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Multidimensional upwind residual distribution schemes have been developed over the
last years as a monotonicity preserving spatial discretization method for hyperbolic con-
servation laws on unstructured grids composed of triangles or tetrahedra. More recently
a space-time formulation has been proposed by several authors to perform time accurate
unsteady inviscid simulations. In the present paper we extend the use of the space-time
schemes to viscous laminar computations. The viscous terms are introduced in the dis-
cretization through a Petrov-Galerkin approach consistent with the underlying residual
distribution method. Grid convergence studies on scalar models are presented showing
second order of accuracy of the proposed approach. The method is then applied to the
laminar Navier-Stokes equations. Promising results are obtained. We also investigate ex-
plicit and implicit iterative techniques for the solution of the implicit system of equations
obtained with the proposed algorithms. For viscous problems, the implicit approach
shows a dramatic speed-up of the computation, however for inviscid high speed flows

explicit iterations can be competitive.

Introduction

HE Multidimensional Upwind Residual Distribu-
tion Schemes (RDS) have emerged in the last
years as an appealing alternative to Finite Volume
(FVM) and Finite Element (FEM) methods. Thanks
to their inherent dissipative character and to a residual
property, positive second order schemes can be de-
signed on compact stencil of an arbitrary unstructured
grid without any tuning of the numerical dissipation.
Moreover, the multidimensional nature of the upwind-
ing procedure dramatically reduces the dependence of
the results on the mesh quality.!>2
Unfortunately, unlike in FVM, for RDS spatial and
temporal discretization cannot be decoupled. As in
FEM the coupling arises from a non-diagonal mass
matrix. For steady computations the mass matrix
can be lumped, without affecting the accuracy of the
method. For unsteady problems one has to take into
account the full mass matrix. However, being this
matrix non-positive definite, the resulting scheme is
non-positive. In the past a Flux Corrected Transport
technique has been tried to solve the monotonicity
problem.?** Unfortunately, this approach has shown
a lack of robustness and it is extremely unsatisfactory
from the theoretical point of view. Recently,® 7 the
space-time approach has been introduced, which has
shown promising theoretical properties and numerical
results.
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The main idea of the space-time approach is to re-
formulate the schemes including time in the set of
independent variables and then apply the numerical
tools developed for steady state computations to a
space-time residual. By doing this an implicit sys-
tem of equations is obtained at each time step. In the
present work, as in® this implicit system has been con-
sidered as a steady problem in a pseudo time variable
7 in d + 1 dimensions (being d the number of space
dimensions and time the additional one) and solved
within each time-step using standard Residual Distri-
bution Schemes in space-time. The positivity of the
schemes transforms into linear stability. Moreover,
if the space-time mesh obeys to certain geometrical
constraints, the multidimensional upwinding allows to
naturally decouple the solution of the past time level
from the future one. In particular, by solving for two
time levels at once, the time step relative to the last
space-time slice can be arbitrary large, resulting in a
linearly unconditionally stable time marching proce-
dure.?

In>7® results have been shown for scalar models
and for the Euler equations. Here we will follow more
closely the work done in®® extending it to viscous
computations. This is achieved through a consistent
Petrov-Galerkin treatment of all terms (time deriva-
tives, convective terms and dissipative terms). For
linear problems this leads to a standard RDS dis-
cretization for the inviscid part and to a Galerkin
method for the viscous terms. It turns out, that the
time levels are not fully decoupled, but some coupling
through the space-time mesh geometry exists.

Convergence studies are presented for scalar
Advection-Diffusion and viscous Burgers equations,
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space-time. The method is then applied to the lami-
nar Navier-Stokes equations.

The paper is organized as follows: the Space-Time
RDS method of? is shortly recalled, to explain its main
ideas and how the decoupling of time levels is achieved.
Then the discretization of the viscous part is explained
and convergence results are presented. Finally results
for the Navier-Stokes equations are shown. Steady-
state in pseudo-time is reached by conventional time-
integration. A comparison between explicit and im-
plicit pseudo-time integration techniques is also per-
formed, with particular emphasis on the viscous case.

