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1 Generalities and notation

We review a class of compact methods to approximate steady solutions to

∂u

∂t
+ ∇ · F(u) = ∇ · (ν∇u) ∀(x, y) ∈ Ω (1)

on τh, an unstructured triangulation of the domain Ω. We make use of stan-
dard Lagrangian P k elements, that is the solution is approximated by a con-
tinuous piecewise k-th order polynomial. In every triangle T ∈ τh we construct
the sub-triangulation composed by k2 triangles shown on figure 1. We denote
by Ts the generic sub-element.

P 1 P 2 P 3

Ts Ts

Fig. 1. P k Lagrangian triangles with P 1 conformal sub-triangulation

On τh, the discrete unknown uh is expressed as the following combination of
k-th Lagrangian polynomial basis functions :

uh(x, y) =
∑

i∈τh

uiψi(x, y) (2)

where ui = u(xi, yi) and ψi the i-th basis function. We call ϕi the piecewise
linear basis function associated to i ∈ T defined on the P 1 conformal sub-
triangulation (see figure 1). Clearly, in the P 1 case ϕi = ψi.
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We consider schemes evolving the nodal values of the solution as :

un+1
i = un

i + δi
∑

Ts,i∈Ts

ΦTs

i (3)

where δi is an iteration parameter. In the hyperbolic case ν = 0, the schemes
we consider are a particular case of the fluctuation or residual distribution
(RD) schemes of [AR03]. In particular, on every sub-element Ts we have

∑

j∈Ts

ΦTs

j = ΦTs =

∫

Ts

∇ · Fh(uh) dx dy (4)

The paper is divided in two parts. In the first one we show the general
construction of k+1-th order schemes for hyperbolic scalar conservation laws.
The extension to (1) is considered in the second part.

2 Quasi non-oscillatory RD for hyperbolic problems

First consider (1) in the hyperbolic case ν = 0. We review some RD schemes
satisfying all the following conditions:

Accuracy Condition to get k + 1-th order schemes is that (see [AR03] for
details)

ΦTs

j = O(hk+2) (5)

For the k-th degree polynomial approximation (2) we get ΦTs = O(hk+2),
hence the accuracy condition is also expressed by ΦTs

j = O(ΦTs)
Upwinding In Ts, let ni be the inward normal to the edge facing node i

scaled by the length of the edge. Upwind schemes are the ones for which

ki ≤ 0 ⇒ ΦTs

i = 0 , with ki =
1

2

∂F(u∗)

∂u
· ni (6)

with u∗ an arbitrary average of uh over Ts. Upwinding has a stabilizing
effect (see [AR03] for the analysis).

Monotonicity The rigorous definition of monotonicity for RD schemes re-
sorts to the theory of positive coefficients, see [AR03, RVAD05] for details.
In this paper we will define a scheme as being monotone if, in practical
computations, it gives a non-oscillatory approximations of discontinuities.
In particular, we are interested in schemes for which, across a discontinu-
ity, ΦTs

j × ΦM
j ≥ 0, for some first order monotone splitting ΦM

j .

In the following subsections we review some definitions for the ΦTs

j s.

2.1 Linear schemes

In this paper we make use of the following two upwind linear schemes

LDA scheme is the upwind scheme defined by

ΦTs

i = ΦLDA
i = βLDA

i ΦTs , βLDA
i = k+

i /
∑

j∈Ts

k+
j (7)

Since βLDA
i is uniformly bounded (w.r.t. mesh size h and solution uh), the

LDA scheme respects the accuracy condition (5)



High-order monotone RDS and extension to advection-diffusion 3

N scheme is the upwind scheme defined by

ΦTs

i = ΦN
i = k+

i (ui − uin) , uin =
( ∑

j∈Ts

k+
j

)−1( ∑

j∈Ts

k+
j uj − ΦTs

)
(8)

The N scheme is monotone (in the sense described in section 2) and first
order. On can easily show that the N is obtained by adding to the LDA
scheme a crosswind (shock capturing) dissipation term [RVAD05] :

ΦN
i = ΦLDA

i + dN
i , dN

i =
( ∑

j∈T

k+
j

)−1 ∑

j∈T

k+
i k

+
j (ui − uj) (9)

2.2 Nonlinear schemes

To combine high order of accuracy and monotonicity, we must define use a
nonlinear splitting. There are two ways of doing this :

Blending the LDA and N splittings in a way guaranteeing that the N scheme
is recovered only across shocks. For example :

ΦTs

i = ΦB
i = θ ΦN

i + (1 − θ)ΦLDA
i , θ =

|ΦTs |
∑

j∈Ts
|ΦN

j |
(10)

Due to (9), this is equivalent to add to the LDA scheme a residual shock
capturing crosswind dissipation term :

ΦB
i = ΦLDA

i + θdN
i (11)

Limiting the distribution coefficient of the N scheme (PSI scheme) :

ΦTs

i = ΦPSI
i = βPSI

i ΦTs , βPSI
i = βN,+

i /
∑

j∈Ts

βN,+
j (12)

with βN
j = ΦN

i /Φ
Ts

i . The PSI scheme verifies both the monotonicity re-

quirement (ΦTs

i ×ΦN
i ≥ 0), and the accuracy condition (5) (βPSI

i bounded).

