dt

= −
∑

E∈Di

φEi = −
∑

E∈Di

cEij(ui − uj) (7.2)

Compared to (4.1), this prototype adds a coupling in space of the time derivatives of
the nodal values, though the matrix elements mE

ij . In the following we will refer to this

matrix as to the mass-matrix, and denote it by Mdτ . As done in chapter 4, we assume
that schemes of the form (7.2) verify the following local consistency condition.

Assumption (Local Consistency - time-dependent case). For a given scheme of
the form (7.2), it is possible to find a consistent approximation of the unknown uh(x, y),
and of the flux Fh(x, y) = (~au)h(x, y), such that ∀E ∈ Th

∑

i∈E

(∑

j∈E

mE
ij

duj
dt

+ φEi

)
=

∫

E

(∂uh
∂t

+ ∇ · Fh
)
dx dy (7.3)

One can easily show that this consistency assumption leads to

∑

i∈E

βdτi = 1, βdτi =
1

|E|
∑

j∈E

mE
ij (7.4)

As usual, the properties of scheme (7.2) are characterized by the L∞ and energy sta-
bility of the discrete solutions, as well as by the accuracy of the approximation. Con-
cerning the L∞ stability, one can argue that if the right hand side of (7.2) defines a
LED scheme (in the sense of proposition 4.1.1), and if the mass-matrix is an M-matrix,
then, upon its inversion, one would end up with a scheme which is still LED, due to
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7.1.1. An improved prototype for unsteady simulations

the positivity of the entries of the inverse of Mdτ . This can be used to characterize
the energy stability of the discretization, as well. Of course, as a particular case we
can consider the LED schemes presented in the previous chapters, for which the mass-
matrix is diagonal with positive entries. However, a general characterization of the
stability of the solutions of (7.2) is harder than for (4.1) and can be done on a case by
case basis.

While no general results are reported concerning the stability of (7.2), we can char-
acterize it accuracy in a general fashion. In particular, proceeding as in §4.4.1, §4.4.2
and §4.4.3, one can prove that

Proposition 7.1.1. A scheme of the form (7.2) verifying the local consistency (7.3) for
a continuous second-order accurate approximation of the flux Fh and of the unknown
uh, is second-order accurate in space if

∑

j∈E

mE
ij

duj
dt

+ φEi = O(h3) (7.5)

Proof. Omitted (see §4.4.1, §4.4.2 and §4.4.3).

It is clear that the extra coupling introduced by the mass-matrix allows to construct
schemes satisfying (7.5). We give hereafter two examples of such schemes. The first
shows that (4.1) encompasses FE discretizations of (7.1). We then present a whole class
of RD schemes satisfying the accuracy requirement. Starting from the last example
we will then introduce the space-time framework used in the thesis. We recall that,
while the introduction of the mass-matrix allows to overcome the accuracy limitation,
it does not allow to overcome the limitations imposed by Godunov’s theorem 4.4.5.
In particular, also for (7.2), second-order schemes which also have some form of L∞

stability cannot be linear. The construction of nonlinear schemes, however, can be done
only after introducing also the time-discretization. In our case, this is achieved in the
above mentioned space-time RD framework.

7.1.1.1 Finite element schemes with mass-matrix

A well-known member of the family of schemes defined by (7.2) is the Galerkin FE
scheme obtained as (see §5.3.1, equation (5.23)):

∫

Ω

ψi
∂uh
∂t

dx dy +

∫

Ω

ψi~a · ∇uh dx dy = 0, ∀i ∈ Th (7.6)

with uh as in (3.7). After using the properties of the basis functions ψi (equation
(3.6)), recalling the analogy of §5.3.1 and using (5.7), we end up with a scheme formally
identical to (4.1) with

cEij = cGij = −kj
3
, mE

ij = mG
ij =

|E|
12




2 1 1
1 2 1
1 1 2
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One easily checks that the scheme satisfies (7.3) and (7.4). The Galerkin scheme can
be shown to respect (7.5) and has no L∞ stability properties, as in the steady case. As
before, its energy analysis is quite natural, since by construction one has

0 =
∑

i∈Th

∑

E∈Di

∑

j∈E

uim
G
ij

duj
dt

+
∑

i∈Th

∑

E∈Di

uiφ
G
i =

∫

Ω

uh
duh
dt

dx dy +

∫

Ω

uh~a · ∇uh dx dy

which finally leads to ∫

Ω

dEh
dt

dx dy +
1

2

∮

∂Ω

Eh~a · n̂ dl = 0

showing that the Galerkin scheme does not dissipate energy. The SUPG FE scheme
can be derived in a similar fashion. In particular, ∀i ∈ Th one has
∫

Ω

ψi
∂uh
∂t

dx dy +

∫

Ω

ψi~a · ∇uh dx dy +
∑

E∈Th

∫

E

τ ~a · ∇ψi
(∂uh
∂t

+ ~a · ∇uh
)

= 0 (7.7)

As before, we obtain a scheme formally identical to (7.2) with

cSUPG
ij = −

(1

3
+ τ

ki
2|E|

)
kj , mSUPG

ij =
1

12




2|E| + 2k1 |E| + 2k1 |E| + 2k1

|E| + 2k2 2|E| + 2k2 |E| + 2k2

|E| + 2k3 |E| + 2k3 2|E| + 2k3




The satisfaction of (7.3) and (7.4) is easily verified. As the Galerkin scheme, the SUPG
is second-order accurate and has no LED properties. Truly energy stable formulations
are obtained more generally using the Least-Squares FE approach for which we refer
to [19] and references therein. We observe that both for the Galerkin scheme and for
the SUPG scheme, formulation (4.1) is obtained by substituting to the mass-matrix of
the schemes, the lumped mass-matrix obtained as

mlumped
ij = δij

∑

k∈E

mE
ik = δij

|E|
3

This mass lumping procedure clearly introduces an inconsistency, ultimately spoiling
the spatial accuracy of the schemes, as confirmed by the analysis of §4.4.3.

7.1.1.2 A RD Taylor-Galerkin approach: consistent LW scheme

In this section we show the construction of a consistent second-order cell-vertex Lax-
Wendroff (LW) scheme on unstructured meshes. We will show that, if the hypothesis of
linear variation of the solution is consistently taken into account, the scheme has a non-
diagonal mass-matrix, thus giving further evidence of the claim made in §4.4.3, that
the LW schemes proposed in [90, 60] are first-order accurate on general triangulations.

Following [129, 148], we perform the following Taylor expansion in time:

un+1 = un +

(
∂u

∂t

)n
∆t+

∆t2

2

(
∂2u

∂t2

)n
+ O(∆t3)
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Next, for linear scalar advection, one easily finds that

∂u

∂t
= −∇ · (~a u) and

∂2u

∂t2
= ∇ ·

(
~a∇ · (~a u)

)

hence
un+1 − un

∆t
+ ∇ · (~a u)n − ∆t

2
∇ ·
(
~a∇ · (~a u)

)n
= O(∆t2)

Last expression is a semi-discrete second-order accurate equivalent of the advection
equation. Neglecting the terms of O(∆t2), and discretizing the resulting expression
with a Galerkin FE approach leads to the well-known Taylor-Galerkin scheme [66].
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Figure 7.1: LW scheme: geometry of the construction

The FS analog of the Taylor-Galerkin scheme in a generic node i, is instead obtained
upon integration of the last expression over Si:

∫

Si

un+1 − un

∆t
dx dy +

∫

Si

∇ · (~a u)n dx dy − ∆t

2

∫

Si

∇ ·
(
~a∇ · (~a u)

)n
dx dy = 0

We then rewrite the last term on the left hand side (LHS) as a line integral, and express
all the terms as the sum of contributions coming from the elements E ∈ Di:
∑

E∈Di

( ∫

Si∩E

un+1 − un

∆t
dx dy +

∫

Si∩E

∇ · (~a u)n dx dy − ∆t

2

∮

∂Si∩E

∇ · (~a u)n~a · n̂ dl
)

= 0

The second integral on the LHS is easily evaluated. If un is the second-order continuous
piecewise linear approximation given by (3.7), one has, due to the definition of Si

∇ · (~a u)n|E =
φh

|E| =⇒
∫

Si∩E

∇ · (~a u)n dx dy =
1

3
φh(un)

with φh(un) as in (5.7). With reference to figure 7.1, the last term on the LHS becomes

∆t

2

∮

∂Si∩E

∇ · (~a u)n~a · n̂ dl =
∆t

2

φh

|E|~a · (~nik + ~nij) = − ∆t

2|E|φ
h~a · ~ni

2
= −∆t ki

2|E| φ
h(un)

Finally, we have arrived to the LW scheme [129, 148]
∫

Si

un+1 − un

∆t
dx dy +

∑

E∈Di

βLW
i φh(un) = 0, βLW

i =
1

3
+

∆t ki
2|E| (7.8)
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However, we still have to evaluate the first integral. Using the consistent linear variation
of un+1 and un in space, given by (3.7), this term becomes

∫

Si

un+1 − un

∆t
dx dy =

∑

E∈Di

∫

Si∩E

un+1 − un

∆t
dx dy =

∑

E∈Di

∑

j∈E

mLW
ij

un+1
j − unj

∆t

where the consistent RD Lax-Wendroff mass-matrix mLW
ij is given by

mLW
ij =

|E|
108




22 7 7
7 22 7
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 (7.9)

Finally, the second-order accurate RD LW scheme reads

∑

E∈Di

(
mLW
ij

un+1
j − unj

∆t
+ βLW

i φh(un)

)
= 0, ∀i ∈ Th (7.10)

with mLW
ij , βLW

i and φh(un) as in (7.9), (7.8), and (5.7), respectively. The LW scheme

of [90, 60] is obtained from this consistent discretization upon the lumping of mLW
ij ,

yielding

un+1
i = uni − ∆t

|Si|
∑

E∈Di

βLW
i φh(un), ∀i ∈ Th (7.11)

As in the case of the Galerkin and SUPG schemes, the lumping on the mass-matrix
generally leads to an inconsistent first-order discretization. The success of this incon-
sistent LW scheme is attributed to an error cancellation taking place on structured
meshes, on which most accuracy studies have been presented in literature. For the
structured triangulation on the right on figure 3.1, this error cancellation has been
shown in [143], where, using Taylor series expansions in space, it has been proved that
the inconsistent LW scheme respects the modified equation

∂u

∂t
+ ~a · ∇u =

‖~a‖h2

6

(
ν2â · (â · (∇ · (â · ∇u))) − â · ∇

(
∂2u

∂x∂y
+ ∆u

))
+ O(h3,∆t3)

with ∆(·) the Laplacian operator, â = ~a/‖~a‖ and with ν the CFL parameter

ν =
‖~a‖∆t

h

This modified equation shows the second-order of accuracy of the inconsistent scheme
on the mesh of figure 3.1, and in one space dimension reduces to the well known LW
modified equation [110]

∂u

∂t
+ a

∂u

∂x
= −|a|h2

6
(1 − ν2)

∂3u

∂x3
+ O(h3,∆t3)

However, on general meshes, the error cancellation leading to this result will not occur.
This analysis show that on general meshes the inconsistent LW scheme (7.11) is not
a second-order discretization. We have to mention that this is in contraddiction with
some results published very recently in [62]. The reference contains a grid convergence
study on irregular meshes showing second-order of accuracy for scheme (7.11). The
construction of this section fails to justify the result of the reference. We also recall
that, in a different framework, the mass matrix mLW

ij was already presented in [38].
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7.1.1.3 FS schemes for time-dependent computations

Early attempts to extend the use of RD schemes to the simulation of time-dependent
problems have resorted to the analogy with Petrov-Galerkin FE schemes. This has
been done for example in [113, 71] and later in [7, 8, 120]. More recently, a general
family of mass-matrices for RD schemes, which encompasses the PG mass-matrix, has
been introduced in [62, 61]. Here, we discuss an approach that we believe being the
most faithful to the FS spirit. The technique we are going to introduce is at the basis
of the work of D. Caraeni and collaborators [33, 32, 34, 35, 36, 37, 38] and leads to the
class of second-order schemes that will be considered later.

The idea at the basis of this approach is that, given the second-order accurate approx-
imations uh and Fh, one easily shows that for a smooth solution u

∫

E

(∂uh
∂t

+ ∇ · Fh
)
dx dy =

∫

E

(∂(uh − u)

∂t
+ ∇ · (Fh −F)

)
dx dy = O(h3)

As a consequence, second-order schemes can be obtained just by distributing with
uniformly bounded distribution coefficients the residual obtained by integrating the
whole equation, time derivative included:

Proposition 7.1.2 (LP schemes - time-dependent case). Given a second-order
accurate approximation of the unknown uh and of the flux Fh, Linearity Preserving RD
schemes are second-order accurate in space in time-dependent computations, provided
that the element residual is defined as

φh =

∫

E

(∂uh
∂t

+ ∇ · Fh
)
dx dy

In particular, using (3.7) and the properties of the basis functions (3.6), one easily
arrives to a scheme of the form (7.2) with

cLP
ij = −βikj , mLP

ij =
E

3



β1 β1 β1

β2 β2 β2

β3 β3 β3




While this approach allows to recover the accuracy in space, the overall accuracy will
depend on how the time derivative is discretized. However, now a truly second-order
discretization can be obtained by selecting a time-integration scheme with accuracy at
least equal to two. The problem is to define properly the distribution coefficients βj ,
in order to be able to ensure, in unsteady computations, some form of  L∞ stability.
To do this, two things are necessary: a time-integration scheme and a technique to
construct (L∞–)stable nonlinear schemes. The first element, is needed because, if we
are to make use of the theory of positive coefficients, we need to study the properties of
the whole discretization, as the results of §4.1.1 and §4.1.2 show. The second element
is of course related to the fact that a high-order scheme has to be nonlinear to be also
stable, as stated by Godunov’s theorem. The development of such a construction is
the topic of the next sections.

123



Chapter 7. Time dependent problems: conservative space-time RD

7.1.2 A space-time framework

We construct in this section fully discrete analogs of (7.1). As always, this is done
in a generic space-time slab Ω × [tn, tn+1]. In particular, we note that any element
E ∈ Th, defines in Ω × [tn, tn+1] a prismatic subset, as depicted on figure 7.2. Using
the notation of §3.1 and §3.2, we are interested in discretizations approximating time-
dependent solutions of (7.1) in Ω × [tn, tn+1] as follows.

1

1

2

2

3

3

tn+1

tnE

E

Figure 7.2: Space-time prism in Ω × [tn, tn+1]

Definition 7.1.3 (Space-time RD scheme). A space-time Residual Distribution or
Fluctuation Splitting scheme is defined as one that, given un the continuous approxima-
tion of u at time tn (equations (3.7) and (3.9)), given the continuous space-time approx-
imation of the unknown uh(x, y, t) (equation (3.9)) with uh(x, y, tn) = un, and given
the continuous approximation of the flux Fh (3.14), computes uh(x, y, tn+1) = un+1 as
follows:

1. ∀E ∈ Th compute on the space-time prism E × [tn, tn+1] the residual

φn+1 =

tn+1∫

tn

∫

E

(∂uh
∂t

+ ∇ · Fh
)
dx dy dt (7.12)

2. ∀E ∈ Th distribute fractions of φn+1 to the nodes of E. Denoting by φn+1
i the split

residual or local nodal residual for node i ∈ E, one must have by construction

∑

j∈E

φn+1
j = φn+1 =

tn+1∫

tn

∫

E

(∂uh
∂t

+ ∇ · Fh
)
dx dy dt (7.13)

Equivalently, denoting by βi the distribution coefficient of node i:

βi =
φn+1
i

φn+1
(7.14)

124



7.1.2. A space-time framework

one must have by construction

∑

j∈E

βj = 1 (7.15)

3. ∀i ∈ Th assemble the elemental contributions of all E ∈ Di and compute the nodal
values of un+1 by solving the algebraic system

∑

E∈Di

φn+1
i = 0, ∀i ∈ Th (7.16)

As we will see, all the schemes of type (7.2), can be recast in this space-time RD
framework if the time derivative is integrated with the trapezium scheme. However,
our first objective is to characterize the accuracy of the space-time schemes.

7.1.2.1 Accuracy of space-time RD

The analysis of the accuracy of space-time residual distribution is formally identical to
what has been done in §4.4.1, §4.4.2 and §4.4.3. Consider then the solution of (7.1),
where, as explained in §3.1, the temporal domain is discretized by means of M time
levels {t1 = 0, t2, . . . , tn, tn+1, . . . , tM = tf}. We denote by ∆t a characteristic value of
the time-step, for example

∆t = min
n

(tn+1 − tn)

Given a function ϕ ∈ C1
0 (ΩT ), with ΩT = Ω × [0, tf ], we then evaluate the following

expression:

0 =

M−1∑

n=1

∑

i∈Th

ϕn+1
i

∑

E∈Di

φn+1
i =

M−1∑

n=1

∑

E∈Th

∑

i∈E

ϕn+1
i φn+1

i

where ϕn+1
i = ϕ(xi, yi, t

n+1). We then introduce the continuous piecewise linear in
space and time approximation ϕh, obtained interpolating the values ϕni and ϕn+1

i , as
in (3.9). Proceeding as in §4.4.1, §4.4.2 and §4.4.3, using the uniform boundedness of
‖∇ϕ‖ and |∂ϕ/∂t| and the consistency relation (7.13), one easily shows that, up to
terms of O(h2,∆t2), last expression can be rewritten as

∫

ΩT

ϕh
(∂uh
∂t

+ ∇ · Fh
)
dx dy dt+

M−1∑

n=1

∑

E∈Th

∑

i∈E

(ϕn+1
i − ϕ)φn+1

i = 0 (7.17)

where, ϕ is the average value of ϕh

ϕ =
1

∆t |E|

tn+1∫

tn

∫

E

ϕh dx dy dt
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Given a smooth exact solution u, we can evaluate the accuracy of the approximation
by noting that (7.17) is equivalent to

∫

ΩT

ϕh
(∂(uh − u)

∂t
+ ∇ · (Fh −F)

)
dx dy dt+

M−1∑

n=1

∑

E∈Th

∑

i∈E

(ϕn+1
i − ϕ)φn+1

i = 0

We remark now that, since ϕ ∈ C1
0 (ΩT ), hence ϕ = 0 on ∂ΩT and both ‖∇ϕh‖ and

|∂ϕh/∂t| are bounded uniformly with respect to h and ∆t, we have

∫

ΩT

ϕh
(∂(uh − u)

∂t
+ ∇ · (Fh −F)

)
dx dy dt =

−
∫

ΩT

(
(uh − u)

∂ϕh

∂t
+ ∇ϕh · (Fh −F)

)
dx dy dt = O(h2,∆t2)

which is within the approximation introduced in writing (7.17), and shows that our
scheme will be second-order accurate in space and time if

M−1∑

n=1

∑

E∈Th

∑

i∈E

(ϕn+1
i − ϕ)φn+1

i = O(h2,∆t2)

Since, the number of time levels is of O(∆t−1), while the total number of elements is
of O(h−2), last condition reduces to

(ϕn+1
i − ϕ)φn+1

i = O(h4,∆t3)

The regularity of ϕ implies that ϕn+1
i − ϕ = O(h,∆t), so that we end up with the

following accuracy condition.

Proposition 7.1.4 (Accuracy of space-time RD schemes). A space-time RD
scheme is second-order accurate in space and time if

φn+1
i = O(h3,∆t2) (7.18)

7.1.2.2 The space-time residual

The analysis of the space-time residual performed here allows to fulfill three main
objectives. First, characterize a particular class of schemes respecting (7.18) by con-
struction. Then, show that schemes of the form (7.2) fit into the space-time framework
when trapezium time integration is used. Lastly, present an entire class of linear posi-
tive space-time schemes.

126



7.1.2. A space-time framework

First we note that, for an exact smooth solution u, one has

φn+1 =

tn+1∫

tn

∫

E

(∂uh
∂t

+ ∇ · Fh
)
dx dy dt =

tn+1∫

tn

∫

E

(∂(uh − u)

∂t
+ ∇ · (Fh −F)

)
dx dy dt =

O(h4,∆t2) + O(h3,∆t3) = O(h3,∆t2)

Hence, schemes respecting (7.18) can be obtained by simply distributing the residual
with uniformly bounded distribution coefficients. Which leads to the conclusion that

Proposition 7.1.5 (Space-time LP schemes). Linearity preserving space-time
schemes are second-order accurate.

For scalar advection, the linearity of the problem allows to give a formal expression
of the residual. In particular, with the notation of §5.1.1, using the form of uh and
Fh = ~auh and the properties of the basis functions (3.6), one easily shows that [118, 8]

φn+1 =
∑

j∈E

E

3
(un+1
j − unj ) +

∆t

2

∑

j∈E

(kju
n
j + kju

n+1
j ) (7.19)

On the other hand, integration of (7.2) with the trapezium scheme (equivalent in this
linear case to CN ), gives

∑

E∈Di

∑

j∈E

mE
ij(u

n+1
j − unj ) +

∆t

2

∑

E∈Di

(
cEij(u

n
i − unj ) + cEij(u

n+1
i − un+1

j )
)

= 0

Using the consistency relations (7.3) and (7.4), one immediately shows that

∑

i∈E


∑

j∈E

mE
ij(u

n+1
j − unj ) +

∆t

2

∑

E∈Di

(
cEij(u

n
i − unj ) + cEij(u

n+1
i − un+1

j )
)

 = φn+1,

so that any scheme of the form (7.2), with trapezium time integration, can be seen as a
space-time RD scheme. In the linear case, this carries on to the space-time framework
the analogy with FE schemes. It also shows that, as a particular case of (7.2), first-
order FV schemes on the median dual cell can be recast in this formalism. More
generally, it shows the existence of an entire family of positive space-time schemes:

Proposition 7.1.6 (Linear positive space-time schemes). A positive linear space-
time RD scheme is obtained from a linear LED RD one, upon integration of (5.5) with
the trapezium scheme. The positivity of the resulting discretization is constrained by
the time-step restrictions of propositions 4.1.7 and 4.1.8.

As a last remark, we note that in the inhomogeneous case the source term is easily
included in to the discretization. In particular, using the linear approximation Sh of
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equation (3.15), the definition of the schemes remains unchanged except that now

φn+1 =

tn+1∫

tn

∫

E

(
∂uh

∂t
+ ∇ · Fh − Sh

)
dx dy dt

As before, one easily shows that in the linear case

φn+1 =
∑

j∈E

|E|
3

(un+1
j − unj ) +

∆t

2

∑

j∈E

(kju
n
j + kju

n+1
j ) − ∆t

∑

j∈E

|E|
3

Sj (7.20)

7.1.3 Geometry of space-time RD schemes

We derive an alternate expression of the residual, which will allow to give a geometrical
interpretation of the meaning of φn+1 and to define true space-time variants of the MU
schemes introduced in chapter 5. We start recasting (7.19) as

φn+1 =
∑

j∈E

(
∆tkj

2
+

|E|
3

)
un+1
j +

∑

j∈E

(
∆tkj

2
− |E|

3

)
unj

The weights multiplying the nodal values of uh are the space-time k̃j and k̂j parameters
defined in §3.3 (equations (3.28) and (3.29)). Hence

φn+1 =
∑

j∈E

k̃ju
n+1
j +

∑

j∈E

k̂ju
n
j

Introducing the space-time flux (~au, u) ∈ R
2 × R, we can show that the k̃j and k̂j

parameters are the projection of the space-time flux Jacobian (~a, 1) ∈ R
2 × R along

directions determined by the geometry of the prism E × [tn, tn+1].

1

1

2

2

3

3
tn+1/2

tn+1

tn

x
y

t

SE

Figure 7.3: Closed shell in E × [tn, tn+1]
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7.1.3. Geometry of space-time RD schemes

To do this, we consider the shell SE formed by joining the gravity centers of E at times
tn and tn+1 with the nodes of the element at time tn+1/2 = tn + (tn+1 − tn)/2. As it
can be seen from figure 7.3, this closed shell is all contained in the prism E× [tn, tn+1].
We can associate to each node of the prism the face of SE opposite to it. This is
illustrated on figure 7.4 for node 1. With reference to the figure, we introduce the
space-time vectors ñ1 and n̂1, normal to the faces of SE opposite to node 1, pointing
inward with respect to the shell, and scaled by the area of the faces.
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Figure 7.4: Space-time directions ñ1 and n̂1 used to define k̃1 and k̂1

Simple geometry shows that

k̃1 = ñ1 · (~a, 1) and k̂1 = n̂1 · (~a, 1)

Since (~a, 1) determines the direction of a characteristic line cutting through the prism,

we deduce that k̃1 is the projection of the direction of the characteristic onto ñ1, and
similarly for k̂1. We know from the analysis of the advection equation (§2.1) that for the
exact solution all the information propagates along (~a, 1). We have now the possibility
to apply this criterion to design schemes with a true space-time MU character in which
node 1 at time tn+1 receives a portion of φn+1 only if k̃1 > 0. This philosophy is at
the basis of the space-time schemes proposed in [47, 53, 44, 51], the case of prismatic
space-time elements being discussed in [51]. Clearly, the construction of figure 7.4 can

be repeated for nodes 2 and 3. All the k̃j and k̂j parameters can be written as the
projection of the space-time flux Jacobian on directions which depend on the geometry
of E × [tn, tn+1]. If, as in the scalar case, we introduce space-time inflow and outflow
states defined as

ũin =
∑

j∈E

(∑

j∈E

(k̃−j + k̂−j )
)−1

(k̃−j u
n+1
j + k̂−j u

n
j ) = −

∑

j∈E

Ñ(k̃−j u
n+1
j + k̂−j u

n
j ), (7.21)

and

ũout =
∑

j∈E

(∑

j∈E

(k̃+
j + k̂+

j )
)−1

(k̃+
j u

n+1
j + k̂+

j u
n
j ) =

∑

j∈E

Ñ(k̃+
j u

n+1
j + k̂+

j u
n
j ), (7.22)
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with

Ñ =
(∑

j∈E

(k̃+
j + k̂+

j )
)−1

, (7.23)

the residual can equivalently written as

φn+1 =
(∑

j∈E

(k̃+
j + k̂+

j )
)

(ũout − ũin). (7.24)

Last equations shows the analogy with a onedimensional balance along the charac-
teristic line ζ intersecting the prism E × [tn, tn+1] in ũout and ũin. In particular, we

remark that since the k̂j are not necessarily all negative, ũin does not necessarily lay
on the plane t = tn. Similarly, ũout does not necessarily lay on the plane t = tn+1. In
general, one will have a configuration as, for example, the one in figure 7.5. We will
immediately see the implications of this in the design of space-time MU schemes.

x

y

t

1

1

2

2

3

3 tn+1

tnE

E

ζ

ũin

ũout

Figure 7.5: Space-time inflow and outflow states

7.1.4 Space-time MU schemes

We introduce now the extension of some of the schemes presented in chapter 5, to the
space-time framework. The analysis made in §7.1.2.2 gives already a means to obtain
such an extension. Here, we will see more in detail how this works for some schemes.
In particular, from now on, we will only consider the LDA, N and limited N schemes,
since these are the ones we will use in the computations presented later. As seen in
chapter 5, these schemes have, in the case of the steady advection equation, a MU
character. The analysis of the last section, however, shows that in the time-dependent
case there is room for a different definition of upwinding, related to the space-time
nature of the discretization.

In order to give this definition, we have to enlarge the class of schemes we consider.
By construction, definition 7.1.3 gives a time-marching procedure allowing to compute
the unknown at time tn+1, given its nodal values at time tn. Suppose instead to be
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7.1.4. Space-time MU schemes

solving on the entire space-time domain at once, on a discretization which is given by
the ensemble of the space-time prisms E × [tn, tn+1], ∀E ∈ Th and ∀n = 1,M . In this
case, the fully discrete analog of (7.1) becomes

∑
E∈Di

φn,ni +
∑
E∈Di

φn,n+1
i = 0, ∀i ∈ Th, ∀n = 2,M − 1

∑
E∈Di

φM,M
i = 0, ∀i ∈ Th

where ∀E ∈ Th and ∀n = 1,M − 1
∑

j∈E

(φn,nj + φn+1,n
j ) = φn,

∑

j∈E

(φn,n+1
j + φn+1,n+1

j ) = φn+1

so that φn,n+1
i represents the fraction of φn+1 distributed to node i at time tn. A

scheme will be space-time-MU if

Definition 7.1.7 (Space-time-MU scheme). A FS scheme is space-time multidi-
mensional upwind if in the prism E × [tn, tn+1]

k̃+
j = 0 =⇒ φn+1,n+1

j = 0

k̂+
j = 0 =⇒ φn,n+1

j = 0

Proposition 7.1.8 (Space-time-MU schemes and time-marching). A space-
time-MU scheme defines a time-marching procedure if

∆t = tn+1 − tn ≤ min
E∈Th

min
j∈E

2|E|
3 k+

j

, ∀n = 1,M − 1 (7.25)

Proof. Condition (7.25) ensures that k̂+
j = 0 in all the elements of the mesh and in

all space-time slabs. Hence, in every prism of every space-time slab Ω × [tn, tn+1] a
space-time-MU scheme will never distribute any residual to the nodes at time tn, hence
decoupling the values of uh in these nodes from its values at time tn+1, thus yielding
a true time-marching procedure.

