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Resune

Dans cette thse, hous nous i@tessons aux trois types de surfaces platsiggulariés coniques sui-
vants :

- surfaces de translatianbord godesique,
- surfaces avec fét effacante, et
- surfaces plates homomorphes la splereS?.

Nousétudions les espaces de modules de ces surfaces et relions leurstpsaix propBtes de I'es-
pace de modules des surfaces de translation.

Les tesultats principaux de cettegtse sont les suivants : nous montrons tout d’abord que les espaces
de modules en question sont tous des orbifolds. Plasiggment, ces espaces sont des quotients des
varietes plates affines complexes par des groupes agissant proprementidisment. Dans un deuwxine
temps, nous construisons de n&mriuniforme une forme volume sur chacun de ces espaces. Notons que
les surfaces de translation (feeas) sont un cas particulier des surfaces de transkationd ggocesiques.

Dans ce cas, notre forme volume éghale,a une constante multiplicativegs,a la forme volume habi-
tuelle cefinie par I'application degriodes.

Dans [Th], Thurstonétudie I'espace de modules des surfaces plateggdjes, il montre que cet espace
est muni d’'une structure @trique hyperbolique complexe. Nous montrerons que la forme volume induite
par la métrique hyperbolique complexeiteide,a une constante multiplicative g8, avec notre forme
volume.

Pour les surfaces de translatiaord gocesique dont le bord est non-vide, ainsi que les surfaces avec
forét effacante, nousafinissons des fonctionsé&hergie sur leur espace de modules qui tiennent compte
de l'aire de la surface, et de la longueur du bord, ou des arbres Houatrons que les volumes de ces
espaces renormadis par cett&nergie sont finis. Nous retrouvons, comme cas particuliers, le fait que
'espace de modules des surfaces de translation, et 'espace de mielsilgtsuctures atriques plates

sur la spkere sont de volume fini.



Abstract

In this thesis, we are interested in three types of flat surfaces :
- translation surfaces with geodesic boundary,

- flat surfaces with erasing forest, and

- spherical flat surfaces.

We study the moduli spaces of those surfaces, and relate their propertiesse of moduli spaces of
(closed) translation surfaces.

The main results of this thesis are the followings : first, we prove that the mgghdies under consi-
deration are orbifolds. More precisely, they are quotients of flat congffare manifolds by some groups
acting properly discontinuously. Next, we define a volume form on eat¢hose moduli spaces by si-
milar method. Note that (closed) translation surfaces are a particular tasmslation surfaces with
geodesic boundary. In this case, up to a multiplication constant, our volumesfguals the usual one,
which is defined by the period mapping.

In [Th], Thurston studies the moduli space of flat surfaces isometric to polghleeishows that this mo-
duli space can be equipped with a complex hyperbolic metric structure. &Ve prat the volume form
induced by the complex hyperbolic metric and our volume form coincide, upnial@plication constant.

For translation surfaces with geodesic boundary, and flat surfaitesrasing forest, we define some
energy functions, which involve the area of the surface, and the lefgthtmundary, or the total length
of the trees in the forest, on their moduli spaces respectively. We pratvehti volumes of our mo-
duli spaces normalized by these energy functions are finite. We dexdumetHis result the fact that the
volumes of the moduli space of translation surfaces, and the volume of thalimpdce of flat metric
structures on the sphere are finite.
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Chapitre 1

Introduction

1.1 Surface platea singularités coniques

SoitX une surface compacte, fegm, orienke, c’esta-dire une vaété de dimensiof, compacte, sans
bord. On dit quex est unesurface platea singulari€s coniquesorsqu’elle est munie d’'une structure
métrique Euclidienne en dehors d’un sous-ensembleSiimjtelle que, pour tout: appartenana Sing
un voisinage de: est mode? sur un éne. Les premiers exemples de telles surfaces sont desdoety
avec la nétrique induite par la &trique Euclidienne dB3. Pour ces surfaces, les seuls points singuliers
sont les sommets, les poirasl’intérieur d'une face sorévidemment éguliers, ainsi que les poiné
l'int érieur d'une a&te car ceux-ci ont un voisinage isétriquea I'union de deux demi-disques plog
dansR?. Dans le cas des padgres, tout sommet admet un voisinage i8biquea un ®ne dont I'angle
au sommet est strictement plus petit QeeLes surfaces plates e@igeral ne &rifient pas cette prof@é.

Les tores platd,e. quotients deR? par des &éseauxZu @ Zv, avecu, v € R? indépendants, sont d’autres
exemples de surfaces plates. On conségilement des surfaces plates dont le genre est plus grand que
1 (avec forément des singulaés), par exemple par rétement ramié des tores plats.

Pour les surfacegbord, nous introduisons la notion sierface plate singulari€és coniques &t bord
géocksique pour simplifier, que nous appelons surfaces plateésrd godesique pour simplifier. Une
surface platéx bord g¢ocesique est une surface dont l&nteur est munie d’une structure surface plate
a singulariés coniques (comme ci-dessus), et dont le bord est une union finigmerses @ocesiques.
Les exemples les plus simples de telles surfaces sont des polygones mamgtieue induite par celle
deR?. Comme dans le cas des surfaces &) on peut avoir des surfaces platdmord goesique de
tout genre.

Il existe un lien important entredtude des surfaces plates et ladtie de surface de Riemann : si
¥ est une surface plate, alors la structure surface plate induit une sérectoforme sud \ {Sing}
qui s'étend uniquement en une structure conform&gdet on a ainsi une surface de Riemann avec des

11



1. INTRODUCTION

points marg@és qui sont les points singuliers &e Inversementétant donée une surface de Riemahn
avec des points mar@s, un tlkoeme de Troyanov assure qu'il existe dans la classe conforreuthe
structure surface platesingulariés coniques dont les points singuliers sont les points reargvec les
angles coniques fés, de plus, une telle structure est uniguemotietie pes (voir [Trl]).

Les espaces de modules des surfaces plates ayant des siagualamijues fizes sont I'objet de nom-
breuses recherches, un bref apercu @saltats concernant ce sujet esiggmé dans les paragraphes qui
suivent.

1.2 Meétrique polyedrale sur la sprere

Dans son articleTh], Thurston s’inéresse aux espaces de modules des surfaces platésrigoes
aux polyedres. Soit: un point singulier sur une surface plate, dont le voisinage estésamea un
cone d'angled. On appelle le nombrer — ¢ la courbureen z. Pour toute surface plate is@tniquea
un polyedre, tous les points singuliers sont de courbure positive. Paetaethe de Gauss-Bonnet, la
somme de courbures de tous les points singuliers d’'une surface platelpotoitetreégalea 4.

Soientky, . .., ky, (n = 3), n nombres gels appartenaat'intervalle (0, 2), et \erifiant :

K1+ 4 Ky = 4.

On noteC(ky,. .., k,) 'espace de modules des surfaces plates@wnorphesa S?, ayantn points
singuliers de courbureisy, ..., k,) & homotlétie pes. Cet espace n’est pas complet énégal : si
ki + Kkj < 2m, alors la distance entre les points singuliers de courburess; peutétre eduitea z2ro
de fagcon que l'aire de la surface limite reste finie. On peut donc daendl' (x4, . . ., k) par les espaces
C(kr,,- .., k1), 0u(Iy,...,I}) est une partition de 'ensembfe, ..., n}, et
fi[j = Z ki < 2m.
iel;

12



1. INTRODUCTION

Pour ces espaces de modules, Thurston obtiegsldtat suivant :

Théoreme (Thurston) Soient(ky, ..., &), (n = 3), n nombres éels dans l'intervallg0, 27) dont
la somme estr. Alors, 'espace de module&S(x4,. .., k,) est une va@éte hyperbolique complexe de
dimensiom — 3, dont la comption est une vaéitt hyperbolique complex@cdnes de volume fini. La
competion deC(k1, ..., ky,) est un orbifold si et seulement si pour tout coute ;) tel quei # j et
s=K;+K; <2mona:

i) Soit(27 — s) divise2r,

ii) Soitr; = K; etm — k; divise2r.

Pour construire les cartes locales, Thurston utilise des triangulationegraests gocesiques des
surfaces dan€'(k1, . . ., ky), €N associant aux — 2 arétes particukresn — 2 nombres complexes obte-
nus par une application developpante. Par cette construction, le voisitageoint dans” (K1, . . ., ky,)
est identife au quotient d’un ouvert dai®—2 par I'action deC*.

Dans ces coordo®es, I'aire d'une surface dad 1, ..., k,) est donie par une forme Hermitienne
H de signaturé1,n — 3). Plus pécisement, sb est la surface danS(x1, ..., k,) repesenge par un
vecteurZ € C"2, alors l'aire deS est donge partf- H - Z. La métrique hyperbolique complexe de
C(k1,...,ky) estlanétrique qui est induite localement par la forme Hermitiekheur le quotient.

1.3 Surface de translation

SoientY une surface plata singulariés coniques, et une courbe fer@e contenue dariat(X) \
{singularites}. Soitp un point dey, on noteHol,(~) I'holonomie dey consicerée comme un lacet avec
point de base. En geréral, Hol,(vy) est unélement deSO(2) x R?, le groupe d’isoratries dek? (R?
muni de la nétrique Euclidienne) g@servant I'orietation.

Si ¥ est une surface telle que pour toute courbe &Fmdansint(X) \ {singularits}, 'holonomie de
~ est une translation (dans ce cas le point de base n'a pas d'importatars)pn dit quex est une
surface de translationUne caradristique des surfaces de translation est qu'un rayatasique ne
s'intersecte jamais lui-Bme transversalement, autrement-dit, soit le rayon est @éoégique ferrge,
soit il rencontre un point singulier, soit il se prolonge infiniment. Par equnentétant donée une direc-
tion § € [0,2m), on peut @finir un feuilletage sur une surface de translation @ndgsiques dans cette
direction.

Si z est un point singulier d’'une surface de translationl’angle du ®ne enx doit &tre un multiple
entier de2w. Notons que cette pro@e est cessaire mais pas suffisante pour cérar les surfaces
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1. INTRODUCTION

de translation.

Il est clair que les tores plats sont des surfaces de translations mais stgas les seuls. Pour
construire un exemple de surface de translation qui n’est pas un torsiderons un octogone dont
les dtés opposés sont paradlles et de r@me longueur. En recollant le$tes opposs de cet octagone,
on obtient une surface compacte, sans bord, de gerCemme les identifications sont des isemes
delE2, cette nouvelle surfaceghite de I'octagone augpart une structure @trique plated singulariés
cdnigues. Remarquons que les huit sommets de I'octagone s'identifient sgulipoint de la surface,
qui est l'unique point singulier dont I'angle conique ést Puisque les @és oppoés de I'octagone
sont parakles, leur identification eséalise par une translation &, par conéquent, I'holonomie de
toute courbe ferie ne passant pas par le point singulier de la surface est une transatjpeut donc
conclure que la surface obtenue est bien une surface de translation.

En paralkle avec des surfaces de translation, on a aussi la notion de surfademd#anslation. Une
surface de demi-translatioest une surface plate telle que I'holonomie de toute courbe&ermst un
élement du groug+Id} x R2. Comme le cas des surfaces de translation, un segraedtgique sur une
surface de demi-translation n s’intersecte jamais laima transversalement. Il s’ensuit §téant donée
une directiond € [0; ), on peut @finir un feuilletage d’'une telle surface ebagesiques paradlesa
cette direction. Une condition&gessaire mais pas suffisante pour avoir une surface de demi-translation
est que I'angle du@ne en tout point singulier doéitre un multiple entier de. Un exemple de surface
de demi-translation est la spteS? munie d’une nétrique plate aved points singuliers dont les angles
conigues sont tousgauxa .

Dans la suite de ce paragraphe, nous allons rappeler quelquesf@®priportantes de I'espace de

modules des surfaces de translation.

1.3.1 Espace de modules

Notons d’abord que I'on a l'identification suivante :

14



1. INTRODUCTION

Surface de translation d’aire finie avec 1-forme holomorphe sur une
. . N — .
un feuilletage en droites paralés surface de Riemann

Fixons les entierg > 2, etky, ..., ky, k; > 1, i =1,...,n,tels que

fey+ o+ k=29 — 2 (1.1)

On noteH(ky, ..., k,) 'ensemble des couplgs\/, w) a isomorphisme @&s, a1 M/ est une surface de
Riemann compacte, sans bord de genretw est unel-forme holomorphe &finie surM dont les &ros
sont d’ordreky, . .., k,. Deux coupleg M, w) et (M’, ") sont isomorphes s'il existe un isomorphisme
de surfaces de Riemamn: M/ — M’ tel queh*w’ = w.

Par le tleoeme de Riemann-Roch, pour qu’une telldorme existe, les entierg, k1, . . ., k, doivent
vérifier (1.1). On appelleH(ky, ..., k,) unestratede I'espace de modules dégormes holomorphes.
En utilisant l'identification ci-dessus, on peut coreserH (k1, . . . , k,) comme I'espace de modules des
surfaces de translations ayansingularies d’anglegk; +1)2x, ..., (k, + 1)27, avec un feuilletage en
droites parakles sgcifié.

Il est bien connu que{(k4, ..., k,) est un orbifold complexe afgprique, et que
dime H(k1, ..., kn) =29 +n— 1.

1.3.2 Forme volume

Soit(M,w) un pointdangt(k, ..., k), on notepy, . .., p, lesn zéros dev. Soientyi, . .., y2g4+n—1
une famille de courbes st qui repesente une base dals (M, {p1,...,pn}; Z) telle que{yi, ..., y24}
forment une base symplectique standardide)M, Z), et~yy4,; €St un arc joignant; ap;41.

Consicerons I'application suivante digplication de griodes:

o - U — . C29tn—1 o R2(2g+n—1)
(M,w) — (  Wre s f'yzg+n_1 w).

ou U est un voisinage deM, w) dansH (k1, ..., ky).

Cette application est une carte locale7déki, ..., k,). Soit¢ € C>9+"~1 'image de(M,w) par @,
alors l'aire deM est dongée dans cette carte locale par la formule suivante :

1&, - —
Aire, (M) = 9 /M wAW = 9 Z(¢i¢g+i - ¢i¢g+i)-
i=1

S0itAy(2g4n—1) lamesure de Lebesgue @&9t"~!. Considrons la forme volumg = D* Ao (2g4n—1)
définie au voisinage déM,w). Comme les bases d&; (M, {p1,...,pn};Z) ~ Z*971 sont liees
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1. INTRODUCTION

par des matrices dartsL(2g + n — 1,7Z), la forme volumeu, ne cepend pas du choix de la famille
{7,...,72g4n-1}, et estdonc biendinie surk (ki, ..., ky).

Consicerons maitenant le sous-ensembte(ky, ..., k,) de H(k1,...,k,) qui contient tous les
couples(M,w) tels que
/ wAw=1.
M

Dans une carte localeeéine par I'application degriodes®, 'ensembleH; (k1, ..., k,) NU est envog
sur un ouvert dans

g
Qi = {66 CO | L3 (0104, — Bidyei) = 1}

=1
La mesure de Lebesgue,,,_1) induit naturellement une forme volumg@gm_l) sur Q. Soit

ph = q)*A;(Qﬁn_l), on en @duit quey; est une forme volume bieréfinie surH, (k1. .., ky).

Le theorme suivant &t demonte par H.Masur, et W.A.Veech

Théoreme (H.Masur, W.A. Veech) Le volume de chaque straté, (k1, ..., ky) estfini:
Vol(Hi(k1, ... kn)) = / dud < oo.
Hl(k17"'7kn)

Dans un article&cent EQ], A. Eskin et A. Okounkov donnent uneéthode pour calculer le volume
des strate®{; (k1,...,kn).

1.3.3 Action deSL,(R)

SoientX une surface de translation. Etant dénmélementA du groupeSLq(R), on peut construire
une autre surface de translation,@mparA -3, de mangre suivante : soity;, ¢ € Z} un atlas éfinissant
la structure surface de translationXeon note{;, ¢ € Z} un autre atlas dont les cart@ssont cefinies
par :

$i = Ao

Comme les changements de cartes gp;l sont des translations @& (si leur domaine deé&finition est
non-vide), les changements de carfes ¢; = Ao (pj o p; 1) o A~ sont aussi des translations ®é.
Les carteq;, ¢ € 7} définissent donc une structure surface de translatiol san note cette nouvelle
surfaceA - 3. On peut erifier sans difficu queA - X a le meme nombre de points singuliers avec les
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1. INTRODUCTION

mémes angles qus.

On obtient ainsi une action d&L,(R) sur 'espace de modules des surfaces de translation. Cette
action deSLs(R) peutétre Ealie plus con@tement : sb est une surface de translation obtenue par
le recollement des polygonés, .. ., P; dansR?, alorsA - ¥ est la surface obtenue par l&me recol-
lement appliqé aux polygonesi(P,), ..., A(P;).

Pour mieux comprendre cette action 8&2(R), soient(M,w) un couple dangt(ki,...,ky), et
(Y15 - - - s Y29+n—1) UNe base d&l (M, {p1,...,pn};Z), 0U {p1,...,pn} €St 'ensemble destros dev.
On noteX la surface de translatioréfinie par(M, w), et suppose que, i = 1,...,2g+n — 1, estune

union des segmentegdesiquesa extémites dany(p, ..., p,}, un tel segmenté@pdesique est appel
unlien sellede ..

Par ckfinition, on a un hor@omorphisme» de Y dansA - ¥ qui envoie I'ensemble des points singuliers
deX sur I'ensemble des points singuliers de X.

En identifiantC a R?, pour toutz € C, on noteA(z) I'image du vecteur € R? par A. Soit s un lien
selle deX, alorsy(s) est aussi un lien selle dé - . Supposons qud - X est cefinie par un couple
(M’ ") dansH(kq,...,k,),on aalors :

/<p<s> ¥ A(/sw)'

Par congquent, si®((M,w)) = (¢1,...,P2g+n—1) dans la carte locale asséeia {~,...,v2g4n—1}
(par I'application de priodes), alors((M’',w’)) = (A(¢1), ..., A(P2g+n—1)) dans la carte locale as-
sockea {p(71),.-.,¥(v29+n—2)}. On en @duit que dans ces cartes locales, I'actionddest donie

par la matrice :

A 0 0
s 0 A 0
o o0 ... A

Commedet(A) = 1, A préserve donc la mesure de Lebesgu€de ™~ = R2(29+7—1) | s’ensuit que
la forme volumeu est invariante par I'action dd.

On peut remarquer sans difficgltjue, pour toutl € SLy(R), on aAire(X) = Aire(A - X), ce qui
signifie queA préserve 'ensembl®(; (k1, . . ., k,). CommeA préserve la forme volumg,, il en résulte
que A préserve aussi la forme volume deH; (ki, . .., k).

De la néme fagon que le grougels (R), on peuttgalement conséter I'action du sous-grougeun
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t
. 0 . o
parangtre{ % ~, |, t € R} surH(ky, ..., k,). Laction de ce sous-groupefinit naturellement
&

un flot sur 'espace de modulés(k, ..., k,), qui est appd le flot geocesique de Teichitler.

t

Concernant les actions d&.(R) et de{ ( Z 4
&

> , t € R}, on ale tieoeme suivant :

t
Théoreme (H.Masur, W.A.Veech) Les actions de&5Ly(R) et de{< % 9t > , t € R} sont ergo-
e
diques par rapport la forme volume:} sur chaque composante connexettigks, . . . , ky).

Notons, l'union de toutes les stratég(k1, ..., k,) telles quek; + --- + k, = 2g — 2. Ona une
projection naturelle dé{, sur M, I'espace de modules des surfaces de Riemann compactegeirm
de genreg. L'orbite d'un couple(M,w) € H(ki,...,k,) C Hy par SLy(R) induit le diagramme
commutative suivant

SLy(R) — H,
! !
H2 ~ SLy(R)/SO(2) -1+ M,
ol f est un immersion isogtrique pour la rétrique de Teichrialler de M. L'image deH? par cette
application est la projection d’utisque de Teichiiller dans I'espace de Teichitter 7.

1.4 Motivation

En geonetrie symplectique, il est d'usageéatdudier les éformations d’'une vagitt symplectique par
une famille continue de parartres, en particulier lorsqu’elle est obtenue gatuction symplectique.
Ici, nous nous proposonséatudier des éformations de I'espace de modules des surfaces de translation
dans le cadre des surfaces plates. Nous allons denesides surfaces plates dont les angles aux points
singuliers sont figs, sur lesquelles il existe une union disjointe d’arbres dont le @mpitaire est une
surface de translation. Lorsque ces arbregsedissent en points ise$, on obtient une surface de trans-
lation usuelle. Nous appelons des arbres ayant cette ptopes arbres effacants, et leur union unéfor
effacante.

On peut remarquer aussitque les surfaces plates petirales erifient I'hypottese pecedente car le
compEmentaire de n'importe quel arbre sur la éghest topologiquement un disque. Ceci nous permet
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de retrouver dessultats dja connus, notamment par Thurston, pour les surfaces platesraialy.

La premere question que nous allogtudier est la structure, et la dimension de ces espaces. Nous
voudrons ensuite savoir s'il existe des formes volumes sur ces espaedlir le lien entre ces formes
volumes et la forme volume de I'espace de modules des surfaces de tran8latiglus, comme dans les
cas des surfaces plates padyales et surfaces de translation, nous souhaitons montrer quedessdp
modules en question sont de volume finieeéntuellement, calculer leur volume.

Les sultats obtenus dans cetteé$b nous donnent desponses ces questions. Plusgmisement,
nous construisons une structure plate affine complexe pour ces ssfmogodules. Nouséfinissons
en suite une forme de volume sur ces espaces qui, dans les cas dessdefa@nslation, et de surfaces
plates polgdrales, eskégale aux formes volumes habituelkesine constante multiplicative gs. Nous
montrons que I'inkgrale des fonctions éhergie, qui sontéfiniesa partir de I'aire de la surface, et de la
longueur des branches, par rappodette forme volume est finie. Notons que &sultat nous permet de
donner une nouvelle preuve du fait que le volume de chaque strate padéede modules des surfaces
de translation est fini.

Derniere remarque, la athode que nous allonsdelopper pouktudier les surfaces avec arbres
effacants s’adapte naturellement dans le cas des surfaces ddtiwareslac bord, lequel inclut les poly-
gones de&R?, et sera le premier cadre naturel de nos travaux.

1.5 Présentation des esultats

1.5.1 Surface de translatiora bord geodesique

Les premiers &sultats de cette éise concernent I'espace de modules des surfaces de translation
bord geockesique. Plus @tisement, on va s'ibtesser aux surfaces platesingulariés coniques dont le
bord est une union finie de segmenéogesiques satisfaisant la condition suivante : I'holonomie de toute
courbe fernee contenue dans l'iatieur de la surface, et ne passant pas par des points singulieneest u
translation deR?.

Fixons les don@es suivantes :
e Lesentierg;,n,m, etsy,..., sy, 55 > 1,
e Les nombres@elsay, ..., a,, aveca; € 27N, etfy, ..., B, avecs; € 277, tels que :
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(1 +-+an)+ B+ + ) = 2129 + m +n — 2) (1.2)

On note Mr(a; 3), ol a = (a1,...,an), €t = ((s1,51),---, (5m, Bm)), 'ensemble des couples
(%,¢), ou X est une surface de translatiarord gocesique erifiant les conditions suivantes :

- Y an points singuliera l'intérieur nungérogs del an tels que I'angle du@ne aui-eme point est

A,

- 0¥ am composantes connexes nemoées del am telles que la-eme composante est I'union de
s; segments gocesiques, et la somme des angles auxéeriies de ces segments vajt+ s;m,

et£ est un champ de vecteur pagddl normalig (la longueur de tout vecteur de ce champlgsurX..

Remarque : Par le ttieoeme de Gauss-Bonnet, pour giér (a; 3) soit non-vides, les angles, . . ., a,,
ets, ..., By doivent \erifier (1.2).

Avec ces don@es, nous avons :
Théoréme 1.5.1 M(a; 3) est le quotient d’une vagte plate affine complexe de dimension :

2g+n—1, sim = 0;
deisit2g+m+n—2, sim>0.

par I'action d’'un groupe agissant proprement discontinument.

Ce theoeme Esulte du TBoeme2.2.7et de la Propositio2.2.8 Les cartes locales détr(a; 3) sont

construitesa partir des triangulationsegcesiques des surfaces daksr (a; ).

Comme dans le cas des surfaces de translation sans bord, il existe unelagioupeS L2 (R) sur

M (&; 3), et nous avons (cf. @oreme2.2.9et Propositior2.6.2) :

Théoreme 1.5.21l existe une forme volumer, sur M (a; 3) invariante par I'action du group& La (R).

Au cas @m = 0, My (a; 3) s'identifiea I'espace de modul® (k4, ..., k), aveca; = (k; + 1)2m,
rappelons que nous avons la forme volumesur H(k1, ..., k,) qui est é&finie par I'application de
périodes. Nous avons (cf. Propositiar2.10 :

Proposition 1.5.3 Il existe sur chaque composante connexé&dg,, .. ., k,) une constante telle que
KT = Afo-
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1.5.2 Surface plate avec fat effacante

SoitX une surface plate compacte, sans bord faré effacantesur>: est une union disjointe d’arbres
A=A U---UA, telle que:

e Tout point singulier d& est un sommet d’un arbre dards
e Pour toute courbe ferge~ sury, siy N A = &, alors I'holonomie dey est une translation.

Si toutes les dtes d’'un arbre suE sont des segmentsgesiques, alors on dit que cet arbre est
géocesique. Une fdit est ditegéocesiquesi tous ses arbres sorégresiques.

Fixonsm arbres topologiquesly, . .., .A,,. Nous autorisons le cas limit@i@ertains arbres peuvent
étre des points isék. Notonsk;,j = 1,...,m, le nombre de sommets dé;, et posonsk, = 0.
Choisissons une nuenotation des sommets dé, .. . , A, telle que les sommets dé;,j =1,...,m,

sont nunéroés par{ko + -+ kj_1 +1,..., ko +--- + kj}. NotonsA la famille {Aq,..., Ay}, et
posons

n:ik‘j

J=1
Soientg un entier, etvy, . .., a,, n nombres eels positifs tels que

Qgdoethj 141 T+ Qpgpky; € 27N,

NotonsM®* (A, @), olla = (o, ..., ay), 'espace de modules des triplgis, A, ¢), ol
e X est une surface plate compacte, sans bord,
e A=A U---UA,, estune foet effacante gocesique suk telle queA; estisomorpha.A; (deux
arbres sont isomorphes s'il existe une application de #dtautre qui @&finit une bijetion entre
deux ensembles de sommets, et une bijection entre deux ensembéteg);aat

e ¢ estun champ de vecteur pa&d cefini sur: \ A dont tous les vecteurs sont de norine

Nous supposons en plus que I'isomorphisme eAtret.4; envoie lei-eme sommet del; sur un point
dont I'angle du éne assoé esto;.

Remarque Par cfinition, tout point singulier d& est un sommet d’un arbre de la&¥A, mais on peut
avoir des sommets qui ne sont pas des points singuliers(angle du ®ne en ces points e3fr).
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Il savere que la rathode utili€e pouretudier I'espace de modules des surfaces de transkationd
géodksique peut s’appliquer dans cette situation, et nous obtenons édefe3.1.1Q et Corollaire
3.1.9:

Théoreme 1.5.4Met(A, a) est le quotient d'une sous vate plate affine complexe de I'espace des
surfaces de translatiorgs bord ¢geocesique (avec des doaes appropées) de dimension

2g4+n—1, sia; €27N, Vi=1,...,n,
29 +n —2, sinon.

par I'action d’'un groupe agissant proprement discontinumenrésprvant une forme volume.

Notons que I'on n'a pas d’action d&lL,(R) sur Mt (A, @) dans le cas@réral.

1.5.3 Surface plate spérique

Parsurface plate spérique on entend une surface plate heomorphea la splereS?. Soit ¥ une
surface plate sgrique, il n’est pas difficile de montrer qu’il existe un arbé&ogesique sub dont les
sommets sont les points singuliers. Un tel arbre est automatiquementinéffacaon com@mentaire
dansX est un disque. Cette observation nousasa consi@rer les surfaces plates glyues comme
un cas parliculier des surfaces plates avec arbres effacants.

Fixonsn réels positifsyy, .. ., ay,, tels que

a1+ -+ ay =21(n—2).

Notons M (S?,a)*, ola = (ay,...,ay), 'espace de modules des surfaces platesémmorphes la
sphere ayant: singulariés d’anglesyy, . . . , oy, et M(S?, @) 'ensembleM (S?, a)* x S!. Nous avons
(cf. Theoeme4.1.]) :

Théoréme 1.5.5M(S?, a) est le quotient d’'une vagié plate affine complexe de dimension- 2 par
I'action d’un groupe agissant properment discontinument, ésprvant une forme voluma:.

Comme dans les cas des surface de translation avec bord, ou celuifdessavec fdrt effacante,
la forme volumeu , dansl.5.5est cfinie a I'aide des triangulationségesiques des surfaces dans
M(S?, &). Notons quea la difference des surfaces avecdbeffacante engréral, ici nous n'avons pas
besoin de sgcifier un arbre effacant particulier sur la surface.

Notons M (S?, @)* 'ensemble des surfaces d’airelansM (S?, @)*. Dans le castous les angles
«; sont plus petits quér, le travail de Thurston donne une forme volumg,,, sur M; (S?, &)* qui
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provient de la rétrique hyperbolique complexe. La forme volume, de M(S?, @) induit aussi une
forme volume suM; (S2, @)*, notons celle-ciit, . Nous allons montrer quek, = Apigryp, OU A est une
constante épendant déa;, . . ., «, ) (cf. Propositior4.4.1). Une congquence directe de ce fait est

Proposition 1.5.6 Si«; < 27, pour touti € {1,...,n}, alors
i (M1 (S%,8)") < +oc.

1.5.4 Integration des fonctions dénergie

Revenons au cas des surfaces de translattmrd g¢ocesique. Rappelons quelr(a; 3) est I'espace
de modules des couplék, £), ou X est une surface de translatiarord gocesique, et est un champ

de vecteur parale constant sur.. Nous cfinissons une fonction éhergieF sur Mr(a; 3) par :

F((£,€)) = exp(—Aire(S) — (2(9%)),
ou /(0%) est la longueur du bord de.

Pour les surfaces avec #dreffacante, nous avons une fonctiogmrgie similaire :

Fet: Mt(Aa) — R
(27‘475) L eXp(_Aire(Z)_€2(A))

ou E(A) est la somme de longueur totale des arbres de & farRappelons que nous avonsfiti une
forme volumeur, sur M (a; 3), ainsi que suM® (A, @). Nous avons alors (cf. Boeme5.1.7) :

Théoreme 1.5.7 a) Sile bord des surfaces dandr(a; 3) est non-vide alors :

/ _ fd:uTr < 400,
Mr(&;0)

b) Siles arbres dans la familld ne sont pas tous des points i&s) alors

/ fetd,uTr < +4o00.
Met(Aa)

En utilisant ce @sultat, nous obtenons une nouvelle preuve du fait que le volume de tatee str
Hi(k1, ..., k,) par rappor la forme volume.} est fini (cf. Propositiors.5.1).

Pour les espaces de modules des surfaces platesapds, inspis du ésultat de Thurston, en utili-
sant le Tieoemel.5.7, nous obtenons urésultat plus gréral (cf. Treoeme5.1.2)

Théoreme 1.5.8L'intégrale de la fonctio:, e?) — exp(—Aire(X)) par rapporta la forme volume
pre SUr M(S2, &) est finie.
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/ exp(—Aire)dur, < oo.
M(S2?,a)

Par congquent, le volume dé1; (S?, a)* est fini.

Remark: Veech [V2] a trouve ce ésultat pour une forme volume qui e€ffishie differemment.

1.6 Sommaire

La suite de cette #se est organé® comme suit :

- Chapitre 2: dans ce chapitre, nous traiterons le cas des surfaces de tranalaticth ggocesique.
Nous montrerons d’abord que, pour toute surface de translatlmrd godesique, il existe tou-
jours une triangulation par segmenéogesiques dont I'ensemble des sommets contient 'ensemble
des points singuliers. Nous montrons ensuite qu’une telle triangulation pdemkfinir des co-

ordonrees locales d’une vat plate affine complex@r(a; 3). Par finition, My (a; 3) est le
quotient deZr(a; 3) par I'action d’un groupd’(S, V), nous montrerons que I'action d&S,))

est proprement discontinue.

Sur les cartes locales d& (a; 3), qui sont @finies par des triangulationgégesiques, une forme
volume peuttre cefinie de facon naturelle. Nous montrons que cette forme volumépend pas

du choix de la triangulation. Cel&sulte du fait que, pour une surface de translation ou de demi-
translation, avec ou sans boé&tant donges deux triangulationsgesiques dont les ensembles
de sommets coincident et contiennent 'ensemble des points singulierspalpesut transformer
'une a l'autre par une suite de changemegliismentaires (cf. Tlboeme?2.6.2. Nous obtenons

ainsi une forme volumer, bien cfinie surZr(a; ). Comme I'action dd’(S, V) préserve cette

forme volume, celle-ci induit une forme volume sMtr(a; 3).

Comme les surfaces de translation fésa sont un cas particulier des surfaces de transkatiaond
géocksique, la forme volumer, est bien éfinie sur chacune des str&@k,, . . ., k,,). Nous mon-
trerons, enfin, que sur chacune des composantes connekxégde. ., k,,), la forme volumeur,
estégalea Ay, U \ est une constante non-nullegtest la forme volumeéfinie par I'application
de periodes.

- Chapitre 3: ce chapitre concerne les surfaces plates avec arbres effacamtdeAreme sckma
que Chapitre2, nous montrons qua°t(A, &) est le quotient d’une vaate plate affine complexe
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T°*(A, @), qui est une sous vaie deZr(a’; 5'), avec des doresa’, 7' approprees, par I'action
d'un groupeF(Sg,A) agissant proprement discontinument. Ensuite, nous prouvons |'ex@stenc
d’une forme volumeur, sur7°%(A, @) qui est invariante par I'action dg(S,,.A), cette forme
volume induit donc une forme volume st (A, @).

- Chapitre 4 : dans ce chapitre nous nous concentrerons sur les surfaces pl#ggusgs. Remar-
qguons d’abord qu'il existe, sur toute surface plateésjue, un arbre @dsique connectant tous
les points singuliers, et un tel arbre est automatiquement effacanbrcaompémentaire est un
disque. Cette observation nous permet de c@msides surfaces plates grlgues comme un cas
particulier des surfaces plates ave@taeffagante. Ainsi, nousémontrons aisment queM (S?, a)
est un orbifold complexe de dimensian- 2.

La preuve de I'existence d’'une forme volume,, analogue celles éfinies dans les deux cha-
pitres peadents, est un peu pluélitate, car nous ne choisissons pas auparavant un arbre effacan
Néanmoins, nous pouvons prouver que deux triangulatieogegiques d'une surface plate gpigue
dont I'ensemble des sommets coincide avec I'ensemble des points singulieenp&re trans-
formées I'unea I'autre par des changeme@émentaires (cf. Tloeme4.3.2. Cela nous permet

de céfinir pr, surM(s?, @).

Nous terminerons ce chapitre par la comparaison entre la forme vgliminduite parury, et la
forme volumeusy,,, qui provient de la ratrique hyperbolique complexéfinie par Thurston, sur
M (S?%,&)*, dans le casiotous les angles coniques sonénéursa 2.

- Chapitre 5: dans ce chapitre, nous montrons que leggrdles des fonctiong et 7!, définies
sur Mr(a; ) et/\/let(fl, &) respectivement, par rapparta forme volumeu, sont finies. Nous
prouvons ensuite le fait que le volume des strateék, . . ., k) est fini comme une coBguence
de ce esultat. Finalement, nous prouvons que le volume\dgS?, &)* par rapporta la forme
volume /it qui est induite payry, est fini. Notons que pour le cas particuliér us les angles
coniques sont irdrieursa 27, ce €sultat @t deja connu par le travail de Thurston, et [€me
résultat a&te trouve par Veech dans/R] pour une autre forme volume.

