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Impli
it Spa
e-Time Residual DistributionMethod for Unsteady Vis
ous FlowJi�r�� Dobe�s1;2�, Mario Ri

hiuto1y, �Arp�ad Cs��k1zand Herman De
onin
k1;x1von Karman Institute for Fluid Dynami
s, Sint-Genesius-Rode, Belgium2Cze
h Te
hni
al University, Dept. of Te
hni
al Mathemati
s, Prague, Cze
h Republi
Multidimensional upwind residual distribution s
hemes have been developed over thelast years as a monotoni
ity preserving spatial dis
retization method for hyperboli
 
on-servation laws on unstru
tured grids 
omposed of triangles or tetrahedra. More re
entlya spa
e-time formulation has been proposed by several authors to perform time a

urateunsteady invis
id simulations. In the present paper we extend the use of the spa
e-times
hemes to vis
ous laminar 
omputations. The vis
ous terms are introdu
ed in the dis-
retization through a Petrov-Galerkin approa
h 
onsistent with the underlying residualdistribution method. Grid 
onvergen
e studies on s
alar models are presented showingse
ond order of a

ura
y of the proposed approa
h. The method is then applied to thelaminar Navier-Stokes equations. Promising results are obtained. We also investigate ex-pli
it and impli
it iterative te
hniques for the solution of the impli
it system of equationsobtained with the proposed algorithms. For vis
ous problems, the impli
it approa
hshows a dramati
 speed-up of the 
omputation, however for invis
id high speed 
owsexpli
it iterations 
an be 
ompetitive.Introdu
tionTHE Multidimensional Upwind Residual Distribu-tion S
hemes (RDS) have emerged in the lastyears as an appealing alternative to Finite Volume(FVM) and Finite Element (FEM) methods. Thanksto their inherent dissipative 
hara
ter and to a residualproperty, positive se
ond order s
hemes 
an be de-signed on 
ompa
t sten
il of an arbitrary unstru
turedgrid without any tuning of the numeri
al dissipation.Moreover, the multidimensional nature of the upwind-ing pro
edure dramati
ally redu
es the dependen
e ofthe results on the mesh quality.1, 2Unfortunately, unlike in FVM, for RDS spatial andtemporal dis
retization 
annot be de
oupled. As inFEM the 
oupling arises from a non-diagonal massmatrix. For steady 
omputations the mass matrix
an be lumped, without a�e
ting the a

ura
y of themethod. For unsteady problems one has to take intoa

ount the full mass matrix. However, being thismatrix non-positive de�nite, the resulting s
heme isnon-positive. In the past a Flux Corre
ted Transportte
hnique has been tried to solve the monotoni
ityproblem.3, 4 Unfortunately, this approa
h has showna la
k of robustness and it is extremely unsatisfa
toryfrom the theoreti
al point of view. Re
ently,5{7 thespa
e-time approa
h has been introdu
ed, whi
h hasshown promising theoreti
al properties and numeri
alresults.�Ph.D. 
andidateyPh.D. 
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The main idea of the spa
e-time approa
h is to re-formulate the s
hemes in
luding time in the set ofindependent variables and then apply the numeri
altools developed for steady state 
omputations to aspa
e-time residual. By doing this an impli
it sys-tem of equations is obtained at ea
h time step. In thepresent work, as in5 this impli
it system has been 
on-sidered as a steady problem in a pseudo time variable� in d + 1 dimensions (being d the number of spa
edimensions and time the additional one) and solvedwithin ea
h time-step using standard Residual Distri-bution S
hemes in spa
e-time. The positivity of thes
hemes transforms into linear stability. Moreover,if the spa
e-time mesh obeys to 
ertain geometri
al
onstraints, the multidimensional upwinding allows tonaturally de
ouple the solution of the past time levelfrom the future one. In parti
ular, by solving for twotime levels at on
e, the time step relative to the lastspa
e-time sli
e 
an be arbitrary large, resulting in alinearly un
onditionally stable time mar
hing pro
e-dure.5In5, 7, 8 results have been shown for s
alar modelsand for the Euler equations. Here we will follow more
losely the work done in5, 8 extending it to vis
ous
omputations. This is a
hieved through a 
onsistentPetrov-Galerkin treatment of all terms (time deriva-tives, 
onve
tive terms and dissipative terms). Forlinear problems this leads to a standard RDS dis-
retization for the invis
id part and to a Galerkinmethod for the vis
ous terms. It turns out, that thetime levels are not fully de
oupled, but some 
ouplingthrough the spa
e-time mesh geometry exists.Convergen
e studies are presented for s
alarAdve
tion-Di�usion and vis
ous Burgers equations,1 of 8




