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Dans la vie en dehors des Mathématiques, je voudrais saluer les copains dans monéquipe de foot
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Finalement, je remercie François Labourie, mon cher directeur de thèse, de m’avoir initíe au monde
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Résuḿe

Dans cette th̀ese, nous nous intéressons aux trois types de surfaces platesà singularit́es coniques sui-
vants :

- surfaces de translatioǹa bord ǵeod́esique,

- surfaces avec forêt effaçante, et

- surfaces plates hoḿeomorphes̀a la sph̀ereS2.

Nousétudions les espaces de modules de ces surfaces et relions leurs propriét́es aux propríet́es de l’es-
pace de modules des surfaces de translation.

Les ŕesultats principaux de cette thèse sont les suivants : nous montrons tout d’abord que les espaces
de modules en question sont tous des orbifolds. Plus précisement, ces espaces sont des quotients des
variét́es plates affines complexes par des groupes agissant proprement discontinument. Dans un deuxième
temps, nous construisons de manière uniforme une forme volume sur chacun de ces espaces. Notons que
les surfaces de translation (fermées) sont un cas particulier des surfaces de translationà bord ǵeod́esiques.
Dans ce cas, notre forme volume estégale,̀a une constante multiplicative près,à la forme volume habi-
tuelle d́efinie par l’application de ṕeriodes.

Dans [Th], Thurstonétudie l’espace de modules des surfaces plates polyèdrales, il montre que cet espace
est muni d’une structure ḿetrique hyperbolique complexe. Nous montrerons que la forme volume induite
par la ḿetrique hyperbolique complexe coı̈ncide,à une constante multiplicative près, avec notre forme
volume.

Pour les surfaces de translationà bord ǵeod́esique dont le bord est non-vide, ainsi que les surfaces avec
forêt effaçante, nous définissons des fonctions d’énergie sur leur espace de modules qui tiennent compte
de l’aire de la surface, et de la longueur du bord, ou des arbres. Nous montrons que les volumes de ces
espaces renormalisés par cettéenergie sont finis. Nous retrouvons, comme cas particuliers, le fait que
l’espace de modules des surfaces de translation, et l’espace de modulesdes structures ḿetriques plates
sur la sph̀ere sont de volume fini.



Abstract

In this thesis, we are interested in three types of flat surfaces :

- translation surfaces with geodesic boundary,

- flat surfaces with erasing forest, and

- spherical flat surfaces.

We study the moduli spaces of those surfaces, and relate their propertiesto those of moduli spaces of
(closed) translation surfaces.

The main results of this thesis are the followings : first, we prove that the modulispaces under consi-
deration are orbifolds. More precisely, they are quotients of flat complexaffine manifolds by some groups
acting properly discontinuously. Next, we define a volume form on each ofthose moduli spaces by si-
milar method. Note that (closed) translation surfaces are a particular case of translation surfaces with
geodesic boundary. In this case, up to a multiplication constant, our volume form equals the usual one,
which is defined by the period mapping.

In [Th], Thurston studies the moduli space of flat surfaces isometric to polyhedra, he shows that this mo-
duli space can be equipped with a complex hyperbolic metric structure. We prove that the volume form
induced by the complex hyperbolic metric and our volume form coincide, up to amultiplication constant.

For translation surfaces with geodesic boundary, and flat surfaces with erasing forest, we define some
energy functions, which involve the area of the surface, and the length of its boundary, or the total length
of the trees in the forest, on their moduli spaces respectively. We prove that the volumes of our mo-
duli spaces normalized by these energy functions are finite. We deduce from this result the fact that the
volumes of the moduli space of translation surfaces, and the volume of the moduli space of flat metric
structures on the sphere are finite.
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4 Spherical flat surface 93
4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
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Chapitre 1

Introduction

1.1 Surface plateà singularités coniques

SoitΣ une surface compacte, fermée, orient́ee, c’est-̀a-dire une varíet́e de dimension2, compacte, sans
bord. On dit queΣ est unesurface platèa singularit́es coniqueslorsqu’elle est munie d’une structure
métrique Euclidienne en dehors d’un sous-ensemble finiSingtelle que, pour toutx appartenant̀a Sing,
un voisinage dex est modeĺe sur un ĉone. Les premiers exemples de telles surfaces sont des polyèdres
avec la ḿetrique induite par la ḿetrique Euclidienne deR3. Pour ces surfaces, les seuls points singuliers
sont les sommets, les pointsà l’intérieur d’une face sont́evidemment ŕeguliers, ainsi que les points̀a
l’int érieur d’une ar̂ete car ceux-ci ont un voisinage isométriqueà l’union de deux demi-disques plongés
dansR2. Dans le cas des polyèdres, tout sommet admet un voisinage isométriqueà un ĉone dont l’angle
au sommet est strictement plus petit que2π. Les surfaces plates en géneral ne v́erifient pas cette propriét́e.

Les tores plats,i.e.quotients deR2 par des ŕeseauxZu⊕Zv, avecu, v ∈ R2 indépendants, sont d’autres
exemples de surfaces plates. On construitégalement des surfaces plates dont le genre est plus grand que
1 (avec forćement des singularités), par exemple par revêtement ramifíe des tores plats.

Pour les surfaces̀a bord, nous introduisons la notion desurface platèa singularit́es coniques et̀a bord
géod́esique, pour simplifier, que nous appelons surfaces platesà bord ǵeod́esique pour simplifier. Une
surface platèa bord ǵeod́esique est une surface dont l’intérieur est munie d’une structure surface plate
à singularit́es coniques (comme ci-dessus), et dont le bord est une union finie de segments ǵeod́esiques.
Les exemples les plus simples de telles surfaces sont des polygones munis dela métrique induite par celle
deR2. Comme dans le cas des surfaces fermées, on peut avoir des surfaces platesà bord ǵeod́esique de
tout genre.

Il existe un lien important entre l’étude des surfaces plates et la théorie de surface de Riemann : si
Σ est une surface plate, alors la structure surface plate induit une structure conforme surΣ \ {Sing}
qui s’étend uniquement en une structure conforme deΣ, et on a ainsi une surface de Riemann avec des

11



1. INTRODUCTION

points marqúes qui sont les points singuliers deΣ. Inversement,́etant donńee une surface de RiemannΣ

avec des points marqués, un th́eor̀eme de Troyanov assure qu’il existe dans la classe conforme deΣ une
structure surface platèa singularit́es coniques dont les points singuliers sont les points marqués, avec les
angles coniques fix́es, de plus, une telle structure est uniqueà homoth́etie pr̀es (voir [Tr1]).

Les espaces de modules des surfaces plates ayant des singularités coniques fix́ees sont l’objet de nom-
breuses recherches, un bref aperçu des résultats concernant ce sujet est présent́e dans les paragraphes qui
suivent.

1.2 Métrique polyèdrale sur la sph̀ere

Dans son article [Th], Thurston s’int́eresse aux espaces de modules des surfaces plates isométriques
aux polỳedres. Soitx un point singulier sur une surface plate, dont le voisinage est isométriqueà un
cône d’angleθ. On appelle le nombre2π − θ la courbureenx. Pour toute surface plate isométriqueà
un polỳedre, tous les points singuliers sont de courbure positive. Par le théor̀eme de Gauss-Bonnet, la
somme de courbures de tous les points singuliers d’une surface plate polyèdre doitêtreégaleà4π.

Soientκ1, . . . , κn, (n > 3), n nombres ŕeels appartenantà l’intervalle(0, 2π), et v́erifiant :

κ1 + · · ·+ κn = 4π.

On noteC(κ1, . . . , κn) l’espace de modules des surfaces plates homéomorphes̀a S2, ayantn points
singuliers de courbures(κ1, . . . , κn) à homoth́etie pr̀es. Cet espace n’est pas complet en géńeral : si
κi + κj < 2π, alors la distance entre les points singuliers de courburesκi etκj peutêtre ŕeduiteà źero
de façon que l’aire de la surface limite reste finie. On peut donc compléterC(κ1, . . . , κn) par les espaces
C(κ̃I1 , . . . , κ̃Ik

), où (I1, . . . , Ik) est une partition de l’ensemble{1, . . . , n}, et

κ̃Ij
=
∑

i∈Ij

κi < 2π.

12



1. INTRODUCTION

Pour ces espaces de modules, Thurston obtient le résultat suivant :

Théorème (Thurston) Soient(κ1, . . . , κn), (n > 3), n nombres ŕeels dans l’intervalle(0, 2π) dont
la somme est4π. Alors, l’espace de modulesC(κ1, . . . , κn) est une varíet́e hyperbolique complexe de
dimensionn − 3, dont la compĺetion est une variét́e hyperbolique complexèa cônes de volume fini. La
compĺetion deC(κ1, . . . , κn) est un orbifold si et seulement si pour tout couple(κi, κj) tel quei 6= j et
s = κi + κj < 2π, on a :

i) Soit (2π − s) divise2π,

ii) Soit κi = κj etπ − κi divise2π.

Pour construire les cartes locales, Thurston utilise des triangulations par segments ǵeod́esiques des
surfaces dansC(κ1, . . . , κn), en associant auxn− 2 ar̂etes particulìeresn− 2 nombres complexes obte-
nus par une application developpante. Par cette construction, le voisinaged’un point dansC(κ1, . . . , κn)

est identifíe au quotient d’un ouvert dansCn−2 par l’action deC∗.

Dans ces coordonnées, l’aire d’une surface dansC(κ1, . . . , κn) est donńee par une forme Hermitienne
H de signature(1, n − 3). Plus pŕecisement, siS est la surface dansC(κ1, . . . , κn) repŕesent́ee par un
vecteurZ ∈ Cn−2, alors l’aire deS est donńee par

t

Z ·H · Z. La métrique hyperbolique complexe de
C(κ1, . . . , κn) est la ḿetrique qui est induite localement par la forme HermitienneH sur le quotient.

1.3 Surface de translation

SoientΣ une surface platèa singularit́es coniques, etγ une courbe ferḿee contenue dansint(Σ) \

{singularit́es}. Soitp un point deγ, on noteHolp(γ) l’holonomie deγ consid́eŕee comme un lacet avec
point de basep. En ǵeńeral,Holp(γ) est unélément deSO(2) ⋉ R2, le groupe d’isoḿetries deE2 (R2

muni de la ḿetrique Euclidienne) préservant l’orietation.

Si Σ est une surface telle que pour toute courbe ferméeγ dansint(Σ) \ {singularit́es}, l’holonomie de
γ est une translation (dans ce cas le point de base n’a pas d’importance),alors on dit queΣ est une
surface de translation. Une caract́eristique des surfaces de translation est qu’un rayon géod́esique ne
s’intersecte jamais lui-m̂eme transversalement, autrement-dit, soit le rayon est une géod́esique ferḿee,
soit il rencontre un point singulier, soit il se prolonge infiniment. Par conséquent,́etant donńee une direc-
tion θ ∈ [0, 2π), on peut d́efinir un feuilletage sur une surface de translation en géod́esiques dans cette
direction.

Si x est un point singulier d’une surface de translationΣ, l’angle du ĉone enx doit être un multiple
entier de2π. Notons que cette propriét́e est ńecessaire mais pas suffisante pour caractériser les surfaces
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de translation.

Il est clair que les tores plats sont des surfaces de translations mais ils ne sont pas les seuls. Pour
construire un exemple de surface de translation qui n’est pas un tore, consid́erons un octogone dont
les ĉotés oppośes sont parallèles et de m̂eme longueur. En recollant les côtes oppośes de cet octagone,
on obtient une surface compacte, sans bord, de genre2. Comme les identifications sont des isométries
de E2, cette nouvelle surface hérite de l’octagone au départ une structure ḿetrique platèa singularit́es
côniques. Remarquons que les huit sommets de l’octagone s’identifient en unseul point de la surface,
qui est l’unique point singulier dont l’angle conique est6π. Puisque les ĉotés oppośes de l’octagone
sont parall̀eles, leur identification est réaliśee par une translation deR2, par conśequent, l’holonomie de
toute courbe ferḿee ne passant pas par le point singulier de la surface est une translation, on peut donc
conclure que la surface obtenue est bien une surface de translation.

En parall̀ele avec des surfaces de translation, on a aussi la notion de surface dedemi-translation. Une
surface de demi-translationest une surface plate telle que l’holonomie de toute courbe fermée est un
élément du group{±Id}⋉R2. Comme le cas des surfaces de translation, un segment géod́esique sur une
surface de demi-translation n s’intersecte jamais lui-même transversalement. Il s’ensuit qu’étant donńee
une directionθ ∈ [0;π), on peut d́efinir un feuilletage d’une telle surface en géod́esiques parallèlesà
cette direction. Une condition nécessaire mais pas suffisante pour avoir une surface de demi-translation
est que l’angle du ĉone en tout point singulier doit̂etre un multiple entier deπ. Un exemple de surface
de demi-translation est la sphèreS2 munie d’une ḿetrique plate avec4 points singuliers dont les angles
coniques sont touśegauxàπ.

Dans la suite de ce paragraphe, nous allons rappeler quelques propriét́es importantes de l’espace de
modules des surfaces de translation.

1.3.1 Espace de modules

Notons d’abord que l’on a l’identification suivante :

14
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{
Surface de translation d’aire finie avec
un feuilletage en droites parallèles

}
←→

{
1-forme holomorphe sur une
surface de Riemann

}
.

Fixons les entiersg > 2, etk1, . . . , kn, ki > 1, i = 1, . . . , n, tels que

k1 + · · ·+ kn = 2g − 2 (1.1)

On noteH(k1, . . . , kn) l’ensemble des couples(M,ω) à isomorphisme près, òu M est une surface de
Riemann compacte, sans bord de genreg, etω est une1-forme holomorphe d́efinie surM dont les źeros
sont d’ordrek1, . . . , kn. Deux couples(M,ω) et (M ′, ω′) sont isomorphes s’il existe un isomorphisme
de surfaces de Riemannh : M −→M ′ tel queh∗ω′ = ω.

Par le th́eor̀eme de Riemann-Roch, pour qu’une telle1-forme existe, les entiersg, k1, . . . , kn doivent
vérifier (1.1). On appelleH(k1, . . . , kn) unestratede l’espace de modules des1-formes holomorphes.
En utilisant l’identification ci-dessus, on peut considérerH(k1, . . . , kn) comme l’espace de modules des
surfaces de translations ayantn singularit́es d’angles(k1 +1)2π, . . . , (kn +1)2π, avec un feuilletage en
droites parall̀eles sṕecifié.

Il est bien connu queH(k1, . . . , kn) est un orbifold complexe algébrique, et que

dimCH(k1, . . . , kn) = 2g + n− 1.

1.3.2 Forme volume

Soit(M,ω) un point dansH(k1, . . . , kn), on notep1, . . . , pn lesn zéros deω. Soientγ1, . . . , γ2g+n−1

une famille de courbes surM qui repŕesente une base dansH1(M, {p1, . . . , pn}; Z) telle que{γ1, . . . , γ2g}

forment une base symplectique standard deH1(M,Z), etγ2g+i est un arc joignantp1 àpi+1.

Consid́erons l’application suivante diteapplication de ṕeriodes:

Φ : U −→ C2g+n−1 ≃ R2(2g+n−1)

(M,ω) 7−→ (
∫
γ1
ω, . . . ,

∫
γ2g+n−1

ω).

où U est un voisinage de(M,ω) dansH(k1, . . . , kn).

Cette application est une carte locale deH(k1, . . . , kn). Soit φ ∈ C2g+n−1 l’image de(M,ω) par Φ,
alors l’aire deM est donńee dans cette carte locale par la formule suivante :

Aireω(M) =
ı

2

∫

M
ω ∧ ω =

1

2

g∑

i=1

(φiφg+i − φiφg+i).

Soitλ2(2g+n−1) la mesure de Lebesgue deC2g+n−1. Consid́erons la forme volumeµ0 = Φ∗λ2(2g+n−1)

définie au voisinage de(M,ω). Comme les bases deH1(M, {p1, . . . , pn}; Z) ≃ Z2g+n−1 sont líees
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par des matrices dansSL(2g + n − 1,Z), la forme volumeµ0 ne d́epend pas du choix de la famille
{γ1, . . . , γ2g+n−1}, et est donc bien d́efinie surH(k1, . . . , kn).

Consid́erons maitenant le sous-ensembleH1(k1, . . . , kn) de H(k1, . . . , kn) qui contient tous les
couples(M,ω) tels que

∫

M
ω ∧ ω = 1.

Dans une carte locale défine par l’application de ṕeriodesΦ, l’ensembleH1(k1, . . . , kn) ∩ U est envoýe
sur un ouvert dans

Q1 = {φ ∈ C
2g+n−1 |

1

2

g∑

i=1

(φiφg+i − φiφg+i) = 1}.

La mesure de Lebesgueλ2(2g+n−1) induit naturellement une forme volumeλ1
2(2g+n−1) sur Q1. Soit

µ1
0 = Φ∗λ1

2(2g+n−1), on en d́eduit queµ1
0 est une forme volume bien définie surH1(k1, . . . , kn).

Le théor̀eme suivant áet́e d́emontŕe par H.Masur, et W.A.Veech

Théorème (H.Masur, W.A. Veech) Le volume de chaque strateH1(k1, . . . , kn) est fini :

Vol(H1(k1, . . . , kn)) =

∫

H1(k1,...,kn)
dµ1

0 <∞.

Dans un article ŕecent [EO], A. Eskin et A. Okounkov donnent une méthode pour calculer le volume
des stratesH1(k1, . . . , kn).

1.3.3 Action deSL2(R)

SoientΣ une surface de translation. Etant donné unélémentA du groupeSL2(R), on peut construire
une autre surface de translation, notée parA·Σ, de manìere suivante : soit{ϕi, i ∈ I} un atlas d́efinissant
la structure surface de translation deΣ, on note{ϕ̃i, i ∈ I} un autre atlas dont les cartesϕ̃i sont d́efinies
par :

ϕ̃i = A ◦ ϕ.

Comme les changements de cartesϕj ◦ϕ
−1
i sont des translations deR2 (si leur domaine de d́efinition est

non-vide), les changements de cartesϕ̃j ◦ ϕ̃i = A ◦ (ϕj ◦ ϕ
−1
i ) ◦A−1 sont aussi des translations deR2.

Les cartes{ϕ̃i, i ∈ I} définissent donc une structure surface de translation surΣ, on note cette nouvelle
surfaceA · Σ. On peut v́erifier sans difficult́e queA · Σ a le m̂eme nombre de points singuliers avec les
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mêmes angles queΣ.

On obtient ainsi une action deSL2(R) sur l’espace de modules des surfaces de translation. Cette
action deSL2(R) peutêtre ŕealiśee plus concr̀etement : siΣ est une surface de translation obtenue par
le recollement des polygonesP1, . . . , Pj dansR2, alorsA · Σ est la surface obtenue par le même recol-
lement appliqúe aux polygonesA(P1), . . . , A(Pj).

Pour mieux comprendre cette action deSL2(R), soient(M,ω) un couple dansH(k1, . . . , kn), et
(γ1, . . . , γ2g+n−1) une base deH1(M, {p1, . . . , pn}; Z), où {p1, . . . , pn} est l’ensemble des zéros deω.
On noteΣ la surface de translation définie par(M,ω), et suppose queγi, i = 1, . . . , 2g+n− 1, est une
union des segments géod́esiques̀a extŕemit́es dans{p1, . . . , pn}, un tel segment ǵeod́esique est appelé
un lien selledeΣ.

Par d́efinition, on a un hoḿeomorphismeϕ deΣ dansA · Σ qui envoie l’ensemble des points singuliers
deΣ sur l’ensemble des points singuliers deA · Σ.

En identifiantC à R2, pour toutz ∈ C, on noteA(z) l’image du vecteurz ∈ R2 parA. Soit s un lien
selle deΣ, alorsϕ(s) est aussi un lien selle deA · Σ. Supposons queA · Σ est d́efinie par un couple
(M ′, ω′) dansH(k1, . . . , kn), on a alors :

∫

ϕ(s)
ω′ = A(

∫

s
ω).

Par conśequent, siΦ((M,ω)) = (φ1, . . . , φ2g+n−1) dans la carte locale associéeà {γ1, . . . , γ2g+n−1}

(par l’application de ṕeriodes), alorsΦ((M ′, ω′)) = (A(φ1), . . . , A(φ2g+n−1)) dans la carte locale as-
socíeeà {ϕ(γ1), . . . , ϕ(γ2g+n−2)}. On en d́eduit que dans ces cartes locales, l’action deA est donńee
par la matrice :

Ã =




A 0 . . . 0

0 A . . . 0

· · · · · · · · · · · ·

0 0 . . . A


 .

Commedet(Ã) = 1, Ã préserve donc la mesure de Lebesgue deC2g+n−1 = R2(2g+n−1), il s’ensuit que
la forme volumeµ0 est invariante par l’action deA.

On peut remarquer sans difficulté que, pour toutA ∈ SL2(R), on aAire(Σ) = Aire(A · Σ), ce qui
signifie queA préserve l’ensembleH1(k1, . . . , kn). CommeA préserve la forme volumeµ0, il en résulte
queA préserve aussi la forme volumeµ1

0 deH1(k1, . . . , kn).

De la m̂eme façon que le groupeSL2(R), on peut́egalement consid́erer l’action du sous-groupèa un
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param̀etre{

(
et 0

0 e−t

)
, t ∈ R} surH(k1, . . . , kn). L’action de ce sous-groupe définit naturellement

un flot sur l’espace de modulesH(k1, . . . , kn), qui est appelé le flot ǵeod́esique de Teichm̈uller.

Concernant les actions deSL2(R) et de{

(
et 0

0 e−t

)
, t ∈ R}, on a le th́eor̀eme suivant :

Théorème (H.Masur, W.A.Veech) Les actions deSL2(R) et de{

(
et 0

0 e−t

)
, t ∈ R} sont ergo-

diques par rapport̀a la forme volumeµ1
0 sur chaque composante connexe deH1(k1, . . . , kn).

NotonsHg l’union de toutes les stratesH(k1, . . . , kn) telles quek1 + · · · + kn = 2g − 2. On a une
projection naturelle deHg surMg l’espace de modules des surfaces de Riemann compactes, fermées,
de genreg. L’orbite d’un couple(M,ω) ∈ H(k1, . . . , kn) ⊂ Hg par SL2(R) induit le diagramme
commutative suivant

SL2(R) −→ Hg

↓ ↓

H2 ≃ SL2(R)/SO(2)
f
−→ Mg

où f est un immersion isoḿetrique pour la ḿetrique de Teichm̈uller deMg. L’image deH2 par cette
application est la projection d’undisque de Teichm̈uller dans l’espace de Teichm̈uller Tg.

1.4 Motivation

En ǵeoḿetrie symplectique, il est d’usage d’étudier les d́eformations d’une variét́e symplectique par
une famille continue de paramètres, en particulier lorsqu’elle est obtenue par réduction symplectique.
Ici, nous nous proposons d’étudier des d́eformations de l’espace de modules des surfaces de translation
dans le cadre des surfaces plates. Nous allons considérer des surfaces plates dont les angles aux points
singuliers sont fix́es, sur lesquelles il existe une union disjointe d’arbres dont le complémentaire est une
surface de translation. Lorsque ces arbres se rétŕecissent en points isolés, on obtient une surface de trans-
lation usuelle. Nous appelons des arbres ayant cette propriét́e les arbres effaçants, et leur union une forêt
effaçante.

On peut remarquer aussitôt que les surfaces plates polyèdrales v́erifient l’hypoth̀ese pŕećedente car le
compĺementaire de n’importe quel arbre sur la sphère est topologiquement un disque. Ceci nous permet
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de retrouver des résultats d́ejà connus, notamment par Thurston, pour les surfaces plates polyèrales.

La premìere question que nous allonsétudier est la structure, et la dimension de ces espaces. Nous
voudrons ensuite savoir s’il existe des formes volumes sur ces espaces, et établir le lien entre ces formes
volumes et la forme volume de l’espace de modules des surfaces de translation. De plus, comme dans les
cas des surfaces plates polyèdrales et surfaces de translation, nous souhaitons montrer que les espaces de
modules en question sont de volume fini, etéventuellement, calculer leur volume.

Les ŕesultats obtenus dans cette thèse nous donnent des réponses̀a ces questions. Plus précisement,
nous construisons une structure plate affine complexe pour ces espaces de modules. Nous définissons
en suite une forme de volume sur ces espaces qui, dans les cas de surfaces de translation, et de surfaces
plates polỳedrales, est́egale aux formes volumes habituellesà une constante multiplicative près. Nous
montrons que l’int́egrale des fonctions d’énergie, qui sont d́efiniesà partir de l’aire de la surface, et de la
longueur des branches, par rapportà cette forme volume est finie. Notons que ce résultat nous permet de
donner une nouvelle preuve du fait que le volume de chaque strate de l’espace de modules des surfaces
de translation est fini.

Dernìere remarque, la ḿethode que nous allons développer pouŕetudier les surfaces avec arbres
effaçants s’adapte naturellement dans le cas des surfaces de translation avec bord, lequel inclut les poly-
gones deR2, et sera le premier cadre naturel de nos travaux.

1.5 Présentation des ŕesultats

1.5.1 Surface de translatioǹa bord géod́esique

Les premiers ŕesultats de cette thèse concernent l’espace de modules des surfaces de translationà
bord ǵeod́esique. Plus précisement, on va s’intéresser aux surfaces platesà singularit́es coniques dont le
bord est une union finie de segments géod́esiques satisfaisant la condition suivante : l’holonomie de toute
courbe ferḿee contenue dans l’intérieur de la surface, et ne passant pas par des points singuliers est une
translation deR2.

Fixons les donńees suivantes :

• Les entiersg, n,m, ets1, . . . , sm, sj > 1 ;

• Les nombres ŕeelsα1, . . . , αn, avecαi ∈ 2πN, etβ1, . . . , βm, avecβj ∈ 2πZ, tels que :
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(α1 + · · ·+ αn) + (β1 + · · ·+ βm) = 2π(2g +m+ n− 2) (1.2)

On noteMT(ᾱ; β̄), où ᾱ = (α1, . . . , αn), et β̄ = ((s1, β1), . . . , (sm, βm)), l’ensemble des couples
(Σ, ξ), où Σ est une surface de translationà bord ǵeod́esique v́erifiant les conditions suivantes :

- Σ an points singuliers̀a l’intérieur nuḿerot́es de1 àn tels que l’angle du ĉone aui-ème point est
αi,

- ∂Σ am composantes connexes numérot́ees de1 àm telles que lai-ème composante est l’union de
sj segments ǵeod́esiques, et la somme des angles aux extrémit́es de ces segments vautβj + sjπ,

et ξ est un champ de vecteur parallèle normaliśe (la longueur de tout vecteur de ce champ est1) surΣ.

Remarque :Par le th́eor̀eme de Gauss-Bonnet, pour queMT(ᾱ; β̄) soit non-vides, les anglesα1, . . . , αn,

etβ1, . . . , βm doivent v́erifier (1.2).

Avec ces donńees, nous avons :

Théorème 1.5.1MT(ᾱ; β̄) est le quotient d’une variét́e plate affine complexe de dimension :
{

2g + n− 1, sim = 0;∑m
j=1 sj + 2g +m+ n− 2, sim > 0.

par l’action d’un groupe agissant proprement discontinument.

Ce th́eor̀eme ŕesulte du Th́eor̀eme2.2.7et de la Proposition2.2.8. Les cartes locales deMT(ᾱ; β̄) sont
construites̀a partir des triangulations géod́esiques des surfaces dansMT(ᾱ; β̄).

Comme dans le cas des surfaces de translation sans bord, il existe une action du groupeSL2(R) sur
MT(ᾱ; β̄), et nous avons (cf. Th́eor̀eme2.2.9et Proposition2.6.2) :

Théorème 1.5.2Il existe une forme volumeµTr surMT(ᾱ; β̄) invariante par l’action du groupeSL2(R).

Au cas òum = 0,MT(ᾱ; β̄) s’identifieà l’espace de moduleH(k1, . . . , kn), avecαi = (ki + 1)2π,
rappelons que nous avons la forme volumeµ0 surH(k1, . . . , kn) qui est d́efinie par l’application de
périodes. Nous avons (cf. Proposition2.2.10) :

Proposition 1.5.3 Il existe sur chaque composante connexe deH(k1, . . . , kn) une constanteλ telle que
µTr = λµ0.
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1.5.2 Surface plate avec for̂et effaçante

SoitΣ une surface plate compacte, sans bord, uneforêt effaçantesurΣ est une union disjointe d’arbres
Â = A1 ⊔ · · · ⊔Am telle que :

• Tout point singulier deΣ est un sommet d’un arbre danŝA.

• Pour toute courbe ferḿeeγ surΣ, si γ ∩ Â = ∅, alors l’holonomie deγ est une translation.

