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Abstract. We introduce monotone first order fluctuation splitting schemes for solv-
ing hyperbolic systems on arbitrary finite elements, thereby generalizing the N-scheme
previously proposed for linear P1 triangles. Conservation is retained by relaxing on
strict monotonicity, using a simple method based on contour integration over the ele-
ment boundaries. Numerical examples are given for the Euler equations solved on Q1
elements for applications ranging from transonic to hypersonic regimes.

1 Introduction

Over recent years, multi-dimensional upwind fluctuation splitting or residual
distribution schemes (RDS) have gained some momentum with the development
of the matriz schemes for the solution of systems of conservation laws [1,2].
These schemes have been mainly constructed for linear P1 elements, although
some generalization to Q1 quadrilaterals have already been discussed in [4,6].

Multi-dimensional upwind schemes strongly rely on the quasilinear form of
the governing equations, for the computation of the so called upwind parameters.
For first order schemes, this adds a conservation constraint, which is normally
treated by an appropriate linearization of the Jacobians [2]. In the case of the
Euler equations on P1 elements a conservative linearization is available, based on
the Roe parameter vector [10,8]. This linearization depends on two properties,
the linearity of the finite element space (P1 elements) and the requirement to
have quadratic fluxes in some variable [10] (LRD approach). Such a set of vari-
ables fails to exist for arbitrary systems of conservation laws and /or for nonlinear
finite elements. Some remedies have been investigated [6,9,11], but the solutions
are much too costly or complicated to be of practical use.

In [5], Csik et al. proposed a new formulation of the positive N-scheme, based
on a conservative contour flux integration (CRD approach). By relaxing on strict
positivity, this formulation is conservative independently from the averaged state
used for evaluation of the Jacobians of the system. Due to this property, the
conflicting issues of conservation and upwinding along local averaged advection
speeds are decoupled, allowing the extension of the schemes to more complex
systems and nonlinear elements.

In this paper we address the generalization of the first order monotone N-
scheme for P1 elements to arbitrary finite elements. This is important since the
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existence of a monotone, shock capturing, first order scheme is the basis for the
construction of nonlinear higher order schemes, that automaticaly follow using
standard procedures [2,3].

2 Residual distribution schemes
Consider the Euler equations for a perfect gas written as:

U;,+V-F =0, U:(p,p'u,E)T7 F:(pv,pvv+1p,(E+p)'u)T (1)

where v is the velocity vector, E the total energy density and for closure, the
pressure p is computed p = (y — 1)(E — %pv -v). Rewriting the system in the
quasilinear form (2), where d is the number of dimensions, we obtain:
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Where A; = 0F;/0U, is the jacobian in terms of U. In this framework, the

solution is approximated in a compact piecewise finite element space over an
unstructured mesh composed of elements Q with m number of nodes.

U"(x.t) = zm: Ui(t)Ni(z), (3)
=1

Where U,(t) is the time dependent nodal value of the solution at node ! and
N;(x) is the shape function with properties of interpolation (4a), constant sum-
mation and conservation (4b):

Nl(mk):(ikl : k‘,l:lm (4&)
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Integrating (2) over an element Q we get the total cell residual ¢

ouh
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Making use of (3) and (4a) we can write (5) as:
o = /A aN’U,dQ U,/A aN’ dQ = ZK;U, (6)
where the K, are defined by
K= [ 4,55 a0 g

Integral (7) can be approximated by any particular numerical integration for
which we require for consistency Y K; = 0. This is automatically satisfied by the
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property (4b) if the integration is exact for polynomials of sufficient high order,
considering the order of IN; and the jacobian A;. The system being hyperbolic,
K have a complete set of real eigenvalues and eigenvectors and considering the
positive and negative eigenvalue matrices, we write (8):

K, = RAL K} =RA'L, K, =RA L 8)

We now distribute the residual in fractions to the nodes that compose the el-
ement, using some distribution rule, which defines the numerical scheme. We
require for consistency that these fractions sum up to the overall residual:

F=3 ¢ )

This finally leads to the following semi-discrete scheme for each node I, where S;
is the dual cell area and the summation is performed over the cells surrounding

the node. P .
(%) =5 2« 1)
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The choice of the scheme to compute these fractions (p? determines the overall
properties of the method: multidimensional upwinding, conservativity, mono-
tonicity, k-exactness for polynomials of order k. Refer to [1] for a review on the
properties of the matrix schemes.

