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Impliit Spae-Time Residual DistributionMethod for Unsteady Visous FlowJi�r�� Dobe�s1;2�, Mario Rihiuto1y, �Arp�ad Cs��k1zand Herman Deonink1;x1von Karman Institute for Fluid Dynamis, Sint-Genesius-Rode, Belgium2Czeh Tehnial University, Dept. of Tehnial Mathematis, Prague, Czeh RepubliMultidimensional upwind residual distribution shemes have been developed over thelast years as a monotoniity preserving spatial disretization method for hyperboli on-servation laws on unstrutured grids omposed of triangles or tetrahedra. More reentlya spae-time formulation has been proposed by several authors to perform time aurateunsteady invisid simulations. In the present paper we extend the use of the spae-timeshemes to visous laminar omputations. The visous terms are introdued in the dis-retization through a Petrov-Galerkin approah onsistent with the underlying residualdistribution method. Grid onvergene studies on salar models are presented showingseond order of auray of the proposed approah. The method is then applied to thelaminar Navier-Stokes equations. Promising results are obtained. We also investigate ex-pliit and impliit iterative tehniques for the solution of the impliit system of equationsobtained with the proposed algorithms. For visous problems, the impliit approahshows a dramati speed-up of the omputation, however for invisid high speed owsexpliit iterations an be ompetitive.IntrodutionTHE Multidimensional Upwind Residual Distribu-tion Shemes (RDS) have emerged in the lastyears as an appealing alternative to Finite Volume(FVM) and Finite Element (FEM) methods. Thanksto their inherent dissipative harater and to a residualproperty, positive seond order shemes an be de-signed on ompat stenil of an arbitrary unstruturedgrid without any tuning of the numerial dissipation.Moreover, the multidimensional nature of the upwind-ing proedure dramatially redues the dependene ofthe results on the mesh quality.1, 2Unfortunately, unlike in FVM, for RDS spatial andtemporal disretization annot be deoupled. As inFEM the oupling arises from a non-diagonal massmatrix. For steady omputations the mass matrixan be lumped, without a�eting the auray of themethod. For unsteady problems one has to take intoaount the full mass matrix. However, being thismatrix non-positive de�nite, the resulting sheme isnon-positive. In the past a Flux Correted Transporttehnique has been tried to solve the monotoniityproblem.3, 4 Unfortunately, this approah has showna lak of robustness and it is extremely unsatisfatoryfrom the theoretial point of view. Reently,5{7 thespae-time approah has been introdued, whih hasshown promising theoretial properties and numerialresults.�Ph.D. andidateyPh.D. andidatezPh.D. andidatexProfessor, AIAA memberCopyright  2000 by Ji�r�� Dobe�s, Mario Rihiuto, �Arp�ad Cs��k,Herman Deonink. Published by the Amerian Institute of Aero-nautis and Astronautis, In. with permission.

The main idea of the spae-time approah is to re-formulate the shemes inluding time in the set ofindependent variables and then apply the numerialtools developed for steady state omputations to aspae-time residual. By doing this an impliit sys-tem of equations is obtained at eah time step. In thepresent work, as in5 this impliit system has been on-sidered as a steady problem in a pseudo time variable� in d + 1 dimensions (being d the number of spaedimensions and time the additional one) and solvedwithin eah time-step using standard Residual Distri-bution Shemes in spae-time. The positivity of theshemes transforms into linear stability. Moreover,if the spae-time mesh obeys to ertain geometrialonstraints, the multidimensional upwinding allows tonaturally deouple the solution of the past time levelfrom the future one. In partiular, by solving for twotime levels at one, the time step relative to the lastspae-time slie an be arbitrary large, resulting in alinearly unonditionally stable time marhing proe-dure.5In5, 7, 8 results have been shown for salar modelsand for the Euler equations. Here we will follow morelosely the work done in5, 8 extending it to visousomputations. This is ahieved through a onsistentPetrov-Galerkin treatment of all terms (time deriva-tives, onvetive terms and dissipative terms). Forlinear problems this leads to a standard RDS dis-retization for the invisid part and to a Galerkinmethod for the visous terms. It turns out, that thetime levels are not fully deoupled, but some ouplingthrough the spae-time mesh geometry exists.Convergene studies are presented for salarAdvetion-Di�usion and visous Burgers equations,1 of 8