Si toutes les ar̂etes d’un arbre surΣ sont des segments géod́esiques, alors on dit que cet arbre est
géod́esique. Une for̂et est ditegéod́esiquesi tous ses arbres sont géod́esiques.

Fixonsm arbres topologiquesA1, . . . ,Am. Nous autorisons le cas limite où certains arbres peuvent
être des points isolés. Notonskj , j = 1, . . . ,m, le nombre de sommets deAj , et posonsk0 = 0.
Choisissons une nuḿerotation des sommets deA1, . . . ,Am telle que les sommets deAj , j = 1, . . . ,m,
sont nuḿerot́es par{k0 + · · · + kj−1 + 1, . . . , k0 + · · · + kj}. NotonsÂ la famille {A1, . . . ,Am}, et
posons

n =
m∑

j=1

kj .

Soientg un entier, etα1, . . . , αn, n nombres ŕeels positifs tels que

α1 + · · ·+ αn = (2g + n− 2)2π, et
αk0+···+kj−1+1 + · · ·+ αk0+···+kj

∈ 2πN.

NotonsMet(Â, ᾱ), où ᾱ = (α1, . . . , αn), l’espace de modules des triplets(Σ, Â, ξ), où

• Σ est une surface plate compacte, sans bord,

• Â = A1⊔· · ·⊔Am est une for̂et effaçante ǵeod́esique surΣ telle queAj est isomorphèaAj (deux
arbres sont isomorphes s’il existe une application de l’unà l’autre qui d́efinit une bijetion entre
deux ensembles de sommets, et une bijection entre deux ensembles d’arêtes), et

• ξ est un champ de vecteur parallèle d́efini surΣ \ Â dont tous les vecteurs sont de norme1.

Nous supposons en plus que l’isomorphisme entreAj etAj envoie lei-ème sommet deAj sur un point
dont l’angle du ĉone associé estαi.

RemarquePar d́efinition, tout point singulier deΣ est un sommet d’un arbre de la forêt Â, mais on peut
avoir des sommets qui ne sont pas des points singuliers deΣ (l’angle du ĉone en ces points est2π).
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Il s’avère que la ḿethode utiliśee pouŕetudier l’espace de modules des surfaces de translationà bord
géod́esique peut s’appliquer dans cette situation, et nous obtenons (cf. Théor̀eme3.1.10, et Corollaire
3.1.8) :

Théorème 1.5.4Met(Â, ᾱ) est le quotient d’une sous variét́e plate affine complexe de l’espace des
surfaces de translations̀a bord ǵeod́esique (avec des données appropríees) de dimension

{
2g + n− 1, si αi ∈ 2πN, ∀i = 1, . . . , n,

2g + n− 2, sinon.

par l’action d’un groupe agissant proprement discontinument, préservant une forme volume.

Notons que l’on n’a pas d’action deSL2(R) surMet(Â, ᾱ) dans le cas ǵeńeral.

1.5.3 Surface plate sph́erique

Parsurface plate sph́erique, on entend une surface plate homéomorphèa la sph̀ereS2. Soit Σ une
surface plate sph́erique, il n’est pas difficile de montrer qu’il existe un arbre géod́esique surΣ dont les
sommets sont les points singuliers. Un tel arbre est automatiquement effaçant car son complémentaire
dansΣ est un disque. Cette observation nous amèneà consid́erer les surfaces plates sphériques comme
un cas parliculier des surfaces plates avec arbres effaçants.

Fixonsn réels positifsα1, . . . , αn, tels que

α1 + · · ·+ αn = 2π(n− 2).

NotonsM(S2, ᾱ)∗, où ᾱ = (α1, . . . , αn), l’espace de modules des surfaces plates homéomorphes̀a la
sph̀ere ayantn singularit́es d’anglesα1, . . . , αn, etM(S2, ᾱ) l’ensembleM(S2, ᾱ)∗ × S1. Nous avons
(cf. Théor̀eme4.1.1) :

Théorème 1.5.5M(S2, ᾱ) est le quotient d’une variét́e plate affine complexe de dimensionn − 2 par
l’action d’un groupe agissant properment discontinument, et préservant une forme volumeµTr.

Comme dans les cas des surface de translation avec bord, ou celui des surfaces avec for̂et effaçante,
la forme volumeµTr dans1.5.5 est d́efinie à l’aide des triangulations géod́esiques des surfaces dans
M(S2, ᾱ). Notons que,̀a la différence des surfaces avec forêt effaçante en ǵeńeral, ici nous n’avons pas
besoin de sṕecifier un arbre effaçant particulier sur la surface.

NotonsM1(S
2, ᾱ)∗ l’ensemble des surfaces d’aire1 dansM(S2, ᾱ)∗. Dans le cas òu tous les angles

αi sont plus petits que2π, le travail de Thurston donne une forme volumeµHyp surM1(S
2, ᾱ)∗ qui
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provient de la ḿetrique hyperbolique complexe. La forme volumeµTr deM(S2, ᾱ) induit aussi une
forme volume surM1(S

2, ᾱ)∗, notons celle-cîµ1
Tr. Nous allons montrer quêµ1

Tr = λµHyp, où λ est une
constante d́ependant de(α1, . . . , αn) (cf. Proposition4.4.1). Une conśequence directe de ce fait est

Proposition 1.5.6 Siαi < 2π, pour touti ∈ {1, . . . , n}, alors

µ̂1
Tr(M1(S

2, ᾱ)∗) < +∞.

1.5.4 Intégration des fonctions d’́energie

Revenons au cas des surfaces de translationà bord ǵeod́esique. Rappelons queMT(ᾱ; β̄) est l’espace
de modules des couples(Σ, ξ), où Σ est une surface de translationà bord ǵeod́esique, etξ est un champ
de vecteur parallèle constant surΣ. Nous d́efinissons une fonction d’énergieF surMT(ᾱ; β̄) par :

F((Σ, ξ)) = exp(−Aire(Σ)− ℓ2(∂Σ)),

où ℓ(∂Σ) est la longueur du bord deΣ.

Pour les surfaces avec forêt effaçante, nous avons une fonction d’énergie similaire :

Fet : Met(Â, ᾱ) −→ R

(Σ, Â, ξ) 7−→ exp(−Aire(Σ)− ℓ2(Â))

où ℓ(Â) est la somme de longueur totale des arbres de la forêt Â. Rappelons que nous avons défini une
forme volumeµTr surMT(ᾱ; β̄), ainsi que surMet(Â, ᾱ). Nous avons alors (cf. Théor̀eme5.1.1) :

Théorème 1.5.7 a) Si le bord des surfaces dansMT(ᾱ; β̄) est non-vide alors :

∫

MT(ᾱ;β̄)
FdµTr < +∞,

b) Si les arbres dans la famillêA ne sont pas tous des points isolés, alors

∫

Met(Â,ᾱ)
FetdµTr < +∞.

En utilisant ce ŕesultat, nous obtenons une nouvelle preuve du fait que le volume de toute strate
H1(k1, . . . , kn) par rapport̀a la forme volumeµ1

0 est fini (cf. Proposition5.5.1).

Pour les espaces de modules des surfaces plates sphériques, inspiŕes du ŕesultat de Thurston, en utili-
sant le Th́eor̀eme1.5.7, nous obtenons un résultat plus ǵeńeral (cf. Th́eor̀eme5.1.2)

Théorème 1.5.8L’int égrale de la fonction(Σ, eıθ) 7−→ exp(−Aire(Σ)) par rapportà la forme volume
µTr surM(S2, ᾱ) est finie.
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∫

M(S2,ᾱ)
exp(−Aire)dµTr <∞.

Par conśequent, le volume deM1(S
2, ᾱ)∗ est fini.

Remark: Veech [V2] a trouv́e ce ŕesultat pour une forme volume qui est définie différemment.

1.6 Sommaire

La suite de cette th̀ese est organisée comme suit :

- Chapitre 2 : dans ce chapitre, nous traiterons le cas des surfaces de translationà bord ǵeod́esique.
Nous montrerons d’abord que, pour toute surface de translationà bord ǵeod́esique, il existe tou-
jours une triangulation par segments géod́esiques dont l’ensemble des sommets contient l’ensemble
des points singuliers. Nous montrons ensuite qu’une telle triangulation permetde d́efinir des co-
ordonńees locales d’une variét́e plate affine complexeTT(ᾱ; β̄). Par d́efinition,MT(ᾱ; β̄) est le
quotient deTT(ᾱ; β̄) par l’action d’un groupeΓ(S,V), nous montrerons que l’action deΓ(S,V)

est proprement discontinue.

Sur les cartes locales deTT(ᾱ; β̄), qui sont d́efinies par des triangulations géod́esiques, une forme
volume peut̂etre d́efinie de façon naturelle. Nous montrons que cette forme volume ne dépend pas
du choix de la triangulation. Cela résulte du fait que, pour une surface de translation ou de demi-
translation, avec ou sans bord,étant donńees deux triangulations géod́esiques dont les ensembles
de sommets coincident et contiennent l’ensemble des points singuliers, alorson peut transformer
l’une à l’autre par une suite de changementsélémentaires (cf. Th́eor̀eme2.6.2). Nous obtenons
ainsi une forme volumeµTr bien d́efinie surTT(ᾱ; β̄). Comme l’action deΓ(S,V) préserve cette
forme volume, celle-ci induit une forme volume surMT(ᾱ; β̄).

Comme les surfaces de translation fermées sont un cas particulier des surfaces de translationà bord
géod́esique, la forme volumeµTr est bien d́efinie sur chacune des strateH(k1, . . . , kn). Nous mon-
trerons, enfin, que sur chacune des composantes connexes deH(k1, . . . , kn), la forme volumeµTr

estégaleàλµ0, oùλ est une constante non-nulle, etµ0 est la forme volume d́efinie par l’application
de ṕeriodes.

- Chapitre 3 : ce chapitre concerne les surfaces plates avec arbres effaçants. Avec le m̂eme sch́ema
que Chapitre2, nous montrons queMet(Â, ᾱ) est le quotient d’une variét́e plate affine complexe

24



1. INTRODUCTION

T et(Â, ᾱ), qui est une sous variét́e deTT(ᾱ′; β̄′), avec des dońeesᾱ′, β̄′ appropríees, par l’action
d’un groupeΓ(Sg, Â) agissant proprement discontinument. Ensuite, nous prouvons l’existence
d’une forme volumeµTr sur T et(Â, ᾱ) qui est invariante par l’action deΓ(Sg, Â), cette forme
volume induit donc une forme volume surMet(Â, ᾱ).

- Chapitre 4 : dans ce chapitre nous nous concentrerons sur les surfaces plates sphériques. Remar-
quons d’abord qu’il existe, sur toute surface plate sphérique, un arbre ǵeod́esique connectant tous
les points singuliers, et un tel arbre est automatiquement effaçant car son compĺementaire est un
disque. Cette observation nous permet de considérer les surfaces plates sphériques comme un cas
particulier des surfaces plates avec forêt effaçante. Ainsi, nous démontrons aiśement queM(S2, ᾱ)

est un orbifold complexe de dimensionn− 2.

La preuve de l’existence d’une forme volumeµTr, analoguèa celles d́efinies dans les deux cha-
pitres pŕećedents, est un peu plus délicate, car nous ne choisissons pas auparavant un arbre effaçant.
Néanmoins, nous pouvons prouver que deux triangulations géod́esiques d’une surface plate sphérique
dont l’ensemble des sommets coincide avec l’ensemble des points singuliers peuvent être trans-
formées l’uneà l’autre par des changementsélémentaires (cf. Th́eor̀eme4.3.2). Cela nous permet
de d́efinir µTr surM(S2, ᾱ).

Nous terminerons ce chapitre par la comparaison entre la forme volumeµ̂1
Tr, induite parµTr, et la

forme volumeµHyp, qui provient de la ḿetrique hyperbolique complexe définie par Thurston, sur
M1(S

2, ᾱ)∗, dans le cas òu tous les angles coniques sont inférieursà2π.

- Chapitre 5 : dans ce chapitre, nous montrons que les intégrales des fonctionsF etFet, définies
surMT(ᾱ; β̄) etMet(Â, ᾱ) respectivement, par rapportà la forme volumeµTr sont finies. Nous
prouvons ensuite le fait que le volume des stratesH1(k1, . . . , kn) est fini comme une conséquence
de ce ŕesultat. Finalement, nous prouvons que le volume deM1(S

2, ᾱ)∗ par rapport̀a la forme
volumeµ̂1

Tr, qui est induite parµTr, est fini. Notons que pour le cas particulier où tous les angles
coniques sont inf́erieursà 2π, ce ŕesultat aét́e d́ejà connu par le travail de Thurston, et le même
résultat áet́e trouv́e par Veech dans [V2] pour une autre forme volume.

Pour des raisons pratiques, le reste de cette thèse sera ŕediǵe en anglais. L’auteur s’en excuse pour des
inconv́enientśeventuellement causés au lecteur par ce choix, et le remercie pour sa compréhension.
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Chapitre 2

Translation surfaces with boundary

2.1 Introduction

Translation surfacesare flat surfaces with conical singularities verifying the following condition: the
holonomy of every closed curve, which does not contain any singularity,is an Euclidean translation. On
a translation surface, one can define aparallel vector fieldon the complement of the singularities. There
exists a system of local charts defining the flat metric structure such that, oneach chart, this vector field
is mapped to a vertical vector field on a domain ofR2. Any pair (Σ, ξ), whereΣ is a closed translation
surface, andξ is a parallel vector field onΣ, can be identified to a pair(M,ω), whereM is a closed Rie-
mann surface, and a holomorphic1-form onM . The zeros ofω are the singularities of metric structure
onΣ, zeros of orderk, k = 0, 1, 2, . . . , correspond to singularities of angles2π(k + 1).

Let g be the genus ofΣ, andk1, . . . , kn be the orders of the zeros ofω. By the Riemann-Roch Theorem,
one has

k1 + · · ·+ kn = 2g − 2.

Fix k1, . . . , kn and letH(k1, . . . , kn) denote the moduli space of pairs(M,ω), whereM is closed,
and the holomorphic1-form ω has exactlyn zeros with ordersk1, . . . , kn. The spaceH(k1, . . . , kn) is
also called astratumof the moduli space of translation surfaces of genusg, whereg can be computed
by the above equation. It is well known thatH(k1, . . . , kn) is a complex orbifold of dimension2g+n−1.

Let (M,ω) be a pair inH(k1, . . . , kn). The zeros ofω are denoted byx1, . . . , xn, and their orders
by iski respectively. Let{γ1, . . . , γ2g+n−1} be a set of curves onM which is a generating family of the
groupH1(M, {x1, . . . , xn}; Z). For any element(M ′, ω′) close to(M,ω) in H(k1, . . . , kn), we denote
{γ′1, . . . , γ

′
2g+n−1} the corresponding curves onM ′. We can then define a mapΦ from a neighborhood

of (M,ω) into C2g+n−1, which sends a pair(M ′, ω′) to the vector(
∫
γ′
1
ω′, . . . ,

∫
γ′
2g+n−1

ω′). The mapΦ

is called theperiod mapping.
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2. TRANSLATION SURFACES WITH BOUNDARY

Let λ2(2g+n−1) denote the Lebesgue measure ofC2g+n−1 ≃ R2(2g+n−1). Since two generating fami-
lies ofH1(M, {x1, . . . , xn}; Z) are related by an element of the groupSL(2g + n − 1,Z), the volume
form Φ∗λ2(2g+n−1) is well defined onH(k1, . . . , kn). We denote this volume formµ0.

LetH1(k1, . . . , kn) denote the subspace ofH(k1, . . . , kn) consisting of pairs(M,ω) such that
∫
M |ω|

2 =

1. An element ofH1(k1, . . . , kn) corresponds to a translation surface of area1. The volume formµ0 in-
duces a volume formµ1 onH1(k1, . . . , kn). It is proved by Masur [M] and Veech [V1] that the volume
of H1(k1, . . . , kn) is finite. In [EO], Eskin and Okounkov compute the volume of several samples of
H1(k1, . . . , kn). They actually give a method to compute the volume of every stratumH1(k1, . . . , kn),
and give numerical results for some of them.

In this chapter, we are interested in translation surfaces with boundary such that every boundary
component is a finite union of geodesic segments. LetΣ be such a translation surface. A pointx in Σ is
regular if either :

• x is a point in the interior ofΣ, andx has a neighborhood isometric to a disk{z ∈ C : |z| < ǫ}

with ǫ small, or

• x is a point in the boundary ofΣ, andx has a neighborhood isometric to a half disk{z ∈ C : |z| <

ǫ, Imz > 0}.

Similarly to closed translation surfaces, on any translation surface with geodesic boundary, we can
define parallel vector fields on the complement of the singularities and the boundary. LetC be a boun-
dary component ofΣ, andξ be a parallel vector field onΣ. Let c : S1 −→ Σ be a simple, closedC1

curve freely homotopic toC. Assume that for everyt in S1, the tangent vectorv(t) = ċ(t) 6= 0. Let
Θ : S1 −→ R denote the function which mapst to the angle betweenv(t) and the vertical vectorξ(c(t)).
We define thecone angleof C to be the number

∫
S1 dΘ. Observe that the cone angle of a boundary

component of any translation surface belongs to the set{2kπ, k ∈ Z}, and it does not depend on the
choices ofc andξ.

Let g, n,m be three positive integers. Fixn numbersα1, . . . , αn with αi ∈ 2πN, andm pairs of num-
bers(β1, s1), . . . , (βm, sm), with βj in 2πZ, andsj in N. We consider the moduli space of translation
surfacesΣ of genusg havingn singularities in the interior, andm boundary components denoted by
C1, . . . , Cm such that :

• then singularities in the interior ofΣ have cone anglesα1, . . . , αn.

• the cone angle associated to the componentCj is βj , j = 1, . . . ,m.

• there exists a subsetQj of Cj containing exactlysj points such thatCj \ Qj is a union of open
geodesic segments.
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2. TRANSLATION SURFACES WITH BOUNDARY

Let ᾱ denote the sequence{α1 . . . , αn}, and β̄ denote the sequence{(β1, s1), . . . , (βm, sm)}. Let
MT(ᾱ; β̄) denote the moduli space of surfaces described above. The main results of this chapter is that
MT(ᾱ; β̄) is a complex affine orbifold, and moreover, we can specify a volume formµTr onMT(ᾱ; β̄).
Whenm = 0,MT(ᾱ; β̄) can be identified to the spaceH(k1, . . . , kn), with αi = 2π(ki + 1), i =

1, . . . , n. In this case, for each connected component ofH(k1, . . . , kn), there exists a constantλ such
thatµTr = λµ0.

2.2 Definitions and main results

We start with some basic definitions :

2.2.1 Flat surface and translation surface

Definition 2.2.1 (Flat Surface with Conical Singularities and Geodesic Boundary) Let Σ be a com-
pact, connected surface, possibly with boundary. Let{p1, p2, . . . , pn1} be a finite subset of the inter-
ior of Σ, and {q1, q2, . . . , qn2} be a finite subset of the boundary ofΣ. We say thatΣ is a flat sur-
face with geodesic boundary, havingconical singularitiesat p1, . . . , pn1 , andcornersat q1, . . . , qn2 , if
Σ \ {p1, . . . , pn1 , q1, . . . , qn2} is equipped with an Euclidean metric structure verifying the following
conditions :

(i) For eachi ∈ {1, . . . , n1}, there existsθi > 0 such thatpi has a neighborhood isometric to a small
disk around the origin inR2, which is equipped with the metricgθi

(r, θ) = dr2 + ( θi

2π )2r2dθ2 in
the polar coordinates. The numberθi is called thecone angleat pi.

(ii) For each j ∈ {1, . . . , n2}, there existsηj > 0 such thatqj has a neighborhood isometric to
small upper half disk around the origin inR2, which is equipped with the metricgηj

(r, θ) =

dr2 + (
ηj

π )2r2dθ2 in the polar coordinates. The numberηj is called thecorner angleat qj .

(iii) ∂Σ \ {q1 . . . , qn2} is a finite set of open geodesic segments.

In the sequel, ‘a flat surface’ is a flat surface with conical singularitieswhose boundary, if not empty,
is geodesic.

Let Σ; (p1, . . . , pn1); (q1, . . . , qn2) be as in Definition2.2.1. Let θ1, . . . , θn1 be the cone angles at
p1, . . . , pn1 respectively, andη1, . . . , ηn2 be the corner angles atq1, . . . , qn2 respectively. Letχ(Σ) denote
the Euler characteristic ofΣ. We have the following formula
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n1∑

i=1

θi +

n2∑

j=1

ηj = 2π(n1 +
n2

2
− χ(Σ)). (2.1)

This is a consequence of the Gauss-Bonnet Formula (see [Tr1]).

Definition 2.2.2 (Translation Surface) A translation surfaceΣ is a flat surface verifying the following
condition : if c is a closed curve in the interior ofΣ which does not contain any singular point, then the
holonomy ofc is a translation of the Euclidean planeR2.

Note that the cone angle at any singular point in the interior of a translation surface must be an inte-
gral multiple of2π. The corner angle at a singular point on the boundary of a translation surface may not
belong to the setπZ, but the sum of all corner angles at the singular points on each boundary component
must be an integral multiple ofπ.

We define as usual the length of a piece-wiseC1 curve, and denoted the induced distance on a flat
surface. Note that for any pair of points(x, y) of a flat surface, there always exists a curve piece-wise
geodesic joiningx andy whose length isd(x, y).

Definition 2.2.3 (Normalized Parallel Vector Field) Let Σ be a translation surface. Aparallel vector
field on Σ is a vector field defined in the interior ofΣ except at singular points, which is nowhere zero,
and in local charts of the Euclidean metric structure, all the lines determinedby the vectors of this field
are parallel. A parallel vector field is said to benormalizedif the norm of all of its vectors is one.

Remark: : A parallel vector field exists if and only ifΣ is a translation surface.

From now on, by ‘translation surface’ (with or without boundary), we will mean a ‘translation surface
with a distinguished parallel vector field on it’.

Let Σ be a translation surface, andξ be a parallel vector field onΣ. Assume that the boundary ofΣ

is not empty, and letC be a component of∂Σ. We assume in addition thatC is oriented coherently with
the orientation ofΣ.

Definition 2.2.4 (Cone Angle associated to a Boundary Component)Letc : S1 −→ Σ be aC1, simple,
closed curve which is contained in the interior ofΣ, and freely homotopic toC, whereC is the curveC
with opposite orientation. Assume thatc does not contain any singular point ofΣ. For everyt ∈ S1, let
Θ(t) denote the angle between the vectorv(t) = c′(t), and the vectorξ(c(t)). Thecone angle associated
to the componentC is defined to be the number

∫

S1

dΘ(t).
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Remark:
a. The cone angle associated to any component of∂Σ belongs to the set2πZ.

b. This cone angle does not depend on the choices of the curvec and the fieldξ.

c. If C containss corners with corners anglesη1, . . . , ηs, then the cone angle associated toC equals∑s
j=1 ηj − sπ.

Now, fix three non-negative integersg, n,m such that2g + n+m− 2 > 0. Letα1, . . . , αn ben real
numbers in2πN, andβ1, . . . , βm bem numbers in2πZ such that

n∑

i=1

αi +
m∑

j=1

βj = 2π(2g + n+m− 2). (2.2)

Let s1, . . . , sm bem positive integers. In this chapter, we will fix a compact connected translation
surfaceS of genusg, whose boundary hasm components denoted byC1, . . . , Cm verifying the follo-
wing hypothesis :

• There aren pointsp1, . . . , pn in the interior ofS such that the cone angle atpi isαi, i = 1, . . . , n.

• The cone angles associated to theCj is βj , j = 1, . . . ,m.

• Forj = 1, . . . ,m, there exists a subsetQj of Cj consisting ofsj points such thatCj \Qj is a union
of open geodesic segments.

Let P denote the set{p1, . . . , pn}, andV denoteP ∪ (Q1 ∪ · · · ∪ Qm). Let Ŝ denote the double ofS,
and letV̂ denote the finite subset of̂S arising fromV. The flat metric structure ofS induces a flat metric
structures on̂S whose all the singularities are contained in the setV̂. Note that we have Riemann surface
structure on̂S \ V̂ which is induced by the metric structure.

Given a homeomorphismf of S, we denotef̂ the homeomorphism of̂S arising fromf . We call f̂
the double off .

First, we have :

Definition 2.2.5 (Mapping Class Group) We denoteHomeo+(S,V) the group of orientation preser-
ving homeomorphisms ofS which fix every point in the setV. Let Homeo+

0 (S,V) denote the normal
subgroup ofHomeo+(S,V) consisting of all homeomorphismsf such that doublêf of f is isotopic to
IdŜ by an isotopy fixing all the points in̂V. Themapping class groupof S preservingV is defined to be
the quotient groupHomeo+(S,V)/Homeo+

0 (S,V), which will be denoted byΓ(S,V).
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Remark:
a. Letf be a homeomorphism ofS which fixes all the points inV. If f can be connected to the iden-

tity of S by an isotopy fixing all the points inV, then clearlyf is an element inHomeo+
0 (S,V).

b. ConsiderS as an embedded surface in̂S. The boundary ofS becomes then a union of simple
curvesc1, . . . , ck joining points inV̂. By LemmaA.0.1, given a homeomorphismf of S, if f̂ is
a homeomorphism isotopic to the identity ofŜ by an isotopy fixing all the points in̂V, then there
exists an isotopy from̂f to IdŜ which preserves every curve in the family{c1, . . . , ck}. As a conse-
quence, we see thatHomeo+

0 (S,V) is the set of all homeomorphisms ofS which are isotopic to
IdS by an isotopy fixing all the points inV.

Let ᾱ andβ̄ denote the sets{α1, . . . , αn} and{(β1, s1), . . . , (βm, sm)} respectively.

Now, if φ : S −→ Σ is a homeomorphism of flat surfaces, we denoteφ̂ the induced homeomorphism
from Ŝ ontoΣ̂.

We denotẽTT(ᾱ; β̄)∗ the set of pairs(Σ, φ), whereΣ is a translation surface of genusg whose boundary
hasm components, andφ : S −→ Σ is a homeomorphism verifying the following conditions :

1. Fori = 1, . . . , n, φ(pi) is a point in the interior ofΣ with cone angleαi.

2. Forj = 1, . . . ,m, φ(Cj) is a component of∂Σ with associated cone angleβj .

3. Forj = 1, . . . ,m, φ(Cj \Qj) is a union of open geodesic segments in a component of∂Σ.

We define an equivalence relation oñTT(ᾱ; β̄)∗ as follows : two pairs(Σ1, φ1) and (Σ2, φ2) are
equivalent if and only if there exists an isometryh : Σ1 −→ Σ2 such that the homeomorphism
φ−1

2 ◦ h ◦ φ1 : S −→ S is an element ofHomeo+
0 (S,V). The equivalence class of a pair(Σ, φ) will be

denoted by[(Σ, φ)].

Let TT(ᾱ; β̄)∗ denote the space of equivalence classes of this relation. Obviously, the groupΓ(S,V) acts
onTT(ᾱ; β̄)∗. The quotient spaceTT(ᾱ; β̄)∗/Γ(S,V) is denoted byMT(ᾱ; β̄)∗.

Definition 2.2.6 (Teichmüller space of translation surfaces)TheTeichm̈uller space of translation sur-
faces with parallel vector fieldis the set of all pairs([(Σ, φ)], ξ), where[(Σ, φ)] is an element ofTT(ᾱ; β̄)∗,
andξ is a normalized parallel vector field onΣ. We denote this spaceTT(ᾱ; β̄).

32



2. TRANSLATION SURFACES WITH BOUNDARY

Themoduli space of translation surfaces with parallel vector fieldis the quotient spaceTT(ᾱ; β̄)/Γ(S,V),
it is denoted byMT(ᾱ; β̄).

Note that in the caseg = n = 0, andm = 1, the spaceMT(ᾱ; β̄) is just the moduli space of Eucli-
dian metric structures with geodesic boundary on a closed disk.

Remark: The groupS1, identified to the rotations of the Euclidean plane, acts naturally on the space
TT(ᾱ; β̄) : if Rθ is the rotation of angleθ, and ([(Σ, φ)], ξ) is an element inTT(ᾱ; β̄), thenRθ ·

([(Σ, φ)], ξ) = ([(Σ, φ)], Rθ · ξ), whereRθ · ξ is the parallel vector field defined as follows : at every
point whereξ is defined,Rθ · ξ is the vector obtained by rotatingξ an angleθ. This action ofS1 endows
TT(ᾱ; β̄) with a principalS1-bundle structure overTT(ᾱ; β̄)∗.

2.2.2 Main results

Recall that a flat complex affine manifold is aC∞ manifold which admits an atlas whose transition
maps are complex linear transformations. Withg, ᾱ, andβ̄ as above, we can now state the main results
of this chapter

Theorem 2.2.7 (TT(ᾱ; β̄) is a Flat Complex Affine Manifold) The spaceTT(ᾱ; β̄) is a flat complex af-
fine manifold of dimension :

• 2g + n− 1 if m = 0.

