
Conservative residual distribution shemes forgeneral unsteady systems of onservation lawsMario Rihiuto1, �Arp�ad Cs��k1;2, and Herman Deonink11 von Karman Institute for Fluid Dynamis, Belgium2 Katholieke Universiteit Leuven, Belgiumrihiut�vki.a.be, arpi�vki.a.be, deonink�vki.a.be1 IntrodutionWe present the onstrution of non-linear monotone shemes for the approx-imation of weak solutions of time-dependent non-linear systems of onser-vation laws laking a Roe linearization [1℄. The shemes we onsider are ofthe so-alled Residual Distribution (RD) or Flutuation Splitting (FS) lass[2℄. Due to their very ompat stenil (only nearest neighbors) and to in-herent monotoniity properties (no tuning of the numerial dissipation), RDshemes represent an appealing alternative to both �nite volume and stan-dard �nite element methods [2, 3℄. In this work, we make use of the spae-timeformulation of residual distribution [4, 5℄. In partiular, onsider the salarproblem�u�t + � � ru = 0 on 
 � [t0; tf ℄ � R2 � R+ ; � = onst : (1)Let Th be an unstrutured triangulation of 
 and ft1; : : : ; tMg a sequeneof M disrete time levels. Given the nodal values at time tn, funi gi2Th , theunknowns fun+1i gi2Th are omputed by the spae-time residual distributionmethod as the solution of the algebrai systemXT2Di �i = 0 8 i 2 Th (2)System (2) is assembled as follows. First a loal spae-time residual is om-puted in every every triangle T 2 Th:�h = tn+1Ztn ZT ��uh�t + � � ruh� d
 dt ; (3)with uh a ontinuous numerial approximation of the unknown u. Assuminguh to be pieewise ontinuous in spae and linear in time one has�h =Xj2T � jT j3 �un+1j � unj �+ �t2 kjunj + �t2 kjun+1j � (4)



2 Mario Rihiuto et al.where the inow parameter kj is given bykj = � � nj2 (5)being nj is the saled inward pointing vetor normal to the edge of T in frontof node j. The inow parameters (5) allow to easily detet upstream (kj < 0)and downstream nodes (kj > 0). The ell-residual �h is then distributed toeah node of T . The fration of �h distributed to a node i (loal nodal residual)is denoted by �i. We introdue the distribution oeÆients �i = �i=�h.The properties of the disretization are determined by the de�nition of the�i. For the sope of this paper, we are interested in the following properties:Consisteny: Pj2T �j = �h or equivalently Pj2T �j = 1Linearity Preservation: a sheme is said to be linearity preserving if the �ioeÆients are bounded. In [5, 8℄ is shown that linearity preserving shemesare seond order aurate.Positivity: rewriting (2) as AUn+1 = BUn, a sheme is positive if A is aninvertibleM-matrix and if B is positive (Bij � 0 8 i; j) [5℄. Positive shemesexhibit a disrete maximum priniple and are essential for a monotone ap-proximation of disontinuous solutions.It is useful to introdue here the positive linear shemes used in thiswork. They are spae-time extensions of the optimal positive N-sheme [2℄.In partiular, we will refer to the N1-sheme as to the spae-time linearsheme de�ned by the loal nodal residuals [4℄:�N1i = k+i (un+1i � uin); (6)Apart from the notation, it is important to note that the inow state uinrepresents the linearly interpolated value of uh in the most upstream point ofthe spae-time prism T � [tn; tn+1℄, i.e. the most upstream point with respetto the spae-time harateristi line rossing the prism (left on �gure 1). Theparameters kj are spae-time equivalents of the inow parameters (5). Sheme(6) represents a truly spae-time generalization of the linear N-sheme. It isonsistent and positive provided that the residual an be expressed as in (4)and under a time-step onstraint [4℄. A di�erent sheme has been introduedin [5℄, de�ned by the loal nodal residual�N2i = jT j3 (un+1i � uni ) + �t2 k+i (uni � unin) + �t2 k+i (un+1i � un+1in ) (7)In this ase, the state uin represents the linearly interpolated value of u inthe most upstream point in triangle T , i.e. the most upstream point on thestreamline rossing the element (right on �gure 1). Sheme (7) orrespondsto the standard N-sheme with Crank-Niholson time integration. It is on-sistent and positive provided that the residual an be expressed as in (4) andunder a time-step onstraint [5℄. We will refer to sheme (7) as to the N2-sheme. Note that for both the N1 and the N2 sheme onsisteny is ahievedprovided that the residual an be expressed as in (4).
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j k��i�j uin xyFig. 1. Spae-time inow state uin (left) and spae inow state uin (right)2 Limited residual distribution shemesAn analog of Godunov's theorem for residual distribution [8, 9℄ states thatlinear shemes annot be at the same time linearity preserving and positive.As a onsequene, non-linear shemes must be onsidered if one is interestedin a monotone and sharp approximation of disontinuous solution. Here wefollow [5, 8, 10℄: given a linear �rst order positive sheme with loal residuals�Pi and distribution oeÆients �Pi = �Pi =�h, one an introdue the lass ofnonlinear shemes whose distribution oeÆients �i respet the onditions:8><>: �i�Pi � 0 (for positivity) (8:a)j�ij < C <1 (for linearity preservation) (8:b)Pj2T �j = 1 (for onsisteny) (8:) (8)Mappings satisfying (8) are presented in [5, 8, 10℄. Here we give a ondition onthe �Pi 's guaranteeing the well-posedness of the proedure. The onsistenyonstraint (8:) requires the existene of at least one positive �i, hene, dueto (8:a), at least one positive �Pi must exist. If the linear sheme is onsistent,that is if Pj2T �Pj = 1, this ondition will be met. However, if Pj2T �Pj =�1 6= �h, one ould run into the unfortunate ase �1�h � 0 andXj2T �Pj = Pj2T �Pj�h = �1�h = � � 0 ; sign(�Pj ) = �1 8j 2 T (9)In this ase, (8) annot be satis�ed, sine either the �rst or the last relationwould have to be violated ompromising the positivity or the onsisteny ofthe nonlinear sheme. So we have the general ompatibility requirementProposition 1. 8 mappings f�Pj g ! f�jg respeting (8), a suÆient ondi-tion for the existene of the sheme de�ned by �i = �i�h ; is Pj �Pj = �h.Using the argument that the only role of the positive linear sheme is to givethe orret sign of the �is, nonlinear shemes based on inonsistent linear oneshave been proposed in [8, 10, 11℄. Even though the ompatibility requirementis not a neessary ondition, and one ould �nd an inonsistent positive linearsheme for whih (9) are never met, in [8, 10, 11℄ �xes ompromising positivityare introdued to retain onsisteny.