on�rming the expeted seond order of auray inspae-time. The method is then applied to the lami-nar Navier-Stokes equations.The paper is organized as follows: the Spae-TimeRDS method of5 is shortly realled, to explain its mainideas and how the deoupling of time levels is ahieved.Then the disretization of the visous part is explainedand onvergene results are presented. Finally resultsfor the Navier-Stokes equations are shown. Steady-state in pseudo-time is reahed by onventional time-integration. A omparison between expliit and im-pliit pseudo-time integration tehniques is also per-formed, with partiular emphasis on the visous ase.Spae-Time RDS for SalarConservation LawsConsider a salar onservation law in quasi-linearform �u�t + �(u) � ru = 0 (1)to be solved on a spae-time domain 
st = 
s �[0; tmax ℄. Following5, 8 we rewrite last equation in thefollowing spae-time notation�st (u) � rstu = 0; (2)where �st = (�; 1) and rst = (r; �=�t).Given an initial solution u0(x; y; 0) at time t = 0,we will ompute the unknown quantity u1(x; y; t1) attime t1 > 0 by solving the steady equation (2) on thespae-time slie 
s� [0; t1℄ by means of standard RDS.In partiular, given an initial disretization of thespae domain 
s omposed of linear �nite elements(spae intervals in 1D, triangles in 2D), we build aspae-time grid on 
s � [0; t1℄ omposed of linear �-nite elements in spae-time (triangles in 1D spae andtetrahedra in 2D spae). For any spae-time elementT , we de�ne the element residual as�T = ZT �st (u) � rstu dTThe nodal residuals are then omputed as�Ti = �Ti �T :with �Ti a distribution oeÆient. The steady solutionof (2) is reahed by marhing in a pseudo-time variable� , i.e. Si duid� + XT2
i �Ti �T = 0 (3)Positivity and/or auray of the disretization arethe requirements one takes into aount for the designof the distribution oeÆient �Ti . Details on the gen-eral properties of RDS an be found in the referenesgiven in the introdution. Here we will fous our at-tention on the so-alled Multidimensional Upwinding(MU) property.
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Fig. 1 Spae-time mesh for 1D aseFor a node i in the element T , we de�ne the nodalnormal ni as the inward pointing vetor normal to thefae of T saled by the length (surfae in a tetrahe-dron) of the fae. We then de�ne the upwind param-eter ki = �st (u) � ni=D, where D is the number ofindependent variables (D = d + 1 in spae-time if dis the number of spae dimensions). It an be easilyheked that ki < 0 if i is an upwind node of T , whileki > 0 if i is a downwind node. Hene, MU is simplyobtained by requiring �Ti = 0 if ki < 0.As explained extensively in,5, 8 the MU allows tobuild spae-time grids whih guarantee a deouplingof the past solution from the future one so that a timemarhing proedure an be ahieved. To understandhow this is done in pratie, onsider the lower rowof spae-time triangles in �gure 1. For the 1D aseof equation (1) with onstant speed � one an easilyhek that ki < 0 for all the nodes at time level nprovided that the following ondition holds:5, 8�t0 � �x2j�j : (4)If the spae-time mesh respets onstraint (4), the so-lution at time level n will be preserved allowing a truetime marhing sheme. However, a strit restritionon the magnitude of the time-step is an undesirablefeature of an impliit method like the spae-time RD.For this reason in5, 8 a seond layer of spae-time ele-ments of arbitrary time width has been added whihallows to inrease the e�etive time-step of the ompu-tation �t still retaining the deoupling of the solutionat time tn from the one at tn+1. One this is done,the use of a positive RD sheme translates into unon-ditional stability of the time-marhing proedure forarbitrary time-steps.In this paper, we use the following multidimensionalupwind RDS shemes: the linear positive N sheme,the linear seond order LDA sheme and the non-linearB (blended) sheme. Details an be found in the ref-erenes.1, 2Spae-Time RDS for Salar VisousProblemsProvided that the distribution oeÆients �Ti inequations (3) are bounded, it an be shown that RDSare equivalent to a Petrov-Galerkin disretization with2 of 8