•
∑m

j=1 sj + 2g +m+ n− 2 if m > 0.

Regarding the moduli spaceMT(ᾱ; β̄), we have

Proposition 2.2.8 The action of the mapping class groupΓ(S,V) onTT(ᾱ; β̄) is properly discontinuous.

and

Theorem 2.2.9 (Existence of volume form onMT(ᾱ; β̄)) There exists onTT(ᾱ; β̄) a volume form which
is invariant by the action ofΓ(S,V).

By Theorem2.2.8, and Theorem2.2.9, we have a well defined volume form onMT(ᾱ; β̄). Let µTr

denote the volume form in Theorem2.2.9. This volume form is defined by using the local charts of the
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complex affine structure ofTT(ᾱ; β̄).

Whenm = 0, i.e.when the surfaces under consideration are closed, set

ki =
αi

2π
− 1, i = 1, . . . , n.

We can then identify the moduli spaceMT(ᾱ; β̄) to H(k1, . . . , kn). Recall thatH(k1, . . . , kn) is the
moduli space of pairs(M,ω) whereM is a closed Riemann surface of genusg, andω is a holomorphic
1-form onM which hasn zeros with ordersk1, . . . , kn. Letµ0 denote the volume form onH(k1, . . . , kn)

which is defined by using the period mapping. The following proposition gives the relation betweenµ0

andµTr.

Proposition 2.2.10 On each connected component ofH(k1, . . . , kn), there exists a constantλ such that
µTr = λµ0.

Remark that, similarly to the case of closed translation surfaces, we have an action of SL(2,R) on
TT(ᾱ; β̄) which is defined in a natural way. This action commutes with the action of the group Γ(g̃, ñ),
and hence it descends onto an action ofSL(2,R) on the moduli spaceMT(ᾱ; β̄). We have

Proposition 2.2.11 The volume formµTr is invariant by the action of the action ofSL(2,R) onTT(ᾱ; β̄),
and hence onMT(ᾱ; β̄).

The chapter is organized as follows, in Section2.3, and Section2.4, we prove Theorem2.2.7. Propo-
sition2.2.8is proved in Section2.5. Section2.6is devoted to the proof of the fact that any twoadmissible
triangulationsof a translation surface can be transformed one into the other by elementarymoves. The
construction of the volume formµTr is given in Section2.7. The comparison Proposition2.2.10is proved
in Section2.8. Finally, in Section2.9, we show that the volume formµTr is invariant by the action of
SL(2,R).

2.3 Admissible triangulation

2.3.1 Introduction

Let ([(Σ, φ)], ξ) be an element inTT(ᾱ; β̄). Following the method of Thurston in [Th], we construct
local charts ofTT(ᾱ; β̄) about([(Σ, φ)], ξ) by using geodesic triangulations ofΣ. In view of this construc-
tion, we first define :
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Definition 2.3.1 (Admissible triangulation) An admissible triangulationof [(Σ, φ)] is a triangulation
T of Σ such that :

• The set of vertices ofT is the setV = φ(V).

• Every edge ofT is a geodesic segment.

By assumption, the surfaceΣ hasn singular pointsx1, . . . , xn in its interior with cone anglesα1, . . . , αn

respectively. LetY1, . . . , Ym denote the components of the boundary ofΣ so that the cone angle asso-
ciated toYj is βj . There existsj distinct pointsy1j , . . . , ysjj on Yj which divideYj into sj geodesic
segments. We consider the setV = {x1, . . . , xn; y11, . . . , ysmm} as the set of singular points ofΣ even
though some of them may be regular.

The main results of this section are the following two propositions :

Proposition 2.3.2 (Existence of admissible triangulations)There exists a triangulationT of Σ with
the following properties :

(i) The set of vertices ofT is V .

(ii) Every edge ofT is a geodesic segment.

Remark: Given an admissible triangulationT of Σ, one can find2g +m+ n− 1 edges ofT such that
the complement of the union these edges and the boundary∂Σ is a topological open disk. This set of
edges will be called afamily of primitive edgesof T.

By Proposition2.3.2, we know that admissible triangulations exist on any translation surface in
TT(ᾱ; β̄)∗. For the proof of Theorem2.2.7, we also need the following

Proposition 2.3.3 (Uniqueness of admissible triangulations up to isotopy) LetT1 andT2 be two ad-
missible triangulations of[(Σ, φ)]. Let Σ̂ be the double ofΣ which is equipped with the induced flat
metric. LetV̂ be the finite subset of̂Σ which is induced fromV = φ(V).

As usual, for any homeomorphismϕ of Σ, let ϕ̂ be the homeomorphism ofΣ̂ that liftsϕ. Suppose that
there exists an homeomorphismϕ : Σ −→ Σ such that :

- ϕ̂ is isotopic to the identity of̂Σ by an isotopy fixing the set̂V ;
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- ϕ(T1) = T2,

thenT1 = T2.

Remark: Geodesic triangulations of flat surfaces whose vertex set is the set of singularities have already
appeared in [KMS]. The fact that (closed) translation surfaces always admit such triangulations (Propo-
sition2.3.2) is well known, since every translation surface can be constructed by gluing some rectangles
(zippered rectangles). For flat surface in general, possibly with boundary, this fact is also already known
(see [BS] for further information), we give a proof of this fact here below only for the sake of complete-
ness.

2.3.2 Proof of Proposition2.3.2

Proposition2.3.2is a consequence of the following lemmas :

Lemma 2.3.4 If (m,n) 6= (0, 1), then there existm + n − 1 geodesic segments with endpoints inV
such that if we cut the surfaceΣ along those segments, then we will obtain a translation surface whose
boundary has only one component, and the new surface contains no singularities in the interior.

Proof: Consider the following algorithm :

• If m = 0 andn > 1, then choose a pathc of minimal length joining two distinct points in
V = {x1, . . . , xn}. The pathc contains an arcc0 which joins two distinct points ofV , and contains
no others points ofV in its interior. Cut openΣ along the arcc0, we obtain a new translation surface
with boundary. LetΣ′ denote the new surface, andV ′ denote the finite subset ofΣ which arises
from the setV . The boundary of the new surface has one component, andV ′ containsn− 2 points
in the interior ofΣ′.

• If ∂Σ 6= ∅ andn > 0, then choose a pathc of minimal length from a point inV1 = {x1, . . . , xn} =

V ∩ int(Σ) to a point inV2 = {y11, . . . , ys11; . . . ; y1m, . . . , ysmm} = V ∩ ∂Σ. The pathc contains
an arcc0 joining a point inV1 to a point inV2 which stays in the interior ofΣ except the endpoint
in V2. Sincec is of minimal length, it does not have self-intersection, and the same is true forc0.
Cut open the surfaceΣ alongc0, we get a new translation surface with boundary. LetΣ′ denote
the new surface, and letV ′ denote the finite subset ofΣ′ which arises from the setV of Σ. Note
that the boundary ofΣ′ has alsom components asΣ, butV ′ contains at mostn − 1 points in the
interior ofΣ′.
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• If ∂Σ contains more than one component, andn = 0, then choose a pathc of minimal length joi-
ning two points ofV which are contained in two different components of∂Σ. Remark thatc does
not have self-intersection. The pathc contains an arcc0 joining two points ofV which is contained
in the interior ofΣ, except the endpoints. Cut open the surfaceΣ along the arcc0, we obtain a new
translation surface with boundary. LetΣ′ denote the new surface, by construction, the boundary of
Σ′ hasm−1 components. LetV ′ denote the finite subset ofΣ which arises from the subsetV of Σ.

The algorithm above can be applied again to the pair(Σ′, V ′), and we can continue until we get a
translation surface whose boundary has only one component, with no singular points in the interior. This
proves lemma. �

By Lemma2.3.4, we can restrict the proof of the proposition to the cases :(m,n) = (0, 1) and
(m,n) = (1, 0). Next, we show the following

Lemma 2.3.5 Assume that(m,n) = (0, 1) or (m,n) = (1, 0), then there exist2g geodesic segments on
Σ with endpoints inV such that if we cutΣ along those segments, then we obtain a disk.

Proof: We will only prove this lemma for the case(m,n) = (1, 0), the other case can be showed by
similar arguments. We proceed by induction :

- If g = 0, thenΣ is already a disk, we have nothing to prove.

- If g > 0, take a pointy in the setV , and consider a non-separating closed curveγ whose base-point
is y which is not homotopic to∂Σ. Letγ0 be the closed curve with minimal length in the homotopy
class (with fixed endpoints) ofγ. The curveγ0 is a union of geodesic segments whose endpoints
are contained inV . Sinceγ0 is not homotopic to∂Σ, it follows thatγ0 contains an geodesic arc
a joining two points inV which is not contained in∂Σ. Note that the two endpoints ofa may
coincide. SinceΣ is a translation surface, the arca cannot have self-intersection. Hence, we can
cutΣ along the arca to obtain a surface of genusg− 1 whose boundary contains two components.

Let Σ′ denote the new surface. By construction,Σ′ is also a translation surface with geodesic boun-
dary. LetC ′

1, C
′
2 denote the two components of∂Σ′. Let V ′ denote the finite subset of∂Σ′ which

arises from the setV . Consider a pathc of minimal length from a point inV ′ ∩C ′
1 to another point

in V ′ ∩ C ′
2. This path contains an arcc0 with one endpoint inV ′ ∩ C ′

1, and the other endpoint
in V ′ ∩ C ′

2. The arcc0 has no self-intersections becausec is of minimal length. Hence, we can
cut Σ′ alongc0 to obtain a translation surface of genusg − 1 whose boundary contains only one
component. LikeΣ andΣ′, the new surface has no singular points in its interior. This allows us to
conclude by induction. �

Lemma2.3.4and Lemma2.3.5imply :
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Lemma 2.3.6 There exist2g+m+n−1 geodesic segments onΣ with endpoints inV such that if we cut
openΣ along those segments, we will have a flat surface homeomorphic to a disk,which has no singular
points in the interior.

To complete the proof of2.3.2we need the following :

Lemma 2.3.7 LetS be a flat surface with geodesic boundary, homeomorphic to a closed disk. Suppose
thatS has no singular points in the interior. LetV be a finite subset of∂S such that∂S \ V is a union
of open geodesic segments. Then there exists a triangulation ofS by geodesic segments whose set of
vertices isV .

Proof: Let a1, . . . , ar denote the points inV following an orientation. Letaiai+1 denote the geode-
sic segment contained in∂S whose endpoints areai andai+1, for i = 1, . . . , r, with the convention
ar+1 = a1. We know, by the Gauss-Bonnet Theorem, that the sum of all the angles at a1, . . . , ar is
(r − 2)π. We prove the lemma by induction.

- For the caser = 3, we have a triangle, and there is nothing to prove.

- If r > 3, it suffices to prove that there exists a geodesic segment which is contained in the interior
of S joining two singular points in∂S.

Suppose that all the angles at the cornersa1, . . . , ar are less thanπ. Consider the paths of minimal
length joininga1 anda3. Sincer > 4, a1 anda3 are not adjacent. Because the angle at every sin-
gular point is less thanπ, s ∩ ∂S = {a1, a3}, which means thats is a geodesic segment contained
insideS, and we are done.

Now, suppose that there exists a singular point whose angle is greater than or equal toπ. Without
loss of generality, we can assume that this point isa1. For everyi = 2, . . . , r, consider a pathsi of
minimal length froma1 to ai. The pathsi is a union of geodesic segments. If one of its segment is
contained in the interior ofS then we are done. If not,si is either

c1i =
i−1⋃

j=1

ajaj+1,

or

c2i =
r⋃

j=i

ajaj+1.
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Since we have

leng(c1i ) + leng(c2i ) =
r∑

j=1

leng(ajaj+1)

which is independent ofi, there existsk ∈ {2, . . . , r} such thatsi = c1i , for everyi = 2, . . . , k,
andsi = c2i , for everyi = k + 1, . . . , r. Now, if c1k is a path of minimal length froma1 to ak,
then all the angles ata2, . . . , ak−1 are greater than or equal toπ. Similarly, if c2k+1 is a path of
minimal length froma1 to ak+1, then the angles atak+2, . . . , ar are all greater than or equal toπ.
As a consequence, among the angles ata1, . . . , ar, there are at leastr − 2 angles greater than or
equal toπ, but this is impossible according to the Gauss-Bonnet Theorem. Therefore, there must
be a geodesic segment which is contained insideS, and the lemma is then proved. �

Proposition2.3.2follows immediately from Lemma2.3.7and Lemma2.3.6above. �

2.3.3 Proof of Proposition2.3.3

Proposition2.3.3follows from the following lemma :

Lemma 2.3.8 Let Σ be a flat surface without boundary. LetV = {x1, . . . , xn} be a finite subset ofΣ
such thatΣ\V contains only regular points, and suppose thatχ(Σ\V ) < 0. Letγ andγ′ be two simple
geodesic arcs ofΣ having the same endpoints inV (the two endpoints may coincide). Assume thatγ and
γ′ are homotopic with fixed endpoints relative toV , then we haveγ ≡ γ′.

Proof: We first observe that there exist no Euclidean structures on a closed disk such that its boundary is
the union of two geodesic segments. This is just a consequence of the Gauss-Bonnet Theorem.

Sinceχ(Σ \ V ) < 0, the universal covering ofΣ \ V is the open disk∆ = {z ∈ C : |z| < 1}. The
flat metric structure onΣ \V give rise to a flat metric structure on∆ (which is not complete). Now, let̃γ
be a lift ofγ in ∆ whose endpoints are contained in the boundary of∆ . By lifting the homotopy fromγ
to γ′, we get a liftγ̃′ of γ′ which has the same endpoints asγ̃. Note that by assumption,̃γ andγ̃′ are two
geodesic in∆.

The two curves̃γ andγ̃′ may have intersections, but in any case, we can find (at least) an open diskD
which is bounded by two arcs, one is a subsegment ofγ̃, the other is a subsegment ofγ̃′. Consequently,
the open diskD is isometric to the interior of an Euclidian disk which is bounded by two geodesic seg-
ments. Since such a disk cannot exist, the lemma follows. �
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Back to the proof of2.3.3. Let T̂1 andT̂2 denote the triangulations of̂Σ which are induced byT1

andT2 respectively. By assumption, we haveT̂2 = ϕ̂(T̂1), whereϕ̂ is a homeomorphism of̂Σ which is
isotopic to the identity by an isotopy fixing the common vertex set ofT̂1 andT̂2 which isV̂ .

Since every edge of̂T1 and T̂2 is a simple geodesic segment, Lemma2.3.8 implies immediately that
T̂1 = T̂2. Therefore we haveT1 = T2, and Proposition2.3.3follows. �

2.4 Flat complex affine structure onTT(ᾱ; β̄)

In this section, we give the proof of Theorem2.2.7. Recall that we have a fixed a translation surface
S, whose set of singular points in the interior are denoted byp1, . . . , pn, and boundary components of
S are denoted byC1, . . . , Cm. The cone angle atpi is αi, i = 1, . . . , n, and the cone angle associated
to Cj is βj , j = 1, . . . ,m. For eachj ∈ {1, . . . ,m}, Qj is a finite subset ofCj such thatCj \ Qj is a
union ofsj open geodesic segments. The points inQj are denoted by{q1j , . . . , qsjj}. Let V denote the
set{p1, . . . , pn} ∪

m
j=1 Qj .

Let T R(S) denote the set of all equivalence classes of triangulations (not necessarily geodesic) ofS
whose vertex set isV, where two triangulations are equivalent if they are isotopic relative toV. LetT be
an element ofT R(S). We denoteUT the subset ofTT(ᾱ; β̄) consisting of pairs([(Σ, φ)], ξ) such that
there exists a homeomorphismφ′ in the same equivalence class asφ, i.e. φ−1 ◦ φ′ ∈ Homeo+

0 (S,V),
which mapsT onto an admissible triangulation ofΣ.

Proposition2.3.2implies that the family{UT : T ∈ T R(S)} covers the spaceTT(ᾱ; β̄). We will
define coordinate charts onUT for eachT in T R(S).

2.4.1 Definition of the local chartsΨT

Given an equivalence class of triangulationsT in T R(S), let ([(Σ, φ)], ξ) be a point inUT . By defi-
nition, we can assume thatT = φ(T ) is an admissible triangulation ofΣ. By Proposition2.3.3, we know
thatT is unique.

LetN1 be the number of edges ofT, andN2 be the number of triangles ofT. By computing the Euler
characteristic ofΣ, we see that :

N1 = 3(2g + n+m− 2) + 2
m∑

j=1

sj andN2 = 2(2g + n+m− 2) +
m∑

j=1

sj .
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We construct a map fromUT to CN1 as follows :

Choose an orientation for every edge ofT. For each triangle∆ in T, there exists an isometric em-
bedding of this triangle intoR2 such that the vector fieldξ is mapped to the constant vertical vector field
(0, 1), defined on the image of∆. By this embedding, each oriented side of the triangle∆ is mapped
into a vector inR2 ≃ C. As a consequence, we can associate to every oriented edgee of T a complex
numberz(e). Note that, even though each edgee in the interior ofΣ belongs to two distinct triangles, the
complex numberz(e) is well defined because the vector fieldξ is parallel and normalized. The procedure
above defines a map fromUT into CN1 . Let ΨT denote this map.

We get immediately the following important observations :

Lemma 2.4.1 i) Let ei, ej , ek be three edges ofT which bound a triangle. Then we have

± z(ei)± z(ej)± z(ek) = 0, (2.3)

where the signs are determined by the orientation ofei, ej andek.

ii) If e1, . . . , ek are thek edges ofT which bound an open disk inΣ, then we have

± z(e1)± · · · ± z(ek) = 0, (2.4)

where, again, the signs are determined by the orientations of the edges.

Proof: Assertioni) is straight forward. Assertionii) follows from i). Namely, letD denote the disk
bounded bye1, . . . , ek. The diskD is divided into triangles by the triangulationT. By i), three sides
of a triangle verify (2.3). Note that every edge ofT insideD belongs to two distinct triangles. If for
each triangle, we choose the orientation of its boundary coherently with the orientation of the surface,
and write the corresponding equation according to this orientation, then, bytaking the sum over all the
triangles insideD, we get (2.4). �

Let ST denote the linear equation system consisting ofN2 equations of type2.3corresponding to the
triangles ofT . From what we have seen, the vectorΨT ([(Σ, φ)], ξ) is a solution of the systemST .

Let VT denote the subspace ofCN1 consisting of solutions of the systemST . We have

Lemma 2.4.2 ΨT (UT ) is an open subset ofVT .

Proof: The fact thatΨT (UT ) is contained inVT is a direct consequence of Lemma2.4.1.
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Now, letZ be the image of([(Σ, φ)], ξ) by ΨT , and letZ ′ = (z′1, . . . , z
′
N1

) be a vector in a neighborhood
of Z in VT . Using the triangulationT of Σ, we construct a flat surface fromZ ′ as follows :

. Construct an Euclidean triangle fromz′i, z
′
j , z

′
k if z′i, z

′
j , z

′
k verify an equation of type (2.3).

. Identify two sides of two distinct triangles if they correspond to the same complex numberz′i.

Clearly by this construction we obtain a translation surfaceΣ′ homeomorphic toΣ. The surfaceΣ′ has
n singular points of cone anglesα1, . . . , αn in the interior, and the boundary ofΣ′ hasm components
with associated cone anglesβ1, . . . , βj .

Moreover, we also get a triangulationT′ of Σ′ by geodesic segments. Each triangle inT′ corresponds
to a triangle inR2 specified by three complex numbers which are coordinates ofZ ′, hence we get a
normalized parallel vector fieldξ′ on Σ′ which is defined by the constant vertical vector field(0, 1) on
the Euclidean planR2.

Define an orientation preserving homeomorphism

f : Σ −→ Σ′

as follows :f maps each edge ofT onto the corresponding edge ofT′ (i.e. the edge ofT that corresponds
to the same coordinate), and the restrictionf on each triangle ofT is a linear transformation ofR2. Let
φ′ denote the map

φ′ = f ◦ φ : S −→ Σ′.

It follows that the pair([(Σ′, φ′)], ξ′) represents a point ofUT close to([(Σ, φ)], ξ). By construction, it is
clear thatZ ′ = ΨT ([(Σ′, φ′)], ξ′). Hence, we deduce thatΨT (UT ) is an open set ofVT . �

2.4.2 Injectivity of ΨT

Lemma 2.4.3 The mapΨT is injective.

Proof: Let ([(Σ1, φ1)], ξ1) and ([(Σ2, φ2)], ξ2) be two points inUT such thatΨT ([(Σ1, φ1)], ξ1) =

ΨT ([(Σ2, φ2)], ξ2). By definition, we can assume thatT1 = φ1(T ) andT2 = φ2(T ) are admissible
triangulations ofΣ1 andΣ2 respectively. By Proposition2.3.3, we know thatT1 andT2 are unique.

Now, the hypothesisΨT ([(Σ1, φ1)], ξ1) = ΨT ([(Σ2, φ2)], ξ2) implies that there exists an isometry
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h : Σ1 −→ Σ2,

which maps each triangle ofT1 onto a triangle ofT2, and alsoξ1 ontoξ2. It follows that the homeomor-
phism

φ−1
2 ◦ h ◦ φ1 : S −→ S

fixes all the points inV, and preserves each triangles ofT . We deduce that the mapφ−1
2 ◦ h ◦ φ1 is

isotopic to the identity ofS by an isotopy fixing all the points inV. Therefore, by definition, we have
([(Σ1, φ1)], ξ1) = ([(Σ2, φ2)], ξ2). �

2.4.3 Computation of dimension ofVT

Lemma 2.4.4 dimC VT =

{
2g + n− 1, if m = 0 ;
2g + n+m− 2 +

∑m
j=1 sj , otherwise.

Proof: Recall thatVT is the subspace ofCN1 consisting of solutions of the systemST . Since the system
ST containsN2 equations, we have

dim VT > N1 −N2 =
m∑

j=1

sj + 2g +m+ n− 2. (2.5)

Let ([(Σ, φ)], ξ) be a point inUT , andT be the admissible triangulation ofΣ which is the image ofT
by φ.

Let a1, a2, . . . , as1+···+sm denote the edges ofT which are contained in the boundary ofΣ. Choose a
family of primitive edges inT which will be denoted byb1, . . . , b2g+m+n−1. Recall that for any oriented
edgee of T, z(e) is the complex number associated toe in the construction ofΨT .

By definition, we haveint(Σ) \ ∪2g
j=1bj is an open disk. Using Lemma2.4.1 ii), we deduce that ife

is any edge ofT which does not belong to the set{a1, . . . , as1+···+sm , b1, . . . , b2g+m+n−1}, thenz(e)
can be written as a linear combination ofz(a1), . . . , z(as1+···+sm), z(b1), . . . , z(b2g+m+n−1), whose
coefficients are determined by the triangulationT. Note that the coefficients of these linear functions
belong the set{−1, 0, 1}. We deduce

dim VT 6

m∑

j=1

sj + 2g +m+ n− 1. (2.6)

Suppose that the edgesa1, . . . , as1+···+sm are oriented coherently with the orientation of the surfaceΣ.
Apply (2.4) to the diskD = int(Σ) \ ∪2g+m+n−1

j=1 bj , we get
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z(a1) + · · ·+ z(as1+···+sm) = 0. (2.7)

The numbersz(bj), j = 1, . . . , 2g+m+ n− 1, do not appear in the equation (2.7) because each of the
edgesbj belongs to two different triangles.

Here, we have two issues :

- Case 1 :m = 0, that is the surfaceΣ is closed. In this case, the equation (2.7) is void. However,
this also means that the sum of all equations in the systemST , with appropriate choices of signs,
is the trivial equation0 = 0. This impliesrank(ST ) 6 N2 − 1. Hence

dim VT > N1 − (N2 − 1) = 2g + n− 1. (2.8)

From (2.6) and (2.8), we conclude thatdim VT = 2g + n− 1.

- Case 2 :m > 0, that is the boundary ofΣ is not empty. The equation (2.7) implies that the vector
(z(a1), . . . , z(as1+···+sm), z(b1), . . . , z(b2g+m+n−1)) belongs to a hyperplane ofC(s1+···+sm)+2g+m+n−1.
Therefore we have

dim VT 6

m∑

j=1

sj + 2g +m+ n− 2. (2.9)

From (2.5) and (2.9), we conclude thatdim VT =
∑m

j=1 sj + 2g +m+ n− 2.

�

2.4.4 Coordinate change

Let T1, T2 be two equivalence classes of triangulations inT R(S). Suppose thatUT1 ∩ UT2 6= ∅,
and let([(Σ, φ)], ξ) be a point inUT1 ∩ UT2 6= ∅. Let T1,T2 be the admissible triangulations ofΣ

corresponding toT1 andT2 respectively. As usual, we denoteΨT1 ,ΨT2 the local charts onUT1 andUT2

respectively. We have :

Lemma 2.4.5 There exists an invertible complex linear map

L : C
N1 −→ C

N1

such thatΨT2([(Σ
′, φ′)], ξ′) = L ◦ ΨT1([(Σ

′, φ′)], ξ′), for every([(Σ′, φ′)], ξ′) in a neighborhood of
([(Σ, φ)], ξ).
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Proof: Let e be an edge ofT2. Let∆i, i ∈ I, denote the triangles inT1 such that∆i∩ int(e) 6= ∅, ∀i ∈

I.

Using the developing map, we can construct a polygonP in R2 by gluing isometric copies of∆i’s
(i ∈ I), such thate corresponds to a diagonalẽ insideP. The polygonP may contain several copies of
a single∆i. By this construction, we get a map :

ϕ : P −→ Σ,

which is locally isometric, such thatϕ(ẽ) = e.

Since the mapϕ sends geodesic segments in the boundary ofP onto edges ofT1, it follows that
the complex numbers associated to the edgee can be written as linear function of the complex numbers
associated to the edges corresponding to geodesic segments in the boundary of P. Note that the coeffi-
cients of these linear functions are unchanged if we replace([(Σ, φ)], ξ) by another pair([(Σ′, φ′)], ξ′)

nearby inUT1 ∩ UT2 , and this argument is reciprocal betweenT1 andT2. We deduce that the coordinate
change betweenΨT1 andΨT2 , in a neighborhood of([(Σ, φ)], ξ), is a complex linear transformation of
CN1 which sendsVT1 ontoVT2 . The lemma is then proved. �

The proof of Theorem2.2.7is now complete. �

2.4.5 Remark

Let T be an equivalence class inT R(S). Let UT ,ΨT ,VT be as in the proof of2.2.7. We already
know thatΨT (UT ) is an open set inVT , but more can be said aboutΨT (UT ).

ConsiderT as a particular triangulations ofS. Choose a numbering for the set of edges ofT , and an
orientation for each edge.

To each triangle∆α in T , α = 1, . . . , N2, we can associate a Hermitian formHα of CN1 as follows : if
the sides of∆α are denoted byei, ej , ek, thenHα(Z,W ) = ı

4(ziwj − zjwi), whereZ = (z1, . . . , zN1),
andW = (w1, . . . , wN1) are vectors inCN1 .

The Hermitian formHα verifies the following property : ifZ = ΨT ([(Σ, φ)], ξ), then|Hα(Z,Z)| is
equal to the area of the triangleφ(∆α) in Σ. By interchangingzi andzj if necessary, we can assume that
Hα(Z,Z) > 0 for everyα = 1, . . . , N2.

Now, let Z be a vector inVT , let Σ(Z) denote the surface obtained by the method described in the
inverse construction ofΨT . The necessary and sufficient condition forΣ(Z) to be a translation surface
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homeomorphic toS is that

Hα(Z,Z) > 0, for everyα = 1, . . . , N2.

Therefore,ΨT (UT ) is the set{Z ∈ VT | Hα(Z,Z) > 0, ∀α = 1, . . . , N2}.

2.5 Properness of the action of Mapping Class Group

In this paragraph, we prove Proposition2.2.8. First, we recall some basic dfinitions of the Teichmüller
Theory.

2.5.1 Elements of Teichm̈uller Theory

We refer to [Ga] for a more detailed presentation of this important theory.

Quasiconformal mappings

LetD be a domain of the complex planeC, andf : D −→ C a function defined onD. Assume that
the functionf is written asf(x, y) = u(x, y)+ ıv(x, y). We say thatf is absolutely continuous on lines,
and abbreviate by ACL, if for every rectangleR in D with sides parallel to thex-axis andy-axis, both
u(x, y) andv(x, y) are absolutely continuous on almost every horizontal line and almost everyvertical
line inR. The functionsu andv will then have partial derivativesux, uy, vx, vy almost everywhere inD.
In general, the partial derivativesux, uy, vx, vy are only distributions since they are not defined everyw-
here.

The complex derivatives off are defined by

fz =
1

2
(fx − ıfy) andfz̄ =

1

2
(fx + ıfy).

