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1 Introduction

We present the construction of non-linear monotone schemes for the approx-
imation of weak solutions of time-dependent non-linear systems of conser-
vation laws lacking a Roe linearization [1]. The schemes we consider are of
the so-called Residual Distribution (RD) or Fluctuation Splitting (FS) class
[2]. Due to their very compact stencil (only nearest neighbors) and to in-
herent monotonicity properties (no tuning of the numerical dissipation), RD
schemes represent an appealing alternative to both finite volume and stan-
dard finite element methods [2, 3]. In this work, we make use of the space-time
formulation of residual distribution [4, 5]. In particular, consider the scalar
problem
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Let 7, be an unstructured triangulation of 2 and {t!,...,t™} a sequence

of M discrete time levels. Given the nodal values at time ", {u] }ic7,, the
unknowns {u?*!};c7, are computed by the space-time residual distribution
method as the solution of the algebraic system
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System (2) is assembled as follows. First a local space-time residual is com-
puted in every every triangle T' € Tp:
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with u” a continuous numerical approximation of the unknown u. Assuming
u® to be piecewise continuous in space and linear in time one has

"= {? (™ = uf) + Sk + kg (4)
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where the inflow parameter k; is given by
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k=

(5)
being n; is the scaled inward pointing vector normal to the edge of T" in front
of node j. The inflow parameters (5) allow to easily detect upstream (k; < 0)
and downstream nodes (k; > 0). The cell-residual ¢" is then distributed to
each node of T'. The fraction of ¢" distributed to a node i (local nodal residual)
is denoted by ¢;. We introduce the distribution coefficients 3; = ¢;/".

The properties of the discretization are determined by the definition of the
¢;. For the scope of this paper, we are interested in the following properties:

Consistency: Zje"l“ ¢; = ¢" or equivalently Zje"l“ B =1

Linearity Preservation: a scheme is said to be linearity preserving if the f3;
coefficients are bounded. In [5, 8] is shown that linearity preserving schemes
are second order accurate.

Positivity: rewriting (2) as AU™™! = BU", a scheme is positive if A is an
invertible M-matrix and if B is positive (B;; > 0V, j) [5]. Positive schemes
exhibit a discrete maximum principle and are essential for a monotone ap-
proximation of discontinuous solutions.

It is useful to introduce here the positive linear schemes used in this
work. They are space-time extensions of the optimal positive N-scheme [2].
In particular, we will refer to the N1-scheme as to the space-time linear
scheme defined by the local nodal residuals [4]:
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Apart from the notation, it is important to note that the inflow state u;,
represents the linearly interpolated value of u” in the most upstream point of
the space-time prism T x [t", "], i.e. the most upstream point with respect
to the space-time characteristic line crossing the prism (left on figure 1). The
parameters Ej are space-time equivalents of the inflow parameters (5). Scheme
(6) represents a truly space-time generalization of the linear N-scheme. It is
consistent and positive provided that the residual can be expressed as in (4)
and under a time-step constraint [4]. A different scheme has been introduced
in [5], defined by the local nodal residual

o = Bl oy ¢ Sl —u) + Sk~ @)
In this case, the state wu;, represents the linearly interpolated value of u in
the most upstream point in triangle 7', i.e. the most upstream point on the
streamline crossing the element (right on figure 1). Scheme (7) corresponds
to the standard N-scheme with Crank-Nicholson time integration. It is con-
sistent and positive provided that the residual can be expressed as in (4) and
under a time-step constraint [5]. We will refer to scheme (7) as to the N2-
scheme. Note that for both the N1 and the N2 scheme consistency is achieved
provided that the residual can be expressed as in (4).
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Fig. 1. Space-time inflow state w;, (left) and space inflow state w;, (right)
2 Limited residual distribution schemes

An analog of Godunov’s theorem for residual distribution [8, 9] states that
linear schemes cannot be at the same time linearity preserving and positive.
As a consequence, non-linear schemes must be considered if one is interested
in a monotone and sharp approximation of discontinuous solution. Here we
follow [5, 8, 10]: given a linear first order positive scheme with local residuals
¢ and distribution coefficients 37 = ¢F /¢", one can introduce the class of
nonlinear schemes whose distribution coefficients 3; respect the conditions:

BiBF >0 (for positivity) (8.a)

|Bi] < C < oo (for linearity preservation) (8.b) 8)
Y Bi=1 (for consistency) (8.¢)
JjeT

Mappings satisfying (8) are presented in [5, 8, 10]. Here we give a condition on
the ¢F’s guaranteeing the well-posedness of the procedure. The consistency
constraint (8.¢) requires the existence of at least one positive §;, hence, due
to (8.a), at least one positive 87 must exist. If the linear scheme is consistent,
that is if ZjeT B;P = 1, this condition will be met. However, if ZjeT (;5_;’ =
@' # ¢", one could run into the unfortunate case ¢'¢" < 0 and

ze
> Br = '7€;h = % =I<o0, sign(fl)=-1 VjeT (9)
JET
In this case, (8) cannot be satisfied, since either the first or the last relation
would have to be violated compromising the positivity or the consistency of
the nonlinear scheme. So we have the general compatibility requirement

Proposition 1.V mappings {B}’} — {B;} respecting (8), a sufficient condi-
tion for the existence of the scheme defined by ¢; = B;p" , is > ¢)}) = ¢".