linear Galerkin shape funtions 'i and test funtions2wPGi = 'i + XT2
i �T�T ; �T = �Ti � 1d+ 1 ; (5)being �T the harateristi funtion of element T .This FEM interpretation of the residual distributionmethod allow to easily inlude in a onsistent way dis-sipative terms in the disretization.In partiular, onsider the salar problem�u�t + �(u) � ru = r � (�ru) (6)where � is a di�usivity oeÆient. We want to solveequation (6) on a spae-time domain 
st = 
s �[0; tmax ℄. The equation an be written in spae-timenotation as �st (u) � rstu = rst � (�ru; 0): (7)Note the zero in vetor on the RHS orresponding tothe absene of physial time dissipation ��2u=�t2.We add a pseudo-time dependeny and apply thespae-time Petrov-Galerkin disretization to�u�� + �st (u) � rstu = rst � (�ru; 0):The disretization proedure onsists of the followingsteps:� The term ontaining the pseudo-time derivative ismultiplied by a mass matrix. The mass matrix islumped, as it is usual for steady state omputa-tions.� The disretization of the onvetive terms reduesto standard spae-time RDS by onstrution ofthe Petrov-Galerkin test funtion.� The disretization of the visous term on the RHSredues to a entral Galerkin disretization in thelinear ase. We linearize loally the visosity oef-�ient in the non-linear ase and then we use thesame Galerkin disretization.After some algebra one an obtain the followingsemi-disrete equation for node iSi duid� = � XT2
i �Ti �T�XT2
i �Xj2T nSj � nSi(d+ 1)2ST uj ; (8)where nSj are spatial omponents of normal nj . Forresidual distribution shemes for whih the distri-bution oeÆients an be unbounded (e.g. the Nsheme), we replae in equation (8) �Ti �T by �Ti whihis always well de�ned.With referene to �gure 1, we observe that thereis no ontribution to the visous residual of nodes attime level n+ 1=2 from nodes at di�erent time levels.
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t∆ 1Fig. 2 Grid stenil of visous residual for 1D prob-lemThe same holds for nodes at level n + 1. This is dueto the absene of the time dissipation term ��2u=�t2and it allows to keep the deoupling of the solutionguaranteed by the mesh geometry and by the MU forthe invisid residual.Unfortunately, the spatial omponents of the nor-mals are saled by the time-step of the orrespondingtime layer. This leads to the fat that the visousresidual for a node depends on time step �t of bothsurrounding layers.Consider for example the 1D linear advetion-di�usion equation. Consider three neighbor nodes i�1,i and i+1 at time level n+1=2 surrounded by elementswith time-step �t1 and �t2 respetively (see �g. 2).The ontribution of the visous term to the residualfor node i is given by��t1 +�t22�x (ui�1 � 2ui + ui+1): (9)The knowledge of �t1 and �t2 is needed to disretizethe equations.As a onsequene, the time-layers are not fully de-oupled, but there is some oupling through the spae-time mesh geometry. In partiular, for nodes in thelast time level (n + 1) the knowledge of the timestep�t2 (see �gure 1) is needed. Fortunately, we knowthe grid geometry. In partiular, in the linear ase weknow a priori the next time-step �t2, while for non-linear problems we an ompute iteratively �t2 duringthe pseudo-time iterations. Note also that, beause ofthe linearity of the method, this dependene on themesh geometry is linear, even for nonlinear problems.Seond order of auray is expeted in spae andtime if a residual distribution sheme with boundeddistribution oeÆients is used. In this ase, in fat,a linear onsistent P-G disretization is used in spae-time.With referene to �gure 1, we de�ne the meshstreth ratio Q as the ratio of time-steps of intermedi-ate layer to time-step of past layer:Q = �t1 ��t0�t0 : (10)We an ahieve arbitrarily large time-steps by hang-ing this value aording to our needs, retaining theunonditional stability of the time marhing proedureif a positive Residual Distribution Sheme is used.3 of 8
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Fig. 3 1D advetion-di�usion equation, N sheme,uexat � unumeri
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Fig. 5 1D advetion-di�usion equation, B sheme,uexat � unumeri
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Q = 10Fig. 8 1D advetion-di�usion equation, B sheme,onvergene studyQ N LDA B1 1.06 1.36 1.102.5 1.14 1.61 1.365 1.12 2.22 1.527.5 1.22 2.24 1.7110 1.29 2.28 1.8012.5 1.19 2.14 1.6915 1.25 2.17 1.73Table 1 Convergene ratios for 1D advetion-di�usion equationSalar Visous Problem { NumerialResultsAs a �rst test ase, the 1D linear advetion-di�usionof a step was hosen. The equationut + aux = �uxx (11)has been solved on a domain 
st = [�5; 5℄�[0; 1℄, withinitial onditions u0(x) = 1 for x < 0 and u0(x) = 0for x > 0. In the omputations we took a = 1 and� = 0:1. This problem admits the analytial solutionu(t; x) = 12erf �x� atp4�t � : (12)In �gures 3, 4, 5 the error (uexat � unumeri)(x) isplotted for various values of the parameter Q and forall the shemes used in this paper. As expeted, theLDA and B sheme show a muh smaller error than4 of 8