Definition 2.5.1 (Analytic definition of Quasiconformal Mapping) Let f be a homeomorphism from
a domainD ⊂ C to another domainD′ ⊂ C. The mapf isK-quasiconformal(K > 1) if

(i) f is ACL inD, and

(ii) |fz̄| 6 k|fz| almost everywhere, wherek = K−1
K+1 < 1.

The minimal possible value ofK for which (ii) holds is called thedilatation of f .
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The quasiconformal mappings verify the following property, iff1 is K1-quasiconformal andf2 is
K2-quasiconformal, thenf2 ◦ f1 isK1K2-quasiconformal.

The Teichmüller spaceT (g̃, ñ)

Let S̃ be a Riemann surface of genusg̃ without boundary, and{p̃1, . . . , p̃ñ} be ñ points of S̃. Let
T̃ (g̃, ñ) denote the set of all pairs(X, f), whereX is a Riemann surface, andf : S̃ −→ X is a quasi-
conformal homeomorphism. We can define an equivalence relation onT̃ (g̃, ñ) as follows :(X, f) and
(X ′, f ′) are equivalent if and only if there exists aconformalhomeomorphismh : X −→ X ′, such that
the quasi-conformal mapf ′−1 ◦ h ◦ f : S̃ −→ S̃ is isotopic to the identity by an isotopy fixing the
pointsp̃1, . . . , p̃ñ. By definition, theTeichm̈uller spaceT (g̃, ñ) is the space of equivalence classes of this
equivalence relation. The equivalence class of a pair(X, f) is denoted by[(X, f)].

Teichmüller metric

Let (X1, f1) and(X2, f2) be two pairs inT̃ (g̃, ñ). TheTeichm̈uller distancebetween[(X1, f1)] and
[(X2, f2)] is defined by

dTeich([(X1, f1)], [(X2, f2)]) =
1

2
inf{logK(f2 ◦ f ◦ f

−1
1 )},

where the infimum is taken over all quasi-conformal homeomorphismsf of S̃ which can be deformed
into IdS̃ by an isotopy fixing every point in the set{p̃1, . . . , p̃ñ}, andK(f2 ◦ f ◦ f

−1
1 ) is the dilation of

f2 ◦ f ◦ f
−1
1 : X1 −→ X2. The Teichm̈uller distance between two equivalence classes inT (g̃, ñ) does

not depend on the representatives to be used in this definition.

Action of Modular Group Γ(g̃, ñ) on T (g̃, ñ)

The mapping class groupΓ(g̃, ñ) the group of all quasi-conformal homeomorphisms ofS̃ which is
identity on the set{p̃1, . . . p̃ñ}, modulo the connected component of identity (ofS̃).

The mapping class groupΓ(g̃, ñ) acts onT (g̃, ñ) as follows. Let[h] be an element ofΓ(g̃, ñ) which
is represented by a quasiconformal maph : S −→ S. Let [(X, f)] be an equivalence class inT (g̃, ñ).
We have :

[h] · [(X, f)] = [(X, f ◦ h)].

It is well known that the action ofΓ(g̃, ñ) on T (g̃, ñ) is properly discontinuous with respect to the
topology induced by the Teichm̈uller metric.
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2.5.2 Embedding of the groupΓ(S,V)

Let g̃ = g+m−1, ñ = 2n+
∑m

j=1 sj . By definition, the doublêS of S is a closed surface of genusg̃,

and the subset̂V of Σ̂ contains̃n points. Ifϕ is a homeomorphism ofS, we denotêϕ the homeomorphism
of Ŝ that liftsϕ. We have

Lemma 2.5.2 The homomorphismϕ 7−→ ϕ̂ induces an embedding of the groupΓ(S,V) into the group
Γ(g̃, ñ).

Proof: Since any homeomorphism is isotopic to a diffeomorphism, and a diffeomorphismis quasi-
conformal, given an homeomorphism̂ϕ of Ŝ, there always exists a quasi-conformal homeomorphism
ϕ̂′ which is isotopic toϕ̂. As a consequence, we can define map fromΓ(S,V) into Γ(g̃, ñ) by associating
to the equivalence class ofϕ in Γ(S,V) the equivalence class of the quasi-conformalϕ̂′ in Γ(g̃, ñ). This
map is clearly a homomorphism.

If ϕ̂′ is isotopic toIdŜ , then so iŝϕ. By definition ofΓ(S,V), this implies thatϕ is in the equivalence
class ofIdS . We deduce that the homomorphism defined above is injective, and the lemma follows. �

2.5.3 A Mapping from TT(ᾱ; β̄) to T (g̃, ñ)

There is a natural mapF from TT(ᾱ; β̄) into T (g̃, ñ), which we will call theforgetting map.

Given a point([(Σ, φ)], ξ) in TT(ᾱ; β̄), let Σ̂ be the double ofΣ which is equipped with the induced
flat metric, andφ̂ be the homeomorphism from̂S ontoΣ̂ that liftsφ. Note the flat metric structure on̂Σ
induces a conformal structure on the open dense setΣ̂ \ φ̂(V̂) of Σ̂, and sincêφ(V̂) is finite, this confor-
mal structure can be extended uniquely into a conformal structure onΣ̂. Let φ̂′ be any quasi-conformal
map fromŜ ontoΣ̂ which is isotopic toφ̂ by an isotopy which is constant on the setV̂ of Ŝ.

The mapF is defined as follows : the image byF of the pair([(Σ, φ)], ξ) in TT(ᾱ; β̄) is the equivalence
class of the pair(Σ̂, φ̂′) in T (g̃, ñ), whereΣ̂ is now considered as a Riemann surface.

Proposition 2.5.3 The mapF is continuous.

Proof: Let ([(Σ, φ)], ξ) be a point inTT(ᾱ; β̄), and{([(Σk, φk)], ξk), k ∈ N} be a sequence inTT(ᾱ; β̄)

converging to([(Σ, φ)], ξ). We can suppose that the mapφ̂ : Ŝ −→ Σ̂ that liftsφ is quasi-conformal so
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that we can writeF([(Σ, φ)], ξ) = [(Σ̂, φ̂)].

Let T be an admissible triangulation ofΣ, andT be the equivalence class ofφ−1(T) in T R(S). By
definition, ([(Σ, φ)], ξ) is a point inUT . Without loss of generality, we can assume that the sequence
{([(Σk, φk)], ξk), k ∈ N} is also contained inUT .

As we have seen in the proof of Theorem2.2.7, there exists a local chartΨT of TT(ᾱ; β̄) which is defined

onUT . PutZ = ΨT ([(Σ, φ)], ξ), andZk = ΨT ([(Σk, φk)], ξk). By assumption we haveZk
k→∞
−→ Z in

CN1 .

Recall that, by the definition ofΨT , for every point([(Σ′, φ′)], ξ′) in UT , we can writeφ′ = f ◦ φ,
wheref : Σ −→ Σ′ is a homeomorphism such that

• f(T) is an admissible triangulation ofΣ′ denoted byT′.

• f sends an edge ofT onto an edge ofT′, and the restriction off ′ into the a triangle ofT is a linear
transformation ofR2.

Therefore, for everyk ∈ N, we can assume thatφk = fk ◦ φ, wherefk : Σ −→ Σk is a homeomor-
phism with the same properties asf above.

Let T̂ be the geodesic triangulation ofΣ̂ which is induced byT, and letf̂k be the homeomorphism
from Σ̂ ontoΣ̂k that liftsfk. It follows immediately that̂fk mapsT̂ onto a geodesic triangulation ofΣ̂k,
and we can assume thatφ̂k = f̂k ◦ φ̂.

Sincef̂k is clearly quasi-conformal, and by assumption,φ̂ is also quasi-conformal, it follows that̂φk is
also quasi-conformal. Therefore, we can write

F([(Σk, φ)k], ξk) = [(Σ̂k, φ̂k)], ∀k.

All we need to prove is that

dTeich([(Σ̂, φ̂)], [(Σ̂k, φ̂k)])
k→∞
−→ 0.

It is clear that, asZk tends toZ, the restriction off̂k on each triangle of̂T tends to identity, which
implies that

lim
k→∞

K(f̂k) = 1,

whereK(f̂k) is the dilatation off̂k. By the definition ofdTeich, it follows that
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lim
k→∞

dTeich([(Σ̂, φ̂)], [(Σ̂k, φ̂k)]) = 0,

and the proposition follows. �

2.5.4 Proof of Proposition2.2.8

By definition, the mapF is obviouslyΓ(S,V)-equivariant. By Lemma2.5.2, we know thatΓ(S,V) is
a subgroup ofΓ(g̃, ñ). It is well known that the action ofΓ(g̃, ñ) is properly discontinuous onT (g̃, ñ).
SinceF is continuous, andTT(ᾱ; β̄) andT (g̃, ñ) are clearly locally compact, we deduce that the action
of Γ(S,V) onTT(ᾱ; β̄) is properly discontinuous. �

2.6 Changes of triangulations

Let [(Σ, φ)] be an element of the spaceTT(ᾱ; β̄)∗, we have seen that an admissible geodesic trian-
gulation ofΣ (cf. Definition 2.3.1) allows us to construct a local chart forTT(ᾱ; β̄). In this section, we
are interested in relations between geodesic triangulations ofΣ. More precisely, we want to answer the
question : How to go from an admissible triangulation to another one. This will play a crucial role in our
construction of the volume form onTT(ᾱ; β̄).

Let us start with the simplest example : letABCD be a convex quadrilateral inR2. There are only
two ways to triangulateABCD : one by adding the diagonalAC, and the other by adding the diagonal
BD.

A

B

C

D

This example suggests
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Definition 2.6.1 (Elementary Move and Connected Triangulations)LetΣ be a flat surface with geo-
desic boundary. LetT be a triangulation ofΣ by geodesic segments whose set of vertices contains the
set of singularities ofΣ. An elementary moveof T is a transformation as follows : take two adjacent
triangles ofT which form a convex quadrilateral, replace the common side of the two triangles by the
other diagonal of the quadrilateral (if these two triangles have more than one common sides, just take
one of them). After such a move, we obtain evidently a another geodesic triangulation ofΣ with the same
set of vertices asT.

Let T1,T2 be two geodesic triangulations ofΣ whose sets of vertices coincide. We say thatT1 andT2

areconnectedif there exists a sequence of elementary moves which transformT1 into T2.

In this section, we prove the following theorem

Theorem 2.6.2 Let Σ be a flat surface with geodesic boundary. Letp1, . . . , pn denote the singularities
of Σ. Suppose thatΣ satisfies the following condition

(Q′) for every closed curvec ⊂ int(Σ \ {p1, . . . , pn}), we haveorth(c) ∈ {±Id},

whereorth(c) is the orthogonal part of the holonomy ofc. LetT1,T2 be two geodesic triangulations of
Σ such that the set of vertices ofTi is {p1, . . . , pn}, i = 1, 2, thenT1 andT2 are connected.

Remark: The changes of triangulations by elementary moves, which are also calledflips, are already
studied in the context of flat surfaces (not necessarily translation surfaces). In this general situation,
Theorem2.6.2is already known, it results from the fact that any geodesic triangulation whose vertex set
contains all the singularities can be transformed by flips into a special one, called Delaunay triangula-
tion, which is unique up to some flips (see [BS] for further detail). However, we would like to introduce
another proof of this fact in the case of translation surfaces. The proof we present here is based on an
observation on polygons, and uses some basic properties of translation and semi-translation surfaces.

We start by proving the following fact about Euclidean polygons :

Lemma 2.6.3 LetP be a polygon inR2 ≃ E2. LetT be a triangulations ofP whose edges are diagonals.
Letd be a diagonal ofP which is contained insideP, but not an edge ofT. Then there exists a sequence
of elementary moves which transformT into a triangulation containingd.

Remark: In this situation, we only consider triangulations whose edges are diagonalsof P, by ‘diagonal
of P’ we mean a geodesic segment contained insideP whose endpoints are vertices ofP.
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Proof: Since the diagonald is not contained inT, it intersects some edges ofT. Letm be the number
of intersection points ofd and the diagonals inT. Note that we only count intersection points which
are not vertices of the polygonP. Thesem intersection points divided into m + 1 sub-segments, each
sub-segment is contained in a triangle ofT. The union of thesem + 1 triangles is a polygonP1 which
containsd as a diagonal. The number of sides ofP1 ism+3. Obviously, we get a triangulationT1 of P1

which is induced byT. Note thatd intersects all the diagonals inT1. It suffices to show that there exists
a sequence of elementary moves inP1 that transformT1 into a triangulation containingd. We prove this
by induction.

. If m = 1, thenP1 is a quadrilateral, and an elementary move suffices to transformT1 into a trian-
gulation containingd.

. Form > 1, let a1, . . . , am denote the set of edges ofT1. By construction we haved ∩ ai 6= ∅

for everyi = 1, . . . ,m. We will show that there exist elementary moves which transformT1 into
another triangulationT2 of P1 such thatd intersects at mostm− 1 diagonals inT2.

Equip the planeR2 with the Cartesian coordinates such thatd is a horizontal segment contained
in theOx axis. Letx : R2 −→ R, andy : R2 −→ R denote the two coordinate functions. Let
A1, . . . , Ar, andB1, . . . , Bs denote the vertices ofP1 such thaty(A1) = y(Ar) = 0, x(A1) <

x(Ar), y(Ai) > 0, for i = 2, . . . , r − 1, andy(Bj) < 0, for j = 1, . . . , s. The pointsA1, . . . , Ar

are ordered in the clockwise sense, and the pointsB1, . . . , Bs are ordered in the counter-clockwise
sense. Note that, sincem > 1, we can always assume thatr > 4.

A1

A2

A3

A4

A5

A6

B1

B2

B3

A1

A2

A3

A4

A5

A6

B1

B2

B3

There existsi0, 2 6 i0 < r, such thaty(Ai0) > y(Ai),∀i ∈ {1, . . . , r}, andy(Ai0) > y(Ai) if
i < i0. By assumption, we see that the segmentAi0−1Ai0+1 is a diagonal ofP1. Sincer > 4, we
haveAi0−1Ai0+1 6= A1Ar. Clearly, the segmentAi0−1Ai0+1 does not intersectd = A1Ar since
bothy(Ai0−1) andy(Ai0+1) must be positive or zero, and at least one of them is strictly positive.
Moreover, the number of intersection points ofAi0−1Ai0+1 with the diagonals inT1 is strictly less
thanm. By induction assumption, there exists a sequence of elementary moves whichtransform
T1 into a new triangulationT2 of P1 which containsAi0−1Ai0+1.
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Now, the triangulationT2 containsm diagonals, one of them isAi0−1Ai0+1. We have seen that
Ai0−1Ai0+1 does not intersectd. It follows thatd intersects at mostm − 1 diagonals inT2, and
hence we are done.

�

Corollary 2.6.4 Let P be a polygon in the Euclidean planeE2. LetT1 andT2 be two triangulations of
P by diagonals. Then there exists a sequence of elementary moves which transformT1 into T2.

Proof: Let n be the number of sides ofP. We show this corollary by induction.

- If n = 4 there are two possibilities :

. P is not convex. In this case,P has only one triangulation, henceT1 = T2.

. P is convex. In this case, ifT1 6= T2, thenT2 is obtained fromT1 by an elementary move.

- Forn > 4, if the triangulationsT1 andT2 have a common edge, then we are done since this com-
mon edge dividesP into two polygons whose numbers of sides are strictly less thann. We are left
with the case whereT1 andT2 have no common edges. In this case, choose an arbitrary edged of
T2, by Lemma2.6.3, there exists a sequence of elementary moves which transformT1 into a new
triangulationT′

1 which containsd. The corollary is then proved. �

2.6.1 Proof of Theorem2.6.2

Let g be the genus ofΣ, andp be the number of components of its boundary. Observe that every
geodesic triangulation ofΣ whose set of vertices is{p1, . . . , pn}must contain all the geodesic segments
on the boundary ofΣ.

Let n1 be the number of singular points on the boundary ofΣ, andn2 be the number of singular points
in the interior ofΣ. By the computation of Euler characteristic ofΣ, we see that the triangulationsT1

andT2 have the same numberNe of edges. We have

Ne = 3(
2

3
n1 + n2 + 2g + p− 2).

Let k, 0 6 k 6 Ne, be the number of common edges ofT1 andT2. Since the boundary ofΣ contains
n1 edges, we havek > n1. If k = Ne, thenT1 = T2. Assume thatn1 6 k < Ne, we will proceed by
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induction.

Given a geodesic triangulationT on Σ, let e be a geodesic segment joining two vertices ofT. If e
is not contained inT, then, using a developing map, one can construct an Euclidian polygonPe in R2

which is composed by isometric copies of the triangles inT which are crossed bye. Note that a triangle
∆ in T may have several copies insideP, the number of those copies is equal to the number of connected
components of the setint(e) ∩ int(∆). By construction, there exists a map

ϕe : Pe −→ Σ,

which is locally isometric, and there exits a diagonalẽ of P such thatϕe(ẽ) = e. Remark thatϕ−1
e (T) is

a triangulation ofP by diagonals. We will callPe thedeveloping polygon ofe with respect toT.

First, let us prove the following technical lemma

Lemma 2.6.5 Let P be a polygon inR2 whose vertices are denoted byA1, A2, A3, B1, . . . , Bl. Let
x : R2 −→ R, andy : R2 −→ R denote the two coordinate functions ofR2. Assume that the vertices of
P verify the following conditions :

+ (A1, A2, A3) are ordered in the clock-wise sense ;

+ y(Ai) > 0, i = 1, 2, 3, y(A1) < y(A2), andy(A2) > y(A3).

+ y(Bj) < 0, j = 1, . . . , l ;

+ B1, . . . , Bl are ordered in the counter-clockwise sense.

+ For all j ∈ {1, . . . , l}, the segmentA2Bj is a diagonal ofP.

Let T denote the triangulation ofP by the diagonalsA2B1, . . . , A2Bl. Let{s0, . . . , sk} be a family
of disjoint horizontal segments inP whose endpoints are contained the boundary ofP, wheres0 is a
segment lying on the horizontal axisy = 0. Let r be the number of intersection points of the edges of
T with the set∪k

i=0si. Then there exists a sequence of elementary moves which transformT into a new
triangulationT′ whose edges intersect the set∪k

i=0si at at mostr − 1 points.

Proof: Consider the following algorithm :

Let j0 be the smallest index such thaty(Bj0) = min{y(Bj) : j = 1, . . . , l}, that isy(Bj) > y(Bj0)

for all j < j0, andy(Bj) > y(Bj0), ∀j = 1, . . . , l.
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1. If P is a quadrilateral, that isl = 1, thenP must be convex. Apply an elementary move insideP

and stop the algorithm.

2. If 1 < j0 < l, then consider the quadrilateralA2Bj0−1Bj0Bj0+1. By the choice ofj0, this quadri-
lateral is convex. Hence, we can apply an elementary move inside it, and the algorithm stops.

3. If j0 = 1 andl > 2, then consider the quadrilateralA2A1B1B2. Observe that this quadrilateral
is convex. Apply an elementary move inside it. By this move, we get a new triangulation of P

which contains the triangle∆A1B1B2. Cut off this triangle fromP. ReplaceP by the remaining
sub-polygon and restart the algorithm.

4. If j0 = l > 1, then consider the quadrilateralA2A3BlBl−1. Since this quadrilateral is convex, we
can apply an elementary move inside it, then cut off the triangle∆A3BlBl−1. ReplaceP by the
remaining sub-polygon and restart the algorithm.

A1

A2

A3

B1

B2 B3

A1

A2

A3

B1

B2 B3

y = 0 y = 0

Observe that, at each step of the algorithm above, the number of intersection points of the set∪k
i=0si

with the edges of the new triangulation cannot exceed the number of intersection points with those of
the ancien one. Indeed, suppose that we are in the case1 < j0 < l, by the choice ofj0, we have
y(Bj0) 6 min{y(Bj0−1), y(Bj0+1)}, andy(A2) > max{y(Bj0−1), y(Bj0+1)}, consequently, if a hori-
zontal segmentsi intersectsBj0−1Bj0+1, then it must intersectA2Bj0 . Therefore, the number of inter-
section points does not increase. The same argument works for the othercases.

Moreover, at the final step of the algorithm,i.e. case 1. or 2., we replace a diagonal intersecting the
segments0 by another one which does not intersects0. Hence, by this algorithm, we get a new triangu-
lationT′ of P whose edges have strictly less intersection points with the set∪k

i=0si than those ofT4. �
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Leta1, . . . , aNe , andb1, . . . , bNe denote the edges ofT1 andT2 respectively. We can assume thatai = bi,
for i = 1, . . . , k. All we need to prove is the following

Proposition 2.6.6 There exists a sequence of elementary moves which transformT1 into a new triangu-
lation containingb1, . . . , bk, andbk+1.

Proof: Sincebk+1 is not an edge ofT1, it must intersect some edges ofT1. Let P be the developing
polygon ofbk+1 with respect toT1. Letϕ : P −→ Σ be the associated immersion. LetT3 be the trian-
gulation ofP by diagonals which is induced byT1, (i.e. T3 = ϕ−1(T1)). By definition, each diagonal
in T3 is mapped byϕ onto an edge ofT1 which intersectsbk+1. Finally, letd be the diagonal ofP such
thatϕ(d) = bk+1. Observe thatd intersects all the diagonals which are edges ofT3.

Letm be the number of intersection points ofbk+1 with the edges ofT1 excluding the two endpoints
of bk+1. Note thatbk+1 may intersect an edge ofT1 more than once. By construction, the polygonP is
triangulated bym diagonals, hence it hasm+ 3 sides.

We prove the proposition by induction.

- If m = 1, thenP is a quadrilateral. The quadrilateralP must be convex because its two diago-
nals intersect. IfP is mapped byϕ to a single triangle ofT1, then there is a singular point of
Σ with cone angle strictly less thanπ. But this is impossible since, for every closed curvec in
int(Σ \ {p1, . . . , pn}), we haveorth(c) ∈ {±Id}. Thus, we conclude thatϕ mapsint(P) isome-
trically onto a quadrilateral consisting of two triangles inT1. Clearly, by applying the elementary
move insideϕ(P), we obtains a new triangulation which containsbk+1.

- If m > 1, it is enough to show that there exists a sequence of elementary moves whichtransform
T1 into a new triangulationT′

1 containingb1 = (a1), . . . , bk = (ak), such thatbk+1 intersects the
edges ofT′

1 at mostm− 1 times.

Equip the planeR2 with a system of Cartesian coordinates such thatd is a horizontal segment lying
in the axisOx. Let x : R2 −→ R, andy : R2 −→ R denote the two coordinate functions. Let
A1, . . . , Ar denote the vertices ofP such thaty(Ai) > 0, andB1, . . . , Bs denote the vertices of
P such thaty(Bj) < 0. Let A0 andAr+1 denote the left and the right endpoints ofd respecti-
vely. We set, by convention,B0 = A0, andBs+1 = Ar+1. SinceP hasm + 3 vertices, we have
r + s + 2 = m + 3. We can assume thatr > s (if it is not the case, reverse the orientation of
Oy). We name the vertices ofP such thatA0, . . . , Ar+1 are ordered in the clockwise sense, and
B0, . . . , Bs+1 are ordered in the counter-clockwise sense.

Without loss of generality, we can assume thatr > 2 becausem > 1. Let i0 be the smallest in-
dex such thaty(Ai0) = max{y(Ai) : i = 1, . . . , r}, that isy(Ai0) > y(Ai) ∀i = 1, . . . , r, and
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y(Ai0) > y(Ai) if i < i0. Consider the sub-polygonP1 of P, which consists of all triangles inT3

havingAi0 as a vertex. The vertices ofP1 areAi0−1, Ai0 , Ai0+1 andBj0 , . . . , Bj0+l. The polygon
P1 is triangulated by the diagonalsAi0Bj0 , . . . , Ai0Bj0+l. Let T4 denote this triangulation ofP1.

By Lemma2.6.7below, we know thatϕ mapsint(P1) bijectively onto an open domainQ1 in Σ.
Therefore, any elementary move insideP1 induces an elementary move insideQ1.

Sinceb1, . . . , bk, bk+1 are edges of the triangulationT2, we haveint(bi) ∩ int(bk+1) = ∅, ∀i =

1, . . . , k. Recall thatb1, . . . , bk are also edges of the triangulationT1, from this we deduce that
int(bi) ∩Q1 = ∅, since ife is an edge ofT1 andint(e) ∩Q1 6= ∅, thenint(e) ∩ int(bk+1) 6= ∅.
This implies that an elementary move insideQ1 does not affect the edgesb1, . . . , bk.

Consider the intersection ofP1 and the inverse image ofbk+1 byϕ. A priori, this set is a family of
geodesic segments with endpoints in the boundary ofP1. Clearly, the segments0 = A0Ar+1 ∩ P1

is contained in the setP1 ∩ ϕ
−1(bk+1). SinceΣ satisfies(Q′), all the segments in this family are

parallel, therefore, all of them are parallel to the horizontal axis. Letr be the number of intersection
points of the setP1 ∩ ϕ

−1(bk+1) and the edges ofT4.

Now, Lemma2.6.5shows that there exists a sequence of elementary moves which transformT4

into a new triangulation whose edges intersect the setP1 ∩ ϕ−1(bk+1) at at mostr − 1 points. It
follows that there exists a sequence of elementary moves inside the domainQ1 which transformT1

into a new triangulation ofΣ whose edges have at mostm−1 intersection points withbk+1. As we
have seen, those elementary moves do not affect the edgesb1, . . . , bk. By induction, the proposition
is then proved. �

We need the following lemma to complete the proof of2.6.6

Lemma 2.6.7 With the same notations as in the proof of2.6.6, the restriction ofϕ onto int(P1) is an
isometric embedding.

Proof: Sinceϕ maps each triangle ofT3 onto a triangle ofT1, it is enough to show that the images byϕ
of the triangles ofT3 which are contained inP1 are all distinct.

Suppose that there exist two triangles∆1 and∆2 such thatϕ(∆1) = ϕ(∆2). Sinceϕ is locally isome-
tric, and by assumption, the orthogonal part of the holonomy of any closedcurve inint(Σ\{p1, . . . , pn})

is eitherId or−Id, it follows that either∆2 = ∆1 + v, or ∆2 = −∆1 + v, where−∆1 is the image of
∆1 by−Id, andv ∈ R2. Note that, by definition, the triangles∆1 and∆2 have a common vertex, which
isAi0 .
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• If ∆2 = ∆1 + v, exclude the case∆1 ≡ ∆2, we have two possible configurations. In these both
cases, we see that the angle ofP1 at the pointAi0 is at leastπ. But, by assumption, this is impos-
sible since we havey(Ai0) > y(Ai0−1) andy(Ai0) > y(Ai0+1).

∆1

∆2 ∆2

∆1

• If ∆2 = −∆1 + v, we have three possible configurations. In the case where∆1 and∆2 have only
one common vertex, we see that the angle ofP1 atAi0 must be greater thanπ, which is, as we
have seen above, impossible. In the other two cases,∆1 and∆2 are adjacent. As we have seen,
this implies the existence of a singular point ofΣ with cone angle strictly less thanπ. This is again
impossible.

∆1

∆2

∆1

∆2

∆1

∆2

The lemma is then proved. �

2.7 Volume form onTT(ᾱ; β̄)

Our aim in this section is to define the volume formµTr on the spaceTT(ᾱ; β̄) which is invariant by
the action of the groupΓ(g̃, ñ). The construction of this volume form relies on the local charts defined
in the proof of Theorem2.2.7.
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Recall that, ifL : E −→ F is a linear map between (real) vector spaces which is surjective, then
given a volume formµE on E, and a volume formµF on F, one can define a volume formµ on ker(L)

as follows : letE1 be a subspace ofE so thatE = E1 ⊕ ker(L), the restrictionL1 of L on E1 is then a
linear isomorphism, the volume formµ onker(L) is defined to be the one such that :

µE = µ ∧ L∗
1µF.

Remark thatµ does not depend on the choice ofE1.

2.7.1 Definition of the volume formµTr

Let us start by recalling some basic properties of the local chartsΨT which are defined in Section
2.4. Let T be a triangulation ofS representing an equivalence class inT R(S). LetUT be the subset of
TT(ᾱ; β̄) consisting of all pairs([(Σ, φ)], ξ) such that the homeomorphismφmapsT onto an admissible
triangulation ofΣ. The local chartΨT is defined onUT with image inVT , which is a subspace ofCN1 ,
whereN1 is the number of edges ofT . The image ofUT is an open set ofVT .

Leta1, . . . , aN2 denote the vectors of(CN1)∗ which correspond to the equations of the systemST . A vec-
tor ai is said to benormalizedif each of its coordinates belongs to the set{−1, 0, 1}. We have two cases :

• Case 1 :m > 0. In this case, we have shown thatrank(ST ) = N2 (see Lemma2.4.4). Consider
the complex linear mapAT : CN1 −→ CN2 , which is defined in the canonical basis ofCN1 and
CN2 by the matrix

AT =




a1
...

aN2


 .