on�rming the expe
ted se
ond order of a

ura
y inspa
e-time. The method is then applied to the lami-nar Navier-Stokes equations.The paper is organized as follows: the Spa
e-TimeRDS method of5 is shortly re
alled, to explain its mainideas and how the de
oupling of time levels is a
hieved.Then the dis
retization of the vis
ous part is explainedand 
onvergen
e results are presented. Finally resultsfor the Navier-Stokes equations are shown. Steady-state in pseudo-time is rea
hed by 
onventional time-integration. A 
omparison between expli
it and im-pli
it pseudo-time integration te
hniques is also per-formed, with parti
ular emphasis on the vis
ous 
ase.Spa
e-Time RDS for S
alarConservation LawsConsider a s
alar 
onservation law in quasi-linearform �u�t + �(u) � ru = 0 (1)to be solved on a spa
e-time domain 
st = 
s �[0; tmax ℄. Following5, 8 we rewrite last equation in thefollowing spa
e-time notation�st (u) � rstu = 0; (2)where �st = (�; 1) and rst = (r; �=�t).Given an initial solution u0(x; y; 0) at time t = 0,we will 
ompute the unknown quantity u1(x; y; t1) attime t1 > 0 by solving the steady equation (2) on thespa
e-time sli
e 
s� [0; t1℄ by means of standard RDS.In parti
ular, given an initial dis
retization of thespa
e domain 
s 
omposed of linear �nite elements(spa
e intervals in 1D, triangles in 2D), we build aspa
e-time grid on 
s � [0; t1℄ 
omposed of linear �-nite elements in spa
e-time (triangles in 1D spa
e andtetrahedra in 2D spa
e). For any spa
e-time elementT , we de�ne the element residual as�T = ZT �st (u) � rstu dTThe nodal residuals are then 
omputed as�Ti = �Ti �T :with �Ti a distribution 
oeÆ
ient. The steady solutionof (2) is rea
hed by mar
hing in a pseudo-time variable� , i.e. Si duid� + XT2
i �Ti �T = 0 (3)Positivity and/or a

ura
y of the dis
retization arethe requirements one takes into a

ount for the designof the distribution 
oeÆ
ient �Ti . Details on the gen-eral properties of RDS 
an be found in the referen
esgiven in the introdu
tion. Here we will fo
us our at-tention on the so-
alled Multidimensional Upwinding(MU) property.
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Fig. 1 Spa
e-time mesh for 1D 
aseFor a node i in the element T , we de�ne the nodalnormal ni as the inward pointing ve
tor normal to thefa
e of T s
aled by the length (surfa
e in a tetrahe-dron) of the fa
e. We then de�ne the upwind param-eter ki = �st (u) � ni=D, where D is the number ofindependent variables (D = d + 1 in spa
e-time if dis the number of spa
e dimensions). It 
an be easily
he
ked that ki < 0 if i is an upwind node of T , whileki > 0 if i is a downwind node. Hen
e, MU is simplyobtained by requiring �Ti = 0 if ki < 0.As explained extensively in,5, 8 the MU allows tobuild spa
e-time grids whi
h guarantee a de
ouplingof the past solution from the future one so that a timemar
hing pro
edure 
an be a
hieved. To understandhow this is done in pra
ti
e, 
onsider the lower rowof spa
e-time triangles in �gure 1. For the 1D 
aseof equation (1) with 
onstant speed � one 
an easily
he
k that ki < 0 for all the nodes at time level nprovided that the following 
ondition holds:5, 8�t0 � �x2j�j : (4)If the spa
e-time mesh respe
ts 
onstraint (4), the so-lution at time level n will be preserved allowing a truetime mar
hing s
heme. However, a stri
t restri
tionon the magnitude of the time-step is an undesirablefeature of an impli
it method like the spa
e-time RD.For this reason in5, 8 a se
ond layer of spa
e-time ele-ments of arbitrary time width has been added whi
hallows to in
rease the e�e
tive time-step of the 
ompu-tation �t still retaining the de
oupling of the solutionat time tn from the one at tn+1. On
e this is done,the use of a positive RD s
heme translates into un
on-ditional stability of the time-mar
hing pro
edure forarbitrary time-steps.In this paper, we use the following multidimensionalupwind RDS s
hemes: the linear positive N s
heme,the linear se
ond order LDA s
heme and the non-linearB (blended) s
heme. Details 
an be found in the ref-eren
es.1, 2Spa
e-Time RDS for S
alar Vis
ousProblemsProvided that the distribution 
oeÆ
ients �Ti inequations (3) are bounded, it 
an be shown that RDSare equivalent to a Petrov-Galerkin dis
retization with2 of 8