Q N LDA B1 0.96 1.80 1.182.5 0.97 1.63 1.305 0.93 2.15 1.337.5 0.92 1.89 1.2910 0.92 1.73 1.2612.5 0.88 1.59 1.1815 0.87 1.51 1.14Table 2 Convergene ratios for 1D Visous Burg-ers equationthe N sheme. To ompute the order of aurayof the disretization, a onvergene study has beenperformed. In this ase we took the larger domain
st = [�10; 10℄� [0; 1℄ and we set as initial onditionsthe exat solution at t = 10. The error has been om-puted as� = ku� uexatkL2 = ZZ (unum � uexat)2 dx dt �(13)�sP(u(xi; tj)� uexat(xi; tj))2#nodes :The resulting grid onvergene hystories are plotted in�gures 6, 7, 8 as a funtion of Q for the N, LDA and Bsheme respetively. The omputed orders of aurayare summarized in table 1.We an see that the LDA sheme gives the expetedseond order of auray. Also the nonlinear B shemegives almost seond order of auray.A similar test was performed on the 1D visousBurgers equation. The initial solution hosen is that ofa steepening pro�le. Convergene ratios are presentedin table 2. The lower order of auray observed for theB sheme is aused by the very steep gradient formingin the solution.Spae-Time RDS for Navier-StokesEquationsThe spae-time formulation of system residual dis-tribution shemes is a straightforward extension of thespae-time formulation of the salar shemes.5, 8Consider the well known onservative formulation ofNavier-Stokes equations�w�t +r(f ;g) = r(r; s): (14)The system is losed by onstitutive relations andequation of state. One an rewrite this system inspae-time form and add a pseudo-time dependene�w�� +rst (w; f ;g) = rst (0; r; s): (15)The disretization an easily be obtained throughthe onsistent Petrov-Galerkin approah desribed inthe previous setion. Roe's linearization9 is used wher-ever the Jaobians are needed.
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B schemeFig. 10 First Stokes problemNavier-Stokes Equations { NumerialResultsThe �rst test ase we present is the so-alled FirstStokes problem.10 Consider an in�nite plate immergedin a uid at rest. At t = 0 the plate is instantiniouslyset into motion with a veloity u1 in its plane. Theexat solution of the problem isu = �u1erf � y2p�t� ; (16)where � is the kinemati visosity of the uid (assumedto be onstant). The problem has been solved on a unitsquare disretized by 40 � 40 mesh with a diamondpattern (see zoom in �g. 9). The spae-time meshstreth ratio Q was set to 12. In �gure 10 the solutionsobtained with the N, LDA and B sheme are shown.One an see a very good agreement with the analytialsolution.We onsider then a transoni vortex pairing prob-lem in a mixing layer.11 The problem onsist of ashear layer de�ned by two free streams with veloitypro�les u = tanh(2y)=2. To these veloity pro�les wesuperimpose the veloity perturbationsv0 = 2Xk=1 ak os(2�kx=Lx + �k) exp(�y2=b) (17)with parameters a1 = 0:01, a2 = 0:05, �1 = �2 = �=2,b = 10. The problem has been solved inside a ret-angular area Lx � Ly with Lx = 30 and Ly = 100.5 of 8



0 20

-40

-20

0

20

40

0 20

-40

-20

0

20

40

0 20

-40

-20

0

20

40

0 20

-40

-20

0

20

40

Fig. 11 Isolines of normalized temperature. Figures for t=40, 80, 120, 160The top and bottom boundaries are treated as invis-id walls, and periodi boundary onditions are set onthe left and right boundary. The kinemati visosityin the freestreams is set to �1 = 10�3, orrespondingto a Reynolds number Re = 1000. Sutherland's lawfor visosity has been used in the omputations. Thespeed of sound (and hene density) in the initial so-lution is determined from the assumption of onstantstagnation enthalpya2 = a21 +  � 12 (u21 � u) (18)and Ma1 = 0:8. Constant stati pressure is assumedaross whole ow-�eld. The grid used onsists of anisotropi triangulation (see �g 9) strethed in the y-diretion using the mappingy = Ly2 sinh(by�)sinh(by) ; (19)where � 2 (�1; 1) and by = 3:4. The mesh ontains201�201 nodes. The omputation has been run withthe B sheme.The solution at times t = 40; 80; 120; 160 are shownin �gures 11, where we plot 30 levels of isolines of thetemperature. Comparing with the fourth order results