The mapAT is then surjective, andVT = kerAT . The mapAT is said to benormalizedif each
row of its matrix in the canonical basis is normalized.

Let λ2N1 et λ2N2 denote the Lebesgue measures onCN1 ≃ R2N1 andCN2 ≃ R2N2 respectively.
SinceAT is surjective,λ2N1 andλ2N2 induce a volume formνT on VT via the following exact
sequence :

0 −→ VT →֒ C
N1

AT−→ C
N2 −→ 0.

- Case 2 :m = 0. In this case, we haverank(ST ) = N2−1 (see Lemma2.4.4), hencerank(AT ) =

N2 − 1. If the vectorsa1, . . . , aN2 are normalized, and the their signs are chosen suitably, we have
a1 + · · · + aN2 = 0. Thus, without loss of generality, we can assume thatImAT = W, where
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W is the complex hyperplane ofCN2 defined byW = {(z1, . . . , zN2) ∈ CN2 : z1+· · ·+zN2 = 0}.

Let λ′2(N2−1) denote the volume form ofW which is induced by the Lebesgue measure ofCN2 .
The volume formsλ2N1 andλ′2(N2−1) induce a volume formνT on VT via the following exact
sequence :

0 −→ VT →֒ C
N1

AT−→W −→ 0.

In both cases, letµT denote the volume formΨ∗
T νT which is defined onUT .

2.7.2 Invariance by coordinate changes

To show that the volume formsµT , T ∈ T R(S), give a well-defined volume form onTT(ᾱ; β̄), we
need to prove that wheneverUT1 ∩UT2 6= ∅, whereT1 andT2 represent two different equivalence classes
in T R(S), then we have

µT1 = µT2 onUT1 ∩ UT2 .

Let us begin with

Proposition 2.7.1 Let ([(Σ, φ)], ξ) be a point inUT1 ∩ UT2 . LetT1 andT2 be two admissible triangula-
tions ofΣ corresponding toT1 andT2 respectively. Assume thatT2 is obtained byT1 by an elementary
move, thenµT1 = µT2 onUT1 ∩ UT2 .

Proof: Suppose that the elementary move occurs in a quadrilateralQ which is formed by two triangles
∆1 and∆2 of T1. Note that the edge ofT1 which is removed by this elementary move is contained in
the interior ofΣ.

LetZ = (z1, . . . , zN1) denote the image of([(Σ, φ)], ξ) by ΨT1 . We can assume that

. z1 is associated to the common side of∆1 and∆2.

. z2, z3 are associated to the other sides of∆1 such that{−z1, z2, z3} is the oriented boundary of∆1.

. z4, z5 are associated to the other sides of∆2 such that{z1, z4, z5} is the oriented boundary of∆2.

We have

− z1 + z2 + z3 = 0, (2.10)
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z1 + z4 + z5 = 0. (2.11)

z1

z2

z3

z4
z5

w1

w2

w3

w4
w5

After the move, the quadrilateralQ is divided into two triangles∆′
1 and∆′

2. LetW = (w1, . . . , wN1)

denote the image of([Σ, φ)], ξ) by ΨT2 . We can assume that

. w1 is associated to the common edge of∆′
1 and∆′

2.

. wi is associated to the oriented edge corresponding tozi, for everyi = 2, . . . , N1.

We have then

− w1 + w3 + w4 = 0, (2.12)

w1 + w2 + w5 = 0. (2.13)

We see that the equations (2.10) and (2.11) are contained in the systemST1 , and the equations (2.12) and
(2.13) are contained in the systemST2 . The other equations ofST2 are the same as those ofST1 with zi
replaced bywi, for i = 2, . . . , N1. Note thatz1 does not appear in any equation ofST1 other than (2.10)
and (2.11). Similarly,w1 does not appear in any equation ofST2 other than (2.12) and (2.13).

Let AT1 denote the normalized linear map associated toST1 . The matrix ofAT1 in the canonical basis
of CN1 andCN2 is of the form

AT1 =




−1 1 1 0 0 · · · 0

1 0 0 1 1 · · · 0

0 ∗ ∗ ∗ ∗ · · · ∗

· · · · · · · · · · · · · · · · · · · · ·

0 ∗ ∗ ∗ ∗ · · · ∗



.
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Similarly, let AT2 denote the normalized linear map associated toST2 whose matrix in the canonical
basis ofCN1 andCN2 is of the form

AT2 =




−1 0 1 1 0 · · · 0

1 1 0 0 1 · · · 0

0 ∗ ∗ ∗ ∗ · · · ∗

· · · · · · · · · · · · · · · · · · · · ·

0 ∗ ∗ ∗ ∗ · · · ∗



.

From what has been said, thei-th row of the matrixAT2 is the same as thei-th row of the matrixAT1 ,
for everyi = 3, . . . , N2.

Let F : CN1 −→ CN1 be the linear map which is defined in the canonical basis ofCN1 by the matrix

F =




1 −1 0 1 0 · · · 0

0 1 0 0 0 · · · 0

0 0 1 0 0 · · · 0

· · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 0 · · · 1



.

Now, observe thatAT2 ◦ F = AT1 . As a consequence, the following diagram is commutative

0 −→ kerAT1 −→ CN1
AT1−→ CN2 −→ 0

↓ H ↓ F ‖Id

0 −→ kerAT2 −→ CN1
AT2−→ CN2 −→ 0

The isomorphismH : kerAT1 −→ kerAT2 , which is induced byF, is the coordinate changeΨT2 ◦Ψ
−1
T1

.

Here, we have two cases :

• Case 1 :m > 0. We havedimC kerAT1 = dimC kerAT2 =
∑m

j=1 sj + 2g + n − 2. In this case,
by definition, the volume formsνT1 andνT2 are induced by the Lebesgue measuresλ2N1 andλ2N2

onkerAT1 andkerAT2 respectively. Since|detF| = 1, we deduce thatH∗νT2 = νT1 . Therefore,
the formsµT1 andµT2 coincide in a neighborhood of([(Σ, φ)], ξ).

• Case 2 :m = 0. We havedimC kerAT1 = dimC kerAT2 = 2g + n − 1, we can assume that
ImAT1 = ImAT2 = W, whereW is the complex hyperplane ofCN2 defined above. In this case,
the volume formsνT1 andνT2 are induced byλ2N1 andλ′2(N2−1), whereλ′2(N2−1) is the volume
form onW. Since we also have the following commutative diagram
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0 −→ kerAT1 −→ CN1
AT1−→ W −→ 0

↓ H ↓ F ‖Id

0 −→ kerAT2 −→ CN1
AT2−→ W −→ 0

it follows thatH∗νT2 = νT1 . Hence we get the same conclusion. �

Corollary 2.7.2 Let T1 and T2 be two triangulations ofS which represent two different equivalence
classes inT R(S). Assume thatUT1 ∩ UT2 6= ∅, thenµT1 = µT2 onUT1 ∩ UT2 .

Proof: Let ([(Σ, φ)], ξ) be a point inUT1 ∩ UT2 . Let T1,T2 be the two admissible triangulations ofΣ

which correspond toT1 andT2 respectively. By Theorem2.6.2, we know thatT2 can be obtained from
T1 by a sequence of elementary moves. Proposition2.7.1tells us that the volume forms corresponding
to two admissible triangulations which differ from each other by an elementary move are equal. The
corollary is then proved. �

By Corollary2.7.2, we see that the volume formsµT , T ∈ T R(S) give rise to a well defined volume
form onTT(ᾱ; β̄). From now on, we denote this volume formµTr.

2.7.3 Invariance by the action of Mapping Class Group

To complete the proof of Theorem2.2.9, we need the following :

Proposition 2.7.3 The volume formµTr is invariant by the action ofΓ(g̃, ñ).

Proof: The fact thatµTr is invariant by the action of the groupΓ(g̃, ñ) is quite clear from the definition.
Let γ be an element ofΓ(g̃, ñ), and suppose thatγ([(Σ1, φ1)], ξ1) = ([(Σ2, φ2)], ξ). By definition there
exits then an isometry

h : Σ1 −→ Σ2,

such thatφ−1
2 ◦ h ◦ φ1 ∈ Homeo+(S,V). The isometryh sends an admissible triangulation ofΣ1 onto

an admissible triangulation ofΣ2, from which we deduce thatγ preserves the volume formµTr. �
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The proof of Theorem2.2.9is now complete.

2.8 Proof of Proposition2.2.10

In this paragraph, we will always assume thatm = 0, because of this additional hypothesis, we re-
placeTT(ᾱ; β̄) by TT(ᾱ), andMT(ᾱ; β̄) byMT(ᾱ) to simplify the notations.

2.8.1 Flat surface defined by holomorphic1-form

In this paragraph we suppose thatg > 2. LetM be a compact Riemann surface of genusg, without
boundary, andω be a holomorphic1-form onM . Let x1, . . . , xn denote the zeros ofω, andk1, . . . , kn

denote their orders respectively. It is well known thatω defines a flat metric onM such that the cone
angle atxi is 2π(ki +1), i = 1, . . . , n. In this situation, we consider{x1, . . . , xn} as the set of singulari-
ties of the flat surface, even though some of these points are actually regular (ki may be zero). Note that
the 1-formω also determines a singular foliation ofM by ‘vertical’ geodesics. A flat surface defined by
a holomorphic1-form is a translation surface.

Fix a sequencek1, . . . , kn of non-negative integers such thatk1 + · · ·+ kn = 2g− 2. LetH(k1, . . . , kn)

denote the moduli space of holomorphic1-form havingn zeros of ordersk1, . . . , kn. By definition,
H(k1, . . . , kn) is the quotient space of the set of all pairs(M,ω) as above by the following equivalence
relation :(M1, ω1) and(M2, ω2) are equivalent if and only if there exists a conformal homeomorphism
f : M1 −→M2 such thatf∗ω2 = ω1.

It is well known thatH(k1, . . . , kn) is a complex algebraic orbifold of dimension2g + n − 1. Let
(M0, ω0) be a pair inH(k1, . . . , kn). Let {γ0

1 , . . . , γ
0
2g+n−1} denote a basis of the homology group

H1(M0, {x
0
1, . . . , x

0
n},Z) ≃ Z2g+n−1, wherex0

1, . . . , x
0
n denote the zeros ofω0. We can consider every

pair (M,ω) in a neighborhood of(M0, ω0) as a deformation of(Σ0, ω0) so that we can specify a basis
of H1(M, {x1, . . . , xn},Z), wherex1, . . . , xn denote the zeros ofω, corresponding toγ0

1 , . . . , γ
0
2g+n−1.

The curves in this basis will be denoted byγ1, . . . , γ2g+n−1. It follows that the map

Φ : (M,ω) 7−→ (

∫

γ1

ω, . . . ,

∫

γ2g+n−1

ω) ∈ C
2g+n−1 ∼= R

2(2g+n−1),

defines a local coordinate chart ofH(k1, . . . , kn) in a neighborhood of(Σ0, ω0). This is theperiod map-
ping. The pull-back byΦ of the Lebesgue measure onC2g+n−1 ≃ R2(2g+n−1) is a well defined volume
form onH(k1, . . . , kn). We denote this volume formµ0.
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Assume in addition that the integersk1, . . . , kn are pairwise distinct. In this case, we can identify
H(k1, . . . , kn) to the spaceMT(ᾱ), with αi = 2π(ki + 1), i = 1, . . . , n. Remark that ifk1, . . . , kn

are not pairwise distinct, then the spaceMT(ᾱ) is a finite covering ofH(k1, . . . , kn).

2.8.2 Proof of Proposition2.2.10

Let (M,ω) be a pair inH(k1, . . . , kn). Let Σ denote the induced translation surface. Letx1, . . . , xn

denote its singularities so that the cone angle atxi is 2π(ki + 1). The vertical geodesic flow determined
by ω induces a normalized parallel vector field onΣ \ {x1, . . . , xn}. Let ξ denote this vector field. The
pair (M,ω) inH(k1, . . . , kn) is then identified to the element(Σ, {x1, . . . , xn}, ξ) inMT(ᾱ).

Let T be a geodesic triangulation ofΣ whose set of vertices coincides with the set of singularities ofΣ,
we know such triangulations exist by Proposition2.3.2. Note that, in this case, any geodesic triangulation
whose set of vertices coincides with the set of singularities is admissible.

Recall that afamily of primitive edgesof T is a set of2g + n − 1 edges ofT such that the complement
of the union of those edges is a topological open disk. Remark that such a family always exists because
it corresponds to a maximal tree in the dual graph ofT. Let {b1, . . . , b2g+n−1} be a family of primitive
edges ofT. Observe that{b1, . . . , b2g+n−1} is a basis of the groupH1(Σ, {x1, . . . , xn},Z).

Let φ : S −→ Σ be a quasi-conformal homeomorphism which mapspi to xi, i = 1, . . . , n. Let T
denote the equivalence class of the triangulationφ−1(T) in T R(S). LetΨT be the local chart associated
to T . As usual, letST denote the system of linear equations associated toT . Let VT be the space of
solutions ofST , andAT be the normalized linear map associated toST . We can assume that

ImAT = W = {(z1, . . . , zN2) ∈ C
N2 | z1 + · · ·+ zN2 = 0}.

Note that hereN1 = 4(2g+ n− 1)− 3,N2 = 3(2g+ n− 1)− 2, anddimC VT = 2g+ n− 1. By ΨT ,
a neighborhood of(Σ, {x1, . . . , xn}, ξ) inMT(ᾱ) is identified to an open set ofVT .

There exists a neighborhoodU of (Σ, {x1, . . . , xn}, ξ) such that, for any point(Σ′, {x′1, . . . , x
′
n}, ξ

′) in
U , there exists a quasi-conformal homeomorphismfΣ′ : Σ −→ Σ′ which mapsT onto an admissible
triangulationT′ of Σ′. Let b′i, i = 1, . . . , 2g + n − 1, denote the image ofbi by fΣ′ . The segments
{b′1, . . . , b

′
2g+n−1} form a basis of the groupH1(Σ

′, {x′1, . . . , x
′
n},Z). Hence, we can define a local

chart ofH(k1, . . . , kn) by the following period mapping

Φ : U −→ C2g+n−1

(Σ′, {x′1, . . . , x
′
n}, ξ

′) ≃ (M ′, ω′) 7−→ (
∫
b′1
ω′, . . . ,

∫
b′2g+n−1

ω′)

By the construction ofΨT , we can assume that ifΨT (Σ′, {x′1, . . . , x
′
n}, ξ

′) = (z1, . . . , zN1), then the
complex numbersz1, . . . , z2g+n−1 are associated to the edgesb′1, . . . , b

′
2g+n−1. It follows that the map
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ΨT ◦ Φ−1 : Φ(U) ⊂ C
2g+n−1 −→ C

N1

maps(z1, . . . , z2g+n−1) to (z1, . . . , z2g+n−1, z2g+n, . . . , zN1). We deduce thatΨT ◦ Φ−1 is an injective
linear map. Hence,ΨT ◦ Φ−1 is a restriction intoΦ(U) of an isomorphism fromC2g+n−1 ontoVT .

Let λ2(2g+n−1) denote the Lebesgue measure ofC2g+n−1 ≃ R2(2g+n−1). By definition, µ0 =

Φ∗λ2(2g+n−1).

Let λ′2(N2−1) be the volume form ofW which is induced by the Lebesgue measure ofCN2 , andνT be
the volume form onVT which is induced byλ2N1 andλ′2(N2−1) via the following exact sequence

0 −→ VT −→ C
N1

AT−→W −→ 0.

By definition, the volume formµTr on a neighborhood of(Σ, {x1, . . . , xn}, ξ) is Ψ∗
T νT . Clearly, on

C2g+n−1 we have

(ΨT ◦ Φ−1)∗νT = λλ2g+n−1,

whereλ is a non-zero constant. This impliesµTr = λµ0 on a neighborhood of(Σ, {x1, . . . , xn}, ξ). We
deduce thatµTr/µ0 is locally constant. Consequently,µTr/µ0 is constant on every connected component
ofH(k1, . . . , kn). �

2.9 Action of SL2(R) on TT(ᾱ; β̄)

There is an action of the groupSL2(R) on TT(ᾱ; β̄) which is defined as follows : let([(Σ, φ)], ξ)

be an element ofTT(ᾱ; β̄), andA =

(
a b

c d

)
∈ SL2(R). Let {fα : Uα −→ R2} be an atlas defi-

ning the flat metric structure onΣ, then{A ◦ fα} is an atlas of another flat metric structure onΣ. Since
all the transition functions are translations ofR2, it follows that{A ◦ fα} defines a translation surface
structure onΣ. LetA · Σ denote the new translation surface. We define the image of[(Σ, φ)] byA to be
the equivalence class of the pair(A · Σ, φ), that is, while the flat metric structure onΣ is modified by
A, the marking mapφ stays the unchanged. To define the image of the parallel vector fieldξ onA · Σ,
we choose an atlas{fα : Uα −→ R2} of Σ such that, for everyα, fα∗ξ is the constant vertical vector
filed (0, 1) onfα(Uα). The image ofξ onA · Σ is defined to be the pull-back of the vertical vector field
(0, 1) onA ◦ fα(Uα). LetA · ([(Σ, φ)], ξ) denote the image of([(Σ, φ)], ξ) byA. It is easy to verify that
A · ([(Σ, φ)], ξ) is also an element ofTT(ᾱ; β̄). We have then defined an action of everyA ∈ SL2(R) on
TT(ᾱ; β̄).
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Remark: One can check out easily that the action ofSO(2) ⊂ SL2(R) by this definition is equivalent
to the rotations of the normalized parallel vector field on each translation surface.

From the definitions, it follows immediately that the action ofSL2(R) commutes with the action of
the mapping class groupΓ(g̃, ñ) on TT(ᾱ; β̄). Hence, we also get an action ofSL2(R) on the moduli
spaceMT(ᾱ; β̄). Furthermore, we have

Proposition 2.9.1 The volume formµTr is invariant by the action ofSL2(R).

Proof: Let ([(Σ, φ)], ξ) be a point inTT(ᾱ; β̄), andT be an admissible triangulation ofΣ. Let T be the
equivalence class ofφ−1(T) in T R(S). Let UT be the associated domain ofTT(ᾱ; β̄), andΨT be the
associated local chart.

LetA =

(
a b

c d

)
be an element of the groupSL2(R). By definition, it is clear that the action ofA

preserve the domainUT .

By the local chartΨT , we identifyUT to an open set in a subspaceVT of CN1 . By definition, the
induced action ofA onΨT (UT ) verifies

A · (z1, . . . , zN1) = (A(z1), . . . , A(zN1)), ∀(z1, . . . , zN1) ∈ ΨT (UT ),

where the complex numbersA(zi) is defined as follows : ifzi = xi + ıyi, with xi, yi ∈ R, then
A(zi) = ui + ıvi, with

[
ui

vi

]
=

[
a b

c d

]
·

[
xi

yi

]
.

If we identify CN1 to R2N1 , the action ofA on ΨT (UT ) is the restriction of the action of the following
matrix :




A 0 . . . 0

0 A . . . 0

. . . . . . . . . . . .

0 0 . . . A


 .

Now, recall that the volume formµTr is induced by the Lebesgue measures ofCN1 andX, whereX
is eitherCN2 or W, via the complex linear mapAT . We have the following commutative diagram :

0 −→ VT −→ CN1
AT−→ X −→ 0

↓ A ↓ A ↓ A

0 −→ VT −→ CN1
AT−→ X −→ 0
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where we have used the same notationA to denote the action of

(
a b

c d

)
on VT ,C

N1 , andX by

applying this matrix to each complex coordinate. Clearly, this action ofA preserves the Lebesgue mea-
sures onCN1 andX. Therefore,A preserves the induced volume form onVT . The proposition is then
proved. �

Remark: Proposition2.2.10can be deduced from Proposition2.9.1as follows : define a functionf on
H(k1, . . . , kn) by

f =
dµTr

dµ0
.

The functionf is then continuous. Since bothµTr andµ0 areSL(2,R)-invariant, so isf . But we know
that the action ofSL(2,R) is ergodic on each connected component ofH(k1, . . . , kn). Hence,f is
constant on each connected component ofH(k1, . . . , kn).
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Chapitre 3

Flat surface with erasing trees

3.1 Definitions and main results

3.1.1 Flat surface with conical singularities and erasing trees

Let Σ be a flat surface. Atree in Σ is the image of an embedding from a topological tree intoΣ. We
consider an isolate point as a special tree, which has only one vertex andno edges. Aforest in Σ is a
finite disjoint union of trees inΣ. A tree inΣ is said to begeodesic if each of its edges is a geodesic
segment inΣ. A forest is said to begeodesicif it is a union of geodesic trees.

Definition 3.1.1 (Erasing tree and erasing forest)Let Σ be a compact connected flat surface without
boundary. Letp1, . . . , pn denote the singular points ofΣ. Anerasing tree(resp.erasing forest) in Σ is a
tree (resp. forest) whose vertex set contains all the singular points ofΣ such that, ifc is a closed curve
in Σ which does not intersect this tree (resp. forest), then the holonomy ofc is a translation ofR2 (the
orthogonal part of the holonomy is trivial).

Given a flat surface with an erasing forest, one can define

Definition 3.1.2 (Normalized Parallel Vector Field) Let Σ be a compact, connected flat surface wi-
thout boundary. Assume that there exists onΣ an erasing forestÂ. A parallel vector fieldon the com-
plement ofÂ is a vector field which is nowhere zero such that, in local charts of the Euclidean metric
structure, all the lines determined by the vectors of this field are parallel. A parallel vector field is said
to benormalizedif all of its vectors are of norm one.

The next proposition shows that geodesic trees always exist on flat surfaces.

Proposition 3.1.3 (Existence of geodesic trees)LetΣ be flat surface without boundary. Let{p1, . . . , pn}

denote the singularities ofΣ. Then there exists a geodesic tree whose vertices are{p1, . . . , pn}.
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3. FLAT SURFACE WITH ERASING TREES

Proof: LetC1 be a path fromp1 to p2 whose length is minimal. The pathC1 is a finite union of geodesic
segments whose endpoints are singular points ofΣ. Apart fromp1 andp2,C1 can contain other points in
{p1, . . . , pn}. SinceC1 is a path of minimal length, it has no self intersections. By renumbering the set of
singular points if necessary, we can assume thatC1 is a path joiningp1 andpr via the pointsp2, . . . , pr−1.
Note that for every pointp ∈ C1, the length of the path fromp1 to p alongC1 is the distanced(p1, p)

between them.

If r = n, then we have obtained a geodesic tree whose vertices are{p1, . . . , pn}. If r < n, letC2 be a
path fromp1 to pr+1 whose length is minimal. IfC1 ∩ C2 = {p1}, then we get a geodesic tree which
contains at leastr+1 singular points as vertices. If this is not the case, we prove thatC2 can not intersect
C1 transversely at a regular point.

p

r

q

C ′
1

C ′
2

Suppose thatp is a regular point whereC2 intersectsC1 transversely. LetV be a neighborhood ofp such
thatS1 = V ∩C1 andS2 = V ∩C2 are two geodesic segments, andp is the unique common point ofS1

andS2. LetC ′
1 be the paths fromp1 to p alongC1 andC ′

2 be the path fromp1 to p alongC2, we have

leng(C ′
1) = leng(C ′

2) = d(p1, p).

Let q be a point inS2 \ C
′
2, andr be a point inS1 ∩ C

′
1. Let pq denote the sub-segment ofS2 whose

endpoints arep andq, andpr denote the sub-segments ofS1 whose endpoints arep andr. We have

d(p1, q) = d(p1, p) + leng(pq),

and

d(p1, p) = d(p1, r) + leng(pr).

Sincep is a regular point ofΣ, if we choose the pointsq andr close enough top, the geodesic segment
qr joining q andr will be contained in the neighborhoodV , and we have

leng(qr) < leng(pr) + leng(pq).

It follows that

d(p1, q) = d(p1, r) + leng(pr) + leng(pq) > d(p1, r) + leng(qr).
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3. FLAT SURFACE WITH ERASING TREES

The above inequality is in contradiction with the definition of the distanced. Thus, we conclude that
C2 cannot intersectC1 transversely at a regular point. This implies that the last intersection point of
C1 andC2, that is the intersection point of furthest distance fromp1, must be a singular pointpk of Σ.
Omit the part ofC2 fromp1 topk , we obtain a geodesic tree connecting at leastr+1 singular points ofΣ.

LetC3 denote the new tree. For any pointp of C3, the length of the unique path fromp1 to p alongC3 is
the distanced(p1, p). This property allows us to conclude by an induction argument. �

Recall that aclosed translation surfaceis a flat surface such that, for any closed curveγ which
does not contain any singularity of the metric structure, we haveorth(γ) = Id, whereorth(γ) is the
orthogonal part of the holonomy ofγ. A spherical flat surfaceis a flat surface homeomorphic to the
sphereS2. Proposition3.1.3implies

Corollary 3.1.4 i) There exists on any closed translation surface a geodesic erasing tree.

ii) There exists on any spherical flat surface a geodesic erasing tree.

Proof: The existence of a geodesic tree whose set of vertices is precisely the set of singular points of
the flat surface is guaranteed by Proposition3.1.3. By definition of translation surface, such a tree is
obviously erasing, andi) follows. Note that on a (closed) translation surface we have already an erasing
forest which is the union of all singular points.

For spherical flat surfaces, by Proposition3.1.3, there exists on any spherical flat surface a geodesic
tree whose set of vertices is precisely the set of singular points. Since thecomplement of a tree in a
sphere is an topological open disk, the holonomy of any closed curve in thiscomplement must beId.
Therefore, we get an erasing tree, andii) follows. �

3.1.2 Main results

We fix two integersg > 0, n > 0, such that2g + n − 2 > 0, and positive real numbersα1, . . . , αn

verifyingα1 + · · ·+ αn = 2π(2g + n− 2).

In the sequel of this chapter,Sg will be fixed a compact connected flat surface of genusg, without
boundary. Assume that there exists a geodesic erasing forestÂ = ⊔m

i=1Ai on Sg, where eachAi is a
geodesic tree. Letp1, . . . , pn denote the vertices of the trees in̂A, and assume that the cone angle atpi is
αi. Recall that, by definition, all the singular points ofSg are contained in the set{p1, . . . , pn}, but some
of the pointspi may be regular. We also assume that at least one of the trees inÂ is not a point.
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3. FLAT SURFACE WITH ERASING TREES

Definition 3.1.5 (Mapping class group preserving a forest)Let Homeo+(Sg, Â) denote the group of
orientation preserving homeomorphisms ofSg which fix the points{p1, . . . , pn}, and preserve the set̂A.
Let Homeo+

0 (Sg, Â) be the normal subgroup ofHomeo+(Sg, Â) consisting of all elements which can
be connected toIdSg by an isotopy fixing the pointsp1, . . . , pn.

Themapping class groupof Sg preserving the trees in̂A is the quotient group

Γ(Sg, Â) = Homeo+(Sg, Â)/Homeo+
0 (Sg, Â).

Remark: It follows from LemmaA.0.1 that, iff is a homeomorphism ofSg which is isotopic to identity
by an isotopy fixing every point the set{p1, . . . , pn}, then there exists an isotopyHt : Sg× [0; 1] −→ Sg

from f to IdSg such thatHt(Â) = Â, ∀t ∈ [0; 1].

Without loss of generality, we can assume that there exist the integersk0, k1, . . . , km such thatk0 = 0,∑m
j=1 kj = n, and the set of vertices ofAj is {pk0+···+kj−1+1, . . . , pk0+···+kj

} for everyj ∈ {1, . . . ,m}.
The anglesα1, . . . , αn must satisfy the following condition :

αk0+···+kj−1+1 + · · ·+ αk0+···+kj
∈ 2πN, ∀j ∈ {1, . . . ,m}.

Let ᾱ denote the set{α1, . . . , αn}. Let T̃ et(Â, ᾱ)∗ denote the set of pairs(Σ, φ), whereΣ is a flat
surface of genusg, andφ : Sg −→ Σ is an orientation preserving homeomorphism which mapsÂ onto
a geodesic erasing forest ofΣ.

We define an equivalence relation oñT et(Â, ᾱ)∗ as follows : two pairs(Σ1, φ1) and (Σ2, φ2) are
equivalent if there exists an isometryh : Σ1 −→ Σ2 such that the homeomorphismφ−1

2 ◦ h ◦ φ1 is
an element ofHomeo+

0 (Sg, Â). The equivalence class of a pair(Σ, φ) will be denoted by[(Σ, φ)]. Let
T et(Â, ᾱ)∗ denote the space of equivalence classes of this relation.

Obviously, the groupΓ(Sg, Â) acts onT et(Â, ᾱ)∗. The quotient spaceT et(Â, ᾱ)∗/Γ(Sg, Â) is themo-
duli space of flat surfaces with marked erasing treesand denoted byMet(Â, ᾱ)∗.