Using the argument that the only role of the positive linear scheme is to give
the correct sign of the (;s, nonlinear schemes based on inconsistent linear ones
have been proposed in [8, 10, 11]. Even though the compatibility requirement
is not a necessary condition, and one could find an inconsistent positive linear
scheme for which (9) are never met, in [8, 10, 11] fixes compromising positivity
are introduced to retain consistency.
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3 Conservative schemes for multidimensional systems

Consider the hyperbolic system of conservation laws

86—1:+V-]:(u):0 on 2x[tg,t;] CR® xRT; F=(FQ) (10)
Writing (10) in the quasilinear form
ou ou ou OF oG
gt T Argy g, =0 ou " " Bu (11)

its hyperbolicity guarantees that V&€ € R? the matrix K¢ = A,&, + 4,&, has
real eigenvalues and linearly independent eigenvectors. The matriz variant of
space-time RD approximates solutions of linear hyperbolic systems [4, 5] as
described in sections 1 and 2 except that the k; parameters (5) become matri-
ces defined as K; = Kn]./27 the distribution coefficients become distribution
matrices and the scalar u” is replaced by a discrete unknown vector U”. The
N1 and N2 schemes are defined as in (6) and (7) with the proper change of
notation. Non-linear schemes are built through a wave decomposition pro-
cedure [5, 8]. The case of a non-linear system is more complex. Non-linear
systems can evolve discontinuities and it is essential that across these discon-
tinuities the discretization consistently approximates the integral weak form
of (10). In the case of the Euler equation for a perfect gas, the existence
of a conservative Roe linearization [1, 7] implies an equivalence between the
integral and the quasi-linear form of the equations, so that conservation is
guaranteed by evaluating the K; matrices in the Roe averaged state [7]. This
allows to compute the element residual using a formula analog to (4) and to
use the N1 and N2 schemes. Due to the conservative linearization, these are
conservative and consistent, hence the limiting procedure can be applied and
is well-posed. In absence of a conservative linearization, the N1-scheme and
N2-scheme cannot be conservative since the residual cannot be expressed as
in (4). In this case, we propose to compute ¢" as

3
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aT aT
approximating the boundary integrals with Gauss integration. The problem
is now to define consistent monotone linear schemes. Here we follow [6]. Con-
sider the case of the N1-scheme. For a non-linear system, the local residuals
obtained with the matrix version of (6) would not yield a consistent scheme.
Nevertheless, it is easy to see that the two conditions

N =K (wi—w); Yo ="
JjeT
with ¢" given by (12), uniquely define Uj,. In particular, a unique conserva-
tive matrix variant of the N1-scheme (6) is obtained defining @;, as [4, 6]
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Proceeding in a similar way, a unique conservative matrix variant of the N2-
scheme (7) is obtained, by defining the inflow states as [5, 6, 12]

-1
Uy = (ZK;F) (ZKf“f *¢k)§ ¢" = %fkaT; k=mn,n+1
JET JjeT aT
The schemes obtained in this way are indeed conservative but their mono-
tonicity is to be verified numerically [6]. Starting from the conservative vari-
ants of the linear schemes we construct limited schemes, which we will refer

to as limited N1-scheme and limited N2-scheme. The well-posedness of the
limiting is guaranteed by the conservative formulation of the linear schemes.

4 Results
We apply the schemes to the hyperbolic two-phase flow model defined by

Qgpg QgpPgU Qg Pgv ag+ap =1 N
g
pu pu” +p puv 7\ pgo N
v uv v? + !
R I e
0

with o, and a; gas and liquid volume fractions, p, and p; gas and liquid
densities, p the pressure, u = (u, v) the flow speed and p the mixture density.
The constants in the equations of state are taken as in [13]. No conservative
linearization is available for this model but, being in strong conservative
form, one can compute exact Rankine-Hugoniot relations. On the first row
in figure 2 we show the computation of a planar shock moving in a mixture
with a, = 0.5 performed on a 2D mesh (h ~ 1/100) with periodic boundary
conditions in the y direction. The shock speed u; is defined by the Mach
number My = us/v/pr/pr- The results in the picture show the mixture
density distribution in the middle of the 2D domain for My = 10. The shock
is correctly captured by all schemes, confirming their conservative character.
Very sharp shock capturing is obtained with the non-linear schemes. On the
last row of figure 2 we present the computation of the interaction of a My = 3
shock with a circular discontinuity in the volume fraction. The solutions are
obtained with the non-linear schemes (Top: limited N1. Bottom: limited N2)
on a 2D mesh (h &~ 1/200). Both schemes give a very good resolution of the
interaction between the shock and the bubble comparing to similar results
available in literature [14, 15, 16, 17].
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5 Concluding remarks

We propose conservative, non-linear and linearity preserving space-time RD
schemes for the discretization of time-dependent systems lacking a conser-
vative linearization [1, 7]. Making use of the technique proposed in [6] we
obtained conservative variants of the linear first order schemes of [4] and [5]
to be used as a basis for the construction of non-linear schemes through the
limiting procedure of [5, 10, 8]. We have shown that the well-posedness of
this procedure is guaranteed by the conservative formulation of the linear
schemes. Results involving the solution of a hyperbolic two-phase flow model
have shown promising features of the schemes proposed: discrete conserva-
tion, generality, monotone and sharp capturing of discontinuities.
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Fig. 2. First row: M, = 10 moving shock. Second row: Shock bubble interaction.