Space-Time RDS for Scalar
Conservation Laws

Consider a scalar conservation law in quasi-linear
form

0

5%+Amyvu:0 (1)
to be solved on a space-time domain Qg4 = Qg X
[0, t1m4z)- Following® 8 we rewrite last equation in the

following space-time notation
Ast ('LL) - Vsiu = 0, (2)

where Ay = (A, 1) and Vi = (V,0/0t).

Given an initial solution wug(z,y,0) at time ¢t = 0,
we will compute the unknown quantity u (z,y,t1) at
time ¢; > 0 by solving the steady equation (2) on the
space-time slice 2, % [0, t1] by means of standard RDS.

In particular, given an initial discretization of the
space domain Qg composed of linear finite elements
(space intervals in 1D, triangles in 2D), we build a
space-time grid on Q4 x [0,#;] composed of linear fi-
nite elements in space-time (triangles in 1D space and
tetrahedra in 2D space). For any space-time element
T, we define the element residual as

o7 = /)\St(u) - Veru dT'
T
The nodal residuals are then computed as
¢ =8¢

with 8] a distribution coefficient. The steady solution
of (2) is reached by marching in a pseudo-time variable
T, i.€. 1
U;
S8+ Y BT =0 (3)
TeQ;

Positivity and/or accuracy of the discretization are
the requirements one takes into account for the design
of the distribution coefficient 8. Details on the gen-
eral properties of RDS can be found in the references
given in the introduction. Here we will focus our at-
tention on the so-called Multidimensional Upwinding
(MU) property.

|ayer ,// \\\ ,/,’ "\\ ,’,, \\ ,/ \\ I,’ \\ Atz
n+l @ ol kot

intemediate
layer

Aty
n+1/2

past layer Aty

n

O O O O O

Fig. 1 Space-time mesh for 1D case

For a node i in the element T', we define the nodal
normal n; as the inward pointing vector normal to the
face of T scaled by the length (surface in a tetrahe-
dron) of the face. We then define the upwind param-
eter k; = Ag(u) - n;/D, where D is the number of
independent variables (D = d + 1 in space-time if d
is the number of space dimensions). It can be easily
checked that k; < 0 if 7 is an upwind node of T', while
k; > 0 if i is a downwind node. Hence, MU is simply
obtained by requiring 8] = 0 if k; < 0.

As explained extensively in,>® the MU allows to
build space-time grids which guarantee a decoupling
of the past solution from the future one so that a time
marching procedure can be achieved. To understand
how this is done in practice, consider the lower row
of space-time triangles in figure 1. For the 1D case
of equation (1) with constant speed A\ one can easily
check that k; < 0 for all the nodes at time level n
provided that the following condition holds:%®

Ax
Aty < —. 4
t0_2|)\‘ (4)

If the space-time mesh respects constraint (4), the so-
lution at time level n will be preserved allowing a true
time marching scheme. However, a strict restriction
on the magnitude of the time-step is an undesirable
feature of an implicit method like the space-time RD.
For this reason in>?® a second layer of space-time ele-
ments of arbitrary time width has been added which
allows to increase the effective time-step of the compu-
tation At still retaining the decoupling of the solution
at time t" from the one at t"*!'. Once this is done,
the use of a positive RD scheme translates into uncon-
ditional stability of the time-marching procedure for
arbitrary time-steps.

In this paper, we use the following multidimensional
upwind RDS schemes: the linear positive N scheme,
the linear second order LDA scheme and the non-linear
B (blended) scheme. Details can be found in the ref-

erences.l’ 2

Space-Time RDS for Scalar Viscous

Problems

Provided that the distribution coefficients 3] in
equations (3) are bounded, it can be shown that RDS
are equivalent to a Petrov-Galerkin discretization with
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w; = Qi + T ar,
TeQ;

1
OéTZBiT—m7 (5)

being II7 the characteristic function of element 7.
This FEM interpretation of the residual distribution
method allow to easily include in a consistent way dis-
sipative terms in the discretization.

