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tionWe present the 
onstru
tion of non-linear monotone s
hemes for the approx-imation of weak solutions of time-dependent non-linear systems of 
onser-vation laws la
king a Roe linearization [1℄. The s
hemes we 
onsider are ofthe so-
alled Residual Distribution (RD) or Flu
tuation Splitting (FS) 
lass[2℄. Due to their very 
ompa
t sten
il (only nearest neighbors) and to in-herent monotoni
ity properties (no tuning of the numeri
al dissipation), RDs
hemes represent an appealing alternative to both �nite volume and stan-dard �nite element methods [2, 3℄. In this work, we make use of the spa
e-timeformulation of residual distribution [4, 5℄. In parti
ular, 
onsider the s
alarproblem�u�t + � � ru = 0 on 
 � [t0; tf ℄ � R2 � R+ ; � = 
onst : (1)Let Th be an unstru
tured triangulation of 
 and ft1; : : : ; tMg a sequen
eof M dis
rete time levels. Given the nodal values at time tn, funi gi2Th , theunknowns fun+1i gi2Th are 
omputed by the spa
e-time residual distributionmethod as the solution of the algebrai
 systemXT2Di �i = 0 8 i 2 Th (2)System (2) is assembled as follows. First a lo
al spa
e-time residual is 
om-puted in every every triangle T 2 Th:�h = tn+1Ztn ZT ��uh�t + � � ruh� d
 dt ; (3)with uh a 
ontinuous numeri
al approximation of the unknown u. Assuminguh to be pie
ewise 
ontinuous in spa
e and linear in time one has�h =Xj2T � jT j3 �un+1j � unj �+ �t2 kjunj + �t2 kjun+1j � (4)
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ow parameter kj is given bykj = � � nj2 (5)being nj is the s
aled inward pointing ve
tor normal to the edge of T in frontof node j. The in
ow parameters (5) allow to easily dete
t upstream (kj < 0)and downstream nodes (kj > 0). The 
ell-residual �h is then distributed toea
h node of T . The fra
tion of �h distributed to a node i (lo
al nodal residual)is denoted by �i. We introdu
e the distribution 
oeÆ
ients �i = �i=�h.The properties of the dis
retization are determined by the de�nition of the�i. For the s
ope of this paper, we are interested in the following properties:Consisten
y: Pj2T �j = �h or equivalently Pj2T �j = 1Linearity Preservation: a s
heme is said to be linearity preserving if the �i
oeÆ
ients are bounded. In [5, 8℄ is shown that linearity preserving s
hemesare se
ond order a

urate.Positivity: rewriting (2) as AUn+1 = BUn, a s
heme is positive if A is aninvertibleM-matrix and if B is positive (Bij � 0 8 i; j) [5℄. Positive s
hemesexhibit a dis
rete maximum prin
iple and are essential for a monotone ap-proximation of dis
ontinuous solutions.It is useful to introdu
e here the positive linear s
hemes used in thiswork. They are spa
e-time extensions of the optimal positive N-s
heme [2℄.In parti
ular, we will refer to the N1-s
heme as to the spa
e-time linears
heme de�ned by the lo
al nodal residuals [4℄:�N1i = k+i (un+1i � uin); (6)Apart from the notation, it is important to note that the in
ow state uinrepresents the linearly interpolated value of uh in the most upstream point ofthe spa
e-time prism T � [tn; tn+1℄, i.e. the most upstream point with respe
tto the spa
e-time 
hara
teristi
 line 
rossing the prism (left on �gure 1). Theparameters kj are spa
e-time equivalents of the in
ow parameters (5). S
heme(6) represents a truly spa
e-time generalization of the linear N-s
heme. It is
onsistent and positive provided that the residual 
an be expressed as in (4)and under a time-step 
onstraint [4℄. A di�erent s
heme has been introdu
edin [5℄, de�ned by the lo
al nodal residual�N2i = jT j3 (un+1i � uni ) + �t2 k+i (uni � unin) + �t2 k+i (un+1i � un+1in ) (7)In this 
ase, the state uin represents the linearly interpolated value of u inthe most upstream point in triangle T , i.e. the most upstream point on thestreamline 
rossing the element (right on �gure 1). S
heme (7) 
orrespondsto the standard N-s
heme with Crank-Ni
holson time integration. It is 
on-sistent and positive provided that the residual 
an be expressed as in (4) andunder a time-step 
onstraint [5℄. We will refer to s
heme (7) as to the N2-s
heme. Note that for both the N1 and the N2 s
heme 
onsisten
y is a
hievedprovided that the residual 
an be expressed as in (4).