2.1 The standard N-scheme

For the N-scheme the fractions ¢ are computed as (11). Then we combine (9)
and (6) to yield (12) and enforce consistency by defining U* as (13). Clearly the
scheme is positive and linear, hence first order.

o EKH (U -U) (11)

(pQ:Z(plNéZKf(UlfU*)EZKlUl (12)
=1 =1 =1
— U = (iK;)ilinUz (13)
=1 =1

2.2 Conservation of the N-scheme

The above scheme is not conservative. To gain back conservation we have to
ensure (14). This is obtained by redefining U* as (15), thereby relaxing on the
positive property (CRID approach [5]).

qf):lin;q){V:(pC:'ﬁQFj-njdaQ (14)
U* — (zm:Kf) - ((i K{U) - o) (15)
=1 =1
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Here ¢ is the conservative residual computed with any integral approximation
that satisfies the order of the fluxes involved. In theory any method of integration
for the integrals in (14) can be chosen as long as the telescopic property is
retained. Consequently, a contour integration is chosen with an Simpson rule.
Using this approach, the variables chosen for the averaged state to compute the
K, do not affect conservation.

2.3 Application to particular Finite Elements

The P1 elements: Assuming in (7) linear triangular elements and the jacobian
Aj; constant per cell and computed in an averaged state of U, the general upwind
parameters have the form (16).

1. _ _
Ki=5Amn, A;=A;{U) (16)

Where nj; are the inward pointing scaled normals of the triangle, as shown
in figure (1). The choice of this averaged state, as mentioned, is at the source
of the conservation property. With LRID approach, a linearization with Roe
parameter vector is imposed, but CRID allows any choice of variables to linearize.
The Q1 elements: For quadrilateral elements, with bi-linear shape-functions,
and the jacobian evaluated again at an averaged state, we get the same expression
(16), but where the normals n;; are defined as in figure (1). In this case, the
LRD with Roe linearization is not accurate, due to the non linearity of the
shape-functions. In the computation of (14), the shape-function variation along
the edges of arbitrary quadrilaterals is no longer linear. Tests have shown that
this error is rather small for roughly regular elements.

e
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Fig. 1. Quadrilateral and Triangle n; normals

General Elements: For general higher-order elements, including three dimen-
sional ones, the upwind parameters (7) are computed by averaging the jacobian
in the element Q and computing (17) to satisfy Y K; = 0.

K, :A,,--/a,-Nl aQ (17)
Q

2.4 Higher Order schemes: a boundedness issue

Once a first order monotone scheme is avaiable as discussed above, a high order
scheme preserving exact solutions belonging to the Finite Element space can be
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obtained. An example for the case of a scalar conservation law follows:

_ o o _  max(0,3") .0
BY = Sy 0 = mal0sl)
R 5> max(0,5)
1=1

3 Results and Discussion

3.1 Transonic flow, Ma = 0.675 circular arc bump channel

This transonic test-case, also known as GAMM channel, consists of a 3 x 1
channel, with an unity chord circular arc in the middle with 10% height. This
results in a sonic pocket that culminates in a transonic shock at ~ 72% of the
chord, reaching Ma = 1.32, [7]. The reference solution was calculated with a
finer 300 x 90 quadrilateral mesh with the CRD N scheme. The triangle schemes
perform better in edge aligned flows, where the cross diffusion is minimal. The
quadrilateral schemes, although conservative, have shown to be very diffusive,
as their cross-diffusion minimizes in diagonal aligned flows.

o QD-LRD
© QD-CRD
— Ref.

Fig. 2. Mach distribution along the top and bottom walls in the GAMM channel. In
the left, the results of the isotropic triangle mesh (TG) = 3400 nodes, in the right the
computed results with the quadrilateral (QD) 100 x 30 mesh.

3.2 Hypersonic flow, Ma = 6 bow shock in cylinder

To demonstrate the robustness of the N-scheme for Q1 elements, we present the
results of a simulation of a hypersonic bow shock in front of a cylinder of unity
radius. The flow Mach number is 6. Plots along the stagnation line are presented,
fig.(3). In this case, a strong normal shock is observed in the stagnation line, and
the scheme yielded monotone evolutions. The computation grid had 60 x 70 Q1
elements. The reference solution was computed in a grid with approximately 10
times more elements.

4 Conclusion

The general definition of the upwind parameters K; for arbitrary finite elements
is presented and applied in conjunction with the CRID approach to retain conser-
vation. This separates the conflicting issues of multidimensional upwinding and
linearization of the jacobians. It shows potential for application to non-linear or
higher order finite elements.
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Fig. 3. Left: Q1 flow field results, Mach distribution with conservative N-scheme. Right:
Q1 Stagnation line results for N-scheme with both LRDand CRD. Top Right: Mach
number evolution. Bottom Right: pressure distribution.
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