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s, Katholieke Universiteit LeuvenAbstra
t. We introdu
e monotone �rst order 
u
tuation splitting s
hemes for solv-ing hyperboli
 systems on arbitrary �nite elements, thereby generalizing the N-s
hemepreviously proposed for linear P1 triangles. Conservation is retained by relaxing onstri
t monotoni
ity, using a simple method based on 
ontour integration over the ele-ment boundaries. Numeri
al examples are given for the Euler equations solved on Q1elements for appli
ations ranging from transoni
 to hypersoni
 regimes.1 Introdu
tionOver re
ent years, multi-dimensional upwind 
u
tuation splitting or residualdistribution s
hemes (RDS) have gained some momentum with the developmentof the matrix s
hemes for the solution of systems of 
onservation laws [1,2℄.These s
hemes have been mainly 
onstru
ted for linear P1 elements, althoughsome generalization to Q1 quadrilaterals have already been dis
ussed in [4,6℄.Multi-dimensional upwind s
hemes strongly rely on the quasilinear form ofthe governing equations, for the 
omputation of the so 
alled upwind parameters.For �rst order s
hemes, this adds a 
onservation 
onstraint, whi
h is normallytreated by an appropriate linearization of the Ja
obians [2℄. In the 
ase of theEuler equations on P1 elements a 
onservative linearization is available, based onthe Roe parameter ve
tor [10,8℄. This linearization depends on two properties,the linearity of the �nite element spa
e (P1 elements) and the requirement tohave quadrati
 
uxes in some variable [10℄ (LRD approa
h). Su
h a set of vari-ables fails to exist for arbitrary systems of 
onservation laws and/or for nonlinear�nite elements. Some remedies have been investigated [6,9,11℄, but the solutionsare mu
h too 
ostly or 
ompli
ated to be of pra
ti
al use.In [5℄, Cs��k et al. proposed a new formulation of the positive N-s
heme, basedon a 
onservative 
ontour 
ux integration (C RD approa
h). By relaxing on stri
tpositivity, this formulation is 
onservative independently from the averaged stateused for evaluation of the Ja
obians of the system. Due to this property, the
on
i
ting issues of 
onservation and upwinding along lo
al averaged adve
tionspeeds are de
oupled, allowing the extension of the s
hemes to more 
omplexsystems and nonlinear elements.In this paper we address the generalization of the �rst order monotone N-s
heme for P1 elements to arbitrary �nite elements. This is important sin
e the
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e of a monotone, sho
k 
apturing, �rst order s
heme is the basis for the
onstru
tion of nonlinear higher order s
hemes, that automati
aly follow usingstandard pro
edures [2,3℄.2 Residual distribution s
hemesConsider the Euler equations for a perfe
t gas written as:U t +r � F = 0; U = ��; �v; E�T ; F = ��v; �vv + Ip; (E + p)v�T (1)where v is the velo
ity ve
tor, E the total energy density and for 
losure, thepressure p is 
omputed p = (
 � 1)�E � 12�v � v�. Rewriting the system in thequasilinear form (2), where d is the number of dimensions, we obtain:�U�t +Aj �U�xj = 0; j = 1 : : : d (2)Where Aj = �Fj=�U , is the ja
obian in terms of U . In this framework, thesolution is approximated in a 
ompa
t pie
ewise �nite element spa
e over anunstru
tured mesh 
omposed of elements Ω with m number of nodes.Uh(x; t) = mXl=1 U l(t)Nl(x); (3)Where U l(t) is the time dependent nodal value of the solution at node l andNl(x) is the shape fun
tion with properties of interpolation (4a), 
onstant sum-mation and 
onservation (4b): Nl(xk) = Ækl : k; l = 1 : : :m (4a)XNk(x) = 1;XrNk(x) = 0 : k = 1 : : :m;8x 2 Ω (4b)Integrating (2) over an element Ω we get the total 
ell residual φΩ:
φΩ = Z

Ω
Aj �Uh�xj dΩ (5)Making use of (3) and (4a) we 
an write (5) as:

φΩ = Z
Ω
Aj �Nl�xj U l dΩ = U l Z

Ω
Aj �Nl�xj dΩ = mXl=1KlU l (6)where the Kl are de�ned by Kl = Z

Ω
Aj �Nl�xj dΩ (7)Integral (7) 
an be approximated by any parti
ular numeri
al integration forwhi
h we require for 
onsisten
yPKl = 0. This is automati
ally satis�ed by the
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t for polynomials of suÆ
ient high order,
onsidering the order of Nl and the ja
obian Aj . The system being hyperboli
,Kl have a 
omplete set of real eigenvalues and eigenve
tors and 
onsidering thepositive and negative eigenvalue matri
es, we write (8):Kl = Rl�lLl K+l = Rl�+l Ll; K�l = Rl��l Ll (8)We now distribute the residual in fra
tions to the nodes that 
ompose the el-ement, using some distribution rule, whi
h de�nes the numeri
al s
heme. Werequire for 
onsisten
y that these fra
tions sum up to the overall residual:
φΩ = mXl=1 φΩl (9)This �nally leads to the following semi-dis
rete s
heme for ea
h node l, where Slis the dual 
ell area and the summation is performed over the 
ells surroundingthe node. ��U�t �l = � 1Sl XΩ;l2Ω

φΩl (10)The 
hoi
e of the s
heme to 
ompute these fra
tions φΩl determines the overallproperties of the method: multidimensional upwinding, 
onservativity, mono-toni
ity, k-exa
tness for polynomials of order k. Refer to [1℄ for a review on theproperties of the matrix s
hemes.2.1 The standard N-s
hemeFor the N-s
heme the fra
tions φΩl are 
omputed as (11). Then we 
ombine (9)and (6) to yield (12) and enfor
e 
onsisten
y by de�ning U� as (13). Clearly thes
heme is positive and linear, hen
e �rst order.
φNl ,K+l (U l �U�) (11)
φΩ = mXl=1 φNl , mXl=1K+l (U l �U�) � mXl=1KlU l (12)=) U� = � mXl=1K�l ��1 mXl=1K�l U l (13)2.2 Conservation of the N-s
hemeThe above s
heme is not 
onservative. To gain ba
k 
onservation we have toensure (14). This is obtained by rede�ning U� as (15), thereby relaxing on thepositive property (C RD approa
h [5℄).