Pour des raisons pratiques, le reste de celtealseragdigeé en anglais. L'auteur s'en excuse pour des
inconenientseventuellement caés au lecteur par ce choix, et le remercie pour sa cehgursion.
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Chapitre 2

Translation surfaces with boundary

2.1 Introduction

Translation surfaceare flat surfaces with conical singularities verifying the following condititre
holonomy of every closed curve, which does not contain any singularigy) Euclidean translation. On
a translation surface, one can defingsaallel vector fieldon the complement of the singularities. There
exists a system of local charts defining the flat metric structure such thefabnchart, this vector field
is mapped to a vertical vector field on a domairR3f Any pair (X, &), whereX. is a closed translation
surface, and is a parallel vector field o, can be identified to a pafiV/, w), whereM is a closed Rie-
mann surface, and a holomorpHidorm on M. The zeros olv are the singularities of metric structure

on X, zeros of ordek, k =0,1,2,..., correspond to singularities of angles(k + 1).
Let g be the genus af, andkq, . . ., k, be the orders of the zeros of By the Riemann-Roch Theorem,
one has

ki4 4k =292,

Fix k1,...,k, and letH(ki, ..., k,) denote the moduli space of pair3/,w), whereM is closed,
and the holomorphi¢-form w has exactlyn zeros with orders, ..., k,. The spacé{(ki,...,k,) is
also called astratumof the moduli space of translation surfaces of geqpuswhereg can be computed
by the above equation. Itis well known tHdt %, . . ., k, ) is a complex orbifold of dimensio2y+n—1.

Let (M,w) be a pair inH(ky,...,ky,). The zeros ofv are denoted by, ..., x,, and their orders
by is k; respectively. Le{1,. .., v24+n—1} be a set of curves o/ which is a generating family of the
groupHy (M, {z1,...,2,};Z). For any elementM’, ') close to(M,w) in H(ky,..., k), we denote
{1 --- ,7§g+n_1} the corresponding curves dd’. We can then define a mapfrom a neighborhood
of (M, w) into C29+"~! which sends a pairM’, ') to the vector(f% Wl fvéﬁn,l w'). The mapd
is called theperiod mapping
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Let Ag(24+n—1) denote the Lebesgue measurédf "1 ~ R2(29+7-1), Since two generating fami-
lies of Hy(M,{z1,...,z,};Z) are related by an element of the grafip(2g + n — 1,7Z), the volume
form ®*\y(54 1 ,—1) is well defined or(ky, . .., k, ). We denote this volume formay.

LetH1(ki, ..., ko) denote the subspace®f(k:, . . ., k,) consisting of pair§ M/, w) such that/, , |w|* =
1. An element ofH; (k1, ..., ky) corresponds to a translation surface of are@he volume formu in-
duces a volume form; onHy(k1, ..., k). Itis proved by Masur{l] and Veech /1] that the volume
of Hy(k1,...,ky) is finite. In [EQ], Eskin and Okounkov compute the volume of several samples of
Hi(ky,. .., k). They actually give a method to compute the volume of every stréi,, . .., k),
and give numerical results for some of them.

In this chapter, we are interested in translation surfaces with boundahyteat every boundary
component is a finite union of geodesic segments3Lbe such a translation surface. A painin X is
regularif either :

e z is a point in the interior o&, andz has a neighborhood isometric to a diske C : |z| < €}

with e small, or

e z is apointin the boundary df, andz has a neighborhood isometric to a half digke C : |z| <
¢, Imz > 0}.

Similarly to closed translation surfaces, on any translation surface withegeoboundary, we can
define parallel vector fields on the complement of the singularities and thedbou LetC' be a boun-
dary component oE, and¢ be a parallel vector field ol. Letc : S' — ¥ be a simple, closed'
curve freely homotopic t@. Assume that for everyin S, the tangent vectos(t) = ¢(t) # 0. Let
O : S' — R denote the function which mapso the angle betweent) and the vertical vectaf(c(t)).

We define thecone angleof C' to be the numbejSl dO. Observe that the cone angle of a boundary
component of any translation surface belongs to thg3et, k£ € Z}, and it does not depend on the
choices ofc and¢.

Let g, n, m be three positive integers. Fixnumbersyy, . .., o, With o;; € 27N, andm pairs of num-
bers(51,51), .., (Bm, sm), With 8; in 27Z, ands; in N. We consider the moduli space of translation
surfaces> of genusg havingn singularities in the interior, angh boundary components denoted by
Ci,...,C,, such that :

e then singularities in the interior of have cone angles, ..., ay.

e the cone angle associated to the compogrs 3;, j = 1,...,m.

e there exists a subs€}; of C; containing exactlys; points such thaC; \ @, is a union of open
geodesic segments.

28
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Let @ denote the sequendey; . .., a,}, and3 denote the sequendéfi, s1), . .., (Bm, sm)}. Let

M (a; 3) denote the moduli space of surfaces described above. The main réghissahapter is that
M (a; 3) is a complex affine orbifold, and moreover, we can specify a volume fognon M (&; 3).
Whenm = 0, Mr(a; 3) can be identified to the spa@é(ky, ..., k,), with a; = 27(k; + 1), i =
1,...,n. In this case, for each connected componerit(¢t, ..., k,), there exists a constantsuch

that ur = Auo.

2.2 Definitions and main results

We start with some basic definitions :

2.2.1 Flat surface and translation surface

Definition 2.2.1 (Flat Surface with Conical Singularities and Geodesic Bomdary) Let Y be a com-
pact, connected surface, possibly with boundary. {z8t po, ..., p,, } be a finite subset of the inter-
ior of X, and {q1,q2,...,qn,} be a finite subset of the boundary ¥f We say that: is a flat sur-

face with geodesic boundarzavingconical singularitiest p1, ..., p,,, andcornersat qi, . . ., ¢n,, if
S\ A{p1,---sPnssq,---,an, } IS equipped with an Euclidean metric structure verifying the following
conditions :

(i) For eachi € {1,...,n1}, there exist®); > 0 such thatp; has a neighborhood isometric to a small

disk around the origin irR?, which is equipped with the metrig, (r, ) = dr? + (2:)2r2d¢? in
the polar coordinates. The numbgris called thecone anglat p;.

(i) For each j € {1,...,ns}, there exists); > 0 such thatg; has a neighborhood isometric to
small upper half disk around the origin iR?, which is equipped with the metrig,. (r,0) =
dr? + (2)2r2d6? in the polar coordinates. The numbgy is called thecorner anglet g;.

(i) 02\ {q1 ..., qn,} is afinite set of open geodesic segments.

In the sequel, ‘a flat surface’ is a flat surface with conical singulantiesse boundary, if not empty,
is geodesic.

Let ¥; (p1,.--,Pny); (@1, - -+, qn,) be as in Definition2.2.1 Let 6y, ...,60,, be the cone angles at
p1, ..., Pn, respectively, andi, ..., n,, be the corner anglesat, . . . , g, respectively. Lek (X) denote

the Euler characteristic af. We have the following formula
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2. TRANSLATION SURFACES WITH BOUNDARY

ni no
n
z;ei + Z;nj = 21(n1 + 72 —x(2)). 2.1)
1= =

This is a consequence of the Gauss-Bonnet Formula {s&B.[

Definition 2.2.2 (Translation Surface) A translation surface is a flat surface verifying the following
condition : if c is a closed curve in the interior & which does not contain any singular point, then the
holonomy of: is a translation of the Euclidean plari@?.

Note that the cone angle at any singular point in the interior of a translatiteceumust be an inte-
gral multiple of27. The corner angle at a singular point on the boundary of a translatitateumay not
belong to the setZ, but the sum of all corner angles at the singular points on each bouoaiaponent
must be an integral multiple of.

We define as usual the length of a piece-wi8ecurve, and denotd the induced distance on a flat
surface. Note that for any pair of poin{s, y) of a flat surface, there always exists a curve piece-wise
geodesic joining: andy whose length igl(z, y).

Definition 2.2.3 (Normalized Parallel Vector Field) Let 3 be a translation surface. parallel vector
field on X is a vector field defined in the interior &f except at singular points, which is nowhere zero,
and in local charts of the Euclidean metric structure, all the lines determinyetthe vectors of this field
are parallel. A parallel vector field is said to bermalizedf the norm of all of its vectors is one.

Remark: : A parallel vector field exists if and only K is a translation surface.

From now on, by ‘translation surface’ (with or without boundary), wk rrean a ‘translation surface
with a distinguished parallel vector field on it".

Let 3 be a translation surface, afjicdbe a parallel vector field ol. Assume that the boundary &f
is not empty, and lef’ be a component a¥3. We assume in addition that is oriented coherently with
the orientation of:.

Definition 2.2.4 (Cone Angle associated to a Boundary Component)etc : S' — ¥ be aC', simple,
closed curve which is contained in the interior’fand freely homotopic t6', whereC is the curveC
with opposite orientation. Assume thatioes not contain any singular point Bf For everyt € S!, let
©(t) denote the angle between the veat@r) = ¢/(¢), and the vecto€(c(t)). Thecone angle associated
to the component’ is defined to be the number

do(t).
Sl
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Remark:
a. The cone angle associated to any componefitdfelongs to the s&rZ.

b. This cone angle does not depend on the choices of the camve the field:.

c. If C containss corners with corners angles, . . ., s, then the cone angle associated’tequals

D G=1Mj — ST
Now, fix three non-negative integegsn, m such thag +n +m — 2 > 0. Letay,. .., a, ben real
numbers ik7N, andfy, . .., 8, bem numbers i27Z such that
n m
Yo+ Bi=2m(2g+n+m-2). (2.2)
i=1 j=1
Let s1, ..., sm bem positive integers. In this chapter, we will fix a compact connected translatio
surfaceS of genusg, whose boundary has components denoted Iy, .. ., C,, verifying the follo-
wing hypothesis :
e There are: pointspy, ..., p, in the interior ofS such that the cone angletisa;, i =1,...,n.
e The cone angles associated totheis 3;, j =1,...,m.
e Forj =1,...,m, there exists a subs@; of C; consisting ofs; points such that’; \ (), is a union

of open geodesic segments.

Let P denote the sefpy,...,p,}, andV denoteP U (Q1 U --- U @yy). Let S denote the double of,
and letV’ denote the finite subset &farising from). The flat metric structure of induces a flat metric
structures orb whose all the singularities are contained in theladilote that we have Riemann surface
structure onS \ V which is induced by the metric structure.

Given a homeomorphisnfi of S, we denotef the homeomorphism o arising from f. We call f
the double off.

First, we have :

Definition 2.2.5 (Mapping Class Group) We denoteomeo™ (S, V) the group of orientation preser-
ving homeomorphisms &f which fix every point in the séi. Let Homeoar(S, V) denote the normal
subgroup offlomeo™ (S, V) consisting of all homeomorphisnfssuch that doublg’ of f is isotopic to
Id¢ by an isotopy fixing all the points ii. Themapping class groupf S preserving) is defined to be
the quotient grouomeo™ (S, V) /Homeog (S, V), which will be denoted by (S, V).
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Remark:
a. Letf be a homeomorphism ¢f which fixes all the points iv. If f can be connected to the iden-
tity of S by an isotopy fixing all the points ii?, then clearlyf is an element ifomeog (S, V).

b. ConsiderS as an embedded surface $h The boundary ofS becomes then a union of simple
curvescy, .. ., ¢ joining points inV. By LemmaA.0.1, given a homeomorphisryi of S, if fis
a homeomorphism isotopic to the identity $by an isotopy fixing all the points i, then there
exists an isotopy fronf to Idg which preserves every curve in the famflys, . . ., ¢, }. As a conse-
quence, we see thatomeog (S, V) is the set of all homeomorphisms Sfwhich are isotopic to
Idg by an isotopy fixing all the points iw.

Let @ and3 denote the setfas, ..., a,} and{(B81,51), ..., (Bm, sm)} respectively.

Now, if ¢ : S — X is a homeomorphism of flat surfaces, we denﬁntbe induced homeomorphism
from S onto 3.

We denote?v’T(d; ()* the set of pair$>:, ¢), whereX. is a translation surface of gengsvhose boundary
hasm components, and : S — X is a homeomorphism verifying the following conditions :

1. Fori=1,...,n, ¢(p;) is a point in the interior ok with cone angley;.
2. Forj =1,...,m, ¢(C;) is a component o> with associated cone angte.
3. Forj =1,...,m, ¢(C; \ Q) is a union of open geodesic segments in a componefLof

We define an equivalence relation @i (a; 3)* as follows : two pairs($y, ¢1) and (S, ¢o) are
equivalent if and only if there exists an isomethy: ¥; — X, such that the homeomorphism
¢51 oho¢: S — Sisanelement oflomeo] (S, V). The equivalence class of a pak, ¢) will be
denoted by|(%, ¢)].

Let 7r(a; 8)* denote the space of equivalence classes of this relation. Obviouslypthelyf S, V) acts
on7r(a; 3)*. The quotient spac&r(a; 5)*/T'(S, V) is denoted byMr(a; 3)*.

Definition 2.2.6 (Teichmilller space of translation surfaces) TheTeichniiller space of translation sur-

faces with parallel vector fielid the set of all pairg[(2, ¢)], &), where[(X, ¢)] is an element oIt (&; 5)*,
and¢ is a normalized parallel vector field oi. We denote this spa& (a; 3).
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Themoduli space of translation surfaces with parallel vector fiette quotient spacgr(a; 3) /T'(S, V),
it is denoted byM(&; 3).

Note that in the casg = n = 0, andm = 1, the spaceM(a; () is just the moduli space of Eucli-
dian metric structures with geodesic boundary on a closed disk.

Remark: The groupS!, identified to the rotations of the Euclidean plane, acts naturally on the space
Tr(a; B) : if Ry is the rotation of angle, and ([(, ¢)],€) is an element irZt(a; 3), then Ry -
([(Z,0)],€) = ([(2,9)], Rg - ), whereRy - £ is the parallel vector field defined as follows : at every
point wheret is defined,Ry - € is the vector obtained by rotatiggan angled. This action ofS! endows

Tr(a; 5) with a principalS'-bundle structure ovefr(a; 5)*.

2.2.2 Main results

Recall that a flat complex affine manifold i&° manifold which admits an atlas whose transition
maps are complex linear transformations. Wijtla, and3 as above, we can now state the main results
of this chapter

Theorem 2.2.7 ¢r(&; 3) is a Flat Complex Affine Manifold) The spac@r(a; 3) is a flat complex af-
fine manifold of dimension :

e 2g+n—1ifm=0.

o > sj+t29+m+n—2ifm>0.

Regarding the moduli spacetr(a; 3), we have

Proposition 2.2.8 The action of the mapping class grolipS, V) on7t(a; 3) is properly discontinuous.

and

Theorem 2.2.9 (Existence of volume form ooVt (a; 3)) There exists ofit(&; () a volume form which
is invariant by the action of (S, V).

By Theorem2.2.8 and Theoren2.2.9 we have a well defined volume form ovir(a; 3). Let puy
denote the volume form in Theore?i2.9 This volume form is defined by using the local charts of the
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complex affine structure dfr(a; ().

Whenm = 0, i.e. when the surfaces under consideration are closed, set

ki:%—l, i=1,....n.
We can then identify the moduli spadelr(a; 3) to H(ki, ..., k). Recall thatH (k, ..., k,) is the
moduli space of pairéM,w) where) is a closed Riemann surface of genysndw is a holomorphic
1-form on M which hasn zeros with orderg, . . ., k,. Let uo denote the volume form oK (k1, . . ., ky)
which is defined by using the period mapping. The following propositionsgilie relation between

andyy.

Proposition 2.2.10 On each connected componenttfk, .. ., k, ), there exists a constantsuch that
KT = Afto-

Remark that, similarly to the case of closed translation surfaces, we hawtiam ef SL(2,R) on

7Tt (a; B) which is defined in a natural way. This action commutes with the action of thedigu n),
and hence it descends onto an actio$ a2, R) on the moduli spacé1r(a; 3). We have

Proposition 2.2.11 The volume form, is invariant by the action of the action (2, R) on7r(&; (),
and hence ooVt (&; 3).

The chapter is organized as follows, in Sect®8 and Sectior2.4, we prove Theorerd.2.7. Propo-
sition2.2.8is proved in SectioR.5. Section?.6is devoted to the proof of the fact that any tadmissible
triangulationsof a translation surface can be transformed one into the other by elemerdges. The
construction of the volume formr, is given in Sectior2.7. The comparison Propositiéh2.10is proved
in Section2.8. Finally, in Section2.9, we show that the volume formr, is invariant by the action of
SL(2,R).

2.3 Admissible triangulation

2.3.1 Introduction

Let ([(2, ¢)], &) be an element iffp(a; 3). Following the method of Thurston ifffi], we construct
local charts off+(a; 3) about([(X, #)], ) by using geodesic triangulationsdf In view of this construc-

tion, we first define :
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Definition 2.3.1 (Admissible triangulation) An admissible triangulatioof [(X, ¢)] is a triangulation
T of X such that :

e The set of vertices df is the sef” = ¢(V).

e Every edge of is a geodesic segment.

By assumption, the surfaéehasn singular pointseq, . . ., 2, in its interior with cone angles, . . ., a;,
respectively. Lefy7,...,Y,, denote the components of the boundaryiofo that the cone angle asso-
ciated toY; is ;. There exists; distinct pointsy,;,...,ys;; on'Y; which divideY; into s; geodesic
segments. We consider the $ét= {x1,...,2n;y11,.-.,Ys,,m} aS the set of singular points &f even

though some of them may be regular.
The main results of this section are the following two propositions :

Proposition 2.3.2 (Existence of admissible triangulations)lhere exists a triangulatiofl' of ¥ with
the following properties :

(i) The set of vertices af is V.

(i) Every edge ofT is a geodesic segment.
Remark: Given an admissible triangulatidh of 33, one can fin®g + m + n — 1 edges ofI' such that
the complement of the union these edges and the bourdiiaiig a topological open disk. This set of

edges will be called g&amily of primitive edgesf T.

By Proposition2.3.2 we know that admissible triangulations exist on any translation surface in
Tr(a; 3)*. For the proof of Theorer@.2.7, we also need the following

Proposition 2.3.3 (Uniqueness of admissible triangulations up to isotgp LetT; and Ty be two ad-
missible triangulations of(%, ¢)]. Let S be the double oF which is equipped with the induced flat
metric. LetV be the finite subset f which is induced fronV = ¢(V).

As usual, for any homeomorphissof ¥, let  be the homeomorphism Bfthat lifts . Suppose that
there exists an homeomorphigm > — 3 such that :

- s isotopic to the identity of by an isotopy fixing the séf ;
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- p(T1) = Ty,

thenT| = Ts.

Remark: Geodesic triangulations of flat surfaces whose vertex set is the sagofarities have already
appeared in{MS]. The fact that (closed) translation surfaces always admit such tiatigns (Propo-
sition 2.3.2 is well known, since every translation surface can be constructetlimggome rectangles
(zippered rectangles). For flat surface in general, possibly withdsynthis fact is also already known
(see BS] for further information), we give a proof of this fact here below ordy the sake of complete-
ness.

2.3.2 Proof of Proposition2.3.2

Proposition2.3.2is a consequence of the following lemmas :

Lemma 2.3.41If (m,n) # (0,1), then there existn + n — 1 geodesic segments with endpoints/in
such that if we cut the surfaceé along those segments, then we will obtain a translation surface whose
boundary has only one component, and the new surface contains ndesitigs in the interior.

Proof: Consider the following algorithm :
e If m = 0andn > 1, then choose a path of minimal length joining two distinct points in
V ={x1,...,z,}. The pathe contains an arey which joins two distinct points of’, and contains
no others points of in its interior. Cut opert: along the arey, we obtain a new translation surface
with boundary. Let’ denote the new surface, afd denote the finite subset &f which arises
from the sef”. The boundary of the new surface has one componenty/andntains: — 2 points
in the interior ofy’.

e If 0¥ # @ andn > 0, then choose a pathof minimal length from a point iV, = {z1,...,z,} =
VNnint(X) toapointinVa = {y11, .-, Ysy15 - - i Yims - - - s Ys,um p = V N OX. The pathe contains
an arceg joining a point inl; to a point inV, which stays in the interior of except the endpoint
in V5. Sincec is of minimal length, it does not have self-intersection, and the same is trug. for
Cut open the surfacE alongcy, we get a new translation surface with boundary. Eétlenote
the new surface, and 1&t’ denote the finite subset &f which arises from the sét of 3. Note
that the boundary of’ has alsan components a&, butV’ contains at most — 1 points in the
interior of ',
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¢ If 03 contains more than one component, ang 0, then choose a pathof minimal length joi-
ning two points ofl” which are contained in two different component$af. Remark that does
not have self-intersection. The patliontains an arey joining two points ofl” which is contained
in the interior of:, except the endpoints. Cut open the surfaaong the arey, we obtain a new
translation surface with boundary. et denote the new surface, by construction, the boundary of
¥’ hasm — 1 components. Lel’” denote the finite subset &fwhich arises from the subsgtof ..

The algorithm above can be applied again to the pagirV’), and we can continue until we get a
translation surface whose boundary has only one component, with ndasipgints in the interior. This
proves lemma. O

By LemmaZ2.3.4 we can restrict the proof of the proposition to the casés.,n) = (0,1) and
(m,n) = (1,0). Next, we show the following

Lemma 2.3.5 Assume thatm,n) = (0,1) or (m,n) = (1,0), then there exis2g geodesic segments on
33 with endpoints i/ such that if we cuE along those segments, then we obtain a disk.

Proof: We will only prove this lemma for the cagen,n) = (1,0), the other case can be showed by
similar arguments. We proceed by induction :
- If ¢ =0, thenX is already a disk, we have nothing to prove.

- If g > 0, take a poiny in the setl’, and consider a non-separating closed cyrwhose base-point
is y which is not homotopic t@>.. Let, be the closed curve with minimal length in the homotopy
class (with fixed endpoints) of. The curvey, is a union of geodesic segments whose endpoints
are contained ir//. Since~y, is not homotopic t@?], it follows that~, contains an geodesic arc
a joining two points inV which is not contained i®X.. Note that the two endpoints af may
coincide. Sincex is a translation surface, the atccannot have self-intersection. Hence, we can
cutX: along the ar@ to obtain a surface of genys- 1 whose boundary contains two components.

Let X’ denote the new surface. By constructihjs also a translation surface with geodesic boun-
dary. LetC1, CY, denote the two components @E'. Let V’ denote the finite subset 68" which
arises from the sét’. Consider a path of minimal length from a point i’ N C] to another point

in V' N C4. This path contains an akg with one endpoint i’/ N C7, and the other endpoint

in V' N C4. The arcey has no self-intersections becausis of minimal length. Hence, we can
cut X’ alongcy to obtain a translation surface of genus- 1 whose boundary contains only one
component. LikeZ andY’, the new surface has no singular points in its interior. This allows us to
conclude by induction. O

Lemma2.3.4and Lemm&2.3.5imply :
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Lemma 2.3.6 There exisRg+m +n — 1 geodesic segments dhwith endpoints i/ such that if we cut
open along those segments, we will have a flat surface homeomorphic to awtisk, has no singular
points in the interior.

To complete the proof d2.3.2we need the following :

Lemma 2.3.7 Let S be a flat surface with geodesic boundary, homeomorphic to a closedlippose
that S has no singular points in the interior. L& be a finite subset @iS such thato.S \ V is a union

of open geodesic segments. Then there exists a triangulatiSnbgf geodesic segments whose set of
vertices isV.

Proof: Let aq,...,a, denote the points iV following an orientation. Let;a; 1 denote the geode-
sic segment contained S whose endpoints are¢; anda; .1, fori = 1,...,r, with the convention

ar+1 = ai. We know, by the Gauss-Bonnet Theorem, that the sum of all the angias.a., a, is
(r — 2)m. We prove the lemma by induction.

- For the case = 3, we have a triangle, and there is nothing to prove.

- If » > 3, it suffices to prove that there exists a geodesic segment which is cahtaitie interior
of S joining two singular points i®S.

Suppose that all the angles at the corngtls. ., a, are less tham. Consider the path of minimal
length joininga; andas. Sincer > 4, a; andas are not adjacent. Because the angle at every sin-
gular point is less than, s N 9S = {a1, a3}, which means that is a geodesic segment contained
inside S, and we are done.

Now, suppose that there exists a singular point whose angle is greatartbgual tor. Without
loss of generality, we can assume that this poimt ig-or every;: = 2, ..., r, consider a path; of

minimal length froma; to a;. The paths; is a union of geodesic segments. If one of its segment is
contained in the interior of then we are done. If nos; is either

i—1
1 — a1
G = U 4%%+1;
j=1
or
,
2 — a1
ci =\ )aja;q1.
j=i
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Since we have

leng(c}) + leng(c}) = ) _ leng(a;a;11)
j=1

which is independent aof, there exists: € {2,...,r} such thats; = ¢!, for everyi = 2,...,k,

ands; = c7, for everyi = k +1,...,7. Now, if ¢}, is a path of minimal length from; to ay,
then all the angles ats, ..., ar_1 are greater than or equal to Similarly, if ciﬂ is a path of
minimal length froma, to ax. 1, then the angles at; .o, . . ., a, are all greater than or equal o

As a consequence, among the anglesat. ., a,, there are at least — 2 angles greater than or
equal torr, but this is impossible according to the Gauss-Bonnet Theorem. Theréiere must
be a geodesic segment which is contained insigand the lemma is then proved. O

Propositior2.3.2follows immediately from Lemma&.3.7and Lemma2.3.6above. g

2.3.3 Proof of Proposition2.3.3

Proposition2.3.3follows from the following lemma :

Lemma 2.3.8 Let X be a flat surface without boundary. Lt = {z1,...,x,} be a finite subset of
such tha®: \ V' contains only regular points, and suppose tRéE \ V) < 0. Lety and+’ be two simple
geodesic arcs of. having the same endpointsin(the two endpoints may coincide). Assume thahd
~" are homotopic with fixed endpoints relativelfo then we have = +'.

Proof: We first observe that there exist no Euclidean structures on a clodesidis that its boundary is
the union of two geodesic segments. This is just a consequence of the-Bauset Theorem.

Sincex (X \ V) < 0, the universal covering df \ V is the open disiA = {z € C: |z| < 1}. The
flat metric structure o \ V' give rise to a flat metric structure @k (which is not complete). Now, let
be a lift of v in A whose endpoints are contained in the boundarsx oBYy lifting the homotopy fromy
to+/, we get a lifty’ of v/ which has the same endpointsjadNote that by assumptiof,andy’ are two
geodesic im.

The two curves andy’ may have intersections, but in any case, we can find (at least) an ogel dis
which is bounded by two arcs, one is a subsegment tiie other is a subsegmentif Consequently,
the open diskD is isometric to the interior of an Euclidian disk which is bounded by two geodegic s
ments. Since such a disk cannot exist, the lemma follows. O
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Back to the proof 02.3.3 Let T; and T, denote the triangulations &f which are induced byl';
andT; respectively. By assumption, we haVie = ¢(T;), whereg is a homeomorphism ot which is
isotopic to the identity by an isotopy fixing the common vertex sef pand T, which isV.

Since every edge of'; and T, is a simple geodesic segment, Lemtha.8implies immediately that
T, = Ty. Therefore we havé@; = T, and Propositior2.3.3follows. O

2.4 Flat complex affine structure onZt(a; [3)

In this section, we give the proof of Theore'2.7. Recall that we have a fixed a translation surface
S, whose set of singular points in the interior are denotegy. ., p,,, and boundary components of

S are denoted by, ..., C,,. The cone angle at; is «;, i = 1,...,n, and the cone angle associated
toCjis B, j =1,...,m. Foreachj € {1,...,m}, Q; is afinite subset of’; such that”; \ Q; is a
union of s; open geodesic segments. The point&inare denoted byqy;, ..., qs;;}. Let) denote the

set{p1,...,pn} UL, Qj.

Let 7R(S) denote the set of all equivalence classes of triangulations (not redggeodesic) o5
whose vertex set i¥, where two triangulations are equivalent if they are isotopic relative et 7 be
an element off R(.S). We denoté/; the subset offt(a; 3) consisting of pairg[(Z, ¢)], &) such that
there exists a homeomorphisphin the same equivalence classd@s.e. ¢! o ¢/ € Homeog (5, V),
which mapsZ onto an admissible triangulation &f

Proposition2.3.2implies that the family{/r : 7 € TR(S)} covers the spacgr(a; 5). We will
define coordinate charts é#y for eachZ in 7R(S).

2.4.1 Definition of the local charts¥

Given an equivalence class of triangulatidghsn 7R (S), let ([(X, ¢)], £) be a point iri{7. By defi-
nition, we can assume th@t= ¢(7") is an admissible triangulation &f. By Propositior2.3.3 we know
thatT is unique.

Let V; be the number of edges @f, and N> be the number of triangles @f. By computing the Euler
characteristic ok, we see that :

m m
N1:3(2g+n+m—2)+223j andN2:2(29+n+m—2)+Zsj.
j=1 j=1
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We construct a map fro#i to C1 as follows :

Choose an orientation for every edgeTof For each triangle\ in T, there exists an isometric em-
bedding of this triangle int®? such that the vector fielglis mapped to the constant vertical vector field
(0,1), defined on the image ak. By this embedding, each oriented side of the trianyles mapped
into a vector iNR? ~ C. As a consequence, we can associate to every orientedeaufge a complex
numberz(e). Note that, even though each edge the interior of¥ belongs to two distinct triangles, the
complex numbet(e) is well defined because the vector fi€lt parallel and normalized. The procedure
above defines a map frobar into CM. Let U+ denote this map.

We get immediately the following important observations :

Lemma2.4.1 i) Lete;, e;, ey be three edges df which bound a triangle. Then we have

+ z(e;) £ 2(ej) £ z(ex) =0, (2.3)
where the signs are determined by the orientation;of; ande;,.

ii) If eq,...,ex are thek edges ofl’ which bound an open disk 4, then we have

+z(e1) -+ z(ex) =0, (2.4)

where, again, the signs are determined by the orientations of the edges.

Proof: Assertion:) is straight forward. Assertiow) follows from ¢). Namely, letD denote the disk
bounded bye, ..., ex. The diskD is divided into triangles by the triangulatiéh. By i), three sides
of a triangle verify 2.3). Note that every edge dF inside D belongs to two distinct triangles. If for
each triangle, we choose the orientation of its boundary coherently withrigngtation of the surface,
and write the corresponding equation according to this orientation, themkimg the sum over all the
triangles insideD, we get @.4). O

Let S denote the linear equation system consistingy@equations of typ&.3 corresponding to the
triangles of7. From what we have seen, the veclor ([(X, ¢)], £) is a solution of the systei8iy.
Let V+ denote the subspace @f' consisting of solutions of the syste®s-. We have
Lemma 2.4.2 U7 (U7) is an open subset &f 7.
Proof: The fact thatl (i) is contained irV 7 is a direct consequence of Lemraa. 1
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Now, letZ be the image of[(%, ¢)],§) by U7, and letZ’ = (21, .. ., 2}y, ) be a vector in a neighborhood
of Z in V. Using the triangulatiofl’ of 2, we construct a flat surface fro@f as follows :

. Construct an Euclidean triangle frofy 2}, z;, if 2}, 27, #;, verify an equation of typeX.3).

. ldentify two sides of two distinct triangles if they correspond to the same onmpimber:..

Clearly by this construction we obtain a translation surfat@omeomorphic t&. The surface.’ has
n singular points of cone angles, ..., a, in the interior, and the boundary & hasm components
with associated cone anglgs, . . ., ;.

Moreover, we also get a triangulatidrf of X’ by geodesic segments. Each triangleélincorresponds
to a triangle inR? specified by three complex numbers which are coordinateg’ ohence we get a
normalized parallel vector field on X’ which is defined by the constant vertical vector fiéd1) on
the Euclidean plaiR?.

Define an orientation preserving homeomorphism

f:o—3

as follows :f maps each edge @f onto the corresponding edgeBf(i.e. the edge ofl' that corresponds
to the same coordinate), and the restrictfoan each triangle of is a linear transformation d&?2. Let
¢’ denote the map

¢ =fop:5—Y.

It follows that the pail([(X’, ¢')], ¢’) represents a point &f7 close to([(X, ¢)], £). By construction, it is
clearthatZ’ = U1 ([(¥', ¢')],£). Hence, we deduce thét; (1/7) is an open set of . O

2.4.2 Injectivity of U1

Lemma 2.4.3 The map¥ is injective.

Proof: Let ([(X1,¢1)],&1) and ([(32, ¢2)],&2) be two points ind7 such thatVr([(X1,¢1)],61) =
Ur([(X2,92)],&2). By definition, we can assume th&lf = ¢1(7) andTy = ¢2(7) are admissible
triangulations of:; andX, respectively. By PropositioR.3.3 we know thafl'; andT, are unique.

Now, the hypothesi@ ([(X1, ¢1)],&1) = Y7 ([(Z2, ¢2)], &2) implies that there exists an isometry
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h221—>22,

which maps each triangle @f; onto a triangle ofl'y, and alsa; onto&s. It follows that the homeomor-
phism

¢510h0¢1:5—>5’

fixes all the points inY, and preserves each triangles™f We deduce that the map;l oho¢yis
isotopic to the identity ofS by an isotopy fixing all the points i. Therefore, by definition, we have

([(Z1,01)], 1) = ([(B2, 92)], E2)- O

2.4.3 Computation of dimension ofV

2 -1 ifm=0;
Lemma 2.4.4 dime Vy = 977 h . =

2g+n+m— 2"‘23‘:1 sj, otherwise.
Proof: Recall thatV 7 is the subspace @” consisting of solutions of the syste®s-. Since the system
S containsN, equations, we have

dimVT>N1—N2:Zsj—|—29+m—|—n—2. (2.5)
j=1
Let ([(X, ¢)], &) be a point irt{7, andT be the admissible triangulation Bfwhich is the image of”
by ¢.

Letaj,aq,...,as,+...+s,, denote the edges df which are contained in the boundary Bf Choose a
family of primitive edges ifil' which will be denoted by, . . ., bog1m+n—1. Recall that for any oriented
edgee of T, z(e) is the complex number associatec:tim the construction oft 7.

By definition, we havent(X) \ U?ilbj is an open disk. Using Lemni&4.13), we deduce that i¢

is any edge ofl' which does not belong to the sfii, ..., as, 4. +s,, 01, - - s b2g+m4n—1}, thenz(e)
can be written as a linear combination fa;), ..., z(as,++s,.), 2(b1), . . ., 2(b2g+m+n—1), Whose
coefficients are determined by the triangulatibnNote that the coefficients of these linear functions
belong the sef—1,0,1}. We deduce

dmVr < sj+29+m+n-—1. (2.6)
j=1

Suppose that the edges, . . ., as, +...+s,, are oriented coherently with the orientation of the surface
Apply (2.4) to the diskD = int(X) \ UFZ{™ """ b;, we get
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z(a1) + -+ + z(as, 4 ts,,) = 0. 2.7)

The numbers(b;), j =1,...,29+m+n — 1, do not appear in the equatiod.{) because each of the
edges; belongs to two different triangles.

Here, we have two issues :

- Case 1 m = 0, that is the surfac& is closed. In this case, the equatiéh?d is void. However,
this also means that the sum of all equations in the syS&gnwith appropriate choices of signs,
is the trivial equatior®) = 0. This impliesrank(S7) < N2 — 1. Hence

dmVy >Ny — (No—1)=2g+n—1. (2.8)
From .6) and @.8), we conclude thadim V; = 2g + n — 1.

- Case 2 m > 0, that is the boundary dt is not empty. The equatior2(7) implies that the vector
(2(a1), .-+, 2(@syotsm ) 2(01), - - - s 2(bagm+n—1)) DelONgs to a hyperplane @fs1++sm)+2g+mtn—1,
Therefore we have

dimVz <) s +2g+m+n-2. (2.9)
j=1

From @.5 and @.9), we conclude thatim V7 = 377" | s; +2g +m +n — 2.