In [47, 53, 44, 51], condition (7.25) is called the past-shield condition. Surprisingly
enough, on prismatic space-time elements, the past-shield condition is exactly equiv-
alent to the time-step restriction ensuring the local positivity of the N scheme with
trapezium time integration1 (see equation (5.45)). This condition allows to recast
space-time-MU schemes into the framework of definition 7.1.3. With the exception of
§7.1.5, in the following we will always assume that (7.25) is satisfied. This also allows
to simplify our notation. In particular, from now on we will denote by φi the portion
of space-time residual distributed to node i in the space-time prism E × [tn.tn+1]. No
confusion is generated, since (7.25) guarantees that the characterization of definition
7.1.3 is valid, hence only the nodal values of un+1 are to be computed in Ω× [tn, tn+1].
Also, in element E × [tn.tn+1] we will change the notation used for the residual to φh,
so as to have uniform labeling with the previous chapters.

1or equivalently CN for a linear problem
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Chapter 7. Time dependent problems: conservative space-time RD

7.1.4.1 LDA schemes

The LP LDA scheme can be extended to the space-time framework in several different
ways. As recalled in §7.1.1.2, early attempts to use the FS approach for time-dependent
computations resorted to the analogy with finite element PG schemes, thus introducing
a consistent mass-matrix. For the LDA scheme this has been done in [113, 71] and
later in [7, 8, 120]. Here, we will not consider this formulation. Instead, we will use
the characterization of a space-time LP scheme of proposition 7.1.5. In particular, not
to introduce too much additional notation, in unsteady computations we simply refer
to the LDA scheme as to the one defined by

φLDA
i = k+

i Nφ
h = βLDA

i φh (7.26)

with N as is (5.9) and φh given by (7.19). The LDA scheme is MU but not space-
time-MU . In particular, as defined here it is equivalent to the scheme proposed in
[33, 32, 34, 35, 36, 37, 38], except that a different time integration method is used
in the references. We then consider the space-time-MU analog of this scheme, the
ST-LDA scheme defined by

φST-LDA
i = k̃+

i Ñφ
h = β̃ST-LDA

i φh (7.27)

where now, due to the satisfaction of (7.25), the parameter Ñ is given by

Ñ =
(∑

j∈E

k̃+
j

)−1

(7.28)

Both the LDA and the ST-LDA schemes are second-order accurate in space and time.
Note that, while scheme (7.26) reduces to the standard LDA scheme at steady-state,
the same is not true for the ST-LDA scheme. Concerning their energy stability, the 1D
analogy used in §5.4.1.1 no longer applies to the LDA scheme (7.26). While the spatial
discretization certainly still benefits from the MU in space, the effect of the mass-
matrix originating from the distribution of the integral of the time derivative, is not
understood. Conversely, for the ST-LDA scheme one might think of using its analogy
with the first-order upwind scheme along the characteristic line crossing the prism.
The details of this analysis are, however, unclear. For both schemes we limit ourselves
to remark that certainly a degree of dissipation related to their upwind character is
present, as confirmed by the fact that, when solving the system (7.16) with an iterative
method, good convergence is observed. Lastly, the extension to the inhomogeneous
case is simply obtained by replacing φh by the residual given in (7.20).

7.1.4.2 N schemes

A consistent extension of the N scheme to the space-time framework is of key impor-
tance for the construction of nonlinear limited schemes. As stated by proposition 7.1.6
a simple way to achieve this goal is to take scheme (5.43), combined with trapezium
time integration for (5.5). Hence, we will refer to the N scheme, as to the one defined
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7.1.4. Space-time MU schemes

by the space-time local nodal residual

φN
i =

|E|
3

(un+1
i − uni ) +

∆t

2
k+
i (uni − unin) +

∆t

2
k+
i (un+1

i − un+1
in ) (7.29)

This is the positive first-order space-time N scheme as proposed in [7, 8]. From the
analysis of chapter 5 we know that this scheme is positive if (see equation (5.44))

∆t = tn+1 − tn ≤ min
i∈Th

2|Si|∑
E∈Di

k+
i

(7.30)

while its local positivity is characterized precisely by the past-shield condition (7.25).
We recall that the energy stability of this scheme is characterized by propositions 4.2.2,
4.2.7 and 4.2.8. In particular, it is unconditionally energy stable. As the LDA scheme,
the N scheme is MU but not space-time-MU . A scheme with this property, the ST-N
scheme, is instead defined by

φST-N
i = k̃+

i (un+1
i − ũin) (7.31)

with ũin as in (7.21). The satisfaction of the past-shield condition guarantees that the
ST-N scheme (7.31) satisfies the consistency condition (7.13). Moreover, it has, as the
scheme defined by (5.43), a sub-element LED character, in space-time, which formally
ensures the satisfaction of the local space-time discrete maximum principle (4.7). As
the N and the LDA schemes, the ST-N and ST-LDA schemes are linked by

φST-N
i = φST-LDA

i + dST-N
i (7.32)

where dST-N
i is a space-time dissipation term given by

dST-N
i = k̃+

i (un+1
i − ũout) =

∑

j∈E

k̃+
i Ñ k̃

+
j (un+1

i − un+1
j ) (7.33)

The space-time nature of this term is such that the ST-N schemes is generally extremely
more dissipative than scheme (7.29). This will be confirmed by all our numerical
results. Note that, while the N scheme of [7, 8, 118] reduces to the standard N scheme
at steady-state, the same is not true for the ST-N scheme. Lastly, the extension to the
non-homogeneous case is obtained as in §5.4.4 for the N scheme, while for the ST-N
scheme we use (7.32) replacing φh by (7.20) in the definition of φST-LDA

i . The positivity
of the LDA distribution coefficients guarantee that the hypotheses of propositions 4.3.1
and 4.3.2 and of theorem 4.3.3 are verified.

7.1.4.3 Limited schemes

Linearity preserving nonlinear schemes are obtained by applying mapping (5.65) either
to the N scheme (7.29) or to the ST-N scheme (7.31). We refer to these schemes
as to the limited N scheme (LN scheme) and to the limited ST-N scheme (LST-N
scheme). While being LP by construction, these schemes inherit positivity from the
linear schemes due to the fact that

φlimited
i = γiφ

linear
i , γi ≥ 0
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Strictly speaking, however, last relation makes sense only if the linear scheme is locally
positive. This means that, even though the positivity of the N scheme would allow
the use of (7.30), when limiting the N scheme the time-step should satisfy (7.25).
Additionally, we remark that the stability of these nonlinear schemes, in terms of energy
dissipation, is even less clear than in the steady case. In the scalar case, however, when
solving the algebraic system (7.16) with an iterative method, very fast convergence is
experimented. This is a good hint of the presence of a dissipation mechanism.

7.1.5 Digression: two-layer schemes

In the previous sections we have constructed positive nonlinear LP space-time schemes.
For different reasons, these schemes, the LN and the LST-N schemes, are subject to
the time-step limitation given by (7.25). This is particularly disappointing, considering
that the schemes are by construction implicit in time. For completeness we report here
a two-layer formulation which allows to overcome this limitation. The approach is
based on an idea originally proposed in [47, 53] and later extended to the framework
described here in [118, 8] and [51]. The key of the approach is to solve (7.1) at once in
two space-time slabs Ω×[tn, tn+1] and Ω×[tn+1, tn+2] (see figure 7.6). The way in which
this allows to use arbitrary time-steps depends on the origin of (7.25). One common
cause is however the requirement that the whole discretization must ultimately lead
to a time-marching scheme. The basic idea is then to add a second row of prismatic
elements, in which one is free to break this condition (time-marching). The global
time-marching character of the discretization procedure is then guaranteed by the
satisfaction of (7.25) in the first layer, ultimately decoupling the nodal values of un+2

from the ones of un. This gives freedom in the choice of the magnitude of tn+2 − tn+1,
so that the global magnitude of the time-step used in one single time iteration, given
by tn+2 − tn, can be arbitrarily large.

1

1

1

2

2

2

3

3

3

tn+2

tn+1

tn

E

E

E

Figure 7.6: Double layer of space-time prisms
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In particular, with the notation of §7.1.4, this two-layer formulation reads
∑

E∈Di

φn+1,n+1
i +

∑
E∈Di

φn+1,n+2
i = 0 ∀i ∈ Th and t = tn+1

∑
E∈Di

φn+2,n+2
i = 0 ∀i ∈ Th and t = tn+2

with the RD consistency requirement that ∀E ∈ Th
∑

j∈E

φn+1,n+1
j = φn+1,

∑

j∈E

(φn+1,n+2
j + φn+2,n+2

j ) = φn+2

To show how this works in practice, we report the two-layer N scheme of [118, 8]:

φn+1,n+1
i =

|E|
3

(un+1
i − uni ) +

∆t1
2
k+
i (uni − unin) +

∆t1
2
k+
i (un+1

i − un+1
in )

φn,n+1
i = 0

φn+2,n+2
i =

|E|
3

(un+2
i − un+1

i ) +
∆t2

2
k+
i (un+2

i − un+2
in )

φn+1,n+2
i =

∆t2
2
k+
i (un+1

i − un+1
in )

with ∆t1 = tn+1 − tn and ∆t2 = tn+2 − tn+1. One easily checks that the distribution
adopted in the second layer, given by φn+2,n+2

i and φn+1,n+2
i , defines an unconditionally

positive scheme [118, 8]. Thus, ∆t2 can be arbitrarily chosen, so that ∆t = ∆t1 + ∆t2
can be arbitrarily large. Application of the limiting procedure leads to a positive
nonlinear LP scheme which allows to perform simulations with arbitrarily large time-
steps. In the case of the ST-N scheme one has, instead

φn+1,n+1
i = k̃+

i (∆t1)(un+1
i − ũin(∆t1))

φn,n+1
i = 0

φn+2,n+2
i = k̃+

i (∆t2)(un+2
i − ũin(∆t2))

φn+1,n+2
i = k̂+

i (∆t2)(un+1
i − ũin(∆t2))

(7.34)

where the dependence of the space-time upwind parameters on the time-step has been
added. Similarly for the inflow states, that now have to be computed using (7.21)-
(7.23). In both layers the scheme is locally positive and, since ∆t1 satisfies (7.25), it is
also consistent. Hence, (7.34) represents an unconditionally locally positive version of
the ST-N scheme. The application of the limiting procedure leads to an uncondition-
ally positive LP nonlinear scheme. As we will remark several times in the following,
the interest of this thesis is primarily the development of non-oscillatory LP schemes
for general CLs. As a consequence, efficiency issues are often kept in the future devel-
opments drawer. For this reason, most of the results we will present are obtained with
the single-layer formulation of the schemes. Some results computed with a conservative
variant of the scheme obtained by limiting (7.34) will however be shown in the chapter
devoted to the solution of the Euler equations for a perfect gas.
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7.2 Nonlinear conservation laws

We consider now the solution of

∂u

∂t
+ ∇ · F(u) = S(x, y) on ΩT = Ω × [0, tf ] ⊂ R

2 × R
+ (7.35)

where F(u) is a given nonlinear flux function. We are interested in the approximation
of time-dependent solutions of (7.35) on discretizations of ΩT which, as described in
§3.1, can be decomposed into space-time slabs Ω× [tn, tn+1] in which Ω is discretized by
means of an unstructured grid composed of triangular elements, Th. The extension of
space-time RD schemes to the solution of (7.35) can be achieved with the same criteria
discussed in chapter 6. In particular, the schemes proposed in this thesis are based
on a space-time CRD formulation which allows to solve general CLs without the need
of computing expensive mean-value linearizations of the flux Jacobian. This chapter
follows the initial developments reported in [141, 142].

7.2.1 Conservative space-time schemes

As seen in chapter 2, due to its nonlinear character, equation (7.35) can develop dis-
continuous solutions even is the initial data are smooth. These discontinuities are
characterized by the satisfaction of the Rankine-Hugoniot relations (2.18). Hence,
when approximating numerically time-dependent solutions of nonlinear CLs, one must
ensure that across discontinuities a discrete analog of the time-dependent Rankine-
Hugoniot jump conditions is verified. In the general non-homogeneous case S = 0,
this is achieved by considering the space-time schemes characterized by the following
definition.

Definition 7.2.1 (Conservative space-time RD scheme). A space-time RD scheme
is conservative if there exist a continuous space-time approximation of the unknown uh,
of the flux Fh and of the source term Sh, such that

φh =

∫

E

(uh(tn+1) − uh(tn)) dx dy +

tn+1∫

tn

∮

∂E

Fh · n̂ dl dt−
tn+1∫

tn

∫

E

Sh dx dy dt (7.36)

Note that, in the homogeneous case S = 0, by construction, the schemes defined in
this way give a consistent approximation of the local space-time conservation law form
of the problem. Thus, they ensure that a discrete analog of (2.18) is respected. As
observed in chapter 6, the application of RD schemes to solve (7.35) could be achieved
by locally linearizing its quasi-linear analog

∂u

∂t
+ ~a(u) · ∇u = 0, ~a(u) =

∂F(u)

∂u

In the case of the space-time schemes, using the linear approximation of uh given by
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(3.9), a conservative formulation would require the residual to be computed as

φh =

tn+1∫

tn

∫

E

(∂uh
∂t

+ ~a(uh) · ∇uh
)
dx dy dt =

∑

j∈E

|E|
3

(un+1
j − unj ) +

∆t

2

∑

j∈E

k
n+1

j un+1
j +

∆t

2

∑

j∈E

k
n

j u
n
j

where, the k
n+1

j and k
n

j parameters are still defined as in (3.27), except that they are
computed using the mean-value Jacobians

an+1 =
2

|E|∆t

tn+1∫

tn

∫

E

t− tn

∆t
~a(uh) dx dy dt

and

an =
2

|E|∆t

tn+1∫

tn

∫

E

tn+1 − t

∆t
~a(uh) dx dy dt

The schemes obtained in this way verify definition 7.2.1 with the choice Fh = F(uh).
This approach would lead to a straightforward extension of the schemes to the nonlinear
case. Moreover, the mean-value Jacobians could be replaced by approximate mean-
values computed using the QRD formulation of §6.2.1, and the formulas could be
slightly simplified by introducing the linear in time approximation of the flux Fh given
by (3.14). Even so, the need of computing conservative mean-value Jacobians with
sufficient accuracy leads to a considerable computational cost that, when going to
systems, becomes a bottleneck for the efficiency of the method. Clearly, things would
be much easier if the residual could be computed by approximating directly (7.36),
for example with linear approximations uh and Fh. As in the steady case, we have
arrived to an incompatibility between the use of the conservation law form of the
problem, needed to guarantee (7.36), and the need of using the flux Jacobians in the
distribution of the residual. This thesis proposes a solution to this problem based on
the extension to the space-time framework of the CRD technique described in §6.2.2.

7.2.2 CRD for time-dependent CLs

As in §6.2.2, the first element we introduce is the definition of the space-time residual.
Given the continuous approximations uh and Fh of equations (3.9) and (3.14), on
E ∈ Th we compute φh by approximating (7.36) as (see equation (6.6))

φh =
∑

j∈E

|E|
3

(un+1
j − unj ) + ∆t

3∑

lj=1

F lj · ~nlj − ∆t
∑

j∈E

|E|
3

Sj (7.37)
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where l1, l2 and l3 are the edges of E, ~nlj is the exterior normal to lj , scaled by the
length of the edge and now

F lj =
1

2

NC∑

p=1

ωpF (un(xp, yp)) +
1

2

NC∑

p=1

ωpF
(
un+1(xp, yp)

)
, (xp, yp) ∈ lj (7.38)

with un(x, y) and un+1(x, y) as in (3.9)-(3.7). For any given quadrature formula which
is at least exact for a linear variation in space of F , the residual given by (7.37)-
(7.38) yields a consistent approximation of the integral conservation law form of (7.35)
over the space-time region E × [tn, tn+1]. Its accuracy is determined by the choice of
NC, however the accuracy condition φh = O(h3,∆t2) is already fulfilled by an exact
integration assuming a linear variation of the flux in space. This guarantees that
conservative LP schemes are still second-order accurate in space and time. Clearly
(7.37)-(7.38) alone does not give an approximation of (7.35) in the nodes of the grid.
A distribution strategy has to be formulated.

7.2.2.1 LP discretizations: CRD LDA and ST-LDA schemes

The extension of linearity preserving space-time schemes to this conservative formula-
tion is as simple as in the steady case. In fact, given ~aE , any linearization of the flux
Jacobian over E × [tn, tn+1], and the corresponding upwind and space-time upwind
parameters (see equations (3.27), (3.28) and (3.29)), the distribution coefficients of a
LP schemes will satisfy by construction

∑

j∈E

βj = 1

ultimately defining a consistent splitting of (7.37)-(7.38). In particular, the schemes
obtained by using the distribution coefficients given by (7.26) and (7.27), will be referred
to as the CRD LDA scheme and the CRD ST-LDA scheme respectively.

7.2.2.2 “Monotone” discretizations: CRD N and ST-N schemes

The elements introduced in §6.2.2.2 and §7.1.4.2 allow to easily describe the CRD
formulation of the N scheme and of the ST-N scheme. In particular, we know from
§7.1.4.2 that the N scheme (7.29) corresponds to the application of the scheme (5.43)
combined with trapezium time integration. The analysis of §6.2.2.2 has instead shown
that the spatial discretization of the steady-state CRD N scheme corresponds to a
distribution of the balance over the element of the flux with the LDA distribution
coefficient plus the addition of the cross-wind dissipation (6.11). The two information
can be combined to extend the scheme of [7, 118, 8] to this conservative space-time
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7.2.2. CRD for time-dependent CLs

framework. In particular, introducing the quantities (see equation (7.38))

Fn =
3∑

lj=1

NC∑
p=1

ωpF (un(xp, yp)) · ~nlj −
∑
j∈E

|E|
3

Sj

Fn+1 =
3∑

lj=1

NC∑
p=1

ωpF
(
un+1(xp, yp)

)
· ~nlj −

∑
j∈E

|E|
3

Sj

(7.39)

and

dni =
∑

j∈E

k+
i Nk

+
j (uni − unj ), dn+1

i =
∑

j∈E

k+
i Nk

+
j (un+1

i − un+1
j ) (7.40)

in unsteady computations, we will refer to the CRD N scheme as to the one defined by

φN−CRD
i =

|E|
3

(un+1
i − uni ) +

∆t

2
βLDA
i Fn +

∆t

2
βLDA
i Fn+1 +

∆t

2
(dni + dn+1

i ) (7.41)

where βLDA
i is given by (7.26). Note that in general it is possible to use different

averages of the flux Jacobian to compute the βLDA
i used to distribute Fn and Fn+1.

The same goes for dni and dn+1
i . In any case, the consistency of the distribution

defined by (7.39), (7.40) and (7.41) with the residual given by (7.37)-(7.38) can be
easily checked. The CRD formulation of the ST-N scheme is obtained by using (7.32).
In particular, we refer to the CRD ST-N scheme, as to the one defined by

φST-N−CRD
i = βST-LDA

i φh + dST-N
i (7.42)

where βST-LDA
i is given by (7.27), φh is the residual computed as in (7.37)-(7.38), and

dST-N
i is the space-time dissipation (7.33). As observed in §7.1.4.2, the satisfaction of

the past-shield condition (7.25) guarantees that the distribution defined in this way
is consistent. As the title of this section says, the conservative space-time variants of
the N scheme introduced lead to “monotone” approximations of weak solutions of CLs.
As the analysis of §6.2.2.2 shows, we cannot give a formal characterization of what we
call monotonicity. We will abuse of this terminology to indicate that in practice the
schemes yield non-oscillatory approximations of weak solutions of nonlinear CLs. This
will be proved on a wide variety of computational experiments.

7.2.2.3 Nonlinear schemes

If proving the robustness of the space-time CRD N schemes is one of our objectives,
an even more important task is to show that they can be used to produce nonlinear
LP schemes which are also monotone (in the sense described above). As in §6.4 and
§7.1.4.3, the nonlinear schemes we will consider are obtained by applying to the space-
time N schemes the mapping defined by (5.65). Due to the conservative character of the
linear schemes, the sufficient condition for the well-posedness of the mapping (equation
(5.68)) is always verified. So we can always define schemes obtained by limiting the
CRD N scheme and the CRD ST-N scheme, which we refer to as the limited CRD N
scheme (CRD LN scheme) and the limited CRD ST-N scheme (CRD LST-N scheme).
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Chapter 7. Time dependent problems: conservative space-time RD

The lack of a formal proof of the positivity of the linear schemes, as well as the negative
result of proposition 6.2.3, do not give any element to show that the nonlinear schemes
we propose have any positivity property. However, the large number of numerical
examples contained in the thesis will give enough evidence of their extreme robustness.

7.3 Computational examples

As in the previous chapters, we use some computational examples to confirm the the-
oretical constructions performed. In this chapter we present a grid convergence study
for unsteady linear advection, and the approximation of a time-dependent discontinu-
ous solution of a nonlinear CL with an exponential flux. In both cases, the algebraic
system arising from the space-time discretization (equation (7.16)) is solved with the
explicit iterative procedure:

un+1,k+1
i = un+1,k

i − δτi
|Si|

∑

E∈Di

φi(u
n+1,k
i )

where the iteration parameter δτi is computed as

δτi =
∑

E∈Di

(
∆tk+

i

2
+

|E|
3

)

The time-step has been chosen such that condition (7.25) is verified:

∆t = tn+1 − tn = 0.9 min
E∈Th

min
j∈E

2|E|
3k+
j

7.3.1 Accuracy study for linear advection

We consider the solution of the linear advection equation

∂u

∂t
+ (1, 0) · ∇u = 0 on ΩT = Ω × [0, tf ] = ([0, 2] × [0, 1]) × [0, 1]

with the initial solution given by

u0(x, y) =

{
cos2(2πr) if r ≤ 0.25
0 otherwise

, r =
√

(x− 0.5)2 + (y − 0.5)2

From §2.1 we know that the solution is constant along characteristic lines. The initial
profile is then advected in the domain, and at time tf = 1 the exact solution is given
by u = u0(x− 1, y). Our primary concern is to verify that the LP space-time schemes
indeed show second-order of accuracy. We perform a grid convergence study on a
sequence of four irregular grids with mesh sizes 1/20, 1/40, 1/60 and 1/80. The problem
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7.3.1. Accuracy study for linear advection

has been solved with the LDA, ST-LDA, LN and LST-N schemes. The accuracy is
measured using the L2 norm of the error in space

‖ǫ‖L2 =

√
1

ntot

∑

i∈Th

(ui(t = 1) − u0(xi − 1, yi))2

with ntot the total number of nodes. On the left on figure 7.7, we plot the log10 of ‖ǫ‖L2

versus the logarithm of h. On the right, we report the measured order of accuracy for
each successive refinement.

-1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3
-2.8

-2.65

-2.5

-2.35

-2.2

-2.05

-1.9

-1.75

-1.6

-1.45

-1.3

log
10

(h)

lo
g
1
0
(‖
ǫ‖
L

2
)

LDA
ST-LDA
LN
LST-N

-1.9 -1.85 -1.8 -1.75 -1.7 -1.65 -1.6

1.25

1.4

1.55

1.7

1.85

2

2.15

log
10

(h)

O
rd

er
o
f

a
cc

u
ra

cy
LDA
ST-LDA
LN
LST-N

Figure 7.7: Unsteady linear advection: grid convergence. L2 norm of the error (left)
and orders of accuracy (right)

The plot on the left picture allows to make the following observations. The curves
corresponding to the LDA scheme (solid line) and to the ST-LDA scheme (dashed line
with squares) have roughly the same slope. The ST-LDA scheme yields, on all meshes,
the smallest error. The curve corresponding to the LN scheme (solid line with circles)
has a smaller slope, however the magnitude of the errors is roughly comparable with
the one given by the LDA scheme. The curve corresponding to the LST-N scheme is
the one with the smallest slope and largest errors. The measured orders of accuracy
reported on the right picture are somehow within the standard and expected values
for the LDA, ST-LDA and LN scheme, while the accuracy of the LST-N scheme is
slightly below the expected values. In fact, both the LDA schemes give orders of
accuracy between 1.75 and 1.95, which is what is normally measured on an irregular
grid for a linear LP scheme [12, 129, 126, 118]. Similarly, the measured accuracy
for the LN scheme is between 1.45 and 1.625, which, on irregular grids, is roughly
what one would expect from nonlinear LP schemes [12, 129, 126, 118]. The LST-N
scheme, instead, shows an accuracy which is between 1.2 and 1.4 which indeed is less
than what limited RD schemes normally give, even on irregular grids. Moreover, the
magnitude of the errors for the LST-N scheme are markedly larger than the ones of
the LN scheme. The origin of this behavior is not fully understood. One element
which, we fear, determines this lack of accuracy could be a weak instability related
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Chapter 7. Time dependent problems: conservative space-time RD

to energy destabilizing mechanism discussed in §5.5.2.3. We have however no formal
evidence of this. In this case, we would expect a convergence rate closer to one or less.
Additionally, the iterative convergence of the scheme is as good as the one of the other
schemes: machine accuracy is always reached without any problem. This shows that,
as observed more than once, the stability of the limited schemes is not fully understood
and needs to be the subject of future study. Roughly similar conclusions have been
obtained by looking at the L1 and L∞ norm of the error.

A visual characterization of the accuracy of the schemes is obtained by plotting the
solutions at the final time. This is done in figures 7.8 to 7.13. For all the schemes
described in this chapter we show the results obtained on an irregular grid with h =
1/60. In the figures, on the left we report a contour plot of the solution, and on the
right, we compare the data extracted on the line y = 0.5 with the exact solution. To
allow a better comparison, in all the left pictures the same contour levels are plotted
(20 levels, from 0.01 to 1).
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Figure 7.8: Unsteady linear advection: solution of the LDA scheme. Contour plot (left)
and cut at y = 0.5 (right)
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Figure 7.9: Unsteady linear advection: solution of the ST-LDA scheme. Contour plot
(left) and cut at y = 0.5 (right)
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7.3.1. Accuracy study for linear advection

The results of the LDA and ST-LDA schemes are shown in figures 7.8 and 7.9. Both
numerical solutions are very close to the exact one. The initial peak umax

0 = 1 is
preserved and no smearing of the initial profile can be seen. This is confirmed by the
plots on the right, where we also see that small oscillations appear, and that negative
values are reached. This is expected, since the schemes are non-positive.
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Figure 7.10: Unsteady linear advection: solution of the LN scheme. Contour plot (left)
and cut at y = 0.5 (right)
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Figure 7.11: Unsteady linear advection: solution of the LST-N scheme. Contour plot
(left) and cut at y = 0.5 (right)

The results of the LN and LST-N schemes are reported in figures 7.10 and 7.11. Both
schemes keep the solution above zero, thanks to their positive character. Moreover, in
both cases the exact profile is well preserved with little smearing. However, the schemes
are unable to preserve the initial peak. It is worth noting that in the result obtained
with the LN scheme the maximum value of the solution is 0.938, which is considerably
closer to the exact value than the 0.89, given by the LST-N scheme. The line plots, on
the right in the figures, confirm that the LN scheme gives a better approximation of
the solution. These observations confirm the results of the grid convergence study.
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Lastly, we consider the results obtained with the linear N and ST-N schemes, reported
on figure 7.12 and 7.13, respectively. In both cases, the solution is kept positive but at
the price of a considerable smearing of the initial profile. The maximum value of the
solution is well below 1. This is not surprising, since the schemes are not LP , hence at
best first-order accurate. What is interesting to note is that the ST-N scheme shows a
much more dissipative character than the N scheme. This is clearly seen by the contour
plots of the solution. The ST-N scheme almost completely dissipates the initial profile,
as shown from the fact that very few contour lines are present on the left picture on
figure 7.13. Recall that in all the plots, these lines indicate the position of 20 fixed and
equally spaced values of the solution, between 0.01 and 1. Only a few levels close to
0.01 can be seen in the contour plot relative to the ST-N scheme, indicating that most
of the initial information is lost. Similarly, the maximum value of the solution is 0.262,
which is less than half the maximum in the solution of the N scheme.
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Figure 7.12: Unsteady linear advection: solution of the N scheme. Contour plot (left)
and cut at y = 0.5 (right)
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Figure 7.13: Unsteady linear advection: solution of the ST-N scheme. Contour plot
(left) and cut at y = 0.5 (right)
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7.3.2 A nonlinear problem

We consider now the solution of

∂u

∂t
+ ∇ · (eu, 0) = 0 on ΩT = Ω × [0, tf ] = ([−0.025, 1]× [0, 0.08]) × [0, 0.5]

with the initial solution

u0(x, y) =

{
sin(2πx) if 0 ≤ x ≤ 1
0 otherwise

In 2D space-time, this problem is identical to the 2D (space) test considered in §6.1
and §6.4. Here, the spatial domain [−0.025, 1]× [0, 0.08] is discretized with an irregular
grid with h = 1/100. Note that the problem is basically one-dimensional, however,
it can be solved on a 2D mesh. A quasi-1D solution is obtained by setting periodic
boundary conditions on the upper and lower boundary. Due to the constant spacing
of the nodes along the boundaries, this condition has been imposed in a strong nodal
sense, as described in [99]. A reference solution at time tf = 0.5 has been computed
in 1D, solving the problem with the limited Lax-Wendroff scheme of [159] on 5000 1D
cells. When applying the space-time CRD schemes described in this chapter we have
used trapezium rule in (7.38), while the flux Jacobians have been linearized as in §6.4:

~aE =
1

3

∑

j∈E

~a(un+1
j )

Probably due to the formation of a moving shock in the early times of the computation,
we were not able to obtain a solution with the LP LDA and ST-LDA schemes. We
present instead the results obtained with the CRD N and CRD ST-N schemes, and
with their limited variants, the CRD LN and CRD LST-N schemes. We compare with
the reference solution the data extracted on the line y = 0.04.