linear Galerkin shape fun
tions 'i and test fun
tions2wPGi = 'i + XT2
i �T�T ; �T = �Ti � 1d+ 1 ; (5)being �T the 
hara
teristi
 fun
tion of element T .This FEM interpretation of the residual distributionmethod allow to easily in
lude in a 
onsistent way dis-sipative terms in the dis
retization.In parti
ular, 
onsider the s
alar problem�u�t + �(u) � ru = r � (�ru) (6)where � is a di�usivity 
oeÆ
ient. We want to solveequation (6) on a spa
e-time domain 
st = 
s �[0; tmax ℄. The equation 
an be written in spa
e-timenotation as �st (u) � rstu = rst � (�ru; 0): (7)Note the zero in ve
tor on the RHS 
orresponding tothe absen
e of physi
al time dissipation ��2u=�t2.We add a pseudo-time dependen
y and apply thespa
e-time Petrov-Galerkin dis
retization to�u�� + �st (u) � rstu = rst � (�ru; 0):The dis
retization pro
edure 
onsists of the followingsteps:� The term 
ontaining the pseudo-time derivative ismultiplied by a mass matrix. The mass matrix islumped, as it is usual for steady state 
omputa-tions.� The dis
retization of the 
onve
tive terms redu
esto standard spa
e-time RDS by 
onstru
tion ofthe Petrov-Galerkin test fun
tion.� The dis
retization of the vis
ous term on the RHSredu
es to a 
entral Galerkin dis
retization in thelinear 
ase. We linearize lo
ally the vis
osity 
oef-�
ient in the non-linear 
ase and then we use thesame Galerkin dis
retization.After some algebra one 
an obtain the followingsemi-dis
rete equation for node iSi duid� = � XT2
i �Ti �T�XT2
i �Xj2T nSj � nSi(d+ 1)2ST uj ; (8)where nSj are spatial 
omponents of normal nj . Forresidual distribution s
hemes for whi
h the distri-bution 
oeÆ
ients 
an be unbounded (e.g. the Ns
heme), we repla
e in equation (8) �Ti �T by �Ti whi
his always well de�ned.With referen
e to �gure 1, we observe that thereis no 
ontribution to the vis
ous residual of nodes attime level n+ 1=2 from nodes at di�erent time levels.