2.4.4 Coordinate change

Let 71,7, be two equivalence classes of triangulations/1R (S). Suppose thaldz; N Uz, # <,
and let([(X, ¢)],&) be a point inl{r; NUr, # @. Let T, T2 be the admissible triangulations &f
corresponding td@; and7; respectively. As usual, we denoter, , ¥, the local charts otdr; andi/z,
respectively. We have :

Lemma 2.4.5 There exists an invertible complex linear map

L:cM —cM

such that@7, ([(X/, ¢/)],&) = Lo U ([(X,¢)], &), for every([(X',#')],¢') in a neighborhood of
(12, ¢)], ).
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Proof: Lete be an edge df's. LetA;, i € I, denote the triangles iii; such thatA; Nint(e) # &, Vi €
I.

Using the developing map, we can construct a polyBoim R? by gluing isometric copies of\;’s
(¢ € I), such that corresponds to a diagonainsideP. The polygonP may contain several copies of
a singleA;. By this construction, we geta map :

p:P— 3

which is locally isometric, such that(é) = e.

Since the map sends geodesic segments in the boundarf? @into edges ofl'y, it follows that
the complex numbers associated to the edgan be written as linear function of the complex numbers
associated to the edges corresponding to geodesic segments in therpaifelaNote that the coeffi-
cients of these linear functions are unchanged if we repl&& ¢)], &) by another paif[(X’, ¢')], &)
nearby in{z; N Uz,, and this argument is reciprocal betweBpandT,. We deduce that the coordinate
change betweel,; and¥ 1, in a neighborhood of[(%, ¢)], £), is a complex linear transformation of

CN which sends/7; ontoVz,. The lemma is then proved. O
The proof of Theoren2.2.7is now complete. 0
2.4.5 Remark

Let 7 be an equivalence class iR (S). LetUr, U, V7 be as in the proof 02.2.7. We already
know that¥ (U7 ) is an open set iV, but more can be said abolity (U7).

Consider7 as a particular triangulations 6t Choose a numbering for the set of edge§ofind an
orientation for each edge.

To each triangle\, in 7, o = 1,..., No, we can associate a Hermitian foify, of CN as follows : if
the sides oA, are denoted by;, e;, ex, thenHo (Z, W) = §(zw; — z;w;), whereZ = (z1,...,2n,),
andW = (w1, ..., wy, ) are vectors irC1,

The Hermitian formH,, verifies the following property : iZ = V1 ([(3, ¢)],&), then|H,(Z, Z)| is
equal to the area of the triangi€A, ) in 3. By interchanging; andz; if necessary, we can assume that
H.(Z,Z) > 0foreverya =1,..., Ns.

Now, let Z be a vector inVr, let 3(Z) denote the surface obtained by the method described in the
inverse construction of 7. The necessary and sufficient condition ¥rZ) to be a translation surface
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homeomorphic t&' is that

H,(Z,Z) >0, foreverya =1,...,Ns.
Therefore ¥ (Ur)isthese{Z € Vr | Hy(Z,Z) >0, Va =1,..., Na}.

2.5 Properness of the action of Mapping Class Group

In this paragraph, we prove Propositir2.8 First, we recall some basic dfinitions of the Teidlikar
Theory.

2.5.1 Elements of Teichniller Theory

We refer to [54 for a more detailed presentation of this important theory.

Quasiconformal mappings

Let D be a domain of the complex plafig andf : D — C a function defined oD. Assume that
the functionf is written asf (z, y) = u(z, y) +w(x,y). We say thayf is absolutely continuous on lines,
and abbreviate by ACL, if for every rectangiein D with sides parallel to the-axis andy-axis, both
u(z,y) andv(z,y) are absolutely continuous on almost every horizontal line and almost eedigal
line in R. The functions: andv will then have partial derivatives,, u,, v., v, almost everywhere ih.

In general, the partial derivatives., v, , v., v, are only distributions since they are not defined everyw-
here.

The complex derivatives of are defined by

fo= 5o = 1fy) andfs = S(fa o).

Definition 2.5.1 (Analytic definition of Quasiconformal Mapping) Let f be a homeomorphism from
a domainD c C to another domaiD’ ¢ C. The mapf is K-quasiconforma(K > 1) if
(i) fisACLInD, and

(ii) | 2| < k|f-| aimost everywhere, whete= £— < 1.

The minimal possible value &f for which (ii) holds is called thelilatation of f.
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The quasiconformal mappings verify the following propertyfifis K;-quasiconformal ands is
Ks-quasiconformal, therfi; o f; is K1 Ko-quasiconformal.

The Teichmiller space7 (g,n)

Let S be a Riemann surface of geniisvithout boundary, andj1, . .., 5;} be# points of S. Let
f(g,ﬁ) denote the set of all pairsY, f), whereX is a Riemann surface, and: S — X is a quasi-
conformal homeomorphism. We can define an equivalence relatidh(gn:) as follows :(X, f) and
(X', f') are equivalent if and only if there existeanformalhomeomorphisnk : X — X', such that
the quasi-conformal mag’ ' o ho f : S — S is isotopic to the identity by an isotopy fixing the
pointspy, . . ., pi. By definition, theTeichnilller space7 (g, n) is the space of equivalence classes of this
equivalence relation. The equivalence class of ap&irf) is denoted by (X, f)].

Teichmdiller metric

Let (X1, f1) and (X2, f2) be two pairs inZ (g, 7). The Teichniiller distancebetween(X, f1)] and
[(X2, f2)] is defined by

dren (X1, f), (X, f2)]) = 5 inf{log K (f20 F o i),

where the infimum is taken over all quasi-conformal homeomorphigwisS which can be deformed
into Id g by an isotopy fixing every point in the s€bi,...,ps}, andK(fa o f o fr1) is the dilation of
faofo ffl : X1 — Xs. The Teichniller distance between two equivalence classes (i 1) does
not depend on the representatives to be used in this definition.

Action of Modular Group I'(g,n)on7 (g,n)
The mapping class group(g, 7) the group of all quasi-conformal homeomorphismsSovhich is

identity on the se{p1, . .. ps }, modulo the connected component of identity §0f

The mapping class group(g, n) acts on7 (g, n) as follows. Let/h| be an element df (g, 72) which
is represented by a quasiconformal niap S — S. Let [(X, f)] be an equivalence class T(g, 7).
We have :

[A] - (X, )] = [(X, foh)].

It is well known that the action of (g, ) on 7 (g, n) is properly discontinuous with respect to the
topology induced by the Teichitier metric.
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2.5.2 Embedding of the groupl’(.S, V)

Letg=g+m—-1,n= 2n—|—ZT:1 s;j. By definition, the doublé of S is a closed surface of gengs
and the subsét of & containgi points. If o is a homeomorphism &, we denote> the homeomorphism
of S that lifts ¢. We have

Lemma 2.5.2 The homomorphism — ¢ induces an embedding of the grolipS, V) into the group
IN(ADE

Proof: Since any homeomorphism is isotopic to a diffeomorphism, and a diffeomorphismasi-
conformal, given an homeomorphisgnof 5, there always exists a quasi-conformal homeomorphism
@' which is isotopic tap. As a consequence, we can define map fidisi, V) into I'(g, ) by associating

to the equivalence class ofin I'(S, V) the equivalence class of the quasi-conforgaih I'(g, 7). This
map is clearly a homomorphism.

If ¢ is isotopic told, then so isp. By definition ofT'(.S, V), this implies thatp is in the equivalence
class ofldg. We deduce that the homomorphism defined above is injective, and the lertomesfo [J

2.5.3 A Mapping from 7r(a; 3) to 7 (g, n)

There is a natural map from 7t(a; 3) into 7 (g, ), which we will call theforgetting map

Given a point([(Z, ¢)], £) in Tp(a; 3), let S be the double of which is equipped with the induced
flat metric, and,% be the homeomorphism frosionto S that lifts ¢. Note the flat metric structure dn
induces a conformal structure on the open dens& $gb()) of £, and since)(V) is finite, this confor-
mal structure can be extended uniquely into a conformal structute &et ¢’ be any quasi-conformal
map fromS onto 3 which is isotopic tap by an isotopy which is constant on the 3&of S.

The mapF is defined as follows : the image Wyof the pair([(Z, ¢)], €) in 7t(a; () is the equivalence
class of the paif%, ¢') in T(j, i), whereX is now considered as a Riemann surface.

Proposition 2.5.3 The mag¥ is continuous.
Proof: Let ([(Z, ¢)], &) be a point inZt(&; 8), and{([(Zx, #1)], &), k € N} be a sequence ifir(&; 3)
)

converging to([(, ¢)], ). We can suppose that the map S — 3. that lifts ¢ is quasi-conformal so
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that we can writd([(, ¢)], €) = [(2, §)].

Let T be an admissible triangulation &f and7 be the equivalence class of {(T) in 7R(S). By
definition, ([(3, ¢)], ) is a point inl{z. Without loss of generality, we can assume that the sequence
{([(Zk, ¢r)], &), k € N} is also contained ity7.

As we have seen in the proof of Theor@.7, there exists a local cha#ty of 7t (&; 3) which is defined
onUr. PutZ = U7 ([(X,9)],€), andZ;, = Y7 ([(Zk, ¢x)], k). By assumption we havg, "Z% Zin
cM.

Recall that, by the definition of 7, for every point([(¥', ¢')],£’) in Uz, we can writep’ = f o ¢,
wheref : ¥ — Y’ is a homeomorphism such that

e f(T)is an admissible triangulation &f denoted byI”.

e f sends an edge df onto an edge of”’, and the restriction of’ into the a triangle ofl is a linear
transformation ofR?.

Therefore, for every: € N, we can assume thaf, = fx o ¢, wheref;, : ¥ — ¥ is a homeomor-
phism with the same properties gsbove.

Let T be the geodesic triangulation Bfwhich is induced byT, and letf;, be the homeomorphism
from 3 onto 3, that lifts f5. It follows immediately thaif,, mapsT onto a geodesic triangulation Bf;,
and we can assume that = f o .

Sincef;, is clearly quasi-conformal, and by assumptigris also quasi-conformal, it follows tha, is
also quasi-conformal. Therefore, we can write

F([(Zk, 0)k], &) = [(Zk, on)], VE.

All we need to prove is that

k—o0

dreicn ([(£, 9)], [(Sr, o)) — 0.

It is clear that, asZ;, tends toZ, the restriction off;, on each triangle of tends to identity, which
implies that

lim K(fy)=1,

k—o0

whereK(fk) is the dilatation offk. By the definition ofd ey, it follows that
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~

Jim drreien ([( O[Sk, dw)]) = 0,

and the proposition follows. O

2.5.4 Proof of Proposition2.2.8

By definition, the magr is obviouslyI'(.S, V)-equivariant. By Lemm&.5.2 we know thaf’(S, V) is
a subgroup of'(g, ). It is well known that the action df (g, ) is properly discontinuous ofi (g, n).
SinceF is continuous, andr(a; 3) and7 (§,7) are clearly locally compact, we deduce that the action

of I'(S, V) on7t(a; (3) is properly discontinuous. O

2.6 Changes of triangulations

Let [(X, )] be an element of the spa@e (a; 5)*, we have seen that an admissible geodesic trian-
gulation of % (cf. Definition 2.3.1) allows us to construct a local chart @ (a; 3). In this section, we
are interested in relations between geodesic triangulatiohs bfore precisely, we want to answer the
guestion : How to go from an admissible triangulation to another one. This wyllgptaucial role in our

construction of the volume form ofir(a; 3).
Let us start with the simplest example : #BCD be a convex quadrilateral iR?. There are only

two ways to triangulated BC'D : one by adding the diagonalC, and the other by adding the diagonal
BD.

This example suggests
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Definition 2.6.1 (Elementary Move and Connected Triangulations)Let X be a flat surface with geo-
desic boundary. LT be a triangulation of by geodesic segments whose set of vertices contains the
set of singularities ok. An elementary movef T is a transformation as follows : take two adjacent
triangles of T' which form a convex quadrilateral, replace the common side of the two taarxy the
other diagonal of the quadrilateral (if these two triangles have more tha ammon sides, just take
one of them). After such a move, we obtain evidently a another geodesiguiadion ofy with the same

set of vertices a¥'.

Let Ty, Ty be two geodesic triangulations &f whose sets of vertices coincide. We say thaand Ts
are connectedf there exists a sequence of elementary moves which tran&foiinto T'.

In this section, we prove the following theorem

Theorem 2.6.2 Let X be a flat surface with geodesic boundary. pet. . ., p,, denote the singularities
of X. Suppose that satisfies the following condition

(Q) for every closed curve C int(X \ {p1,...,pn}), We haveorth(c) € {£Id},

whereorth(c) is the orthogonal part of the holonomy efLetT;, Ty be two geodesic triangulations of
¥ such that the set of vertices®f is {p1,...,pn}, 7 = 1,2, thenT; and Ty are connected.

Remark: The changes of triangulations by elementary moves, which are also Haledre already
studied in the context of flat surfaces (not necessarily translatioacas}. In this general situation,
Theoren.6.2is already known, it results from the fact that any geodesic triangulatimse/vertex set
contains all the singularities can be transformed by flips into a special alied ®elaunay triangula-
tion, which is unique up to some flips (se&q] for further detail). However, we would like to introduce
another proof of this fact in the case of translation surfaces. Thd pre@resent here is based on an
observation on polygons, and uses some basic properties of transladisemi-translation surfaces.

We start by proving the following fact about Euclidean polygons :

Lemma 2.6.3 LetP be a polygon ilR? ~ [E2, LetT be a triangulations of> whose edges are diagonals.
Letd be a diagonal oP which is contained insid®, but not an edge df. Then there exists a sequence
of elementary moves which transfofirinto a triangulation containingi.

Remark: In this situation, we only consider triangulations whose edges are diaggdrial®y ‘diagonal
of P’ we mean a geodesic segment contained inBidéhose endpoints are verticesIof
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Proof: Since the diagonal is not contained irl, it intersects some edges '0f Let m be the number
of intersection points off and the diagonals ifl’. Note that we only count intersection points which
are not vertices of the polygdn. Thesem intersection points dividd into m + 1 sub-segments, each
sub-segment is contained in a triangl€lofThe union of thesen + 1 triangles is a polygoi?; which
containsd as a diagonal. The number of sidesafis m + 3. Obviously, we get a triangulatich; of P
which is induced byT'. Note thatd intersects all the diagonals iy . It suffices to show that there exists
a sequence of elementary move®inthat transfornil’; into a triangulation containing. We prove this
by induction.

. If m = 1, thenP; is a quadrilateral, and an elementary move suffices to transtgrmto a trian-
gulation containingl.

. Form > 1, letay,...,a, denote the set of edges @f. By construction we havé N a; # @
for everyi = 1,..., m. We will show that there exist elementary moves which transf@ininto
another triangulatioff's of Py such thatl intersects at most. — 1 diagonals irfTs.

Equip the plan&k? with the Cartesian coordinates such thHas a horizontal segment contained
in the Oz axis. Letz : R2 — R, andy : R> — R denote the two coordinate functions. Let
Ai,..., A, andBy,. .., B, denote the vertices d?; such thaty(A;) = y(A,) = 0,z(4;) <
x(Ar), y(A;) > 0,fori =2,...,r—1,andy(B;) < 0,forj =1,...,s. The pointsd,, ..., A,
are ordered in the clockwise sense, and the pd#ts. ., B, are ordered in the counter-clockwise
sense. Note that, sinee > 1, we can always assume that: 4.

Ao

By
By Bs

There existsy, 2 < ip < r, such thaty(4;,) > y(4;),Vi € {1,...,r}, andy(A;,) > y(A;) if

i < i9. By assumption, we see that the segmént_ 4;, 1 is a diagonal of;. Sincer > 4, we
haveA;,_14;,+1 # A1A4,. Clearly, the segment;, 1 A;, .1 does not interseet = A; A, since
bothy(A;,—1) andy(A4;,+1) must be positive or zero, and at least one of them is strictly positive.
Moreover, the number of intersection pointsAf —; A;,+1 with the diagonals ifT; is strictly less
thanm. By induction assumption, there exists a sequence of elementary movestvamisform

T; into a new triangulatiofl's of P; which containsd;, 1 A4;, 1.
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Now, the triangulatiorily containsm diagonals, one of them id;,_14;,+1. We have seen that
Ai,—14i,+1 does not intersect. It follows thatd intersects at most: — 1 diagonals inT;, and
hence we are done.

Corollary 2.6.4 LetP be a polygon in the Euclidean plafi#. LetT; and T5 be two triangulations of
P by diagonals. Then there exists a sequence of elementary moves ahigfotmT into T.

Proof: Letn be the number of sides &f. We show this corollary by induction.

- If n = 4 there are two possibilities :

. P is not convex. In this cas® has only one triangulation, hendg = T5.

. Pis convex. In this case, if'; # T+, thenTs is obtained fronil'; by an elementary move.

- Forn > 4, if the triangulationsI’y andT; have a common edge, then we are done since this com-
mon edge divide® into two polygons whose numbers of sides are strictly less thalde are left
with the case wher&'; and T have no common edges. In this case, choose an arbitrarydeafge
T2, by Lemma2.6.3 there exists a sequence of elementary moves which tran&fgrimto a new
triangulationT’; which containsi. The corollary is then proved. g

2.6.1 Proof of Theorem2.6.2

Let g be the genus oE, andp be the number of components of its boundary. Observe that every
geodesic triangulation df whose set of vertices i1, . . ., p, } must contain all the geodesic segments
on the boundary of.

Let n; be the number of singular points on the boundarzpindns be the number of singular points
in the interior ofX. By the computation of Euler characteristic 0f we see that the triangulatiofiy
andT5 have the same numbéf, of edges. We have

2
Ne:3(§n1+n2+2g+p—2).

Letk,0 < k < Ng, be the number of common edgesTof andTs. Since the boundary of contains
ny edges, we have > ny. If K = N, thenT; = Ts. Assume thah; < k < N, we will proceed by

53



2. TRANSLATION SURFACES WITH BOUNDARY

induction.

Given a geodesic triangulatioh on 3, let e be a geodesic segment joining two verticeslofif e
is not contained ifl', then, using a developing map, one can construct an Euclidian pojgonR?
which is composed by isometric copies of the triangle® mwhich are crossed by. Note that a triangle
A in T may have several copies insiBlethe number of those copies is equal to the number of connected
components of the sétit(e) N int(A). By construction, there exists a map

e : Pe — X,

which is locally isometric, and there exits a diagodaf P such thatp. (¢) = e. Remark thatp; 1 (T) is
a triangulation of? by diagonals. We will calP. thedeveloping polygon af with respect tdr'.

First, let us prove the following technical lemma
Lemma 2.6.5 Let P be a polygon inR? whose vertices are denoted b, A, As, By, ..., B;. Let
z: R? — R, andy : R> — R denote the two coordinate functions®t. Assume that the vertices of
P verify the following conditions :

+ (A1, Ag, A3) are ordered in the clock-wise sense;

+ y(A;) 20, i=1,2,3,y(A1) < y(A2), andy(42) > y(4s).

+ y(Bj) <0, 5=1,...,1;

+ Bi,...,B;are ordered in the counter-clockwise sense.

+

Forall j € {1,...,1}, the segmentl, B; is a diagonal ofP.

Let T denote the triangulation d? by the diagonalsis B, ..., A2 B;. Let{so, ..., s;} be a family
of disjoint horizontal segments A whose endpoints are contained the boundary pfvheresy is a
segment lying on the horizontal axjs= 0. Letr be the number of intersection points of the edges of
T with the setJ;”_,s;. Then there exists a sequence of elementary moves which trariBfioim a new
triangulation T’ whose edges intersect the 88t ,s; at at most- — 1 points.

Proof: Consider the following algorithm :

Let jo be the smallest index such thatB,) = min{y(B;) : j = 1,...,1}, thatisy(B;) > y(Bj,)
forall j < jo, andy(B;) > y(Bj,), Vi =1,...,L
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2. TRANSLATION SURFACES WITH BOUNDARY

1. If P is a quadrilateral, that is= 1, thenP must be convex. Apply an elementary move inside
and stop the algorithm.

2. If 1 < jo < I, then consider the quadrilatetab B;, 1 B;, Bj,+1. By the choice ofj, this quadri-
lateral is convex. Hence, we can apply an elementary move inside it, anidjthigham stops.

3. If jo = 1 andl > 2, then consider the quadrilaterdb A; B; Bo. Observe that this quadrilateral
is convex. Apply an elementary move inside it. By this move, we get a new ti@ingu of P
which contains the triangl& A, B; B>. Cut off this triangle fromP. ReplaceP by the remaining
sub-polygon and restart the algorithm.

4. If jo =1 > 1, then consider the quadrilaterd} A3 B; B;_1. Since this quadrilateral is convex, we
can apply an elementary move inside it, then cut off the triadgle, B; B; 1. ReplaceP by the
remaining sub-polygon and restart the algorithm.

As As

32 Bg B2 B3
Bl Bl

Observe that, at each step of the algorithm above, the number of intensgeiits of the set®_s;
with the edges of the new triangulation cannot exceed the number of irtterspoints with those of
the ancien one. Indeed, suppose that we are in the Icasej, < [, by the choice ofjy, we have
yY(Bj,) < min{y(Bj,-1),y(Bjy+1)}, andy(Az) > max{y(Bj,-1),y(Bj,+1) }, consequently, if a hori-
zontal segmeny; intersectsB;,_1 Bj,+1, then it must intersectl; 5;,. Therefore, the number of inter-
section points does not increase. The same argument works for theasies:

Moreover, at the final step of the algorithime. case 1. or 2., we replace a diagonal intersecting the
segment, by another one which does not intersegtHence, by this algorithm, we get a new triangu-
lation T” of P whose edges have strictly less intersection points with thesgk; than those offy. O
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Letay,...,an,,andby, ..., by, denote the edges @f; andT; respectively. We can assume that= b;,
fori =1,..., k. Allwe need to prove is the following

Proposition 2.6.6 There exists a sequence of elementary moves which tran$fpmto a new triangu-
lation containingby, . . ., by, andbg1.

Proof: Sinceby, is not an edge of'y, it must intersect some edges ©f. Let P be the developing
polygon ofby; with respect tdl';. Lety : P — X be the associated immersion. I'Bf be the trian-

gulation of P by diagonals which is induced i, (i.e. T3 = ¢~ !(T;)). By definition, each diagonal
in T3 is mapped byp onto an edge ol'; which intersect$;. ;. Finally, letd be the diagonal oP such

thaty(d) = bi1. Observe that intersects all the diagonals which are edge¥ of

Letm be the number of intersection pointsigf, ; with the edges of'; excluding the two endpoints
of b;11. Note thatb, 1 may intersect an edge @f; more than once. By construction, the polygdis
triangulated byn diagonals, hence it has + 3 sides.

We prove the proposition by induction.

- If m = 1, thenP is a quadrilateral. The quadrilate@Imust be convex because its two diago-
nals intersect. If? is mapped byp to a single triangle ofl';, then there is a singular point of
Y with cone angle strictly less than But this is impossible since, for every closed curvim
int(X\ {p1,...,pn}), we haveorth(c) € {£Id}. Thus, we conclude that mapsint(P) isome-
trically onto a quadrilateral consisting of two triangleslin. Clearly, by applying the elementary
move insidep(P), we obtains a new triangulation which contabns .

- If m > 1, itis enough to show that there exists a sequence of elementary movestrahnistorm
T, into a new triangulatio} containingb, = (a1),...,bx = (ax), such thaby intersects the
edges ofl’} at mostm — 1 times.

Equip the plan&? with a system of Cartesian coordinates such dhiata horizontal segment lying
in the axisOx. Letz : R2 — R, andy : R> — R denote the two coordinate functions. Let
A, ..., A, denote the vertices @ such thaty(A;) > 0, andBjy, ..., B, denote the vertices of
P such thaty(B;) < 0. Let Ay and A,;; denote the left and the right endpointsdfespecti-
vely. We set, by conventiorBy = Ag, andB,;+1 = A,+1. SinceP hasm + 3 vertices, we have
r+ s+ 2 = m + 3. We can assume that > s (if it is not the case, reverse the orientation of
Oy). We name the vertices @f such thatAy, ..., A, are ordered in the clockwise sense, and
By, ..., Bsy1 are ordered in the counter-clockwise sense.

Without loss of generality, we can assume that 2 becausen > 1. Letiy be the smallest in-
dex such thay(A4;,) = max{y(4;) : i = 1,...,r}, thatisy(4;,) > y(A;) Vi = 1,...,r, and
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y(Ai,) > y(4;) if i < ip. Consider the sub-polygdp; of P, which consists of all triangles il
having A;, as a vertex. The vertices 8f are A;,_1, A;,, Aiy+1 andB;, ..., B; . The polygon
P is triangulated by the diagonals 5;,, . . ., Ai, Bj,+:. Let T4 denote this triangulation d?;.

By Lemma2.6.7below, we know thatp mapsint(P;) bijectively onto an open domai@; in .
Therefore, any elementary move insidlginduces an elementary move insigg.

Sinceby, . .., by, by are edges of the triangulatidr,, we haveint(b;) N int(bg4+1) = @, Vi =
1,..., k. Recall thatby, ..., b, are also edges of the triangulatidn, from this we deduce that
int(b;) N Q1 = &, since ife is an edge off'; andint(e) N Q; # &, thenint(e) Nint(bgt1) # 2.
This implies that an elementary move inside does not affect the edges, . . ., by.

Consider the intersection &, and the inverse image éf_; by . A priori, this set is a family of
geodesic segments with endpoints in the boundaBy;ofClearly, the segment = AgA, | NPy

is contained in the sé@; N ¢~ !(by,1). SinceY satisfies Q'), all the segments in this family are
parallel, therefore, all of them are parallel to the horizontal axisrlbetthe number of intersection
points of the seP; N ¢~ 1(b;,1) and the edges dF ;.

Now, Lemma2.6.5shows that there exists a sequence of elementary moves which trargform
into a new triangulation whose edges intersect théset o—1(b1) at at most- — 1 points. It
follows that there exists a sequence of elementary moves inside the d@matnich transfornil’y
into a new triangulation of. whose edges have at mest— 1 intersection points witlyg . As we
have seen, those elementary moves do not affect the édges, b,.. By induction, the proposition
is then proved. a

We need the following lemma to complete the prooRd.6

Lemma 2.6.7 With the same notations as in the proof26.6 the restriction ofy ontoint(P;) is an
isometric embedding.

Proof: Sincep maps each triangle @3 onto a triangle ofT', it is enough to show that the images py
of the triangles ofl's which are contained iR, are all distinct.

Suppose that there exist two triangles andA, such thatp(A;) = p(A2). Sincey is locally isome-
tric, and by assumption, the orthogonal part of the holonomy of any clos®eé inint(X\ {p1,...,pn})
is eitherld or —Id, it follows that eitherAy = Ay + v, or Ay = —A; + v, where—A; is the image of
A; by —Id, andv € R2. Note that, by definition, the triangles; andA, have a common vertex, which
is Aio-
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o If Ay = Ay + v, exclude the casA; = A,, we have two possible configurations. In these both
cases, we see that the anglePgfat the point4;, is at leastr. But, by assumption, this is impos-

sible since we havg(A;,) > y(Ai,—1) andy(A4;,) = y(Aig+1)-

A O

e If Ay = —A1 + v, we have three possible configurations. In the case whgrandA- have only
one common vertex, we see that the angl@ofat A;, must be greater tham, which is, as we
have seen above, impossible. In the other two cadesand A, are adjacent. As we have seen,
this implies the existence of a singular pointofvith cone angle strictly less than This is again

impossible.

AV
AN ] A1

The lemma is then proved.

2.7 Volume form on7t(a; 5)

Our aim in this section is to define the volume form. on the spacét(a; 3) which is invariant by
the action of the group'(g, 7). The construction of this volume form relies on the local charts defined

in the proof of Theoren2.2.7.
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Recall that, ifL : E — F is a linear map between (real) vector spaces which is surjective, then
given a volume formug on E, and a volume formur on F, one can define a volume formon ker(L)
as follows : letE; be a subspace @ so thatE = E; @ ker(L), the restriction.; of L on E; is then a
linear isomorphism, the volume formon ker(L) is defined to be the one such that :

pe = p A Lipp.

Remark thaj: does not depend on the choiceRyf.

2.7.1 Definition of the volume form g,

Let us start by recalling some basic properties of the local clartsvhich are defined in Section
2.4 Let T be a triangulation of representing an equivalence clasgiR (.5). Leti/s be the subset of
Tr(a; ) consisting of all pairg[(Z, ¢)], £) such that the homeomorphisprmaps7 onto an admissible
triangulation of%. The local char; is defined ori/; with image inV, which is a subspace @™,
whereN; is the number of edges @f. The image ot/ is an open set o¥ 1.

Letay,...,ay, denote the vectors ¢C 1 )* which correspond to the equations of the sysSsmA vec-
tor a; is said to benormalizedf each of its coordinates belongs to the §etl, 0, 1}. We have two cases :

e Case 1 m > 0. In this case, we have shown thaik(S7) = N, (see Lemma.4.4. Consider
the complex linear map7 : CV1 — C"2, which is defined in the canonical basis©" and
C™2 by the matrix

ay
A =
an,

The mapA 7 is then surjective, anif+ = ker A7. The mapA 7 is said to benormalizedif each
row of its matrix in the canonical basis is normalized.

Let \on, €t \oy, denote the Lebesgue measuresint ~ R*V1 andC™2 ~ R2MNz respectively.
Since A7 is surjective \an, and\ap, induce a volume formy on V7 via the following exact
sequence :

0— Vg CN AL cNe g,

- Case 2 m = 0. In this case, we havewmk(S7) = No — 1 (see Lemm&.4.4, hencerank(A ) =
Ny — 1. If the vectorsay, . . ., an, are normalized, and the their signs are chosen suitably, we have
a1 + --- 4+ an, = 0. Thus, without loss of generality, we can assume ihaA = W, where
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W is the complex hyperplane 6f2 defined byW = {(z1,...,zn,) € CV2 1 24+ -+2n, = 0}.
Let Xy, denote the volume form oW which is induced by the Lebesgue measur&dt.
The volume forms\,y, and )‘/2(N2—1) induce a volume formvs on V7 via the following exact

sequence :

O—>VT<—>(CN1£>W—>O.

In both cases, lgt7 denote the volume forn¥*-v7 which is defined oid/7.

2.7.2 Invariance by coordinate changes

To show that the volume formsy, 7 € TR(S), give a well-defined volume form ofir(a; 3), we
need to prove that whenevigy;, Nz, # &, whereZ; and7; represent two different equivalence classes
in 7R(S), then we have

P = pn, ONUr NUT;.
Let us begin with
Proposition 2.7.1 Let ([(X, ¢)], £) be a point intdr; NUz,. LetT; and T2 be two admissible triangula-

tions ofX corresponding ta/; and7; respectively. Assume that, is obtained byl'; by an elementary
move, themur, = g, onlUzr, NUT,.

Proof: Suppose that the elementary move occurs in a quadrilafevehich is formed by two triangles
Ay andA, of T4. Note that the edge dF; which is removed by this elementary move is contained in
the interior ofX.
Let Z = (z,...,zn,) denote the image df(%, ¢)], &) by ¥7,. We can assume that

. z1 IS associated to the common side/®f and As.

. 29, z3 are associated to the other sideg\afsuch thaf —z1, 29, 23} is the oriented boundary a; .

. z4, z5 are associated to the other sides\afsuch thaf{z1, z4, 25 } is the oriented boundary &f..
We have

— 21 _|_ 29 _|_ 23 = 07 (210)
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21+ 24+ 25 = 0. (2.11)
Z4 w4
z5 Ws
23 w3
29 w2
After the move, the quadrilaterg) is divided into two triangleg\] andAl. LetW = (w1,...,wn,)

denote the image df%, ¢)], ¢) by ¥7,. We can assume that
. w is associated to the common edgefandA),.
. w; is associated to the oriented edge corresponding for everyi = 2,..., N;.

We have then

—wy + w3 +wyg =0, (2.12)

w1 + wo + wy = 0. (2.13)

We see that the equatiorz {0 and @.11) are contained in the syste$y, , and the equation2(12 and
(2.13 are contained in the systefy,. The other equations &z, are the same as those®f;, with z;
replaced byw;, fori = 2,..., N;. Note thatz; does not appear in any equationSf other than2.10
and @.17). Similarly, w; does not appear in any equationS#, other than2.12 and @.13).

Let A7, denote the normalized linear map associatefi o The matrix ofA.z; in the canonical basis
of CNt andC™2 is of the form

-1 1 1 0 0 0
1 0 0 1 1 0
An = * * *
0 * * * * *
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Similarly, let Az, denote the normalized linear map associate8tpwhose matrix in the canonical
basis ofCVt andC™? is of the form

-1 0 1 1 0
1 1 0 1 0
Az, = 0 * * *
0 * * * * *

From what has been said, th¢h row of the matrixA 7, is the same as thieth row of the matrixA 1,
foreveryi =3,..., Ns.

LetF : CM — CM be the linear map which is defined in the canonical basid"6fby the matrix

1 -1 0 1 0 0
0 1 0 0 O 0
F= 0 0 1 0 O 0
o o o0 o0 o0 - 1

Now, observe thaA 7, o F = Az,. As a consequence, the following diagram is commutative

A
0 — kerAy; — CM oce

|H L F 1d
A
0 — kerAp, — CM Zoc

The isomorphisnH : ker A7; — ker A7, which is induced by, is the coordinate changer, o \11,}11.
Here, we have two cases :

o Caselm > 0. We havedimc ker Az; = dimcker Az, = 377" s; + 29 + n — 2. In this case,
by definition, the volume formsz; andvz, are induced by the Lebesgue measwgg andAay,
onker A7, andker Az, respectively. Sincédet F| = 1, we deduce thad*v7, = vz, . Therefore,
the formsu7; andyz, coincide in a neighborhood 6f(%, ¢)], €).

e Case 2 m = 0. We havedimc ker A7; = dimcker Az, = 29 + n — 1, we can assume that
ImA7, = ImAz, = W, whereW is the complex hyperplane G2 defined above. In this case,
the volume forms/z; andvz, are induced by\,y, and )\’Q(er), Where)\’Q(NTl) is the volume

form onW. Since we also have the following commutative diagram
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A
0 — kerAr, — CM B W — 0

|H |F I1d

A
0—>kerA72—>CNlj>W—>0

it follows thatH*v7, = v7,. Hence we get the same conclusion. O

Corollary 2.7.2 Let 7; and 7> be two triangulations ofS which represent two different equivalence
classes iT R(S). Assume thalt;; N Uz, # &, thenur, = pz, onlUy, NU7,.

Proof: Let ([(3, ¢)],€) be a point in{r; N Uz,. Let Ty, Ty be the two admissible triangulations Bf
which correspond t@; and7; respectively. By Theorer.6.2 we know thatT'y can be obtained from
T1 by a sequence of elementary moves. ProposRignltells us that the volume forms corresponding
to two admissible triangulations which differ from each other by an elementawe mee equal. The
corollary is then proved. O

By Corollary2.7.2 we see that the volume forms-, 7 € TR(S) give rise to a well defined volume

form on77(a; 3). From now on, we denote this volume foyng,.

2.7.3 Invariance by the action of Mapping Class Group

To complete the proof of Theoret2.9 we need the following :

Proposition 2.7.3 The volume formur, is invariant by the action of (g, 7).

Proof: The fact thafur, is invariant by the action of the grouf(g, n) is quite clear from the definition.
Lety be an element df (g, 7), and suppose that([(X1, ¢1)],&1) = ([(X2, #2)], £). By definition there
exits then an isometry

h: 21 — 22,

such thatcﬁgl o ho ¢ € Homeo™(S,V). The isometryh sends an admissible triangulationXf onto
an admissible triangulation &f,, from which we deduce that preserves the volume forpr,. O
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The proof of Theoren2.2.9is now complete.