φΩ = mXl=1 φNl � φ
 = I�Ω
F j � njd�Ω (14)U� = � mXl=1K+l ��1�� mXl=1K+l U l�� φ
� (15)
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onservative residual 
omputed with any integral approximationthat satis�es the order of the 
uxes involved. In theory any method of integrationfor the integrals in (14) 
an be 
hosen as long as the teles
opi
 property isretained. Consequently, a 
ontour integration is 
hosen with an Simpson rule.Using this approa
h, the variables 
hosen for the averaged state to 
ompute theKl do not a�e
t 
onservation.2.3 Appli
ation to parti
ular Finite ElementsThe P1 elements: Assuming in (7) linear triangular elements and the ja
obianAj 
onstant per 
ell and 
omputed in an averaged state of �U l, the general upwindparameters have the form (16).Kl = 12 �Ajnjl; �Aj = Aj( �U ) (16)Where njl are the inward pointing s
aled normals of the triangle, as shownin �gure (1). The 
hoi
e of this averaged state, as mentioned, is at the sour
eof the 
onservation property. With LRD approa
h, a linearization with Roeparameter ve
tor is imposed, but C RD allows any 
hoi
e of variables to linearize.The Q1 elements: For quadrilateral elements, with bi-linear shape-fun
tions,and the ja
obian evaluated again at an averaged state, we get the same expression(16), but where the normals njl are de�ned as in �gure (1). In this 
ase, theLRD with Roe linearization is not a

urate, due to the non linearity of theshape-fun
tions. In the 
omputation of (14), the shape-fun
tion variation alongthe edges of arbitrary quadrilaterals is no longer linear. Tests have shown thatthis error is rather small for roughly regular elements.
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n3Fig. 1. Quadrilateral and Triangle nl normalsGeneral Elements: For general higher-order elements, in
luding three dimen-sional ones, the upwind parameters (7) are 
omputed by averaging the ja
obianin the element Ω and 
omputing (17) to satisfy PKl = 0.Kl = �Aj � Z
Ω
�jNl dΩ (17)2.4 Higher Order s
hemes: a boundedness issueOn
e a �rst order monotone s
heme is avaiable as dis
ussed above, a high orders
heme preserving exa
t solutions belonging to the Finite Element spa
e 
an be
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ase of a s
alar 
onservation law follows:�Nl = �Nl�Ω �Ωj = max(0;�Nl )mPl=1max(0;�Nl )�Ω (18)3 Results and Dis
ussion3.1 Transoni
 
ow, Ma = 0:675 
ir
ular ar
 bump 
hannelThis transoni
 test-
ase, also known as GAMM 
hannel, 
onsists of a 3 � 1
hannel, with an unity 
hord 
ir
ular ar
 in the middle with 10% height. Thisresults in a soni
 po
ket that 
ulminates in a transoni
 sho
k at t 72% of the
hord, rea
hing Ma t 1:32, [7℄. The referen
e solution was 
al
ulated with a�ner 300�90 quadrilateral mesh with the C RD N s
heme. The triangle s
hemesperform better in edge aligned 
ows, where the 
ross di�usion is minimal. Thequadrilateral s
hemes, although 
onservative, have shown to be very di�usive,as their 
ross-di�usion minimizes in diagonal aligned 
ows.
Fig. 2. Ma
h distribution along the top and bottom walls in the GAMM 
hannel. Inthe left, the results of the isotropi
 triangle mesh (TG) t 3400 nodes, in the right the
omputed results with the quadrilateral (QD) 100� 30 mesh.3.2 Hypersoni
 
ow, Ma = 6 bow sho
k in 
ylinderTo demonstrate the robustness of the N-s
heme for Q1 elements, we present theresults of a simulation of a hypersoni
 bow sho
k in front of a 
ylinder of unityradius. The 
ow Ma
h number is 6. Plots along the stagnation line are presented,�g.(3). In this 
ase, a strong normal sho
k is observed in the stagnation line, andthe s
heme yielded monotone evolutions. The 
omputation grid had 60� 70 Q1elements. The referen
e solution was 
omputed in a grid with approximately 10times more elements.4 Con
lusionThe general de�nition of the upwind parametersKl for arbitrary �nite elementsis presented and applied in 
onjun
tion with the C RD approa
h to retain 
onser-vation. This separates the 
on
i
ting issues of multidimensional upwinding andlinearization of the ja
obians. It shows potential for appli
ation to non-linear orhigher order �nite elements.
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Fig. 3. Left: Q1 
ow �eld results, Ma
h distribution with 
onservative N-s
heme. Right:Q1 Stagnation line results for N-s
heme with both LRD and CRD . Top Right: Ma
hnumber evolution. Bottom Right: pressure distribution.Referen
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