We denoteT et
1 (Â, ᾱ)∗ the set of equivalence classes[(Σ, φ)] whereΣ is a flat surface of area one,

andMet
1 (Â, ᾱ)∗ the quotient spaceT et

1 (Â, ᾱ)∗/Γ(Sg, Â).

Definition 3.1.6 (Teichmüller space of flat surfaces with erasing forest)TheTeichm̈uller space of flat
surfaces with marked erasing forest and parallel vector fieldis the set of all pairs([(Σ, φ)], ξ), where
[(Σ, φ)] is an element ofT et(Â, ᾱ)∗, andξ is a normalized parallel vector field onΣ \ φ(Â). We denote
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3. FLAT SURFACE WITH ERASING TREES

this spaceT et(Â, ᾱ).

Themoduli space of flat surfaces with marked erasing forest and normalizedparallel vector fieldis
the quotient spaceT et(Â, ᾱ)/Γ(Sg, Â) and denoted byMet(Â, ᾱ).

Remark:
• The groupS1, identified to the rotations of the Euclidean plane, acts naturally on the spaceT et(Â, ᾱ) :

if Rθ is the rotation of angleθ and([(Σ, φ)], ξ) ∈ T et(Â, ᾱ), thenRθ ·([(Σ, φ)], ξ) = ([(Σ, φ)], Rθ ·

ξ), whereRθ · ξ is the parallel vector field defined as follows : at every point whereξ is defined,
Rθ · ξ is the vector obtained by rotatingξ an angleθ. This action ofS1 endowsT et(Â, ᾱ) with a
principalS1-bundle structure overT et(Â, ᾱ)∗.

• The spaceT et(Â, ᾱ) has also aC∗-bundle structure overT et
1 (Â, ᾱ)∗ : for each element[(Σ, φ)] ∈

T et
1 (Â, ᾱ)∗, let ξ be a normalized parallel vector field onΣ \ φ(Â), the fiber over[(Σ, φ)] is the

set of pairs(r · [(Σ, φ)], Rθ · ξ), with r ∈ R∗
+, θ ∈ S1, wherer · [(Σ, φ)] is the multiplication of the

metric onΣ by r while φ stays unchanged.

We can now state the main results of this chapter.

Proposition 3.1.7 (T et
1 (Â, ᾱ)∗ is embedded intoT (g, n)) LetT (g, n) denote the Teichm̈uller space of

conformal structures, andΓ(g, n) denote the usual modular group of the punctured surfaceSg\{p1, . . . , pn}.

a) There exists an injective mapΘ : T et
1 (Â, ᾱ)∗ −→ T (g, n).

b) There exists also a monomorphismσ : Γ(Sg, Â) −→ Γ(g, n) with respect to whichΘ is equivariant .

The definitions ofΘ andσ are quite natural. Namely, since a flat metric structure implies a conformal
structure, an equivalence class ofT et

1 (Â, ᾱ)∗ is contained in an equivalence class ofT (g, n), this defines
Θ. By definition, a homeomorphism inHomeo+(Sg, Â) fixes the set{p1, . . . , pn}, hence it represents
an element in the modular groupΓ(g, n), this definesσ.

Endow the spaceT et
1 (Â, ᾱ)∗ with the topology inherited fromT (g, n), we get then a topology on

T et(Â, ᾱ) which is induced by theC∗-bundle structure overT et
1 (Â, ᾱ)∗. We have :

Corollary 3.1.8 The action of the groupΓ(Sg, Â) onT et(Â, ᾱ) is properly discontinuous.
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Proof: SinceT et(Â, ᾱ) is aC∗-bundle overT et
1 (Â, ᾱ)∗, and the action ofΓ(Sg, Â) preserves this bundle

structure, it is enough to show that the action ofΓ(Sg, Â) onT et
1 (Â, ᾱ)∗ is properly discontinuous. But

this is a direct consequence of Proposition3.1.7, since we know that the action ofΓ(g, n) onT (g, n) is
properly discontinuous. �

Now, let us slit open the surfaceSg along every treeAj in the forestÂ, if Aj is not a point. The
surface obtained, which will be denoted byS♮

g, is then a translation surface with geodesic boundary. If
the treeAj haskj > 1 vertices (hence,kj−1 edges), then the vertices ofAj give rise to2(kj−1) points
in the boundary component ofS♮

g corresponding toAj whose complement are2(kj − 1) open geodesic
segments. LetV♮ denote the finite subset ofS♮

g which arises from the set{p1, . . . , pn}.

Let ([(Σ, φ)], ξ) be a point inT et(Â, ᾱ), by definition,φ(Aj) is a geodesic tree ofΣ. Slit open the sur-
faceΣ along every treeφ(Aj) if Aj is not a point, and letΣ♮ denote the new surface. Observe thatΣ♮

is also a translation surface with geodesic boundary homeomorphic toS♮
g. The homeomorphismφ from

Sg onto Σ induces a homeomorphismφ♮ from S
♮
g onto Σ♮ which maps each geodesic segment on the

boundary ofS♮
g onto a geodesic segment on the boundary ofΣ♮. The normalized parallel vector fieldξ

on Σ induces also a normalized parallel vector field onΣ♮ which will be denoted again byξ. It follows
that we get a point in the Teichm̈uller spaceTT(ᾱ′; β̄′), which is represented by the pair([(Σ♮, φ♮)], ξ),
where the datāα′, andβ̄′ are determined by the anglesᾱ and the forestÂ.

Let Ξ denote the map fromT et(Â, ᾱ) into TT(ᾱ′; β̄′) which associates to a pair([(Σ, φ)], ξ) in
TT(ᾱ; β̄) the pair([(Σ♮, φ♮)], ξ) constructed as above. First, we have

Proposition 3.1.9 The mapΞ is well defined.

Proof: We need to show that if(Σ1, φ1) and (Σ2, φ2) represent the same point inT et(Â, ᾱ)∗ then
(Σ♮

1, φ
♮
1) and(Σ♮

2, φ
♮) represent the same point inTT(ᾱ′; β̄′)∗.

By definition, there exists an isometry

h : Σ1 −→ Σ2,

such thatφ−1
2 ◦ h ◦ φ1 is isotopic toIdSg by an isotopy fixing the points{p1, . . . , pn}. Let h♮ be the

isometry fromΣ♮
1 ontoΣ♮

2 which is induced byh.

By LemmaA.0.1, we can assume that the isotopyHt fromφ−1
2 ◦h◦φ1 to IdSg preserves the forest̂A,

thereforeHt induces an isotopy fromφ♮
2

−1
◦h♮◦φ♮

1 to Id
S♮

g
, which is identity on the setV♮. By definition,
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it follows that the pairs(Σ♮
1, φ

♮
1) and(Σ♮

2, φ
♮
2) represent the same point inTT(ᾱ′; β̄′)∗. �

We have the following

Theorem 3.1.10 i) The mapΞ is injective, continuous, and the setΞ(T et(Â, ᾱ)) is a special complex
affine sub-manifold ofTT(ᾱ′; β̄′) (meaning that the coordinate changes ofΞ(T et(Â, ᾱ)), which are
induced by those ofTT(ᾱ′; β̄′), preserve a volume form) of dimension

• 2g + n− 1 if αi ∈ 2πN for everyi ∈ {1, . . . , n}.

• 2g + n− 2 otherwise.

ii) There exists a volume form onΞ(T et(Â, ᾱ)) whose pull-back byΞ gives a volume onT et(Â, ᾱ)

which is invariant by the action of the groupΓ(Sg, Â).

A direct consequence of Theorem3.1.10is the following

Corollary 3.1.11 The spaceT et(Â, ᾱ) is a flat complex affine manifold of dimension

• 2g + n− 1 if αi ∈ 2πN for everyi ∈ {1, . . . , n}.

• 2g + n− 2 otherwise.

There exists onT et(Â, ᾱ) a volume form invariant by the action of the groupΓ(Sg, Â), which will be
denoted byµTr.

3.2 The embedding ofT et
1 (Â, ᾱ)∗ into T (g, n)

3.2.1 Conformal metrics with conical singularities on a Riemann surface

In this subsection, we follow loosely the definitions in [Tr1]. Let S be a compact Riemann surface,
possibly with boundary. Aconformal (singular) metricg onS is defined by a local expression

h = ρ(z)|dz|2,

wherez is a local coordinate onS, andρ is a positive measurable function.

A (real) divisor onS is simply a formal sum :
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div =

n1∑

i=1

sipi +

n2∑

j=1

tjqj ,

wherepi ∈ int(S) (i = 1, . . . , n1), qj ∈ ∂S (j = 1, . . . , n2), ands1, . . . , sn1 , t1, . . . , tn2 are real num-
bers.

We will always suppose that the real numberss1, . . . , sn1 andt1, . . . , tn2 satisfy the following condi-
tion :

si > −1; i = 1, . . . , n1 andtj > −
1

2
; j = 1, . . . , n2.

The set{p1, . . . , pn1 , q1, . . . , qn2} is called thesupportof div and denoted bysupp(div). The real
number

|div| =

n1∑

i=1

si +

n2∑

j=1

tj ,

is called thedegreeof the divisordiv.

A conformal metrich onS is said torepresentthe divisordiv if h is a smooth Riemannian metric on
S \ supp(div) such that :

(∗)

{
∀i ∈ {1, . . . , n1}, h = e2u|zi|

2si |dzi|
2 on a neighborhoodUi of pi,

∀j ∈ {1, . . . , n2}, h = e2v|wj |
4tj |dwj |

2 on a neighborhoodVj of qj ,

wherezi (resp.wj) is a holomorphic coordinate onUi (resp.Vj) such thatzi(pi) = 0 (resp.wj(qj) = 0),
andu : Ui −→ R (resp.v : Vj −→ R) is a continuous function of classC2 on Ui − {pi} (resp. on
Vj − {qj}).

The pointpi is then said to be aconical singularityof angleθi = 2π(si + 1). The pointqj is said to be
a cornerof angleηj = 2π(tj + 1

2). Observe thatC, equipped with the metric|z|2s|dz|2, is isometric to
an Euclidean cone of angleθ = 2π(s + 1). Similarly, the upper half planeU = {z ∈ C : Imz > 0},
equipped with the metric|z|4t|dz|2, is isometric to an Euclidean corner of angleη = π(2t+ 1).

If h is a conformal metric with conical singularities onS, letKh denote the curvature ofh, this is real
function which is defined onS \ { singularities ofh}. An Euclidean conformal metric, with conical sin-
gularities, representingdiv is then a conformal metrich satisfying the following conditions :

- For eachpi, i = 1, . . . , n1, there exists a conformal coordinatez defined in a neighborhood ofpi

such thath = |z|2si |dz|2.
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- For eachqj , j = 1, . . . , n2, there exists a conformal coordinatew defined in a neighborhood ofqj
such thath = |w|4tj |dw|2.

- Kh ≡ 0 onS \ supp(div).

Let S be a compact Riemannian surface, possibly with boundary, anddiv be a real divisor ofS
satisfying the condition(∗). TheEuler characteristicof the pair(S,div) is defined to be

χ(S,div) = χ(S) + |div|.

We have (see [Tr1])

Theorem 3.2.1 (Gauss-Bonnet formula)Leth be a conformal metric representingdiv, then

1

2π

∫ ∫

S
KhdAh +

1

2π

∫

∂S
khdh = χ(S,div),

whereKh is the curvature,dAh is the area element andkh is the geodesic curvature ofh.

Corollary 3.2.2 If h is a conformal flat metric with conical singularities and geodesic boundary, repre-
sentingdiv, then we have

n1∑

i=1

θi +

n2∑

j=1

ηj = 2π(n1 +
n2

2
− χ(S)),

whereθi is the cone angle atpi (i = 1, . . . , n1) andηj is the corner angle atqj (j = 1, . . . , n2).

We quote here an important result which is proved in [Tr1] :

Proposition 3.2.3 ([Tr1], Proposition 2) LetS be a compact Riemannian surface, possibly with boun-
dary, anddiv a real divisor onS such thatχ(S,div) = 0. Then there exists onS a conformal metric
representingdiv such that∂S \ supp(div) is geodesic. This metric is unique up to homothety.

3.2.2 Proof of Proposition3.1.7

a) LetΣ be a flat surface havingn conical singularities homeomorphic toSg. The flat metric structure on
Σ induces a conformal structure onΣ \ { singularities}. The mapΘ is defined as follows : for every pair
(Σ, φ) which is a representative of an equivalence class inT et

1 (Â, ᾱ)∗, let φ̄ be a quasi-conformal ho-
meomorphism fromSg ontoΣ in the same isotopy class relative to{p1, . . . , pn} of φ. Since the isotopy
class relative to{p1, . . . , pn} of φ contains diffeomorphisms, such a homeomorphism exists. We define
Θ([(Σ, φ)]) to be the equivalence class inT (g, n) which is represented by the pair(Σ\{x1, . . . , xn}, φ̄),
wherexi = φ(pi) i = 1, . . . , n andΣ \ {x1, . . . , xn} is now considered as a Riemann surface. We need
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to prove :

Lemma 3.2.4 The mapΘ is well defined.

Proof: We have to prove that two different representatives(Σ1, φ1) and(Σ2, φ2) of an equivalence class
in T et

1 (Â, ᾱ)∗ give the same equivalence class inT (g, n). Let φ̄1, φ̄2 be the quasi-conformal homeomor-
phisms in the same isotopy class relative to{p1, . . . , pn} of φ1 andφ2 respectively.

By the definition ofT et(Â, ᾱ)∗, there exists an isometryf : Σ1 −→ Σ2 such thatφ−1
2 ◦ f ◦ φ1

is an element ofHomeo+
0 (Sg, Â). Since an isometry between two flat surfaces is a conformal homeo-

morphism between the two Riemann surfaces underlying, andφ̄1, φ̄2 are homotopic toφ1, φ2 relative
to {p1, . . . , pn} respectively, it follows that̄φ−1

2 ◦ f ◦ φ̄1 is an element ofQC+
0 (g, n). Hence, the pairs

(Σ1 \ {φ1(p1), . . . , φ1(pn)}, φ̄1) and(Σ2 \ {φ2(p1), . . . , φ̄2(pn)}, φ2) belong to the same equivalence
class inT (g, n). �

Next, we have :

Lemma 3.2.5 The mapΘ is injective.

Proof: Let (Σ1, φ1) and(Σ2, φ2) be two pairs inT̃ et(Â, ᾱ)∗ such thatArea(Σ1) = Area(Σ2) = 1. Let
φ̄1, φ̄2 be two quasi-conformal homeomorphisms isotopic toφ1, φ2 relative to{p1, . . . , pn} respectively.

Suppose that(Σ1 \ {φ1(p1), . . . , φ1(pn)}, φ̄1) and (Σ2 \ {φ2(p1), . . . , φ2(pn)}, φ̄2) belong to the
same equivalence class inT (g, n), we have to prove that(Σ1, φ1) and(Σ2, φ2) also belong to the same
equivalence class inT et

1 (Â, ᾱ)∗.

By the definition ofT (g, n), there exists a conformal homeomorphismh : Σ1 −→ Σ2 such that
φ̄−1

2 ◦ h ◦ φ̄1 is isotopic toIdSg by an isotopy fixing every point in the set{p1, . . . , pn}. Now, since
φ̄i is isotopic toφ relative to{p1, . . . , pn}, for i = 1, 2, it follows thatφ−1

2 ◦ h ◦ φ1 is also isotopic to
IdSg by an isotopy fixing every point in the set{p1, . . . , pn}.

First, we prove thath is also an isometry between the two flat surfacesΣ1 andΣ2.

Let (x1, . . . , xn), and (y1, . . . , yn) denote the singularities ofΣ1 and Σ2 respectively, wherexi =

φ1(pi), yi = φ2(pi), i = 1, . . . , n. Let f1 andf2 denote the two flat metrics onΣ1 andΣ2 respecti-
vely. Letdiv1 denote the divisor

∑n
j=1 sjxj , anddiv2 denote the divisor

∑n
j=1 sjyj , wheresj satisfies

αj = 2π(sj + 1). By definition, fi is a conformal flat metric which represents the divisordivi on
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Σi, i = 1, 2.

Sinceh is a conformal homeomorphism, it follows thath∗f2 is also a conformal flat metric onΣ1. Since
h(div1) = div2, we deduce thath∗f2 representsdiv1 too. Now, from Proposition3.2.3, there exists
λ > 0 such thatf1 = λ h∗f2. Since we have assumed thatAreaf1(Σ1) = Areaf2(Σ2) = 1, it follows
thatλ = 1. Therefore we havef1 = h∗f2, in other words,h is an isometry from the flat surfaceΣ1 onto
the flat surfaceΣ2.

All we need to prove now is thatφ−1
2 ◦ h ◦ φ1 preserves the forest̂A. By definition,φ1(Â) is a union

of geodesic trees onΣ1 whose vertices arex1, . . . , xn. Sinceh is an isometry of flat surfaces,h(φ1(Â))

is a union of geodesic trees whose vertices arey1, . . . , yn. Let a be an edge of a tree in̂A. The setφ1(a)

is a geodesic segment onΣ1, henceh(φ1(a)) is a geodesic segment ofΣ2. By definition,φ2(a) is also a
geodesic segment ofΣ2.

By assumption, there exists an isotopy relative to{p1, . . . , pn} fromh◦φ1 toφ2. Now, from Lemma2.3.8,
we haveh(φ1(a)) = φ2(a). Since this is true for every edges in̂A, we conclude thath◦φ1(Â) = φ2(Â),
or equivalently,φ−1

2 ◦ h ◦ φ1(Â) = Â. It follows immediately thatφ−1
2 ◦ h ◦ φ1 ∈ Homeo+

0 (Sg, Â), in
other words,(Σ1, φ1) and(Σ2, φ2) are equivalent inT et

1 (Â, ᾱ)∗. �

Part a) of Proposition3.1.7is now proved.

b) It is well known thatΓ(g, n) can be identified to the quotient groupHomeo+(g, n)/Homeo+
0 (g, n),

whereHomeo+(g, n) is the group of all preserving orientation homeomorphism ofSg which fix every
point in the set{p1, . . . , pn}, andHomeo+

0 (g, n) is the normal subset ofHomeo+(g, n) consisting of all
elements which are isotopic toIdSg relative to{p1, . . . , pn}.

By definition, it is clear thatHomeo+(Sg, Â) is a subgroup ofHomeo+(g, n), and

Homeo+
0 (Sg, Â) = Homeo+(Sg, Â) ∩Homeo+

0 (g, n).

It follows thatΓ(Sg, Â) is a subgroup ofΓ(g, n). Let σ : Γ(Sg, Â) −→ Γ(g, n) denote the natural im-
bedding. The morphismσ is obviously injective. Since the actions ofΓ(Sg, Â) andΓ(g, n) are defined
in the same way, the mapΘ is equivariant with respect toσ. �

From now on, we can considerT et
1 (Â, ᾱ)∗ as a subset of the Teichmüller spaceT (g, n), andΓ(Sg, Â)

as a subgroup ofΓ(g, n), which preservesT et
1 (Â, ᾱ)∗.
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3.3 Injectivity of the map Ξ

LetX1 = ([(Σ1, φ1)], ξ1) andX2 = ([(Σ2, φ2)], ξ2) be two points inT et(Â, ᾱ) such thatΞ(X1) =

Ξ(X2). By definition, Ξ(Xi), i = 1, 2, is represented by the pair([(Σ♮
i , φ

♮
i)], ξi). The assumption

Ξ(X1) = Ξ(X2) implies that there exists an isometryh♮ from Σ♮
1 onto Σ♮

2 such thatφ♮
2

−1
◦ h♮ ◦ φ♮

1

is an element inHomeo+
0 (S♮

g,V♮).

Clearly, the isometryh♮ induces an isometryh from Σ1 to Σ2, which maps the forestφ1(Â) to the fo-
restφ2(A2). Setϕ = φ−1

2 ◦h◦φ1 : Sg −→ Sg. Remark thatϕ(Â) = Â, thereforeϕ ∈ Homeo+(Sg, Â).
All we need to prove is the following

Lemma 3.3.1 ϕ is isotopic toIdSg by an isotopy fixing all the points in{p1, . . . , pn}.

Proof: Sinceϕ♮ = φ♮
2

−1
◦ h♮ ◦ φ♮

1 belongs toHomeo+
0 (S♮

g,V♮), there exists an isotopy

H♮ : S♮
g × [0; 1] −→ S♮

g,

such that,H♮
0 = ϕ♮, H♮

1 = Id
S♮

g
, andHt(V

♮) = V♮, whereH♮
t = H♮(., t), ∀t ∈ [0; 1].

Let (a, ā) be a pair of geodesic segments in the boundary ofS♮
g which correspond to the same edge

ã in the forestÂ. The identifications with̃a induce a homeomorphismρã from a onto ā. Let f be a
homeomorphism ofS♮

g which is identity on the setV♮. The necessary and sufficient condition forf to
define a homeomorphism onSg is that,

for every edgẽa in the forestÂ, we haveρ−1
ã ◦ f|ā ◦ ρã = f|a (∗)

Lemma3.3.1will follow from the following lemma

Lemma 3.3.2 Given any homeomorphismf of S♮
g which is identity on the setV♮, there exists a homeo-

morphismf ′ of S♮
g such that the homeomorphism̂f = f ′ ◦ f verifies the condition(∗).

Proof: We only prove this lemma in the casêA contains only one edgea. The general case can be shown
by similar argument.

We identify a thin neighborhoodNa of a in S♮
g to a rectangleRǫ = [0; 1] × [0; ǫ] in R2, with ǫ

positive, such thata is identified to the segment[0; 1] × {0}. The map(ρ−1
ã ◦ f|ā ◦ ρã) ◦ f

−1
|a induces a

homeomorphismq of the segment[0; 1]. We define a homeomorphismQ of Rǫ as follows

Q(s, t) = (s+
ǫ− t

ǫ
(q(s)− s), t), ∀(s, t) ∈ [0; 1]× [0; ǫ].
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Note thatq(0) = 0, andq(1) = 1, thereforeQ is identity on the two vertical sides ofRǫ. By definition,
Q is identity on the upper side ofRǫ, andQ = q on the lower side ofRǫ.

The homeomorphismQ induces a homeomorphismQ′ of Na. We can extendQ′ by identity outside
Na to obtain a homeomorphismf ′ of S♮

g. By construction, we have

f ′|a = (ρ−1
ã ◦ f|ā ◦ ρã) ◦ f

−1
|a ,

and

f ′|ā = Idā.

It follows immediately thatf̂ = f ′ ◦ f verifies the condition(∗) ona. The lemma is then proved.�

Back to the proof of3.3.1. By Lemma3.3.2, for eacht ∈ [0; 1], we can find a homeomorphismH′
t of

S♮
g such thatĤt = H′

t ◦ Ht verifies the conditions(∗). Clearly, the homeomorphismsH′
t can be chosen

continuously as a function oft, therefore,̂Ht induces an isotopy fromϕ to IdSg which is identity on the
set{p1, . . . , pn}, and the lemma follows. �

Lemma3.3.1allows us to conclude that the mapΞ is injective.

3.4 Image ofT et(Â, ᾱ) by Ξ

Let V♮ denote the finite subset ofS♮
g arising from the set{p1, . . . , pn} of Sg. Let T R(S♮

g) be the set
of all triangulations ofS♮

g whose vertex set isV♮ modulo homotopy relative toV♮.

LetT be a triangulation inT R(S♮
g), in Section2.4, we have already defined a subsetUT of TT(ᾱ′; β̄′)

corresponding toT , and a local chartΨT defined onUT . Let N1, N2 be respectively the number of
edges, and the number of triangles ofT . Recall that we also have a system of linear equations associated
to T , which is denoted byST , consisting ofN2 equations. LetVT be the subspace ofCN1 consisting
of solutions of the systemST . The image ofUT by ΨT is then an open subset ofVT . Since we have
assumed that there exists at least a tree inÂ which is not a point, the boundary ofS♮

g is not empty, and
hence,

dimC VT = 2g + 2
m∑

j=1

(kj − 1)− 2 = 2g + 2(n−m)− 2.

Note that the family{UT , T ∈ T R(S♮
g)} is an open cover of the spaceTT(ᾱ′; β̄′). First, we have
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Proposition 3.4.1 For every triangulationT in T R(S♮
g), the intersectionΞ(T et(Â, ᾱ))∩UT is mapped

byΨT onto an open subset of a subspace ofVT of dimension

• 2g + n− 1 if αi ∈ 2πN, ∀i = 1, . . . , n.

• 2g + n− 2 otherwise.

For eachT in T R(S♮
g), letV∗

T denote the subspace ofVT that contains the image ofΞ(T et(Â, ᾱ))∩

UT as an open subset. We have then

Proposition 3.4.2 If T1 andT2 represent two different equivalence classes inT R(S♮
g) such thatUT1 ∩

UT2 6= ∅, thenΨT2 ◦Ψ−1
T1

mapsV∗
T1

ontoV∗
T2

.

From Proposition3.4.1, and Proposition3.4.2, we get immediately

Corollary 3.4.3 Ξ(T et(Â, ᾱ)) is a special flat complex affine subspace ofTT(ᾱ′; β̄′).

3.4.1 Proof of Proposition3.4.1

Let ([(Σ, φ)], ξ) be a pointT et(Â, ᾱ) whose image byΞ is a point([(Σ♮, φ♮)], ξ) in UT ⊂ TT(ᾱ′; β̄′).
By definition, the homeomorphismφ♮ sends the triangulationT of S♮

g onto an admissible triangulationT
of Σ♮. The triangulationT of Σ♮ induces a triangulation ofΣ by geodesic segments containing the forest
Â = φ(Â), whose vertex set is{p1, . . . , pn}. This triangulation ofΣ will be denoted byT∗.

Recall that the mapΨT associates to each edge ofT a complex numbers, the complex number asso-
ciated to an edgee of T will be denoted byz(e). We start with

Lemma 3.4.4 If (e, ē) is a pair of edges in the boundary ofΣ♮ which corresponds to an edge of a tree
Aj = φ(Aj) in φ(Â), then we have

z(ē) = −eıθz(e) (3.1)

where the numberθ is determined by the angles̄α, and the treeAj .

Proof: Let ẽ denote the edge ofAj which corresponds to the pair(e, ē). Assume that the edgese and
ē are oriented coherently with the orientation ofΣ♮. It follows that the orientations ofe and ē induces
inverse orientations of̃e, this justifies the minus sign in (3.1).
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Let p be the mid-point of̃e, and letγ be a closed curve on the surfaceΣ such thatγ∩ Â = {p}, where
Â = φ(Â).

Observe thatθ is the rotation angle of the holonomy of the curveγ. The angleθ is determined from
the treeAj and the anglesα1, . . . , αn as follows : sinceAj is a tree,Aj \ ẽ has two connected compo-
nents. Take one of these components and add to it the segmentẽ, we get then a sub-treeA′

j of Aj .

Suppose that{xi0 , xi1 , . . . , xik} are the vertices of the treeA′
j , wherexi0 andxi1 are the endpoints of

ẽ. Up to a permutation of indices, the curveγ is homotopic to the curveli1 ◦ li2 ◦ · · · ◦ lik ◦ γ
′, where

lis , s = 1, . . . , k, is a closed curve homologous to a small loop aboutxis , andγ′ is a closed curve in
Σ \ Â. Since the rotationorth(lis) is of angleαis , and the rotationorth(γ′) is trivial by definition of
erasing forest, it follows thatorth(γ) is the rotation of angleαi1 + · · ·+ αik . Hence

θ = αi1 + · · ·+ αik mod 2π.

�

Since the trees in the forest̂A have totally(n −m) edges, Lemma3.4.4implies that coordinates of
the vectorΨT ([(Σ♮, φ♮)], ξ) ∈ CN1 is must verify(n −m) additional equations of type (3.1). Adding
those equations to the systemST , we get a systemS∗

T which containsN2 + (n −m) linear equations.
Let V∗

T denote the subspace ofCN1 consisting of solutions ofS∗
T . We have then

Lemma 3.4.5 The image ofΞ(T et(Â, ᾱ)) ∩ UT byΨT is an open subset ofV∗
T .

Proof: Let Z = (z1, . . . , zN1) denote the image of([(Σ♮, φ♮)], ξ) by ΨT . It suffices to show that
ΨT (Ξ(T et(Â, ᾱ)) ∩ UT ) contains neighborhood ofZ in V∗

T .

LetZ ′ = (z′1, . . . , z
′
N1

) ∈ CN1 be a vector in a neighborhood ofZ which is also a solution of the system
S∗
T . Using the triangulationT, we construct a flat surface fromZ ′ as follows :

. Construct an Euclidean triangle fromz′i, z
′
j , z

′
k if z′i, z

′
j , z

′
k verify an equation of type (2.3).

. Identify two sides of two distinct triangles if they correspond to the same complex numberz′i.