2.8 Proof of Proposition2.2.10

In this paragraph, we will always assume that= 0, because of this additional hypothesis, we re-

placeZr(a; B) by 71 (&), and M+ (a; 8) by M (@) to simplify the notations.

2.8.1 Flat surface defined by holomorphid-form

In this paragraph we suppose tlyat 2. Let M be a compact Riemann surface of geguwithout
boundary, and> be a holomorphid-form on M. Letz, ..., z, denote the zeros af, andk, ..., k,
denote their orders respectively. It is well known thatlefines a flat metric o/ such that the cone
angle atz; is 2w (k; +1),7 = 1,...,n. In this situation, we consid€r, . .., x, } as the set of singulari-
ties of the flat surface, even though some of these points are actuallgir@gunay be zero). Note that
the 1-formw also determines a singular foliation df by ‘vertical’ geodesics. A flat surface defined by
a holomorphicl-form is a translation surface.

Fix a sequence;, . .., k, of non-negative integers such thiat+ - - - + k,, = 29 — 2. Let H(kq, . .., ky)
denote the moduli space of holomorphidorm havingn zeros of orders:, ..., k,. By definition,
H(k1,...,k,) is the quotient space of the set of all pgifd, w) as above by the following equivalence
relation : (M, w;) and (Mo, ws) are equivalent if and only if there exists a conformal homeomorphism
f: M7 — M, such thatf*wy = wy.

It is well known thatH(k1,...,k,) is a complex algebraic orbifold of dimensi@y + n — 1. Let
(My,wo) be a pair inH(k1,. .., k). Let {4},...,98,,,, 1} denote a basis of the homology group
Hy(Mo,{29,...,29},Z) ~ 729t~ wherez?, ..., 2" denote the zeros afy. We can consider every
pair (M,w) in a neighborhood of My, wy) as a deformation of%,wy) so that we can specify a basis
of Hy(M,{x1,...,7,},Z), wherexy, ..., x, denote the zeros of, corresponding te?, . . . ,ygﬁn,l.

The curves in this basis will be denoted by, . . . , y2g+—1. It follows that the map

®: (Mw) — ([

w, ... 7/ w) c C29+n—1 o~ R2(29+n71)7
Y1 Y2g+n—1

defines a local coordinate charthfik1, . .., k,) in a neighborhood of%, wp). This is theperiod map-

ping. The pull-back by® of the Lebesgue measure @89t"~! ~ R2(29+7—1) s a well defined volume
form onH(kq, ..., k,). We denote this volume form.
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Assume in addition that the integets, ..., k, are pairwise distinct. In this case, we can identify
H(ki1,...,ky,) to the spaceM (&), with a; = 27(k; + 1), i = 1,...,n. Remark that ifk;, ..., &,
are not pairwise distinct, then the spaker(a) is a finite covering ot (k1, . .., k).

2.8.2 Proof of Proposition2.2.10

Let (M,w) be a pair inH(k1, ..., k,). Let X denote the induced translation surface. tgt.. ., =),
denote its singularities so that the cone angle;as$ 27 (k; + 1). The vertical geodesic flow determined
by w induces a normalized parallel vector field B\ {z1,...,z,}. Let{ denote this vector field. The
pair (M, w) in H(k1, ..., ky,) is then identified to the eleme(X, {z1, ..., z,},&) in M1(a).

Let T be a geodesic triangulation &fwhose set of vertices coincides with the set of singularities,of
we know such triangulations exist by Propositib.2 Note that, in this case, any geodesic triangulation
whose set of vertices coincides with the set of singularities is admissible.

Recall that gamily of primitive edgesf T is a set o2g + n — 1 edges ofT such that the complement
of the union of those edges is a topological open disk. Remark that sachilg Blways exists because
it corresponds to a maximal tree in the dual grapA'otet {b1, ..., byg4n—1} be a family of primitive
edges of'. Observe thafby, ..., byg1n—1} is a basis of the grouff; (X, {z1,...,z,}, Z).

Let¢ : S — X be a quasi-conformal homeomorphism which mgp® z;, i = 1,...,n. Let7T
denote the equivalence class of the triangulatioh(T) in 7R(S). Let ¥+ be the local chart associated
to 7. As usual, letS; denote the system of linear equations associated. tbet V. be the space of
solutions ofS+, and A+ be the normalized linear map associate@4o We can assume that

ImA7 =W ={(21,...,25,) € CV?| 21 + -+ + 2y, = 0}.

Note that heréV, = 4(2g+n—1) — 3, No = 3(29g+n —1) — 2, anddim¢c V7 = 2g+n — 1. By U,
aneighborhood of%, {z1, ..., z,}, ) in Mr(a) is identified to an open set &f7.

There exists a neighborhoddof (X, {z1,...,z,}, &) such that, for any point™’, {z,...,z,,},£') in
U, there exists a quasi-conformal homeomorphigsm: ¥ — ¥/ which mapsT onto an admissible
triangulationT’ of ¥'. Letd,, ¢ = 1,...,2¢9 + n — 1, denote the image df; by fss. The segments
{b, -+, boy 1} form a basis of the groupl; (X', {},...,z,,},Z). Hence, we can define a local
chart ofH(k1, .. ., k,) by the following period mapping

D : u — C29+n—1
(X Ay, 2l ) = (M W) — (fb'l W fbég+n—1 W)
By the construction of 7, we can assume that¥fr (>, {«},...,2),},&) = (z1,...,2n,), then the
complex numbersy, . .., za44,—1 are associated to the edgsgs. . ., /29+n—1- It follows that the map
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\IJT o (bfl . @(u) C (C2g+n71 N CNl
maps(z1, . . ., 22g+n—1) 10 (21, . . ., 22g4n—1, 22g4n, - - - » 2N, ). We deduce tha¥ 7 o ®~!is an injective

linear map. Hencey 1 o @~ is a restriction intab (/) of an isomorphism front29+t"~! onto V7.

Let Ay21,—1) denote the Lebesgue measure@¥+"—1 ~ R2(29+n-1) By definition, g =
(I)*)‘2(2g+n71)-

Let )‘/2(N2—1) be the volume form oW which is induced by the Lebesgue measur€dt, andvs be

the volume form oV which is induced by, y, and)\’Q(NQ_l) via the following exact sequence

0—Vy —CM 2w .

By definition, the volume formut, on a neighborhood of%, {z1,...,z,},§) is Vivr. Clearly, on
C29t7—1 we have

(\I”T o (I)_l)*V’T = >\)\2g+n71a

where) is a non-zero constant. This implieg, = Ao on a neighborhood o, {x1,...,z,},&). We
deduce thatiT, /110 is locally constant. Consequentlyr, /1o iS constant on every connected component
of H(ky, ..., kn). O

2.9 Action of SLy(R) on 71(a; )

There is an action of the groupLs(R) on 71 (a; 3) which is defined as follows : lef[(2, ¢)], €)
be an element oft(a; 3), andA = CCL 2 € SLy(R). Let{f, : U, — R?} be an atlas defi-
ning the flat metric structure af, then{A4 o f,} is an atlas of another flat metric structure nSince
all the transition functions are translations®f, it follows that{A o f,} defines a translation surface
structure or.. Let A - ¥ denote the new translation surface. We define the ima@of)] by A to be
the equivalence class of the pait - X, ¢), that is, while the flat metric structure ahis modified by
A, the marking ma stays the unchanged. To define the image of the parallel vectofmidd - 3,
we choose an atlakf,, : U, — R?} of ¥ such that, for every, f,,.£ is the constant vertical vector
filed (0,1) on f,(U,). The image of on A - ¥ is defined to be the pull-back of the vertical vector field
(0,1)onAo f,(Uy). Let A - ([(X, 9)],€) denote the image df(X, ¢)], &) by A. Itis easy to verify that

A-([(2,9)],¢) is also an element dfr(a; 3). We have then defined an action of every SLs(R) on
Tr(@ ).

66



2. TRANSLATION SURFACES WITH BOUNDARY

Remark: One can check out easily that the actionS@P(2) C SL2(R) by this definition is equivalent
to the rotations of the normalized parallel vector field on each translatioacgurf

From the definitions, it follows immediately that the actionsf»(R) commutes with the action of

the mapping class group(g, n) on 7t (a; 3). Hence, we also get an action 8f.5(R) on the moduli

spaceMr(a; ). Furthermore, we have

Proposition 2.9.1 The volume formur, is invariant by the action of Ly (R).

Proof: Let ([(X, ¢)], &) be a point inZt(a; ), andT be an admissible triangulation &f. Let 7 be the
equivalence class @f~!(T) in 7R(S). LetUr be the associated domain Bf (a; 3), and¥7 be the
associated local chart.

LetA=[ Z be an element of the grouil.;(R). By definition, it is clear that the action of
C

preserve the domait; .

By the local chart¥7, we identifyZ{; to an open set in a subspade- of CV1. By definition, the
induced action ofA on U1 (U47) verifies

A- (zl,...,le) = (A(zl),...,A(le)), V(Zl,... 7ZN1) S \I/T(UT),

where the complex number(z;) is defined as follows : it; = z; + wy;, with z;,y; € R, then

A(z;) = u; + w;, with
u | | a b | @i
(3 a c d Y; .

If we identify C™¥* to R?M, the action ofA on U+ (U7) is the restriction of the action of the following
matrix :

A 0 0
0 A 0
o o0 ... A

Now, recall that the volume formr, is induced by the Lebesgue measure€6f andX, whereX
is eitherC™2 or W, via the complex linear map . We have the following commutative diagram :

0 — Vyr — CM AT X — 0
LA LA 1A
0 — Vr — CM AT X 0
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. . b
where we have used the same notatibto denote the action “ J onVz,CM, andX by
C

applying this matrix to each complex coordinate. Clearly, this actioA pfeserves the Lebesgue mea-
sures orlCNt andX. Therefore,A preserves the induced volume form Wa-. The proposition is then
proved. O

Remark: Proposition2.2.10can be deduced from PropositidrD.1as follows : define a functioti on
H(kla s 7kn) by

o CilMTr'
Ho
The functionf is then continuous. Since both, andyug areSL(2, R)-invariant, so isf. But we know
that the action ofSL(2,R) is ergodic on each connected componentik, ..., k,). Hence,f is
constant on each connected componeft{ 0t , ..., k).
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Chapitre 3

Flat surface with erasing trees

3.1 Definitions and main results

3.1.1 Flat surface with conical singularities and erasingrees

Let ¥ be a flat surface. Areein X is the image of an embedding from a topological tree MtdVe
consider an isolate point as a special tree, which has only one vertexcapdges. Aorestin X is a
finite disjoint union of trees irt. A tree inX is said to begeodesicif each of its edges is a geodesic
segment irk. A forest is said to bgeodesidf it is a union of geodesic trees.

Definition 3.1.1 (Erasing tree and erasing forest)Let > be a compact connected flat surface without
boundary. Leps, ..., p, denote the singular points &f. Anerasing tredresp.erasing foresgtin X is a
tree (resp. forest) whose vertex set contains all the singular pointssaefch that, ifc is a closed curve

in X which does not intersect this tree (resp. forest), then the holonomysai translation ofR? (the
orthogonal part of the holonomy is trivial).

Given a flat surface with an erasing forest, one can define

Definition 3.1.2 (Normalized Parallel Vector Field) Let > be a compact, connected flat surface wi-
thout boundary. Assume that there existsSban erasing forestd. A parallel vector fielcbn the com-
plement ofA is a vector field which is nowhere zero such that, in local charts of the Eaafignetric
structure, all the lines determined by the vectors of this field are parallebraliel vector field is said
to benormalizedf all of its vectors are of norm one.

The next proposition shows that geodesic trees always exist on fflatss.

Proposition 3.1.3 (Existence of geodesic treed)etY. be flat surface without boundary. Lgt, . . ., pn }
denote the singularities af. Then there exists a geodesic tree whose vertice§ate . ., p,, }.
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3. FLAT SURFACE WITH ERASING TREES

Proof: Let C; be a path fronp; to p» whose length is minimal. The pafy is a finite union of geodesic
segments whose endpoints are singular poinis. &part fromp; andp., C; can contain other points in
{p1,...,pn}. SinceC is a path of minimal length, it has no self intersections. By renumbering thé set o
singular points if necessary, we can assumedhas a path joiningy; andp,. via the pointgo, ..., p._1.

Note that for every poinp € C1, the length of the path from,; to p along(; is the distancel(p;, p)
between them.

If » = n, then we have obtained a geodesic tree whose vertice@are. ., p,}. If r < n, letCy be a
path fromp; to p,+1 whose length is minimal. 1€, N Cy = {p1}, then we get a geodesic tree which
contains at least+ 1 singular points as vertices. If this is not the case, we provaihatn not intersect
(1 transversely at a regular point.

Suppose that is a regular point wher€'; intersects’ transversely. LeV be a neighborhood of such
thatS; = VN andSy = V N, are two geodesic segments, anid the uniqgue common point ¢f
andS,. Let C] be the paths from; to p alongC; andCY, be the path fronp; to p alongC>, we have

leng(C1) = leng(C%) = d(p1,p).

Let ¢ be a point inSy \ C%, andr be a point inS; N C. Let pg denote the sub-segment 8§ whose
endpoints ar@ andg, andpr denote the sub-segments$f whose endpoints ageandr. We have

d(plv q) = d(pbp) + leng(m)7

and

d(p1,p) = d(p1,7) + leng(pr).

Sincep is a regular point ok, if we choose the pointg andr close enough tp, the geodesic segment
gr joining ¢ andr will be contained in the neighborhodd, and we have

leng(qr) < leng(pr) + leng(pq).
It follows that

d(p1,q) = d(p1,7) + leng(pr) + leng(pq) > d(p1,r) + leng(qr).
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3. FLAT SURFACE WITH ERASING TREES

The above inequality is in contradiction with the definition of the distathc&hus, we conclude that

Cs cannot intersect’; transversely at a regular point. This implies that the last intersection point of
C1 and (s, that is the intersection point of furthest distance fresmmust be a singular point, of >.

Omit the part olC; from p; to p;, , we obtain a geodesic tree connecting at least singular points of-.

Let C3 denote the new tree. For any pointf C5, the length of the unique path from to p alongCj is
the distancel(p1, p). This property allows us to conclude by an induction argument. d

Recall that aclosed translation surfaces a flat surface such that, for any closed cutvevhich
does not contain any singularity of the metric structure, we laté(y) = Id, whereorth(~) is the
orthogonal part of the holonomy of. A spherical flat surfaces a flat surface homeomorphic to the
sphereS?. Propositior3.1.3implies

Corollary 3.1.4 i) There exists on any closed translation surface a geodesic erasing tree.

i) There exists on any spherical flat surface a geodesic erasing tree.

Proof: The existence of a geodesic tree whose set of vertices is preciselyt thiestegular points of
the flat surface is guaranteed by Proposit®h.3 By definition of translation surface, such a tree is
obviously erasing, and) follows. Note that on a (closed) translation surface we have alreadsaaimg
forest which is the union of all singular points.

For spherical flat surfaces, by Propositi®nd.3 there exists on any spherical flat surface a geodesic
tree whose set of vertices is precisely the set of singular points. Sinamthelement of a tree in a
sphere is an topological open disk, the holonomy of any closed curve isdhplement must béd.
Therefore, we get an erasing tree, afidfollows. O

3.1.2 Main results

We fix two integersyy > 0, n > 0, such thakg + n — 2 > 0, and positive real numbets,, ..., a,
verifyingay + -+ a, = 27(2g +n — 2).

In the sequel of this chapte$, will be fixed a compact connected flat surface of gepusithout
boundary. Assume that there exists a geodesic erasing fdrest I, .A; on S,, where each; is a
geodesic tree. Let;, . . ., p, denote the vertices of the treesdn and assume that the cone anglp;ds
«;. Recall that, by definition, all the singular points®)f are contained in the sép1, ..., p,}, but some
of the pointsp; may be regular. We also assume that at least one of the trekisinot a point.

71



3. FLAT SURFACE WITH ERASING TREES

Definition 3.1.5 (Mapping class group preserving a forest)Let Homeo ™ (.S, /l) denote the group of
orientation preserving homeomorphismsSgfwhich fix the pointgp1, ..., p,}, and preserve the set.
Let Homeog (S,, A) be the normal subgroup dfomeo™ (S,,.A) consisting of all elements which can
be connected téds, by an isotopy fixing the points, . .., p,.

Themapping class groupf S, preserving the trees il is the quotient group

~

I'(Sy, A) = Home0+(Sg,A)/Homeog(Sg,A).
Remark: It follows from LemmaA.0.1that, if f is a homeomorphism &, which is isotopic to identity

by an isotopy fixing every point the sgti, . .., p, }, then there exists an isotogy, : S, x [0;1] — 5,
from f to Idg, such thattf;(A) = A, vt € [0; 1].

Without loss of generality, we can assume that there exist the integers . . ., k,,, such thaky = 0,

> i1 kj = n, and the set of vertices of; i {prg+-+k;_1+1, - - - » Pho+--+k; } fOreveryj € {1,...,m}.
The anglesy, . . ., a,, must satisfy the following condition :
Qg1 +1 +---+ Akt Ak € 27N, V] S {1, e ,m}.

Let @ denote the sefa,, ..., a,}. Let T¢*(A, a)* denote the set of pairf&, ¢), whereX is a flat
surface of genug, and¢ : S, — X is an orientation preserving homeomorphism which mAmmNto
a geodesic erasing forest bf

We define an equivalence relation Gi'(.A, @)* as follows : two pairg¥:, ¢1) and (S, ¢) are
equivalent if there exists an isomethy: ¥, — 5 such that the homeomorphis(m‘1 oho¢yis
an element oflomeog (S,, A). The equivalence class of a p&k, ¢) will be denoted byj(Z, ¢)]. Let
Tet(fi, a)* denote the space of equivalence classes of this relation.

Obviously, the groufi’(S,, A) acts on7°*(A, @)*. The quotient spac&* (A, a)* /T'(S,, A) is themo-
duli space of flat surfaces with marked erasing traed denoted by\/let(/l, a)*.

We denoteZ** (A, @)* the set of equivalence classgE, ¢)] whereX. is a flat surface of area one,

and M$t (A, a)* the quotient spac<* (A, a)* /T'(S,, A).

Definition 3.1.6 (Teichmiiller space of flat surfaces with erasing forest)TheTeichmilller space of flat
surfaces with marked erasing forest and parallel vector fettie set of all pair[(%, ¢)], &), where
[(Z,¢)] is an element of °*( A, &)*, and¢ is a normalized parallel vector field oni \ ¢(.A). We denote
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3. FLAT SURFACE WITH ERASING TREES

this spacel (A, a).

Themoduli space of flat surfaces with marked erasing forest and normade@dle! vector fields
the quotient spac@°t(A, a)/T(S,, A) and denoted by\1°t( A, a).

Remark:

e The grougs!, identified to the rotations of the Euclidean plane, acts naturally on the $pacé, @) :
if Ry is the rotation of anglé and([(Z, ¢)], ) € T (A, a), thenRy-([(Z, ¢)], ) = ([(Z, ¢)], Ry-
€), whereRy - £ is the parallel vector field defined as follows : at every point wieisedefined,
Ry - £ is the vector obtained by rotatirggan angled. This action ofS! endows’Tet(/l, a) with a
principalS!-bundle structure oveF et (A, a)*.

e The spac& (A, a) has also &*-bundle structure oveF¢t (A, a)* : for each elemen((Z, ¢)] €
T8 A, @)*, let¢ be a normalized parallel vector field 6h\ ¢(A), the fiber over(%, ¢)] is the

set of pairdr - [(Z, ¢)], Re - £), withr € R%, 0 € St, wherer - [(%, ¢)] is the multiplication of the
metric onX by r while ¢ stays unchanged.

We can now state the main results of this chapter.

Proposition 3.1.7 (A, &@)* is embedded into7 (¢g,n)) Let7 (g,n) denote the Teichirler space of
conformal structures, anil(g, n) denote the usual modular group of the punctured surfgg pi, . . ., pn }-

a) There exists an injective map: T4 A, a)* — T (g,7n).

b) There exists also a monomorphismI'(.S,, A) — I'(g, n) with respect to whickd is equivariant .

The definitions o ando are quite natural. Namely, since a flat metric structure implies a conformal
structure, an equivalence classg¥ (A, @)* is contained in an equivalence clas<d, n), this defines
©. By definition, a homeomorphism iHomeo™ (S, /l) fixes the sef{py,...,pn}, hence it represents
an element in the modular grolifgg, n), this definesr.

Endow the spacé’let(,i,@)* with the topology inherited fron? (¢g,n), we get then a topology on
T°*(A, @) which is induced by th€*-bundle structure oveF (A, a)*. We have :

Corollary 3.1.8 The action of the group'(S,, A)onTe (A, &) is properly discontinuous.
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Proof: Since7 (A, a) is aC*-bundle ovefT**(A, a)*, and the action of (S,, A) preserves this bundle
structure, it is enough to show that the actioT'¢F,, .A) on 74 (A, a)* is properly discontinuous. But
this is a direct consequence of Proposit®fh.7, since we know that the action 8{g,n) on7 (g, n) is
properly discontinuous. a

Now, let us slit open the surfacg; along every treed; in the forestA, if A; is not a point. The
surface obtained, which will be denoted E&, is then a translation surface with geodesic boundary. If
the treed; hask; > 1 vertices (henceé;; — 1 edges), then the vertices df; give rise to2(k; — 1) points
in the boundary component 6‘@ corresponding tod; whose complement agk; — 1) open geodesic
segments. Ley? denote the finite subset 6@ which arises from the sdpy,...,p,}.

Let ([(2, #)], €) be a point inZ (A, @), by definition,¢(A4;) is a geodesic tree dt. Slit open the sur-
faceX along every tre@(A;) if A; is not a point, and leE? denote the new surface. Observe that

is also a translation surface with geodesic boundary homeomorpﬁﬁ: fiche homeomorphism from

S, onto X induces a homeomorphisti from SE, onto £ which maps each geodesic segment on the
boundary ofSE, onto a geodesic segment on the boundar¥ofThe normalized parallel vector fiekd

on Y induces also a normalized parallel vector fieldXwhich will be denoted again by. It follows

that we get a point in the Teichitier spaceZ+(a’; 3’), which is represented by the p&j(Xf, ¢7)], £),
where the data’, andj3’ are determined by the anglasand the forest.

Let = denote the map fromT**(A, @) into 71(&/; ') which associates to a paff(X, ¢)], &) in
Tr(a; ) the pair([(XF, ¢1)], €) constructed as above. First, we have

Proposition 3.1.9 The magE is well defined.

Proof: We need to show that if¥;, ¢1) and (X9, ¢2) represent the same point ﬁiet(fl, a)* then
(Et}, gbt}) and(Eg, $") represent the same pointd (a'; 3')*.

By definition, there exists an isometry

h221—>22,

such thatq52‘l o h o ¢1 is isotopic tolds, by an isotopy fixing the point$p:,...,p,}. Let Rt be the
isometry fromEﬁ ontozg which is induced byh.

By LemmaA.0.1, we can assume that the isotdfyfrom ¢2‘1 oho ¢ tolds, preserves the forest,

thereforet, induces an isotopy fromy, ' ohfo ¢! tod ., which is identity on the se®. By definition,

S5
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it follows that the pairg{Eﬁ, dﬁ) and(Eg, ¢g) represent the same pointa (a’; 3')*. O

We have the following

Theorem 3.1.10 i) The maE is injective, continuous, and the @(ﬂ’et(/l, a)) is a special complex
affine sub-manifold of(a’; ') (meaning that the coordinate change&¢7 (A, @)), which are

induced by those dfr(a’; 3'), preserve a volume form) of dimension
e 2g+n—1ifa; € 2nNforeveryi € {1,...,n}.
e 2g + n — 2 otherwise.

ii) There exists a volume form &i(7°*(A, @)) whose pull-back b gives a volume off * (A, a)
which is invariant by the action of the grot(S,, A).

A direct consequence of Theorerl.10is the following

Corollary 3.1.11 The spac@et(/t, a) is a flat complex affine manifold of dimension
e 2g+n—1if o; € 2rNforeveryi € {1,...,n}.
e 2g + n — 2 otherwise.

There exists off **(A, @) a volume form invariant by the action of the grolipS,, .A), which will be
denoted byury.

3.2 The embedding of7* (A, a)* into 7 (g, n)

3.2.1 Conformal metrics with conical singularities on a Rienann surface

In this subsection, we follow loosely the definitions ir]]. Let S be a compact Riemann surface,
possibly with boundary. Aonformal (singular) metrig on S is defined by a local expression

h = p(2)|dz|?,

wherez is a local coordinate 0f, andp is a positive measurable function.
A (real) divisor on S'is simply a formal sum :
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ni

n2
div = Z SiPi + thqj7
j=1

=1

wherep; € int(S) i =1,...,n1),¢; € 0S (j =1,...,n2),andsy, ..., sy, t1,...,ty, are real num-
bers.

We will always suppose that the real numbeys . ., s,, andty, ..., t,, satisfy the following condi-
tion :

1
§; > —1; z’:l,...,nlandtj>—§; j=1,...,n9.

The set{pi1,...,Pn,,q1,---,aqn, } IS called thesupportof div and denoted byupp(div). The real
number

ni no
|diV‘ = Z S; + th,
i=1 j=1
is called thedegreeof the divisordiv.

A conformal metrich on S is said torepresenthe divisordiv if i is a smooth Riemannian metric on
S\ supp(div) such that :

) Vie{l,...,n1}, h=e*|z|*i|dz|? on aneighborhood; of p;,
Vie{l,...,n2}, h=e?|w;|*|dw;* ona neighborhool; of ¢;,

wherez; (resp.w;) is a holomorphic coordinate dr; (resp.V;) such that;(p;) = 0 (resp.w;(g;) = 0),
andu : U; — R (resp.v : V; — R) is a continuous function of clags? on U; — {p;} (resp. on

Vi = {4}

The pointp; is then said to be eonical singularityof angled; = 27 (s; + 1). The pointg; is said to be
acornerof anglen; = 2w (t; + %). Observe tha€, equipped with the metrigz|?*|dz|?, is isometric to
an Euclidean cone of angle= 27 (s + 1). Similarly, the upper half plan& = {z € C : Imz > 0},
equipped with the metrig:|*!|dz|?, is isometric to an Euclidean corner of angle= 7(2t + 1).

If his a conformal metric with conical singularities éh let K, denote the curvature @f, this is real
function which is defined o'\ { singularities ofh}. An Euclidean conformal metric, with conical sin-
gularities, representindiv is then a conformal metrik satisfying the following conditions :

- Foreachp;, i = 1,...,nq, there exists a conformal coordinatelefined in a neighborhood pf
such thaty = |z|%|dz|?.
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- Foreachy;, j = 1,...,no, there exists a conformal coordinatedefined in a neighborhood of
such thath = |w|*i |dw|?.

- Kj =0o0nS \ supp(div).

Let S be a compact Riemannian surface, possibly with boundarydandbe a real divisor ofS
satisfying the conditiorix). TheEuler characteristicof the pair(S, div) is defined to be

X(S,div) = x(S) + |div].
We have (seeTr1])

Theorem 3.2.1 (Gauss-Bonnet formula)Let » be a conformal metric representirtjv, then

1 1
- / / KndA, + — / kndh = x(S, div),
2 S 2 a8

whereKj, is the curvatured A, is the area element anig, is the geodesic curvature bf

Corollary 3.2.2 If h is a conformal flat metric with conical singularities and geodesic boundapre-
sentingdiv, then we have

ni ne
no
D0+ D mj=2m(n + 5 = x(9),
=1 j=1
whered); is the cone angle ai; (: = 1,...,n;) andn; is the corner angle ag; (j = 1,...,n2).
We quote here an important result which is provedTliri] :

Proposition 3.2.3 ([Ir1], Proposition 2) Let.S be a compact Riemannian surface, possibly with boun-
dary, anddiv a real divisor onS such thaty (S, div) = 0. Then there exists ofi a conformal metric
representingliv such thatS \ supp(div) is geodesic. This metric is unique up to homothety.

3.2.2 Proof of Proposition3.1.7

a) LetX be a flat surface having conical singularities homeomorphic &. The flat metric structure on

¥ induces a conformal structure @h\ { singularities}. The mapO is defined as follows : for every pair

(3, ¢) which is a representative of an equivalence cIaSifIY(A, a)*, let ¢ be a quasi-conformal ho-
meomorphism fronb, ontoX in the same isotopy class relative{toy, . . ., p, } of ¢. Since the isotopy
class relative tdpy, . .., p,} of ¢ contains diffeomorphisms, such a homeomorphism exists. We define
O([(Z, ¢)]) to be the equivalence classTi(g, n) which is represented by the pak\ {z1, ..., z,}, ¢),
wherez; = ¢(p;) i =1,...,nandX \ {z1,...,x,} is now considered as a Riemann surface. We need
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to prove :

Lemma 3.2.4 The mapO is well defined.

Proof: We have to prove that two different representati®@s, ¢, ) and(X9, ¢2) of an equivalence class
in 724 (A, a)* give the same equivalence clasgity, n). Let ¢, 2 be the quasi-conformal homeomor-
phisms in the same isotopy class relative g, . . ., p, } of ¢; and¢, respectively.

By the definition ofTet(/t, a)*, there exists an isometry : ¥; — X, such that<z>2‘1 ofod
is an element offomeo (S,,.A). Since an isometry between two flat surfaces is a conformal homeo-
morphism between the two Riemann surfaces underlying,¢and, are homotopic tap;, ¢, relative

to {p1,...,pn} respectively, it follows tha,tzfsg1 o f o ¢y is an element 0BC{ (g,n). Hence, the pairs
1\ {o1(p1), .-, d1(pn)}, &1) @nd (2 \ {d2(p1), - .., d2(pn)}, ¢2) belong to the same equivalence
classin7 (g,n). O

Next, we have :

Lemma 3.2.5 The map® is injective.

Proof: Let (1, ¢1) and (s, ¢2) be two pairs ir7 ** (A, a)* such thatArea(X;) = Area(3;) = 1. Let
é1, $2 be two quasi-conformal homeomorphisms isotopiotops relative to{pi, . . ., p, } respectively.

Suppose that®i \ {$1(p1), -, ¢1(pn)}, 61) @nd (32 \ {¢2(p1), .., ¢2(pn)}, ¢2) belong to the
same equivalence classTg, n), we have to prove thgt,, ¢1) and (X9, ¢2) also belong to the same

equivalence class ifi** (A, @)*.

By the definition of 7 (g,n), there exists a conformal homeomorphigm: ¥; — X5 such that
452*1 o h o ¢ is isotopic tolds, by an isotopy fixing every point in the s¢p1, ..., p,}. Now, since
¢; is isotopic to¢ relative to{p;, ..., p,}, fori = 1,2, it follows thatgzg1 o h o ¢ is also isotopic to
Ids, by an isotopy fixing every point in the sgp1, ..., px}.

First, we prove that is also an isometry between the two flat surfaceand>s.
Let (z1,...,zy,), and (y1,...,y,) denote the singularities of; and X, respectively, wherer; =
o1(pi),yi = d2(pi), @ = 1,...,n. Let f; and f, denote the two flat metrics or; and >, respecti-
vely. Letdiv, denote the divisop_"_, s;z;, anddiv, denote the divisop 7, s;y;, wheres; satisfies

a; = 2m(s; + 1). By definition, f; is a conformal flat metric which represents the divisk¥; on
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S, i=1,2.

Sinceh is a conformal homeomorphism, it follows thdtfs is also a conformal flat metric o, . Since
h(divi) = divy, we deduce that* f, representsliv; too. Now, from Propositior8.2.3 there exists
A > 0 such thatf; = X h* fo. Since we have assumed thatea s, (X1) = Areay,(X2) = 1, it follows
thatA = 1. Therefore we have¢; = h* f5, in other wordsh is an isometry from the flat surfaée onto
the flat surface:s.

All we need to prove now is tha‘gl o ho ¢, preserves the forest. By definition, ¢, (/l) is a union
of geodesic trees oB; whose vertices are, , . . ., z,,. Sinceh is an isometry of flat surfaces(¢; (A))
is a union of geodesic trees whose verticesigre. . , y,,. Leta be an edge of a tree id. The setp (a)
is a geodesic segment @h, henceh(¢;(a)) is a geodesic segment Bf,. By definition,¢2(a) is also a
geodesic segment &fs.

By assumption, there exists an isotopy relativéip, . . ., p, } from hog to 2. Now, from Lemma2.3.8
we haveh (¢ (a)) = ¢2(a). Since this is true for every edgesih we conclude that o ¢ (A) = ¢2(A),
or equivalentlyp; ! o h o ¢1(A) = A. It follows immediately thats; ! o h o ¢; € Homeog (S,,.A), in
other words{X1, ¢1) and(Xq, ¢2) are equivalent il’i’ft(A, a)*. O

Part a) of PropositioB.1.7is now proved.
b) It is well known thatl’(g,n) can be identified to the quotient grotifomeo™ (g, n)/Homeog (g, n),
whereHomeo™ (g, n) is the group of all preserving orientation homeomorphisn$,pfvhich fix every
point in the se{p1, . .., p,}, andHomeog (g, n) is the normal subset dfomeo™ (g, n) consisting of all

elements which are isotopic ids, relative to{p1,...,pn}.

By definition, it is clear thatlomeo™ (S,, A) is a subgroup oflomeo* (g, n), and

Homeog (S, A) = Homeo™ (S, A) N Homeog (g, 7).
It follows thatT'(S,, A) is a subgroup of (g, n). Leto : I'(S,, A) — I'(g,n) denote the natural im-

bedding. The morphism is obviously injective. Since the actions Bf.S,, /l) andI'(g,n) are defined
in the same way, the m&p is equivariant with respect to. O

From now on, we can considgf* (A, a)* as a subset of the Teiclirter spaceZ (¢, n), andl'(S,, A)
as a subgroup df(g, ), which preserve§ et (A, a)*.
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3.3 Injectivity of the map =
Let X1 = ([(Z1,¢1)], &) and Xy = ([(Z2, ¢2)], &) be two points inZ (A, &) such thaB(X;) =
(X2). By definition, 2(X;), i = 1,2, is represented by the pa@{(Eg,qSE)],fi). The assumption

2(X1) = E(X,) implies that there exists an isomethy from ¢ onto £ such thatgby1 o ho ¢}
is an element iomeo; (53, VY).

Clearly, the isometry* induces an isometrl from ¥, to X5, which maps the fores; (A) to the fo-
restgo(As). Setp = g5 tohody - S, — S,. Remark thapp(A) = A, thereforep € Homeo™ (S, A).
All we need to prove is the following

Lemma 3.3.1 ¢ is isotopic tolds, by an isotopy fixing all the points ifpy, . .., pn}.

Proof: Sincey? = ¢>”2_1 o h% o ¢ belongs taomeog (5%, V%), there exists an isotopy

HY : S5 % [0;1] — SE,

such thatH? = %, HY = Id ., andH, (V) = V¥, whereH! = H?(.,t), V¢ € [0; 1].
0 1 i

sy

Let (a,a) be a pair of geodesic segments in the boundar&ﬂ,m’vhich correspond to the same edge
a in the forestA. The identifications withi induce a homeomorphismy, from a ontoa. Let f be a
homeomorphism oSf, which is identity on the sepv”. The necessary and sufficient condition foto
define a homeomorphism ) is that,

for every edgei in the forestA, we havaog1 ° flaopa = fla (%)
Lemma3.3.1will follow from the following lemma

Lemma 3.3.2 Given any homeomorphisynof Sf] which is identity on the sét?, there exists a homeo-
morphism/f’ of Sg such that the homeomorphisfn: f' o f verifies the conditiorfx).

Proof: We only prove this lemma in the casecontains only one edge The general case can be shown
by similar argument.