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

t = 0.5

Reference

CRD N scheme

x

u

y = 0.04

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

t = 0.5

Reference

CRD ST-N scheme

x

u

y = 0.04

Figure 7.14: Nonlinear CL with exponential flux. Solution at time t = 0.5. Data at
y = 0.04. Left: CRD N scheme. Right: CRD ST-N scheme
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Figure 7.14 shows the results obtained with the CRD N (on the left) and ST-N (on the
right) schemes. In both solutions the position of the shock is correct, which shows the
conservative character of the discretization. Moreover, both schemes yield a monotone
approximation of the discontinuity, which, however, is smeared over several cells. In
particular, the ST-N scheme gives a much wider shock layer, showing, as in the previous
problem, a larger numerical dissipation. This is attributed to the space-time character
of the ST-N scheme. Indeed, for the N scheme only the spatial discretization introduces
dissipation in the discretization, while the trapezium time integration does not have
a dissipative character, or, at least, not a strongly dissipative one (see §6.3.3.3). On
the other hand, for the ST-N scheme, temporal and spatial discretizations are coupled,
leading to the simultaneous introduction of entropy dissipation in space and time (see
equations (7.42) and (7.32)).
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Figure 7.15: Nonlinear CL with exponential flux. Solution at time t = 0.5. Data at
y = 0.04. Left: CRD LN scheme. Right: CRD LST-N scheme

The results obtained with the space-time nonlinear CRD LN and LST-N schemes are
instead reported in figure 7.15. The difference in the two solutions is absolutely negligi-
ble, both in the smooth part and across the discontinuity. The latter is monotonically
approximated and it is extremely sharp, especially considering that the computation
has been performed on a 2D mesh. Also, very good iterative convergence has been
observed for both schemes.

7.4 Summary

This chapter has extended the conservative schemes constructed in chapter 6 to a
space-time framework. This allows to obtain second-order accurate approximation of
time-dependent weak solutions of CLs. The most important elements introduced are
summarized hereafter.
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• An improved compact cell-vertex prototype for unsteady scalar advection has
been introduced and shown to overcome the accuracy limitations of the dis-
cretizations considered in the previous chapters. This is achieved by introducing
a coupling of the temporal evolution of the solution in the nodes, through a
mass-matrix;

• A fully discrete formulation for unsteady advection has been achieved by intro-
ducing a space-time RD framework. This framework encompasses all the schemes
represented by the new prototype as well as the schemes considered in the previ-
ous chapters, if the time derivative is discretized with the trapezium scheme;

• The accuracy of space-time RD schemes has been studied, giving a formal condi-
tion to achieve second-order of accuracy in space and time. Linearity preserving
space-time RD schemes have been shown to respect this condition;

• A geometrical analysis of the space-time schemes has allowed to defined a new
class of space-time-MU discretizations. These schemes incorporate a complete
coupling of spatial and temporal discretization. A condition ensuring the time-
marching character of the whole discretization has been derived. This past-shield
condition involves a time-step restriction equivalent to one ensuring the local
positivity of the N scheme with CN time-integration;

• Space-time variants of the LDA and of the N schemes have been presented. Both
schemes admit (at least) two different formulations, one which is MU only in
space (referred to as the LDA and N schemes), while the other is space-time-
MU (referred as to the ST-LDA and ST-N schemes). In the case of the N
scheme, the first formulation is simply obtained by combining the MU spatial
discretization of the N scheme presented in §5.4.2 with CN time integration.
This scheme is conditionally positive and unconditionally energy stable. The
space-time dissipation introduced by the ST-N scheme has been discussed;

• Nonlinear space-time schemes are obtained by formally applying the limiting
procedure of §5.5.2 to the N and ST-N schemes. We are not able to characterize
the energy stability of the limited space-time schemes;

• The double layer formulation of space-time RD has been recalled. This formula-
tion allows to construct unconditionally positive nonlinear schemes;

• The space-time schemes have been extended to the solution of time-dependent
nonlinear CLs using the CRD technique;

• Conservative variants of the space-time LDA and N schemes have been intro-
duced. Nonlinear schemes are obtained by limiting the space-time CRD schemes.
As in the steady case, we are not able to prove formally the positivity of the CRD
N and limited N schemes;

• A grid convergence study for unsteady linear advection confirms the expected
levels of accuracy for the LDA, ST-LDA and limited N schemes. The accuracy
of the limited ST-N scheme is slightly less than expected. The reasons are not
understood. The results on this linear problem show that the N and limited N
schemes have a markedly lower error than the ST-N and limited ST-N schemes.
The ST-N scheme shows a very large numerical dissipation;
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• The solution of a nonlinear CL with an exponential flux has been considered. The
solution involves the formation of a moving shock. The space-time CRD LDA
and ST-LDA schemes did not give any solution, due to the presence of the shock.
The space-time CRD N and ST-N schemes have confirmed their conservative
character. Moreover, they produced a monotonic approximation of the shock.
The results obtained with the space-time CRD limited N and ST-N schemes are
practically perfect: monotone and sharp capturing of the moving shock. The
differences between the two nonlinear schemes on the solution of this problem
are absolutely negligible.
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Chapter 8

Extension to systems

In Chapters 4 to 7 we have built and analyzed compact schemes for the solution of
nonlinear conservation laws on unstructured meshes. Their conservative character is
guaranteed by the use of the integral formulation of the problem for the definition of
the local element residual. This gives a flexibility and generality which allows to use
them for the solution of very nonlinear CLs without having to seek for costly conser-
vative mean-value linearizations of the flux Jacobian. While this advantage might be
of little importance for scalar equations, the case of a system of CLs is different.

We recall that a large number of fluid-mechanics phenomena can be modeled by the
nonlinear set of PDEs

∂u

∂t
+ ∇ · F(u) = S(x, y), on ΩT = Ω × [0, tf ] ⊂ R

2 × R
+ (8.1)

where now the unknown u and the source term S are m−vectors, while in two dimen-
sions F is a m × 2−tensor, m being the number of conserved quantities (e.g mass,
momentum and energy). In many cases, the dependence of F on u is highly nonlinear.
Thus, the numerical approximation of (8.1) requires the use of techniques as flexible as
possible, so that a correct approximation of its weak solutions is guaranteed. The con-
struction performed in the previous chapters has put us half-way from this objective.
We have schemes able to approximate the scalar counterpart of (8.1) on unstructured
meshes. They are as general and flexible as allowed by the problem, in the sense that
they are only constrained by the requirement of respecting the conservative charac-
ter of the model and of encompassing some kind of dissipative mechanism. This is
guaranteed by some form of upwinding of the information. Moreover, some of these
schemes guarantee a stable and non-oscillatory resolution of discontinuities while still
being second-order accurate. These features have been proved formally and with the
illustrative computational examples given in the previous chapters. This chapter shows
one possible direction that can be undertaken to fill the remaining gap: the extension
of residual distribution schemes to systems.
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Chapter 8. Extension to systems

The approach used in this thesis is probably the simplest possible, since it is based on a
formal extension of the schemes, making use of a matrix formulation [177, 178, 179]. As
we will see, while being straightforward, this approach leads to a loss of understanding
of the properties of the discretization, from a physical and from a formal point of view.
Most of the analogies used in the scalar case to analyze the schemes still hold formally
but loose their physical or geometrical meaning, while other properties are somehow
lost or need to be replaced by less rigorous arguments. On the other hand, the tools
introduced for the energy/entropy stability and accuracy analyses extend formally to
systems, allowing to shorten the presentation. We remark that other techniques can
be used to extend to systems the conservative schemes developed in this thesis. Part of
the extensive literature on RD schemes given in chapter 1 describes some of these dif-
ferent approaches, and we refer the interested reader to these references for an overview.

The chapter is divided into three main blocks plus a summary. The first part describes
the extension of the schemes to the approximation of steady-state solutions of linear
symmetric systems. The basics of the matrix formulation of the method are intro-
duced here. Little additional theoretical analysis is performed. The matrix variants
of the LDA, N and limited N schemes are introduced. Then, in the second part of
the chapter, we explain how time-dependent solutions of linear symmetric hyperbolic
systems are approximated, using a space-time matrix residual distribution technique.
In this case, we limit ourselves to present the main concepts and the space-time matrix
formulation of the LDA and N schemes, the limited schemes being constructed exactly
as in the steady case. The third part of this chapter highlights the effectiveness of the
conservative approach proposed in the thesis, showing how the schemes are applied to
the solution of (8.1). In this case, very little is possible to prove formally, and one relies
on numerical experiments to verify the properties of the method. These experiments
will be the subject of the rest of the thesis.

8.1 Matrix RD for linear symmetric systems

Consider the approximation of the steady limit of the hyperbolic system

∂u

∂t
+A1

∂u

∂x
+ A2

∂u

∂y
= S(x, y), on Ω ⊂ R

2 (8.2)

where the constant matrices A1 and A2 are symmetric. As observed in the beginning
of chapter 2, the system being hyperbolic, ∀ ~ξ ∈ R

2 the matrix

K( ~ξ ) = A1ξ1 +A2ξ2 (8.3)

admits a complete set of real eigenvalues and linearly independent eigenvectors, and
can be decomposed as in equations (2.5) and (2.6). Following the definition 5.1.1 of a
RD scheme, given Th, the unstructured discretization of the spatial domain, solutions
of (8.2) are approximated as follows [179, 178, 177]
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8.1. Matrix RD for linear symmetric systems

1. ∀E ∈ Th we compute the element residual

φφφh =

∫

E

(
A1

∂uh
∂x

+A2
∂uh
∂y

− Sh

)
dx dy (8.4)

where uh and Sh are given by (3.7) and (3.15). Using the properties of the basis
functions (3.6), the residual can be shown to be given by

φφφh =
∑

j∈E

Kjuj −
|E|
3

∑

j∈E

Sj (8.5)

where the Kjs are are given by (3.16) and are a matrix generalization of the
scalar kj parameters in (5.7).

2. ∀E ∈ Th distribute fractions of φφφh to the nodes of E. Denoting by φφφi the split
residuals or local nodal residuals, by construction we must have

∑

j∈E

φφφj = φφφh (8.6)

If there exist matrices βi such that φφφi = βiφφφ
h, then

∑

j∈E

βj = I (8.7)

with I the m×m identity matrix. The matrix βi is called a distribution matrix.

3. ∀i ∈ Th assemble the contributions from all E ∈ Di and evolve ui in time

|Si|
dui
dt

+
∑

E∈Di

φφφi = 0 (8.8)

The schemes defined by the above three steps are clearly a formal generalization of the
RD schemes of definition 5.1.1. The difference is that the unknown and the residual
are now vectors, hence a matrix formalism is needed. The complexity introduced by
this formalism, however, leaves some properties unchanged, as for example:

Proposition 8.1.1 (Matrix RD, accuracy and LP schemes). The matrix RD
schemes defined by (8.4), (8.6) and (8.8) are only first-order accurate in space in time-
dependent computations. However, they are second-order accurate at steady-state if

φφφi = O(h3)

In particular, since φφφh = O(h3), the linearity preserving schemes defined by φφφi = βiφφφ
h,

with βi uniformly bounded with respect to h and to the data of the problem, are second-
order accurate at steady-state.

The proof of this proposition is identical to the proof of the scalar condition for second-
order of accuracy (see §4.1.1, §4.4.2, §4.2.3 and [3, 9]). Similarly, the definition of a
linear scheme remains basically unchanged.
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Chapter 8. Extension to systems

Definition 8.1.2 (Linear matrix RD). A matrix RD scheme is linear if

φφφi =
∑

j∈E
j 6=i

CEij (ui − uj) − |E|
∑

j∈E

CS

ijSj

with matrices CEij and CS
ij independent of the numerical solution uh.

Another property admitting a formulation analog to the scalar case is the energy sta-
bility. In particular, for systems the equivalence lemma 4.2.3 is still valid and allows
to characterize the dissipative character of the schemes. An example of its applica-
tion will be given for the matrix N scheme. As for scalar problems, the dissipation
characteristics of the matrix RD schemes are related to a multidimensional upwinding
property. To define this property, on E ∈ Th we introduce, as in the scalar case, inflow
and outflow states defined as

uin =
(∑

j∈E

K−
j

)−1∑

j∈E

K−
j uj = −

∑

j∈E

NK−
j uj (8.9)

and

uout =
(∑

j∈E

K+
j

)−1∑

j∈E

K+
j uj =

∑

j∈E

NK+
j uj (8.10)

with K±
j given by (3.18), and having introduced the matrix (see (3.17) and (3.19))

N =
(∑

j∈E

K+
j

)−1

= −
(∑

j∈E

K−
j

)−1

=
1

2

(∑

j∈E

|Kj |
)−1

(8.11)

For the moment, we shall assume that the hyperbolicity of the linear system (8.2),
guarantees that N exists always. Using this notation, one easily shows that the residual
can be expressed as

φφφh =
(∑

j∈E

K+
j

)
(uout − uin) (8.12)

Even though (8.12) is formally identical to (5.11), it is known that if system (8.2) is
not diagonalizable, that is if A1 and A2 do not commute, then the relation between the
inflow and outflow states and the speeds associated to the eigenvalues of each Kj is
complex and does not really allow to see (8.12) as a 1D balance along precise directions
in space. However, one can still define MU schemes, where, for each node i ∈ E, the
eigenvalues of Ki are used as a reference to decide whether i receives a larger or smaller
amount of residual.

Definition 8.1.3 (MU matrix RD schemes). A matrix RD scheme is MU if

K+
i = 0 =⇒ φφφi = 0

In particular, for MU schemes one has φφφi ∝ K+
i .

Due to the coupling of the equations, we are not able to define 1-target and 2-target
triangles, all the elements being in general 3-target. Since the MU property was par-
ticularly beneficial in the 1-target situations (see propositions 5.4.2 and 6.3.5), this
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8.1.1. Matrix LDA scheme

might seem an important loss. However, we will show that also for matrix RD the
multidimensional upwinding introduces stabilizing effects, at least from the point of
view of energy dissipation.

The property which seems more difficult to analyze in the case of a system is the L∞

stability of the schemes. Not surprisingly, this reflects the fact that also for exact
solutions of (8.2), this property cannot be formulated in a rigorous way (see §2.3). We
mention that, for a linear symmetric system, a criterion allowing to characterize this
property has been recently proposed in [118, 10, 9]. Here we limit ourselves to recall
that the technique proposed in the references uses the idea that basic solutions of (8.2)
can be represented as compositions of simple waves. The authors then introduce wave
decompositions of the discrete solution uh. These decompositions can be written as

uh =

m∑

σ=1

ϕσ(x, y)rrrσ

where, given a direction ~ξ ∈ R
2, rrrσ is the σ-th eigenvector of K( ~ξ ) (equation (8.3)).

The idea is then that, when applying a linear scheme to uh, the local nodal residuals
φφφi can also be expressed as a sum of waves:

φφφi =
∑

j∈E

m∑

σ=1

cσij(ϕ
σ
i − ϕσj )rrrσ

where ϕσj = ϕσ(xj , yj) and the coefficients cσij depend on the scheme. This decom-
position, ultimately allows the authors of [118, 10, 9] to extend LED and positivity
analyses to each simple wave, thus giving a tool to formally study the stability of the
schemes.

In the following sections, we present the matrix variants of the MU LDA and N
schemes. We then discuss the construction of nonlinear matrix schemes for systems.

8.1.1 Matrix LDA scheme

The matrix variant of the LDA scheme is obtained simply by defining a distribution
matrix formally identical to (5.39). In particular, we refer to the matrix LDA scheme
as to the one defined by

φφφLDA
i = βLDA

i φφφh, βLDA
i = K+

i N (8.13)

The scheme is clearly linear, MU and LP . It has no L∞ stability properties.
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Chapter 8. Extension to systems

8.1.1.1 Energy production of the matrix LDA scheme

The discrete energy associated to the approximation uh is defined exactly as in the
scalar case. With the notation of (4.30), we have

Eh =
∑

i∈Th

uTi |Si|ui
2

=
UTD|Si|U

2

where U is an array with a block structure, the i-th block entry being ui. As in the
scalar case, one easily shows that the evolution of Eh in time can be decomposed in a
sum of elemental energy production/dissipation rates (see §4.2):

dEh
dt

=
∑

E∈Th

dE
dt

In the case of the LDA scheme, one easily shows that the local energy evolution is
governed by the following equation

dELDA

dt
= −1

2
(uout + uin)T

(∑

j∈E

K+
j

)
(uout − uin) − ǫLDA (8.14)

with

ǫLDA =
1

2
(uout − uin)T

(∑

j∈E

K+
j

)
(uout − uin)

Note that each K+
j is symmetric positive semi-definite by definition. Hence ǫLDA ≥ 0

represents a rate of energy dissipation. However, as already remarked, in the case of
matrix RD, uin and uout cannot be associated to precise spatial directions, as was
done in §5.1.1 and §5.4.1.1, hence the first term appearing on the right hand side in
the energy balance (8.14) can hardly be interpreted. It is however noteworthy, that
equation (8.14) is equivalent to the local balance of the 1D first-order CIR upwind
scheme [110]. Even though it is not clear how much physical sense equation (8.14) has,
it shows that the MU does introduce energy dissipation in the discretization.

8.1.2 Matrix N scheme

As for the LDA scheme, the matrix the N scheme is a formal generalization of its scalar
counterpart, equations (5.43), (5.48) and (5.53). In particular, we refer to the matrix
N scheme as to the one defined by

φφφN
i = K+

i (ui − uin) − βLDA
i

∑

j∈E

|E|
3

Sj (8.15)

with βLDA
i as in (8.13). The matrix N scheme is MU but is not LP . However,

in [10, 118, 9] it is proved that, in the homogeneous case, the matrix N scheme is
L∞−stable on simple-wave solutions.

154



8.1.2. Matrix N scheme

8.1.2.1 Energy stability

The analysis of the energy stability of the matrix N scheme has been initially reported
in [18] and then in [4, 9]. As in the scalar case, the local evolution of the discrete
energy Eh can be written as (see equation (5.46))

dEN

dt
= −




u1

u2

u3



T

M
N




u1

u2

u3


− 1

2

∑

j∈E

uTj Kjuj (8.16)

where M
N

is the block matrix given by (see §4.2 and §5.4.2.1, equation (5.46))

M
N

=
1

2



K1

K2

K3


N



K1

K2

K3



T

+

1

2



K+

1 0 0
0 K+

2 0
0 0 K+

3


− 1

2



K+

1

K+
2

K+
3


N



K+

1

K+
2

K+
3



T

+

1

2




−K−
1 0 0

0 −K−
2 0

0 0 −K−
3


− 1

2




−K−
1

−K−
2

−K−
3


N




−K−
1

−K−
2

−K−
3



T

(8.17)

As in the scalar case, for a linear system the second term on the right hand side in
(8.16) cancels identically when summing over all the elements of the mesh (see §5.2.1):

∑

E∈Th

∑

j∈E

uTj Kjuj =
∑

j∈Th

∑

E∈Dj

uTj Kjuj =
∑

j∈Th

uTj

( ∑

E∈Dj

Kj

)
uj = 0

By virtue of the energy equivalence lemma 4.2.3, we can limit ourselves to study the

properties of the equivalent energy operator M
N

. In [18, 4, 9] it is proved that this
operator is positive semi-definite, hence the matrix N scheme is energy stable. With a
proof identical to the scalar case, we can show that

Proposition 8.1.4 (Discrete energy stability - θ−scheme, system case). The
family of schemes represented by the θ−scheme (4.20) verify the following fully discrete
energy balance

En+1
h = Enh −∆t

(
θUn+1 + (1 − θ)Un

)T
MEh

(
θUn+1 + (1 − θ)Un

)
−(2θ−1)ǫh (8.18)

where MEh is the symmetric block matrix energy operator of the spatial discretization,
and ǫh is the discrete energy production in time, given by

ǫh =
1

2

(
Un+1 − Un

)T
D|Si|

(
Un+1 − Un

)
≥ 0 .

The time discretization has a stabilizing effect for θ > 1/2 and a destabilizing effect
for θ < 1/2. In particular, the explicit FE time discretization has the maximum en-
ergy destabilizing character and the implicit BE scheme is the most stable. The CN
scheme is the only time discretization preserving the dissipation properties of the spatial
discretization. For this reason the CN scheme is said to be energy conservative.
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Chapter 8. Extension to systems

As a result of this proposition, the matrix N scheme is unconditionally energy stable
when (8.8) is discretized with the implicit BE scheme or with the CN scheme. Lastly,
we note that the N scheme can be written as

φφφN
i = βLDA

i φφφh + dN
i , dN

i =
∑

j∈E

K+
i NK

+
j (ui − uj) (8.19)

The contribution of {dN
j }j∈E to the energy balance can be written as (see §5.4.3)

ǫN =
∑

j∈E

uTj dN
j =




u1

u2

u3



T

DN




u1

u2

u3




where DN is the block symmetric matrix (see §5.4.3, equation (5.50))

DN =



K+

1 0 0
0 K+

2 0
0 0 K+

3


−



K+

1

K+
2

K+
3


N



K+

1

K+
2

K+
3



T

(8.20)

The positive semi-definiteness of DN is proved in [18, 4, 9]. Hence, {dN
j }j∈E define

dissipation terms. In particular, the N scheme is more dissipative than the LDA scheme.

8.1.3 Nonlinear matrix RD schemes

The last missing element to extend RD schemes to the solution of (8.2) is the con-
struction of LP nonlinear schemes with L∞ stability properties. The approach used
here is the same proposed in [10, 118, 9]. In these references, the authors propose a
wave decomposition technique to analyze the L∞ stability of matrix RD schemes. This
technique, justifies the following construction of limited schemes for systems.

1. Given a direction ~ξ ∈ R
2, compute the left and right eigenvectors of K( ~ξ ) (equa-

tion (8.3)). Let {lllσ}mσ=1 and {rrrσ}mσ=1 be these eigenvectors.

2. Let {φφφ∞j }j∈E be the local nodal residuals of a linear first-order scheme which is
L∞−stable on simple waves. For σ = 1,m, compute scalar local nodal residuals
and scalar element residuals by projecting φφφ∞

j and φφφh on {lllσ}mσ=1:

ϕ∞
j,σ = lllTσφφφ

∞
j

ϕhσ = lllTσφφφ
h

3. For σ = 1,m, limit each scalar component ϕ∞
j,σ to obtain a set of nonlinear LP

scalar nodal residuals:

ϕj,σ = βj,σϕ
h
σ
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8.2. Space-time matrix RD

4. Project back the nodal residuals onto the space of conserved variables:

φφφi =

m∑

σ=1

ϕi,σrrrσ

The scheme obtained in this way is LP by construction. For a linear symmetric system,
in [10, 118, 9] it is shown that it is also L∞−stable on simple waves. Unfortunately,
differently from the scalar case (see §5.5.1.1, §5.5.1.2 and §5.5.2.3), we are absolutely
unable to characterize the energy stability properties of the schemes obtained in this
way. The only remark that can be made is that since for matrix RD schemes, even
for MU schemes, real 1-target elements are generally absent or very few, the proce-
dure described by steps 1.-4. is likely to produce the destabilizing effects described
in §5.5.2.3. As we will see, this is confirmed from the fact that, in the system case,
convergence to machine zero is never achieved for these schemes.

8.2 Space-time matrix RD

Section §8.1 has introduced the matrix formulation of residual distribution for the
approximation of the steady limit of symmetric hyperbolic systems of PDEs. Here we
consider, instead, the solution of

∂u

∂t
+A1

∂u

∂x
+A2

∂u

∂y
= S(x, y) on ΩT = Ω × [0, tf ] ⊂ R

2 × R
+ (8.21)

for tf > 0 finite. We will present a matrix formulation of the space-time RD schemes
of §7.1.2-§7.1.5. As before, the extension is done in a formal way. Very few new ideas
have to be introduced, while most of the geometrical analogies are lost. Consider then
a space-time slab Ω × [tn, tn+1]. With the notation of (3.9), given un, one computes
the nodal values of un+1 in the three following steps

1. ∀E ∈ Th compute on the space-time prism E × [tn, tn+1] the residual

φφφh =

tn+1∫

tn

∫

E

(
∂uh

∂t
+A1

∂uh

∂x
+A2

∂uh

∂y
− Sh

)
dx dy (8.22)

where uh is the space-time approximation (3.9) and Sh is the spatial approxima-
tion of the source term (3.15). Straightforward calculations show that

φφφh =
∑

j∈E

|E|
3

(un+1
j − unj ) +

∆t

2

∑

j∈E

(
Kju

n
j +Kju

n+1
j

)
− ∆t

∑

j∈E

|E|
3

Sj (8.23)

2. ∀E ∈ Th distribute φφφh to the nodes of E. Denoting by φφφi the split residuals or
local nodal residuals, by construction we must have

∑

j∈E

φφφj = φφφh (8.24)
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If there exist distribution matrices βi such that φφφi = βiφφφ
h, then

∑

j∈E

βj = I (8.25)

3. ∀i ∈ Th assemble the contributions from all E ∈ Di and compute the nodal values
of un+1 by solving the algebraic system

∑

E∈Di

φφφi = 0 (8.26)

As already observed, these schemes are a straightforward matrix extension of the scalar
schemes of definition 7.1.3. Most properties extend quite trivially. In particular, with
the same analysis of §7.1.2.1 one proves that

Proposition 8.2.1 (Accuracy of space-time matrix RD). Space-time matrix RD
schemes are second-order accurate in space and time if

φφφi = O(h3,∆t2)

Moreover, for uh, F
h and Sh given by (3.9), (3.14) and (3.15), one has

φφφh = O(h3,∆t2)

Hence, LP schemes defined by φφφi = βiφφφ
h with βi uniformly bounded with respect to h,

∆t and to the data of the problem, are second-order accurate.

While the definition of linear space-time matrix schemes is a trivial extension of defi-
nition 8.1.2, the characterization of properties such as energy and L∞ stability is quite
hard. For some schemes, simple results can be obtained by using the available tools.
However, the general study of these properties is very difficult and will not be under-
taken. Conversely, we are able to extend the definition of a space-time-MU scheme.
The analysis is identical to the one of §7.1.4. Hence, we limit ourselves to report the
main differences between the scalar case and the case of the matrix schemes.