. Identify the edges corresponding toz′i andz′j if z′i andz′j satisfy an equation of type (3.1).

Clearly by this construction we obtain a flat surfaceΣ′ homeomorphic toΣ. The surfaceΣ′ also hasn
conical singularities, and there is a distinguished geodesic erasing forest Â′ on Σ′. Moreover, we also
get a triangulationT∗′ of Σ′ by geodesic segments. Each triangle inT∗′ corresponds to a triangle inE2
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specified by three complex numbers, hence we get a normalized parallel vector fieldξ′ onΣ′ \ Â′ which
is defined by the constant vertical vector field(0, 1) on the Euclidean planE2.

Define an orientation preserving homeomorphism

f : Σ −→ Σ′,

as follows :f maps each edge ofT∗ onto the corresponding edge ofT∗′, and the restrictionf on each
triangle is a linear transformation ofR2. Note that the homeomorphismf is then quasi-conformal with
respect to the conformal structures onΣ, andΣ′. Letφ′ denote the map

φ′ = f ◦ φ : Sg −→ Σ′.

It follows that the pair([(Σ′, φ′)], ξ′) represents a point ofT et(Â, ᾱ)∗ close to([(Σ, φ)], ξ). Clearly, by
construction, we haveΨT (Ξ([(Σ′, φ′)], ξ′)) = Z ′, and the lemma follows. �

Now, we need to compute the dimension ofV∗
T .

Lemma 3.4.6 We have

dimC V∗
T =

{
2g + n− 1, if αi ∈ 2πN, ∀i = 1, . . . , n;

2g + n− 2, otherwise.

Proof: Since the systemST contains alreadyN2 equations, the systemS∗
T containsN2 +(n−m) equa-

tions, therefore

dim V∗
T > N1 − (N2 + (n−m)) = 2g + n− 2. (3.2)

Consider the surfaceΣ♮ with the admissible triangulationT. Let a1, ā1, . . . , an−m, ān−m denote the
edges ofT which are contained in the boundary ofΣ♮ so that each pair(ai, āi) corresponds to an edge
of a tree in the forest̂A of Σ.

Choose a family of primitive edges inT, note that such a family must contains2g+m− 1 edges, let
b1, . . . , b2g+m−1 denote the edges in this family. As usual, for any edgee of T, let z(e) be the complex
number associated toe by ΨT .

By definition, we haveint(Σ♮) \∪2g+m−1
j=1 bj is an open disk. Using Lemma2.4.1, ii), we deduce that

if e is any edge ofT, thenz(e) can be written as a linear combination of

(z(a1), z(ā1), . . . , z(an−m), z(ān−m); z(b1), . . . , z(b2g+m−1)),
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with the coefficients in{±1, 0}. From Lemma3.4.4, we know thatz(āi) = −eıθiz(ai), whereθi is
determined bȳα andÂ. The complex numberz(e) is a linear function of

(z(a1), . . . , z(an−m), z(b1), . . . , z(b2g+m−1)).

We deduce that

dim V∗
T 6 2g + n− 1. (3.3)

Apply Lemma2.4.1, ii) to the diskD = int(Σ♮) \ ∪2g+m−1
j=1 bj , we get

n−m∑

i=1

(z(ai) + z(āi)) = 0

By Lemma3.4.4, it follows

n−m∑

i=1

(1− eıθi)z(ai) = 0. (3.4)

Note that the numbersz(bj), j = 1, . . . , 2g +m − 1, do not appear in the equation (3.4) because each
of the edgesbj belongs to two distinct triangles. Here, we have two issues :

- Case 1 : there existsi ∈ {1, . . . , n} such thatαi /∈ 2πN. The equation (3.4) is then non-trivial,
which means that the vector(z(a1), . . . , z(an−m), z(b1), . . . , z(b2g+m−1)) belongs to a hyperplane
of C2g+n−1. Therefore we have

dim V∗
T 6 2g + n− 2. (3.5)

From (3.2) and (3.5), we conclude thatdimC V∗
T = 2g + n− 2.

- Case 2 :αi ∈ 2πN for everyi in {1, . . . , n}. In this case, the equation (3.4) is trivial. However, this
also means that the sum of all equations in the systemS∗

T , with appropriate choices of signs, is the
trivial equation0 = 0. This impliesrank(S∗

T ) 6 N2 + (n−m)− 1. Hence

dim V∗
T > N1 − (N2 + n−m− 1) = 2g + n− 1. (3.6)

From (3.3) and (3.6), we conclude thatdim V∗
T = 2g + n− 1.

The lemma is then proved. �

The proof of Proposition3.4.1is now complete. �
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3.4.2 Proof of Proposition3.4.2

Let ([(Σ, φ)], ξ) be a point inT et(Â, ᾱ) such that([(Σ♮, φ♮)], ξ) be a point inUT1 ∩ UT2 . Let T1,T2

be the admissible triangulations ofΣ♮ corresponding toT1 andT2 respectively. By Theorem2.6.2, we
know that one can transformT1 into T2 by a sequence of elementary moves.

Recall that, by definition,VTi
is the solution space ofSTi

, i = 1, 2, andV∗
Ti

is the solution space of
S∗
Ti
, i = 1, 2, whereS∗

Ti
is obtained fromSTi

by adding(n−m) equations of type (3.1). Hence we can
considerV∗

Ti
as the intersection ofVTi

and the solution spaceV of those additional equations.

Now, the mapΨT2 ◦Ψ−1
T1

can be seen as a restriction of a linear isomorphismL of CN1 ontoVT1 . Since
elementary moves do not affect the edges on the boundary ofΣ♮, the linear isomorphismL preserves the
spaceV, and the proposition follows. �

3.5 Continuity of Ξ

Let ([(Σ, φ)], ξ) be a pointT et(Â, ᾱ), and assume that([(Σ♮, φ♮)], ξ) is contained inUT , whereT
is a representative of an equivalence class inT R(S♮

g). Let Z = (z1, . . . , zN1) ∈ CN1 be the image of
([Σ♮, φ♮)], ξ) in CN1 by ΨT . We have proved thatZ is contained in the subspaceV∗

T of CN1 . To show
the continuity ofΞ, we prove the following proposition

Proposition 3.5.1 There exists a neighborhoodU ofZ in V∗
T such thatΞ−1(Ψ−1

T (U)) is a neighborhood
of ([(Σ, φ)], ξ) in T et(Â, ᾱ).

3.5.1 Preliminaries

Let U be a neighborhood ofZ in V∗
T such that for anyW in U, the construction given in the proof of

Lemma3.4.5gives a point([(ΣW , φW )], ξW ) in T et(Â, ᾱ).

Observe that there exists a Hermitian formH of CN1 , such that, for anyW in U, the area of the
surfaceΣW is given byW

t
HW . We define

U1 = {W = (w1, . . . , wN1) ∈ U : W
t
HW = 1, w1 ∈ R}.

We can assume thatArea(Σ) = 1, and apply a rotation to the fieldξ so thatZ is a vector inU1. We
can also assume thatU1 is a ball.
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Let ΦT be the map which associates to any vectorW in U1 the point([(ΣW , φW )] in T et(Â, ᾱ)∗ (we
forget the fieldξW ). Observe that the image ofU1 by ΦT is contained inT et

1 (Â, ᾱ)∗.

To prove Proposition3.5.1, we will prove the following proposition

Proposition 3.5.2 ΦT (U1) is a neighborhood of[(Σ, φ)] in T et
1 (Â, ᾱ)∗.

3.5.2 Proof of3.5.2in the caseαi ∈ 2πN,∀i = 1, . . . , n

In this case, we have seen thatdimC V∗
T = 2g + n − 1, henceU1 is a ball of real dimension

2(2g + n− 2). We remark that, in this case,T et(Â, ᾱ) is locally homeomorphic to the moduli space of
closed translation surfaces havingn singularities. It is well known that the later is of complex dimension
2g + n− 1, hence so isT et(Â, ᾱ). It follows thatT et

1 (Â, ᾱ)∗ is of real dimension2(2g + n− 2). Since
dimR U1 = dimR T

et
1 (Â, ᾱ)∗, to prove thatΦT (U1) is a neighborhood of[(Σ, φ)] in T et

1 (Â, ᾱ)∗, we
only need to verify thatΦT is continuous, and injective.

The injectivity of ΦT follows from the fact that, for if[(ΣW , φW )] = ΦT (W ), then there exists a
unique normalized parallel vector fieldξW onΣW such thatΨT ([(ΣW , φW )], ξW ) = W .

For the continuity ofΦT , recall that we have an embedding fromT et
1 (Â, ᾱ)∗ into T (g, n), and the

topology onT et
1 (Â, ᾱ)∗ is induced from the topology ofT (g, n) with Teichm̈uller metric by this em-

bedding. Therefore, it is enough to show thatΦT is a continuous map fromU1 into T (g, n).

Let {Wk} be a sequence of vectors converging to a vectorW∞ in U1. Let [(Σk, φk)], k = 1, 2, . . . ,

denote the image ofWk, and[(Σ∞, φ∞)] be the image ofW∞ by ΦT . By construction, we can assume
that

φk = fk ◦ φ∞,

wherefk is a homeomorphism fromΣ∞ onto Σk, which maps the admissible triangulationT∞ =

φ∞(T ) of Σ∞ onto an admissible triangulation ofΣk.

Recall that the restriction offk into each triangle ofT∞ is a linear map ofR2, thereforefk is quasi-
conformal. Ask tends to∞, the restriction offk on each triangle ofT∞ tends to identity, hence the
dilatationK(fk) tends to1, it implies immediately that the Teichm̈uller distance between[(Σk, φk)] and
[(Σ∞, φ∞)] tends to zero. We deduce thatΦT is continuous, and the proposition follows. �

87



3. FLAT SURFACE WITH ERASING TREES

3.5.3 Proof of3.5.2in the case there existi such thatαi 6∈ 2πN

In this case, by PropositionB.0.1, we know that there exist a subsetŨ1 of CN1 , and a continuous map
Φ̃T from Ũ1 into T (g, n) verifying the following conditions :

- Ũ1 is homeomorphic to a ball of real dimension(6g + 2n− 6).

- U1 = Ũ1 ∩V∗
T .

- ΦT is the restriction of̃ΦT into U1.

- Φ̃T (Ũ1) is a neighborhood of[(Σ, φ)] in T (g, n).

- For everyW ∈ Ũ1, Φ̃T (W ) is represented by a pair(ΣW , fW ◦ φ), whereΣW is a flat surface
havingn singularities with cone anglesα1, . . . , αn, andfW is a homeomorphism fromΣ ontoΣW

mapping the triangulationT onto a triangulation by geodesic segments ofΣW , whose vertex set is
the set of singular points.

Note that the surfacẽΦT (W ) is defined by constructing triangles from the coordinates ofW , and gluing
them together usingT as pattern.

It follows that, every pointX in T et
1 (Â, ᾱ)∗ close enough to[(Σ, φ)] can be written as̃ΦT (W ), with

W ∈ Ũ1. In particular,X can be represented as a pair(ΣW , fW ◦φ) with the properties described above.
By definition,X is represented by a pair(Σ′, φ′), whereΣ′ is also a flat surface havingn singularities
with cone anglesα1, . . . , αn, andφ′ is a homeomorphism mapping the erasing forestÂ onto an erasing
forest ofΣ′.

We can then identityΣ′ to ΣW , and it follows thatfW ◦φ is isotopic toφ′ relative to{p1, . . . , pn}. Since
bothfW ◦ φ andφ′ mapÂ onto a geodesic forest, using Lemma2.3.8, we conclude thatfW ◦ φ(Â) =

φ′(Â). Now, by the definition of̃ΦT , it implies that the vectorW belongs to the spaceV∗
T . Therefore,

W ∈ V∗
T ∩ Ũ1 = U1.

The proposition is then proved. �

3.5.4 Proof of Proposition3.5.1

Proposition3.5.1is a direct consequence of Proposition3.5.2. SetU = U1 × C∗, with U1 as in Pro-
position3.5.2. The setU can be identified to an open subset ofV∗

T .
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For eachW ∈ U1, let [(ΣW , φW )] ∈ T et
1 (Â, ᾱ)∗ be the image ofW by ΦT . There exists a unique

normalized parallel vector fieldξW onΣW such thatΨT ◦Ξ([(ΣW , φW )], ξW ) = W . We can then extend
the mapΦT into a mapΦ̂T which is defined onU such that

ΨT ◦ Ξ ◦ Φ̂T (W ) = W, ∀W ∈ U.

It follows that Φ̂T (U) is contained inΞ−1(Ψ−1
T (U)). From 3.5.2, we know thatΦT (U1) is a neigh-

borhood of[(Σ, φ)] in T et
1 (Â, ᾱ)∗, thereforeΦ̂T (U) is a neighborhood of([(Σ, φ)], ξ) in T et(Â, ᾱ).

Proposition3.5.1is then proved. �

3.6 Volume form onΞ(T et(Â, ᾱ))

In this section, we define a volume form on the sub-manifoldΞ(T et(Â, ᾱ)) of TT(ᾱ′; β̄′), and prove
that the pull-back of this this volume form ontoT et(Â, ᾱ) is invariant by the action of the group
Γ(Sg, Â). The construction of this volume form is similar to the construction of the volume form µTr of
TT(ᾱ′; β̄′).

3.6.1 Definitions

LetT be a triangulation ofS♮
g, which represents an equivalence class inT R(S♮

g). As usual, letN1, N2

denote the number of edges, and the number of triangles inT respectively. LetΨT : UT −→ CN1 be the
local chart associated toT . Recall thatΨT (UT ) is an open subset of the solution spaceVT of a system
ST , which consists ofN2 equations of type (2.3). We have shown thatΨT (Ξ(T et(Â, ᾱ)) ∩ UT ) is an
open subset of the solution spaceV∗

T of a systemS∗
T , which consists ofN2 + (n −m) equations. The

systemS∗
T is obtained fromST by adding(n−m) equations of type (3.1).

Let a1, . . . , aN2+(n−m) denote the vectors of(CN1)∗ which correspond to the equations of the system
S∗
T . A vectorai is said to benormalizedif each of its coordinates is either0, or a complex number of

module1. We have two cases :

- Case 1 :there existi ∈ {1, . . . , n} such thatαi /∈ 2πN. In this case, we have seen thatdim V∗
T =

2g + n− 2, hencerank(S∗
T ) = N2 + (n−m). Consider the complex linear mapA∗

T : CN1 −→

CN2+(n−m), which is defined in the canonical basis ofCN1 andCN2+(n−m) by the matrix

AT =




a1
...

aN2+(n−m)


 .
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3. FLAT SURFACE WITH ERASING TREES

The mapAT is then surjective, andV∗
T = kerA∗

T . The mapAT is said to benormalizedif each
row of its matrix in the canonical basis is normalized.

Let λ2N1 et λ2(N2+(n−m)) denote the Lebesgue measures onCN1 ≃ R2N1 andCN2+(n−m) ≃

R2(N2+(n−m)) respectively. SinceAT is surjective,λ2N1 andλ2N2 induce a volume formνT on
VT via the following exact sequence :

0 −→ V∗
T →֒ C

N1
A∗

T−→ C
N2+(n−m) −→ 0.

- Case 2 :for everyi ∈ {1, . . . , n}, αi ∈ 2πN. In this case,rank(S∗
T ) = N2 + (n−m)− 1, hence

rank(A∗
T ) = N2 − 1.

If the vectorsa1, . . . , aN2+(n−m) are normalized, and if their signs are chosen suitably, we have
a1 + · · ·+ aN2 = 0. Thus, without loss of generality, we can assume thatImA∗

T = W, whereW
is the complex hyperplane ofCN2+(n−m) defined by

W = {(z1, . . . , zN2+(n−m)) ∈ C
N2+(n−m) : z1 + · · ·+ zN2+(n−m) = 0}.

Let λ′2(N2+(n−m)−1) denote the volume form ofW which is induced by the Lebesgue measure of

CN2+(n−m). The volume formsλ2N1 andλ′2(N2+(n−m)−1) induce a volume formνT onV∗
T via the

following exact sequence :

0 −→ V∗
T →֒ C

N1
A∗

T−→W −→ 0.

In both cases, letµT denote the volume formΨ∗
T νT which is defined onΞ(T et(Â, ᾱ)) ∩ UT .

3.6.2 Invariance by coordinate changes

Let T1, andT2 be two triangulations ofS♮
g which represent two different equivalence classes in

T R(S♮
g). Assume thatΞ(T et(Â, ᾱ)) ∩ (UT1 ∩ UT2) 6= ∅. Then we have

Lemma 3.6.1 µT1 = µT2 onΞ(T et(Â, ᾱ)) ∩ (UT1 ∩ UT2).

Proof: Let ([(Σ♮, φ♮)], ξ) be a point inΞ(T et(Â, ᾱ)) ∩ (UT1 ∩ UT2), and letT1, T2 be the admissible
triangulations ofΣ♮ corresponding toT1 andT2 respectively.

By Theorem2.6.2, we can assume thatT2 is obtained fromT1 by only one elementary move. Since an
elementary move does not affect the edges ofT1 which are contained in the boundary ofΣ♮, the equa-
tions of type (3.1) in ST1 and inST2 are the same. Therefore, we can using the same arguments as in the
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proof of Proposition2.7.1, to show that there exists an isomorphism ofF of CN1 such that|detF| = 1,
and the following diagram commutes

0 −→ V∗
T1
−→ CN1

A∗
T1−→ X −→ 0

↓ H ↓ F ‖Id

0 −→ V∗
T2
−→ CN1

A∗
T2−→ X −→ 0

whereX is eitherCN2+(n−m), orW, and the isomorphismH : V∗
T1
−→ V∗

T2
, which is induced byF, is

the coordinate change betweenΨT2 andΨT1 . It follows immediately that

νT1 = H∗νT2 ,

and the lemma follows. �

3.6.3 Invariance by action ofΓ(Sg, Â)

Lemma3.6.1implies that the volume forms{µT : T ∈ T R(S♮
g)} give a well defined volume form

on Ξ(T et(Â, ᾱ)). Let µTr denote the pull-back of this volume form ontoT et(Â, ᾱ). To complete the
proof of Theorem3.1.10, we need to show

Lemma 3.6.2 The volume formµTr is in variant by the action ofΓ(Sg, Â).

Proof: The fact thatµTr is invariant by the action of the groupΓ(Sg, Â) is quite clear from the definition
of Γ(Sg, Â). Let γ be an element ofΓ(Sg, Â), and suppose thatγ([(Σ1, φ1)], ξ1) = ([(Σ2, φ2)], ξ2). By
definition there exist an isometryh from Σ1 ontoΣ2. Note that, by definition,φ−1

2 ◦ h ◦ φ1 preserves the
forestÂ.

As usual, let([(Σ♮
i , φ

♮
i)], ξi) be the image of([(Σi, φi)], ξi) by Ξ, i = 1, 2. The isometryh induces

then an isometry from([(Σ♮
1, φ

♮
1)], ξ1) onto([(Σ♮

2, φ
♮
2)], ξ2). Consequently, an admissible triangulation of

Σ♮
1 is mapped byh onto an admissible triangulation ofΣ♮

2. Since any two admissible triangulations of
Σ♮ are connected by elementary moves, Lemma3.6.1allows us to conclude. �

The proof of Theorem3.1.10is now complete. �
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3.7 A necessary condition for a tree to be erasing

Assume that the forest̂A contains only one non-trivial treeA, i.e.all other trees inÂ are points, then
from the proof of3.1.10, we get the following

Corollary 3.7.1 If there existsi ∈ {1, . . . , n} such thatαi /∈ 2πN, then the treeA contains at least
three vertices.

Proof: By assumption,A contains at least two vertices. Assume thatA has exactly two vertices whose
cone angles areα1, α2. By assumption, both anglesα1, α2 do not belong to the set2πN since the cone
angle at any isolate point in̂A must be an integral multiple of2π.

We know that the treeA has only one edge, this edge corresponds to a pair of geodesic segments(a, ā)

on the boundary ofS♮
g. Let ξ be a normalized parallel vector field onS♮

g, andT be an admissible trian-
gulation ofS♮

g. Let ΨT be the local chart ofTT(ᾱ′; β̄′) associated toT . Note thatUT contains the point
([(S♮

g, Id)], ξ).

Let z(a) andz(ā) be the complex numbers associated toa, andā respectively byΨT . From Lemma
3.4.4, and (3.4), we have

(1− eıθ)z(a) = 0.

whereθ = α1 mod 2π. Sinceα1 6∈ 2πN, we haveeıθ 6= 1. Hence the equation above implies that
z(a) = 0, which means that the two vertices ofA coincide, and we get a contradiction. �
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Chapitre 4

Spherical flat surface

4.1 Introduction

Spherical flat surfacesare flat surfaces which are homeomorphic to the sphereS2. By Proposition
3.2.3, we know that each homothety class of spherical flat surface with prescribed cone angles at the
singularities corresponds to a unique conformal structure on the sphereS2 with marked points and vice
versa.

Let p1, . . . , pn ben > 3 points on the standard sphereS2. Fix a set ofn positive real numbers̄α =

(α1, . . . , αn) such thatα1 + · · · + αn = 2π(n − 2). TheTeichm̈uller space of spherical flat surfaces
havingn singularities with cone anglesα1, . . . , αn is the set of equivalence classes of pairs(Σ, φ), where

. Σ is a spherical flat surface havingn singularities with cone anglesα1, . . . , αn.

. φ is a homeomorphism fromS2 to Σ, which sends{p1, . . . , pn} onto the set of singularities ofΣ
such that the cone angle atφ(pi) is αi.

. The equivalence class of(Σ, φ) is the set of all pairs(Σ, φ′), whereφ′ is a homeomorphism isotopic
to φ by an isotopy which is constant on the set{p1, . . . , pn}.

We denote this Teichm̈uller spaceT (S2, ᾱ)∗. The equivalence class of a pair(Σ, φ) in T (S2, ᾱ)∗ will be
denoted by[(Σ, φ)]. Let T (S2, ᾱ) denote the productT (S2, ᾱ)∗ × S1.

LetΓ(0;n) denote the modular group of homeomorphisms ofS2 which is identity on the set{p1, . . . , pn}.
Clearly,Γ(0;n) acts onT (S2, ᾱ)∗, the quotient spaceM(S2, ᾱ)∗ is themoduli space of spherical flat
surfaceshaving cone angles{α1, . . . , αn}. Note that in this definition, we do not allow exchanges of sin-
gularities having with the same cone angle. We denoteM1(S

2, ᾱ)∗ the subspace ofM(S2, ᾱ)∗ consisting
of all surface of area1. By Proposition3.2.3, the spaceM1(S

2, ᾱ)∗ can be identified to the moduli space
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4. SPHERICAL FLAT SURFACE

M(0;n) of configurations ofn points on the sphereS2 up to Möbius transformations.

Extend the action ofΓ(0;n) onto T (S2, ᾱ) such thatΓ(0;n) acts trivially on theS1 part and let
M(S2, ᾱ) denote the quotientT (S2, ᾱ)/Γ(0;n). The main result of this chapter is the following

Theorem 4.1.1 a) T (S2, ᾱ) is a flat complex affine manifold of dimensionn − 2, on whichΓ(0;n)

acts properly discontinuously.

b) There exists a volume form onT (S2, ᾱ) which is invariant by the action of the groupΓ(0;n).

The volume forms mentioned in Theorem4.1.1, and Theorem2.2.9are defined by the same method.

4.2 Flat complex affine structure onT (S2, ᾱ)

As a direct consequence of Proposition3.2.3, we can identifyT1(S2, ᾱ)∗ to T (0;n), and hence,
T (S2, ᾱ) to T (0;n)×C∗, we endowT (S2, ᾱ) with the topology induced by this identification. It is well
known thatdimC T (0;n) = n− 3, it follows thatdimC T (S2, ᾱ) = n− 2.

4.2.1 Definition of local charts

Let T R(S2, {p1, . . . , pn}) denote the set of triangulations ofS2 whose vertex set is{p1, . . . , pn}

modulo isotopy relative to{p1, . . . , pn}. Given a triangulationT of S2 which represents an equivalence
class inT R(S2, {p1, . . . , pn}), let UT denote the subset ofT (S2, ᾱ) consisting of pairs([(Σ, φ)], eıθ),
such thatφ(T ) is a geodesic triangulation ofΣ. By PropositionB.0.1, we know thatUT is an open set in
T (S2, ᾱ).

Choose a treeA in T whose vertex set is{p1, . . . , pn}, for any ([(Σ, φ)], eıθ) in UT , φ(A) is a
geodesic erasing tree ofΣ. Therefore, we can identifyUT to an open subset inT et(S2,A). From Theorem
3.1.10, we get a map

ΨT ,A : UT −→ C
4n−7,

which is injective, and continuous, such thatΨT ,A(UT ) is an open subset of the solution spaceV∗
T ,A of

a system of linear equationsS∗
T ,A. Note that, in this case, the systemS∗

T ,A has3n − 5 equations, and
rankS∗

T ,A = 3n − 5, hencedimC V∗
T ,A = (4n − 7) − (3n − 5) = n − 2. It follows thatΨT ,A can

be considered as a local chart ofT (S2, ᾱ) onUT . It is worth noticing thatΨT ,A is only defined up to a

94



4. SPHERICAL FLAT SURFACE

rotation.

4.2.2 Coordinate changes

LetT1, T2 be two triangulations ofS2 which represent two different equivalence classes inT R(S2, {p1, . . . , pn}).
Let ([(Σ, φ)], ξ) be a point inUT1∩UT2 , and letT1, T2 be the geodesic triangulations ofΣ corresponding
to T1, andT2 respectively. Choose a treeA1 (resp.A2) in T1 (resp.T2) which connects all the points in
{p1, . . . , pn}, and letΨT1,A1 andΨT2,A2 be the two local charts ofT (S2, ᾱ) corresponding.

Given an edgee of T2 which is not contained inT1, let Pe be the developing polygon ofe with res-
pect toT1 (see2.6.1). By construction, there exists a mapϕe from Pe into Σ which is locally isometric
mapping a diagonal ofPe ontoe.

The mapϕe sends geodesic segments in the boundary ofPe onto edges ofT1. It follows that the complex
number associated to the edgee by the local chartΨT2,A2 can be written as a linear function of complex
numbers associated to edges ofT1, which correspond the segments in the boundary ofPe, by the local
chartΨT1,A1 . Since the roles ofT1 andT2 in this reasoning can be interchanged, we deduce that the
coordinate change betweenΨT1,A1 andΨT2,A2 can be written as a linear isomorphism ofC4n−7 which
sendsV∗

T1,A1
ontoV∗

T2,A2
. Therefore we can conclude thatT (S2, ᾱ) is a flat complex affine manifold of

dimensionn− 2.

4.2.3 Action ofΓ(0; n)

We know thatΓ(0;n) acts properly discontinuously onT (0;n). We have seen thatT (S2, ᾱ) can be
identified toT (0;n)×C∗. Clearly, the action ofΓ(0;n) on theC∗ factor of the productT (0;n)×C∗ is
trivial, therefore the action ofΓ(0;n) onT (S2, ᾱ) is properly discontinuous. Parta) of Theorem4.1.1is
now proved.

4.3 Volume form onT (S2, ᾱ)

4.3.1 Definition

SetN1 = 4n− 7,N2 = 3n− 5. LetT be a triangulation ofS2 which represents an equivalence class
in T R(S2, {p1, . . . , pn}). LetA be a tree contained inT , which connects all the points in{p1, . . . , pn}.
Let ΨT ,A be the local chart associated to(T ,A), which is defined on the setUT .
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LetS∗
T ,A be the system of linear equations associated toΨT ,A, and letA∗

T ,A be the normalized linear
map associated toS∗

T ,A. In this case,A∗
T ,A is a linear map fromCN1 ontoCN2 , which is given, in the

canonical basis ofCN1 andCN2 , by a matrix whose rows correspond to the equations inS∗
T ,A. Recall

that every entry of the matrix ofA∗
T ,A (in the canonical basis ofCN1 andCN2) is either zero, or a com-

plex number of module one.

We defineνT ,A to be the volume form onV∗
T ,A which is induced by the Lebesgue measures ofCN1

andCN2 via the following exact sequence

0 −→ V∗
T ,A −→ C

4n−7
A∗

T ,A
−→ C

3n−5 −→ 0.

LetµT ,A denote the pull-back ofνT ,A onUT . The following proposition shows that the volume form
µT ,A does not depend on the choice ofA

Proposition 4.3.1 LetT be a triangulation representing an equivalence class inT R(S2, {p1, . . . , pn}).
LetA1,A2 be two trees contained inT , each of which connects all the points in{p1, . . . , pn}.