We identify a thin neighborhood, of a in SE to a rectangleR. = [0;1] x [0;¢] in R?, with e
positive, such that is identified to the segmefit; 1] x {0}. The map(pg1 o fia © pa) © f|;1 induces a
homeomorphismg of the segmen0; 1]. We define a homeomorphisghof R, as follows

€e—t

Qs 1) = (s + ——(q(s) = s),t), ¥(s,1) € [0;1] x [0; ¢].
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Note thatg(0) = 0, andg(1) = 1, thereforeQ is identity on the two vertical sides @t.. By definition,
Q is identity on the upper side @, and@ = ¢ on the lower side ofz..

The homeomorphisr® induces a homeomorphis@ of N,. We can extend)’ by identity outside
N, to obtain a homeomorphisifi of Sg. By construction, we have

f|/a:<pglof\ﬁopﬁ)of‘;17

and

fll— == Ida

a

It follows immediately thagf = [’ o f verifies the conditiorjx) ona. The lemma is then proved

Back to the proof 08.3.1 By Lemma3.3.2 for eacht € [0; 1], we can find a homeomorphisHj of
Sf, such thafil, = H, o H; verifies the condition$x). Clearly, the homeomorphisni§, can be chosen
continuously as a function af therefore H; induces an isotopy from to Ids, which is identity on the
set{p1,...,pn}, and the lemma follows. O

Lemma3.3.1allows us to conclude that the maps injective.

3.4 Image of7°'(A, &) by =

Let V? denote the finite subset 6’@ arising from the se{p.,...,p,} of S,. Let TR(SE,) be the set
of all triangulations 0’65 whose vertex set i¥% modulo homotopy relative to.

Let7 be a triangulation irTR(SE,), in Sectior2.4, we have already defined a suligetof 71 (a/; 5')
corresponding td, and a local charl defined oni/y. Let N1, N5 be respectively the number of
edges, and the number of trianglesZafRecall that we also have a system of linear equations associated
to 7, which is denoted b+, consisting ofN, equations. LeV be the subspace @' consisting
of solutions of the syster§+. The image ot/; by ¥ is then an open subset &f. Since we have
assumed that there exists at least a tred iwhich is not a point, the boundary 6@ is not empty, and
hence,

dime Vr =29+2) (kj—1)—2=2g+2(n—m)—2.
j=1

Note that the family{i/7, 7 € TR(SE)} is an open cover of the spa@e (a’; 3'). First, we have
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Proposition 3.4.1 For every triangulatior? in ’TR(SE), the intersectiorE(7°* (A, @)) Nz is mapped
by U+ onto an open subset of a subspacé/gf of dimension

e 2g+n—1ifa; €27N, Vi=1,...,n.

e 2g + n — 2 otherwise.

For eachr in TR(SE), let V- denote the subspace G- that contains the image &f(7°!(A, a)) N
U7 as an open subset. We have then

Proposition 3.4.2 If 7; and 7, represent two different equivalence cIasseQ'iR(SE) such that/r, N
Uz, # 2, thenWz, o U mapsV. onto V7. .

From Propositior8.4.1, and Propositior3.4.2 we get immediately

Corollary 3.4.3 Z(T°%(A, a)) is a special flat complex affine subspac&eta’; 3').

3.4.1 Proof of Proposition3.4.1

Let ([(, ¢)],€) be a pointT*t (A, @) whose image b§ is a point([(27, ¢%)], €) inUr C Tr(a'; ).
By definition, the homeomorphisat sends the triangulatioR of SE onto an admissible triangulatiain
of Xf. The triangulatioril’ of £? induces a triangulation & by geodesic segments containing the forest
A = ¢(A), whose vertex set i§p1, . . ., p, }. This triangulation o2 will be denoted byT™*.

Recall that the maf+ associates to each edgeTof complex numbers, the complex number asso-
ciated to an edge of T will be denoted by:(e). We start with

Lemma 3.4.4 If (e, ¢) is a pair of edges in the boundary Bf which corresponds to an edge of a tree
A; = ¢(A;) in ¢(A), then we have

z(e) = —e'z(e) (3.1)

where the numbef is determined by the angles and the treeA;.

Proof: Let ¢ denote the edge od; which corresponds to the péie, €). Assume that the edgesand
e are oriented coherently with the orientationX#. It follows that the orientations of andé induces
inverse orientations af, this justifies the minus sign ir3(1).
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Let p be the mid-point of, and lety be a closed curve on the surfaesuch thaty N A = {p}, where
A= ¢(A).

Observe thaf is the rotation angle of the holonomy of the curveThe angle is determined from
the treed; and the anglea;, ..., a, as follows : since4; is a tree,4; \ é has two connected compo-
nents. Take one of these components and add to it the segnvemget then a sub—treeg- of A;.

Suppose thafz;,, z;,, . .., z;, } are the vertices of the tree;, wherez;, andx;, are the endpoints of
é. Up to a permutation of indices, the curyds homotopic to the curvg, o l;, o ---ol; o~/, where
li.,, s =1,...,k, is a closed curve homologous to a small loop abgutand~’ is a closed curve in
52\ A. Since the rotatiomrth(l;, ) is of anglea;,, and the rotatiomrth(y’) is trivial by definition of
erasing forest, it follows thairth(+) is the rotation of angley;, + - - - + «;, . Hence

0 =a; + -+, mod?2r.
O

Since the trees in the forest have totally(n — m) edges, Lemm&.4.4implies that coordinates of
the vector 7 ([(2%, ¢7)], &) € CM is must verify(n — m) additional equations of types(1). Adding
those equations to the systé#, we get a systerB’- which containsV, + (n — m) linear equations.
Let Vi denote the subspace @f"! consisting of solutions d%-. We have then

Lemma 3.4.5 The image oE(7°*(A, @)) N Uz by U7 is an open subset 6f-.

Proof: Let Z = (z1,...,2y,) denote the image of[(X%, ¢%)],€) by ¥+. It suffices to show that
U7 (Z(T(A, &) NUz) contains neighborhood ¢ in V.

LetZ' = (2, ...,z},) € C™ be a vector in a neighborhood &fwhich is also a solution of the system
S*-. Using the triangulatioff’, we construct a flat surface froaf as follows :

. Construct an Euclidean triangle froth 2, z; if 2}, 2}, 2, verify an equation of type.3).

. ldentify two sides of two distinct triangles if they correspond to the same ormpimber:..

. Identify the edges corresponding4pand>’ if 2] andz; satisfy an equation of type(d).
Clearly by this construction we obtain a flat surfa¢ehomeomorphic tcEA. The surface’ also has:
conical singularities, and there is a distinguished geodesic erasing fres >’. Moreover, we also

get a triangulation™’ of ¥’ by geodesic segments. Each triang|diti corresponds to a triangle Ii?
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specified by three complex numbers, hence we get a normalized paratied field¢’ on X'\ A’ which
is defined by the constant vertical vector figld 1) on the Euclidean plaR?.

Define an orientation preserving homeomorphism

f:2—Y,

as follows : f maps each edge df* onto the corresponding edge 6f’, and the restrictiorf on each
triangle is a linear transformation &f. Note that the homeomorphisjhis then quasi-conformal with
respect to the conformal structuresXnandY’. Let ¢’ denote the map

¢ =fop:S, — ¥
It follows that the pair([(X’, ¢')],£’) represents a point &F°t(A, a)* close to([(Z, ¢)], €). Clearly, by

construction, we hav#r (Z([(¥', ¢')],¢')) = Z’, and the lemma follows. O

Now, we need to compute the dimension\of.

Lemma 3.4.6 We have

. . 2g+n—1, ifa;€2aN, Vi=1,...,n;
dime V7 = .
29 +n —2, otherwise.
Proof: Since the systerfi; contains alreadyV, equations, the systeSt- containsN; + (n —m) equa-
tions, therefore

dimVE: >Ny — (N2 +(n—m)) =29 +n—2. (3.2)

Consider the surfacg” with the admissible triangulatiof. Leta;, a, . . ., an—m, Gn_m denote the
edges ofT' which are contained in the boundaryf so that each paifa;, a;) corresponds to an edge
of a tree in the forestl of 3.

Choose a family of primitive edges i, note that such a family must contai2g+ m — 1 edges, let
bi,...,bag+m—1 denote the edges in this family. As usual, for any ed@é T, let z(e) be the complex
number associated toby V7.

By definition, we havent(X) \ U32{™ b, is an open disk. Using Lemnfa4.1, ii), we deduce that
if e is any edge off’, thenz(e) can be written as a linear combination of

(z(a1), z(a1),. .., 2(an—m), 2(@n-m); 2(b1), . . ., 2(b2g+m—1)),
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with the coefficients in{+1,0}. From Lemma3.4.4 we know thatz(a;) = —e¥iz(a;), whered; is
determined byy and.A. The complex numbet(e) is a linear function of

(Z(al)v ceey Z(anfm)v Z(b1)7 cee Z(b29+mfl))-
We deduce that
dim V3 < 2g+n— 1. (3.3)
Apply Lemma2.4.1, ii) to the diskD = int(X%) \ U325, we get

n—

3

(2(ai) + 2(ai)) = 0

=1

By Lemma3.4.4 it follows

i
E

(1 —e¥)z(a;) = 0. (3.4)

=1

Note that the numbers(b;), j =1,...,2g +m — 1, do not appear in the equatioB.4) because each
of the edge$; belongs to two distinct triangles. Here, we have two issues :

- Case 1 : there existse {1,...,n} such thaty; ¢ 27N. The equation3.4) is then non-trivial,
which means that the vect0s(a1), . . ., z(an—m), 2(b1), . . ., 2(bag+m—1)) belongs to a hyperplane

of C29t7—1 Therefore we have

dimV: <2g+n—2. (3.5)
From @.2) and @8.5), we conclude thalimc Vi = 29 +n — 2.
- Case 2 n; € 2N for everyi in {1,...,n}. In this case, the equatioB.@) is trivial. However, this
also means that the sum of all equations in the sysignwith appropriate choices of signs, is the

trivial equation0 = 0. This impliesrank(S%*) < Ny + (n —m) — 1. Hence

dimVy: >Ny — (Na+n—m—1)=2g+n—1. (3.6)

From @.3) and @3.6), we conclude thadim V3 = 2g +n — 1.
The lemma is then proved. d

The proof of PropositioB.4.1is now complete. 0
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3.4.2 Proof of Proposition3.4.2

Let ([(, ¢)], €) be a point inT°t (A, @) such that[(Xf, ¢%)],£) be a point intz, NUz,. Let Ty, Ty
be the admissible triangulations Bf corresponding t&@; and7; respectively. By Theorer.6.2 we
know that one can transforfiy, into Ty by a sequence of elementary moves.

Recall that, by definitiony 7, is the solution space &7, i = 1,2, andV is the solution space of
T.» 1 = 1,2, whereSZ. is obtained fronB7, by adding(rn — m) equations of typed.1). Hence we can
considerVZ. as the intersection df 7, and the solution space of those additional equations.

Now, the map¥, o \I/,}ll can be seen as a restriction of a linear isomorpHisof C! ontoVy, . Since
elementary moves do not affect the edges on the boundaty, difie linear isomorphisrh preserves the
spaceV, and the proposition follows. O

3.5 Continuity of =

Let ([(Z, ¢)], €) be a pointT°t(A, @), and assume thaf(X!, ¢%)], €) is contained iri47, whereT
is a representative of an equivalence clas.fz”’m(SE). LetZ = (z1,...,2n,) € CM be the image of
(=% ¢M)], &) in CN1 by W7. We have proved that is contained in the subspadg, of CN. To show
the continuity of=, we prove the following proposition

Proposition 3.5.1 There exists a neighborhod#of Z in V- such thaE~* (¥ (U)) is a neighborhood
of ([, 9)],€) in T(A, a).

3.5.1 Preliminaries

Let U be a neighborhood df in V- such that for any¥” in U, the construction given in the proof of
Lemma3.4.5gives a poin{[(Sw, ¢w )], &w) in T¢H( A, ).

Observe that there exists a Hermitian foknof C1, such that, for any¥ in U, the area of the
surfaceXyy is given by HW. We define

Uy = {W = (wy,...,wy,) € U: WHW =1, wy €R}.

We can assume th#trea(X) = 1, and apply a rotation to the fiefdso that” is a vector inU;. We
can also assume thHt; is a ball.
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Let &7 be the map which associates to any vettom U the point([(Zyw, ¢y )] in T¢ (A, a)* (we
forget the fieldsy). Observe that the image of; by ¢+ is contained iant(/l, a)*.

To prove Propositio.5.1, we will prove the following proposition

Proposition 3.5.2 &7 (U,) is a neighborhood of( %, #)] in T (A, @)*.

3.5.2 Proof 0of3.5.2inthe caseq; € 27N, Vi=1,...,n

In this case, we have seen thdiinc V; = 2g + n — 1, henceU; is a ball of real dimension
2(2g + n — 2). We remark that, in this cas@ (A, @) is locally homeomorphic to the moduli space of
closed translation surfaces havingingularities. It is well known that the later is of complex dimension
2g +n — 1, hence so ig°* (A, a). It follows that7t (A, @)* is of real dimensior2(2g +n — 2). Since
dimg U; = dimg 7(A, @)*, to prove thatbr(U,) is a neighborhood of(3, ¢)] in T¢¢(A, @)*, we
only need to verify thaf+ is continuous, and injective.

The injectivity of &7 follows from the fact that, for if (X, ¢pw)] = @7 (W), then there exists a
unique normalized parallel vector fiefgh, on Xy such thatl 7 ([(Zw, ow )], Ew) = W.

For the continuity ofb, recall that we have an embedding fréffi®(A, @)* into 7 (g,n), and the
topology onTlet(A, a)* is induced from the topology df (g, n) with Teichniiller metric by this em-
bedding. Therefore, it is enough to show thet is a continuous map frofd; into 7 (g, n).

Let {IV;} be a sequence of vectors converging to a vebitgs in U;. Let [(Xx, ¢x)], & = 1,2,...,
denote the image diy, and[(X., ¢ )] be the image ofV,, by ®7. By construction, we can assume
that

Ok = fr © Poos

where f; is a homeomorphism fromt,, onto X;, which maps the admissible triangulatidh, =
$oo(7T) Of X Onto an admissible triangulation &f;.

Recall that the restriction of;, into each triangle ol is a linear map ofR?, thereforef; is quasi-
conformal. Ask tends tooo, the restriction off, on each triangle of', tends to identity, hence the
dilatation K ( f) tends tol, it implies immediately that the Teichitier distance betweeliXy, ¢ )] and
(X0, 9o )] tends to zero. We deduce thig- is continuous, and the proposition follows. O
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3.5.3 Proof 0f3.5.2in the case there exist such that«; ¢ 27N

In this case, by PropositidB.0.1, we know that there exist a subgét of C*, and a continuous map
&7 from Uy into 7 (g, n) verifying the following conditions :

- U, is homeomorphic to a ball of real dimensit8y + 2n — 6).

- U =U; NV

&7 is the restriction ofo 7 into Uy.

- &, (U;) is a neighborhood di(%, ¢)] in 7 (g, n).

For everylWW € Uy, ®7(W) is represented by a paiEyw, fir o ¢), whereSy, is a flat surface
havingn singularities with cone angles, . . . , a,,, and fy is a homeomorphism from onto Xy
mapping the triangulatio’ onto a triangulation by geodesic segment&.gf, whose vertex set is
the set of singular points.

Note that the surfacéT(W) is defined by constructing triangles from the coordinated/ofand gluing
them together using@ as pattern.

It follows that, every pointX in 7%( A, @)* close enough t&(%, ¢)] can be written a7 (W), with
W e Ui.In particular,X can be represented as a p@lsy, fi o ¢) with the properties described above.
By definition, X is represented by a pait’, ¢’), where is also a flat surface having singularities
with cone anglesy, . . ., a,, and¢’ is a homeomorphism mapping the erasing forésinto an erasing
forest ofY'.

We can then identity’ to Xy, and it follows thatfyy o ¢ is isotopic tog’ relative to{p1, ..., py}. Since
both fiy o ¢ and¢’ map.A onto a geodesic forest, using Lemih&.8 we conclude thafyy o qb(/l) =
qb’(fi). Now, by the definition ofb7, it implies that the vectolV belongs to the spacé’-. Therefore,

WevVinU, =Uy.

The proposition is then proved. O

3.5.4 Proof of Proposition3.5.1

Proposition3.5.1is a direct consequence of Propositds.2 SetU = U; x C*, with U; as in Pro-
position3.5.2 The setU can be identified to an open subsedof.
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For eachiV € Uy, let[(Zw, ¢ow)] € T2 A, @)* be the image ofV by ®. There exists a unique
normalized parallel vector fielgl; on Xy such thaW o =([(Xw, ow)], éw) = W. We can then extend
the map®7 into a mapd, which is defined ofU such that

UroZodr(W)=W, VW € U.

It follows that &+ (U) is contained irE~1(¥;'(U)). From3.5.2 we know that®(U;) is a neigh-
borhood of[(, ¢)] in 74( A, @)*, therefore®7(U) is a neighborhood of[(2, 4)],£) in T¢ (A, a).
Proposition3.5.1is then proved. d

3.6 Volume form on= (T (A, a))

In this section, we define a volume form on the sub-manifefi@®t (A, a)) of 7r(a’; 3'), and prove
that the pull-back of this this volume form ontﬁet(/l,o?) is invariant by the action of the group
I'(Sy, A). The construction of this volume form is similar to the construction of the volumme for, of

TT(d/;B/).

3.6.1 Definitions

Let7 be atriangulation of?, which represents an equivalence cIaSERI(Sf,). As usual, letVy, Ny
denote the number of edges, and the number of triangl@s@spectively. Let : U — CN' be the
local chart associated . Recall thatl (/7 ) is an open subset of the solution spagge of a system
S, which consists ofV, equations of typeZ.3). We have shown thab - (Z(T°(A, &)) NU7) is an
open subset of the solution spadé of a systenB’-, which consists ofV, + (n — m) equations. The
systemS?- is obtained fron+ by adding(n — m) equations of typed.1).

Letay, ..., an,+(n—m) denote the vectors ¢V )* which correspond to the equations of the system
S%. A vectora; is said to benormalizedif each of its coordinates is eithér or a complex number of
modulel. We have two cases :

- Case 1 there exist € {1,...,n} such thaiy; ¢ 27N. In this case, we have seen thiain V3 =
2g +n — 2, hencerank(S%) = Ny + (n — m). Consider the complex linear mayg- : CM —
CN2+(n=m) ‘which is defined in the canonical basis®¥* andCN2+(—7) py the matrix

ai
Ar =

ANy +(n—m)
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The mapA 7 is then surjective, anil’- = ker A%-. The mapA 7 is said to benormalizedf each
row of its matrix in the canonical basis is nhormalized.

Let Aon, €t Ag(n,+(n—m)) denote the Lebesgue measures@h ~ R2Nt and CN2H(n=m) ~
R2(N2+(n=m)) regpectively. Sincé\ is surjective Aoy, and oy, induce a volume formyz on
V7 via the following exact sequence :

0 — Vi —CM AT, eNa+n=m) __
- Case 2 foreveryi € {1,...,n}, o; € 2nN. In this caserank(S%) = Na + (n —m) — 1, hence

rank(A%) = Ny — 1.

If the vectorsay, ..., an,4(n—m) are normalized, and if their signs are chosen suitably, we have
a1 + --- + an, = 0. Thus, without loss of generality, we can assume thaA”>- = W, whereW
is the complex hyperplane @"2*("~™) defined by

W = {(21, .. "ZN2+(n—m)) c CN2+(TL—m) iz e+ ZNy+(n—m) = 0}

Let )\/2(N2+(n7m)71) denote the volume form W which is induced by the Lebesgue measure of
CN2+(m=m) The volume forms\yn, and),
following exact sequence :

, .
(Na+(n—m)—1) INduce a volume forvr on V- via the

0— Vi A w g,

In both cases, lgts denote the volume forn¥’-7 which is defined OE(T (A, a)) NUr.

3.6.2 Invariance by coordinate changes

Let 77, and 7> be two triangulations ofS‘f] which represent two different equivalence classes in
TR(SE). Assume thaE (7" (A, @) N (Ur, NUz,) # @. Then we have

Lemma 3.6.1 ju7. = pig, ONE(T(A, &)) N (U, NUT,).

Proof: Let ([(Xf, ¢%)],£) be a point inE(7°(A, a)) N (Ur, NUz), and letT;, Ty be the admissible
triangulations of? corresponding t@; and7Z; respectively.

By Theorem?2.6.2 we can assume that, is obtained fromil'; by only one elementary move. Since an
elementary move does not affect the edge¥ pfvhich are contained in the boundary ¥, the equa-

tions of type 8.1) in S7; and inSz, are the same. Therefore, we can using the same arguments as in the
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proof of Propositior2.7.1, to show that there exists an isomorphisnFodf CN' such that det F| = 1,
and the following diagram commutes

A
0 — Vi — ch =34 X — 0
I|H |F ||1d

A
O—>V§—2—>(CN1%X—>O
whereX is eitherC2*+("=m) 'or W, and the isomorphisiH : V. — V7, which is induced byF, is
the coordinate change betwegr, and WV, . It follows immediately that
vy, = H'vy,

and the lemma follows. O

3.6.3 Invariance by action ofl'(.S,, A)

Lemma3.6.1limplies that the volume forméur : 7 € TR(SE,)} give a well defined volume form
on Z(7°*(A, a)). Let ur, denote the pull-back of this volume form orf&® (A, &). To complete the
proof of Theoren8.1.1Q we need to show

Lemma 3.6.2 The volume formur; is in variant by the action of (S, A).

Proof: The fact tha., is invariant by the action of the grod(S,, A) is quite clear from the definition
of I'(S,, A). Lety be an element df(S,, A), and suppose that([(X1, ¢1)],&1) = ([(Z2, d2)], £2). By
definition there exist an isometfyfrom ¥; ontoX,. Note that, by definitionqég1 o h o ¢ preserves the
forest.A.

As usual, Iet([(EE,qﬁE)],gi) be the image of[(X;, ¢:)],&) by 2, ¢ = 1,2. The isometryh induces
then an isometry frorﬂ[(E”l, qﬁ”l)], &1) onto([(Zg, qbg)], &2). Consequently, an admissible triangulation of
Zﬁ is mapped by: onto an admissible triangulation éjg Since any two admissible triangulations of

¥ are connected by elementary moves, Lentialallows us to conclude. O

The proof of Theoren3.1.10is now complete. 0
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3.7 A necessary condition for a tree to be erasing

Assume that the forest contains only one non-trivial tred, i.e. all other trees ind are points, then
from the proof 0f3.1.1Q we get the following

Corollary 3.7.1 If there existsi € {1,...,n} such thata; ¢ 27N, then the treed contains at least
three vertices.

Proof: By assumption,A contains at least two vertices. Assume tHahas exactly two vertices whose
cone angles are, as. By assumption, both angles , ao do not belong to the s@trN since the cone
angle at any isolate point id must be an integral multiple @r.

We know that the treel has only one edge, this edge corresponds to a pair of geodesic segmeants
on the boundary 05'5. Let ¢ be a normalized parallel vector field cﬂﬁ and7 be an admissible trian-
gulation ofSE. Let U7 be the local chart of+(a’; ') associated t@ . Note that/r contains the point

([(S5,1d)], €).

Let z(a) andz(a) be the complex numbers associated tanda respectively byl . From Lemma
3.4.4 and @.4), we have

(1—e?)z(a) = 0.

wheref = a; mod 2. Sincea; ¢ 27N, we havee’ # 1. Hence the equation above implies that
z(a) = 0, which means that the two vertices.dfcoincide, and we get a contradiction. O
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Chapitre 4

Spherical flat surface

4.1 Introduction

Spherical flat surfaceare flat surfaces which are homeomorphic to the spSér&y Proposition
3.2.3 we know that each homothety class of spherical flat surface with niisedccone angles at the
singularities corresponds to a unique conformal structure on the spherigh marked points and vice
versa.

Let p1,...,p, ben > 3 points on the standard sphe$é. Fix a set ofn positive real numbers =
(a1, ...,ay) such thatw; + -+ + «,, = 2mw(n — 2). TheTeichnilller space of spherical flat surfaces
havingn singularities with cone angles,, . . ., v, is the set of equivalence classes of péls¢), where

. X is a spherical flat surface havimgsingularities with cone angles, ..., a,.

. ¢ is a homeomorphism fro®? to ¥, which sendgps, . .., p,} onto the set of singularities ot
such that the cone angle@tp;) is «;.

. The equivalence class Of, ¢) is the set of all pair§X:, ¢'), whereg' is a homeomorphism isotopic
to ¢ by an isotopy which is constant on the $gt, ..., p,}.

We denote this Teichiiller spaceZ (S?, @)*. The equivalence class of a pé¥, ¢) in 7 (S%, a)* will be
denoted by{(%, ¢)]. Let 7 (S?, &) denote the produdt (S?, a)* x S!.

LetI'(0; n) denote the modular group of homeomorphisni$®fvhich is identity on the sefps, . . ., p, }.
Clearly,T'(0;n) acts on7 (S?, &)*, the quotient spacé(S?, a)* is themoduli space of spherical flat
surfaceshaving cone anglef, . . ., ay, }. Note that in this definition, we do not allow exchanges of sin-
gularities having with the same cone angle. We defdt€S?, a)* the subspace 0¥1(S?, a)* consisting
of all surface of area. By PropositiorB.2.3 the space\;(S?, @)* can be identified to the moduli space
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4. SPHERICAL FLAT SURFACE

M (0;n) of configurations of. points on the sphei@ up to Mobius transformations.

Extend the action of' (0;n) onto 7 (S?, @) such thatl'(0;») acts trivially on theS! part and let
M(S?, &) denote the quotier (S?, &) /T'(0; n). The main result of this chapter is the following

Theorem4.1.1  a) 7(S?, &) is a flat complex affine manifold of dimensien- 2, on whichI'(0; n)
acts properly discontinuously.

b) There exists a volume form @(S?, &) which is invariant by the action of the grodj{0; n).

The volume forms mentioned in Theoreli.l, and Theoren2.2.9are defined by the same method.

4.2 Flat complex affine structure on7 (S?, a)

As a direct consequence of Propositi®r2.3 we can identify7; (S?,@)* to 7(0;n), and hence,
T(S?,a) to 7(0;n) x C*, we endow? (S?, &) with the topology induced by this identification. It is well
known thatdimc 7 (0;n) = n — 3, it follows thatdim¢ 7 (S?, &) = n — 2.

4.2.1 Definition of local charts

Let 7R(S?, {p1,...,p,}) denote the set of triangulations 8f whose vertex set i$p1,...,p,}
modulo isotopy relative tdp1, .. ., p, }. Given a triangulatior?” of S? which represents an equivalence
class iNTR(S?, {p1,...,pn}), letUs denote the subset @ (S?, @) consisting of pairg[(Z, ¢)], e?),
such thatp(7) is a geodesic triangulation &f. By PropositiorB.0.1, we know thai/7 is an open setin
T(S% a).

Choose a treed in 7 whose vertex set i§py,...,p,}, for any ([(3, ¢)],e?) in Uz, ¢(A) is a
geodesic erasing tree Bf Therefore, we can identifys to an open subset ih“!(S?, A). From Theorem
3.1.1Q we get a map

\1177,4 U — C4n77,

which is injective, and continuous, such thiat 4 (U7 ) is an open subset of the solution spate 4 of
a system of linear equatiorﬁ}vA. Note that, in this case, the syste&n 4 has3n — 5 equations, and
rankS7 4 = 3n — 5, hencedime Vi 4 = (4n —7) — (3n — 5) = n — 2. It follows that W7 4 can
be considered as a local chartB{S?, &) onlfr. It is worth noticing that¥'7 4 is only defined up to a
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4. SPHERICAL FLAT SURFACE

rotation.

4.2.2 Coordinate changes

Let 7y, 7> be two triangulations d§? which represent two different equivalence class€ER(S?, {p1, ..., pn}).
Let ([(X, ¢)], &) be a point irdz; NU7,, and letT';, T be the geodesic triangulations®fcorresponding
to 71, and7s respectively. Choose a treg, (resp.As) in 77 (resp.73) which connects all the points in
{p1,...,pn}, and let¥r, 4, and¥y, 4, be the two local charts df (S?, &) corresponding.

Given an edge of Ty which is not contained iy, let P, be the developing polygon efwith res-
pect toT; (see2.6.]). By construction, there exists a map from P, into 3 which is locally isometric
mapping a diagonal d?. ontoe.

The mapp. sends geodesic segments in the boundaB,anto edges of'; . It follows that the complex
number associated to the edgky the local chartl 7, 4, can be written as a linear function of complex
numbers associated to edgeslaf which correspond the segments in the boundary oty the local
chartW 7, 4,. Since the roles o'y and T, in this reasoning can be interchanged, we deduce that the
coordinate change betwedny, 4, and¥z, 4, can be written as a linear isomorphism@f~7 which
sendsVy, 4, ontoVZ , . Therefore we can conclude tHALS?, a) is a flat complex affine manifold of
dimensionm — 2.

4.2.3 Action of['(0;n)

We know thatl’(0; ) acts properly discontinuously dh(0;n). We have seen th&t(S?, @) can be
identified to7 (0; n) x C*. Clearly, the action of (0; n) on theC* factor of the product (0;n) x C* is
trivial, therefore the action df (0; n) on 7 (S?, &) is properly discontinuous. Patj of Theoren¥.1.1is
now proved.

4.3 Volume form on7 (S?, &)

4.3.1 Definition

SetN; = 4n — 7, No = 3n — 5. Let 7 be a triangulation o§? which represents an equivalence class
in TR(S?, {p1,...,pn}). Let A be atree contained i, which connects all the points ifpy, ..., p,}.
Let ¥ 4 be the local chart associated(tb, .A), which is defined on the sét;r.
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LetS% 4 be the system of linear equations associatebtgs, and letA% , be the normalized linear
map associated tSi‘[’A. In this caseAi‘[yA is a linear map fronCN* onto CNz2, which is given, in the
canonical basis of ¥ andC™2, by a matrix whose rows correspond to the equatiorsym. Recall
that every entry of the matrix (Ai},A (in the canonical basis @' andC™?) is either zero, or a com-
plex number of module one.

We definevr 4 to be the volume form oW , which is induced by the Lebesgue measure€ Of
andC™? via the following exact sequence

A*
0 V;:A C4n—7 T,A (an—5 0

Let 17 4 denote the pull-back afr 4 on/7. The following proposition shows that the volume form
w14 does not depend on the choicef

Proposition 4.3.1 Let7 be a triangulation representing an equivalence clasg R(S?, {p1,...,pn})-
Let.A;, A2 be two trees contained i, each of which connects all the points{ipy, . .., pn }.

Let A7 4, and A% 4, denote the linear maps fro@™1 onto C™V2 corresponding ta4;, and A, res-
pectively. Letyr 4,, i = 1,2 denote the volume form o , which is induced from the Lebesgue
measures o€ and C™2. LetH = W7 4, o \P;}Al be the coordinate change betweén 4,, and
VT 4,, then we have

H'vr 4, = vr 4,

To show that the volume formz 4 actually does not depend on the choiceZafwe prove the
following theorem

Theorem 4.3.2 Let X be a spherical flat surface. If'; and T, are two geodesic triangulations &f
whose sets of vertices coincide, and contain the set of singularitestbenT; and T are connected
(i.e. one can be transformed into the other by elementary moves).

Corollary 4.3.3 The volume forms 7 4 agree on overlap domains of local charts, and give a well defi-
ned volume formur, on 7 (S?, &) which is invariant byI’(0; n).

Proof: From Propositiort.3.1, we know that the volume formz 4 does not depend on the choice of
the treeA, therefore, we can writg instead ofur 4.

Let 77, 75 be two triangulations d§? which represent two different equivalence classeésR(S?, {p1, ..., pn})
such thatd, N Uz, # @. Let ([(Z, $)], e?) be a point inkir, N Uz, and letTy, T, be two geodesic
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4. SPHERICAL FLAT SURFACE

triangulations o corresponding t@7, 75 respectively. We have to show that, = pz, only, NU7,.

By Theorem4.3.2 we only have to consider the case wh@kgis obtained fromI'; by an elementary
move. Remark that, in this case, there exists a #temnnecting all the singular points &f which is
contained in bothl'; andT,. Therefore, we can consider a neighborhood[6X, ¢)], ¢?) as an open
subset in7°(A, a), whereA = A anda = (ay, ..., o,). It has been shown in Lemn®6.1, that in
this situation, we haver, = ju7,. It follows that the volume forméur : 7 € TR(S?, {p1,...,pn})}
give a well defined volume form ofi (S?, @) which will be denoted byur,.

Lety be an element df (0; n), and suppose that([(X1, #1)], e1) = ([(Z2,72)], €2). We can write
([(Zi, ¢0)], %) = ([(Zi, b;)], 2), i = 1,2, with Area(X;) = 1, andz; € C*.

By definition, we have;; = z,, and there exists a conformal homeomorphisfrom £, onto X, which
sends the of singular points &f; onto the set singular points af; respecting the cone angles. From
Proposition3.2.3 we deduce thai is an isometry betweel; andX,.

Since an isometry between two spherical flat surfaces sends geodesjtations onto triangulations,
the same argument as above shows thatis invariant by the action df (0; n). O

The remainder of this section is devoted to the proofs of Propogii®n, and Theorem.3.2

4.3.2 Cutting and gluing

Let 7, A;, A; be as in Propositiod.3.1 Let ([(Z, ¢)], ¢) be a point/r. Let T denote the geodesic
triangulation ofX corresponding t&, and letA;, A; be the geodesic trees corresponding4tq A,
respectively.

Let 32} andX:2 denote the flat surface with geodesic boundary obtained by slitting opeutfaze
¥ along the trees!; and A, respectively. Observe tha, i = 1,2, is homeomorphic to a closed disk.
Let T (resp.T2) denote the geodesic triangulationX (resp.:2) which is induced byr'.

Consider a paitXg, Ty) where

- Yy is aflat surface homeomorphic to a closed disk, with geodesic boundarisaing no singu-
larities in the interior.

- Ty is a triangulation o2y by geodesic segments whose vertex set is contained in the boundary of
%0,
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- The edges of'y on the boundary o, are paired up. Two edges in a pair have the same length.
We will call such a pair avell triangulated flat diskConsider the following the following operation :

e Choose a pair of edgés, a) of T in the boundary ob, and an edgé in the interior of3, so
thata anda do not belong to the same connected componeblyof b.

e Cut Xy alongb, then glue two the sub-disks by identifyiago a.

Clearly, by this operation, we get another p@i, T{,) with is also a well triangulated flat disk. We
will call this operation theutting-gluing operation

Observe that, by construction, the pi¥g, Tj), and(:2, T3) verify the conditions above. We have

Lemma 4.3.4 The pair(33, T3) can be obtained fromi=}, T}) by a sequence of cutting-gluing opera-
tions.

Proof: We remark that the tree4; and A, correspond respectively to two maximal tre€s A3 in the
dual grapHI™* of the triangulatioril’. By maximal treewe mean a tree whose vertex set contains all the
vertices of the dual graph. Any edge’Df which is not contained i is dualto anedge of;, ¢ = 1,2.

Let e* be an edge o™ which is contained i3, but not inA7. Letv] andv; denote the endpoints of
the edge=*. SinceA] is a maximal tree, there exists a pathin A} which joinsv] to v5. The union ofc*
ande* is then a cycle in the dual graglt, it follows that there exists an edggin c¢*, different frome*,
which is not contained iM3. Replacinge} by e*, we get a new maximal tree which contains one more
common edge wittd3 than A7.

Thus we can transform] into A3 by a finite sequence of such replacements. Now, we just need to ob-
serve that the operation of replacieigby e* corresponds to a cutting-gluing operation described above,
and the lemma follows. O

4.3.3 Increased exact sequence

Given a well triangulated flat disk:y, Ty), using a developing map, we can associate to eachedge
of Ty a complex numbet(e). The complex nhumbers associated to the edgég,oferify two types of
equation
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- If e;,e;, e, bound a triangle ofly, then+z(e;) £ 2(e;) = z(ex) =0,
- If (e, &) is a pair of boundary edges @f, of the same length, ther(é) = ¢z (e).