i−1 i+1i

2t∆

t∆ 1Fig. 2 Grid sten
il of vis
ous residual for 1D prob-lemThe same holds for nodes at level n + 1. This is dueto the absen
e of the time dissipation term ��2u=�t2and it allows to keep the de
oupling of the solutionguaranteed by the mesh geometry and by the MU forthe invis
id residual.Unfortunately, the spatial 
omponents of the nor-mals are s
aled by the time-step of the 
orrespondingtime layer. This leads to the fa
t that the vis
ousresidual for a node depends on time step �t of bothsurrounding layers.Consider for example the 1D linear adve
tion-di�usion equation. Consider three neighbor nodes i�1,i and i+1 at time level n+1=2 surrounded by elementswith time-step �t1 and �t2 respe
tively (see �g. 2).The 
ontribution of the vis
ous term to the residualfor node i is given by��t1 +�t22�x (ui�1 � 2ui + ui+1): (9)The knowledge of �t1 and �t2 is needed to dis
retizethe equations.As a 
onsequen
e, the time-layers are not fully de-
oupled, but there is some 
oupling through the spa
e-time mesh geometry. In parti
ular, for nodes in thelast time level (n + 1) the knowledge of the timestep�t2 (see �gure 1) is needed. Fortunately, we knowthe grid geometry. In parti
ular, in the linear 
ase weknow a priori the next time-step �t2, while for non-linear problems we 
an 
ompute iteratively �t2 duringthe pseudo-time iterations. Note also that, be
ause ofthe linearity of the method, this dependen
e on themesh geometry is linear, even for nonlinear problems.Se
ond order of a

ura
y is expe
ted in spa
e andtime if a residual distribution s
heme with boundeddistribution 
oeÆ
ients is used. In this 
ase, in fa
t,a linear 
onsistent P-G dis
retization is used in spa
e-time.With referen
e to �gure 1, we de�ne the meshstret
h ratio Q as the ratio of time-steps of intermedi-ate layer to time-step of past layer:Q = �t1 ��t0�t0 : (10)We 
an a
hieve arbitrarily large time-steps by 
hang-ing this value a

ording to our needs, retaining theun
onditional stability of the time mar
hing pro
edureif a positive Residual Distribution S
heme is used.3 of 8
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onvergen
e studyQ N LDA B1 1.06 1.36 1.102.5 1.14 1.61 1.365 1.12 2.22 1.527.5 1.22 2.24 1.7110 1.29 2.28 1.8012.5 1.19 2.14 1.6915 1.25 2.17 1.73Table 1 Convergen
e ratios for 1D adve
tion-di�usion equationS
alar Vis
ous Problem { Numeri
alResultsAs a �rst test 
ase, the 1D linear adve
tion-di�usionof a step was 
hosen. The equationut + aux = �uxx (11)has been solved on a domain 
st = [�5; 5℄�[0; 1℄, withinitial 
onditions u0(x) = 1 for x < 0 and u0(x) = 0for x > 0. In the 
omputations we took a = 1 and� = 0:1. This problem admits the analyti
al solutionu(t; x) = 12erf �x� atp4�t � : (12)In �gures 3, 4, 5 the error (uexa
t � unumeri
)(x) isplotted for various values of the parameter Q and forall the s
hemes used in this paper. As expe
ted, theLDA and B s
heme show a mu
h smaller error than4 of 8



Q N LDA B1 0.96 1.80 1.182.5 0.97 1.63 1.305 0.93 2.15 1.337.5 0.92 1.89 1.2910 0.92 1.73 1.2612.5 0.88 1.59 1.1815 0.87 1.51 1.14Table 2 Convergen
e ratios for 1D Vis
ous Burg-ers equationthe N s
heme. To 
ompute the order of a

ura
yof the dis
retization, a 
onvergen
e study has beenperformed. In this 
ase we took the larger domain
st = [�10; 10℄� [0; 1℄ and we set as initial 
onditionsthe exa
t solution at t = 10. The error has been 
om-puted as� = ku� uexa
tkL2 = ZZ (unum � uexa
t)2 dx dt �(13)�sP(u(xi; tj)� uexa
t(xi; tj))2#nodes :The resulting grid 
onvergen
e hystories are plotted in�gures 6, 7, 8 as a fun
tion of Q for the N, LDA and Bs
heme respe
tively. The 
omputed orders of a

ura
yare summarized in table 1.We 
an see that the LDA s
heme gives the expe
tedse
ond order of a

ura
y. Also the nonlinear B s
hemegives almost se
ond order of a

ura
y.A similar test was performed on the 1D vis
ousBurgers equation. The initial solution 
hosen is that ofa steepening pro�le. Convergen
e ratios are presentedin table 2. The lower order of a