of,11 our method shows all features of ow-�eld. Wejudge the results very satisfatory onsidering that ourmethod is at most seond order aurate.Pseudo-time IntegrationThe steady-state solution is found by marhing inpseudo-time. Beause we are not interested in thetransient state, we an use the fastest and the most ro-bust method. Although expliit pseudo-time integra-tion works well, for sti� problems the pseudo-time steprestrition is too severe and the omputation beomestoo long. We implemented also impliit time-steppingwith the bakward Euler method in pseudo-time.The expliit loal time step integration an be writ-ten as Un+1i = Uni � ��iSi Rni : (20)where ��i is omputed as��i = CFL ���i0with ��i0 the maximum pseudo time-step allowed bythe positivity of the N sheme in the linearized ase.The simplest impliit method, linear Euler bakwardmethod, is obtained by evaluating the residual at the6 of 8
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Fig. 12 Convergene of method for one physialtime-step for 2D Navier-Stokes equations in termsof iterations.
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CFL = 1e6Fig. 13 Convergene of method for one physialtime-step for 2D Navier-Stokes equations in termsof CPU time.next time level. The residual in the time level n+1 isextrapolated using the �rst order approximationUn+1i = Uni � CFL ���i0Si �Rni + �R�U (Un+1 � Un)� :(21)This leads to large system of equations with sparse ma-trix for the unknown �U = Un+1 �Un. The methodis unonditionally stable in the linear ase.The Jaobian matrix �R=�U is analytially om-puted by a Piard approximation, i.e. the distributionoeÆient (matrix) and the Jaobians are assumed tobe independent on the solution vetor.The resulting system is then solved by GMRESmethod with ILU(0) preonditioning. The PETSalgebrai library has been used in all the omputa-tions.12The method was tested also on salar problems, but

we do not present results here, beause the biggestonern is related to the Navier-Stokes equations. The�rst test ase we onsider, simple enough to be able toompute it also with the expliit proedure, was simi-lar to the �rst Stokes problem, but in a hannel. Theuid is in the rest in the hannel and suddenly the wallsstart to move. In �g 12 the deay of residual in termsof iterations during one pseudo-time step is plotted.We an immediately see, how fast is the impliit timeintegration ompared to the expliit one. This is alsodue to spae-time nature of the problem, in whih thenew solution we look for is relatively lose to the ini-tial ondition in pseudo-time. More important is theonvergene of the method in terms of CPU time (�g13). The method was working for CFL numbers upto 1010, but setting CFL higher then approximatively105 did not hange the speed signi�antly.As a seond test ase we onsidered the DoubleMah Reetion of Woodward and Colella.13 Theproblem involves the invisid omputation of a Mah10 shok (not shown here) reeting on a wedge. Fromthis type of omputation one ould expet problemsdue to the strong disontinuities present in the solu-tion and to the approximations made in the derivationof system matrix. As a matter of fat, the impliitmethod onverges faster in terms of pseudo-time iter-ations, but not in terms of CPU time.As a �nal remark, note that the omputation of thevortex pairing in a mixing layer took approx. 4 dayson Linux workstation equipped with CPU Pentium 4running on 1.7 GHz and 512 MB of memory. Theomputation with the expliit pseudo-time integrationwould not be possible.ConlusionsIn the work the use of spae-time RDS has been ex-tended to the solution of visous problems. We deriveda onsistent treatment of onvetive and dissipativeterms through a Petrov-Galerkin interpretation of theRDS. The presented approah as been tested on salarequations, where seond order of auray for the LDAsheme and almost seond order of auray for the Bsheme have been measured. The method has beenapplied to the solution of the laminar Navier-Stokesequations. Promising results have been obtained.A performane omparison between impliit and ex-pliit pseudo-time integration tehniques has been pre-sented. For visous omputations impliit pseudo-timeintegration over-performs the expliit one of an orderof 50 in terms of CPU time. Worse performanes haveof the impliit integrator have been observed for invis-id problems ontaining strong disontinuities.Referenes1Paill�ere, H., Multidimensional Upwind Residual Distribu-tion Shemes for the Euler and Navier-Stokes Equations onUnstrutured Grids, Ph.D. thesis, Universit�e Libre de Bruxelles,von Karman Institute for Fluid Dynamis, Jun 1995.7 of 8
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