4 Mario Rihiuto et al.3 Conservative shemes for multidimensional systemsConsider the hyperboli system of onservation laws�u�t +r � F(u) = 0 on 
 � [t0; tf ℄ � R2 � R+ ; F = (F;G) (10)Writing (10) in the quasilinear form�u�t +Ax �u�x +Ay �u�y = 0 ; Ax = �F�u ; Ay = �G�u (11)its hyperboliity guarantees that 8� 2 R2 the matrix K� = Ax�x +Ay�y hasreal eigenvalues and linearly independent eigenvetors. The matrix variant ofspae-time RD approximates solutions of linear hyperboli systems [4, 5℄ asdesribed in setions 1 and 2 exept that the kj parameters (5) beome matri-es de�ned as Kj = Knj=2, the distribution oeÆients beome distributionmatries and the salar uh is replaed by a disrete unknown vetor Uh. TheN1 and N2 shemes are de�ned as in (6) and (7) with the proper hange ofnotation. Non-linear shemes are built through a wave deomposition pro-edure [5, 8℄. The ase of a non-linear system is more omplex. Non-linearsystems an evolve disontinuities and it is essential that aross these dison-tinuities the disretization onsistently approximates the integral weak formof (10). In the ase of the Euler equation for a perfet gas, the existeneof a onservative Roe linearization [1, 7℄ implies an equivalene between theintegral and the quasi-linear form of the equations, so that onservation isguaranteed by evaluating the Kj matries in the Roe averaged state [7℄. Thisallows to ompute the element residual using a formula analog to (4) and touse the N1 and N2 shemes. Due to the onservative linearization, these areonservative and onsistent, hene the limiting proedure an be applied andis well-posed. In absene of a onservative linearization, the N1-sheme andN2-sheme annot be onservative sine the residual annot be expressed asin (4). In this ase, we propose to ompute �h as�h =Xj2T jT j3 �un+1j � unj �+ �t2 I�T Fn � n̂ �T + �t2 I�T Fn+1 � n̂ �T ; (12)approximating the boundary integrals with Gauss integration. The problemis now to de�ne onsistent monotone linear shemes. Here we follow [6℄. Con-sider the ase of the N1-sheme. For a non-linear system, the loal residualsobtained with the matrix version of (6) would not yield a onsistent sheme.Nevertheless, it is easy to see that the two onditions�N1i = K+i (ui � uin) ; Xj2T �N1j = �h;with �h given by (12), uniquely de�ne U in. In partiular, a unique onserva-tive matrix variant of the N1-sheme (6) is obtained de�ning uin as [4, 6℄