We start by observing that if S = 0 the residual (8.23) can be equivalently written as

φφφh =
∑

j∈E

(∆t

2
Kj +

|E|
3

I
)
un+1
j +

∑

j∈E

(∆t

2
Kj −

|E|
3

I
)
unj =

∑

j∈E

(
K̃ju

n+1
j + K̂ju

n
j

)

where the matrices K̃j and K̂j have been already defined in §3.3 (equation (3.21)), and
are a matrix generalization of the Jacobians of the space-time flux of §7.3.1. Making
now use of the matrix space-time upwind parameters (3.25), we can define the space-
time inflow and outflow states (see equations (7.21) and (7.22))

ũin = −
∑

j∈E

(ÑK̃−
j un+1

j + ÑK̂−
j unj ) (8.27)
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and
ũout =

∑

j∈E

(Ñ K̃+
j un+1

j + ÑK̂+
j unj ) (8.28)

with

Ñ =
(∑

j∈E

(K̃+
j + K̂+

j )
)−1

= −
(∑

j∈E

(K̃−
j + K̂−

j )
)−1

=
1

2

(∑

j∈E

(|K̃j |+ |K̂j|)
)−1

(8.29)

Finally, the space-time residual vector φφφh can be written as

φφφh =
(∑

j∈E

(K̃+
j + K̂+

j )
)

(uout − uin) (8.30)

We have arrived to an expression formally identical to (7.24), which was used in §7.1.3 to
express an analogy with a 1D advection problem along a characteristic line intersecting
the prism E × [tn, tn+1]. As already remarked, for a system the relation between uout
and uin and the speeds associated to the eigenvalues of the space-time Jacobians is
in general very complex and one can hardly see (8.30) as a 1D balance along precise
directions in space-time. Nevertheless, we can define schemes which are upwind in the
sense that the distribution of the residual to a node i is constrained by the fact that
K̃+
j and K̂+

j must be nonzero. In particular, the definition of space-time-MU schemes
done in §7.1.4 can be formally extended to the case of the matrix schemes. We do not
repeat here the analysis but, with the notation of §7.1.4, we give its final result.

Proposition 8.2.2 (Space-time-MU matrix RD schemes and time-marching).
Space-time-MU matrix RD schemes are the ones for which on E × [tn, tn+1]

φφφn+1,n+1
i ∝ K̃+

i

φφφn,n+1
i ∝ K̂+

i

Space-time-MU matrix RD schemes define a time-marching procedure if

∆t = tn+1 − tn ≤ min
E∈Th

min
j∈E

2|E|
3 ρ(K+

j )
, ∀n = 1,M − 1 (8.31)

where ρ(·) denotes the spectral radius of a matrix.

Since we shall always assume that the past-shield condition (8.31) is verified, no con-
fusion is generated by denoting by φφφi the local nodal residual for node i. An exception
to this rule is given by the two-layer schemes of §7.1.5, for which, however, the matrix
extension can be easily obtained making use of formalism introduced here and of the
definitions of the next two sections.

8.2.1 Space-time matrix LDA schemes

Matrix variants of the LDA schemes of §7.1.4.1 are obtained by defining distribu-
tion matrices formally identical to their scalar counterparts. In particular, in time-
dependent computations we refer to the matrix LDA scheme as to the one defined by
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φφφLDA
i = βLDA

i φφφh, βLDA
i = K+

i N (8.32)

with φφφh given by (8.23). Similarly, we refer to the matrix ST-LDA scheme as to the
one defined by

φφφLDA
i = βST-LDA

i φφφh, βST-LDA
i = K̃+

i Ñ (8.33)

where Ñ is computed as

Ñ =
(∑

j∈E

K̃+
j

)−1

(8.34)

Note that, in the case of the ST-LDA scheme, this definition of Ñ renders the scheme
consistent independently on the past-shield condition. Both the LDA and the ST-LDA
schemes are linear and LP .

8.2.2 Space-time matrix N schemes

In this thesis we consider the matrix formulation of the space-time N schemes of [8, 118]
and of [51]. In particular, in unsteady computations, we refer to the matrix N scheme
as to the one defined by

φφφN
i =

|E|
3

(un+1
i − uni ) +

∆t

2
K+
i (uni − unin)

+
∆t

2
K+
i (un+1

i − un+1
in ) − ∆tβLDA

i

∑
j∈E

|E|
3

Sj

(8.35)

with uin as in (8.9) and βLDA
i as in (8.32). The matrix N scheme is linear and first-

order. Being obtained from the N scheme (8.15) with CN time integration, in the
homogeneous case it is unconditionally energy stable (see proposition 8.1.4 and [8, 118]).
Similarly, we refer to the ST-N scheme as to the one defined by the local nodal residuals

φφφST-N
i = K̃+

i (un+1
i − ũin) − βST-LDA

i

∑

j∈E

|E|
3

Sj (8.36)

with ũin as in (8.27) and βST-LDA
i as in (8.33). Note that, as in the scalar case, if the

past-shield condition (8.31) is verified, the ST-N scheme can be written as

φφφST-N
i = β

ST-LDA
i φφφh + dST-N

i , dST-N
i =

∑

j∈E

K̃+
i ÑK̃

+
j (un+1

i − un+1
j ) (8.37)

The contribution of {dST-N
j }j∈E to the energy balance can be shown to be

ǫST-N =
∑

j∈E

(
un+1
j

)T
dN
j =




un+1
1

un+1
2

un+1
3



T

DST-N




un+1
1

un+1
2

un+1
3
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where DST-N is the block symmetric matrix

DST-N =



K̃+

1 0 0

0 K̃+
2 0

0 0 K̃+
3


−



K̃+

1

K̃+
2

K̃+
3


 Ñ



K̃+

1

K̃+
2

K̃+
3




T

(8.38)

Following [18, 4, 9], one easily shows that DST-N is positive semi-definite. Hence,
{dST-N

j }j∈E define space-time dissipation terms. In particular, the ST-N scheme is
more dissipative than the ST-LDA scheme. Starting from the N and ST-N schemes,
nonlinear schemes are obtained by formally extending the procedure described in §8.1.3.

8.3 Nonlinear systems

We have finally arrived to our last stop: the approximation of weak solutions of

∂u

∂t
+ ∇ · F(u) = S(x, y), on ΩT = Ω × [0, tf ] ⊂ R

2 × R
+ (8.39)

on unstructured grids. As for scalar CLs, when discretizing (8.39) the main problem
is the nonlinearity of the relation F(u), which leads to the formation of discontinuous
solutions or to the appearance of physical instabilities. The necessity of approximating
correctly these features, generates the need of stable and accurate schemes, yielding dis-
crete equations consistent with the mathematical constraints which characterize weak
solutions: conservation, in the form of the Rankine-Hugoniot conditions (2.31), and
dissipation, in the form of an entropy inequality (2.32). Unfortunately, it is the non-
linearity of the problem which also does not allow a straightforward extension of the
schemes developed for scalar advection, as shown by the motivational example of §6.1.

To understand the higher complexity encountered when dealing with a system of non-
linear CLs we make the following observations. First of all, as anticipated in §3.2.2, we
introduce a vector of primary variables w(u), which in general is different from the set
of conserved variables u. Using this set of variables, we can write (8.39) as the system
of quasi-linear PDEs

A0(w)
∂w

∂t
+A1(w)

∂w

∂x
+A2(w)

∂w

∂y
= S(x, y) on ΩT (8.40)

where the matrices {Aj}j=0,2 are given by the Jacobians

A0(w) =
∂u

∂w
and A1(w) =

∂F

∂w
, A2(w) =

∂G

∂w

where we recall that F and G are the spatial components of F (see chapter 2). The
set of primary variables w can be chosen on different grounds. For example, we have
seen in §2.4, that nonlinear systems of practical interest are normally equipped with a
convex entropy pair (H(u),G(u)) such that weak solutions are characterized by

∂H(u)

∂t
+ ∇ · G(u) ≤ 0 , (8.41)
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with

A0 =

(
∂2H(u)

∂u2

)−1

symmetric positive definite. One possible choice for w is then the set of entropy
variables introduced in §2.4:

w(u) = v(u) =
∂H(u)

∂u

T

The symmetrization theory for first-order systems of conservation laws (see [78, 121]
and also [83, 167, 168] and references therein) ensures that under this change of variables
system (8.40) is symmetric. As confirmed by published work on the topic, the use
of the entropy variables in the approximation of (8.39) can be beneficial to obtain
discretizations with an entropy stable character (see e.g [171, 167, 5, 6, 19, 4, 95, 85]
and references therein). However, practical issues often require w to be a set of variables
which best represent the thermodynamics of the problem, as for example when dealing
with models of multi-component flows with some form of chemistry, or multi-phase
flows with phase transition. There are, in fact, a large number of other possible choices,
which depend on the application and on the physics actually modeled by (8.39). In
all the cases, the nonlinearity of the flux tensor can pose serious problems in the
discretization process. In the case of the matrix RD schemes considered here, this
can be easily shown as follows. Suppose to be seeking a solution of the steady limit
of (8.39) in the homogeneous case, by means of the matrix RD approach of §8.1. As
seen in §6.1 and §6.2, the need of correctly reproducing at the discrete level the jump
conditions (2.31), imposes that, given the approximation wh (equation (3.11))), the
residual on an element E must be equal to (see §6.1, §6.2 and definition 6.2.1)

φφφh =

∮

∂E

F(wh) · n̂ dl

Since the matrix schemes have been developed for a linear system, we can try to use
Gauss’s theorem to make the quasi-linear form (8.40) appear in the definition of φφφh:

φφφh =

∮

∂E

F(wh) · n̂ dl =

∫

E

∇ · F(wh) dx dy =

∫

E

(
A1(wh)

∂wh

∂x
+A2(wh)

∂wh

∂y

)
dx dy

If we introduce the mean-value Jacobians

A1 =
1

|E|

∫

E

A1(wh) dx dy and A2 =
1

|E|

∫

E

A2(wh) dx dy (8.42)

the linearity of wh leads to

φφφh =
∑

j∈E

Kjwj

where the Kj matrices are computed making use of the mean-value Jacobians. Last
expression is identical to (8.5), which leads to the conclusion that we can easily apply
the matrix RD schemes of §8.1. However, there is a catch, hidden in the fact that
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in general we do not know how to compute the mean-value Jacobians in closed form.
The only case in which this is easily accomplished is when the components of F are
quadratic functions of the components of w. In this case, evaluating the Jacobians
in the state given by the arithmetic average of {wj}j∈E gives exact mean-value flux
Jacobians. This fact is used in practically all the RD literature to solve the Euler equa-
tions of a perfect gas (see chapter 10), for which the flux components are quadratic
functions of the components of the Roe parameter z [56, 147]. This means that, in
this case, w must be chosen to be the Roe parameter, being this the only choice lead-
ing to conservative schemes. This represents a considerable limitation. In [4], this
limitation has been overcome with the introduction of the QRD formulation of the
matrix schemes, in which the exact mean-value Jacobians are replaced by approximate
mean-value flux Jacobians, obtained by discretizing (8.42) in NQ Gaussian points. As
discussed in §6.2.1, this approach does represent a solution to the problem, but a very
expensive one, considering that it involves the evaluation of matrix functions Aj(wh)
in several points per element. The results presented in [4] show that NQ might have to
quite large to be able to correctly approximate strong discontinuities. For example for
a Mach 3.5 blunt body Euler flow, at least 7 quadrature points per element are needed
to obtain results comparable to the ones obtained with the use of the Roe parameter.
Conversely, the CRD approach, introduced by [50] and presented in §6.2.2 and §7.2.2,
gives a framework which, while being much less mathematically sound, allows to solve
the problem in a more efficient way.

In the next section we will recall how the CRD approach is extended to the matrix
schemes of §8.1 and then discuss its extension to the space-time matrix RD schemes.

8.3.1 CRD schemes for steady systems of CLs

The analysis made in the previous chapters, and the matrix approach introduced in
§8.1 and §8.2, make easy the task of describing the extension of the CRD schemes to
systems. We consider in this section the case in which steady-state solutions of (8.39)
are sought, that is the limit tf → ∞. In this case, we proceed exactly as in §8.1, except
that the residual (step 1. in §8.1, equations (8.4) and (8.5)) is computed as follows:

φφφh =

3∑

lj=1

F
lj · ~nlj −

∑

j∈E

|E|
3

Sj with F
lj =

NC∑

p=1

ωpFh(xp, yp), (xp, yp) ∈ lj (8.43)

where l1, l2 and l3 are the edges of E, ~nlj is the exterior normal to lj , scaled by the
length of the edge, and ωp is the weight of the p-th quadrature point on lj . As the one
defined by equation (6.6) in §6.2.2, this residual is a direct approximation of

φφφh =

∮

∂E

Fh · n̂ dl −
∫

E

Sh dx dy

where the integral of Sh (equation (3.15)) has been evaluated exactly, while Fh is a
consistent, continuous approximation of the flux. In particular, from now on, we will
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assume that Fh = F(wh), with wh as in (3.11). As a consequence, we have that

Fh(xp, yp) = F(wh(xp, yp))

As remarked in §6.2.2, this choice is not necessarily optimal, in the sense that the
accuracy and consistency requirements are already satisfied by a piecewise linear ap-
proximation of the flux, which can be integrated exactly by using the trapezium rule in
(8.43). Anyway, definition (8.43) guarantees that, once a consistent distribution strat-
egy is chosen, a discrete analog of the jump conditions (2.31) is satisfied. Moreover,
provided that Fh is continuous, the schemes respect a Lax-Wendroff theorem ensuring
that, if convergent, they convergence to the correct weak solutions [6, 5, 9]. We are
now only missing a consistent definition of the local nodal residuals φφφi. This is the
subject of the next sections.

8.3.1.1 The CRD LDA scheme

As in all the other cases, once the element residual is properly defined, one can imme-
diately obtain a consistent distribution by employing a LP scheme. In the case of the
LDA scheme, this distribution is defined by

φφφLDA−CRD
i = βLDA

i φφφh, βLDA
i = K+

i (w)N(w) (8.44)

where the definitions of K+
i and N are formally identical to (3.16) and (8.11), except

that now, due to the nonlinearity of the system, they depend of how the flux Jacobians
in (8.40) are linearized. Here we observe that, since by construction we have

∑

j∈E

βLDA
j = I

and due to the conservative definition of the residual, the issue of discrete conservation
is not a problem. Hence, any arbitrary linearization of the flux Jacobian will do. In
particular, in (8.44) we have introduced the state w, an arbitrary average of wh over
the element, used to linearize A1 and A2 in (8.40). While in §8.1 the linearity of the
system has allowed to postulate the existence of N independently on the solution, in
the nonlinear case this is not possible anymore. In order for N(w) to exist, the matrix

N(w)−1 =
∑

j∈E

K+
j (w) (8.45)

must be non-singular. This condition has different consequences, depending on the
definition of F(w) = F(w(u)). In particular, for all the systems of equations consid-
ered later N(w)−1 is singular in stagnation points, that is, points in which the flow
speed vanishes. However, for a symmetrizable system, the well-posedness of the LDA
scheme has been proved in [3, 9]. From the practical point of view, this means that
in these singular points a fix has to be implemented to guarantee that, when inverting
numerically the matrix (8.45) and computing βLDA

i , meaningful results are obtained.
We recall that the CRD LDA scheme is LP , hence second-order accurate.
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8.3.1.2 The CRD N scheme

As in §6.2.2.2, we define the CRD matrix N scheme by exploiting relation (8.19). In
particular, we will refer to the CRD N scheme as to the one defined by

φφφN−CRD
i = φφφLDA−CRD

i + dN−CRD
i (8.46)

with φφφLDA−CRD
i as in (8.44), and with

dN−CRD
i =

∑

j∈E

K+
i (w)N(w)K+

j (w)(wi − wj) (8.47)

One easily checks that this definition is equivalent to the original one of [50]. Taking
w = v, the entropy variables, the local entropy production of the scheme can be derived
with a procedure formally identical to the one used in §6.3 and §6.3.2.2 (see also [4])

ΦN−CRD
H =

∫

E

vTh∇ · F(vh) dx dy + ǫN−CRD (8.48)

where, dropping for clarity the dependence of all the (symmetric) matrices on the
linearization, vh is the piecewise constant function

vh(x, y) =
∑

E∈Th

∑

j∈E

χE(x, y)K+
j Nvj

and ǫN−CRD is given by

ǫN−CRD =




v1

v2

v3



T

DN−CRD




v1

v2

v3




with DN−CRD the block symmetric matrix

DN−CRD =



K+

1 0 0
0 K+

2 0
0 0 K+

3


−



K+

1

K+
2

K+
3


N



K+

1

K+
2

K+
3



T

As in the linear case, also in this linearized case one can show that DN−CRD is positive
semi-definite [18, 4, 9], hence ǫN−CRD ≥ 0 represents an entropy dissipative term. As
remarked at the end of §6.3.2.2, the behavior of vh as h → 0 is not well understood.
Hence the balance (8.48) does not represent a stability estimate, even though it im-
plies the existence of an entropy dissipation mechanism. We recall that in [4, 9] it
is shown that the matrix N scheme obtained by using the exact mean-value Jacobian
linearization is entropy dissipative (see definition 6.3.3 and proposition 6.3.7). While
this also does not exactly correspond to entropy stability, it does imply a stronger
form of entropy dissipation. We underline that the quantity ǫN−CRD, as well as the
dissipation obtained by using the exact mean-value linearization (see equation (6.24)
in §6.3.2.2 and [4, 9]), depends on the solution via the linearized flux Jacobians used
to evaluate the K+

j matrices. Experience has shown that, in some cases, the matrix N

165



Chapter 8. Extension to systems

scheme can produce solutions which notably violate the entropy inequality: expansion
shocks. This problem has been analyzed in [155] where a cure is also proposed. The
situation is analog to what happens in one space dimension with Roe’s FV scheme
[147]. Only away from sonic points, this scheme is entropy stable [171], while a fix is
needed to carry on this property also in sonic points [171, 125, 82]. The difference with
Roe’ scheme is that in the case of the N scheme these entropy unstable solutions have a
truly multidimensional character. However the essence of the phenomenon is the same.

Concerning the L∞ stability of this scheme, we are unable to present any result. The
use of the wave decomposition approach of [10, 9, 118] does not lead anywhere close
to a stability (or instability) estimate, even using the equivalence of proposition 6.2.2.
This is mainly due to the difference between the exact mean-value Jacobians and the
ones used in the distribution. Evidence of the robustness of the CRD N scheme has
been given in [50], and will be confirmed by the numerical results of the next chapters.
Lastly, we recall that, for a symmetrizable system, the well-posedness of the N scheme
has been proved in [3, 9].

8.3.1.3 Nonlinear schemes

A conservative, nonlinear LP scheme is obtained by formally extending the procedure
of §8.1.3. The scheme obtained by applying this technique to the CRD N scheme is
referred to the CRD limited N scheme (CRD LN). Note that, due to the conservative
character of the CRD N scheme, the sufficient well-posedness condition (5.68) is veri-
fied. Concerning the entropy stability of the scheme obtained in this way, the remarks
of §8.1.3 apply here as well: we do not know how to formally characterize the dissi-
pation properties of the scheme. Conversely, its robustness and ability to preserve the
monotonicity of the solution will be proved numerically in the next chapters.

8.3.2 Space-time CRD schemes

The CRD formulation of the space-time matrix RD described in §8.2 has been initially
presented in [141, 142]. Time dependent solutions of (8.39) are approximated with the

procedure of §8.2, except that the space-time residual φφφh is defined by using the CL
form of the problem. In particular, with the notation of (3.13), (3.11) and (8.43), we
introduce the quantities

F
n =

3∑
lj=1

NC∑
p=1

ωpF (un(xp, yp)) · ~nlj −
∑
j∈E

|E|
3

Sj

F
n+1 =

3∑
lj=1

NC∑
p=1

ωpF
(
un+1(xp, yp)

)
· ~nlj −

∑
j∈E

|E|
3

Sj

(8.49)
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We then compute the space-time residual over the prismatic element E × [tn, tn+1] as

φφφh =
∑

j∈E

|E|
3

(un+1
j − unj ) +

∆t

2
(Fn + F

n+1) (8.50)

It is trivial to verify that φφφh is a direct approximation of

φφφh =

∫

E

(un+1 − un) dx dy +

tn+1∫

tn

∮

∂E

F
h · n̂ dl dt

with un+1, un and F
h as in (3.13) and (3.14), respectively. This definition alone

guarantees that, once a consistent distribution strategy of the residual is chosen, the
schemes respect a discrete analog of the jump conditions (2.31). As before, we remark
that the approximation (3.14) of the flux can be replaced by a continuous piecewise
linear one, without loss of accuracy and still retaining the basic conservative character
of the definition. In the following sections we describe the extension of the space-time
matrix LDA and N schemes of §8.1.1 and §8.1.2 to this CRD framework. Nonlinear
schemes are again obtained by a formal extension of the procedure described in §8.1.3.

8.3.2.1 Space-time CRD LDA schemes

Being LP the space-time LDA and ST-LDA schemes of §8.1.1 immediately extend to
this conservative framework. Even though we will not present numerical results with
these schemes, this extension is presented here for completeness. In particular, with
reference to a generic prismatic space-time element E× [tn, tn+1], the CRD space-time
matrix LDA scheme is the one defined by

φφφLDA−CRD
i = βLDA

i φφφh, βLDA
i = K+

i (u)N(u) (8.51)

where u is and arbitrary local average of uh over E × [tn, tn+1]. Similarly, the CRD
space-time matrix ST-LDA scheme is defined by the local nodal residual

φφφST-LDA−CRD
i = βST-LDA

i φφφh, βST-LDA
i = K̃+

i (u)Ñ(u) (8.52)

with K̃+
i (u) is formally given by (3.25), while Ñ(u) is computed according to (8.34),

which, as already remarked in §8.2.1, renders the ST-LDA consistent, independently on
the past-shield condition. Note that, while being conservative due to the definition of
φφφh, both schemes are LP and linear. They have no L∞ stability properties whatsoever.
As for the computational example of §7.3.2, we were not able to obtain results with
these schemes practically on all the tests discussed in the following chapters.

8.3.2.2 Space-time CRD N schemes

The space-time matrix N schemes are at the basis of most of the calculations we will
present. Their definition makes use of the fact that they can be written as the LP
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LDA scheme plus some dissipation terms. In particular, introducing the quantities

dni =
∑

j∈E

K+
i NK

+
j (uni − unj ), dn+1

i =
∑

j∈E

K+
i NK

+
j (un+1

i − un+1
j ) (8.53)

in time-dependent computations we refer to the CRD matrix N scheme as to the one
defined by

φφφN−CRD
i =

|E|
3

(un+1
i −uni ) +

∆t

2

(
K+
i NF

n +K+
i NF

n+1
)

+
∆t

2

(
dni + dn+1

i

)
(8.54)

with F
n and F

n+1 given by (8.49). One easily checks that this scheme corresponds to
the CRD N scheme (8.46), combined with trapezium time scheme. As shown by the
analysis of §6.3.3.3, which is easily extended to the system case, the entropy dissipation
properties of this time integration scheme are not well defined, so that nothing can be
said to this regard. However, we know from §8.3.1.2 that the terms dni and dn+1

i do
do introduce entropy dissipation. Note also that in (8.53) and (8.54) the dependence
of the matrices on the arbitrary average used to linearize the flux Jacobians has been
omitted for brevity. By construction, the scheme is consistent, hence conservative,
independently on the choice of the average. We will comment on this choice later,
when discussing the details relative to the implementation of the schemes.

We also define the following space-time matrix CRD ST-N scheme:

φφφST-N−CRD
i = K̃+

i Ñ φφφh + dST-N−CRD
i (8.55)

with
dST-N−CRD
i =

∑

j∈E

K̃+
i ÑK̃

+
j (un+1

i − un+1
j ) (8.56)

where, differently from (8.37), all the matrices depend on the linearization used for
the flux Jacobians. The analysis of §8.2.2 guarantees that dST-N−CRD

i has an entropy
dissipative character. Also in the case of the CRD ST-N scheme, the choice of the
linearization will be discussed later.

The following remarks are instead very important. First of all, we have no formal
evidence of the L∞−stable character of these schemes. This will be shown by the
numerical experiments of the next chapters. Also, we recall that, for the CRD N
scheme, the need of computing the matrix N might cause problems in stagnation
points. We recall that the well-posedness of the scheme has been proved in [3, 9].
This implies that some kind of fix has to be implemented in these singular points to
obtain meaningful results. Conversely, due to the definition of K̃j (equation (3.21)),

the parameter matrix Ñ is always well defined.

8.3.2.3 Nonlinear schemes

Conservative, nonlinear LP schemes are again obtained by formally extending the
procedure of §8.1.3. The schemes obtained by applying this technique to the CRD
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N and ST-N schemes are referred to as the CRD limited N (CRD LN) and CRD
limited ST-N (CRD LST-N) scheme respectively. Due to the conservative character
of the linear schemes, the sufficient well-posedness condition (5.68) is always verified.
The results of the following chapters show that the CRD LN and LST-N schemes are
extremely robust and do give non-oscillatory approximations of time-dependent weak
solutions of (8.39).

8.4 Summary

This chapter completes the construction of schemes for (8.39), by extending the CRD
schemes presented in chapters 6 and 7 to the solution of systems of CLs. The main
concepts introduced are summarized hereafter.

• The matrix RD formulation of [179, 178, 177] for the solution of steady linear
hyperbolic systems of PDEs has been recalled. The extension of properties such
as linearity, second-order of accuracy and MU has been described, and the matrix
LDA and N schemes have been presented. The matrix N scheme is energy stable
in the semi-discrete case, and it is unconditionally energy stable when integrated
with the implicit BE scheme and with the CN scheme;

• We recalled the L∞ stability criterion of [10, 118, 9]. According to this criterion,
the matrix N scheme is L∞ stable on simple waves. This framework is also used
to provide a technique for the construction of limited matrix RD schemes;

• For time dependent computations, a space-time matrix RD framework is intro-
duced. The extension of properties such as linearity, second-order of accuracy
and space-time-MU have been recalled. The matrix variants of the space-time
LDA, ST-LDA, N and ST-N schemes have been presented.

• The main disadvantage of the matrix RD formulation is the loss of most of
the geometrical analogies which allowed to analyzed the scalar schemes. This is
particularly true for MU and space-time-MU schemes;

• The extension to nonlinear systems is obtained using the CRD technique.
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Chapter 9

Computational details

In the three following chapters we will show the application of the matrix CRD schemes
proposed in this thesis to the solution of three different systems of CLs:

Chapter 10: Euler equations of a perfect gas As already observed in §8.3, these
equations can be solved by means of a matrix RD formulation based on a sim-
ple conservative mean-value linearization of the flux Jacobians [56], hence the
CRD formulation is not really necessary. However, this chapter allows to test our
schemes on problems which are extremely well known, and for which the litera-
ture is full of results to which one can refer to for comparison. The content of
Chapter 10 alone constitutes a large database of test-cases and results showing
the capabilities of the schemes proposed in the thesis.

Chapter 11: A two-phase flow model We consider a system of CLs which is a
rough model of homogeneous two-phase flow. The interest in this system stems
from the fact that, while being simple, it is based on thermodynamics which make
impossible the use of standard matrix RD based on a conservative linearization of
the Jacobians. This chapter shows one of the many possible fields of applications
of our schemes. Our aim is not the development of numerics for multi-phase flow,
which is in itself a challenging research field. Thus the tests considered are very
academic. However, the results of Chapter 11 show that the schemes proposed
in the thesis can be used in this field.

Chapter 12: Shallow-water equations This is a system of equations of great prac-
tical interest. In multiD, no Roe parameter can be found for these equations,
which makes the use of our conservative approach well suited. Moreover, this
application allows to prove formally and numerically the impressive advantage of
the residual approach at the basis of our work. Chapter 12 represents in itself
a very important application of our schemes.
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Chapter 9. Computational details

Due to the large variety of applications and to the fact that several different schemes
have to be tested, we feel that it is useful to give a summary of the whole discretization
procedure, before presenting and discussing the results. In the development of the
following chapters, it is hoped that these sections can be used by the reader as a
reference to clearly understand what scheme is actually being tested or referred to.
Also, this chapter allows to give some more details relative to the implementation of
the schemes. We recall that our primary objective is the development of robust residual
discretizations for the approximation of weak solutions of systems of conservation laws.
Hence, practically all the problems considered involve the formation and interaction of
strong discontinuities. For this reason, the next chapters contain no results with the
linear LP LDA schemes. For sake of clarity, the discussion of this chapter is divided into
two main parts, summarizing the discretization procedure first for steady calculations
and then for time-dependent ones, even though most of the implementation issues are
common.