In particular, consider the scalar problem

Oou

5 + A(u) - Vu =V - (uVu) (6)
where p is a diffusivity coefficient. We want to solve
equation (6) on a space-time domain ; = Q, X
[0,tmaz]). The equation can be written in space-time
notation as

/\st(u) . Vstu = vst . (MVU 0) (7)

Note the zero in vector on the RHS corresponding to

the absence of physical time dissipation pd%u/ot.
We add a pseudo-time dependency and apply the

space-time Petrov-Galerkin discretization to

ou
gu + Ast(u) - Vggu = Vg - (uVu, 0).
or
The discretization procedure consists of the following

steps:

e The term containing the pseudo-time derivative is
multiplied by a mass matrix. The mass matrix is
lumped, as it is usual for steady state computa-
tions.

e The discretization of the convective terms reduces
to standard space-time RDS by construction of
the Petrov-Galerkin test function.

e The discretization of the viscous term on the RHS
reduces to a central Galerkin discretization in the
linear case. We linearize locally the viscosity coef-
ficient in the non-linear case and then we use the
same Galerkin discretization.

After some algebra one can obtain the following
semi-discrete equation for node i

SnS

du; nS - n
Si% = — Z Blo" - Z Mzm“h (8)

TeQ; TeQ; jeET

where n}s are spatial components of normal n;. For
residual distribution schemes for which the distri-
bution coefficients can be unbounded (e.g. the N
scheme), we replace in equation (8) 87 ¢ by ¢I which
is always well defined.

With reference to figure 1, we observe that there
is no contribution to the viscous residual of nodes at

time level n + 1/2 from nodes at different time levels.

Fig. 2 Grid stencil of viscous residual for 1D prob-
lem

The same holds for nodes at level n + 1. This is due
to the absence of the time dissipation term pd?u/ot>
and it allows to keep the decoupling of the solution
guaranteed by the mesh geometry and by the MU for
the inviscid residual.

Unfortunately, the spatial components of the nor-
mals are scaled by the time-step of the corresponding
time layer. This leads to the fact that the viscous
residual for a node depends on time step At of both
surrounding layers.

Consider for example the 1D linear advection-
diffusion equation. Consider three neighbor nodesi—1,
i and i+1 at time level n+1/2 surrounded by elements
with time-step At; and Aty respectively (see fig. 2).
The contribution of the viscous term to the residual
for node ¢ is given by

Aty + Aty
p—

AT (i1 — 2u; + wit1)- (9)

The knowledge of At; and Aty is needed to discretize
the equations.

As a consequence, the time-layers are not fully de-
coupled, but there is some coupling through the space-
time mesh geometry. In particular, for nodes in the
last time level (n + 1) the knowledge of the timestep
Aty (see figure 1) is needed. Fortunately, we know
the grid geometry. In particular, in the linear case we
know a priori the next time-step Ats, while for non-
linear problems we can compute iteratively Aty during
the pseudo-time iterations. Note also that, because of
the linearity of the method, this dependence on the
mesh geometry is linear, even for nonlinear problems.

Second order of accuracy is expected in space and
time if a residual distribution scheme with bounded
distribution coefficients is used. In this case, in fact,
a linear consistent P-G discretization is used in space-
time.

With reference to figure 1, we define the mesh
stretch ratio () as the ratio of time-steps of intermedi-
ate layer to time-step of past layer:

At — At

@ Atg

(10)

We can achieve arbitrarily large time-steps by chang-
ing this value according to our needs, retaining the
unconditional stability of the time marching procedure
if a positive Residual Distribution Scheme is used.
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Fig. 3 1D advection-diffusion equation, N scheme,
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Fig. 7 1D advection-diffusion equation, LDA

scheme, convergence study
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Fig. 8 1D advection-diffusion equation, B scheme,
convergence study

Q N |LDA | B
1 |[1.06 | 1.36 | 1.10
2.5 || 1.14 | 1.61 | 1.36
5 | 112 2.22 | 1.52
75 || 122 | 2224 | 1.71
10 || 1.29 | 2.28 | 1.80
12,5 || 1.19 | 2.14 | 1.69
15 || 1.25 | 217 | 1.73

Table 1 Convergence ratios for 1D advection-
diffusion equation

Scalar Viscous Problem — Numerical
Results

As a first test case, the 1D linear advection-diffusion
of a step was chosen. The equation

Ug + AUy = Plgy (11)

has been solved on a domain Qg = [—5, 5] %[0, 1], with
initial conditions ug(z) = 1 for z < 0 and ug(xz) = 0
for z > 0. In the computations we took a = 1 and
p = 0.1. This problem admits the analytical solution

ult, ) = %erf (TT\/TGZ> . (12)