Conservative residual distribution for unsteady onservation laws 5uin = �Xj2T K+j ��1�Xj2T K+j un+1j � �h� ; with �h given by (12)Proeeding in a similar way, a unique onservative matrix variant of the N2-sheme (7) is obtained, by de�ning the inow states as [5, 6, 12℄ukin = �Xj2T K+j ��1�Xj2T K+j ukj � �k�; �k = I�T Fk �T ; k = n; n+ 1The shemes obtained in this way are indeed onservative but their mono-toniity is to be veri�ed numerially [6℄. Starting from the onservative vari-ants of the linear shemes we onstrut limited shemes, whih we will referto as limited N1-sheme and limited N2-sheme. The well-posedness of thelimiting is guaranteed by the onservative formulation of the linear shemes.4 ResultsWe apply the shemes to the hyperboli two-phase ow model de�ned byu = 0BB��g�g�l�l�u�v 1CCA ; F = 0BB� �g�gu�l�lu�u2 + p�uv �g�gv�l�lv�uv�v2 + p1CCA ; 8>>>>>><>>>>>>: � = �g�g + �l�l�g + �l = 1p = �g � �g�g0�gp = �l �� �l�l0�l � 1�+ pl0with �g and �l gas and liquid volume frations, �g and �l gas and liquiddensities, p the pressure, u = (u; v) the ow speed and � the mixture density.The onstants in the equations of state are taken as in [13℄. No onservativelinearization is available for this model but, being in strong onservativeform, one an ompute exat Rankine-Hugoniot relations. On the �rst rowin �gure 2 we show the omputation of a planar shok moving in a mixturewith �g = 0:5 performed on a 2D mesh (h � 1=100) with periodi boundaryonditions in the y diretion. The shok speed us is de�ned by the Mahnumber Ms = us=ppR=�R. The results in the piture show the mixturedensity distribution in the middle of the 2D domain for Ms = 10. The shokis orretly aptured by all shemes, on�rming their onservative harater.Very sharp shok apturing is obtained with the non-linear shemes. On thelast row of �gure 2 we present the omputation of the interation of aMs = 3shok with a irular disontinuity in the volume fration. The solutions areobtained with the non-linear shemes (Top: limited N1. Bottom: limited N2)on a 2D mesh (h � 1=200). Both shemes give a very good resolution of theinteration between the shok and the bubble omparing to similar resultsavailable in literature [14, 15, 16, 17℄.



6 Mario Rihiuto et al.5 Conluding remarksWe propose onservative, non-linear and linearity preserving spae-time RDshemes for the disretization of time-dependent systems laking a onser-vative linearization [1, 7℄. Making use of the tehnique proposed in [6℄ weobtained onservative variants of the linear �rst order shemes of [4℄ and [5℄to be used as a basis for the onstrution of non-linear shemes through thelimiting proedure of [5, 10, 8℄. We have shown that the well-posedness ofthis proedure is guaranteed by the onservative formulation of the linearshemes. Results involving the solution of a hyperboli two-phase ow modelhave shown promising features of the shemes proposed: disrete onserva-tion, generality, monotone and sharp apturing of disontinuities.Referenes1. P.L. Roe, J. of Comput. Phys. 43 (1981)2. H. Deonink et al.: AIAA paper 2000-2328 (2000)3. E. van der Weide et al.: Computational Mehanis 23 (1999)4. �A. Cs��k et al.: In: VKI LS 2003-05, von Karman Institute (2003)5. R. Abgrall and M. Mezine: J. of Comput. Phys. 188 (2003)6. �A. Cs��k et al.: J. of Comput. Phys. 179 (2002)7. H. Deonink et al.: Computers and Fluids 22 (1993)8. R. Abgrall and M. Mezine. In: VKI LS 2003-05, von Karman Institute (2003)http://www.ufr-mi.u-bordeaux.fr/ �abgrall/LS/ls1.ps.gz9. S.K. Godunov: Mat. Sb. 47 (1959)10. R. Abgrall and P.L.Roe, J. of S. Comput. 19 (2002)11. M. Mezine et al.: In: VKI LS 2003-05, von Karman Institute (2003)http://www.ufr-mi.u-bordeaux.fr/ �abgrall/LS/ls2.ps.gz12. T. Quintino et al., In ICCFD 2002, Springer Verlag (2002)13. H. Paillere et al.: Computers and Fluids 32 (2003)14. H. Holden et al.: J. of Comput. Phys. 150 (1999)15. J.O. Langseth and R.J. Leveque: J. of Comput. Phys. 165 (2000)16. R.K.S. Hankin: J. of Comput. Phys. 172 (2001)17. R. Abgrall et al.: Computers and Fluids 32 (2003)
x

m
ix

tu
re

de
ns

ity

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
450

500

550

600

650

700

750

800

850

900

950

1000

Exact
N1 scheme

x

m
ix

tu
re

de
ns

ity

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
450

500

550

600

650

700

750

800

850

900

950

1000

Exact
N2 scheme

x

m
ix

tu
re

de
ns

ity

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
450

500

550

600

650

700

750

800

850

900

950

1000

Exact
limited N1 scheme

x

m
ix

tu
re

de
ns

ity

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
450

500

550

600

650

700

750

800

850

900

950

1000

Exact
limited N2 scheme

x

y

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

rb = 0.2

= 0.95 v = 0α
p = 105 u = 0

α = 0.8 v = 0
u = 0p = 105

MS = 3

t = 0.003

Limited N1

Limited N2

t = 0.005

Limited N1

Limited N2

t = 0.02

Limited N1

Limited N2Fig. 2. First row: Ms = 10 moving shok. Seond row: Shok bubble interation.