9.1 Steady computations

Hereafter, we summarize in detail the solution procedure used to approximate steady-
state solutions of a system of CLs using the CRD matrix schemes of §8.3.1. We make
use of an explicit iterative scheme that, given the nodal values of an initial solution
{u0

i }i∈Th
, evolves the nodal values as follows

1. ∀E ∈ Th compute the residual using equation (8.43). In all the applications, this
formula is intended as an approximation of the contour integral of the discrete
flux Fh = F(unh) (see equation (3.11)), with u used as primary unknown. As
a consequence, in the choice of the quadrature formula, we have followed the
guidelines emerging in [23] for the evaluation of flux integrals. In particular,
a 2-points line Gaussian formula has been used. As remarked in §8.3.1, this
is not strictly necessary, since conservation and second of accuracy are already
guaranteed by the use of the trapezium rule, equivalent to the exact integration of
a linear flux. This probably causes a little overhead in computational time due to
the variable interpolation and extra flux evaluations involved. We did not study
this aspect, which could be important for the optimization of the schemes. Also
we remark that, in our experience, the use of a different set of primary unknowns
in the quadrature has little influence on the numerical output;

2. ∀j ∈ E compute the upwind parameters K+
j . To do this, we use the following

average state over E:

u =
1

3

∑

j∈E

unj

This is the simplest possible choice, from the implementation point of view. As
in the case of the flux quadrature, the choice of a different set of variables in the
average has little influence on the numerical output;

3. Distribute the residual. We distinguish between the two following possibilities:
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9.1. Steady computations

CRD N scheme In this case, we compute the local nodal residual φφφi as

φφφi = K+
i (u)N(u)φφφh +

∑

j∈E

K+
i (u)N(u)K+

j (u)(uni − unj )

To allow the computation of N(u) also in stagnation points, we add to each
diagonal entry of each K+

j (u) the quantity ǫ = 10−8. For each j ∈ E we

also store ρ(K+
j ), the largest eigenvalue of K+

j (u);

CRD limited N scheme In this case we apply the decomposition and limiting
procedure described in §8.1.3. The direction ~ξ needed for the decomposition
is taken to be the unit vector parallel to the flow speed, if the norm of the
latter is larger than 10−2, otherwise we take ~ξ = (1, 1)/

√
2. The limiting is

based on the use of mapping (5.65). For each j ∈ E we also store ρ(K+
j ),

the maximum eigenvalue of K+
j (u);

For simplicity, in the following chapters, we will omit the labeling CRD and refer
to the schemes simply as to the N and limited N (LN) schemes.

4. Boundary conditions. Depending on the problem and on the type of boundary,
we might use the following BCs

– Supersonic inlet: In steady computations, for a node i belonging to a super-
sonic inlet, this normally reduces to setting

∑

E∈Di

φφφi = 0
(
=⇒ un+1

i = uni
)

– Symmetry line: Imposed in a strong nodal sense as described in [176];

– Periodicity: Thanks to the fact that for all the grids used in this work the
distribution of the nodes along the boundaries is uniform, periodic nodes
are treated in strong nodal way, as described in [99];

– Characteristic BCs: Needed for sub-critical inlets and outlets and for inviscid
wall BCs. Imposed weakly, as described in [126];

5. ∀i ∈ Th we perform the following explicit update

un+1
i = uni − ν

λ+
i

∑

E∈Di

φφφi, λ+
i =

∑

E∈Di

ρ(K+
i ) (9.1)

where the parameter ν ≤ 1 is chosen depending on the test;

6. Compute the convergence monitor

‖Res(x)‖L1 =
1

ntot

∑

i∈Th

∣∣∣
∑

E∈Di

φφφi(x)
∣∣∣

with x a given component of u, and φφφi(x) the corresponding component of φφφi;

7. The steps 1.-6. are repeated until ‖Res(x)‖L1 is lower than a fixed threshold, or
n+ 1 larger than a fixed limit.

We remark that, while the N scheme always converges to machine accuracy in a limited
number of iterations, the LN scheme never reaches this level of convergence. This is a
well known problem of all nonlinear RD schemes [176, 3, 10].
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Chapter 9. Computational details

9.2 Time-dependent computations

In time-dependent computations, starting from the nodal values of the initial solution
{u0

i }i∈Th
, we subdivide the problem of computing the nodal values of the solution at

time tf in a series of explicit iterative loops in space-time slabs Ω × [tn, tn+1]. Each
loop, known the nodal values {uni }i∈Th

, computes {un+1
i }i∈Th

as follows.

1. Computation of the time-step ∆t = tn+1 − tn. this is done in a pre-processing
phase. In all the results of the following chapters, ∆t has been computed accord-
ing to the past-shield condition (8.31):

∆t = 0.75 min
E∈Th

min
j∈E

2|E|
3ρ(K+

j )

where the upwind parameter K+
j is computed using the average

un =
1

3

∑

j∈E

unj

2. Set un+1,0
i = uni , ∀i ∈ Th. The values un+1,k+1

i , k ≥ 0 are computed according

to the steps that follow, in which we use the notation un+1
i = un+1,k

i ;

3. ∀E ∈ Th compute the space-time residual according to (8.49)-(8.50). As for
steady computations, a 2-points line Gaussian formula is used in (8.49), using u as
primary unknown. Also for time-dependent computations we have experimentally
seen that, generally, this choice has little influence on the numerical output;

4. ∀j ∈ E compute the upwind and space-time upwind matrices K+
j and K̃+

j . In
this case, we use different averages to this purpose. In particular, depending on
the distribution scheme selected at run time, we might need to compute one (or
some) of the following matrices

K+
j (un), K+

j (un+1), K̃+
j (un+1)

where we recall that

un+1 =
1

3

∑

j∈E

un+1
j =

1

3

∑

j∈E

un+1,k
j

We add to each diagonal entry of K+
j (un) and K+

j (un+1) the quantity ǫ = 10−8;

5. Distribute the residual:
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9.2. Time-dependent computations

CRD N scheme In this case we compute

φφφi =
|E|
3

(un+1
i −uni )+

∆t

2
K+
i (un)N(un) F

n+
∆t

2
K+
i (un+1)N(un+1) F

n+1+

∆t

2

∑

j∈E

K+
i (un)N(un)K+

j (un)(uni − unj )+

∆t

2

∑

j∈E

K+
i (un+1)N(un+1)K+

j (un+1)(un+1
i − un+1

j )

with F
n and F

n+1 as in (8.49). For each j ∈ E we also store ρ(K+
j ), the

largest eigenvalue of K+
j (un+1);

CRD ST-N scheme In this case we compute

φφφi = K̃+
i (un+1)Ñ(un+1)φφφh +

∑

j∈E

K̃+
i (un+1)Ñ(un+1)K̃+

j (un+1)(un+1
i −un+1

j )

For each j ∈ E we also store ρ(K+
j );

Limited schemes The limited CRD N scheme and limited CRD ST-N scheme
are computed by applying the procedure described in §8.1.3. The direction
~ξ needed for the decomposition is taken to be the unit vector parallel to the
flow speed corresponding to un+1. If the norm of this speed is less than
10−2, we take ~ξ = (1, 1)/

√
2. The limiting is based on the use of mapping

(5.65). For each j ∈ E we also store ρ(K+
j );

For simplicity, in the following chapters, we will omit the labeling CRD and refer
to the schemes simply as to the N, ST-N, limited N (LN) and limited ST-N
(LST-N) schemes.

6. Boundary conditions. The BCs are treated as in steady-state calculations, except
that, for some Supersonic inlets, we might impose a known time-dependent nodal
value of the solution;

7. ∀i ∈ Th we perform the following explicit update

un+1,k+1
i = un+1,k

i − 0.9

λ+
i

∑

E∈Di

φφφi, λ+
i =

∑

E∈Di

(
|E|
3

+
∆t ρ(K+

j )

2

)
(9.2)

8. Compute the convergence monitor

‖Res(x)‖L1 =
1

ntot

∑

i∈Th

∣∣∣
∑

E∈Di

φφφi(x)
∣∣∣

with x a given component of u, and φφφi(x) the corresponding component of φφφi;

9. The steps 3.-8. are repeated until ‖Res(x)‖L1 is lower than a fixed threshold, or
k + 1 larger than a fixed limit;

10. If tn+1 = tn + ∆t < tf we go back to step 1.
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Chapter 9. Computational details

Concerning the iterative convergence, we observe that for the linear schemes a con-
vergence of 3 or 4 orders of magnitude is obtained in few explicit iterations (10 to
20, depending on the problem), while machine accuracy can be obtained in 30 to 40
iterations. With the nonlinear schemes 3 or 4 orders of magnitude of convergence can
be obtained in 20 to 30 iterations (depending on the problem). However, machine
accuracy is never reached. A similar behavior has been observed in [8, 120] for the
limited space-time schemes based on the conservative linearization. We also mention
that, in the framework of the space-time schemes of [47, 53], implicit iterative tech-
niques have been experimented in [65]. Generally, implicit solution strategies allow to
reach the same fixed level of convergence in less iterations. However, they are also
more expensive in terms of CPU time, due to the need of evaluating the Jacobian of
the nodal residuals. The general conclusion is that for the type of time-dependent
problems considered in next chapters, involving the propagation of discontinuities, an
explicit strategy results in a faster convergence in terms of CPU time [65].

9.2.1 Two-layer schemes

We will not describe in detail the solution procedure corresponding to the two-layer
version of the schemes (see §7.1.5), used in the few results shown in Chapter 10. The
matrix CRD formulation of these schemes can be easily obtained by combining the
definitions of §8.3.2.2 and §8.3.2.3 with the ones given in §7.1.5. The interested reader
can also refer to [51, 8]. We limit ourselves to observe that, when using this two-layer
formulation, the time-step in the second layer can computed according to two different
approaches. One approach is to fix the ratio

Q =
∆t2
∆t1

=
tn+2 − tn+1

tn+1 − tn
(9.3)

with ∆t1 computed as in step 1. of §9.2. This leads to

∆t2 = Q∆t1, ∆t = ∆t1 + ∆t2 = (1 +Q)∆t1

Alternatively, one can fix the value of the total time-step ∆t = ∆t1 + ∆t2, giving

Q =
∆t

∆t1
− 1, ∆t2 = ∆t− ∆t1

with ∆t1 computed as in step 1. of §9.2. In Chapter 10 we will present results
obtained using both the approaches.
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Chapter 10

Evaluation on the Euler
equations of a perfect gas

We consider here the Euler equations of a perfect gas, which constitute a homogeneous
system of CLs, with conserved variables ad flux given by

u =




ρ
ρu
ρv
ρE


 , F(u) =




ρu ρv
ρu2 + p ρuv
ρuv ρv2 + p
ρHu ρHv


 (10.1)

where ρ is the fluid density, ~u = (u, v) is the flow speed, E is the total energy per unit
mass, and H is the enthalpy per unit mass

H = E +
p

ρ

The system is closed by the perfect gas Equation Of State (EOS)

p = (γ − 1)ρ
(
E − ~u · ~u

2

)
(10.2)

where γ is the ratio of the specific heat coefficients, here assumed to be γ = 1.4. One
easily checks that the components of F are quadratic functions of the components of
the Roe parameter [147]

z =
√
ρ




1
u
v
H




Choosing as primary variables wh = zh, one can construct matrix RD schemes based
on an exact mean-value linearization of the Jacobians of F(z), obtained in each el-
ement E by evaluating these matrices in the arithmetic average of the nodal values
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Chapter 10. Evaluation on the Euler equations of a perfect gas

{zj}j∈E . This multidimensional conservative linearization, firstly proposed in [56], is
at the basis of most or all of the steady-state computations of flows of a perfect gas
in the RD literature. It has also been used in [8, 118, 120] and [47, 53, 44, 51] to
perform time-dependent computations using space-time matrix RD schemes. Hence,
the conservative approach proposed in this thesis is not strictly necessary to solve these
equations. However, as shown also in [50], it gives a more flexible formulation of the
schemes, while guaranteeing a correct approximation of weak solutions. The amount of
published literature proposing test-cases involving the solution of the Euler equations
is impressive. It is mainly for this reason that we discuss here the results obtained
with our schemes on a large number of well established problems, for which reference
results are available.

10.1 Steady computations

10.1.1 Mach 10 blunt body flow

In [50] the CRD matrix schemes have been already tested on quite a number of prob-
lems, showing that their performances, when solving the Euler equations, are compa-
rable to the ones of the matrix RD schemes of [56, 179, 177], based on the conservative
Roe linearization. Here, we want to add to the results of [50] one test proving the
robustness of the limited N scheme (see §9.1). In particular, we consider a Mach 10
flow about a circular cylinder. A sketch of the problem and of the spatial domain used
in the computation is reported on the left on figure 10.1.
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Figure 10.1: Mach 10 bow shock around a circular cylinder. Geometry (left) and
convergence histories (right)

Due to the symmetry of the problem, we have simulated only half of the flow, by
setting symmetry BCs on the lower boundary. The cylinder is a treated as an inviscid
wall, while the left boundary is a supersonic inlet. The computation is started from
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10.1.1. Mach 10 blunt body flow

a uniform Mach 10 flow everywhere, except on the cylinder where the speed normal
to the wall has been set to zero. The irregular mesh used for this computation has
a reference element size h = 1/50. On the right in figure 10.1, we report the explicit
convergence histories of the N and LN schemes, in terms of the residual of the density.
The iterations are performed with ν = 0.5 (see equation (9.1)). The trends observed
in the picture are standard in RD: the N scheme converges to machine accuracy in a
relatively small number of iterations, while the convergence of the limited scheme stalls
after a drop of two orders of magnitude. Depending on the test-case, one might be
able to obtain a residual drop of three or four orders of magnitude with the nonlinear
scheme, but the general behavior is well represented by the plot of figure 10.1. This is a
common feature of all nonlinear matrix RD schemes [176, 3, 10]. We remark that this
stall in convergence is not seen in the scalar case, as shown by the results of §5.6.1, §5.6.2
and §6.4. As argued in §9.1 and §9.2, this behavior could be related to a weak energy
(entropy) stability. The analysis of §5.5.2.3 shows one possible mechanism that could
lead to this effect. For steady scalar problems, however, the beneficial effects of the
MU , especially in 1-target elements (see e.g proposition 6.3.5), seem to be enough to
completely stabilize the scheme. For a system, the coupling of the equations introduced
by the matrix approach weakens the effects of the MU , while probably increasing the
number of situations in which 2-target or even 3-target elements are reverted to 1-
target by the limiting procedure, thus making the effects of the instability shown in
§5.5.2.3 more pronounced. What is more surprising is that after the stall, the solution
in correspondence of the shock does not change sensibly, most of the perturbations
being placed in the smooth regions of the flow. The capturing of discontinuities being
very stable, the origin of the problem must be sought somewhere else. This aspect is
not well understood and it definitely needs to be object of future study.

Pressure

N scheme

Pressure

LN scheme N scheme

Mach

LN scheme

Mach

Figure 10.2: Mach 10 bow shock around a circular cylinder. Pressure (left) and Mach
(right) contours obtained with the CRD N scheme and with the CRD LN scheme

We report on figure 10.2 contour plots of the pressure and Mach number computed with
the N and LN schemes. The results of the limited schemes are obtained stopping the
computation after 36000 iterations. The contours clearly indicate a stable and quite
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Chapter 10. Evaluation on the Euler equations of a perfect gas

monotonic capturing of the bow shock. We recall that in [50] the same computations
could not be run with the blended scheme proposed by Deconinck and collaborators
(see §5.5.1 and [55, 154, 155, 57]). Similar conclusions are reported in [10, 9, 118] for a
Mach 8 bow shock. In the reference, the limited N scheme gives a stable solution while
the blended scheme, in this case the one proposed in [3], is not able to handle the strong
shock. This observation suggests that the limiting technique really is effective to design
discretization with stable discontinuity capturing properties. Moreover, the contours
of the solution of the LN scheme show a sharper numerical shock. Qualitatively, our
result is comparable to the one reported in [10, 9, 118].
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Figure 10.3: Mach 10 bow shock around a circular cylinder. Pressure (left), Mach
number (middle) and density (right) distribution along the stagnation line computed
with the N scheme (top) and with the LN scheme (bottom). The solid line represents
the theoretical post-shock values.

To complete the analysis of the solution, we report on figure 10.3 the data extracted on
the stagnation line y = 0. In all the plots we also draw the line corresponding to the
post-shock values of the variables, computed using the onedimensional jump conditions.
Generally, we see that the strength of the numerical shock is correct, confirming the
conservative character of the discretization. We can also observe that the N scheme
really yields a non-oscillatory solution, while for the LN scheme a small oscillation
appears right after the discontinuity, as it can be seen from the pressure and density
plots. Given the strength of the shock, these results are judged to be extremely good.
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10.2. Time-dependent computations

10.2 Time-dependent computations

The most important contribution of this thesis is the extension of the conservative
framework of [50] to the time-dependent case. It is for this case that most of the
numerical experiments have been carried on.

10.2.1 Mach 10 moving shock

This test is meant to be a time-dependent variant of the computation of §10.1.1. We
solve the Euler equations on the spatial domain Ω = [0, 2] × [0, 0.1]. At time t = 0
we prescribe a solution corresponding to a right-moving Mach 10 shock situated at
x = 0.5. Pressure and density in the initial solution are chosen such that the speed of
the shock is equal to 10. We let the schemes compute the movement of the shock until
time tf = 0.1, corresponding to a displacement of the exact shock of a unit length. The
problem has been solved using both an irregular and a structured triangulation (see
figure 3.1) with reference element sizes h = 1/100. Periodic BCs have been imposed on
the top and bottom boundaries, so to obtain a quasi-1D solution. No visible differences
are present between the results obtained on the irregular and on the structured grid.
In figures 10.4 and 10.5 we visualize the ones obtained on the unstructured mesh with
the space-time N, ST-N, LN and LST-N schemes (see §9.2). The pictures show plots
of the data extracted along the line y = 0.05.

Firstly, we observe that the position of the exact shock is well approximated by the
linear N and ST-N schemes and perfectly reproduced by their limited variants. This
confirms the conservative character of the schemes. From the plots on figure 10.4, we
can also see that the shock layer of the ST-N schemes is wider that the one of the N
scheme. This is in agreement with the scalar results of §7.3.1 and §7.3.2: the ST-N
scheme has a more diffusive behavior. On the same figure, and on the plots on figure
10.5, we also see that in correspondence of the shock there are no oscillations, and that
the limited schemes do give a sharp capturing of the discontinuity. However, all the
plots also show the presence of perturbations moving upstream of the shock. We can see
two of them in the density profiles, and only one of them in the pressure distributions.
The only exception to this is the ST-N scheme for which the two perturbations in the
density profile are blurred into a unique feature (see picture on the bottom-right on
figure 10.4), due to the diffusive character of the scheme.

These perturbations are clearly due to a discretization error at t = 0. To confirm this
hypothesis we have run the simulations on finer meshes. Qualitatively, the results of
this analysis are summarized on figure 10.6. The left picture shows the results obtained
on structured triangulations with the linear N scheme. We plot the nodal values of the
density in the middle of the domain, for mesh sizes h = 1/100 and h = 1/500. As the
mesh is refined, a reduction of the error is indeed observed. However, due to the fact
that the error is generated at t = 0 in correspondence of the initial singularity, this
reduction is considerably less than of O(h). We clearly see that the scheme splits the
error in components moving along the characteristic of the Euler equations. In fact,
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Chapter 10. Evaluation on the Euler equations of a perfect gas

one easily checks that the perturbation closer to the origin of the x-axis moves with
speed uL−aL, being aL the speed of sound after the shock. We conclude that this must
be the projection of the error generated at t = 0 on the characteristic corresponding
to the slow acoustic speed. Similarly, the second perturbation moves with speed uL.
Hence it is the projection of the error on the entropy field, as confirmed by its absence
in the pressure distributions. Probably a third component of the error, which we have
been unable to detect, is also present.
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Figure 10.4: Mach 10 shock. Pressure (top) and density (bottom) profiles at time
t = 0.1. Data extracted at y = 0.05. N scheme (left) and ST-N scheme (right)

Similar conclusions can be drawn from the right picture in figure 10.6 where the re-
sults obtained with the LN scheme on a structured triangulation with h = 1/500 are
reported. Comparing this result with the one on figure 10.5, we see again that the
reduction of the error is indeed small1. The analysis has led to similar results for the
ST-N and LST-N schemes. These effects, however, are not induced by the conservative
approach proposed here. We performed the same computations using the space-time
N scheme of [8, 118], based on the conservative Roe linearization, obtaining results
identical to the ones on the left in figure 10.4, given by the CRD N scheme. A similar

1The error on the finer mesh is about half of the error on the coarse one
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10.2.1. Mach 10 moving shock

behavior is observed also for the space-time schemes of [46, 53, 47]. We attribute the
appearance of this error to the difference between the exact jump relations and their
piecewise linear approximation on the mesh actually used by the schemes. This differ-
ence produces the small amplitude perturbations seen in the results when applying the
schemes to the initial exact shock. Other explanations could be possible [15, 101] and
this behavior certainly deserves a more detailed investigation.
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Figure 10.5: Mach 10 shock. Pressure (top) and density (bottom) profiles at time
t = 0.1. Data extracted at y = 0.05. LN scheme (left) and LST-N scheme (right)

We recall that these schemes are based on ideas which are multidimensional variants
of the upwinding incorporated by the first-order Roe scheme [147]. It would not be
surprising to discover that, in a multidimensional setting, they show flaws similar to
the ones suffered by Roe’s scheme [135]. Unfortunately, their algebraic complexity is
such that an analytical investigation is prohibitively complex. At the moment, our
experience indicates a very robust behavior. The results of this section confirm this
robustness. In particular, we underline once more the monotone approximation of the
discontinuity given by the nonlinear LN and LST-N schemes. This can be clearly seen
in the plots on figure 10.5 and in the plot of the fine mesh solution on the right in figure
10.6. Considering the strength of the shock simulated, these are very good results.
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Figure 10.6: Mach 10 shock: error propagation. N (left) and LN (right) scheme
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Figure 10.7: 2D Riemann Problem. Density contours at time t = 0.2. Top: N (left)
and LN scheme (right) - Bottom: ST-N (left) and LST-N scheme (right)
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10.2.2. A 2D Riemann problem

10.2.2 A 2D Riemann problem

This problem is taken from [8]. At time t = 0 the velocity is set to zero, and the
following discontinuity in pressure and density is imposed:

p =

{
1 if xy ≥ 0
0.1 otherwise

, ρ =

{
1 if xy ≥ 0
0.1 otherwise

We compute the solution up to time t = 0.2 with the N, ST-N, LN and LST-N schemes,
on an unstructured discretization of the spatial domain [−1, 1]2 with h = 1/100 as in
[8]. Symmetry BCs are imposed on all the boundaries. Contour plots of the computed
density field are given in figure 10.7, while a comparison of the the numerical solutions
on the lower boundary of the domain with the exact onedimensional solution of the
problem is reported in figure 10.8.
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Figure 10.8: 2D Riemann Problem. Density (left) and pressure (right) at t = 0.2 and
y = −1.0. Top: N and LN schemes - Bottom: ST-N and LST-N schemes
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Chapter 10. Evaluation on the Euler equations of a perfect gas

All the discontinuities are computed monotonically, they have the proper strength, and
are in the correct positions as it can be clearly seen in figure 10.8. From the figures,
one notes a striking difference between the results given by the linear ST-N scheme
and the nonlinear LST-N one. Similarly, a remarkable difference is observed between
the solutions of the linear N and ST-N schemes. Clearly, the ST-N scheme yields the
worst results in terms of accuracy. The plots on the bottom on figure 10.8 show that
this scheme blurs the three waves almost into a unique smooth curve. These results
indicate that the space-time character of the upwinding that this scheme incorporates
leads to an excess of numerical diffusion. What is surprising is that, despite of the
impressive difference between the N and ST-N schemes, the results of the LN and LST-
N schemes are nearly identical. In particular, both produce a very crisp resolution of
the wave interactions and a non-oscillatory approximation of the discontinuities. This
is very interesting since it suggests that, in the computation of flows containing mainly
strong discontinuities, the results given by a limited scheme are qualitatively almost
independent on the nature of the underlying linear scheme. This shows the effectiveness
of this technology to construct truly shock capturing discretizations. The overall quality
of our results is comparable to the one achieved in [8].

10.2.3 Double Mach reflection

This problem, initially proposed in [187], constitutes a severe test for the robustness and
the accuracy of schemes designed to compute discontinuous flows containing complex
structures. It consists of the interaction of a planar right-moving Mach 10 shock with
a 30◦ ramp. We use a frame of reference in which the x axis is aligned with the ramp.
The computational domain is then the square [0, 3]× [0, 0.8], with the ramp starting at
x = 1/6. In the initial solution, the shock forms a 60◦ angle with the x-axis (see figure
10.9). The simulation has been run on an unstructured triangulation with h = 1/100
until time tf = 0.2. The exact motion of the shock is imposed on the top boundary.
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Figure 10.9: Double Mach reflection: sketch of the initial solution
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10.2.3. Double Mach reflection

As it is customary for this test, we plot the contours of the density field. In figure 10.10
three results are shown. On the top we report the solution obtained with a second-order
cell-centered FV scheme using Roe’s numerical flux, linear reconstruction and limiter
proposed in [24], and a second-order Runge-Kutta time integrator. On the middle and
bottom pictures, we show the results obtained (on the same mesh) with the nonlinear
LN and LST-N schemes respectively. All the schemes resolve quite well the interaction
between the shock and the ramp. However, the resolution of the contact emanating
from the triple point and of the jet of fluid on the wall improves going from the top
to the bottom picture, the FV scheme giving the worst result. The two limited RD
schemes show a sharper capturing of these features and of the shock. For this test, the
nonlinear LN scheme gives the best result. However, to be completely fair to the FV
scheme, we have to mention that for this type of problems the RD computations take
considerably more CPU time, due to their implicit character.
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Figure 10.10: Double Mach reflection. Density at time t = 0.2. Cell-centered FV
scheme (top), LST-N scheme (middle) and LN scheme (bottom)
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Chapter 10. Evaluation on the Euler equations of a perfect gas

10.2.3.1 Grid refinement with the LN scheme

Strong slip lines in inviscid flows can lead to the formation of a Kelvin-Helmholtz
(KH) instability. Accurate numerical methods are able to reproduce the formation of
such an instability without dissipating it. This has motivated several authors (see e.g.
[42, 158]) to perform grid refinement studies on problems containing strong contact
discontinuities, such as the double Mach reflection. We have conducted such a study
with the LN scheme, which is the most performing among the nonlinear RD schemes
we propose. The results are visualized in figure 10.11, where the contours of the density
in the vicinity of the triple point are plotted.

On the top pictures in the figure, we report three RD solutions, obtained on irregular
meshes with h = 1/100 (top left), h = 1/200 (top right) and h = 1/400 (second row).
As the mesh is refined, the LN scheme remains stable across shocks. The solutions
on the finer meshes are quite clean, despite of the irregularity of the grids. Also, the
solution obtained for h = 1/200 already gives a glimpse of the formation of the KH
instability. This instability is instead clearly visible on the solution obtained on the
finest mesh, even though it has not broken into its typical roll-ups, yet.

On the last row on figure 10.11, we report, for comparison, a solution obtained with a
second-order Q1 −DG scheme (left) on a structured mesh composed of quadrilaterals
(∆x = ∆y = 1/480), and the solution obtained with a third-order WENO scheme on
a triangulation with h = 1/400 (right). The DG and WENO results are taken from
[42] and [158], respectively. Comparing the results on the finest meshes, we see that of
all the methods the WENO scheme, while being third-order accurate, gives the poor-
est resolution of the interaction. This proves that schemes having a residual character
introduce a markedly lower error. This even with respect to WENO discretizations hav-
ing a higher accuracy, hence a faster reduction of the error with the mesh size. Note
also that the LN scheme gives already a solution comparable to the WENO scheme
on the medium mesh (h = 1/200). Conversely, the DG and the RD solutions have a
similar quality. This taking into account that the DG result is obtained on a structured
mesh with considerably smaller element sizes1.