In figures 3, 4, 5 the error (Uezaet — Unumeric)(T) 1s
plotted for various values of the parameter () and for
all the schemes used in this paper. As expected, the
LDA and B scheme show a much smaller error than
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1 0.96 | 1.80 | 1.18
25 ] 097 ] 1.63 | 1.30
5 093 | 2.15 | 1.33
7.5 ] 092 ] 1.89 | 1.29
10 092 | 1.73 | 1.26
12.5 || 0.88 | 1.59 | 1.18
15 0.87 | 1.51 | 1.14

Table 2 Convergence ratios for 1D Viscous Burg-
ers equation

the N scheme. To compute the order of accuracy
of the discretization, a convergence study has been
performed. In this case we took the larger domain
Qg = [—10,10] x [0,1] and we set as initial conditions
the exact solution at ¢t = 10. The error has been com-
puted as

€= ||'LL - uemactHLg - //(unum - uemact)2 drdt ~
(13)

(i ty) — vesact(wi,t;))?
~ #nodes '

The resulting grid convergence hystories are plotted in
figures 6, 7, 8 as a function of @) for the N, LDA and B
scheme respectively. The computed orders of accuracy
are summarized in table 1.

We can see that the LDA scheme gives the expected
second order of accuracy. Also the nonlinear B scheme
gives almost second order of accuracy.

A similar test was performed on the 1D viscous
Burgers equation. The initial solution chosen is that of
a steepening profile. Convergence ratios are presented
in table 2. The lower order of accuracy observed for the
B scheme is caused by the very steep gradient forming
in the solution.

Space-Time RDS for Navier-Stokes
Equations

The space-time formulation of system residual dis-
tribution schemes is a straightforward extension of the
space-time formulation of the scalar schemes.’:®

Consider the well known conservative formulation of
Navier-Stokes equations

ow
— + V(f,g) = V(r,s). (14)
ot
The system is closed by constitutive relations and
equation of state. One can rewrite this system in
space-time form and add a pseudo-time dependence
ow
8_ +vst(w7f:g) = vst(O:rzs)' (15)
-

The discretization can easily be obtained through
the consistent Petrov-Galerkin approach described in
the previous section. Roe’s linearization® is used wher-
ever the Jacobians are needed.

Fig. 9 Diamond and isotropic mesh pattern

05 | ]
4
Exact solution
oo N scheme
*---+ LDA scheme
A-—4 B scheme
o L
0.0 0.5 Lo

y

Fig. 10 First Stokes problem

Navier-Stokes Equations — Numerical
Results

The first test case we present is the so-called First
Stokes problem.'® Consider an infinite plate immerged
in a fluid at rest. At ¢ = 0 the plate is instantiniously
set into motion with a velocity s in its plane. The
exact solution of the problem is

u = —userf (2\%) : (16)

where v is the kinematic viscosity of the fluid (assumed
to be constant). The problem has been solved on a unit
square discretized by 40 x 40 mesh with a diamond
pattern (see zoom in fig. 9). The space-time mesh
stretch ratio () was set to 12. In figure 10 the solutions
obtained with the N, LDA and B scheme are shown.
One can see a very good agreement with the analytical
solution.

We consider then a transonic vortex pairing prob-
lem in a mixing layer.!! The problem consist of a
shear layer defined by two free streams with velocity
profiles u = tanh(2y)/2. To these velocity profiles we
superimpose the velocity perturbations

2
v = Z ay cos(2mkx /L, + ¢r) exp(—y?/b)  (17)
k=1

with parameters a; = 0.01, as = 0.05, ¢ = ¢2 = 7/2,
b = 10. The problem has been solved inside a rect-
angular area L, x L, with L, = 30 and L, = 100.

5 OF 8



401 40

20

o

-20

T

o

20 0 20

Fig. 11

The top and bottom boundaries are treated as invis-
cid walls, and periodic boundary conditions are set on
the left and right boundary. The kinematic viscosity
in the freestreams is set to v, = 1073, corresponding
to a Reynolds number Re = 1000. Sutherland’s law
for viscosity has been used in the computations. The
speed of sound (and hence density) in the initial so-
lution is determined from the assumption of constant,
stagnation enthalpy

-1
a®=a? + 1" (2 ) (18)

and Ma,, = 0.8. Constant static pressure is assumed
across whole flow-field. The grid used consists of an
isotropic triangulation (see fig 9) stretched in the y-
direction using the mapping

_ L, sinh(byn)

2 sinh(b,) ’ (19)

where n € (—1,1) and b, = 3.4. The mesh contains
201x201 nodes. The computation has been run with
the B scheme.