2.3 Numerical examples

We show examples involving smooth and non-smooth solutions. First, on the
domain [−1, 1]×[0, 1], we consider the steady rotation (F = λu, λ = (y ,−x))
of the inlet profile u0 = sin(16πx), defined on the boundary x ∈ [−1, 0], y = 0.
On the left on figure 2, we plot the outlet (x ∈ [0, 1], y = 0) data computed
by the second, third and fourth order PSI schemes. All the computations
have been run with the same number of degrees of freedom. The improvement
in the resolution of the high frequency profile brought by the higher order
polynomial representation is evident.

As a second example, the right picture on the same figure shows the grid
convergence rates obtained on P 3 elements for the constant advection (F =
λu, λ = (0 , 1)) of cos(πx) on the square [0, 1]2. The high order schemes
(including the nonlinear ones) yield the expected fourth order of accuracy.

Lastly, figure 3 shows the results obtained on the Burger’s equation (F =
(u2 , 2u)/2) on the square [0, 1]2 with boundary conditions u = 1.5 − 2x for
y = 0. On the left we report the contours of the solution obtained with the
PSI (P3) schemes, while on the right a cut at y = 0.75 of the PSI (P2) and
PSI (P3) solutions. Some oscillations are present in very few mesh points after
the shock, however, their amplitude is small (below 15% local value of u).
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3 Very high order RD and diffusion terms

We now consider the issue of including the diffusive terms into the discretiza-
tion. As shown in [Nis05, RVAD05], the main problem is to properly take into
account the relative magnitude of transport and diffusion terms, measured by
the Peclet number Pe = h‖λ‖/ν, with λ a local reference wave speed (flux
Jacobian). We briefly review the approach of [RVAD05].

The idea is to use RD only in advection dominated regions, to take ad-
vantage of its shock capturing. In diffusion dominated regions, on the other
hand, Galerkin and stabilized Galerkin schemes perform very well. The prob-
lem is to build Petrov-Galerkin (PG) discretizations consistent with a given
RD scheme, and to combine the two discretizations to obtain uniformly (w.r.t.
h and Pe) accurate approximations.

The solution proposed in [RVAD05] is the following. Given a RD scheme
with distribution coefficients βTs

j , such that ΦTs

j = βTs

j ΦTs

j , build continuous
piecewise polynomial test functions respecting the consistency conditions

1

|Ts|

∫

Ts

ωj dx dy = βTs

j ∀ j ∈ T and ∀Ts ⊂ T (13)

There are several ways of choosing these functions, however, in a PG context,
the most natural way to do it is to define them as perturbations of some basis
functions. Here we consider the case in which the ωjs are defined as

ωj |Ts
= ϕj + (3βTs

j − 1)STs (14)

with ϕj piecewise linear basis functions on the conformal P 1 sub triangulation,
and STs are locally defined bubble functions. These perturbations are such that
ωj respects (13) (see [RVAD05] for details). Consider now the compact scheme

ΦTs

i =

ΦC

i

︷ ︸︸ ︷∫

Ts

ϕiλ · ∇uh dx dy+(βTs

i ΦTs − ΦC
i )+

∫

Ts

ν∇uh · ∇ϕi dx dy + (3βTs

j − 1)

∫

Ts

ν∇uh · ∇STs dx dy (15)

In the last definition, the first line represents the RD scheme3, while the
second line contains the PG discretization of the diffusive terms. As pointed
out in [RVAD05], (15) does not introduce any coupling between the discrete
advection operator and diffusion operators. Defining the following discrete
Peclet number

Peh =
|ΦTs |

∑

j∈Ts

|
∫

Ts

ν∇uh · ∇ϕi dx dy|

3 the central finite element contribution ΦC

i is added and subtracted for reason
which will be soon clear
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one can instead use the hybrid discretization :

ΦTs

i = ΦC
i +

∫

Ts

ν∇uh · ∇ϕi dx dy+

ξ(Peh)(βTs

i ΦTs − ΦC
i ) + ξ(Peh)(3βTs

j − 1)

∫

Ts

ν∇uh · ∇STs dx dy (16)

with ξ(·) continuous, and such that limx→0 ξ(x) = 0 and limx→∞ ξ(x) = 1.
Scheme (16) reduces to a Galerkin type high order approximation in diffusion
dominated regions, while the RD discretization is recovered in advection dom-
inated solutions. The relative magnitude of these phenomena are measured by
a residual based monitor, given by the discrete Peclet number Peh.

3.1 Results

The effect of the introduction of the Peh scaling is shown on a practical
problem. We take λ = (0, 1), and the following boundary conditions :

u(x, 0) = − cos(2xπ) , u(x, 1) = − cos(2xπ) exp(
1 −

√

1 + 16π2ν2

2ν
)

u(0, y) = − exp(y
1 −

√

1 + 16π2ν2

2ν
) , u(1, y) = − exp(y

1 −
√

1 + 16π2ν2

2ν
)

We solve the problem on P 2 and P 3 elements. To enhance the effects of the
Peh scaling, we take ν = 10−2 in the P 2 case, and ν = 10−3 in the P 3 one.

Figure 4 shows the convergence rates measured for a smooth problem (see
[RVAD05] for details on the set up). We use the LDA scheme with formula-
tions (15) and (16) (ξ = min(1, P eh)). Without a proper coupling between
the advective and diffusive operators there is an evident loss of accuracy.
Conversely, scheme (16) clearly yields optimal convergence rates.
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Fig. 2. Rotation of sin(16πx) and grid convergence (constant advection of cos(πx))
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