These results indicate that the RD technology developed here, and by other authors
[8, 10], has the necessary accuracy and robustness to compete with the DG schemes.
However, while our results show a good potential, the design of higher-order discretiza-
tions, which is relatively natural in the DG framework [42], is still an open issue. Even
though encouraging preliminary results do exist [12, 9, 139], they show the necessity of
a better understanding of the nonlinear mapping technique, used here and in the refer-
ences to construct non-oscillatory high-order schemes. Moreover, very high-order DG
schemes benefit, in terms of efficiency, from the possibility of using a Lax-Friederichs-
type dissipation as main building block of their stabilization. Further understand-
ing of the limiting technique could allow this also for RD schemes (see §6.2.2.3 and

1the reduction of the mesh size from 1/400 to 1/480 implies an increase of the number of nodes
roughly of the 44%!
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10.2.3. Double Mach reflection

[10, 9, 118]). We believe that a successful application of this technique will be the key
to the success of RD. The limited schemes, in fact, have a true residual character,
while being built on ideas allowing the preservation of the local monotonicity of the
solution. The understanding of this procedure will be fundamental for the construction
of very high-order RD discretizations, as well as for the design of more efficient ones.
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Figure 10.11: Double Mach Reflection. Grid refinement study for the LN scheme. Top
row: LN scheme solution for h = 1/100 (left) and h = 1/200 (right). Middle: LN
scheme solution for h = 1/400. Bottom row: Q1 −DG solution (left) on grid of quads
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Chapter 10. Evaluation on the Euler equations of a perfect gas

10.2.4 A shock-shock interaction

This test has been included to further assess the shock-capturing capabilities of the
nonlinear space-time schemes in a true multidimensional situation. It is one of the two-
dimensional Riemann problems studied in [106] and later used also in [111, 60, 61, 62].
The problem consists of the interaction of two oblique shocks with two normal shocks.
All the discontinuities are moving backwards with respect to the speed in the pre-shock
region as depicted in the sketch on figure 10.12. The spatial domain is the square [0, 1]2.
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~ub

~ud
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Figure 10.12: Shock-shock interaction. Initial solution

With reference to the notation of figure 10.12, the initial data are given by

(ρ, u, v, p) =





(1.5 , 0 , 0 , 1.5) state a
(0.1379928 , 1.2060454 , 1.2060454 , 0.0290323) state b
(0.5322581 , 1.2060454 , 0 , 0.3) state c
(0.5322581 , 0 , 1.2060454 , 0.3) state d

Due to the symmetry of the problem, only half of the flow has been simulated. In
particular, the diagonal of [0, 1]2 has been used as a symmetry line. The computations
have been run on an unstructured discretization with reference mesh size h = 1/200.
Symmetry BCs are imposed also on the top boundary, where a normal moving shock
is present, while the movement of the oblique shock on the left boundary has been
imposed exactly. We compare the numerical solution obtained with the LN and LST-
N schemes with the one of the FV scheme used in the double Mach reflection test. As
in [111, 60, 61] we compute the interaction up to time tf = 0.8 and visualize the results
in terms of contours of the density. On figure 10.13, in particular, we visualize from left
to right the solutions of the LST-N scheme, of the FV scheme, and of the LN scheme.
The nature of the flow is quite complex. The interaction of the shocks generates two
symmetric lambda-shaped couples of shocks and a downward moving normal shock.
Very strong slip lines emanate from the lower triple points and interact with one of
the branches of the upper lambda-shocks, while a jet of fluid is pushed from the high
pressure region (state a in figure 10.12) against the normal shock.
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Figure 10.13: Shock-shock interaction. Contours of the density obtained with the
LST-N scheme (top), FV scheme (bottom-left) and LN scheme (bottom-right)

The plots in figure 10.13 show that, roughly, all the schemes capture the complex struc-
tures in the flow. However, the resolution of the interaction is much better reproduced
in the pictures on the bottom, the LST-N giving by far the worst results. This can
be seen from the poor resolution of integration between the slip lines emanating from
the lower triple point and of the jet along the diagonal. Conversely, these features are
very well captured by the FV scheme and by the LN scheme. The latter, in particular,
gives a very rich solution, in which the formation of KH instabilities, in correspondence
of the contact lines interacting with the upper lambda-shock is already visible. As for
the double Mach reflection, the LN scheme gives the best result.
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To confirm this, we plot on figure 10.14 the distributions of the density and of the
pressure along the diagonal, computed by the FV scheme and by the LN scheme. The
latter clearly resolves better the compression of the fluid across the jet. We also remark
that both the pressure and density profile are absolutely free of numerical oscillations.
The profiles obtained with the LST-N scheme, which are not reported on the plots for
clarity, confirm the poor resolution of the jet which, as one can see on figure 10.13, is
much weaker and slower.
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Figure 10.14: Shock-shock interaction. Density (left) and pressure (right) distribution
along the symmetry line. FV scheme (symbols) and LN scheme (line)

The reasons of this poor accuracy are not completely understood. As the results of
§10.2.2 show, it seems that the limiting technique used here leads to schemes qualita-
tively insensitive to the nature of the underlying linear scheme across single disconti-
nuities. However, in presence of more complex structures, it is apparent that this is
not true anymore. This is also confirmed by the scalar results of §7.3.1 and §7.3.2.
The limiting technique guarantees excellent shock capturing. However, the accuracy of
the limited scheme is a different matter. The LP property not being questioned, poor
accuracy could mean that some kind of weak instability is present. Hence, once more,
we are led to the conclusion that the understanding of the stability properties of these
nonlinear schemes is the most important missing piece of the construction.

10.2.4.1 Grid refinement with the LN scheme

We present here the results of a grid refinement study performed with the LN scheme.
We computed this test-case on three meshes with sizes h = 1/100, h = 1/200 and
h = 1/400. The results are visualized on figure 10.15 in terms of density contours.
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10.2.4. A shock-shock interaction

Despite of the irregularity of the grid, the solutions are quite clean and the approxi-
mation of the shocks converges in a very stable manner. The formation and break-up
of the KH instability in the fine mesh solution is clearly visible. One can refer to [120]
for similar results obtained with a nonlinear space-time scheme based on the use of the
conservative linearization, and to [60, 61] for results obtained with a different nonlinear
RD scheme on structured triangular meshes.
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Figure 10.15: Shock-shock interaction: grid refinement with the LN scheme. Contours
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10.2.5 A shock-bubble interaction

At last, we test our schemes on a problem involving the interaction of a shock with
a steady contact discontinuity: a shock-bubble interaction. The problem consists of
the interaction of a Mach 2.95 right-moving shock with a spot of hot gas. A sketch
of the initial state is given on the top-left on figure 10.16. This is a well known test-
case [88, 107]. A thorough description of the problem with extensive numerical results
obtained using the front tracking method of [88] is also available on-line1. In particular,
the spatial domain is the rectangle [−0.1 , 1.5] × [−0.5, 0.5]. At time t = 0 the shock
is positioned at x = 0. The steady circular discontinuity in density and temperature
is initially centered at x = 0.3 and y = 0. The density inside this bubble is ρ = 0.1
As in [88], only half of the domain has been modeled, setting a symmetry boundary
condition along the line y = 0. The problem has been solved with the LST-N and LN
schemes on an irregular mesh with h = 1/200. The results at times t = 0.1, t = 0.15
and t = 0.25 are presented in terms of density contours in figure 10.16. Note that in all
the pictures we have plotted on the bottom the solutions obtained with the LN scheme,
and on the top the ones computed by the LST-N scheme.
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Figure 10.16: Shock-bubble interaction. Initial solution (top-left) and density contours
at t = 0.1 (top-right), t = 0.15 (bottom-left) and t = 0.25 (bottom-right). Top half of
the plots: LST-N scheme. Bottom-half of the plots: LN scheme

1http://www.math.ntnu.no/~andreas/fronttrack/gas/sb/
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10.2.5. A shock-bubble interaction

As a result of the interaction, the incoming shock is partially transmitted into the hot
fluid and partially reflected as an expansion, while the contact itself is set into motion.
At time t = 0.15 (bottom-left in figure 10.16) the transmitted shock has already crossed
the right boundary of the circular discontinuity which now starts folding into a well
known symmetric structure containing two rollers. This is clearly seen at time t = 0.25
(bottom-right in figure 10.16). Compared to the results of [88, 107], computed on
structured meshes, the interaction is well reproduced by both schemes. However, in
the solution obtained with the LN scheme the roll-ups are crisper and definitely better
resolved. Also, in the solutions of the LN scheme at times t = 0.15 and t = 0.25 the
interface of the contact has a wavy pattern giving the glimpse of an inviscid instability.

LN scheme, h = 1/200

Scheme of [88], quads with h = 1/400

Figure 10.17: Shock-bubble interaction. Numerical Schlieren visualizations. From left
to right: t = 0.10, t = 0.15, t = 0.20 and t = 0.25. Top row: LN scheme, irregular grid
with h = 1/200. Bottom row: Scheme of [88], structured grid with h = 1/400.

To further confirm the quality of out results, we compare on figure 10.17 numerical
Schlieren visualizations of the solution of the LN scheme with the ones of [88], obtained
on a structured grid of quads with h = 1/400, and available on-line1. The Schlieren
visualizations of our results have been obtained following the procedure described in
[135]. On the irregular grid with reference element size h = 1/200 used here, the LN
scheme gives a very rich resolution of the interaction. The result is certainly comparable
with the reference one, obtained on a much finer structured grid.

1http://www.math.ntnu.no/~andreas/fronttrack/gas/sb/
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Figure 10.18: Mach 3 flow over a step. Initial solution (left) and mesh (right)

10.2.6 Two-layer schemes: Mach 3 flow over a step

For completeness, we include some results obtained with the 2-layers formulation of the
CRD LST-N scheme (see §9.2. §7.1.5 and [8, 51]). In this section we consider the well
known problem of a Mach 3 flow over a forward facing step of [187]. The geometry of
the spatial domain is sketched on the left on figure 10.18. The initial solution consists of
a uniform Mach 3 flow. The problem has been solved on an unstructured triangulation
topologically different from the one reported on figure 3.1. For this reason, on the right
on figure 10.18, we show a close-up of the mesh in vicinity of the corner. Far from this
point, this grid is somewhat more regular than the ones used for the other tests, and
has a reference element size hmax = 1/80. At the corner, h reduces to hmin = 1/1000.
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Figure 10.19: Mach 3 flow over a step. Density (left) and Mach number (right) contours
at time t = 0.5 (top row) and t = 3.0 (bottom row). Results computed using the 2-
layers LST-N scheme with Q = ∆t2/∆t1 = 10
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As remarked in §9.2.1, when using the 2-layers formulation of the schemes, the time-
step ∆t2 in the second layer can be chosen in different ways. As in [8] and [53], due to
the presence of the refined region close to the corner, we have fixed the ratio between
the time-steps in the first and second layer to Q = 10 (see equation (9.3) in §9.2.1).
The results obtained with the 2-layers LST-N scheme are reported on figure 10.19 in
terms of density and Mach number contours at times t = 0.5 and t = 3.0. The contour
plots show the narrow and non-oscillatory approximation of the curved shock and of its
reflections. The slip line emanating from the triple point is also well resolved. Similar
results have been obtained in [8] with the 2-layers LN scheme based on the conservative
linearization, and in [47, 53] with a 2-layers space-time blended scheme.

10.2.7 Two-layer schemes: slow shock hitting a wedge

We consider the interaction of a slow shock with a wedge [8, 191]. The spatial domain
is the rectangle [−1, 2.5]× [−1.1, 1.1]. At time t = 0 a right moving Mach 1.5 shock is
placed at x = −0.5. At x = 0 is positioned a wedge of length and height 0.5 (see sketch
on figure 10.20). For symmetry reasons, only the top half of the interaction has been
simulated, setting symmetry BCs along the line y = 0. The computations have been
run with the 2-layers LST-N scheme on an irregular triangulation with h = 1/100. For
this test, we have fixed the magnitude of the total time-step ∆t = ∆t1 + ∆t2 = 0.005,
leading to values of Q = ∆t2/∆t1 between 5.406 and 5.65.
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Figure 10.20: Slow shock hitting a wedge. Sketch of the initial solution

Contour plots of the computed density at t = 0.6, t = 0.7, t = 0.95 and t = 1.65 are
shown on figure 10.21. Experimental Schlieren visualizations of the interaction, taken
from [180], are also reported for a qualitative comparison1. The reflection of the shock
and its diffraction around the trailing corner are well resolved. The spurious entropy
generated in correspondence of the corner causes the formation of vorticity, which can
be seen on the bottom pictures. This generation of vorticity, in reality related to viscous
effects, is typical of shock capturing schemes. On the bottom picture, we can see the
interaction of the diffracted shock with these hot spots of vorticity. The results are
comparable to the ones of [191].

1no quantitative details are given in [180] on the geometry of the wedge and on the strength of the
slow incoming shock
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Figure 10.21: Slow shock hitting a wedge. Experimental Schlieren visualizations [180]
(left column) and contours of the computed density field (right column and bottom).
Numerical solutions: from top to bottom t = 0.6, t = 0.7, t = 0.95 and t = 1.65.
Results obtained using the 2-layers LST-N scheme with ∆t = ∆t1 + ∆t2 = 0.005
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10.3 Summary

This chapter has presented a large database of results obtained by solving the Euler
equations of a perfect gas with the CRD schemes. The main conclusions we can draw
from these results are the following.

• The CRD N scheme and its space-time variants are indeed very stable and robust.
The solution of very difficult problems on irregular meshes has shown their ability
to resolve discontinuities in a non-oscillatory way;

• The limiting procedure allows to construct nonlinear schemes with excellent shock
capturing and monotonicity preserving properties;

• Shock capturing and linearity preservation being guaranteed by construction, the
limiting technique seems to have solved the problem of the design of nonlinear
high-order schemes. However, the results obtained with the LST-N scheme on
some of the tests confirm the lack of accuracy already observed in §7.3.1. This
might be an hint to the presence of weak instabilities. The understanding of this
aspect is very limited and needs to be improved;

• The space-time LN scheme has proved very competitive, in terms of accuracy
on irregular grids, with FV, WENO and DG schemes. The main weakness of
the RD approach remains perhaps its cost, due to the implicit character of the
schemes and to the considerable number matrix operations needed to compute
the local nodal residuals;

• Results with the 2-layers variant of the CRD LST-N scheme have shown that the
quality of the results obtained with the RD approach is retained by this double
layer formulation, while giving the advantage of an unconditionally monotone
time marching procedure.
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Chapter 11

A two-phase flow model

In this chapter we consider the solution of the system of CLs defined by the following
set of conserved variables and fluxes

u =




αgρg
αlρl
ρu
ρv


 , F(u) =




αgρgu αgρgv
αlρlu αlρlv
ρu2 + p ρuv
ρuv ρv2 + p


 (11.1)

where αg and αl are the gas and liquid volume fractions, ρg and ρl are gas and liquid
densities, ~u = (u, v) is the local flow speed, ρ is the mixture density

ρ = αgρg + αlρl . (11.2)

and p is the pressure. The model is closed by the relation

αg + αl = 1 . (11.3)

and by the EOS relating the densities to the pressure. In the following we will denote
by α the gas volume fraction, assuming implicitly that αl is obtained from (11.3). We
will often refer to α as to the void fraction. Concerning the EOS, we have used as in
[128] the following relations representative of air and water (S.I. units are used):

p = Γg

(
ρg
ρg0

)γg

(11.4)

with Γg = 105, ρg0 = 1, γg = 1.4, and

p = Γl

[(
ρl
ρl0

)γl

− 1

]
+ pl0 (11.5)

with Γl = 3.31 × 108, ρl0 = 1000, γl = 7.15, and pl0 = 105. This system of equations
constitutes a fairly simple model of homogeneous air-water tho-phase flow. However,
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Chapter 11. A two-phase flow model

it has some appealing features for the purpose of testing our schemes. The first is
precisely its simplicity, the second the fact that it is fully hyperbolic and its complete
eigenstructure can be easily analytically derived. Most importantly, the model is in
CL form and one can compute exact steady and unsteady Rankine-Hugoniot relations
against which to test the schemes. In particular, with reference to the 1D shock depicted
on the left on figure 11.1, on the right picture in the same figure we plot the pressure,
void fraction and x-velocity ratios as functions of the Mach number

MR =
uR√
pR/ρR

(11.6)
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Figure 11.1: Jump conditions for the two-phase model. Flow from right to left.

Across the shock, while the pressure increases, the gas volume fraction decreases. This
is a consequence of the higher compressibility of the gas, whose density increases more
rapidly with the pressure, hence leading to a smaller specific volume with respect to
the liquid phase. Moving shocks are characterized in a similar way, by introducing the
shock Mach number

MS =
uS√
pR/ρR

,

with uS the velocity of the shock. Note however that the relation between the pres-
sure and the conserved mass and momentum fluxes is so complex that a conservative
linearization can hardly be derived. In particular, because of the nonlinearity of the
equations of state, pressure and volume fractions cannot be computed in closed form
from the conserved variables. Instead, combining the equations of state and relation
(11.3), a nonlinear equation for the pressure is obtained which can be solved in a
few Newton iterations (see [128] for more). In conclusion, even being so simple, this
model has all the features of systems of conservation laws with complex thermodynam-
ics. The application of our schemes to these equations will prove their flexibility and
further confirm their robustness.
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11.1 Time-dependent computations

11.1.1 Moving shocks in air-water mixtures

We start by considering the computation of a planar shock moving in a quiescent two-
phase mixture containing 50% gas and 50% liquid (αlR = αgR = 0.5) at a pressure
pR = 106. The shock Mach number is set to MS = 3. The spatial domain is the
rectangle [0, 2] × [0, 0.1]. As in §10.2.1, we have run the simulations on both regular
and irregular triangulations with element size h = 1/100. Periodic boundary conditions
are imposed on the top and bottom boundaries. We will discuss the results obtained
on the unstructured grid, which are indistinguishable from the ones obtained on the
structured one. At time t = 0 the shock is located at x = 0.5. The final time of the
simulation has been set to tf = 1/uS, corresponding to a displacement of the analytical
shock of a unit length. We present the solutions of the space-time CRD N, ST-N, LN
and LST-N schemes (see §9.2). The output is visualized by extracting the data along
the line y = 0.05.

x

re
ss

ur
e

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
800000

1.2E+06

1.6E+06

2E+06

2.4E+06

2.8E+06

3.2E+06

3.6E+06

4E+06

Exact

2 scheme

P
re

ss
u

re

N scheme

x

Exact

x

as
vo

id
fra

ct
io

n

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0.25

0.3

0.35

0.4

0.45

0.5

Exact

2 scheme

V
o
id

fr
a
ct

io
n

N scheme

x

Exact

x

re
ss

ur
e

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
800000

1.2E+06

1.6E+06

2E+06

2.4E+06

2.8E+06

3.2E+06

3.6E+06

4E+06

Exact

1 scheme

P
re

ss
u

re

ST-N scheme

x

Exact

x

as
vo

id
fra

ct
io

n

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0.25

0.3

0.35

0.4

0.45

0.5

Exact

1 scheme

V
o
id

fr
a
ct

io
n

ST-N scheme

x

Exact

Figure 11.2: Two-phase MS = 3 shock. Pressure (left) and void fraction (right) along
the line y = 0.05. Solutions of the N (top) and ST-N (bottom) schemes
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Figure 11.3: Two-phase MS = 3 shock. Pressure (left) and void fraction (right) along
the line y = 0.05. Solutions of the LN (top) and LST-N (bottom) schemes

The results are reported on figure 11.2, for the linear schemes, and figure 11.3, for the
nonlinear ones. The shock position is correctly computed and the non-oscillatory char-
acter of the results is evident. The perturbations seen in the case of the Euler equations
(see §10.2.1) are not visible, probably due to the weaker character of this shock. The
nonlinear schemes give a very sharp and monotone capturing of the discontinuity.

11.1.2 A two-phase 2D Riemann Problem

This problem is meant to be an analog of the two dimensional Riemann problem of
§10.2.2. The initial solution is given by a quiescent mixture with α = 0.5, in which the
following discontinuity in the pressure is imposed:

p =

{
107 if xy ≥ 0
108 otherwise

.
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11.1.2. A two-phase 2D Riemann Problem

The problem is solved on the domain [−5, 5]2 up to time tf = 0.004 on an unstructured
mesh with h = 1/10. Symmetry BCs are imposed on all the boundaries. On figure
11.4 we plot the contours of the mixture density (11.2) corresponding to the solutions
obtained with the N, ST-N, LN and LST-N schemes.
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Figure 11.4: Two-phase 2D Riemann Problem. Mixture density contours at t = 0.004.
Top: N (left) and LN scheme (right) - Bottom: ST-N (left) and LST-N scheme (right)

On the boundaries of the domain three distinct waves are visible: an expansion, a
contact and a shock (left to right on the top boundary). Both the shock and the
contact are noticeably better computed by the nonlinear schemes. Moving away from
the boundaries, we see how the waves interact with each other. The higher resolution
of the limited schemes is visible also from the fact that the lines of constant density
in the expansions are kept straight for a longer distance from the boundary. As in
the case of the Euler equations, there is a remarkable difference between the results
of the linear ST-N and N schemes. The latter gives a visibly better resolution of the
discontinuities. Nevertheless, also for this problem we see that the nonlinear LN and
LST-N schemes yield nearly identical results. In figure 11.5, we compare the solutions
along the top boundary of the domain with a reference, given is in this case by a 1D
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numerical solution obtained on a very fine mesh containing 50000 cells with the first-
order conservative FV scheme of [89]. All the schemes reproduce correctly positions
and strength of the shocks. The capturing of all the discontinuities is monotone and
very sharp in the case of the two limited schemes.
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Figure 11.5: Two-phase 2D Riemann Problem. Mixture density (left) and pressure
(right) at t = 0.004 and y = 5.0. Top: N and LN schemes - Bottom: ST-N and LST-N
schemes

11.2 A shock-bubble interaction

The last test considered in this chapter is a two-phase shock-bubble interaction. The
initial solution (sketched in figure 11.6) consists of a planar shock with MS = 3 moving
into an undisturbed quiescent mixture characterized by αR = 0.8 and pR = 105. On
the right of the shock we impose a stationary circular discontinuity in which the void
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11.2. A shock-bubble interaction

fraction jumps to α = 0.95. This bubble is centered at x = 0.3 and y = 0, and its
radius is rb = 0.2. Due to the symmetry of the interaction, we have simulated only
half of the problem, setting symmetry boundary conditions along the line y = 0. We
present the results obtained with the LN and LST-N schemes on an unstructured grid
with reference element size h = 1/200.
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Figure 11.6: Two-phase shock-bubble interaction. Initial solution

The results are visualized in terms of contours of the mixture density (11.2) in figure
11.7. As in §10.2.5, in each picture we have plotted the solution obtained with the
nonlinear LST-N scheme on the top half and the one obtained with the nonlinear LN
scheme on the bottom half. From the figures we see the shock partially transmitted
through the void fraction discontinuity and partially reflected as an expansion, while
the contact itself is set into motion (pictures on the top row). Once the undisturbed
shock has crossed the region occupied by the whole circular discontinuity, and joined
the transmitted shock, the interface of the contact folds, rolling-up into a symmetric
structure. The underlying physical mechanisms are clearly the same of the Euler
computation presented in §10.2.5. Also in this computation the LN scheme shows a
smaller numerical dissipation. Indeed, it gives a crisper resolution of the contact, its
wavy structure (bottom pictures) again giving the glimpse of an inviscid instability.
These results compare qualitatively well to the ones presented in [88, 107] for the Euler
equation for a perfect gas and to the ones obtained with different two-phase flow models
and numerics in [11, 69, 81]. However, as already remarked, our objective is not the
simulation of two-phase flow per–se. The development of numerical methods for two-
phase flow simulations represents in itself a whole research field. The contribution of
this thesis is to provide a formulation of the RD schemes that can be used in this field.
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Figure 11.7: Two-phase shock-bubble interaction. Mixture density contours at times
t = 0.003 (top-left), t = 0.005 (top-right), t = 0.015 (bottom-left) and t = 0.02
(bottom-right). Top half of the plots: LST-N scheme. Bottom-half: LN scheme

11.3 Summary

This chapter has shown the application of the conservative space-time schemes pro-
posed in the thesis to the solution of a two-phase flow model. The model is very
simple, however it well represents systems of conservation laws with very complex
thermodynamics, due to the nonlinearity of the fluxes and of the EOS. The results of
this chapter show the generality and flexibility of our approach in approximating sys-
tems of CLs. The schemes have confirmed their conservative and truly non-oscillatory
character. In particular, also in this general context the limiting technique provides
excellent shock capturing properties. As in the previous chapter, while on simple wave
solutions the LN and LST-N schemes give nearly identical solutions, in more complex
situations things are different. The LN scheme confirms its higher resolution.
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Note that we have not addressed important issues such as the behavior of the schemes in
presence of very strong contact discontinuities, especially with with non-zero transverse
velocity [11, 2]. In [50], it has been shown that, provided that the pressure is used as a
primary unknown, CRD schemes can resolve exactly stationary contact discontinuities,
if aligned with the mesh. Generally, however, this is not true. A detailed investigation
of this topic would be very interesting.
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Chapter 12

Solution of the shallow-water
equations

Frictionless shallow free surface flows under the action of the gravity force are modeled
by the following system of the shallow-water equations

∂u

∂t
+ ∇ · F(u) = S(u, x, y) on Ω × [0, tf ] ⊂ R

2 × R
+ (12.1)

with conserved variables and fluxes given by

u =




H
Hu
Hv


 F(u) =




Hu Hv

Hu2 + g
H2

2
Huv

Huv Hv2 + g
H2

2


 (12.2)

with H the local relative water height, ~u = (u, v) the flow speed and g the gravity
acceleration. If not stated otherwise, we assume g = 9.81m/s2. The source term
models the effects on the flow of the shape of the bottom of the bed, and is defined as

S(u, x, y) = −gH




0

∂B(x, y)

∂x

∂B(x, y)

∂y




(12.3)

where B(x, y) is the local height of the bottom (see figure 12.1). We also define

Htot = H +B

the total water height. We will only consider the case in which H > 0. Flows with
H = 0, which are referred to as flows over dry bed, will not be dealt with in this thesis.
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~u

H

x

B(x, y)

Htot = H + B

Figure 12.1: Shallow water equations: basic unknowns

As written in (12.1), these equations do not belong to the prototype of systems of CLs
considered up to now, due to the dependence of the source term on the relative water
height H . However, using as primary variable the set of primitive variables

p =



H
u
v




the system can be rewritten in the symmetric quasi-linear form

∂p

∂t
+A′

1

∂p

∂x
+A′

2

∂p

∂y
= S

′(x, y)

where the source term S
′(x, y)

S
′(x, y) = −g




0

∂B(x, y)

∂x

∂B(x, y)

∂y




is independent on the solution. Hence, system (12.1) can be recast into the general
prototype of PDEs considered in the thesis. While being hyperbolic, the system does
not admit a simple multidimensional conservative Jacobian linearization [76, 92, 132].
This makes the use of our conservative approach very well suited. However, we have to
recall that, as shown in §6.2.2.2, in the steady homogeneous case the CRD approach is a
particular case of the conservative correction technique used in [92]. For completeness,
we also recall that for the shallow-water equations the Froude number

Fr =

√
~u · ~u√
gH

plays the same role as the Mach number in gas dynamics.
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12.1 RD schemes and the lake-at-rest solution

The shallow-water equations constitute a relatively simple application for our schemes.
However, they give us the chance to prove the advantage of the residual approach
developed in the thesis. In particular, we recall that system (12.1) admits a class of
exact steady-state solutions known as the lake-at-rest solutions. These solutions are
easily obtained assuming u = v = 0 and integrating (12.1) over an arbitrarily small
control volume V obtaining

∫

V

∂h

∂t
dx dy = −

∮

∂V

h~u · ~n dl = 0 ,

and ∫

V

∂(h~u)

∂t
dx dy = −

∫

V

gH∇Htot dx dy .

If Htot(x, y, t = 0) = H0, ∀(x, y) ∈ Ω, from the arbitrariness of V one gets

Htot(x, y, t) = Htot(x, y, t = 0) = H0 ∀(x, y) ∈ Ω and t ≥ 0
u = v = 0 ∀(x, y) ∈ Ω and t ≥ 0

(12.4)

which defines a family of solutions parametrized by the function B(x, y). Note that
this is independent on the shape and regularity ofB(x, y), as long as ∇Htot is integrable.