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e-time in
ow state uin (left) and spa
e in
ow state uin (right)2 Limited residual distribution s
hemesAn analog of Godunov's theorem for residual distribution [8, 9℄ states thatlinear s
hemes 
annot be at the same time linearity preserving and positive.As a 
onsequen
e, non-linear s
hemes must be 
onsidered if one is interestedin a monotone and sharp approximation of dis
ontinuous solution. Here wefollow [5, 8, 10℄: given a linear �rst order positive s
heme with lo
al residuals�Pi and distribution 
oeÆ
ients �Pi = �Pi =�h, one 
an introdu
e the 
lass ofnonlinear s
hemes whose distribution 
oeÆ
ients �i respe
t the 
onditions:8><>: �i�Pi � 0 (for positivity) (8:a)j�ij < C <1 (for linearity preservation) (8:b)Pj2T �j = 1 (for 
onsisten
y) (8:
) (8)Mappings satisfying (8) are presented in [5, 8, 10℄. Here we give a 
ondition onthe �Pi 's guaranteeing the well-posedness of the pro
edure. The 
onsisten
y
onstraint (8:
) requires the existen
e of at least one positive �i, hen
e, dueto (8:a), at least one positive �Pi must exist. If the linear s
heme is 
onsistent,that is if Pj2T �Pj = 1, this 
ondition will be met. However, if Pj2T �Pj =�1 6= �h, one 
ould run into the unfortunate 
ase �1�h � 0 andXj2T �Pj = Pj2T �Pj�h = �1�h = � � 0 ; sign(�Pj ) = �1 8j 2 T (9)In this 
ase, (8) 
annot be satis�ed, sin
e either the �rst or the last relationwould have to be violated 
ompromising the positivity or the 
onsisten
y ofthe nonlinear s
heme. So we have the general 
ompatibility requirementProposition 1. 8 mappings f�Pj g ! f�jg respe
ting (8), a suÆ
ient 
ondi-tion for the existen
e of the s
heme de�ned by �i = �i�h ; is Pj �Pj = �h.Using the argument that the only role of the positive linear s
heme is to givethe 
orre
t sign of the �is, nonlinear s
hemes based on in
onsistent linear oneshave been proposed in [8, 10, 11℄. Even though the 
ompatibility requirementis not a ne
essary 
ondition, and one 
ould �nd an in
onsistent positive linears
heme for whi
h (9) are never met, in [8, 10, 11℄ �xes 
ompromising positivityare introdu
ed to retain 
onsisten
y.
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hemes for multidimensional systemsConsider the hyperboli
 system of 
onservation laws�u�t +r � F(u) = 0 on 
 � [t0; tf ℄ � R2 � R+ ; F = (F;G) (10)Writing (10) in the quasilinear form�u�t +Ax �u�x +Ay �u�y = 0 ; Ax = �F�u ; Ay = �G�u (11)its hyperboli
ity guarantees that 8� 2 R2 the matrix K� = Ax�x +Ay�y hasreal eigenvalues and linearly independent eigenve
tors. The matrix variant ofspa
e-time RD approximates solutions of linear hyperboli
 systems [4, 5℄ asdes
ribed in se
tions 1 and 2 ex
ept that the kj parameters (5) be
ome matri-
es de�ned as Kj = Knj=2, the distribution 
oeÆ
ients be
ome distributionmatri
es and the s
alar uh is repla
ed by a dis
rete unknown ve
tor Uh. TheN1 and N2 s
hemes are de�ned as in (6) and (7) with the proper 
hange ofnotation. Non-linear s
hemes are built through a wave de
omposition pro-
edure [5, 8℄. The 
ase of a non-linear system is more 
omplex. Non-linearsystems 
an evolve dis
ontinuities and it is essential that a
ross these dis
on-tinuities the dis
retization 
onsistently approximates the integral weak formof (10). In the 
ase of the Euler equation for a perfe
t gas, the existen
eof a 
onservative Roe linearization [1, 7℄ implies an equivalen
e between theintegral and the quasi-linear form of the equations, so that 
onservation isguaranteed by evaluating the Kj matri
es in the Roe averaged state [7℄. Thisallows to 
ompute the element residual using a formula analog to (4) and touse the N1 and N2 s
hemes. Due to the 
onservative linearization, these are
onservative and 
onsistent, hen
e the limiting pro
edure 
an be applied andis well-posed. In absen
e of a 
onservative linearization, the N1-s
heme andN2-s
heme 
annot be 
onservative sin