ura
y observed for theB s
heme is 
aused by the very steep gradient formingin the solution.Spa
e-Time RDS for Navier-StokesEquationsThe spa
e-time formulation of system residual dis-tribution s
hemes is a straightforward extension of thespa
e-time formulation of the s
alar s
hemes.5, 8Consider the well known 
onservative formulation ofNavier-Stokes equations�w�t +r(f ;g) = r(r; s): (14)The system is 
losed by 
onstitutive relations andequation of state. One 
an rewrite this system inspa
e-time form and add a pseudo-time dependen
e�w�� +rst (w; f ;g) = rst (0; r; s): (15)The dis
retization 
an easily be obtained throughthe 
onsistent Petrov-Galerkin approa
h des
ribed inthe previous se
tion. Roe's linearization9 is used wher-ever the Ja
obians are needed.

Fig. 9 Diamond and isotropi
 mesh pattern

0.0 0.5 1.0
y

0

0.5

1

u

Exact solution
N scheme
LDA scheme
B schemeFig. 10 First Stokes problemNavier-Stokes Equations { Numeri
alResultsThe �rst test 
ase we present is the so-
alled FirstStokes problem.10 Consider an in�nite plate immergedin a 
uid at rest. At t = 0 the plate is instantiniouslyset into motion with a velo
ity u1 in its plane. Theexa
t solution of the problem isu = �u1erf � y2p�t� ; (16)where � is the kinemati
 vis
osity of the 
uid (assumedto be 
onstant). The problem has been solved on a unitsquare dis
retized by 40 � 40 mesh with a diamondpattern (see zoom in �g. 9). The spa
e-time meshstret
h ratio Q was set to 12. In �gure 10 the solutionsobtained with the N, LDA and B s
heme are shown.One 
an see a very good agreement with the analyti
alsolution.We 
onsider then a transoni
 vortex pairing prob-lem in a mixing layer.11 The problem 
onsist of ashear layer de�ned by two free streams with velo
itypro�les u = tanh(2y)=2. To these velo
ity pro�les wesuperimpose the velo
ity perturbationsv0 = 2Xk=1 ak 
os(2�kx=Lx + �k) exp(�y2=b) (17)with parameters a1 = 0:01, a2 = 0:05, �1 = �2 = �=2,b = 10. The problem has been solved inside a re
t-angular area Lx � Ly with Lx = 30 and Ly = 100.5 of 8
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Fig. 11 Isolines of normalized temperature. Figures for t=40, 80, 120, 160The top and bottom boundaries are treated as invis-
id walls, and periodi
 boundary 
onditions are set onthe left and right boundary. The kinemati
 vis
osityin the freestreams is set to �1 = 10�3, 
orrespondingto a Reynolds number Re = 1000. Sutherland's lawfor vis
osity has been used in the 
omputations. Thespeed of sound (and hen
e density) in the initial so-lution is determined from the assumption of 
onstantstagnation enthalpya2 = a21 + 
 � 12 (u21 � u) (18)and Ma1 = 0:8. Constant stati
 pressure is assumeda
ross whole 
ow-�eld. The grid used 
onsists of anisotropi
 triangulation (see �g 9) stret
hed in the y-dire
tion using the mappingy = Ly2 sinh(by�)sinh(by) ; (19)where � 2 (�1; 1) and by = 3:4. The mesh 
ontains201�201 nodes. The 
omputation has been run withthe B s
heme.The solution at times t = 40; 80; 120; 160 are shownin �gures 11, where we plot 30 levels of isolines of thetemperature. Comparing with the fourth order results

of,11 our method shows all features of 
ow-�eld. Wejudge the results very satisfa
tory 
onsidering that ourmethod is at most se
ond order a

urate.Pseudo-time IntegrationThe steady-state solution is found by mar
hing inpseudo-time. Be
ause we are not interested in thetransient state, we 
an use the fastest and the most ro-bust method. Although expli
it pseudo-time integra-tion works well, for sti� problems the pseudo-time steprestri
tion is too severe and the 
omputation be
omestoo long. We implemented also impli
it time-steppingwith the ba
kward Euler method in pseudo-time.The expli
it lo
al time step integration 
an be writ-ten as Un+1i = Uni � ��iSi Rni : (20)where ��i is 
omputed as��i = CFL ���i0with ��i0 the maximum pseudo time-step allowed bythe positivity of the N s
heme in the linearized 
ase.The simplest impli
it method, linear Euler ba
kwardmethod, is obtained by evaluating the residual at the6 of 8