The analysis of §4.4.3 and §7.1.2.1 shows that as long as the numerical approximation
of S is second-order accurate, linearity preserving schemes will also yield second-order
of accuracy. Here we are going to prove that for the shallow water equations one can
do a lot better with a little extra effort.

Proposition 12.1.1 (LP schemes and the lake-at-rest solution). Denote by w
the set of primary variables used in the numerical approximation of (12.1). Linear-
ity preserving RD schemes preserve exactly the lake-at-rest solution, independently
on topology of the mesh, regularity of B(x, y) and polynomial degree of the approxi-
mation, provided that w is such that for u = v = 0, the same continuous numerical
representation is used for H and for the local height of the bottom B(x, y).

Proof. The proof is obtained quite easily by noting that with the hypotheses made,
any spatial numerical reconstruction of the velocity ~uh used in the computation of the
residual will be identically zero, while for H and B one has in space

Hh =
∑

i∈Th

ψiHi(t) Bh =
∑

i∈Th

ψiBi ,

with i the generic node of the mesh and with the continuous shape functions ψi(x, y)
respecting the obvious consistency constraint

∑

j∈E

ψj(x, y) = 1 . (12.5)
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Chapter 12. Solution of the shallow-water equations

Consider now the the spatial residual

φφφspace =

∫

E

(∇ · Fh − Sh) dx dy .

The first component of φφφspace is
∫

E

∇ · (Hh~uh) dx dy =

∮

∂E

Hh~uh · n̂ dl = 0 ,

since ~uh = 0. Second and third components of φφφspace can be written in vector form as
∫

E

(∇ · (Hh~uh ⊗ ~uh) + gHh∇(Hh +Bh)) dx dy =

∮

∂E

Hh~uh ~uh · n̂ dl+ g

∫

E

Hh∇Htot dx dy

Since ~uh = 0, these components of the residuals reduce to

g

∫

E

Hh∇Htot dx dy = g

∫

E

Hh

∑

j∈E

Htotj∇ψj dx dy = gH0

∫

E

Hh

∑

j∈E

∇ψj dx dy = 0

since on the lake-at-rest solution Htotj = H0 ∀j ∈ E, and using condition (12.5). This
shows that ∀E ∈ Th, φφφspace = 0 on the lake-at-rest solution, hence for any LP scheme,
the semi-discrete steady-state RD formulation reduces to

dui
dt

= 0, ∀i ∈ Th

which achieves the proof in the steady-state case. For the space-time schemes, a similar
reasoning leads to the conclusion that on the lake-at-rest solution F

n+1 = F
n = 0 (see

§9.2 and equation (8.49) in §8.3.2). As a consequence, the iterative nonlinear system
∑

E∈Di

φφφi = 0, ∀i ∈ Th

reduces to the identity 0 = 0 on this solution. A different way to see it, is to consider
the explicit iterative update (9.2). One easily sees that, if in the initial solution ~u = 0
and Htot = H0 ∀(x, y) ∈ Ω, then

un+1,k+1
i = un+1,0

i = u0
i , ∀i ∈ Th and ∀n ≥ 0

Proposition 12.1.1 shows that differently from other numerical techniques [80, 112,
79, 93], an exact approximation of the lake-at-rest solution is achieved very naturally
here, thanks to the truly residual character of the schemes. Experimentally, it is found
that when setting-up an initial state with ~u = 0 and uniform total water height, LP
schemes indeed preserve this state. In particular, the nodal residuals are exactly zero
if the element residual is computed as (see equation (8.43))

φφφh =

3∑

lj=1

NC∑

p=1

ωpF̃(uh(xp, yp)) · ~nlj + gHFB(uh) (12.6)
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12.2. Steady-state computations

with

F̃(u) =




Hu Hv
Hu2 Huv
Huv Hv2


 , FB(uh) =

1

2

∑

j∈E




0
(Hj +Bj)(~nj)x
(Hj +Bj)(~nj)y




and H the arithmetic average of the nodal values of the relative water height. Similarly,
in space-time computations exact preservation of the lake-at-rest solution is achieved
by computing the residual as (see equations (8.49) and (8.50))

φφφh =
∑

j∈E

|E|
3

(un+1
j − unj ) +

∆t

2

(
F̃(un+1) + F̃(un)

)
+

g
∆t

2

(
H
n+1

FB(un+1) +H
n
FB(un)

)
(12.7)

with

H
n

=
1

3

∑

j∈E

Hn
j , H

n+1
=

1

3

∑

j∈E

Hn+1
j

We will give examples of numerical computations where the use of (12.7) leads to the
exact reproduction of the lake-at-rest state.

12.2 Steady-state computations

12.2.1 Super-critical flow over flat bed

This test has been performed to confirm the conservative and non-oscillatory character
of the CRD schemes. It consists of a super-critical Fr = 2.74 flow over a flat bed, in a
channel with a 8.95◦ wedge. A sketch of the initial solution and of the geometry of the
spatial domain is given on the left in figure 12.2. We have run this test with the CRD
N scheme and its nonlinear limited variant, the LN scheme, on an irregular mesh with
h = 1/20. The convergence histories of the explicit iterative update (9.1) with ν = 0.8
are reported on the right on figure 12.2. The general behavior is the same observed
in §10.1.1: the linear scheme converges to machine accuracy without any problem,
while the convergence of the limited scheme is somewhat erratic and, considering the
problem (the flow is fully super-critical), relatively poor. The contours of the computed
relative height and a comparison of its distribution at the outlet x = 4 with the exact
solution are reported on figure 12.3 for both schemes. The following observations can
be made. The discontinuity is captured monotonically, the nonlinear scheme giving a
much sharper approximation. This is particularly clear from the plot on the bottom
pictures. From the line plots we also see that angle and strength of the jump are
correctly reproduced. Similar comments can be made by looking at the contour lines
of the computed Froude number, (top on figure 12.4), and at its comparison with the
exact solution at the outlet (bottom on figure 12.4).
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Figure 12.2: Hydraulic jump over a wedge. Sketch of the problem and convergence
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Figure 12.3: Hydraulic jump over a wedge. Water height contour levels (top) and outlet
water height distribution (bottom). Results of the N (left) and LN (right) schemes
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Figure 12.4: Hydraulic jump over a wedge. Froude number contours (top) and outlet
Froude number distribution (bottom). Results of the N (left) and LN (right) schemes
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Chapter 12. Solution of the shallow-water equations

12.2.2 Trans-critical flow over a smooth hump

We consider a one-dimensional test problem assuming the following variation of the
bed height [153, 73, 59]

B(x, y) = B(x) =

{
0.2 − 0.05(x− 10)2 if 8 ≤ x ≤ 12
0 otherwise

(12.8)

Different steady solutions can be computed involving fully sub-critical, smooth trans-
critical and trans-critical flow with a shock [153, 73, 59]. To asses the shock capturing
capabilities of the N and LN schemes in presence of non-flat bed, we consider the case
of a steady trans-critical flow with a shock. We solve the shallow-water equations on
the spatial domain [0, 20]× [0, 0.5] on an irregular unstructured with reference element
size is h = 1/10. Periodic boundary conditions are applied on the top and bottom
boundaries. On the left boundary we assign the discharge Hu = 0.18 and zero v
velocity, while on the right boundary we set H = 0.33. These boundaries are treated
with characteristic BCs. The steady-state solutions obtained with the N scheme and
the LN scheme, computing the spatial residual as in (12.6) are reported in figure 12.5,
where the data along the line y = 0.25 are plotted. The solutions are monotone and the
shock approximation is very sharp. No problems are encountered in the critical point,
the acceleration being smooth in both solutions. The approximation of the discharge
which should be constant and equal to 0.18 everywhere, is very good, despite of the
fact that the problem has been solved on a 2D irregular mesh instead that in 1D.

12.3 Time-dependent computations

12.3.1 Break of a circular dam over flat bed

We simulate the break of a circular dam separating 10 [m] high water from a basin at
H = 0.5 [m]. The radius of the initial discontinuity is r = 60 [m]. Due to the difference
in water height, the flow becomes rapidly trans-critical. The computational domain is
the square [0, 100]2, at t = 0 the velocity is set to zero, while the water height is set to

H =

{
10 if r ≤ 60
0.5 otherwise

, r =
√
x2 + y2

The problem has been solved with the N, ST-N, LN and LST-N schemes on an irreg-
ular triangulation with h = 2. Symmetry BCs are imposed on the left and bottom
boundaries. The final time of the simulations is tf = 3. Contour plots of computed
water height and Froude number are given in figures 12.6 and 12.7. Despite of the
irregularity of the grid, the flow acceleration and the right moving water wave are well
reproduced, roughly by all schemes. The contours in the region of accelerating flow are
quite smooth especially with the LN scheme (top-right pictures). The capturing of the
right moving water front is monotone for all the schemes. The limited schemes yield a
very sharp approximation of this feature.
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Figure 12.6: Transcritical dam-break: 20 water height contour levels at t = 3
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Figure 12.7: Transcritical dam-break: 20 Froude number contour levels at t = 3
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As already noted, the ST-N scheme (bottom-left pictures) shows a considerably higher
numerical dissipation compared to the N scheme (top-right pictures). Indeed, the water
height waves (figure 12.6) are blurred into a unique smooth profile, while the right
moving wave in the Froude contours (figure 12.7) is considerably smeared. We remark
that no problem whatsoever is encountered in the critical point. To confirm the quality
of the result, we show in figure 12.8 the computed water height and Froude number
distributions along the line y = x. The figures confirm our previous observations. The
flow acceleration is very smooth in all solutions and the right moving water wave is
computed monotonically. The limited schemes give a sharper resolution of this last
feature and the large numerical dissipation of the ST-N scheme is clear. We think
these results are very good, especially the ones of the nonlinear schemes.
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Figure 12.8: Transcritical dam-break. Water height (left) and Froude number (right)
along the line y = x. Top: N and LN schemes. Bottom: ST-N and LST-N schemes
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12.3.2 Non-symmetric dam break over flat bed

This problem is taken from [153] and is similar to the previous one, except that the
geometry is more complex. We consider the sudden break of a dam separating two
basins with water heights 5 and 10 [m]. The dam breaks asymmetrically at time t = 0
and we simulate the problem until time t = 7.2 [s]. The spatial domain is contained
into the square [0, 200]2. At x = 95 [m] a breached 10 [m] wide dam is present. The
length of the breach is 75 [m] and it starts at y = 95. At time t = 0 the velocity is set
to zero everywhere. A sketch of the geometry of the problem is given in figure 12.9.
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Figure 12.9: Asymmetric dam break. Problem description

The problem has been solved with the LN and LST-N schemes on an irregular grid
with reference element size h = 2. Wall BCs are applied on all the boundaries of the
domain. We show the results obtained with the limited N and limited N-ST schemes
in terms of relative water height (top pictures on figure 12.10) and Froude number
(bottom pictures on figure 12.10) contours. The contour plots show that both schemes
compute very smoothly the water acceleration on the left of the dam, while the water
wave moving to the right is very sharp and monotone in both the results. The reflection
of this wave on the upper wall of the low water basin is clearly visible. We also report,
on figure 12.11, the distributions of the water height and of the Froude number along
the line y = 160. These plots confirm both the smooth character of the acceleration
and the sharp and monotone capturing of the water wave. For completeness, we report
on figure 12.12 a three-dimensional view of the water height at time t = 7.2 computed
by the LN scheme.
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Figure 12.10: Asymmetric dam break. Water height (top) and Froude number (bottom)
contours at time t = 7.2 [s]. LN scheme (left) and LST-N scheme (right)
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12.3.3. Water height perturbation over smooth bed

Figure 12.12: Asymmetric dam break. Water height at t = 7.2. LN scheme

12.3.3 Water height perturbation over smooth bed

We now consider some tests related to the approximation of the lake-at-rest solution.
As a stated by proposition 12.1.1, if the residual is computed according to (12.7),
LP schemes preserve exactly this state. This is indeed observed numerically: when
initializing the solution with the lake-at-rest state, the residuals stay at machine zero
throughout the computation. A class of less trivial problems that can be used to
test the ability of a discretization to preserve exactly this particular solution involves
initial states obtain by perturbing the exact solution. The objective of these tests is
to verify that a scheme is able to resolve the evolution of the perturbation and its
interaction with the non-flat bed shape, without spoiling the exact lake-at-rest state in
unperturbed regions. In particular, in this section we consider a test initially proposed
in [112], and more recently used in [153, 188, 189] to assess the performances of well-
balanced formulations of very high-order relaxation, finite difference and finite volume
WENO, and DG discretizations. The spatial domain of the problems is [0, 2] × [0, 1].
The folowing smooth bottom shape is assumed [112, 153, 188, 189]

B(x, y) = e−5(x−0.9)2−50(y−0.5)2

corresponding to an ellipsoidal hump centered at [0.9, 0.5]. The initial solution is
obtained by perturbing the exact lake-at-rest state in the band x ∈ [0.05, 0.15]: at
t = 0, the velocity is set to zero everywhere, while the relative water height is set to

H =

{
1.01 −B(x, y) if 0.05 < x < 0.15
1 −B(x, y) otherwise

We solve the problem on an unstructured discretization of the domain with reference
mesh size h = 1/100. As in [188, 189] the gravity acceleration is set to g = 9.812.
Characteristic BCs are imposed on the right and left end of the spatial domain, while
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the upper and lower boundaries are treated as symmetry lines. We consider the solution
at four different times: t = 0.12, t = 0.24, t = 0.36 and t = 0.48. In figures 12.13, 12.14,
12.15 and 12.16 we visualize the results obtained with the space-time LN scheme. In
the figures, on the top rows we have reported the contours of Htot computed by the
LN scheme (left pictures) and the ones taken from [188] (right pictures), obtained with
a fifth-order well-balanced finite difference WENO scheme. On the bottom rows, we
have reported the distribution of Htot along the line y = 0.5 and a 3D view of the
solution including the bed shape. Both pictures correspond to the results obtained
with the LN scheme. To obtain the 3D plots, we have reported on the third axis the
scaled water height and scaled (and shifted) bed height

H∗ = 80(Htot − 1) + 1, B∗ = 0.5 +
B(x, y)

3
(12.9)

The scaling of the bed height used in the line plots is reported on the figures.
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Figure 12.13: Water height perturbation over smooth bed. Solution of the LN scheme
at time t = 0.12. Top-left: contour plot of total water height. Bottom-left: distribution
of Htot at y = 0.5 (h0 = 0.9915). Bottom-right: 3D plot of the solution. Top-right:
contour plot of total water height from [188].
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The following observations can be made. In the region ahead of the perturbation the
exact solution is perfectly preserved up to machine accuracy, as predicted by proposi-
tion 12.1.1. In the region behind the perturbation the solution quickly gets back to the
lake-at-rest state with a small noise, probably due to grid irregularities. With respect
to the results of [188], obtained with a fifth-order finite difference WENO scheme on a
structured mesh with h = 1/100, our results well reproduce the interaction. The small
structures contained in the reference solution are visible in the results of the LN scheme.
The higher accuracy of the scheme used in the reference is certainly visible from the
sharper resolution of the water front, as well as from the higher (resp. lower) values of
the water height in the peaks generated from the interaction. Obviously, the use of a
very high-order discretization is beneficial when approximating this type of problem,
involving the propagation of a small perturbation. Neverthless, the LN scheme well
reproduces the qualitative structure of the solution, while yielding a monotone ap-
proximation, and preserving exactly the lake-at-rest state in the unperturbed region.
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Figure 12.14: Water height perturbation over smooth bed. Solution of the LN scheme
at time t = 0.24. Top-left: contour plot of total water height. Bottom-left: distribution
of Htot at y = 0.5 (h0 = 0.9915). Bottom-right: 3D plot of the solution. Top-right:
contour plot of total water height from [188].
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In particular, while this last property is a natural consequence of the residual approach
used in this thesis, the well-balanced schemes of [188, 189] are based on ad-hoc con-
structions allowing to achieve, in the WENO and DG frameworks, the exact balance
between flux divergence and source term. We also add that proposition 12.1.1 applies
independently on the degree of the polynomial interpolation underlying the RD dis-
cretization. Very high-order RD discretization guaranteeing the exact preservation of
the lake-at-rest state could be constructed following e.g. the approach of [12, 9]. In
this perpsective, the results of this section are very encouraging. For completeness,
we report in figure 12.17 the results obtained with the space-time N scheme at time
t = 0.6. We clearly see the extra numerical dissipation in the smearing of the front
of the perturbation. However, no oscillations are present in the solution, and in the
unperturbed region the deviation from the lake-at-rest state is absolutely negligible.
This is confirmed by the plot in figure 12.18, where we report the total water height
and the Froude number along the line y = 0.5, in the unperturbed region x ∈ [0.9, 2]
at time t = 0.6. The plots show the preservation of the exact solution up to machine
accuracy obtained with the LP scheme, and the very small deviation of the N scheme.
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Figure 12.15: Water height perturbation over smooth bed. Solution of the LN scheme
at time t = 0.36. Top-left: contour plot of total water height. Bottom-left: distribution
of Htot at y = 0.5 (h0 = 0.9915). Bottom-right: 3D plot of the solution. Top-right:
contour plot of total water height from [188].
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Figure 12.16: Water height perturbation over smooth bed. Solution of the LN scheme
at time t = 0.48. Top-left: contour plot of total water height. Bottom-left: distribution
of Htot at y = 0.5 (h0 = 0.9915). Bottom-right: 3D plot of the solution. Top-right:
contour plot of total water height from [188].
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Figure 12.17: Water height perturbation over smooth bed. N scheme. Contours of
total water height at time t = 0.12 (left) and 3D plot of the solution (right)

227



Chapter 12. Solution of the shallow-water equations

0.5 0.75 1 1.25 1.5 1.75 2

0.99998

1

1.00002

1.00004

x

H
to
t

t = 0.12

LN scheme

N scheme

0.5 0.75 1 1.25 1.5 1.75 2
-5E-06

0

5E-06

1E-05

1.5E-05

x

F
ro

u
d

e
n
u

m
b

er

LN scheme

N scheme

t = 0.12

Figure 12.18: Water height perturbation over smooth bed. Total water height (left)
and Froude number (right) in the unperturbed region (line y = 0.5) at time t = 0.12.
N scheme (line) and limited N scheme (line with symbols).

12.3.4 Water height perturbation over non-smooth bed

We consider a variant of the previous problem involving a non-smooth variation of the
bed height. In particular, we set

B(x, y) = 0.6e−ψ(x,y)

with

ψ(x, y) =





√
(x− 0.9)2 + (y − 0.5)2 if 0.3 ≤ y ≤ 0.7 and 0.9 ≤ x ≤ 1.1

5(x− 0.9)2 + 50(y − 0.5)2 otherwise

A 3D view of the scaled bed shape B∗ (equation (12.9)) is reported in figure 12.19.
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Figure 12.19: 3D view of the scaled non-smooth bed
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12.3.4. Water height perturbation over non-smooth bed

The computational set-up and the initial state are identical to the ones used in §12.3.3.
Similarly, the solution is qualitatively very close to the one obtained on the previous
problem, until the perturbation reaches the discontinuity in B(x, y). In particular, we
report on figures 12.20, 12.21 and 12.22 the solution obtained with the LN scheme at
times t = 0.15, t = 0.30 and t = 0.45. As before, in all the 3D plots (bottom pictures)
we report on the third axis the scaled water and bed heights given by (12.9). Conversely,
the scaling of the bed height used in the line plots on the top-right is indicated in the
pictures. The remarks made for the previous test apply also to these results. The
lake-at-rest solution is preserved exactly in the unperturbed region, despite of the non-
smoothness of the shape of the bottom, and of the irregular mesh. Similarly, the total
water height behind the perturbation gets back to a constant value very close to one,
as clealy visible in figures 12.20 and 12.21.
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Figure 12.20: Water height perturbation over non-smooth bed. Solution of the LN
scheme at time t = 0.15. Top-left: contour plot of total water height. Top-right:
distribution of Htot at y = 0.5 (h0 = 0.992). Bottom: 3D plot of the solution.
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The numerical solution obtained with the nonlinear scheme is quite stable and mono-
tone, even if the data of the problem are non-smooth. Very small oscillations are present
at later times of the simulation only in correspondence of the singular corners of B(x, y),
at (x, y) = (0.9, 0.3), (x, y) = (1.1, 0.3), (x, y) = (0.9, 0.7) and (x, y) = (1.1, 0.7). This
is visible in figure 12.22. Due to the extremely low velocity and to the almost flat
profile of Htot, these oscillations are not dissipated by the scheme. As done for the
previous problem, in figure 12.23 we compare the solution of the space-time N scheme
with the one of LN scheme at time t = 0.12 in the unperturbed region, along the line
y = 0.5: the LN scheme preserves the lake-at-rest state up to machine accuracy while
very small perturbations are introduced by the first-order linear scheme.
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Figure 12.21: Water height perturbation over non-smooth bed. Solution of the LN
scheme at time t = 0.30. Top-left: contour plot of total water height. Top-right:
distribution of Htot at y = 0.5 (h0 = 0.992). Bottom: 3D plot of the solution.
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Figure 12.22: Water height perturbation over non-smooth bed. Solution of the LN
scheme at time t = 0.45. Top-left: contour plot of total water height. Top-right:
distribution of Htot at y = 0.5 (h0 = 0.992). Bottom: 3D plot of the solution.

12.4 Summary

In this chapter we have shown the application of our conservative schemes to the so-
lution of the shallow-water equations. We have shown that the RD framework allows
easily to construct schemes which preserve exactly the lake-at-rest solution indepen-
dently on the topology of the mesh, on the complexity of the bed shape and on the order
of interpolation of the unknowns. We discussed the extensive numerical validation on
shallow-water flows of the conservative formulations of the N scheme and of its limited
variants on a wide number of steady and time-dependent problems involving flat and
non-flat bed. The results show that indeed these schemes have a great potential for
the computations of steady and time-dependent free surface shallow flows.
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Figure 12.23: Water height perturbation over non-smooth bed. Total water height
(left) and Froude number (right) in the unperturbed region (line y = 0.5) at time
t = 0.12. N scheme (line) and limited N scheme (line with symbols).

However, we have left open one of the most challenging issues related to this topic: the
computation of flows over dry bed. Due to the extensive use of the eigenstructure of the
flux Jacobians, the singularities introduced by vanishing relative water height cannot
be handled by the schemes proposed here. Dry shallow-water flows are equivalent to
flows containing vacuum for the schemes. As for Roe’s scheme, this state cannot be
handled in a stable manner by our upwind RD distribution. A possible solution to this
problem could be the use of distribution strategies in which the dissipation does not
depend heavily on the eigenstructure of the Jacobians, as for example in the Rusanov
scheme of §6.2.2.3 and §6.3.1.3. However, this will be possible only after gaining a better
understanding of the limiting technique used to generate the nonlinear schemes.
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Chapter 13

Conclusions and perspectives

This thesis has presented the construction, the analysis and the verification of compact
residual discretizations for the solution of conservation laws on unstructured meshes.
The schemes considered belong to the residual distribution (RD)/fluctuation splitting
(FS) class. The design methodology presented relies on three main elements

1. Construction of compact, linear, first-order, monotone and stable schemes for
linear hyperbolic PDEs;

2. A positivity preserving procedure mapping stable first-order linear schemes onto
nonlinear second-order schemes with non-oscillatory shock capturing capabilities;

3. A conservative formulation enabling to extend the schemes to nonlinear CLs.

These three design steps, and the underlying theoretical tools, have been discussed in
depth. The nonlinear RD schemes resulting from this construction have been tested on
a large set of problems involving the solution of scalar models, and systems of CLs. This
extensive verification fills the gaps left open, where no theoretical results can be shown.
On irregular grids, the schemes proposed yield quite accurate and stable results even
on very difficult computations. These results are more accurate than the ones given
by FV and WENO schemes. Moreover, our schemes have a compact nearest-neighbor
stencil. This encourages to further develop our approach, toward the design of very
high-order schemes, which would represent a very appealing alternative, both in terms
of accuracy and efficiency, to now classical FV and ENO/WENO discretizations. These
schemes might also be very competitive with respect to very high-order DG schemes.

In this chapter we discuss in detail the main contributions of this work, and the perfor-
mances of the schemes proposed. An attempt is made to isolate the elements rendering
the technology used here better than other approaches, as well as the weak points of
the construction. In this light, we will thoroughly describe the future perspectives of
our discretization philosophy.
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13.1 Main achievements

The thesis describes the construction of schemes for the solution of systems of CLs. The
three design phases mentioned before have been gradually developed, starting from the
analysis of schemes for scalar advection, and arriving to nonlinear systems at the end of
the manuscript. Most of the theoretical results, from the definition of monotonicity and
stability, to the derivation of conditions allowing to achieve second-order of accuracy,
have been discussed for scalar advection, and then applied to the analysis of scalar FS
discretizations. The schemes obtained in this way have been extended to the solution
of nonlinear CLs by introducing a quite general conservative framework. A matrix
generalization allows to handle nonlinear systems. This has permitted to perform an
extensive validation of our approach. All these elements have led to new developments,
or have required the application of known analytical tools, still yielding results largely
unpublished and allowing to have a fresh look on RD schemes.

13.1.1 Compact cell-vertex schemes for scalar advection

All the elements needed to obtain stable and accurate discretizations, namely the defi-
nition of discrete monotonicity, stability and accuracy conditions, have been discussed
for scalar advection. Even though the steady-state and time-dependent cases are con-
sidered separately in the manuscript, the same theoretical tools are used in the analysis.

The definition of discrete monotonicity has been achieved by making use, in the cell-
vertex framework of the thesis, of the theory of positive coefficients [161]. This has
ultimately led to conditions for the satisfaction of a discrete maximum principle. In the
simplest case of explicit forward Euler time integration, the analysis presented here is a
re-adaptation of the theory discussed in [20, 25] for FV schemes on the median dual cell.
However, the design of monotone space-time schemes for time-dependent calculations
has required the extension of the analysis to implicit two-level time discretizations.
Further generality has been obtained by considering non-homogeneous problems in
which the source term does not depend on the solution. The analysis shows that
even implicit schemes are subject to a time-step constraint for the preservation of
the monotonicity. This is in line with the results obtained in [27] by studying ODEs
representing the temporal evolution of monotone operators.

To the L∞ stability associated to the maximum principle, we have added the L2 sta-
bility related to the satisfaction of bounds on the energy of the discrete solution. This
condition characterizes the dissipation present in the discretization. A quite general
framework has been presented, showing that schemes with a Local Extremum Dimin-
ishing (LED) character introduce a degree of dissipation, modulo terms related to the
boundary conditions. How to include these terms has been shown on some examples of
central schemes. The analysis has been extended to the fully discrete case, introducing
the concept of energy dissipation in time. For the implicit two-level time discretizations
considered here, this additional stabilizing contribution becomes larger as the degree
of implicitness of the time discretization increases.
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For cell-vertex schemes based on a continuous representation of the unknowns on un-
structured meshes, we have recalled and extended the conditions allowing to achieve
second-order of accuracy. Following [9, 3, 12], this has been achieved by manipulating
the discrete equations in a way that allows to recast them as a discrete variant of the
definition of a weak-solution, plus some scheme-dependent extra terms, characterizing
the consistency and the order of the approximation. This technique has been used to
derive accuracy conditions in the homogeneous and non-homogeneous case. It has also
allowed to give some formal evidence of the fact that, during transients, mass-lumped
schemes cannot be second-order accurate on unstructured grids and, lastly, to analyze
the accuracy of the space-time discretizations used in the thesis.

13.1.2 Fluctuation splitting schemes

The FS schemes object of the thesis have been discussed and analyzed in considerable
detail. For linear scalar advection, the theoretical analysis of cell-vertex discretizations
performed in the thesis has given formal tools to precisely characterize their properties.
Both in the steady and in the time-dependent case, analogies with FE schemes have
been used to illustrate some of these properties. However, RD schemes have features
of their own, which can hardly be incorporated in different discrete frameworks.

One of these features is the residual character of second-order schemes. In steady
and unsteady computations, in the homogeneous and non-homogeneous case, the RD
approach allows the construction of true residual discretizations. These schemes are ob-
tained by defining local nodal residuals proportional, through some uniformly bounded
constant, to a local approximation of the integral of the equations. By construction,
these linearity preserving (LP) schemes meet the formal accuracy conditions proved in
the general case. With respect to FV and also DG discretizations, the advantage is that
the residual character of these schemes is independent on the stabilization procedure.
It is intuitively and formally very clear to understand.