e the residual 
annot be expressed asin (4). In this 
ase, we propose to 
ompute �h as�h =Xj2T jT j3 �un+1j � unj �+ �t2 I�T Fn � n̂ �T + �t2 I�T Fn+1 � n̂ �T ; (12)approximating the boundary integrals with Gauss integration. The problemis now to de�ne 
onsistent monotone linear s
hemes. Here we follow [6℄. Con-sider the 
ase of the N1-s
heme. For a non-linear system, the lo
al residualsobtained with the matrix version of (6) would not yield a 
onsistent s
heme.Nevertheless, it is easy to see that the two 
onditions�N1i = K+i (ui � uin) ; Xj2T �N1j = �h;with �h given by (12), uniquely de�ne U in. In parti
ular, a unique 
onserva-tive matrix variant of the N1-s
heme (6) is obtained de�ning uin as [4, 6℄
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onservation laws 5uin = �Xj2T K+j ��1�Xj2T K+j un+1j � �h� ; with �h given by (12)Pro
eeding in a similar way, a unique 
onservative matrix variant of the N2-s
heme (7) is obtained, by de�ning the in
ow states as [5, 6, 12℄ukin = �Xj2T K+j ��1�Xj2T K+j ukj � �k�; �k = I�T Fk �T ; k = n; n+ 1The s
hemes obtained in this way are indeed 
onservative but their mono-toni
ity is to be veri�ed numeri
ally [6℄. Starting from the 
onservative vari-ants of the linear s
hemes we 
onstru
t limited s
hemes, whi
h we will referto as limited N1-s
heme and limited N2-s
heme. The well-posedness of thelimiting is guaranteed by the 
onservative formulation of the linear s
hemes.4 ResultsWe apply the s
hemes to the hyperboli
 two-phase 
ow model de�ned byu = 0BB��g�g�l�l�u�v 1CCA ; F = 0BB� �g�gu�l�lu�u2 + p�uv �g�gv�l�lv�uv�v2 + p1CCA ; 8>>>>>><>>>>>>: � = �g�g + �l�l�g + �l = 1p = �g � �g�g0�
gp = �l �� �l�l0�
l � 1�+ pl0with �g and �l gas and liquid volume fra
tions, �g and �l gas and liquiddensities, p the pressure, u = (u; v) the 
ow speed and � the mixture density.The 
onstants in the equations of state are taken as in [13℄. No 
onservativelinearization is available for this model but, being in strong 
onservativeform, one 
an 
ompute exa
t Rankine-Hugoniot relations. On the �rst rowin �gure 2 we show the 
omputation of a planar sho
k moving in a mixturewith �g = 0:5 performed on a 2D mesh (h � 1=100) with periodi
 boundary
onditions in the y dire
tion. The sho
k speed us is de�ned by the Ma
hnumber Ms = us=ppR=�R. The results in the pi
ture show the mixturedensity distribution in the middle of the 2D domain for Ms = 10. The sho
kis 
orre
tly 
aptured by all s
hemes, 
on�rming their 
onservative 
hara
ter.Very sharp sho
k 
apturing is obtained with the non-linear s
hemes. On thelast row of �gure 2 we present the 
omputation of the intera
tion of aMs = 3sho
k with a 
ir
ular dis
ontinuity in the volume fra
tion. The solutions areobtained with the non-linear s
hemes (Top: limited N1. Bottom: limited N2)on a 2D mesh (h � 1=200). Both s
hemes give a very good resolution of theintera
tion between the sho
k and the bubble 
omparing to similar resultsavailable in literature [14, 15, 16, 17℄.
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luding remarksWe propose 
onservative, non-linear and linearity preserving spa
e-time RDs
hemes for the dis
retization of time-dependent systems la
king a 
onser-vative linearization [1, 7℄. Making use of the te
hnique proposed in [6℄ weobtained 
onservative variants of the linear �rst order s
hemes of [4℄ and [5℄to be used as a basis for the 
onstru
tion of non-linear s
hemes through thelimiting pro
edure of [5, 10, 8℄. We have shown that the well-posedness ofthis pro
edure is guaranteed by the 
onservative formulation of the linears
hemes. Results involving the solution of a hyperboli
 two-phase 
ow modelhave shown promising features of the s
hemes proposed: dis
rete 
onserva-tion, generality, monotone and sharp 
apturing of dis
ontinuities.Referen
es1. P.L. Roe, J. of Comput. Phys. 43 (1981)2. H. De
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