Assume thafl'y containsNV; edges, and choose a numbering of the edg&% pfve get a linear sys-
tem Sy of V; variables. LetN, be the number of equations Bf, let Ay be the matrix associated to
Sg, we say thatA is normalizedf every entry ofAg is zero, or a complex number of module one. Let
ai,...,an, denote the row vectors &fy. We also assume theink Ay = N».

By definition, Ay is an element oMc (No, Ny). Let Z = (z1,..., zn,) be the vector ofC"* whose
coordinates are complex numbers associated to the eddEgs. @hoose an edge, of Ty which is
contained insid& g, and assume that the complex number associated to this edgansthout loss of
generality, we can assume that the first two arrawsi, of A verifies

a1- 2t =21 + Zip + %5 (4.2)

and
as - Zt = —21 + Zio + Zj2 (42)
We construct a matriAo in Mc(N2 + 1, N; + 1) from Ay andeg as follows : letay, ..., an,+1

denote the row vectors @%,, then we have
. a1 is obtained by fromu; by adding a zero into the last column.

. ag Is obtained fromuy by replacing—1 by 0 in the first column, and adding a zero into the last
column.

. Forj =3,..., Ny, a; is obtained fronu; by adding a zero into the last column.

. The last rowa y, 41 is the row vector whose entries in the first, and the last columns, aned alll
other entries aré.

We will call A, theincreased normalized matrif A, associated to the splitting alomg.

Consider the map

I: cM — chtt
(21,--.52N,) > (21,---,2Ny, —21)

Observe that, we have

99



4. SPHERICAL FLAT SURFACE

0
It follows thatI is a bijection fromker Ay ontoker Ay, We will call T theembedding associated tA,.

Let i, be the volume form oker A, which is induced from the Lebesgue measure€ ¥f*! and
CN2+1 py the exact sequence

0 — ker Ay —— CMiFL A0, oNotl

Let v, be the volume form otker Ay which is induced from the Lebesgue measure€df and
CM:2 by the exact sequence

0 — ker Ag — CM Ao, N2 .

We have the following lemma :

Lemma 4.3.5 v, = co1,, Wherecy is a constant which does not depend on the choice of thegdge

Proof: Let Aoy, be the Lebesgue measure®i:, andf\gN1 be the volume form oM which is induced
from the Lebesgue measures@t' ! andC by the exact sequence

0—cM Lyeh+l R o

whereh : (21, ... 7ZN1+1) > 21+ ZNy+1- Set

e

Cco = .
A2n,

By definition, the volume formvt, is induced from\,y, and the Lebesgue measure@t? by the
following exact sequence

0 — ker Ag — CM Ao, N — 0,

Observe that the volume forer, is defined in the same way withyy, replaced byS\QNl. Hence the
lemma follows. 0
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4.3.4 Proof of Proposition4.3.1

By Lemma4.3.4 it suffices to consider the case whébe?, T3) is obtained from 3}, T) by only
one cutting-gluing operation. Let denote the edge along which we ¢&ijf, and let(ey, e2) denote the
pair of edges in the boundary &f which are identified in this operation. Note thatdivides>} into
two sub-diskdD; andDs, such thag; is contained in the boundary &;, fori = 1, 2.

To simplify notations, we identify an oriented edg€laf to the complex number which is associated to
it. Assume that the edges on the boundary.fare oriented coherently with the orientation>.

Let Z = (21,...,zx, ) be the vector irC"* whose coordinates are the complex numbers associated to
the edges off}. Let k the be number of edges @f; which are contained in the closure Bf;. Without

loss of generality, we can assume that. .., z; are the complex numbers associated to thiesdges,

with z; associated teg, and z; associated t@;. We also assume thaj,; is the complex number
associated tey. Sincee; is identified toea, the complex numbers, andz;; must verify the following
equation

€Zezk + 2541 =0

Let Ai} A,» be the increased normalized matrixAf- , associated to the splitting along the edge
eo- By definition, we can write

1 * *
* * 1
AT A =
* * 0
1 * * 1
Letas, ..., an,+1 denote the row vectors of the matrx; , . Note thatthe vectaZ = (z1, ..., zx,, —21)

belongs to the spader A% , .

Let T and T} denote respectively the triangulationsIdf andDs which are induced bif’§. We
consider, by convention, that the edggs split into two edges ¢}, which belongs tdl, is oriented in
the same orientation as, andeg, which belongs tdI'}, is oriented in the inverse orientation. By this
convention, we can consider the coordinateg afs the complex numbers associated to the edg@s of
andT3, wherezy, 11 is associated te?.

Remark that the cutting-gluing operation consists of rotating the Disky an angled, and gluing
Ry(D1) to Dy by identifying Ry (e1) to e, WwhereRy is the rotation of anglé in R2,
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Zk+1 Zl AAANANANAS Wk || Wk+1
D, Do
w1 wN1+1
A/
Let (w1, ..., wx,,wn,+1) be the complex numbers associated to the edgeg¢t1) and T} as
follows
. Fori=1,...,k, w;is associated t®y(z;).
. Fori=k+1,...,N; + 1, wy is associated to;.

In other words
. wi:ewzi,fori: 1,...,k.
Lw; =z, fori=k+1,..., Ny + 1.

Let A*T, 4, be the increased normalized matrixAf- , associated to the splitting alorg, where
e is thAe edge corAresponAdingAto the piair, e2). Observe that the vectd’ :A(wl’ ..., wn;+1) belongs
toker A7 4,.Letby, ..., bn,, bnyt1 denote the row vectors of the matrifokTyAQ. We have

e If b; correspond to a triangle, thén= a;.
e If b; correspond to a pair of of boundary eddese’), we have two cases :
- If e ande’ are both contained in the boundary®j§(D; ), or Do, thenb; = a;.

- If eis contained iMRy(D1), ande’ is containedDs, suppose that

a; - It :e’elzi+zj, withi <k < j

then

~ A~

bl' . Wt = 61(0’—0)wi + wj.

102



4. SPHERICAL FLAT SURFACE

Now, letF € My, ;1(C) be the following matrix

e’ 0 0 0
F_| O et 0
0 0 1 0
0O ... 0 0 ... 1

We see thatV’! = F - Z*, and clearly] det F'| = 1. From the relations betweénanda;, it follows that

A?},Az.F:G.A;,A17
whereG € My, (C) is a diagonal matrix whose diagonal entries are either ¢*. Clearly, we have
|det G| = 1.

LetI;, I, be the linear embeddings 6f"! into C™1 ! associated té&;Al, andA’- 4, "espectively.
Note, that in this case, we have

Il(zl,...,ZNl) = (21,.. . ,ZNl,—Zl),

and

Ig(wl, .. .,le) = (U)l, vy W1, WEy — Wy Wk41,y - - - ,le).

Now, from the following commutative diagram

Az
I T,A
0 — kerAy , — CM+l =5t chetl

|H |F |G

A
I 7,A
0 — kerA*TA2 =2, ¢+l 252 chetl

whereH is the isomorphism which is induced frafhand G, we deduce that

H*Dr A, = U1 A, (4.3)

whereir 4,, ¢ = 1,2, is the volume form ofker A7, which is induced from the Lebesgue measures
of CM+1 andCN2*! via the exact sequence

A*
1. T,A;
0 — ker Ay, —5 CNiH 5ot

Remark that the maH is the coordinate changes betwekn 4, andV 7 4,. From Lemma4.3.5we
know that
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VT A, VT A,

VT A VT A,
Hence the proposition follows frond (3). O

4.3.5 Proof of Theorem4.3.2

Theorem4.3.2is of course a consequence of the fact that any geodesic trianguldtasewertex set
is the set of singularities can be transformed into a Delaunay triangulatioe, We give another proof
of this fact by using similar ideas to the proof of Theor2ré.2

Letzq,...,x, denote the vertices &f; andT». By convention, we considde;, . .., z,} as the set
of singular points of even though some of them may be regular. In what follows,ig a triangulation
of 3 whose vertex set i§x1, ..., x,}, we will call a tree contained ifi' which connects all the vertices
of T amaximal tree

Let 4;, i = 1,2 be a maximal tree df;. If A; = As, then the theorem follows from Theoredx6.2
Thus, it is enough to prove the following

Proposition 4.3.6 There exists a sequence of elementary moves which transiorimso a triangula-
tion containingA,.

We start by the following lemma

Lemma4.3.7 If ¢y, ..., ¢, are geodesic segments with endpointdin, ..., z,} such thatint(c;) N
int(c;) = @ifi # j, andint(¢;) N A1 = @,i = 1,...,k, then there exists a sequence of elementary
moves which transfornib; into a new triangulation containingl;, and all the segments, ..., c.

Proof: This lemma is just a direct consequence of Lenfir@a3 Namely, let>)’ denote the flat surface
obtained by slitting open the surfagealong the treed,. The surface’ is homeomorphic to a closed
disk. LetTgo) denote the triangulation &t’ which is induced byT';.

Let P, be the developing polygon ef with respect thgo). By definition, the segment; is a diagonal
of P;. By LemmaZ2.6.3 there exists a sequence of elementary moves if3jdehich transforms the

triangulation induced bSF(lo) into a triangulation containing;. We get then a new triangulatidhgl) of
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>’ which contains; .

Let P, denote the developing polygon of with respect tdrgl). Sincec; is an edge ofl“(l), and, by
assumptionint(c;) Nint(c2) = @, we havent(c;) Nint(P2) = @. Apply Lemma2.6.3to the polygon
P>, we get a new triangulatidlﬁf) of X/, which contains:; andcs.

Clearly, this procedure can be continued until we get a triangul&t@nof Y which contains all the
segmentsy, . .., cg, and the lemma follows. O

Now, letaq, ..., a,_1 denote the edges of the trdg, andby, ..., b, 1 denote the edges of the tree
Ao. We will proceed by induction. Suppose thit contains already thg edgeshy, ..., b, of As. We
will show thatT; can be transformed by a sequence of elementary moves into a new triangotatiai-
ningby, ..., br andby 1.

Let m be the number of intersection pointsigf,; with the treeA; excluding the endpoints @f; ;. If
m = 0, then Lemma4.3.7allows us to get the conclusion. Thereforeyif> 1, all we need to show is
the following

Lemma 4.3.8 The triangulationT; can be transformed by elementary moves into a new triangulation
T’ which contains a maximal tred, and the edges;, ..., b;, such that the number of intersecting
points ofb, . with A, excluding the endpoints éf . 1, is at mostn — 1.

Proof: We can assume that the endpointsgpf; arex; andz,. We conside;,; as a geodesic ray
exiting fromz;. Lety; denote the first intersection point yf, ; with the treeA;, which is contained in
the interior of an edge;, z;, 1 of A;.

Let 7151 denote the subsegmentigf, ; whose endpoints are; andy;. Without loss of generality, we
can assume that;, is contained in the unique path alodg from z; to x;, 4.

Cutting open the surface along the treed;, we get a flat surfac’ with geodesic boundary homeo-
morphic to a close disk. By construction, we have a surjective map :

A, Y — X,

verifying the following properties

. T A, |int(s) IS @n isometry,
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- TA (82/) = Al.

. There ar&(n — 1) geodesic segments in the boundarybfsuch that the restriction of4, into
each segment is an isometry.

. For every edge in A, wgll(int(e)) is the union of two open segments in the boundary/of

Let s; denote the inverse image ©fy; by 74,, thens; is a geodesic segment with endpoints in the
boundary ofs'. Let2 ) andy} denote the endpoints 6f with 74, (2)) = 1, andra, (v}) = v1.

Let f,... 75‘7,2(71—1) denote the points inrjgll({:cl, ...,zn}) following an orientation ofoX’. By

choosing the suitable orientation, we can assume that the piist betweem:;., and x;"+1’ where
1 1

77141(1:3'1) = Tji andrm 4, (x;iJrl) = Tji+1-

For everyj in {1,...,2(n — 1)}, we denoter’;z”, | the segment in the boundary Bf betweenz’; and
.1, with the conventionrs,,_, = 2. Note thatr 4, (22, ;) is an edge of4;.

Let ¢o be a path ir2’ joining =} anda;;.url with minimal length. First, we prove
1

Lemma 4.3.9 We havey N s; = {2} }.

Proof: Suppose that, N int(s1) # @, then lety,, denote the first intersection point af with int(s;).

Let ¢; denote the path from to y5 alongcy, and letr’ v, denote the subsegment af with endpoints
/ /

x) andys,.

The pathe; is a (finite) union of geodesic segments whose endpoints are in the’set . v”ﬁlz(nq)}’ it
follows thatcy and@ bound a diskD, which is equipped with a flat metric with geodesic boundary.
Since the patlag is of minimal length, so is the pathy. It follows that the interior angle between two
consecutive segments of is at leastr. Therefore, if the number of segmentscinis I, the boundary of

D contains theri 4+ 1 geodesic segments, and the sum of all the interior angles is a{leadt)r. But
this is impossible by the Gauss-Bonnet Theorem, hence we concludg thatt(s;) = @.

The same argument as above shows ghas not contained imy, and the lemma follows. O

Let y’lx;,H denote the subsegment:ﬁgf, x;"+1 betweem:;,ﬂ andy}. From Lemma4.3.9 we see
1 1 1 1
thats; U yi:r;.,ﬂ U g is the boundary of a disk, contained in’. We have immediately the following
1

Lemma 4.3.10 Let s be a geodesic ray that intersects the interioi®yf. If s intersDg by a point in the

pathcg, thens must exitDy by a pointin(s; U yix;iﬂ) \ {z], x;Hl}.
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Proof: If s exitsDg by another point ircg, then we have a flat disk with geodesic boundary which vio-
lates the Gauss-Bonnet Theorem. O

Let ¢y denote the image afy by 74,. The pathé is then a finite union of geodesic segmentsion
with endpoints in the seftzy, ..., z,}. Itis clear thai, contains a path; joining z; andz;, 1. Letus
prove the following

Lemma 4.3.11 The path¢; does not contain the segmer{z;, 1.

Proof: Suppose, on the contrary, that containsz; z;, 1. This implies thatcy contains a segment
7w, o, With &' # 5, such that

T ol Y —
TAy (l‘k/xk/+1) =TA (xjixji+1) = TjTjr+1-

Let y5 denote the unique point irf, x,  , such thatra, (y5) = 74, (y1) = y1. The inverse image of
br+1 by 74, is @ sequence afm + 1) geodesic segments &f with endpoints in the boundary &f’,
whoses; is the first one.

Let s2 be the next segment in the sequence. The pgit one endpoint of2, by assumptionys is an
intersection point of the segmesyt and the diskDy.Consider the segment as a geodesic ray exiting
from 5.

By Lemmad4.3.1Q the rays; exitsDy by a pointzj in (s; Uyja’, )\ {z},2’, ,}. Since the geodesic
]1+1 .71+1
br+1 is a simple, the point, can not be contained iy . Hencez), must be a point il;ﬂllt(yllx;,+1).
1

Now, since the segments, =, , andj,j, ., are identified byr 4,, the pointz; is identified to

a pointyj in 1,7, - Consequently, the argument above can be applied infinitely many times, which
implies that the inverse image bf; by 74, contains infinitely many segments, and we have a contra-
diction to the fact tha{rAfl1 (br+1) contains onlym + 1 segments. O

SinceA; is a tree, the sed; \ int(Z;, z;,+1) has two connected components, the one containing
will be denoted byC'y, the other one containing;, 1 will be denoted byC,. From Lemma4.3.11, we
know that the patlé;, which joinsz; to x;,; does not contaiir;, z;, +1. Therefore the path; must
contain a segmernst with endpoints in{lz1, ..., z, }, such that one of the two endpoints igif), and the
other is inCs.
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Let s be the inverse image &fby 7 4, . Evidently,s is not an edge ofl;, hences is a segment contained
insideY’, it follows thatint($) N A; = @.

Let us prove
Lemma 4.3.12int(8) Nint(b;) = @, foreveryi = 1,..., k.

Proof: Letd;, i = 1,...,k, denote the inverse image bf by 74,. Sinceint(b;) N A = &, b} is a
geodesic segment contained inside

Suppose thaitat(s) N int(b;) # @, it follows thatint(d}) N int(s) # @. Lety! be the intersection point
of int(b}) andint(s). Recall thats is included in the patla,. We can then consider the segméhas
a ray which intersD, by y/. By Lemma4.3.9 we know thath, must exitD, by a pointz! which is
contained irns; Uyllx;‘iﬂ’ but it would imply that eitheint(b;) Nbg41 # &, orint(b;) N A; # &, which
is impossible by assumption. The lemma is then proved. O

We can now finish the proof of Lemm&3.8 Using Lemma4.3.7, we deduce that there exists a
sequence of elementary moves which transfofimsinto a new triangulatioil’; containingA;, the
edged, ..., by, and the segmest By replacingz;, z;, 11 by §, we get a new maximal tred. Let us
show that the number of intersection point$pf; with A/, excluding the endpoints f, 1, is at most
m — 1. We have

Card{int(by+1) N A}} = Card{int(byy1) N A1} — Card{int(by41) N int(zT;,T;,41)}+
+Card{int(bg+1) Nint(s)}

Let y be a point inint(by1) N int(3), and lety’ = =, '(y). Let ¥’ be the segment in’; (b)) which
containsy’. Note thaty’ = &' N s.

By Lemma4.3.1Q and sincent(b’') Nint(s;) = &, it follows thatd’ contains a point’ in x;./ x;,H.
1 1
We deduce that there is a one-to-one mapping fform(by, 1) Nint(3) } into {int (b1 )Nint (T, T;,11) }-

Clearly, the point; does not belong to the image of this map, therefore we have

Card{int(by4+1) N int(T;,7;,41)} = Card{int(by41) Nint(s)} + 1.

It follows immediately that

Card{int(br41) N A}} < Card{int(bpy1) N A1} —1=m — 1.

The proof of Lemmat.3.8is now complete. g
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From what we have seen, Propositi3.6 and hence Theorerh 3.2 follow directly from Lemma
4.3.8 O

4.4 Comparison with complex hyperbolic volume form

In this section, we assume that all the angigs. .., «, are less thalxr. Putx; = 27 — oy, © =
1,...,n,we have

K1+ -+ Ky =4m.

Following Thurston Th], we denoteC' (x4, .. ., k) the moduli space of spherical flat surface having
singularities with cone angles, . .., a,, or equivalently, with curvatures, . .., k,, up to homothety.
In [Th], Thurston proves that’(x1, ..., x,) admits a complex hyperbolic metric structure with finite
volume, and the metric closure 6f(x1, . .., k,) has cone manifold structure.

The complex hyperbolic metric provides a volume fou,, on C(k1, . . ., k,). On the other hand,
the volume formur, gives another volume form ofi (x4, ..., x,) denoted byﬂlTr. The volume form
ik, is defined as follows :

- First, we identifyC (x4, . . ., x,,) to the subset(S?, @)* of all surfaces of areain M(S?, &)*.
Let f : M(S?,a) — R be the function which associates to a p@i, ) in M(S?,a) =
M(S?%, a)* x St the area of. The spaceM;(S?, a)* can be considered as the quotient of the
locus f~1(1) by the action ofS.

- By Theorem¥.1.1, we know thatM (S?, @) is a complex orbifold, lef denote the complex struc-

ture of M(S%,a). Letp : f~1(1) — f1(1)/S' = My(S? @)* denote the natural projection.
We define the volume formZ, on M, (S?, @)* to be the one such that :

p iy Adf A(df 0J) = pry

Our goal in this section is to prove

Proposition 4.4.1 There exists a constantdepending orfas, . . ., a,) such thatik, = Appyp.

This proposition together with Thurston’s result implies

Corollary 4.4.2 The volume of\; (S?, @)* with respect tqil, is finite.
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4.4.1 Local formulae for /i, and puy;,

First, we recall the construction of local charts fG(x1, ..., x,) as presented infh], and conse-
quently the definition ofiyyy,.

Given a surfac& in M1 (S?, a)*, we considel as a pointirC(x1, .. ., k,). Let T be a triangulation
of ¥ by geodesic segments whose set of vertices is the set of singular pdiotsseéCa singular point of
>} and denote this point;, ;. We will call all the edges of’ which containg;,,; as an endpoirfollowers
. Pick a treed in T which connects all other singular points®fand call the edges of this trésaders
The remaining edges df are also calledollowers

Using a developing map, one can associate to each of the leaders a complesrnthere are — 2

of them. Let(zy,...,z,—2) denote those complex nhumbers. The same developing map also defines an
associated complex number for each of the followers, but these numiretseccalculated from those
associated to leaders by complex linear functions. Thus, the complex raiagseciated to leaders de-
termine a local coordinate system U — M (S?, a) for M(S?, @) in a neighborhood of%, 1), where

U is a neighborhood ofz1, . . ., z,_2) in C*~2. Consequently, a neighborhoodXfn C(k1, ..., k) is

then identified to an open set BE™ 3 which containgz; : ... : 2z, o).

If we add to A a follower which contains;;,; as an endpoint, then we have an erasing tteen
. We can then construct a local charf 4 for M(S?, &) from T and A. Recall that¥r 4 is defined
on an open subseét; of M(S?, a), with image inker A7, where linear mapA7 : CM' — CM is
determined by the tred, and the anglesy, . .., a,. By definition, the volume formur, on M(S?, @) is
identified in this local chart to the volume form &nar A+ which is induced by the Lebesgue measures
of CN1 andC™2,

Now, observe that the following sequence is exact

v o A
0— Cr 2 AY e A7, oM ),

Thus, the maf’ 7 40 is the restriction of an isomorphism betwe@fr 2 andker A7 onto an open sub-
set of C"~2. Hence, in the local chagt, the volume formuT, is identified to the volume formAy(,, o),
where)y(,_o) is the Lebesgue measure@?—2, andc is a constant.

In the local chartp, the area functiory on M(S?, @) is expressed as a Hermitian forH. More
precisely, ifv € C"~2 is a vector such thap(v) = (,0) € M(S?,a) thenf((%,0)) = Area(X) =
‘oHv. It is proven in [Th] that H is of signaturg1,n — 3). Changing the basis and the signkf we
can assume that
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1 0 0
H =
0 1 0
0 0o -1
Thus we can write
f(z1,. 0, 2n—2) = !21\2 + -+ !%—3\2 — \%—2\2-

Note that by these changes, the vector€bf? representing surfaces i (S?, a)* are contained in
the setQ; = f~!(—1), and we still haveir, = coAg(n—2) With co a constant.

We use the symbo],) to denote the scalar product defined by Hermitian f&mBy definition
f(Z)=1(2,7Z), VZ € C"~2. Let] denote the natural complex structure®f -2, thatisJ(z1, . . ., zn_2) =
(121, ...,12n—2). Letn denote the real symmetric form induced @y, that is

n(X,Y)=Re(X,Y).

Let Z be a vector inQ; which represents a surface v (S?, a)*. The tangent space @, /S! at
the orbitS! - Z is naturally identified to the orthogonal complementzfvith respect to(, ). Denote
this spaceZ . The restriction of,) on Z= is a definite positive Hermitian form, which determines the
complex hyperbolic metric oM (S?,a)* = C(k1,. .., kn).

We have

df = (s1dz1+ -+ + Zp—3dzn—3 — Zn—2dzn—2) + (21dZ1 + - -+ + 2p—3dZp—3 — 2n—2dZ,_2),
and
df oJ =1(z1dz1 + -+ + Zp—3dzn—3 — Zn—2dzpn—2) —1(z21dz1 + - - - + 2n—3dZp—3 — 2n—2dZp_2).
Note that bothif anddf o J are invariant by the action &. Put

(k)
Uk:(O,...,O,En_g,o,...,zk), k=1,....,n—3.

andVy = J - Uy = «Uy. One can verify easily thatl;, V4, ..., U,_3,V,,_3} spanZ+ as a real vector
space. We considdil/;, Vi, ..., U,_3,V,_3} as a basis of the tangent space\df (S?, a)* ato(Z).

We know that the restriction of the symmetric forpen Z+ defines a Riemannian metric. Lgt, V;*
denote theR-linear1-forms dual tol/;, andV, respectively with respect tp. We have :

1
U];k = 5[(Zn72dzk - de2n72) + (Zn72d2n72 - dezan)]a
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and

* —1 _ _ — =
Vi = 7[(zn,2dzk — 2kdzn—2) — (Zn—2dZn_2 — Zidzn_2)].

We can considefU;, Vi, ..., Ur_5, V¥ ,} as a basis of the cotangent spacaf(S?, a)* atp(Z).
Let p be the projection fronQ; to Q;/S!. We define a volume formil, on Q;/S! by the following
condition :

pr itk Adf A (df 0T) = (%)”’2dz1d21 e d2n9dZn—g = dgn_) (4.4)
Sincedf anddf oJ are invariant by the action &f, the volume fornyit, is well defined by this condition.
We wish to expresgl, (S! - Z) interms of U, V¥, k=1,...,n — 3.
Claim 1 : We have

~ CO * * * *
(St 2) = W(UI AVI)A - AN (Up_3 AVi_s),

where ¢o = prr/Xo(n—2).-

Proof: ConsiderU;; A V7, we have
—1

4
2 i
= “XpANX
2k k

Up NV (X + X&) A (X — Xi)

whereX, = z,_2dzr, — zdzn—2, andYk = Zn—odZr — ZpdZ,—9.
We can also write

df = X + X, anddf oJ = 1(X — X)

with X = Z1dz1 + - -+ + Zn_3dzn—3 — Zn_odzn_9, andX = 21dzZ1 + -+ 2p—3dZp—3 — Zp—9dZp_o.
Hence

df A(df oJ) = 22X A X.

Now
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(UF AV AU 3 AV g) Ndf A(df o)
= —A)"HXAXIA - AXy 3 A Xy 3 AX AKX
(n—2)(n—3)

= —(H)" -1 2 (XiA - AXp s AX)A (XA AX 3 AX)
Simple computations give

XiA-AXn g AX = 275z 4+ |zl = 2oz - dz s

n—4
= —z, odz1...dzp 2

and similarly
XiA-AXy 3AX =—2""3dz ...dZ, 2.
Therefore,
(XiA - AXp 3 AXIANX A AXp3AX) = |2p-0)?Ydzy ... dzy_odZ; ...dZ,_o
2n722(n72)(n74) ‘Zn—2 |2(n74) d)\Q(n—Q)
and we get

UF AVE A AU g NVig Ndf A (df 0 1) = 4]z 2" D dAg ().

By the definition ofii.,, we obtain

~ CO * * * *
i (St Z) = WUI ANVEN--NU; 3 ANV 3.

Remark:
- Even though thd-forms U} and V;* are not invariant by th&! action, the2-form U} A V/* is.
Hence, the(n — 3)-form U AV A--- AU_4 A V5 is invariant by theS! action.

- Let 4, be the volume form o verifying the following condition

N}[‘r Ndf = py.
The tangent vector to tH&' orbit at a pointZ € C? is given by:Z, and we have

df 0J(12) = —df(Z) = —(Z,Z) = 1.

Therefore, the volume form?, can be considered as the push-forwarghfontoQ /S'.
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Now, we will proceed to compute the volume form definedjgn Z+ in terms ofUj, Vi Let (1))
with i,7 = 1,...,2(n — 3) be the (real) matrix of; in the basis{U;, V1, ...,U,—3, V,—_3}. Since the
volume formyy, is defined by the metrig, we have

1
pryp (St Z) = ———=U; AV A+ AU _3 ANV,
det(n;;)

Claim2:  det(nij) = |zno[*".

Proof: Sincen is the real part oH, the matrix(n;;) is the real interpretation of the matri¥l;;), i, j =
1,...,n—3,of Hinthe complex basi§U, ..., U,_3} of Z*. This implies

det(n;;) = | det(H;;)|>.

We have
H“ = U U — et/ Rl o 'l
] < (3] ]) { ’Zn—2|2_|zi’27 le:j'
Hence
’Zn—2|2 - |Z1‘2 —Z1%9 ... —Z1%n—3
det(H;;) = det —%2 lzn—al® — |22|* ... —Z0Zp_3
1J =
—Zn-321 —Zn-3%2 coo zneal? = |Znes/?
1—|el? —&1e2 ... —Eien—3
T B I
= e
—€p_361 —€p_382 ... 11— |5n73|2

whereey, = zx/zp—2, k=1,...,n — 3.
Since
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1— ’51‘2

—&189 —&16n—3 1 —&162 —&1Ep—3
—E9€1 1— ‘82’2 —E9En—3 _ 0 1-— ’82‘2 —E9En—3
—En—361 —En—3€2 1 — |en—s/? 0 —&p_3e2 1 — |en—s/?
£1 —£162 —E16n-3 1—|eaf>  —&oes —E26p—3
e €9 1-— |82|2 —E&92En—3 _ —E3€9 1-— |€3|2 —E&3En—3
En—3 —E&p—_3&2 1-—- ‘5n73|2 —E&n—382 —Enp—3€3 1- ‘5n73|2
€1 0 0 1-— |€2|2 —E9€3 —E92En—3
€2 1 0 . —E3€2 1-— |€3|2 —E3En—3 9
—€1 - - ‘51| )
€n-3 0 1 —Ep—382 —Ep_3€3 1—|en—s|?
we deduce
1-— |€1‘2 —E&1€9 —E1En—3
—& 1— |eo)? —&26n_
dor| T TS (el sl
—En—361 —En—3&2 1— |ep—s|?
It follows that
det(H;;) 20?1 = (Jer]? + - + [en-3]?)
= zn2 P (|22 = (212 4+ - - + |20-3[%))
— |Zn_2‘2(n74)

Consequently, we haviet(n;;) = | det(H;;)|? = |2,_2[*™~Y. The claim is then proved.

From Claim 1, and Claim 2, we obtain

Lemma 4.4.3 The quotienfi!, /umy, is a locally constant function oM (S?, a@)*.

4.4.2 Connectedness af'(k1, ..., ky)

To complete the proof of.4.1, we will prove

Lemma 4.4.4 For any(ay, ..., ay), the spac& (K4, . .., ky,) IS connected.
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Proof: To prove this lemma, first, we recall the construction of a surfacervithl singular points from

an arbitrary surfac& in C(k1,...,ky). Letzy,...,z, denote the singular points &f such that the
curvature atz; is ;. Suppose that we havg,_| + x,, < 2w. Choose a geodesic segmeibining x,_1

to x,, which does not pass through any other singular poiat (the geodesic segment of minimal length
verifies this condition). Slit opeR alongs, and glue to boundary of the surface obtained by this opera-
tion a cone so that the poinis,_; andz,, become regular. The apex angle of the added cone must be

27— (kn—1-+#kn). Therefore, after a rescaling, we obtain a flat surtece C'(k1, . . ., kn—2, Kn—1+Fn)-

The spac&’(k1, ..., kn_1+ ky) iS contained in the metric closu€ k1, . . ., k) of C(k1, . .., kn).
A neighborhood of”(k1, .. ., kp—1+ k) IN C(k1, ..., ky,) lOOKS likeC (K1, . . ., kn_1 + kn) x D% By
this construction, we see that any surfac€i, . . ., x,) can be deformed insid€(x1, . .., k,) into a
surface close to the stratu@(x1, . . ., kn—1 + k). Hence, ifC(k1, ..., kn—1 + Ky ) IS CONNected, SO is
C(Ki,---,En)-

If n > 5, thenthere exist# j € {1,...,n} such thak; +x; < 2x. Thus, by induction, we only need to
prove the lemma for the case= 4. Without loss of generality, we can assume that> ko > k3 > k4.
We only have two possibilities :

e Case 1 k3 + ky < 2m. SinceC(k1, ke, k3 + K4) iS Only a point, the argument above shows that
C(k1,...,kK4) is connected.

e Case2 k) = kg = k3 = k4 = 7. Every surface irC(w, 7, m, ) is the quotient of a flat torus
by a holomorphic involution which fixes exactlypoints. This correspondence gives a bijection
betweenC'(r, 7, m, w) and the moduli space of flat tori up to homothety. Since the latter is the mo-
dular surfacell?/SL(2,Z), which is connected, we deduce ti@tr, 7, 7, 7) is also connected.
The lemma is then proved. O

Propositiord.4.1follows immediately from Lemm4.4.3 and Lemmat.4.4
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Chapitre 5

Finiteness of integrals

5.1 Definitions and main results

Let &, 3 be as in Chapte2. Consider the Teichiiller spaceZr(a; 3). Let us define

F: Tr(a; ) — RT
([(%,0)],6) +— exp(—Area(X) — (2(0%))

where/(0X) is the total length of the boundary &f

For surfaces with erasing trees, fix a family of topological trdes {Ai,..., Ay} and the numbers
&= (ov,...,o,) as in ChapteB, one can also define a similar function B (A, @) as follows :
Fet. T A a) — R*

([(2,9)],6) — exp(—Area(X) — £2(¢(A)))
where/(¢(A)) is the total length of the trees if(A).
Clearly, the function (resp.F°t) induces a function on the moduli spatér(a; 5) (respJ\/let(A, a)),
),

in the sequel of this chapter we will caff andF¢* energy functionsn M (a; 3 and/\/let(/i, @) res-
pectively. The main result of this chapter is the following

Theorem 5.1.1  a) If the spaceM(a; 3) consists of surfaces with non-empty boundary, then the
integral of the energy functiof with respect to the volume formy, is finite

/ - Fdpmy < o0 (5.1)
M (&)
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b) If the forestA contains trees which are not isolated points, then the integral of the efiemgtion
Fet with respect to the affine volume fogm, on Mt (A, a) is finite

/ Fedpmy < co. (5.2)
Met(Aa)

Recall thatH; (1, .. ., k,) is the moduli space of closed translation surfaces of area one, omequiv
lently, the subspace & (k1, ..., k,) consisting of pair§M/,w) such thatf,, |w|*> = 1. Even though
Theoremb.1.1concerns only translation surfaces with boundary, it turns out thataneise this result
to prove the classical fadfol,,, (H1(k1, ..., k,)) < oo.

For spherical flat surfaces, using Theorgrh.1, we will prove the following

Theorem 5.1.2 Let 1, denote the volume form ok (S?, &) defined in Chapted, then we have

/ exp(—Area)dut, < oo (5.3)
M(S2,@)

Consequently, the volume of the 8t (S?, a) is finite.

This result is a generalization of the result of ThurstonTin][ and analogue to a result if2] which
is proven by a different method.

This chapter is organized as follows : we start by the demonstration ofr@iméol.1for a particular
case, where the base surface is a torus, by this example, we introdunaithigleas of the proof for the
general case. The proof of Theoré&mi. litself is given in the next two Sectioris3and5.4. In Section
5.5 we show how to obtain the fact that the volumetof(ky, . . ., k) is finite by using5.1.1 Finally,
in Section5.6, we prove Theorerb.1.2

5.2 First example

In this section, we prove Theorebl.1for the casgy = 1,m = 1,5, = 27,81 = 2, andn = 0. In
this case,S is homeomorphic to a torus with an open disk removed. Via this simple case, we hkeu
to introduce the main ideas of the proof for the general case.

Let X be a translation surface with boundary homeomorphig swich that
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e int(X) contains no singular points,
e the cone angle associated to the unique boundary componEns@fr, and
e there are two pointg, ¢ in 9% such thabX \ {p, ¢} is the union of two geodesic segments.

Let ¢ be a normalized parallel vector field &h By definition, the pair(3, £) represents a point in
M (2;{2r,2}). First, we prove

Lemma 5.2.1 The open surfacet(X) is isometric to a flat torus with a geodesic segment removed.

Proof: Let a1, andas denote the two geodesic segments with endpgingsvhich are contained in3.
Letn, no denote the corner anglespatandq respectively. We have to show that, , are2r, and the
segments; andasy have the same length.