The stability of RD schemes also relies on a mechanism peculiar to this framework:
the multidimensional upwinding (MU). The most successful MU schemes, the LDA
and the N schemes, have been analyzed in some detail. The LDA scheme is LP .
Hence its accuracy is guaranteed by its residual character, as confirmed by the scalar
numerical experiments discussed in the thesis. Being linear, the LDA scheme cannot be
also monotone, as stated by Godunov’s theorem. However, its energy stability can be
studied. This analysis has revealed the beneficial dissipative mechanism of the MU .
This unconventional stabilization has been shown to have a true multidimensional
character. Even though the analysis has not led to real stability estimates, the analogy
with SUPG schemes has revealed that the underlying mechanism is the same used in
FE : the addition of an anisotropic dissipation to a centered discretization. However,
for MU schemes this central discretization acts on streamlines, or characteristic lines.
Conversely, the N scheme has very clear stability properties, while being only first-order
accurate. Not only it enjoys all the monotonicity conditions proved in the thesis, but it
also has a clear dissipative character. In particular, after recalling the energy stability
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analysis of the N scheme, we have shown that it can be written as the LDA scheme
plus an anisotropic dissipation term. In the non-homogeneous case, this formulation
reduces to the variant of the N scheme proposed in [151]. When the source term does
not depend on the solution, this variant is L∞−stable.

The construction of nonlinear RD schemes for scalar advection has been discussed in
depth. We have recalled the blending approach, showing its equivalence with the intro-
duction of nonlinear shock-capturing dissipation. Also, we have presented a geometrical
construction of the blended LDA/N scheme of [3]. However, the most appealing ap-
proach to obtain nonlinear FS schemes is the limiting of a linear positive first-order
scheme [129, 126, 9, 10, 12]. Again, this is a technique which is strongly tied to the
RD character of the discretization. It combines the residual property of LP schemes
with a positivity preserving mapping procedure which allows to generate monotone
second-order discretizations starting from linear first-order positive schemes. In this
thesis we have given formal conditions for the well-posedness of the limiting, showing
the importance of the consistency of the linear positive scheme used in the mapping.
As already remarked, this technique has a very strong L∞ flavor, as far as the stability
of the resulting nonlinear schemes is concerned. This is in contrast with what is done
in the FE context, where the global L∞ stability of the discrete solution is a result of
the regularization introduced by large local dissipation terms [166]. Hence, we could
say that the FE approach has a marked L2 flavor. As a result, the dissipation proper-
ties of the limited nonlinear RD schemes are not very clear. Here, we have discussed
this issue in some detail, after [18]. The general conclusion is that this technology
works best if the discretization has a marked upwind character, which, even though
not rigorously proved, stabilizes the scheme. This is confirmed by the numerical expe-
rience. Conversely, the monotonicity and shock capturing properties of these schemes
are excellent. Their accuracy on irregular meshes is confirmed by the numerical tests.

Concerning the time-dependent case, this thesis clearly shows that second-order RD
schemes need the introduction of a mass-matrix. We have also given formal evidence
that, on general triangulations, the explicit Lax-Wendroff scheme proposed in [90, 60]
cannot be second-order accurate. The space-time framework introduced in [8, 51,
120], and used in this work, is the only one satisfying all the design requirements for
second-order schemes, while encompassing a large family of monotone schemes and
allowing to use all the technology developed for steady-state calculations, including
the construction of nonlinear high-order monotone schemes.

13.1.3 Residual distribution for nonlinear conservation laws

The solution of nonlinear conservation laws requires a conservative formulation of the
method. In most of the literature this issue is handled by introducing local exact mean-
value linearizations of the quasi-linear form of the problem. This allows to immediately
apply, on the linearized problem, the schemes developed for scalar advection. The main
limitation of this procedure is that the conservative linearization is only available for
simple CLs and on triangular elements. A more general approach, however based on the
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same principles, is the one introduced in [4]. As recalled in the thesis, this technique
aims at replacing exact mean-value flux Jacobians with approximate ones, obtained
by Gaussian integration. If the number of quadrature points in large enough, the
error introduced by the inexact evaluation of the mean-value flux Jacobians is within
the discretization error, thus conservation is still guaranteed. This technique is general
enough to allow the extension of the schemes to arbitrary CLs and meshes, and it makes
easy their formal analysis. However it is quite expensive due to the surface (volume
in 3D) Gaussian quadrature. This is even more relevant in view of the extension to
systems of CLs for which the Jacobians are matrix functions.

The approach used in this thesis is more efficient than the one of [4]. To our knowledge,
it represents the best solution available at the moment to extend FS schemes to the
discretization of very general CLs and to meshes containing non-triangular elements.
As originally proposed in [50] it is based on two main ingredients. The first is the direct
use of the integral form of the CL to define the local residual. This alone guarantees
that a discrete analog of the Rankine-Hugoniot jump conditions is satisfied. The second
ingredient is a re-formulation of the N scheme, guaranteeing its consistency with the
conservative definition of the residual. In [50] this variant of the N scheme has been
experimentally proved to be extremely robust and to yield non-oscillatory results. The
definition of the cell residual via the contour integration of the fluxes on the boundary
of the element has led the authors of [50] to refer to this approach as to the CRD
approach. These CRD schemes guarantee discrete conservation independently on the
linearization used to evaluate the flux Jacobian needed for the MU procedure. The
formulation introduced in [50] has later been used in [44, 140, 134, 63, 141, 142] to
construct conservative formulations for the Magneto-Hydrodynamics equations, for
time-dependent problems, and to design conservative schemes on grids composed of
quadrilaterals. Even though part of the work contained in the manuscript was already
published in [141, 142], with respect to these references the thesis gives a more mature
description of this approach, and it provides some extra understanding of its properties.

By definition, a conservative RD scheme is one for which the element residual is exactly
equal to the contour integral of the fluxes on the boundary of the element, for some
continuous discrete approximation of the flux. While, as shown in the thesis, this
definition encompasses the schemes based on the exact mean-value linearization of the
Jacobians, it obviously implies that the direct approximation of the contour integral in
the definition of the residual yields conservative schemes. As far as the definition of the
CRD N scheme is concerned, we have shown that the formulation of [50] is a natural
consequence of the fact that the N scheme can be written as the LDA plus dissipation
terms. It is trivially obtained by keeping unchanged the analytical form of these extra
terms, while still using the LDA scheme to distribute the contour integral of the fluxes.
This perspective allows to give a heuristic justification of the fact that the behavior
observed in practice for the CRD N scheme is almost identical to the one of the scheme
based on the conservative linearization: the underlying dissipation mechanism is the
same. The CRD formulation, completely decouples the issues of conservation and of
the Jacobian linearization needed for the multidimensional upwinding, allowing to use
arbitrary linearizations for this purpose. The effect of the use of inexact linearizations
in the distribution of the residual has been analyzed. For the CRD N scheme, the most
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important is the loss of formal positivity, especially in multi-target elements. However,
the non-positive coefficients eventually present in the discretization are proportional to
the difference between the exact mean-value Jacobians and the inexact ones. Hence,
this effect is globally very weak, as confirmed by the robustness and monotonicity that
the scheme shows experimentally. The application of the limiting technique to the CRD
N scheme leads to a nonlinear LP discretization showing excellent shock capturing and
high-accuracy in smooth regions.

A second effect of the use of inexact linearizations in the distribution is related to
the entropy stability of the schemes. As the energy stability in the linear case, in the
nonlinear case the entropy stability of a scheme characterizes its dissipative behavior.
This thesis gives some insight into the entropy dissipation properties of RD schemes. As
in the linear case, this analysis is supported by the comparison with FE discretizations,
for which stability estimates can be derived very easily. Unfortunately, this is not true
for RD discretizations, for which the weaker concepts of entropy consistent and entropy
dissipative schemes have been introduced. Entropy dissipative schemes are the ones
respecting an entropy inequality in the limit h → 0. As in the linear case, we have
been able to show that the multidimensional upwinding is very beneficial in terms of
entropy stabilization. The dissipation mechanism is analog to the one acting in the
linear case. The analysis of some CRD linearity preserving schemes shows that the use
of an inexact Jacobian linearization for the distribution leads to a loss of information
related to the entropy dissipative character of the discretization, at least in multi-
target elements. Concerning the N scheme, we have recalled the proof of [4], showing
the entropy dissipative character of the scheme if exact mean-value Jacobians are used.
Then, we have discussed the stability of the CRD N scheme. We have shown the
presence of an entropy dissipation mechanism, however, details are missing (or not
entirely understood) to obtain a formal proof that the scheme is entropy dissipative.
The analysis has been extended to the fully discrete time-dependent case, after [171].
As in the linear case, implicit schemes have the highest degree of entropy dissipation,
while explicit schemes add entropy destabilizing terms, which need to be balanced by
the dissipation of the spatial discretization.

Still concerning the time-dependent case, we have presented a consistent extension of
the CRD formulation to the space-time framework used in the thesis, following the
initial work reported in [141, 142]. In particular, the combination of CRD space-time
variants of the N scheme with the limiting technique leads to nonlinear LP conserva-
tive schemes for arbitrary time-dependent conservation laws on unstructured meshes.
Numerical results show excellent shock capturing and high-accuracy in smooth regions.

13.1.4 Systems of CLs: verification

In this thesis the extension to systems is obtained in a formal way by resorting to the
matrix formulation of RD introduced in [177, 178]. This approach is quite straightfor-
ward, however, it leads to the loss of all the geometrical analogies allowing to analyze
the scalar schemes. Even so, most of the properties, such as linearity preservation and
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multidimensional upwinding, can be generalized to the matrix schemes. The energy
and entropy stability analyses also admit a formal generalization. The stability prop-
erties of matrix MU schemes are the same of their scalar counterparts, the upwinding
still introducing dissipation. Conversely the definition of a monotone scheme is more
difficult, even though the L∞ analysis on simple waves of [10, 9, 118] can be used.

The matrix formulation of the CRD N scheme, of its space-time variants, and of the
nonlinear conservative LP matrix schemes obtained by limiting these linear schemes,
has allowed to perform a very extensive verification of our methodology on the solution
of several systems of CLs. The aim of these experiments has been to verify, in different
settings, the robustness, the monotonicity and the ability of the schemes proposed
to resolve complex flow structures on irregular grids. All the tests performed have a
somewhat academic character. They involve the solution of the Euler equations of a
perfect gas, of a two-phase flow model, and of the shallow-water equations.

The literature is full of test problems and reference results based on the solution of
the Euler equations of a perfect gas. This motivates the continuous use of some of
these tests for the verification of new discretization techniques. On these equations the
schemes proposed in this thesis have performed extremely well. The monotonicity of
the CRD N scheme and of its space-time variants has been largely confirmed. More
importantly, the nonlinear limited schemes have proved very robust even in presence
of strong steady and unsteady discontinuities. Concerning the resolution of complex
structures, the comparison with the FV scheme of [24] has shown that the technology
used in this thesis definitely leads to more accurate discretizations on unstructured
meshes. Grid refinement studies have also shown the ability of the schemes proposed
to compute unsteady inviscid instabilities without dissipating them. These results are
analog to the ones obtained with second-order DG discretizations.

The two-phase flow equations considered in the thesis constitute a simple model of ho-
mogeneous air/water flow. However, the nonlinearity of the algebraic relations defining
the underlying thermodynamics is such that no conservative mean-value linearization
of the flux Jacobians can be found. Besides, the pressure cannot be expressed in closed
form as a function of the conserved quantities. Hence, this model has all the features of
systems of conservation laws with complex thermodynamics, for which the use of the
conservative framework of the thesis is necessary. Not only the conservative character
of the CRD discretization has been confirmed by the numerical results, but the excel-
lent shock capturing obtained with the limiting approach, and the high resolution of
the nonlinear schemes have also been proved. This in a more complex setting, involving
stronger nonlinearities.

The solution of the shallow-water equations on non-flat bed is an application of con-
siderable engineering interest. In two space dimensions this system of equations does
not admit a simple conservative mean-value linearization, making the CRD formulation
proposed here well suited. The simulations performed involve frictionless flows without
dry areas. The results on flat bed topologies confirm the conservative character of the
schemes, their monotonicity and robustness, and the high resolution of the limited vari-
ants of the N scheme. Simulations of flows on non-flat bed involve the discretization of
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the source term modeling the variation of the bed height. When writing the equations
in terms of local water height and velocity, this source term is independent on the so-
lution. This justifies the application of the matrix variant of the schemes developed for
non-homogeneous scalar advection. The numerical experiments have confirmed their
monotonicity. Moreover, on this application the residual character of second-order RD
schemes has a very interesting consequence: steady-state lake-at-rest solutions of the
shallow-water equations are preserved exactly by LP schemes. This theoretical result,
confirmed by the numerical simulations, is a quite natural consequence of the residual
approach used here, in contrast with the more complex constructions needed in the
FV context to obtain discretizations with similar properties. Besides, this property of
the LP schemes can be proved for more general exact solutions [138], giving additional
evidence of the impressive potential of the residual-based approach.

13.2 Weaknesses of the methodology proposed

The construction presented in this thesis leads to schemes with a strong non-oscillatory
character. These schemes also enjoy a residual property formally guaranteeing second-
order of accuracy. The numerical results show a very good potential in terms of accu-
racy and robustness. However, the approach used to construct these schemes has some
limitations, which we will underline in the following. These weaknesses are related to
the basic issue of stability of the limited nonlinear schemes and of the computational
cost of the discretization. For high-speed or wave-propagation problems the matrix
upwind technology used here pays off in terms of robustness, accuracy and stability.
This is especially true for the nonlinear limited schemes. Things are different for low-
speed and transonic problems, for which the strongly non-oscillatory character of the
discretization is not as important, and where stabilized central discretizations perform
quite well, rendering the use of an expensive upwinding procedure injustified. There is
room and need for improvements.

13.2.1 Nonlinear schemes and stability

As remarked more than once, the mapping of a positive linear first-order scheme onto
a nonlinear LP scheme leads to a monotone discretization, provided that positivity
is preserved by the nonlinear mapping. In contrast to the standard shock capturing
techniques used e.g. in FE methods, this approach strongly enforces the L∞−stable
character of the nonlinear scheme. The numerical results show that this technique is
indeed very well suited for the design of monotonicity preserving schemes. However, in
general the question of the L2 stability remains open. As the grid convergence study
of §7.3.1 shows, sometimes the accuracy measured for the schemes is below the expec-
tations, despite of their LP character. By construction, these schemes are consistent,
hence lack of convergence could be related to the presence of a weak instability. Un-
fortunately, we are not able to formally justify this behavior, even though the analysis
of §5.5.2.3 hints at the presence of an (energy) destabilizing mechanism.
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Some numerical results in [10, 9, 118] show that, if applied to non-upwind linear posi-
tive schemes, the limiting technique leads to nonlinear discretizations performing very
poorly. In the development of this thesis, we have been led to similar conclusions when
trying to construct nonlinear discretizations for the advection-reaction equation, and
limiting an N scheme with the reaction term treated in a pointwise manner [144, 173].
The characteristic symptoms of the problem are a poor iterative convergence and a
general lack of smoothness of the solution, as if an overcompressive mechanism was
active. These symptoms are scarcely visible in the results of the thesis, even though
the poor convergence of the nonlinear matrix schemes is undeniable. In the case of
the advection-reaction equation, we have experimentally noted that the addition of a
Least Squares-type stabilization term to the limited scheme cures both the iterative
convergence and the smoothness problem, however spoiling the positivity of the dis-
cretization. This suggests that the origin of the problem is indeed related to a lack of
dissipation. The absence of the problem when limiting linear first-order schemes with
a marked upwind character, could be explained by the fact that the resulting limited
scheme has itself a strong upwind bias. This has been seen to have a stabilizing effect.
We also recall that in [12] the MU has been shown to lead, in two space dimensions, to
FS discretizations with a stable character, in the sense of the coercivity of the bilinear
form obtained by recasting the schemes in a variational form (see [12, 9] for more).

The understanding of this problem, as well as the design of a cure for it, is of paramount
importance for the success of this technology. We believe that if the excellent shock
capturing obtained with the limiting technique could be incorporated into an L2 stable
LP discretization, RD would have very high chances of success in the competition with
other approaches, as for example DG. This as a consequence of the fact that, even for
a second-order approximation, the gain in accuracy due to the recovery of the full con-
vergence rate, and in efficiency, due to the possibility of using simpler linear first-order
schemes in the mapping, coupled with the compact and true monotonicity preserving
character of the schemes, would give unique stability and accuracy properties.

13.2.2 On the efficiency

A second, though not less important, problem is related to the computational cost of
the schemes. For systems, this issue is strictly tied to the matrix formulation adopted.
The use of multidimensional upwind matrix schemes leads to the need of numerically
inverting on each element small full matrices. This operation is quite expensive and is
probably where most of the computational time is lost. Even though, with respect to
second-order FV schemes, this is compensated by the fact that no multidimensional
polynomial reconstructions are needed, there is room for improvement. This might be
particularly important in view of the design of very high-order schemes for systems.

One solution could be to re-engage the study of scalar decompositions of the system of
equations. For steady computations involving the solution of the Euler equations, this
has led to quite successful results [126, 130, 123, 136]. In three space-dimensions and
in the time-dependent case the degree of decoupling which can be introduced is lower.
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Nevertheless, the reduction of the size of the matrices to invert of even one unit would
already bring some savings. This, for example, can be achieved by using for the spatial
distribution the quasi-linear form of the equations in symmetrizing variables, in which
the entropy equation is always uncoupled [86, 87, 28]. This would still guarantee the
generality of the formulation.

A more appealing alternative can be thought of. If an improved limiting procedure
was at hand, allowing to operate on Lax-Friederichs type first-order schemes such as
the Rusanov scheme of §6.2.2.3, there would be no need at all to evaluate the complete
eigenstructure of the Jacobians, and the cost of the schemes would be mainly related
to the evaluation of the element residual. The latter could be minimized by using
continuous polynomial flux approximations of the minimum possible degree needed to
guarantee the required accuracy. This approach would also free the schemes by the
singularities induced by the intensive use of the quasi-linear form. Once the number of
matrix operations is reduced to the minimum, the schemes might be very competitive
with DG discretizations also in terms of computational cost.

Lastly, we remark that in time-dependent computations the two-layers variant of the
space-time schemes should be always preferred, especially when dealing with large
meshes, or in presence of locally highly refined areas in the grid.

13.3 Future perspectives

The discretization approach used in this thesis has shown a potential which certainly
justifies its further development. This can be done on different fronts. First of all, we
remark that the parallel implementation of the schemes, completely overlooked in this
manuscript, is of course essential to benefit from their compactness. Preliminary results
on this topic, obtained at the von Karman Institute for Fluid Dynamicsby J. Dobeš,
have shown the advantage of the space-time matrix schemes over implicit second-order
FV schemes, which are penalized by need of performing the linear reconstruction, and
exchanging between processors the related information. More interesting developments
can however be foreseen.

13.3.1 Very high-order schemes

The design of FS schemes of order of accuracy higher than two is of primary im-
portance. Preliminary constructions have been presented in [12, 9, 139]. Simple ex-
periments on scalar advection show that very high-order schemes are more efficient
than second-order ones, in the sense that the strong reduction of the error due to the
higher accuracy compensates the larger number of operations needed to obtain the
very high-order approximation [181]. A similar behavior is observed in DG [42]. In
parallel implementations, this effect should be more pronounced, due to the fact that
the number of local operations performed in the very high-order case is larger than for
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second-order schemes. This allows to foresee a better parallel efficiency for the very
high-order schemes, leading to an additional gain. These trends encourage to pursue
the development of higher-order accurate RD, refining the initial results of [12, 9, 139].
The most important aspect is the study of very high-order well-posed and stable non-
linear schemes. The need of improved constructions clearly emerges in [12, 9, 139], and
is confirmed by the analysis performed in this thesis (§5.5.2.2).

As for second-order schemes, the key of success of higher-order RD will be a clever
combination of the shock capturing obtained with the limiting technique and of the
residual character of LP schemes into a stable discretization. Moreover, in the very
high-order case the possibility of using Lax-Friederichs type linear schemes as a basis
for the limiting becomes rather important, due to the need of compensating the extra
cost related to the higher-order interpolation with a simplification in the distribution.
For systems this will be of paramount importance in the competition with DG.

13.3.2 Viscous terms and sources

The approximation of viscous terms and of source terms dependent on the solution
are important aspects, missing in the construction of the thesis. In most of the RD
literature, the discretization of the diffusive part of the Navier-Stokes equations is
performed by resorting to a pure Galerkin approach. Despite of the analogy with linear
continuous FE schemes recalled in the thesis, there is no evidence that a Galerkin
discretization of the diffusive terms, coupled with the upwind RD treatment of the
hyperbolic part of the equations leads to a second order accurate scheme. Indeed,
in the FE case, second-order schemes for advective-diffusive systems incorporate an
appropriate scaling of the streamline dissipation terms with a local Peclet (or Reynolds)
number. This scaling is essential for the accuracy of the discretization [94, 96, 97].

As remarked in the introduction of this thesis, in the RD literature the interaction
between the discrete transport (hyperbolic) operator and the discrete viscous operator
has scarcely been addressed in the past1, as underlined in the recent work of [124]. In
the last reference, in particular, it is suggested to rewrite the second-order PDE as a
first-order system to be discretized with a RD approach. The scaling with the Peclet
number is taken into account in the distribution. This approach works quite well in the
DG case, however it is not very well suited for RD, for two main reasons. Firstly, due to
the continuous variable approximation used in FS, it leads to an excessive overhead in
the cost of the schemes, due to the increased number of variables (conserved variables
plus viscous stresses). Moreover, it makes very hard the definition of a monotone
scheme, even in the scalar case. This is due to the fact that we are faced with the
solution of a system. In the development of this thesis, a preliminary study of this
issue has led to the conclusion that a variational discretization of the second-order
differential terms can be still used, provided that the RD approximation is written as
a Galerkin scheme plus some extra terms. These are then weighted by a parameter
scaling as a cell Reynolds number, exactly as in SUPG FE schemes. The results

1probably with the unique exception of the off-stream work of [29]
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show that second and third-order linear schemes can be indeed obtained in this way
[181, 146], and that second-order monotone schemes for steady and time-dependent
problems can be designed with the exact same technology discussed in the thesis [145].
In time-dependent computations, the monotonicity of these schemes is however still
constrained by a strict time-step limitation of the explicit type. This is unacceptable in
the viscous case for an implicit scheme. The construction of unconditionally monotone
discretizations for time-dependent advective-diffusive systems is still an open issue.

Concerning the RD discretization of source terms dependent on the solution, as already
remarked, the preliminary theoretical investigation performed during the development
of this thesis [144, 173]1 has shown that the most (L∞−)stable approach is obtained
with a pointwise treatment. This is in line with the experimental experience gained
through the years in the approximation of source terms in turbulence models [176], or
arising in chemically reacting flows [58], and also in the context of the shallow-water
equations [92]. Unfortunately, the systematic construction of nonlinear schemes for
general non-homogeneous problems proves quite difficult at the moment, as a con-
sequence of the limited knowledge of the stability of nonlinear limited RD schemes.
Additional theoretical work is still needed in this area.

13.3.3 Hybrid, adaptive and moving meshes

As shown by the work reported in the volume [22], the efficiency of schemes developed
for computational fluid dynamics purposes can be increased dramatically if hybrid,
adaptive and moving meshes can be handled. This due to the possibility of optimizing
number and position of grid entities, with respect to some error monitor. Moreover,
for problems involving moving boundaries, the use of moving grids is a must.

The use of hybrid structured/unstructured grids is in theory possible, thanks also to
the CRD formulation of the schemes [134, 63]. Moreover, in the framework of RD
schemes, the use of solution-dependent grid adaptation has been already investigated
in the past [127, 126]. Successful developments will however depend on the possibility of
deriving systematic error-based adaptation strategies. In this respect, clear variational
formulations of RD need to be developed. One of such formulations is discussed in
[12]. Alternatively, in the second-order case, the analogy with linear stabilized FE
might be useful. The most challenging issue will be the handling of hanging nodes in
the framework of the RD continuous approximation.

We also mention the work of [64], in which the nonlinear space-time scheme of [8]
has been generalized to moving and deforming grids. Successful applications to the
computation of flows with moving boundaries are shown in the reference.

1not included in the manuscript due to its preliminary character
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13.3.4 Applications

The conservative framework of the CRD schemes lends itself to a multitude of inter-
esting applications. In [50], where this conservative approach was originally proposed,
the application to the solution of the Magneto-Hydrodynamics (MHD) equations was
already shown, underlying the need of a better discrete approximation of the magnetic
field. Truly solenoidal discrete formulations of the MHD equations on unstructured
grids have been developed and are being improved by Á. Cśık [45].

Concerning the shallow-water equations, the theoretical and numerical results con-
tained in the thesis give a basis for the use of our schemes for the simulation of flows
of some practical interest. Additional results are presented in [138], yielding a more
complete overview of the possibilities of our approach. However, simulations of real
engineering relevance will require the discretization of additional source terms, e.g.
modeling bed friction, and the possibility of handling dry areas. As far as the bed
friction is concerned, the development of robust discretizations for nonlinear source
terms is needed. The computation of flows with dry areas could benefit from the use
of schemes in which the dissipation does not depend extensively on the eigenstructure
of the flux Jacobians, as in the MU schemes used here. In both cases, the additional
study of the properties of nonlinear limited RD discretizations will be beneficial.

Another very interesting and challenging application is the solution of more general two-
phase flow models. Certainly, this will require the development of robust discretizations
of source terms. However, some more basic issues are present which deserve particular
attention, such as the computation of flows in which one of the phases vanishes, and
the approximation of strong contact discontinuities, especially in presence of large
variations of the transverse velocity across the discontinuity. The first issue is similar to
the problem of approximating shallow free-surface flows with dry areas, and boils down
to the design of schemes able to handle vacuum in a stable manner. The computation
of strong contact discontinuities has a more general relevance. It is known that this
issue is already very important in single phase flow simulations [2, 11]. Even though it
has been shown in [50] that a steady mesh-aligned shear can be exactly preserved by
the CRD schemes, numerical experience shows that this is not true on irregular meshes,
where no alignment is possible. In these cases, very strong contacts lead to a wrong
approximation of the pressure field. Simple experiments can be performed to check
that, if the kinetic energy across the contact is artificially imposed, the approximation
of the pressure improves quite a lot. This shows that at the basis of the problem
there is a phenomenon very similar to the one observed in FV [11]: the conservative
method is unable to predict correctly the transverse kinetic energy and, ultimately,
the pressure. Not surprisingly, in 1D the fix proposed in [2] can be rewritten in a RD
formalism, requiring the space-time residual to be consistent with the proper pressure
and kinetic energy equation. This observation can probably be generalized to multiple
space dimensions and could lead to understand how RD schemes should be modified
to yield the correct result. The experience gained in this way should help to analyze
multi-species or multi-phase models of increasing complexity. It is believed that, due
to the nature of the schemes, a proper approximation of the residual will always be the
basis of these developments.
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Lastly, we mention the ongoing work at the von Karman Institute for Fluid Dynamicson
the extension of the schemes to the approximation of high enthalpy chemically reacting
flows, using the thermodynamics library developed in [114, 115, 116]. To our knowledge,
the work of [58] constitutes the only past attempt to perform this type of computations
with RD. The conservative framework of the CRD formulation will certainly help to
simplify the formulation of the schemes with respect to the reference. A careful study
of the discretization of the source terms related to the chemistry will be needed.
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254, 1978.

[28] A. Bonfiglioli and H. Deconinck. Multidimensional upwind schemes for the 3D
Euler equations on unstructured tetrahedral meshes. In H. Deconinck and B. Ko-
ren, editors, Euler and Navier-Stokes Solvers Using Multi-Dimensional Upwind
Schemes and Multigrid Acceleration, volume 57 of Notes on Numerical Fluid
Mechanics, pages 141–185. Vieweg, Braunschweig, 1997.

[29] L. Bortels. The Multi-Dimensional Upwinding method as a simulation tool for
the analysis of Multi-Ion Electrolytes controlled by Diffusion, Convection and
Migration. PhD thesis, Vrije Universiteit Brussel, 1996.

[30] S.C. Brenner and L.R. Scott. The mathematical theory of finite element methods
– Second edition. Springer, 2002.
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