The solution at times ¢t = 40, 80, 120, 160 are shown
in figures 11, where we plot 30 levels of isolines of the
temperature. Comparing with the fourth order results

Isolines of normalized temperature. Figures for t=40, 80, 120, 160

of,' our method shows all features of flow-field. We
judge the results very satisfactory considering that our
method is at most second order accurate.

Pseudo-time Integration

The steady-state solution is found by marching in
pseudo-time. Because we are not interested in the
transient state, we can use the fastest and the most ro-
bust method. Although explicit pseudo-time integra-
tion works well, for stiff problems the pseudo-time step
restriction is too severe and the computation becomes
too long. We implemented also implicit time-stepping
with the backward Euler method in pseudo-time.

The explicit local time step integration can be writ-
ten as
AT,;

n+1 n

R?. (20)
where A7; is computed as
ATZ' == CFL . ATZ'O

with Ao the maximum pseudo time-step allowed by
the positivity of the N scheme in the linearized case.
The simplest implicit method, linear Euler backward
method, is obtained by evaluating the residual at the
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Fig. 13 Convergence of method for one physical

time-step for 2D Navier-Stokes equations in terms
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next time level. The residual in the time level n + 1 is
extrapolated using the first order approximation

CFL . AT,;[)
S

(R? + g—f;(U"+1 - U”)) .
(21)

This leads to large system of equations with sparse ma-
trix for the unknown AU = U"*! — U”. The method
is unconditionally stable in the linear case.

The Jacobian matrix OR/0U is analytically com-
puted by a Picard approximation, i.e. the distribution
coefficient (matrix) and the Jacobians are assumed to
be independent on the solution vector.

The resulting system is then solved by GMRES
method with ILU(0) preconditioning. The PETSc
algebraic library has been used in all the computa-
tions.!2

Ut =ur -

The method was tested also on scalar problems, but

concern is related to the Navier-Stokes equations. The
first test case we consider, simple enough to be able to
compute it also with the explicit procedure, was simi-
lar to the first Stokes problem, but in a channel. The
fluid is in the rest in the channel and suddenly the walls
start to move. In fig 12 the decay of residual in terms
of iterations during one pseudo-time step is plotted.
We can immediately see, how fast is the implicit time
integration compared to the explicit one. This is also
due to space-time nature of the problem, in which the
new solution we look for is relatively close to the ini-
tial condition in pseudo-time. More important is the
convergence of the method in terms of CPU time (fig
13). The method was working for CFL numbers up
to 10'°, but setting CFL higher then approximatively
10° did not change the speed significantly.

As a second test case we considered the Double
Mach Reflection of Woodward and Colella.'®> The
problem involves the inviscid computation of a Mach
10 shock (not shown here) reflecting on a wedge. From
this type of computation one could expect problems
due to the strong discontinuities present in the solu-
tion and to the approximations made in the derivation
of system matrix. As a matter of fact, the implicit
method converges faster in terms of pseudo-time iter-
ations, but not in terms of CPU time.

As a final remark, note that the computation of the
vortex pairing in a mixing layer took approx. 4 days
on Linux workstation equipped with CPU Pentium 4
running on 1.7 GHz and 512 MB of memory. The
computation with the explicit pseudo-time integration
would not be possible.

Conclusions

In the work the use of space-time RDS has been ex-
tended to the solution of viscous problems. We derived
a consistent treatment of convective and dissipative
terms through a Petrov-Galerkin interpretation of the
RDS. The presented approach as been tested on scalar
equations, where second order of accuracy for the LDA
scheme and almost second order of accuracy for the B
scheme have been measured. The method has been
applied to the solution of the laminar Navier-Stokes
equations. Promising results have been obtained.

A performance comparison between implicit and ex-
plicit pseudo-time integration techniques has been pre-
sented. For viscous computations implicit pseudo-time
integration over-performs the explicit one of an order
of 50 in terms of CPU time. Worse performances have
of the implicit integrator have been observed for invis-
cid problems containing strong discontinuities.
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