0 100 200 300
Iterations

−15

−13

−11

−9

−7

−5

lo
g1

0(
re

s)

explicit CFL = 0.9
CFL = 1e2
CFL = 1e4
CFL = 1e6

Fig. 12 Convergen
e of method for one physi
altime-step for 2D Navier-Stokes equations in termsof iterations.
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CFL = 1e6Fig. 13 Convergen
e of method for one physi
altime-step for 2D Navier-Stokes equations in termsof CPU time.next time level. The residual in the time level n+1 isextrapolated using the �rst order approximationUn+1i = Uni � CFL ���i0Si �Rni + �R�U (Un+1 � Un)� :(21)This leads to large system of equations with sparse ma-trix for the unknown �U = Un+1 �Un. The methodis un
onditionally stable in the linear 
ase.The Ja
obian matrix �R=�U is analyti
ally 
om-puted by a Pi
ard approximation, i.e. the distribution
oeÆ
ient (matrix) and the Ja
obians are assumed tobe independent on the solution ve
tor.The resulting system is then solved by GMRESmethod with ILU(0) pre
onditioning. The PETS
algebrai
 library has been used in all the 
omputa-tions.12The method was tested also on s
alar problems, but

we do not present results here, be
ause the biggest
on
ern is related to the Navier-Stokes equations. The�rst test 
ase we 
onsider, simple enough to be able to
ompute it also with the expli
it pro
edure, was simi-lar to the �rst Stokes problem, but in a 
hannel. The
uid is in the rest in the 
hannel and suddenly the wallsstart to move. In �g 12 the de
ay of residual in termsof iterations during one pseudo-time step is plotted.We 
an immediately see, how fast is the impli
it timeintegration 
ompared to the expli
it one. This is alsodue to spa
e-time nature of the problem, in whi
h thenew solution we look for is relatively 
lose to the ini-tial 
ondition in pseudo-time. More important is the
onvergen
e of the method in terms of CPU time (�g13). The method was working for CFL numbers upto 1010, but setting CFL higher then approximatively105 did not 
hange the speed signi�
antly.As a se
ond test 
ase we 
onsidered the DoubleMa
h Re
e
tion of Woodward and Colella.13 Theproblem involves the invis
id 
omputation of a Ma
h10 sho
k (not shown here) re
e
ting on a wedge. Fromthis type of 
omputation one 
ould expe
t problemsdue to the strong dis
ontinuities present in the solu-tion and to the approximations made in the derivationof system matrix. As a matter of fa
t, the impli
itmethod 
onverges faster in terms of pseudo-time iter-ations, but not in terms of CPU time.As a �nal remark, note that the 
omputation of thevortex pairing in a mixing layer took approx. 4 dayson Linux workstation equipped with CPU Pentium 4running on 1.7 GHz and 512 MB of memory. The
omputation with the expli
it pseudo-time integrationwould not be possible.Con
lusionsIn the work the use of spa
e-time RDS has been ex-tended to the solution of vis
ous problems. We deriveda 
onsistent treatment of 
onve
tive and dissipativeterms through a Petrov-Galerkin interpretation of theRDS. The presented approa
h as been tested on s
alarequations, where se
ond order of a

ura
y for the LDAs
heme and almost se
ond order of a

ura
y for the Bs
heme have been measured. The method has beenapplied to the solution of the laminar Navier-Stokesequations. Promising results have been obtained.A performan
e 
omparison between impli
it and ex-pli
it pseudo-time integration te
hniques has been pre-sented. For vis
ous 
omputations impli
it pseudo-timeintegration over-performs the expli
it one of an orderof 50 in terms of CPU time. Worse performan
es haveof the impli
it integrator have been observed for invis-
id problems 
ontaining strong dis
ontinuities.Referen
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