Since the cone angle associated®ois 27 we have :

M+ e = 4. (5.4)

Let z, zo denote the complex numbers associatedndas respectively in alocal chart ¥ (2; {27, 2})
constructed as in the proof of Theorén?.7for a neighborhood ofX:, £). Assume thati; andas are
both oriented fronp to ¢, we then have

z1 — 22 = 0. (5.5

Remark that the numbets andz; are obtained by a developing map, therefore, the angle between
andzs is equal to the anglg; modulo27. Since bothy,, 2 must be positive, it follows from34) that
m = n2 = 27. Moreover, b.5) also implies thata; | = |as|, therefore, we can glue the segmemtsand
as together. We then get a flat torus with a marked geodesic segment, and thefidioms O

By Lemmab.2.1, we can identifyM(2; {27, 2}) to the moduli space of triple&:, I, ¢) whereX
is a flat torus/ is a geodesic segment dh and¢ is a normalized parallel vector field ai

Now, let(3, I, ¢) be a triple inM1(@; {27, 2}). Letiy, t € RT, denote the flow generated ByLet
p, ¢ denote the endpoints d@f Let us prove the following lemma

Lemma 5.2.2 There always exists a pair of parallel simple closed geodgsig, of ¥ such thaty,NI =
{p},andy, NI = {q}.
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Proof: Assume thaf is not parallel tc€, and letty be the infimum of the set

{t>0: 9 (I)N 1 # o}.

The valuet, exists because the stripe which is swept out{by(I) : 0 < s < t} has area\t if
Ys(I) NI =@, Vs € [0,t], wherex > 0 is the transversal measure bivith respect t&.

By the definition ofty, there exists an isometric immersion

p:P— 3%

which is defined on a closed parallelogrdtin R? with two vertical sides of lengthy, such that the
restriction ofp ontoint(P) is an embedding, and maps the lower side d? onto 7, and the upper side
of P ontoyy, (I).

Since the segmenfsandy, (I) are parallel and have the same length, the intersectiahvset, ()
contains at least one endpoint bf Without loss of generality, we can assume that I N ¢y, (I).
Consequently,~!(p) contains exactly two points, one in lower side, and the other in the upperfside o
P.

Let s be the geodesic segmentirjoining two points inp~!(p), theny(s) is a closed geodesic i
which intersectd atp. We choosey, to bey(s), andvy, the closed geodesic parallel{g which passes

throughg. By constructionsy,, and-, verify the condition in the statement of the lemma.

In the case wheré is parallel to¢, it suffices to replacé by the normalized parallel vector field

perpendicular to it, and use the same arguments. The lemma is then proved. O
Yq
Yp Vq
0
I
p q

The closed geodesig, and~, cutX into two cylinders, the one which contaifsvill be denoted by
C1, the other one by,. Let o be a geodesic segment joinipgndq which is contained irCs.
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The complement it of the setl Uy, U~, U J is the disjoined union of two open parallelograms. By an
embedding of: \ {I U+, U~, Ud} into R? which sendg onto the constant vertical vector figld, 1),

we can associate the complex numhers, w to I, v, andé respectively. We can choose the orientation
of I, v,, andd so that :

01(Z, z,w) =Im(Zz) > 0 andb(Z, z,w) = Im(zw) > 0.

Note that the area of the cylindéh equalsf, and the area of the cylindér, equalsd,. Remark that,
given (Z, z,w) in C3 verifying 61 (Z, z,w) > 0 andfz(Z, z,w) > 0, one can construct a flat torus with
a marked segment. Set

D={(Z,zw)eC?:60,(Z z,w)>0,0(Z,z,w) >0}

We then getamap :

p:D— Mr(2;{2m,2}),

which is onto and locally homeomorphic. The pull-back of the volume formon D is equal tok g,
where); is the Lebesgue measure®t, andx is a constant. Clearly, the pull-back of the energy function
F on Mr(2;{2m, 2}) is the following function

F(Z,z,w) = exp(—=2|Z|? — (01(Z, z,w) + 02(Z, z,w))).

We say that a triplgX, I, &) is in special positionif either I is parallel to&, or the trajectory
{Y+(p) : t € RT} returns top without meeting any other point df. Let Mr(@; {27,2})%" denote
the set of triples in special position i (2; {27, 2}).

Observe that the setr(2; {27, 2})P is of measur® with respect tqut, as it is the image by of the
set
{(Z,z,w) € D:Re(Z) =00rRe(z) =0},
which is obviously of measure zero with respect to the Lebesgue megsure
Now, let (3, 1,¢) be a triple inMr(2;{27,2}) \ Mr1(o;

{2
plex numbers associated 19+,, andJ as above. Sel = Re(
B =Im(Z),z =1Im(z),y = Im(w).

m,2})%P. Let (Z,z,w) be the com-
),a = Re(z),b = Re(w) and

If the closed geodesig, is chosen as in Lemma.2.2 then we havda| < |A|. Remark that, since
(3, 1,¢) is not in special position, we haye| > 0. Becaus&’, is a cylinder, we can choose the segment
d such thatb| < |a|. We deduce that the image pyof the set

Do={(Z,z,w) € D:|A| > |a| = |b|}
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contains the seM(@; {27, 2}) \ Mr(2;{2r,2})%P, and hence, the result of Theoréi.1for this
case will follow from the following proposition :

Proposition 5.2.3 We have

I=| F(Zzw)drs= / exp(—2(A% 4+ B?) — (01 + 65))dAdBdadbdzdy < oc.
Do Do

Proof: By definition of the domairDy, we have

://exp(—Q(A2+BQ)) y [/_I;:"[/_lj'[//exp(—ﬁl—92)da:dy]db]da]dAdB.

Consider[ [ exp(—61 — 63)dzdy for fixed A, B, a, b. By definition we have :

01y = Ba — Az andfy = zb — ay.

Using the change of variabl¢s, y) — (61, 62), we havedf,dfs = |Aa|dzdy. Sinced, (Z, z,w) > 0,
andfsy(Z, z,w) > 0 for every(Z, z, w) € Dy, it follows

“+o00 +oo 7916702 1
exp(—60; — 0 dmd _/ / ——dfdby = ——.
//mepo P(—01 — bz)dudy [Aa] 2T [Aq]

Consequently

- //exp(_2A2 - 232)[/_|;j[/|j| |ja’ blda]dAdB = 4/ / e 2425’ AdB = 2.

This proves the proposition, and hence, TheoBeinlis proved for the case oM (2; {27, 2}). O

5.3 Proof of Theorem5.1.1, Part a)

Let S be the base surface, aidbe the finite subset of as in Sectior2.2 Leta = (ay,..., ),
andg = {(B1,51),---,(Bm, sm)} be the data corresponding $oandV . In this section, we will always
assume that > 0, which means that the boundary $is not empty.

Let 7 be a triangulation of whose set of vertices i8. Assume in addition that every edgeDfwhich
is contained in the interior af belongs to the closures of two different trianglés.(no edges in the
interior of S bound the same triangle on both sides). As usualMgtand N> denote the number of
edges, and the number of trianglesiofSet
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K = i Sm.-
j=1

Recall that we have

dime Mr(a;3) =29 +n+m —2+ K = Ny — Ns.

Note that a point inMt(a; 3) is represented by a paiE, &), whereX is a translation surface with
geodesic boundary homeomorphic&pand¢ is a normalized parallel vector field éi

5.3.1 Admissible matrix

Definition 5.3.1 A matrix A in M (N2, N7) is said to beadmissibleif it has the following properties :
e Any entry ofA belongs to the sdt—1,0, 1}.
e On any row ofA, there are exactly three non-zero entries.

e On any column ofA, there are either one or two non-zero entries. If a column has two rom-z
entries, then one entry equalsthe other equals-1.

Note that if¥ is a translation surface M1 (a; 3)*, andT is an admissible triangulation &f, then
the normalized matrix associatedTds admissible.

Given an admissible matriA, we will call elementary movedse following transformations oA :
a) interchanging two columns,

b) interchanging two rows,

¢) changing the sign of a column.

Two matrices ares said to lguivalentif one of them can be obtained from the other by elementary
moves.

Remark: If A is the normalized matrix associated to a triangulatiorof a translation surface in

Mr(a; B)*, then the elementary moves, b), c) of A correspond respectively to a renumbering of
the edges of', a renumbering of triangles @f, and a change of orientation of an edgé&in
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Let AD denote the set of equivalence classes of admissible matridek-(1iV,, V1), for eachs in
AD, choose a representative, of s, we then get a finite family A, s € AD}.

Let V, denote the kernel of the linear map frd®" ontoC"2 which is defined by the matriA , in the
canonical basis of ™ andC"2.

ForanyZ € Vg, let X7 denote the ‘surface’ which is obtained by the construction described prtioé
of Lemma2.4.2 Letl/,; denote the open subset¥f, such thak ; is a translation surface homeomorphic

to S for any Z in Us. We define a map froitf; into M~ (a; ) as follows :

q)s: us — MT(&;ﬁ)
Z r— (EZvé.)

where¢ is the parallel vector field ol ; which is induced by the vertical constant vector fiéd1) of
R2. From the proof of Theorer.2.7, we have

Proposition 5.3.2 For everys € AD, ®,(U;) is an open inMr(a; 3), and {®,(Us),s € AD} is a
finite open cover oM r(a; 3).

In the remaining of this section, for aByc AD, we will assume that, iZ ¢ C is a vector iri/,,
then theK = E;”:l s; first coordinates of correspond to the geodesic segments on the boundary of
(7).

5.3.2 Primary and Auxiliary system of indices

Set
N =dimVg=29g+m+n—-2+ K.
Given an equivalence classn AD, let (iy,...,iy) be an ordered subset of, ..., N; }.
Definition 5.3.3 We say thatiy, ..., iy) is aprimary system of indiceassociated td\ ;, if there exist

N; complex linear functions

fi:CNM—C,i=1,...,Ny,

such that, ifZ = (z1,...,2n,) € Vs, thenz; = fi(ziy, ..., ziy)-

Given a primary system of indic€$, . . ., i) associated te\, let (jx, ..., jn) be an ordered sub-
setof{1,...,Ni1}.
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Definition 5.3.4 We say thatjx, . . ., jn) is anauxiliary systenfor (i1, ...,iy) if, foranyk in {K,... , N},
we have

i) The functionf;, dependsonlyon;,,...,z; .

ii) There is a row inA ; whosej,-th andi,-th entries are non-zero.

Remark: If (jx,...,jn) is an auxiliary system fofii, ..., iy), then for anyZ = (21, ..., zn,) In Us,
we have
e z; can be written as a linear function 0f;,,..., 2, ,), Vk=K,...,N.

o Let (X,£) = ®4(Z), and letT be the geodesic triangulation &f which is obtained from the
construction of,. Recall that each coordinate fis the complex number associated to an edge
of T. The conditionii) of 5.3.4implies thatz;, andz;, correspond to two sides of a trianglein

Clearly, the set of triple§As, (i1,...,in), (Jx,--.,jn)), With s € AD, (i1, ...,ix) @ primary system
for As, and(jk, ..., jn) an auxiliary system fofiy, . . ., ix) is finite.

5.3.3 Proof of 6.1)

Let (X, &) be a pointinM(a; 3), we denote)y, t € R, the flow generated byon Y. Recall that on
33, we have a specified finite subdétcorresponding to the subsgwof S, the complement of” contains
only regular points oE. With a slight abuse of notation, we will call any pointliha singular point of.

Letp be a point inint(X) \ V, if there existgy > 0 (resp.ty < 0) such that),(p) € V U 9%, then, for
everyt >ty (resp.t < tp), we consider, by convention, that(p) = +,(p). In other words, we consider
that the flowy, is stationary in the sét' U 9%. By this conventiony;(p) can be defined for everye R
,andp € int(X) \ V.

Let a be a geodesic segment contained in the bounda¥ywith endpoints inl”. We can extend the
field ¢ by continuity ontoint(a). Assume that is not parallel to the field, then we say that is an
upper (resp.lower) boundary segment, if the fiellon int(a) points outward (resp. inward). Observe
that in this case, the image oft(a) by v is well defined for alk € R.

We say that the paifX, ) is in special positionf there exists a geodesic segment®mwith end-
points inV/, and parallel to the field. Let M1 (a; 3)* denote the subset o¥11(a; 3) consisting of
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pairs(X, ) which are in special position.

The formula b.1) is the consequence of the following propositions.

Proposition 5.3.5 The setM(a; 3)*P is a null set inM(a; 3) with respect tqury.

Proof: For everys in AD, let us denote the volume form ais which is induced by the Lebesgue mea-
sures ofCM andC™2 via the linear mapA ;. By definition, we haver, = & ity

Let (2, ¢) be a pairinM 1 (a; 5)°P, lete be a geodesic segmentdfwith endpoint inl” which is parallel

to the field¢. There exists an admissible triangulatibrof X which contains the edge

Sincee is parallel tog, the complex number associatedetin the local chart arising frorf" is purely
real. As a consequence, there exist AD, andig € {1,..., N1} such that(¥,{) = ®4(Z), with
Z € {(z1,...,2n,) € Us Im(z;,) = 0}. Remark that the converse assertion is also true.

For everys € AD, and everyi € {1,..., Ny}, set

Uy =Usn{(21,-..,2n5,) € CM [ Im(z) = 0}).

It follows that

Ny
Mr(a;B)* = | | os@i).

s€EAD i=1
Clearly, us(U!) = 0, Vs € AD,i € {1,..., N1}, therefore ur, (M (a; 3)%P) = 0. O

Let (3, &) be a point inMr(a; 3), andT an admissible triangulation af. Let e be an edge ofT,
we denotéi(e) the transversal measure @fvith respect tcf. If we choose an isometric embedding of
a neighborhood of into R? such that the vector fielél is mapped to the constant vertical vector field
(0,1) of R2, thenh(e) is nothing other than the length of the projection into the horizontal axis of the
image ofe. We callh(e) the horizontal length of.

A triangle inT whose sides are denoted by, e9, e3 is said to begoodif h(e;) > 0, Vi = 1,2, 3. Given

a good triangleA in R?, we call the unique side ak of maximal horizontal length thieaseof A. If all
of triangles ofT" are good'T is called agood triangulation

Proposition 5.3.6 Let (3, £) be a point inMr(a; 3) \ Mt (a; 5)°P, then there exists a good triangula-
tion T of ¥ whose edges are denoted{fay, . . ., en, } SO that,
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e The boundary edges @f are denoted bye;, ..., ex}.

e Foreveryi € {K +1,..., N1}, there existg < i, and a triangleA of T which contains both
ei, ej such thatk; is the base ofA.

Proof: As usual, letl” denote the set of distinguished singularitiee oWe define an admissible trian-
gulation of¥ as follows :

Letey,...,ex denote the (closed) geodesic segments with endpoirits imhich are contained in the
boundary of:. Assume that the segment is of maximal horizontal length among the get, ..., ex }.

Since(X, €) is not in M (a; B)°P, we haveh(ex ) > 0. Letp, ¢ denote the two endpoints ejf;. Consi-
der the following procedure :

Assume that is a lower boundary segment. Consider the stripe swept/bfint(ex)), t > 0}. Since
h(ex) > 0, this stripe must meet a singular point in the interior3gfor the boundary of, other-
wise its area would tend to infinity @stens to+oco. Remark that, since the horizontal lengthegf is
maximal among the seth(e1),...,h(ex)}, for everyt € RT, ¢y (int(ex)) cannot be contained in a
geodesic segment (with endpointsli) in the boundary ob.. Therefore, there exists> 0 such that

Ye(int(er)) NV # 2.

Let ¢y be the smallest value @fsuch thaty > 0, andyy, (int(ex)) NV # @. Letr denote a point in
Py, (ex) N'V. Lete’ ande” denote the two geodesic segments contained in the stigRec:, ¢ (ex)
which joinr to p, and tog. It can happen that one of the edgee” is already contained in the boundary
of X but not both of them, unless is a triangle. We will calkey thesupporterof ¢’ ande”.

By construction, we havé(ex) > max{h(e’),h(e”)}. Clearly, the triangle bounded hyy, ¢, e” is

embedded irt andey is the base of this triangle. Sin€E, £) is not in M (a; 5)P, neithere’ nore”
is parallel to€.

In the case wherey is an upper boundary segment, by considefing(int(ex)), ¢ < 0} instead of
{Yx(int(ex)), t > 0}, we get a similar result.

Cut off the triangle bounded hyy, ¢/, ¢’ from the surface: along the segments ande”. The re-
maining surface is a translation surface with geodesic boundary, which menessarily connected.

We can now reapply the same action to the new surface. The assumptigtijatis not in special
position allows us to continue until we get a triangulatibof X, which is clearly a good triangulation.

We number the edges @fwhich are contained in the interior &faccording to their appearing order
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in the procedure above, the ordering of two edges which appear inrtieestap is not important. Since
every edge off' in the interior ofX admits a supporter which appears in the procedure before itself, the
proposition is then proved. O

Corollary 5.3.7 If (%, €) is a pointinM(a; 8) \ Mt(a; B)*, then there exists anc AD, a primary
system of indiceBr = (i1,...,in) for A, an auxiliary system of indiceku = (jg,...,jn) for Pr,
and a vectorZ € U, such that

e |Re(zj,)| > |Re(z;,)| foranyk = K, ..., N.

o (E,f) = (I)S(Z)'

Proof: Let T be the good triangulation df which is obtained from Propositidh.3.6 Let A+ be the
matrix in My (N2, N1) associated t@’, let Z = (z1,. .., zn, ) be the vector ifker A whose coordinates
are complex numbers associated to edgéeB. d/e can assume that is the complex number associated
toe;.

We choose a primary system of indidesand an auxiliary system of indicelsu for At as follows :

e ThefirstK — 1 elements oPr are{1,..., K — 1}.

e Assume that we have choskiindices(iy, ..., i) for Pr, andk + 1 — K indices(jx, . . ., ji) for
Au. The indexi, 1 of Pr is the smallest indeksuch that:; can not be written as a linear function
of zi,,..., 2, and the index,1 of Au is the index such that;, _, is a supporter oé;,  ,, and

Jk+1 < ik41. From Propositiord.3.6 ji41 exists, and by assumption;, _, is a linear function of

(Zi17 .. .,Zik).

By this procedure, we obtain a primary system of indi@ges. . ., i), and an auxiliary system of indices
(jk,-..,jn) associated tAr. Since for anyc = K, ..., N, ej, is the supporter of;, , it follows that
[Re(z;,)| = h(ej,) > h(ei,) = [Re(zi,)]-

We know thatAr is equivalent to a matriA; with s in AD. The transformation oAt into A,
consists of renumbering the coordinate€i, changing their sign. By this transformatidp,, . . . , iy)
and(jx,...,jn), become a primary system and an auxiliary system of indicea fpand the vectoZ
becomes a vector it1; which verifies the condition in the statement of the corollary. d

From now on, we call a tripléA; I; J), with s € AD, I = (iy,...,iy) a primary system of indices
of A;, andJ = (jk, ..., jn) an auxiliary system fof, anadmissible triple Given such a triple, set
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Us(I;T) = {(z1,...,2n,) €Us | |[Re(z;,)| < |Re(zj,)], VE=K,...,N}.

From Corollary5.3.7, we deduce that the family

{®s(Us(I;J))| (As; I;J) is admissible}

covers the seM(a; 3) \ Mr(a; B)%®. Sinceur, (Mt (a; 3)%P) = 0, to prove b.1), all we need is the
following :

Proposition 5.3.8 Let (A; I; J), wherel = (iy,...,in),J = (jx,--.,jn), be an admissible triple.
Let F; denote the pull back of the energy functibrontol/; by ®,. Then we have :

/ Fsdps < 00,
MS(I§J)

wherey, is the volume form oY, which is induced by the Lebesgue measure8’6f and C2 via the
linear mapA;.

Proof: By definition, there aréV; complex linear functions with real coefficienfs, . . ., fn, such that,

if (z1,...,2n,) € Us, thenz; = fi(zi,, ..., ziy ). Note thatf;, = z;, , therefore, we can define a complex
linear map
B;: cvN — ker A,
(217"'7ZN) — (fl(Zh-"7ZN>7"'7fN1(Zla"'7ZN))

Observe thaB; is an isomorphism. By definition, we have

B, Y U(I; ) = {(21,...,2n) € cN | IRe(zx)| < |Re(fj,(21,-..,2n))|, Vk=K,...,N}.

Consider a vectof = (z1,...,2n,) In U, let (2, £) denote the image of by ®,. Recall that the
map¥ specifies an admissible triangulati@rof X such that each edge @fcorresponds to a coordinate
of Z.

By the definition, for anys = K, ..., N, the complex numbers, andz;, correspond to two edges, ,
ande;, which bound a trianglé\;, of T. With appropriate choices of orientationqf , ande;, , the area
0 of A is given by the function

A 1

O = 5 (Re(2;, )Im(z), ) — Im(z;, )Re(z;,)).

Clearly, the triangleg\,, k = K, ..., N, are all distinct. Hence, we have
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N
Area(X) > Z 0.
k=K
Letd,, k = K,..., N, denote the pull back of the functigh by B,. It follows thatB; ! ((4(I; J)) is
a subset of a sét/; where

Ws = {(21,...,25) € CN | Re(zx)| < |Re(fj,)], Ok >0, VE=K,...,N}.

Let G, denote the pull back of; by B;. Since the volume formB} 1.s equals ta< Az, wherelay is the
Lebesgue measure 6f, andx is a constant, all we need to show is the following

Lemma 5.3.9 We have

GsdAan < 00.
Ws

Proof: Let (z1,...,zyx) be a vector inV,, and(, €) be the image ofz1, ..., zy) by &, o Bs. We can
assume thatzy, ..., zx—1) are complex numbers associated to geodesic segments in the bountary of

To simplify the notations, fok = 1,..., N, setxy = Re(zx),yx = Im(z). Fork = K,..., N, we
write f; in the place off;,, and setu, = Re(f;),br = Im(fx). Recall that, by definitionf;, depends
onlyon(zi,...,zx—1), and sincefy is a linear function with real coefficients, it follows that depends
only on (z1,...,x5—1), andb, depends only offy,...,yx—1), foranyk = K,..., N;. With these
notations, we have

K-1
COD) =Y |l (5.6)

k=1

1
ekzi(xkbk_ykak)v Vk=K,...,N, (57)
lag| = |zx|, VE =K, ..., N. (5.8)
N
Area(X) > > . (5.9)
k=K

Consequently, we have

K—-1 N
Ge <exp(— Yzl = ) 6k).
k=1 k=K
Therefore, to prove the proposition, it suffices to show that
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K-1

N
I:/ exp(— Y |z)> = ) Op)dAan < oco. (5.10)
s k=1 k=K
Fix (z1,...,25_1) € CE~land(zk, ..., zy) € RN =K+ and let
Ws((z1,- -y 25-1); (TR, -, TN))

denote the set

{(yk, .- yn) € RN_K‘H\ (21, s 2k—1, (TK +WK), -, (N +1yn)) € Ws}.

Consider the following integral

N

I((Zl, e ,ZK_l); (JZ‘K, e ,.’EN)) = / exp(— Z Hk)dyK e dyN.
s((z1,2K—1); (TR 5o TN)) =K

Consider the variable changgx, . ..,yn) — (0k,...,0n). Using 6.7), and the fact thal; depends

onlyon(yi,...,yx—1), foranyk = K,..., N, we have :

N ’CLK...CLN‘

Since the function8,, k£ = K, ..., N, are positive oV, it follows

2N7K+1 “+o00 +oo
e % dhy ... / e ONdoy
0

Z((z1y--y2K-1); (XK, .- y2N)) < ——
’aK...aN‘ 0
2N7K+1

X T .
]aK...aN\

Now, set

Wi ={((#z1,.-.,2K-1); (TK,...,TN)) € CE-1 x RN-E+1 | lax| = |zk|, Ve =K,...,N}.

We have
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=

I = / exp(— 12D Z((21, s 251); (K, -y an))dardyy - deg o dyg dog .. day,
Wi k=1
K-1 ,. ON-K+1
< / exp(— |2k|?) ——————dx1dy; .. . deg 1dyx—1dzk ... dxy,
W: 1 |CLK. . .CLN|
K*l 9 |C’4K‘ |CLN‘ 2N—K+1
< / exp(— > |zl )[/ [...[/ — day]...)dzg)dzdy; . . dzg_dyr_1,
CK-1 el —lak| —lan| ’CLK...CLN|

Using the fact that;, does not depend ary; if & < j, Vk = K, ..., N, we deduce that

T < AN-K+H /K 1 e_(|zl‘2+"'+|2K*1‘2)d1:1dy1 covdrg dyg_1 < oo.
CK-

The lemma is then proved. O

The proof of Propositio.3.8is now complete, ands(1) follows. O

5.4 Proof of Theoremb5.1.1, Part b)

The proof of 6.2) is essentially the same as the proof ®flf with some minor modifications.

Assume that the forest containsm trees denoted by, ..., A, and the vertices of those trees are
{p1,...,pn}. Through out this section, we assume thak n, which means that there is at least a tree
in A which is not a point, in the sequel, such a tree is catfied-trivial. Note that the total number of
edges of the tree inl is n — m. Recall that we have

2g+n—1, ifa; €27N, Vi=1,...,n;

di ¢t A al=N = .
ime M® (A, @) { 2g +n —2, otherwise.

A pointin Met(/t, a)is atriple(, A, ¢€), whereX is a flat surface homeomorphic £, Ais an erasing
forest isomorphic tod, and¢ is a normalized parallel vector field ai

Choose a tripléX, A, €)in Met(/l, a), let ©9 be the translation surface with boundary obtained by

slitting openX along the trees in the forest LetT be an admissible triangulation Bf, and letN;, N,
denote the number of edges, and the number of triangl€s@spectively.
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In Section3.4, we have seen that one can associat€ osystens?, of N; unknowns which contains :
e N> equations of typed.3), which will be calledtriangle equations
e (n —m) equations of type3.1), which will be calledboundary equations

Note that the boundary equationsSif are determined by the foredt, and the angles in.

SetNy = Ny + (n —m). Recall that a matrix is calleormalizedif each of its entries is eithél, or
a complex number of module We can now define

Definition 5.4.1 Let A be a matrix inMc (N5, N1). We say that is x-admissiblaf
i) A is normalized.
i) Every column ofA contains exactly two non-zero entries.

iii) There are N, rows of A which form an admissible matrix defined in Definit®s3.1 These rows
will be calledordinary;

iv) There exists a bijection from a set @f — m) rows of A onto the set of boundary equations of

ST such that, each of these rows is the vector of coefficients of the conisiy equation irSy.
These rows oA will be calledexceptional

By definition, if A% is the matrix inMc¢ (N5, N1) associated to the syste#i, thenA? is x-admissible.
Given ax-admissible matrixA, the following transformations oA will be calledelementary moves
¢ interchanging two columns,
¢ interchanging two rows,

e changing sign of a columns,

Two x-admissible matrices are said todguivalent, if one can be obtained from the other by a sequence
of elementary moves. LedD* denote the set of equivalence classes of matric®ddi N, Np).

For eachs in AD*, choose a matrixA? in the equivalence clasg we then get a finite family
{A}, s € AD*} of x-admissible matrices iVIc (N5, Ny).
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Givens in AD*, for any Z € ker A, let ¥ be the ‘surface’ obtained fro by the construction
described in Lemma&.4.5 Leti/; be the open subset &ér A which is defined by the condition :

U; ={Z e ker A] : ¥z is aflat surface homeomorphic £ }.

We can then define a mab; from U/* into M°'(A, &) by associating to a vectdf in U/* the triple
Xz, A,g), where A is the forest obtained from the exceptional rowsA), and¢ is the vector field
induced from the vertical constant vector fiéld 1) of R.

From Lemma3.4.5 the following proposition is clear,

Proposition 5.4.2 The family{®* (1), s € AD*} is an open cover of the spadel® (A, a).

Let us now define the notions of primary and auxiliary system of indicea foatrixA}, s € AD".
Set

K:{ n—m+1, fN=2g+n—1;

n—m, if N=2g+n—2.
Definition 5.4.3 Given a matrixA*¥, aprimary system of indicefor A* is an ordered subsét;, ..., iy)
of (1,..., N7) such that there exig¥; complex linear functions

fi:(CN—NC, i=1,..., N7,

such thatifZ = (z1,...,2n,) is a vector inker A* then
o Zi:fi(zil,...,ZiN)7 Vi:17...,N1.

e Vi=1,...,N;,Vk = K,..., N, the coefficient of;, in fi(z,,...,2zn) isreal.

Definition 5.4.4 Given a primary system of indicds= (i1,...,iy) for A%, anauxiliary system of
indicesfor I is an ordered subs€fjy, ..., jn) of {1,..., N7) such that

e f;. dependsonly ofw;,,..., 2, ,);

e There exists an ordinary row iA} whosei,-th andj-th entries are both non-zero.

Remark: There is a natural way to specify a primary system of indiceA pas follows : letA ; be the
admissible matrix consisting of the ordinary rowsAf, and let] = (i1,...,15) be a primary system
of indices forA.
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If the i-th column of A ; has only one non-zero entry, we say th&t a boundary index. Two boundary
indicesi; andiy are said to be paired up, if there exists an exceptional roajirwhosei;-th andis-

th entries are non-zero whereas all other entries are zero. By cchistruthere ardn — m) pairs of
boundary indices, they correspond to the edges of the trees in the foréserefore there are exactly
2(n —m) — 1 boundary indices in the family.

Assume thatis, . . ., i5(,—m)—1) iS the set of boundary indices i we have two issues :
-If N =2g+n—1,thatise; € 27N, Vi = 1,...,n, we haveN = N + (n —m) — 1. In
this case, by eliminating one boundary index in each pair if both indices of #hisappear in
{i1, -+, ia(n—m)—1}, We Obtain a primary system of indices fAr;.
- If N = 2g+n—2, thatis there existse {1,...,n} suchthaty; ¢ 27N, we haveN = N+(n—m).
In this case, to obtain a primary system fAr;, we have to eliminatén — m) indices from

(i1, -, i2(n—m)—1) SO that any two indices in the remaining family are not paired up.

Let I denote the primary system fex;} which is obtained fronT by this method without changing
the ordering, observe that an auxiliary systemfs also an auxiliary system fdr.

Finally, we say that a tripleéE;A;{) € MCt(A, @) is in special positionif the pair (X9, ¢) is in
special position as defined in Sectibrg, whereX! is the translation surface with boundary obtained
by slitting openX. along the trees itd. LetMet(/t, @)°P denote the set of triples in special position in
Met(A, &). With these settings, we have
Proposition 5.4.5 The setM® (A, &) is of measure zero with respect/ig; .

Proposition 5.4.6 For any triple (E,A,f) in Met(,fl, a) which is not in special position, there exist
ans € AD*, a primary system of indice = (iy,...,iy) for A%, an auxiliary system of indices
J = (jk,...,jn) for I, and a vectorZ € U} such that

o fork=K,...,N, |Re(z,)| < |Re(zj,)|

.« 33(2) = (%,4,¢).

We call a triple(A%; I; J), with s in AD*, I a primary system of indices fox}, and.J an auxiliary
system of indices fof, anx-admissible triple

Given anx-admissible tripl A*; I; J), with I = (i1,...,in), J = (jx,...,JN), S€t
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U T) = {(21, ..., 2n,) € UZ| [Re(z,)] < |Re(z;,)], Yk = K, ..., N},
Let 7¢* denote the pull back of the energy functigii® by * ontoi/?.

Proposition 5.4.7 We have

/ fgtdlu’s < o0,
Uuzr(1;J)

wherep, is the volume form oty which is induced by the Lebesgue measur@®f, and the Lebesgue
measure of eithe€™>, or W = {(z1,..., 2n3) € CN2| 2y 4 -+ + zy; = 0} via A7

The proofs of Propositions.4.5 5.4.6 and5.4.7will be omitted since they are completely analogue
to the proofs of PropositioB.3.5 Corollary5.3.7, and Propositios.3.8

Part b) of Theorend.1.1follows directly from these propositions. g

5.5 VWolume of moduli spaces of closed translation surfaces of constant

area is finite
In this section, we use Theorérl.1to prove the well-known fact that the volume&f (&1, .. ., ky)
is finite. Recall that(k;, ..., k) can be considered as the moduli space of translation surfaces (with
parallel vector field) having cone angl&g:; + 1), . .., 2(k, + 1)7 at singularities, an@{(; (k1, . . ., k»)
is the subspace 6f(k1, .. ., k,) which contains all surfaces of area one.

OnH(ki,...,kn), we have a volume formy which is defined by the period mapping. L} denote
the volume form oty (k1, .. ., k,) which is induced by.. Our goal in this section is to prove that

ps(Hi(ky, ... k) < 0. (5.11)

First, we remark thaty.1]) is equivalent to

/ exp(—Area)djuy < oo.
H(k1,es kn)
This is because we can identity(kq, ..., ky,) to Hi(k1,...,k,) x R, and by this identification, we

can write
dug = t*dppdt, wheres = dimg Hy (ky, ..., k).
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Therefore, we have

“+o0o
/ exp(—Area)duy = / / e dtdug,
H(k1 i) Hi (k1) JO

1 s—1
= 55 i,
20 2 Hy (k1)

Consequently, all we need to prove is the following

Proposition 5.5.1 We have
/ exp(—Area)dug < 0o (5.12)
H(K1 e kn)

Proof: At first glance, it seems that this proposition is a direct consequenchezirém5.1.1, Part a),
but, unfortunately, the arguments used in the prodd.aflcannot work without the assumption that the
boundary of the surfaces considered is not empty. To overcome thistuisfave will make use o 2)

in a particular case.

Seta; = 2(k; + 1), i« = 1,...,n. Let A; be a topological tree isomorphic to a segment, and
fori = 2,...,n, let A; be just a point. Letx denote (27, aq, ..., ap), and A denote the family
{Aq,..., A}

Consider the spac#1°t(A, @) with the previous data. In this cas&{**(A, a) is the moduli space of
triples (X; (I(x1,x),x2,...,z,; &), WhereX is a closed translation surfacgsy, ..., z,} is the set of
singularities of with cone anglega, . . ., oy, } respectively, and(z1, x) is a geodesic segment joining
the singular poini; to a regular point.

Let @ denote the sequendey, . .., a,}, and letM (&) denote the moduli space of triples
(3;21,...,20; &), WwhereX is a closed translation surfacgsy, ..., z,} is the ordered set of singula-
rities of ¥ with cone angleqa;, ..., a,} respectively, and is as usual a parallel vector field ah
If the angles{a, ..., a,} are pairwise distinct, theM (&) is identified toH (kq, . .., ky,), otherwise
M (&) is a finite covering ofH (k1, . .., ky).

Let ¢ denote the map fromA°t (A, @) onto M (&) which is defined by

0:(Z;(I(z1,x),22,...,20); &) — (55 (21, ..., xn); ).

Let 41, denote the volume form which is defined by using admissible triangulationME’frﬁft, @).
Let /ig, and o denote the volume forms defined by the period mappingstt(A, @), and M (@)
respectively. To prove the proposition, it suffices to show
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/ exp(—Area(X))duy < oo (5.13)
M (&)
By Theorenb.1.], Part b), we know that
/ exp(—Area(X) — £2(I))djT, < 0o (5.14)
Met(Aa)

Recall that on each connected componenM)‘ft(A, @) there exists a constantsuch thatir, =
Aio. By a result of Konsevitch-Zorichi{Z], we know thatH (%4, . .., k,) has finitely many connected

components. It follows that®(A, @) also so has finitely many connected components. Therefore,

(5.14) implies

/ ~ exp(—Area(X) — *(I))dfip < o0 (5.15)
Met(A,a)

Consider a point%; (z1, . .., x,); §) in Mr(&). Fix a tangent vectos; € T, 2, we can then iden-
tify the set of tangent vector of norm oneTi, 3 to the sefR/«;Z. Any geodesic segment i which
containsz; as an endpoint is uniquely determined by its tangent vectar aand its length. Conse-
guently, we have an injective map :

@0 (S (x1, .- 20); )} — R/ Z) x RY,

Let/ is a neighborhood ofY; (x4, . .., zy,); &) in M1(&) such that the period mappirgdefines a
local chart ort/. For each pointX'; (z1, ..., 27,);§') inU, we choose a tangent vectdrin 7, ' to be

rrn

the reference vector, we can assume thataries continuously a&’; (z}, ..., },);¢’) varies inl{ so
that the map extended into a map :

¢:0 HU) — U x (R/yZ) x R,

which is continuous and injective.
Let (3; (I(z1,x), 22, . .., x,); €) be a point inMe (A, @) such that

Q((Z; (1(1‘171‘),.1‘27 s ,Z’n);f)) - (E’ (xlv s 7xn)7£>'

Let & denote the period mapping defining a local chamt¢f (A, @) in a neighborhood ofs; (I(x1, z), o, . . .

Suppose that i<f>(2; (I(z1,x),22,...,2n);&) = (21, ..., 2N+1), thenzy; is the complex number cor-
responding to the segmehfz;, x). It follows that in the local chart®, and® the mapo can be written
as

Q(Zl,. . '7ZN+1) = (21, e ,ZN)

and the may verifies
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A(z1y . yzny1) = ((z1, ..., 2n); arg(zn+1) + ¢ |2v+1]),  with ¢ constant,

whereN = dim¢ M (&). Consequently, we can write

Pxdftog = rduodfdr.

It follows that

/ e~ Area(X) (D) gy — / e~ Area(X)—r?y g, d0dr. (5.16)
(%)) (et U))

By a well known result (for example, selT ], Theorem 1.8), we know that on a translation surface,
there are no geodesic segments with endpoints in the set of singularities ireeticshs except a coun-
table set. This implies that there exists a countable subs¢iR /o Z such that iff is not in®, then the
geodesic ray starting from; in the directionf can be extended infinitely. It follows immediately that
(o~ H(U)) is an open dense setifx (R/a17Z) x R*. Therefore, we have

/ e~ Area(¥)—r? rdugdfdr = / ¢ Area(¥)—r? rdugdddr,
(e~ (U)) Ux(R/aiZ) xR+

oo —r? o —Area(X)
= / e rdr/ d@/ e duyg,
0 0 u

_ al/eArea(E)dluo'
2 Ju

From (.16), we deduce that

/ & T O = T | A (5.17)
~

Since 6.17) is true for any small neighborhood i1 (&), we can conclude that

/ efArea(E)dlujo _ 3 efArea(E)fﬂ(I)dﬂO. (518)
Mr(&) a1 JMet(A,q)

From (.15, we know that the right hand side of this equality is finite, hence, so is thiedatl side, and
(5.13 follows. The proposition is then proved. d
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5.6 Volume of M,(S?, @) is finite

In this section, we are interested in the moduli space of spherical flaicas:f\We have defined the
volume formu, on the spaceM (S?,a) = M(S?, a)* x S, where M(S?, a)* is the moduli space
of spherical flat surfaces whose singularities have cone angles bywe = (a4, ..., «,). Recall that
M;(S%, a)* is the set of flat surfaces having area M(S?, a)*, and M; (S?, @) is the product space
M;(S?,@)* x St. By Propositior.2.3 the space\;(S?, a)* can be considered as the moduli space of
the configurations of, points on the sphei® up to Mobius transformations.

The volume formur, induces a volume forml. on M; (S?, @). Pushing forwardit, by imposing
the condition that the volume of ea& fiber is 2, we get a volume formiil, on M, (S? &)*. The

goal in this section is to prove Theoremil.2 Note that a direct consequence of Theorgmh?2 is the
following

Corollary 5.6.1 % (M;(S?, a)*) is finite.

Remark: A similar result was proved in2], Section 18,19.

Proof: Since we have

/ exp(—Area)du, = C dps,
M(S2,a) M1 (82,a)

where( is a constant depending only on the dimensioofS?, @), Theorenb.1.2implies that

(M1 (S, @) < oo.

It follows immediately that

A1 (M1 (S%,@)) < 0.

5.6.1 The functiond

Let X be a flat surface itM(S?, &@)*. Letxy, ..., z,, denote the singular points &f so that the cone
angle atr; is «;. Let d denote the distance defined by the metridbn

For any subsef of {1,...,n}, letdiam;(X) denote the diameter of the det;, i € I'}. We define
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(5[(2) = min{d(xi,xj) i€l jéd I}

and
" ()  if 67(X) > 3diam; (%) ;
of (X) = ;
0  otherwise.
A subsetl of {1,...,n} is calledessentialf we have
ZO@ ¢ 21 7.
iel

We define a function on the spaceV (S?, a)* as follows

VY € M(S%, @)%, §(X) = max{6] (2): I C {1,...,n},[is essentia}.

The functiond is always positive since wheh= {i}, 6; (£) = min{d(z;,z;), j # i} > 0, and there
always exists € {1,...,n} such thaty; ¢ 27Z.

To simplify the notations, we also denat¢éhe composition ob and the natural projectiopr; from
M(S?% &) onto M(S?, &) *.

The proof of Theorend.6.1splits naturally into two propositions :
Proposition 5.6.2 We have
/ exp(—Area — 62)dut, < 00,
M(S2,a@)
and

Proposition 5.6.3 There exists a constaat(a) depending o such that for any surfacg in M(S?, @)*
we have

§3(X) < C(a)Area(X).

5.6.2 Good tree and good forest

Let ¥ be a surface ioM(S?, @)*. Letxy, . .., z,, denote the singular points &fso that the cone angle
atz; is «;. LetV denote the seftxy, ..., x, }, and as usual lel be the distance defined by the metric on
3. Set

0 =4(2).
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For any geodesic tre¢ on¥, we denoté/er(A) the vertex set off, max(A) the length of the longest
edge of4, andR(A) the distance fronVer(A) to the setV \ Ver(A).

Definition 5.6.4 Let A be a geodesic tree il whose set of vertices is a subsevoiLetk be the number
of edges ofA. The treeA is said to begood if either A is a singular point with cone angle 2w N, or
k > 1 and we have

e max(A) < 4814,

e diam(Ver(A)) < 4+~16,

e The index set corresponding to the vertex set &f non essential, that is the sum of all cone angles
at the vertices ofl belongs to the sérN.

e EitherVer(A4) =V, orR(A) > 3.4516.
Let us start by
Lemma 5.6.5 There always exists a good tree Bn

Proof: First, lete be a geodesic segment which realizes the distance

min{d(xi,xj), o; € 2mN ands: #* ]}

By definition, we have

leng(e) < 4.

Let A' denote the tree which contains only the segmeBty assumption, we have

max(A') = diam(Ver(A')) = leng(e;) < 6.

Consider the following procedure, which will be called fiwnts adding procedure

Suppose that we already have a geodesicAfeeonnectingt + 1 points in{z1, ..., z,} verifying the
following condition :

max(A¥) < 4F14,
(*) . k k—1
diam(Ver(A")) < 4"774.

Let I be the subset of1, ..., n} corresponding to the vertex set.af. We have two cases :
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- Case 1 7 is essential. In this case, lef,; be a segment realizing the distang¢X), and letz;
be the endpoint of; 1 which does not belong t¥er(A*).

By definition, we have eithdeng(ey1) < 3diam(Ver(4*)), orleng(ex 1) < d. Since we have
diam(Ver(A*)) < 4¥=15, we deduce that, in both cases

leng(ej11) < 3.45 1.

Slit open the surfac® along the tree4*, and denote the new surfak®. The vertex seVer(A¥)
gives rise to a finite subs&t* of the boundary of’. Let us prove that the distance frarf to the
pointz;, with respect to the distance ¥, is at most”s.

Considerey 1 as aray exiting fronx;, and lety be the first intersection point betweep, ; and the
tree A*. Since we havenax(A¥) < 4¥~16, there exists a path dnjoining x; to an endpoint of the
edge containing without crossing the tred”, whose length is at mogt4*=15 + 45~15 = 4%g.
Because this path does not cross the t#&git represents a path df joining z; to a point inV’*.
Thus, we deduce that the distance betwegandV* in X' is at most*s.

Let o’ be the path realizing the distance fram to V* in . The patha’ corresponds to a
patha in ¥ which is piecewise geodesic, and meets the #&at one of its vertices. Note that
leng(a) = leng(a’) < 4%4.

Adding a to AF, we obtain a new tree which will be denoted Jaﬂ?*’“, wherer is the number of
geodesic segments containediirLet us prove that this new tree also verifies the condition

e If 7 = 1thenVer(A*1) = Ver(A¥) U {z,}. Sincediam(A4*) < 4*~1§, and the distance from
z; to Ver(A*) is at mosB.4*~15, we deduce that

diam(Ver(AF™)) < 48715 34515 = 4ks.

By assumption we know thatax(A*) < 4%~15, and we have proved that the length of the
added edge is at mosts, hence we havenax(A*+1) < 4%4.

e If r > 1, it means that the pathhcontains some singular points in its interior. The distance from
those points to the sater(A*) is bounded by the length af which is at most*§. Hence, the

diameter of the séter(A**") is at most

4k—16 + 4k(5 < 4k+’r‘—16.

As for max(A*+7), we have
max(A*") = max{max(A¥),leng(a)} < 4%4.

143



5. FINITENESS OF INTEGRALS

We can now restart the procedure witi™" in the place ofd*.
- Case 2 I is non-essential. In this case, Ver(4*) = V, or R(Ver(4*%)) > 3.4-14, then the
procedure stops. Otherwise, by the same arguments as in Case 1, vael tart4 some edges so

that the new tree also verifies the conditien), and we restart the procedure.

Since we only have finitely many singular pointinthe points adding procedure must stop, and we
obtain a good tree. O

Definition 5.6.6 A union of disjoint geodesic trees with verticesvins called agood foresif every tree
in this union is good.

Lemma 5.6.7 There exists a good forest awhose set of vertices 8.

Proof: By Lemmab.6.5 we know that there exists a good trde in Y. Clearly, A, itself is a good
forest. If Ver(A;) = V, or every point in the sét \ Ver(A;) has cone angle i2arN, then we are done.
Otherwise, there exists a pointin V \ Ver(A;), with cone angle not in the setrN.
In this case, we would like to construct a good tréecontainingz; by the points adding procedure.
However, this procedure can not be carried out straightly becauke pfesence of the tret, . Namely,
it may happen that we havg(Ver(A;)) < 3.4%715, wherek; is the number of edges of,, but the
segment realizing this distance intersects the #reé/Ne will call this theblocking situation

Let us consider the following procedure, which will be calledttiees joining procedure
Assume that we already ha¥€isjoint geodesic treed, ..., A; with the following properties :

a) Ajisagoodtre/j =1,...,1— 1.

b) A; satisfies the conditiofx).

c) d(A;, Uz} A;) < 4k,
Let k1,...,k; be the numbers of edges df, ..., A; respectively. Let be a path of length less than

4%:§ joining a point in4; to a point inl_lé.;llAj.
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Without loss of generality, we can assume thaiins a point inA4; to a point inA4;_;. Since both4;_;
and A4, verify the condition(x), we deduce that there exists a pafoining a vertex of4;_; to a vertex
of A; without intersecting the seté.;llAj (except at the endpoints) whose length is at most

gli=1s 4 ghig 4o glia—1s < ghithioag,

Consider the surface with boundary obtained by slitting opeaiong the treesi, ..., A;. The pathé
represents a path in this new surface, joining a point in the boundary e@npcorresponding td;_;
to a point in the component corresponding4o

Consider a path of minimal length joining these two points in the new surfacepaéttiscontains a pie-
cewise geodesic patly in X joining a vertex ofA4;_; to a vertex ofA; without crossing the edges of
Ay, ..., A;. Note that the endpoints of the geodesic segmenigame singular points of. The union of
cp and all the trees iR A4, ..., A;} which have at least a common point withis a geodesic tree. This
new tree contains obviously; ; and A; as subtrees.

Denote the remaining trees, ones that have no common points:yyitti , .. ., A}, _,, and the new tree
Aj,. Note that’ < [ and the treed), contains at least;_; + k; + 1 edges.

It is a routine to verify that the familyf{ A’,..., A},} also satisfies the conditions, andb). If the

conditionc) still holds, then we can restart the procedure. Therefore the proeedn be repeated until

we get a familyA;, . . ., fli of disjoint geodesic trees, verifying), andb), and in addition we have :
d(/iz, (Al .- Aifl>) > 4kl~(5,

wherek; is the number of edges offlz

It is clear that, if we have a blocking situation, then the hypothesis of thejoiesg procedure are
satisfied, we can then use the trees joining procedure to get out of théngaituation, and reapply the
points adding procedure until we get to a blocking situation again. Sinceutheer of singular points
in 3 is finite, this algorithm must stop, and we obtain a good forest. O

Corollary 5.6.8 There exists a constant, such that for any® in M(S?, a)*, there exists an erasing
forestA in  which verifies

((A) < k6.

Proof: By Lemmab5.6.7, we know that there exists a good forebt= Uiz, Ay in . By definition, A is
an erasing forest. Since every treedrverifies the conditior{x), we havel(A;) < k;4*i s, wherek; is
the number of edges of;, Vj =1,...,m.
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Observe thak; +--- + k,,, = n — m < n — 1, therefore we have

m

L(A) = U(A)) < (n—1)4" 15,

j=1
and the corollary follows. O

5.6.3 Proof of Proposition5.6.2

Let A.q(@) denote the set of all familied = {A;,..., A} of m (0 < m < n) topological trees,

whose vertices are labelled Y, . . ., n}, verifying the following condition : iff;, j =1,...,m,isthe
subset of 1, ..., n} corresponding to the vertices of the ttde, then

Z «; € 277

icl;

Foreachd = {Ai,..., A} € Au(a), leti/ ; be the subset aM°* (A, @) consisting of all triples
(2, A, €) satisfying the following condition :

~

((A) < rO(%),

whereA = L7, A; is a geodesic erasing forestdf with A; isomorphic taA;, andx is the constant in
Corollary5.6.8

Letp 4 denote the projection froov1°* (A, @) onto M (S?, @)*, which associates to every triglE, A, £)
the surface.. From Corollary5.6.8 we know that the family

Vi=riUy): Ae Au(a)}
covers the spac#1(S?, @)*. Let p; be the natural projection froov1(S?, @) onto M(S?, @)*, it follows
that the family

{7 (Va): A€ Au(@)}
covers the spac#1(S?, a).

Since the se#d, (@) is finite, it is enough to show that, for everyin A,4(a), we have
/ exp(—Area — 6%)dut, < co. (5.19)
P (V)
Since the spaca1(S?, @) can be locally identified toV1°t (A4, &), we have
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/ exp —Area — 6%)dut, = / exp(—Area — 62)dury
P1

By definition, for every(Z, A,g) inU 4, we have/(A) < kd(%). It follows

/ exp(—Area — 62)dut, < / exp(—Area — %EQ(A))CZMTT (5.20)
Uy Uy K

By Theorem5.1.1, Part b), we know that the right hand side 6fZ0 is finite. Consequently5(19 is
true, and the proposition follows. O

5.6.4 Proof of Proposition5.6.3

Let Iy be a subset of1,...,n} such thaﬂj[)(Z) = §(X) = 4. Let s be a geodesic segment joining a
point x;, with iy € Iy and a pointr;, with iy ¢ I such thaleng(s) = §. Letp denote the midpoint of
s. As usual we denotd the distance induced by the flat metricXf

First, we have

Lemma5.6.9 B(p,§/2) = {x € ¥ : d(p, z) < §/2} does not contain any singular point bf

Proof: Suppose on the contrary that a singular paiptwith & ¢ {io, 7}, is contained inB(p,/2),
then we havel(z;,, z;) < 0, andd(z;,,x;) < ¢, but this would imply that;,(X) < J, and we have a
contradiction. O

Let D(§/2) denote the open disk with cent@r, 0) and radius/2 in the Euclidean plang&? = R2.
Let f be the isometric immersion fro(6/2) to 3, which maps the horizontal diameter b{6/2) to
the segment, and the origin0, 0) to the pointp. The immersionf can be defined because the smallest
distance fronp to a singular point ok is 6/2.

Let e be the maximal value such that the restrictioryain the diskD(ed) with center(0,0) and radius
e is an embedding. 1€ > 1/4 then there is an embedded Euclidean disk of radjisin X, which
means thatArea(X) > (m42)/16. In the sequel, we will suppose that< 1/4, consequently, the set
f~Y(p) contains points other thai, 0). Letp; be the pointinf~1(p) \ {(0,0)} closest tq0, 0), ande;
be the segment joinin@, 0) to p; in D(/2).

For any subseif of {1, ...,n}, we denotey; the sum
ay = Zai>
icl
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and||«ay|| the distance frona; to the setrZ in R. Set

ap =min{||ag| : I C{1,...,n},|ar]| # 0}.

Choose a numbey such thaky < min{1/6,sin(ag)/4}. We will prove that there exists an embed-
ded disk of radiuggd in X, which is enough to prove the proposition.

Let dy denote the horizontal diameter bf(¢/2), andd; denote the lift ofs passing through; . Letc

denote the image af; by f, thenc is a geodesic loop it with base poinp. Let § be angle betweeti,
andd,, by this we mean the angle |f; 7 /2] between the two lines supportidg andd; . Let us prove

Lemma 5.6.10 We have, eithef = 0, or € > ¢.

Proof: Remark that equals the rotation angle of the holonomyahodulor. Suppose that # 0, then,
by the definition ofo, we haved > «y.
If ¢ < e, then the distance frorf0, 0) to d; is less tharRepd < sin(ag)d/2. Together with the fact that

0 > «p, this implies thatl; intersectsly, in other words, the segmenthas self-intersection, which is
impossible. Therefore, we can conclude that either0, ore > «. O

If € > €p, then we are done. Therefore, we only have to consider theficasg and we have

Lemma 5.6.111f 6 = 0, then the rotation angle of the holonomy«ds 0 modulo2x.

Proof: If it is not the case, then this angle equalsnodulo 27, and hence, the holonomy ofis the
composition of a rotation of angleand a translation which maygs, 0) to p;.

Such a transformation must fix the midpointof the segment joining0, 0) to p;. It follows thatg; is
mapped byf into a singular point oE, which is impossible becaugeis contained in the disk(4/2).00

From Lemmab.6.11, we deduce that the s¢{D(5/2)) contains a cylinde€' with length(1 — 2¢)6
and width bounded bgeo.

Remark that is then a closed geodesicdnwhich cutsy: into two flat surfaces with geodesic boundary,
each of which is homeomorphic to a topological closed disk. We denwptee flat disk that contains;, .
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Lemma 5.6.12 For anyi in Iy, x; is contained in%.

Proof: Recall that by the definition af, we have

diam{z;, 1 € Iy} < /3,
which implies thad(z;,, x;) < §/3, Vi € Iy.
If there exists € I, such thate; ¢ ¥4, then the path realizing the distandér;,, z;) must intersect the
closed geodesie, therefore it crosseS'. Consequently,
d(xio,a:i) = (1 — 26)(5 > 2/35,

which is impossible. O

The rotation angle of the holonomy efequals the sum of all cone angles at singular pointsgn
modulo2r. By assumption, we know that;, ¢ 27Z, it means thak, contains singular points which
do not belong tq z;, i € Ip}. Note that we have

min{d(xi,acj}, 1€ Io, j Q I(), Zj S EO} > (5[0(2) =.

SinceY is a flat surface with geodesic boundary which contains no singulariti¢iseoboundary, we
can restrict ourselves intg, and restart the whole procedure. This procedure can be continledgs
as the rotation angle of the loeps zero.

Since we only have finitely many singular pointslinthe procedure must stop, and we get a poiri in
whose injectivity radius is at leastd. Propositiorb.6.3is then proved. O
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Annexe A

Curves and Isotopies

Throughout this chaptes will be a fixed compact surface whose Euler characteristic is negative. O
goal in this section, is to prove the following lemma

Lemma A.0.1 Letey, . . ., ¢, be afamily of curves iy verifying the following conditions :

i) For everyi = 1,...,k, the curveg; is either a simple arc, or a simple loop if its two endpoints
coincide lying in the interior ob except its endpoints when the later are contained in the boundary.

ii) If i # j thenc; andc; are not in the same homotopy class with fixed endpointgidfa loop then
¢; is not homotopic to the constant loop, and if the endpoints afe contained in the boundary,
¢; is not homotopic with fixed endpoints to a subsegment of a boundaryocemitp

i) If ¢ # j, thenc; andc; intersect at most at their common endpoints.
The union ot4, .. ., ¢, will be denoted by’

Lety be a homeomorphism Sfwhich is isotopic to the identity by an isotopy which is identity on the
boundary ofS, and fixes every endpoint of the aigs. . . , ¢;. Suppose thap(c;) = ¢;, Vi = 1,...,k,
then there exists an isotopy framto Idg which is identity on the boundary, and leaves the(sétva-
riant.

It seems to the author that this lemma is classical, but he could not find a geoehae for it. For-
tunately, it turns out that one can prove this lemma by a combination of cladsoaems, and Epstein-
Zieschang, and eventually the theorem of Alexander on homeomorphisths ofosed disk which is
identity on the boundary.

In the sequel, we call a homeomorphignof S a1-homeomorphism if it is isotopic to the identity by
an isotopy which is identity on the boundary ®fIf A is a subset of, then aA — 1-homeomorphism
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is a homeomorphism which is isotopic to the identity by an isotopy fixing every pothe setdS U A.

A.1 Basic Theorems

We recall here some important theorems which are useful for the praafomaA.0.L
The following theorem follows from results of Epstein-Zieschang (8deTheorem A.4, Theorem
A.5 page 411).

Theorem A.1.1 (Epstein-Zieschang)Let{ci, ..., ¢} be a family of curves with the properties descri-

bed in Lemmah.0.1 Assume in addition that all the endpointseef. . ., ¢i lie on the boundary of.

Let{v1, ..., } be another family of curves verifying the same properties suchttatdc; are homo-
topic with fixed endpoints, then there exists a homeomorphisht' such that

e ¢ is isotopic to the identity by an isotopy which is identity on the boundasy, aihd fixes all the
endpoints oty ..., c.

o O(ci) =", Yi=1,... k.

Next, we also need the following theorem of Alexander

Theorem A.1.2 (Alexander) Any homeomorphism of the unity dBlof R? is isotopic toldp.

A direct consequence @f.1.2is the following

Corollary A.1.3 Let{ay,...,a,} be a family of curves ii¥ verifying the properties in Lemm&.0.1
such thatint(.S) \ (U7, a;) is a disjoint union of topological open disks. lggbe a homeomorphism of
S which is identity ordS, fixes all the endpoints of the curves . . ., a,,, and preserves the sef’_; a;.
Theng is a1-homeomorphism of.

Proof: By assumption, we haw&(a;) = a;, Vi = 1,...,n. Foreach = 1,...,n,leth; : a; x[0,1] —
a; be an isotopy fronyp,,, to Id,,. Since the curvesy, . .., a, cutint(S) into open disk, we can extend
the isotopiesi;, « = 1,...,n to an isotopy fromp to a homeomorphismy’ which is identity on the set

05 U (U'_a;). Note that this isotopy is identity on the boundarySof
Now, applying Theoremf\.1.2 to the closure of each of the disks in the 8&t(.S) \ (U]-,a;), we

deduce that the homeomorphigfhis isotopic to the identity of by an isotopy which is identity on the
setdS U (U, a;), and the corollary follows. O
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A.2 Proof of LemmaA.O.1

First, we add to the familycy, . . ., ¢ } the simple curves, 1, ..., ¢, such thatthe familycy, ..., ¢, }
verify the same conditions ds1, ..., cx}, andcy, . . ., ¢, cutint(S) into a union of open disks.

By cutting off a small disk around each endpoint of the curues. ., ¢, in the interior of S, we can

assume that all the endpointsaf . . . , ¢,, are contained in the boundary 8f Equip .S with a hyperbolic

metric such thad.S become a union of closed geodesics. The universal c®eérS is then a domain of
H? bounded by geodesic lines and a subsélliit = S'.

Fori =k +1,...,n, lety; denote the image af, by ¢. Recall that by assumptiap(c;) = ¢;, Vi =
1,...,k. Let S’ denote the surface we obtain by cuttifigalongcy, ..., c,. We will show that, for all
i=k+1,...,n,c¢; is homotopic toy; in S’

Fix ani in {k + 1,...,n}, consider a lifté; of ¢;, and a lift5; of ~; such thatc; and4; have the
same endpoints i%. Note that, by assumption, for evejy= 1,...,k, int(c); N int(c;) = @, and
int(c;) Nint(y;) = @, consequently; andy; do not intersect any lift of;.

Now, letr be the number of intersection points betweégmand4; except their common endpoints.
It follows that there exists+1 disks inS each of which is bounded by a sub-ar@&péind a sub-arc of;.

Let D be one of those disks. For afiye {1,...,k}, leté; be a lift of ¢;, observe thaD N¢; = @.
Suppose on the contrary thatN ¢; # @, then, since; and?; cannot intersedit(¢; ), the diskD must
contain both endpoints @;. By assumption, the endpoints &f are contained in a geodesic line of the
boundary ofS, it follows that there is a geodesic line @6 that intersects the disk, but this would
imply that eitheré; or 4; is not contained insidé, which is impossible.

Now, the observation above implies tléais homotopic tay; by an isotopy which does not meet any
lift of ¢;, Vj =1,..., k. We deduce that; is homotopic toy; in S’

TheoremA.1.1 shows that there exist khomeomorphisny’ of S’ such thaty'(¢;) = v, Vi =
k+1,...,n. The homeomorphism’ can be interpreted as a homeomorphisn$ efhich is identity in
the setoS U C'. Hence, we deduce thatis isotopic to a homeomorphisth of S by an isotopy fixing
every point in the se®S U C, such thatp(c;) = ~;, Vi = k + 1,...,n. Since the curves,, ..., ¢, cut
int(S) into a disjoint union of open disks, Corollafy1.3 allows us to conclude. O
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Annexe B

Flat surfaces and Teichniiller space

Throughout this chaptef, will be a fixed flat surface, without boundary, havingingularities, de-
noted bypy, . . ., p,, With cone anglesa, . . ., a,, respectively. Recall that the Teiclifter spaceZ (g, n)
can be interpreted as the space of all péiis¢), whereX is a Riemann surface, angdis a homeomor-
phism fromS, on toX, modulo isotopy relative t¢p1, ..., p,}.

Our goal in this chapter is to prove the following

Proposition B.0.1 LetX( be a flat surface of genys without boundary, having singularities, denoted
byzi,...,z,, withcone anglesa, ..., a, respectively. Lep, : S, — X, be a homeomorphism which
sends the set of singularities 8f onto the set of singularities af, respecting cone angles. L&t be a
geodesic triangulation afy such that the set of vertices 'df, coincides with the set of singularities of
Yo. The pair(Xg, ¢g) represents an element of the Teidhler space7 (g, n) which is denoted as usual

by [(Xo, ¢o)]-

Suppose that there exists a closed cupia g \ {z1,...,z,} such thatorth(vy) # Id. Then, every
element off (g, n) close enough tf(X, ¢o)] is represented by a paiX, fx o ¢o), where

e Y is a flat surface with cone singularities of angles . . ., a;, ;

e The mapfs : ¥y — X is a homeomorphism sendifl§ onto a geodesic triangulation of,
whose vertex set coincides with the set of singularities. of

B.1 Preliminaries

Setn; = 4(2g +n — 1) — 3 andny = 3(2g + n — 1) — 2. First, we show that the surfaé& can be
associated to a vector {@"** satisfying a system of, linear equations.

155



B. FLAT SURFACES AND TEICHMJLLER SPACE

We begin by choosin@g + n — 1 edges{by, . .., bag+n—1} Of Ty such that, \ (u?f{”_lbj) is an
open disk, we call such a set of edgdamily of primitive edgesRemark that such families always exist.
To see this, consider the dual graphIaf on 2. Since this graph is connected, we can find a maximal
tree contained inside it, bynaximal treewe mean a tree which contains all the vertices of the graph.
The complement of a maximal tree is a sekgf+ n — 1 (open) edges of the dual graph. These edges
correspond to a family of primitive edgesT.

Cut open the surfacg, along the edges;, . .., byg+,—1, We obtain a flat surfacB, with geodesic
boundary, homeomorphic to a closed disk. Note that the bounddyy obntains2(2g +n — 1) geodesic
segments.

Letd) andb}, j=1,...,2g+n—1, denote the two geodesic segments on the boundddy afhich are
identified to the edgé; of Ty. The triangulatiorily of 3y induces a geodesic triangulationIof which
containsn edges. To simplify notations, this triangulationlof is also denoted b{f';. We choose an
orientation for each edge dfy. Assume that the edges on the boundarpgfare oriented coherently
with the orientation oDy.

Using a developing map dd,, we can associate to each oriented eelgé T, a complex numbet(e).

Let Z, denote the vector i™ whose coordinates are the complex numbers associated to the edges of
Ty. We assume that the first coordinateof Z, corresponds to the edgé.

Since the developing map is defined up to a rotation, the veties defined up to a multiplication by
e with 6 in [0; 27]. Hence, we can assume thiatz) = 0.

As we have seen previously in the proof2f..1Q the coordinates of; must verify a system of
linear equation®, which contain®(2¢g +n — 1) — 2 equations of type.3), and2g + n — 1 equations
of type 3.1). Observe that2(2g +n—1) —2)+ (29 +n—1) =329 +n—1) — 2 = ns.

Let V1, denote the subspace @f'' consisting of solutions of the systest,. Clearly, we haveZ,
V-

For the dimension oV 1, we have

LemmaB.1.1
dim¢ Vo, =n1 —ng =29 +n— 2.

Proof: Let us consider in more detail the equations of typd)(of St,. The equations of type3(1) in
ST, are of the form :

2(b}) = —e'Yi z(0%),
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withj=1,...,2g+n— 1.

Foreachyjin {1,...,2g+n—1}, letc; be a path i, joining the midpoint ob’; to the midpoint ob’. By
construction, there exists a map : Do — X which is isometric in the interior dby, and map$D
on to the se(U?iJ{”_lbj). The image of; by hg, denoted by:;, is a closed curve ik, which intersects
the set(u?f{”’lbj) at only one point. Observe théy is the angle of the rotatioarth(¢;). It is worth

noticing that the closed curvgs,, . .., ¢ag4,—1} form a basis of the groufl; (3o \ {z1,...,2n},Z).

By assumption, there exists a closed cupen X \ {z1,...,x,} such thabrth(y) # Id, it follows
that there existg € {1,...,2¢g + n — 1} such tha¥; ¢ 27Z. Now, using the arguments in the proof of
Lemma3.4.6 we conclude thadimc VT’0 =ny—ng=29g+n—2. O

Let Hp, denote the Hermitian form determined by the are&gf Let W, denote the sefZ =
(21,---y2n,) € V1, | ZtHTOZ = 1,Imz; = 0}. Observe thatVr, is a real sub-manifold o™ of
real dimensior2(2g +n — 2) — 2.

By assumptior?; is contained inWr,. Let Ué denote an open subset Wfp, containingZ, and ho-
meomorphic to a ball iiR?(29+7~2)=2_ We can then define a map

o, : Uy — T(g,n),

such that for every € U}, ®1,(2) is represented by a pgiE, fx o ¢y), whereX. is a flat surface, and
fx is ahomeomorphism, which serflg onto a geodesic triangulation Bfwhose vertices are the singu-
larities. This map is constructed in the same way as the one defined in the pleofima3.4.5 We have

Lemma B.1.2 The mapd, is continuous and injective.

Proof: For injectivity, suppose thakr,(Z;) = ®1,(Z2). Let (X;, ¢:), ¢ = 1,2 be the pair representing
o1, (Z;), which is obtained by the construction ®f-,. By definition, we can write); = f; o ¢o, where
fi is a homeomorphism mappiflg, onto a geodesic triangulation 2.

By definition, there exists a conformal homeomorphisfnrom 3, to X5 such thatp;l ohodgisan
element ofHomeoaL(Sg, {p1,...,pn}). Using Propositior8.2.3 we deduce thak is an isometry from
¥; ontoX,. Lemma2.3.8then implies thak maps the triangulatioyfi (T) of 3, onto the triangulation

f2(To) of 32. As a consequence, we see that= Z,.

For the continuity, we use the same arguments as in the proof of Propdsti@n O
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Since the Teichrialler space7Z (g,n) is of real dimensior6g + 2n — 6, to proveB.0.1, we have
to extend the ma@r, to a continuous and injective map from a ball&$9+2"=6 into 7 (g,n). To
get such a map, we introduce small perturbations of the syStemFirst, we observe that the angles
0;, j=1,...,2g+n—1, are notindependent. Choosedges amondy, . . ., bag+,—1 Which form a tree
Ay connecting the singular points, . . ., z,,. Such edges exist because any two pointsin . .., z,, }
are joined by a path ifU?iJ{”*lbj). Without loss of generality we can assume tAgicontains the edges
b29+1, ey b2g+n—1-

LemmaB.1.3 Foreveryj € {29+ 1,...,2g +n — 1}, we have

(9]' = 77]'(@1, e ,an,Ql, . ,929),

wherer); is a linear function with integer coefficients.

Proof: The curves{¢,, ..., ¢y} form a basis of the groupl; (X, \ Ao, Z). Note that since the group
SO(2) is Abelian, if the closed curveg and~s are homologous iXy \ {1, ..., x,}, thenorth(v;) =
orth(~s).

For eachj in {2¢g + 1,...,29 + n — 1}, the curvet; is homologous to the curvg, o ---ol;, o é;,
whereis € {1,...,n}, l;, is a curve homologous to a small loop abeyt, andé’ is a closed curve in
20 \ A().

The curve?; represents an element of the gratip(Xo \ Ao, Z), hence the rotatioarth(¢}) is determi-
ned by the rotationsrth(¢;), ..., orth(éy,). We deduce that, for everyin {2g +1,...,2¢9 +n — 1},
the rotationorth(¢;) is determined by the angles, . . ., a,, and the rotationerth(c, ), . . ., orth(éy).

The lemma is then proved. O

B.2 Proof of PropositionB.0.1

Let e be a small positive real number. Set

A={A= (1., ) ERY |\ <¢, Vj=1,...,29}.

Foreach\ = (\1,..., Ay) in A, setd;(X) = 0;+A;, forj = 1,...,2g,andd;(\) = n;(a1, ..., o, 01+

Ay.oy B9+ Xog), forj =2g+1,...,29g+n— 1. LetSt,(\) denote the system obtained by replacing
0; by 0;()\) into St,. Let Vi, (\) denote the sub-space @f consisting of solutions B, ().
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Since there existg € {1,...,2g + n — 1} such tha¥); ¢ {2kn : k € Z}, if e is small enough, then
0;(\) & {2km : k € Z}, for all X € A. It follows thatdimc Vr,(A) = 2g +n — 2, forall A in A.

Let Wr, (\) denote the sefZ = (z1,...,2,,) € V,()\)| ?HTOZ =1, Imz; = 0}. Obviously,
we haveVr, (0) = Vr, andWr, (0) = Wr,. Therefore, we can find, for eachin A, an open subset
U'(\) of Wr, () homeomorphic to a ball ilR*(29+7=2)=2 sych thafU' (0) = U}, and the set/!(\)
varies continuously as varies inA.

Let Q2 denote the sef(Z,\) € C™ x A |Z € UY()\)}. Itis now clear thaf2 is homeomorphic to an
open ball inR2(29t7=2)-2 » R29 ~ RO9+27—6_Note that() can be realized as a subset®f such that
UL(\) = V1, (\) N Q. We define a map

(ETO () — T(gan)7

in the same way as the mdpr,, that is, for eaci{Z, \) in Q, we construct a flat surface by forming
triangles and gluing them together usifig as pattern. Recall that, by this construction, we obtain a pair
(3, fx 0 ¢o), Wherefy, : ¥y — X is a homeomorphism which sendg onto a geodesic triangulation
of .

Using the same arguments as in Lemia.2 we can show tha%To is continuous and injective. Since
) is homeomorphic to a ball iR®*2"~6 and the Teichriller spaceT (g, n) is of the same real dimen-
sion, the mapf)TO is a homeomorphism. This implies th@@o(Q) is a neighborhood dfi(%y, ¢)], and
the proposition is then proved. O
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