Let A∗
T ,A1

andA∗
T ,A2

denote the linear maps fromCN1 onto CN2 corresponding toA1, andA2 res-
pectively. LetνT ,Ai

, i = 1, 2 denote the volume form onV∗
T ,Ai

which is induced from the Lebesgue
measures ofCN1 and CN2 . Let H = ΨT ,A2 ◦ Ψ−1

T ,A1
be the coordinate change betweenΨT ,A1 , and

ΨT ,A2 , then we have

H∗νT ,A2 = νT ,A1 .

To show that the volume formµT ,A actually does not depend on the choice ofT , we prove the
following theorem

Theorem 4.3.2 Let Σ be a spherical flat surface. IfT1 and T2 are two geodesic triangulations ofΣ
whose sets of vertices coincide, and contain the set of singularities ofΣ, thenT1 andT2 are connected
(i.e. one can be transformed into the other by elementary moves).

Corollary 4.3.3 The volume formsµT ,A agree on overlap domains of local charts, and give a well defi-
ned volume formµTr onT (S2, ᾱ) which is invariant byΓ(0;n).

Proof: From Proposition4.3.1, we know that the volume formµT ,A does not depend on the choice of
the treeA, therefore, we can writeµT instead ofµT ,A.

LetT1, T2 be two triangulations ofS2 which represent two different equivalence classes inT R(S2, {p1, . . . , pn})

such thatUT1 ∩ UT2 6= ∅. Let ([(Σ, φ)], eıθ) be a point inUT1 ∩ UT2 , and letT1, T2 be two geodesic
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triangulations ofΣ corresponding toT1, T2 respectively. We have to show thatµT1 = µT2 onUT1 ∩ UT2 .

By Theorem4.3.2, we only have to consider the case whereT2 is obtained fromT1 by an elementary
move. Remark that, in this case, there exists a treeA connecting all the singular points ofΣ which is
contained in bothT1 andT2. Therefore, we can consider a neighborhood of([(Σ, φ)], eıθ) as an open
subset inT et(Â, ᾱ), whereÂ = A andᾱ = (α1, . . . , αn). It has been shown in Lemma3.6.1, that in
this situation, we haveµT1 = µT2 . It follows that the volume forms{µT : T ∈ T R(S2, {p1, . . . , pn})}

give a well defined volume form onT (S2, ᾱ) which will be denoted byµTr.

Let γ be an element ofΓ(0;n), and suppose thatγ([(Σ1, φ1)], e
ıθ1) = ([(Σ2, γ2)], e

ıθ2). We can write
([(Σi, φi)], e

ıθi) = ([(Σi, φi)], zi), i = 1, 2, with Area(Σi) = 1, andzi ∈ C∗.

By definition, we havez1 = z2, and there exists a conformal homeomorphismh from Σ1 ontoΣ2 which
sends the of singular points ofΣ1 onto the set singular points ofΣ2 respecting the cone angles. From
Proposition3.2.3, we deduce thath is an isometry betweenΣ1 andΣ2.

Since an isometry between two spherical flat surfaces sends geodesic triangulations onto triangulations,
the same argument as above shows thatµTr is invariant by the action ofΓ(0;n). �

The remainder of this section is devoted to the proofs of Proposition4.3.1, and Theorem4.3.2.

4.3.2 Cutting and gluing

Let T ,A1,A2 be as in Proposition4.3.1. Let ([(Σ, φ)], eıθ) be a pointUT . Let T denote the geodesic
triangulation ofΣ corresponding toT , and letA1, A2 be the geodesic trees corresponding toA1,A2

respectively.

Let Σ1
0 andΣ2

0 denote the flat surface with geodesic boundary obtained by slitting open thesurface
Σ along the treesA1 andA2 respectively. Observe thatΣ0

i , i = 1, 2, is homeomorphic to a closed disk.
Let T1

0 (resp.T2
0) denote the geodesic triangulation ofΣ1

0 (resp.Σ2
0) which is induced byT.

Consider a pair(Σ0,T0) where

- Σ0 is a flat surface homeomorphic to a closed disk, with geodesic boundary, and having no singu-
larities in the interior.

- T0 is a triangulation ofΣ0 by geodesic segments whose vertex set is contained in the boundary of
Σ0.
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- The edges ofT0 on the boundary ofΣ0 are paired up. Two edges in a pair have the same length.

We will call such a pair awell triangulated flat disk. Consider the following the following operation :

• Choose a pair of edges(a, ā) of T0 in the boundary ofΣ0, and an edgeb in the interior ofΣ0 so
thata andā do not belong to the same connected component ofΣ0 \ b.

• CutΣ0 alongb, then glue two the sub-disks by identifyinga to ā.

Clearly, by this operation, we get another pair(Σ′
0,T

′
0) with is also a well triangulated flat disk. We

will call this operation thecutting-gluing operation.

Observe that, by construction, the pairs(Σ1
0,T

1
0), and(Σ2

0,T
2
0) verify the conditions above. We have

Lemma 4.3.4 The pair(Σ2
0,T

2
0) can be obtained from(Σ1

0,T
1
0) by a sequence of cutting-gluing opera-

tions.

Proof: We remark that the treesA1 andA2 correspond respectively to two maximal treesA∗
1, A

∗
2 in the

dual graphT∗ of the triangulationT. By maximal treewe mean a tree whose vertex set contains all the
vertices of the dual graph. Any edge ofT∗ which is not contained inA∗

i is dual to an edge ofAi, i = 1, 2.

Let e∗ be an edge ofT∗ which is contained inA∗
2, but not inA∗

1. Let v∗1 andv∗2 denote the endpoints of
the edgee∗. SinceA∗

1 is a maximal tree, there exists a pathc∗ in A∗
1 which joinsv∗1 to v∗2. The union ofc∗

ande∗ is then a cycle in the dual graphT∗, it follows that there exists an edgee∗1 in c∗, different frome∗,
which is not contained inA∗

2. Replacinge∗1 by e∗, we get a new maximal tree which contains one more
common edge withA∗

2 thanA∗
1.

Thus we can transformA∗
1 intoA∗

2 by a finite sequence of such replacements. Now, we just need to ob-
serve that the operation of replacinge∗1 by e∗ corresponds to a cutting-gluing operation described above,
and the lemma follows. �

4.3.3 Increased exact sequence

Given a well triangulated flat disk(Σ0,T0), using a developing map, we can associate to each edgee

of T0 a complex numberz(e). The complex numbers associated to the edges ofT0 verify two types of
equation
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- If ei, ej , ek bound a triangle ofT0, then±z(ei)± z(ej)± z(ek) = 0,

- If (e, ē) is a pair of boundary edges ofT0 of the same length, thenz(ē) = eıθz(e).

Assume thatT0 containsN1 edges, and choose a numbering of the edges ofT0, we get a linear sys-
temS0 of N1 variables. LetN2 be the number of equations ofS0, let A0 be the matrix associated to
S0, we say thatA0 is normalizedif every entry ofA0 is zero, or a complex number of module one. Let
a1, . . . , aN2 denote the row vectors ofA0. We also assume thatrankA0 = N2.

By definition,A0 is an element ofMC(N2, N1). Let Z = (z1, . . . , zN1) be the vector ofCN1 whose
coordinates are complex numbers associated to the edges ofT0. Choose an edgee0 of T0 which is
contained insideΣ0, and assume that the complex number associated to this edge isz1. Without loss of
generality, we can assume that the first two arrowsa1, a2 of A0 verifies

a1 · Z
t = z1 + zi1 + zj1 (4.1)

and

a2 · Z
t = −z1 + zi2 + zj2 (4.2)

We construct a matrix̂A0 in MC(N2 + 1, N1 + 1) from A0 ande0 as follows : letâ1, . . . , âN2+1

denote the row vectors of̂A0, then we have

. â1 is obtained by froma1 by adding a zero into the last column.

. â2 is obtained froma2 by replacing−1 by 0 in the first column, and adding a zero into the last
column.

. Forj = 3, . . . , N2, âj is obtained fromaj by adding a zero into the last column.

. The last roŵaN2+1 is the row vector whose entries in the first, and the last columns are1, and all
other entries are0.

We will call Â0 the increased normalized matrixof A0 associated to the splitting alonge0.

Consider the map

I : CN1 −→ CN1+1

(z1, . . . , zN1) 7−→ (z1, . . . , zN1 ,−z1)

Observe that, we have
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Â0 · I =

(
A0

0

)

It follows thatI is a bijection fromkerA0 ontoker Â0. We will call I theembedding associated tôA0.

Let ν̂T0 be the volume form onkerA0 which is induced from the Lebesgue measures ofCN1+1 and
CN2+1 by the exact sequence

0 −→ kerA0
I
−→ C

N1+1 Â0−→ C
N2+1 −→ 0.

Let νT0 be the volume form onkerA0 which is induced from the Lebesgue measures ofCN1 and
CN2 by the exact sequence

0 −→ kerA0 →֒ C
N1 A0−→ C

N2 −→ 0.

We have the following lemma :

Lemma 4.3.5 νT0 = c0ν̂T0 , wherec0 is a constant which does not depend on the choice of the edgee0.

Proof: Letλ2N1 be the Lebesgue measure ofCN1 , andλ̂2N1 be the volume form onCN1 which is induced
from the Lebesgue measures ofCN1+1 andC by the exact sequence

0 −→ C
N1 I
−→ C

N1+1 h
−→ C −→ 0,

whereh : (z1, . . . , zN1+1) 7−→ z1 + zN1+1. Set

c0 =
λ̂2N1

λ2N1

.

By definition, the volume formνT0 is induced fromλ2N1 and the Lebesgue measure ofCN2 by the
following exact sequence

0 −→ kerA0 −→ C
N1 A0−→ C

N2 −→ 0,

Observe that the volume form̂νT0 is defined in the same way withλ2N1 replaced bŷλ2N1 . Hence the
lemma follows. �
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4.3.4 Proof of Proposition4.3.1

By Lemma4.3.4, it suffices to consider the case where(Σ2
0,T

2
0) is obtained from(Σ1

0,T
1
0) by only

one cutting-gluing operation. Lete0 denote the edge along which we cutΣ1
0, and let(e1, e2) denote the

pair of edges in the boundary ofΣ1
0 which are identified in this operation. Note thate0 dividesΣ1

0 into
two sub-disksD1 andD2, such thatei is contained in the boundary ofDi, for i = 1, 2.

To simplify notations, we identify an oriented edge ofT0 to the complex number which is associated to
it. Assume that the edges on the boundary ofΣ1

0 are oriented coherently with the orientation ofΣ1
0.

Let Z = (z1, . . . , zN1) be the vector inCN1 whose coordinates are the complex numbers associated to
the edges ofT1

0. Let k the be number of edges ofT1
0 which are contained in the closure ofD1. Without

loss of generality, we can assume thatz1, . . . , zk are the complex numbers associated to thesek edges,
with z1 associated toe0, andzk associated toe1. We also assume thatzk+1 is the complex number
associated toe2. Sincee1 is identified toe2, the complex numberszk andzk+1 must verify the following
equation

eıθzk + zk+1 = 0

Let Â∗
T ,A1

, be the increased normalized matrix ofA∗
T ,A1

associated to the splitting along the edge
e0. By definition, we can write

Â∗
T ,A1

=




1 ∗ . . . ∗ 0

0 ∗ . . . ∗ 1

· · · · · · · · · . . . · · ·

0 ∗ . . . ∗ 0

1 ∗ . . . ∗ 1




Let â1, . . . , âN2+1 denote the row vectors of the matrix̂A∗
T ,A1

. Note that the vector̂Z = (z1, . . . , zN1 ,−z1)

belongs to the spaceker Â∗
T ,A1

.

Let T1
1 andT1

2 denote respectively the triangulations ofD1 andD2 which are induced byT1
0. We

consider, by convention, that the edgee0 is split into two edges :e10, which belongs toT1
1, is oriented in

the same orientation ase0, ande20, which belongs toT1
2, is oriented in the inverse orientation. By this

convention, we can consider the coordinates ofẐ as the complex numbers associated to the edges ofT1
1

andT1
2, wherezN1+1 is associated toe20.

Remark that the cutting-gluing operation consists of rotating the diskD1 by an angleθ, and gluing
Rθ(D1) to D2 by identifyingRθ(e1) to e2, whereRθ is the rotation of angleθ in R2.
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zk+1

D2 z1
D1

zk
zN1+1

w1
D1 D2

wk wk+1

wN1+1

Let (w1, . . . , wN1 , wN1+1) be the complex numbers associated to the edges ofRθ(T
1
1) andT1

2 as
follows

. For i = 1, . . . , k, wi is associated toRθ(zi).

. For i = k + 1, . . . , N1 + 1, wk is associated tozi.

In other words

. wi = eıθzi, for i = 1, . . . , k.

. wi = zi, for i = k + 1, . . . , N1 + 1.

Let Â∗
T ,A2

be the increased normalized matrix ofA∗
T ,A2

associated to the splitting alonge′0, where

e′0 is the edge corresponding to the pair(e1, e2). Observe that the vector̂W = (w1, . . . , wN1+1) belongs
to ker Â∗

T ,A2
. Let b̂1, . . . , b̂N2 , b̂N2+1 denote the row vectors of the matrix ofÂ∗

T ,A2
. We have

• If b̂i correspond to a triangle, thenb̂i = âi.

• If b̂i correspond to a pair of of boundary edges(e, e′), we have two cases :

- If e ande′ are both contained in the boundary ofRθ(D1), or D2, thenb̂i = âi.

- If e is contained in∂Rθ(D1), ande′ is contained∂D2, suppose that

âi · Ẑ
t = eıθ

′

zi + zj , with i 6 k < j

then

b̂i · Ŵ
t = eı(θ

′−θ)wi + wj .
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Now, let F̂ ∈MN1+1(C) be the following matrix

F̂ =




eıθ . . .
(k)

0 0 . . . 0
...

. . .
...

... · · ·
...

0 . . . eıθ 0 . . . 0

0 . . . 0 1 . . . 0
... · · ·

...
...

.. .
...

0 . . . 0 0 . . . 1




.

We see that̂W t = F̂ · Ẑt, and clearly,|det F̂| = 1. From the relations between̂bi andâi, it follows that

Â∗
T ,A2

· F̂ = Ĝ · Â∗
T ,A1

,

whereĜ ∈MN2+1(C) is a diagonal matrix whose diagonal entries are either1, or eıθ. Clearly, we have
|det Ĝ| = 1.

Let I1, I2 be the linear embeddings ofCN1 into CN1+1 associated tôA∗
T ,A1

, andÂ∗
T ,A2

respectively.
Note, that in this case, we have

I1(z1, . . . , zN1) = (z1, . . . , zN1 ,−z1),

and

I2(w1, . . . , wN1) = (w1, . . . , wk−1, wk,−wk, wk+1, . . . , wN1).

Now, from the following commutative diagram

0 −→ kerA∗
T ,A1

I1−→ CN1+1
Â∗

T ,A1−→ CN2+1 −→ 0

↓ H ↓ F̂ ↓ Ĝ

0 −→ kerA∗
T ,A2

I2−→ CN1+1
Â∗

T ,A2−→ CN2+1 −→ 0

whereH is the isomorphism which is induced from̂F andĜ, we deduce that

H∗ν̂T ,A2 = ν̂T ,A1 (4.3)

whereν̂T ,Ai
, i = 1, 2, is the volume form onkerA∗

T ,Ai
which is induced from the Lebesgue measures

of CN1+1 andCN2+1 via the exact sequence

0 −→ kerA∗
T ,Ai

Ii−→ C
N1+1

Â∗
T ,Ai−→ C

N2+1 −→ 0.

Remark that the mapH is the coordinate changes betweenΨT ,A1 andΨT ,A2 . From Lemma4.3.5we
know that
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ν̂T ,A1

νT ,A1

=
ν̂T ,A2

νT ,A2

.

Hence the proposition follows from (4.3). �

4.3.5 Proof of Theorem4.3.2

Theorem4.3.2is of course a consequence of the fact that any geodesic triangulation whose vertex set
is the set of singularities can be transformed into a Delaunay triangulation. Here, we give another proof
of this fact by using similar ideas to the proof of Theorem2.6.2.

Let x1, . . . , xn denote the vertices ofT1 andT2. By convention, we consider{x1, . . . , xn} as the set
of singular points ofΣ even though some of them may be regular. In what follows, ifT is a triangulation
of Σ whose vertex set is{x1, . . . , xn}, we will call a tree contained inT which connects all the vertices
of T amaximal tree.

LetAi, i = 1, 2 be a maximal tree ofTi. If A1 ≡ A2, then the theorem follows from Theorem2.6.2.
Thus, it is enough to prove the following

Proposition 4.3.6 There exists a sequence of elementary moves which transformsT1 into a triangula-
tion containingA2.

We start by the following lemma

Lemma 4.3.7 If c1, . . . , ck are geodesic segments with endpoints in{x1, . . . , xn} such thatint(ci) ∩

int(cj) = ∅ if i 6= j, and int(ci) ∩ A1 = ∅, i = 1, . . . , k, then there exists a sequence of elementary
moves which transformsT1 into a new triangulation containingA1, and all the segmentsc1, . . . , ck.

Proof: This lemma is just a direct consequence of Lemma2.6.3. Namely, letΣ′ denote the flat surface
obtained by slitting open the surfaceΣ along the treeA1. The surfaceΣ′ is homeomorphic to a closed
disk. LetT(0)

1 denote the triangulation ofΣ′ which is induced byT1.

Let P1 be the developing polygon ofc1 with respect toT(0)
1 . By definition, the segmentc1 is a diagonal

of P1. By Lemma2.6.3, there exists a sequence of elementary moves insideP1 which transforms the
triangulation induced byT(0)

1 into a triangulation containingc1. We get then a new triangulationT(1)
1 of
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Σ′ which containsc1.

Let P2 denote the developing polygon ofc2 with respect toT(1)
1 . Sincec1 is an edge ofT(1)

1 , and, by
assumption,int(c1) ∩ int(c2) = ∅, we haveint(c1) ∩ int(P2) = ∅. Apply Lemma2.6.3to the polygon
P2, we get a new triangulationT(2)

1 of Σ′, which containsc1 andc2.

Clearly, this procedure can be continued until we get a triangulationT
(k)
1 of Σ′ which contains all the

segmentsc1, . . . , ck, and the lemma follows. �

Now, leta1, . . . , an−1 denote the edges of the treeA1, andb1, . . . , bn−1 denote the edges of the tree
A2. We will proceed by induction. Suppose thatT1 contains already thek edgesb1, . . . , bk of A2. We
will show thatT1 can be transformed by a sequence of elementary moves into a new triangulation contai-
ning b1, . . . , bk andbk+1.

Letm be the number of intersection points ofbk+1 with the treeA1 excluding the endpoints ofbk+1. If
m = 0, then Lemma4.3.7allows us to get the conclusion. Therefore, ifm > 1, all we need to show is
the following

Lemma 4.3.8 The triangulationT1 can be transformed by elementary moves into a new triangulation
T′

1 which contains a maximal treeA′
1, and the edgesb1, . . . , bk, such that the number of intersecting

points ofbk+1 withA′
1, excluding the endpoints ofbk+1, is at mostm− 1.

Proof: We can assume that the endpoints ofbk+1 arex1 andx2. We considerbk+1 as a geodesic ray
exiting fromx1. Let y1 denote the first intersection point ofbk+1 with the treeA1, which is contained in
the interior of an edgexj1xj1+1 of A1.

Let x1y1 denote the subsegment ofbk+1 whose endpoints arex1 andy1. Without loss of generality, we
can assume thatxj1 is contained in the unique path alongA1 from x1 to xj1+1.

Cutting open the surfaceΣ along the treeA1, we get a flat surfaceΣ′ with geodesic boundary homeo-
morphic to a close disk. By construction, we have a surjective map :

πA1 : Σ′ −→ Σ,

verifying the following properties

. πA1 |int(Σ′) is an isometry,
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. πA1(∂Σ′) = A1.

. There are2(n − 1) geodesic segments in the boundary ofΣ′ such that the restriction ofπA1 into
each segment is an isometry.

. For every edgee in A1, π−1
A1

(int(e)) is the union of two open segments in the boundary ofΣ′.

Let s1 denote the inverse image ofx1y1 by πA1 , thens1 is a geodesic segment with endpoints in the
boundary ofΣ′. Letx′1 andy′1 denote the endpoints ofs1 with πA1(x

′
1) = x1, andπA1(y

′
1) = y1.

Let x′1, . . . , x
′
2(n−1) denote the points inπ−1

A1
({x1, . . . , xn}) following an orientation of∂Σ′. By

choosing the suitable orientation, we can assume that the pointy′1 is betweenx′j′1
andx′j′1+1, where

πA1(x
′
j′1

) = xj1 , andπA1(x
′
j′1+1) = xj1+1.

For everyj in {1, . . . , 2(n − 1)}, we denotex′jx
′
j+1 the segment in the boundary ofΣ′ betweenx′j and

x′j+1, with the conventionx′2n−1 = x′1. Note thatπA1(x
′
jx

′
j+1) is an edge ofA1.

Let c0 be a path inΣ′ joining x′1 andx′j′1+1 with minimal length. First, we prove

Lemma 4.3.9 We havec0 ∩ s1 = {x′1}.

Proof: Suppose thatc0 ∩ int(s1) 6= ∅, then lety′2 denote the first intersection point ofc0 with int(s1).
Let c1 denote the path fromx′1 to y′2 alongc0, and letx′1y

′
2 denote the subsegment ofs1 with endpoints

x′1 andy′2.

The pathc1 is a (finite) union of geodesic segments whose endpoints are in the set{x′1, . . . , x
′
2(n−1)}, it

follows thatc1 andx′1y
′
2 bound a diskD, which is equipped with a flat metric with geodesic boundary.

Since the pathc0 is of minimal length, so is the pathc1. It follows that the interior angle between two
consecutive segments ofc1 is at leastπ. Therefore, if the number of segments inc1 is l, the boundary of
D contains thenl + 1 geodesic segments, and the sum of all the interior angles is at least(l − 1)π. But
this is impossible by the Gauss-Bonnet Theorem, hence we conclude thatc0 ∩ int(s1) = ∅.

The same argument as above shows thaty′1 is not contained inc0, and the lemma follows. �

Let y′1x
′
j′1+1

denote the subsegment ofx′
j′1
x′

j′1+1
betweenx′j′1+1 andy′1. From Lemma4.3.9, we see

thats1 ∪ y′1x
′
j′1+1
∪ c0 is the boundary of a diskD0 contained inΣ′. We have immediately the following

Lemma 4.3.10 Let s be a geodesic ray that intersects the interior ofD0. If s intersD0 by a point in the
pathc0, thens must exitD0 by a point in(s1 ∪ y′1x

′
j′1+1

) \ {x′1, x
′
j′1+1}.
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Proof: If s exitsD0 by another point inc0, then we have a flat disk with geodesic boundary which vio-
lates the Gauss-Bonnet Theorem. �

Let ĉ0 denote the image ofc0 by πA1 . The patĥc0 is then a finite union of geodesic segments onΣ

with endpoints in the set{x1, . . . , xn}. It is clear that̂c0 contains a patĥc1 joining x1 andxj1+1. Let us
prove the following

Lemma 4.3.11 The patĥc1 does not contain the segmentxj1xj1+1.

Proof: Suppose, on the contrary, thatĉ1 containsxj1xj1+1. This implies thatc0 contains a segment
x′k′x′k′+1, with k′ 6= j′, such that

πA1(x
′
k′x′k′+1) = πA1(x

′
j′1
x′

j′1+1
) = xj1xj1+1.

Let y′2 denote the unique point inx′k′x′k′+1 such thatπA1(y
′
2) = πA1(y

′
1) = y1. The inverse image of

bk+1 by πA1 is a sequence of(m + 1) geodesic segments ofΣ′ with endpoints in the boundary ofΣ′,
whoses1 is the first one.

Let s2 be the next segment in the sequence. The pointy′2 is one endpoint ofs2, by assumption,y′2 is an
intersection point of the segments2 and the diskD0.Consider the segments2 as a geodesic ray exiting
from y′2.

By Lemma4.3.10, the rays2 exitsD0 by a pointz′2 in (s1 ∪ y′1x
′
j′1+1

) \ {x′1, x
′
j′1+1}. Since the geodesic

bk+1 is a simple, the pointz′2 can not be contained ins1. Hencez′2 must be a point inint(y′1x
′
j′1+1

).

Now, since the segmentsx′
j′1
x′

j′1+1
andx′k′x′k′+1 are identified byπA1 , the pointz′2 is identified to

a pointy′3 in x′k′x′k′+1. Consequently, the argument above can be applied infinitely many times, which
implies that the inverse image ofbk+1 by πA1 contains infinitely many segments, and we have a contra-
diction to the fact thatπ−1

A1
(bk+1) contains onlym+ 1 segments. �

SinceA1 is a tree, the setA1 \ int(xj1xj1+1) has two connected components, the one containingx1

will be denoted byC1, the other one containingxj1+1 will be denoted byC2. From Lemma4.3.11, we
know that the patĥc1, which joinsx1 to xj1+1 does not containxj1xj1+1. Therefore the patĥc1 must
contain a segment̂s, with endpoints in{x1, . . . , xn}, such that one of the two endpoints is inC1, and the
other is inC2.
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Let s be the inverse image of̂s by πA1 . Evidently,ŝ is not an edge ofA1, hences is a segment contained
insideΣ′, it follows thatint(ŝ) ∩A1 = ∅.

Let us prove

Lemma 4.3.12 int(ŝ) ∩ int(bi) = ∅, for everyi = 1, . . . , k.

Proof: Let b′i, i = 1, . . . , k, denote the inverse image ofbi by πA1 . Sinceint(bi) ∩ A1 = ∅, b′i is a
geodesic segment contained insideΣ′.

Suppose thatint(ŝ) ∩ int(bi) 6= ∅, it follows thatint(b′i) ∩ int(s) 6= ∅. Let y′′i be the intersection point
of int(b′i) and int(s). Recall thats is included in the pathc0. We can then consider the segmentb′i as
a ray which intersD0 by y′′i . By Lemma4.3.9, we know thatb′i must exitD0 by a pointz′′i which is
contained ins1∪y′1x

′
j′1+1

, but it would imply that eitherint(bi)∩ bk+1 6= ∅, or int(bi)∩A1 6= ∅, which
is impossible by assumption. The lemma is then proved. �

We can now finish the proof of Lemma4.3.8. Using Lemma4.3.7, we deduce that there exists a
sequence of elementary moves which transformsT1 into a new triangulationT′

1 containingA1, the
edgesb1, . . . , bk, and the segment̂s. By replacingxj1xj1+1 by ŝ, we get a new maximal treeA′

1. Let us
show that the number of intersection points ofbk+1 with A′

1, excluding the endpoints ofbk+1, is at most
m− 1. We have

Card{int(bk+1) ∩A
′
1} = Card{int(bk+1) ∩A1} − Card{int(bk+1) ∩ int(xj1xj1+1)}+

+Card{int(bk+1) ∩ int(ŝ)}

Let y be a point inint(bk+1) ∩ int(ŝ), and lety′ = π−1
A1

(y). Let b′ be the segment inπ−1
A1

(bk+1) which
containsy′. Note thaty′ = b′ ∩ s.

By Lemma4.3.10, and sinceint(b′) ∩ int(s1) = ∅, it follows thatb′ contains a pointz′ in x′
j′1
x′

j′1+1
.

We deduce that there is a one-to-one mapping from{int(bk+1)∩int(ŝ)} into{int(bk+1)∩int(xj1xj1+1)}.
Clearly, the pointy1 does not belong to the image of this map, therefore we have

Card{int(bk+1) ∩ int(xj1xj1+1)} > Card{int(bk+1) ∩ int(ŝ)}+ 1.

It follows immediately that

Card{int(bk+1) ∩A
′
1} 6 Card{int(bk+1) ∩A1} − 1 = m− 1.

The proof of Lemma4.3.8is now complete. �
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From what we have seen, Proposition4.3.6, and hence Theorem4.3.2, follow directly from Lemma
4.3.8. �

4.4 Comparison with complex hyperbolic volume form

In this section, we assume that all the anglesα1, . . . , αn are less than2π. Putκi = 2π − αi, i =

1, . . . , n, we have

κ1 + · · ·+ κn = 4π.

Following Thurston [Th], we denoteC(κ1, . . . , κn) the moduli space of spherical flat surface havingn

singularities with cone anglesα1, . . . , αn, or equivalently, with curvaturesκ1, . . . , κn, up to homothety.
In [Th], Thurston proves thatC(κ1, . . . , κn) admits a complex hyperbolic metric structure with finite
volume, and the metric closure ofC(κ1, . . . , κn) has cone manifold structure.

The complex hyperbolic metric provides a volume formµHyp onC(κ1, . . . , κn). On the other hand,
the volume formµTr gives another volume form onC(κ1, . . . , κn) denoted bŷµ1

Tr. The volume form
µ̂1

Tr is defined as follows :

- First, we identifyC(κ1, . . . , κn) to the subsetM1(S
2, ᾱ)∗ of all surfaces of area1 inM(S2, ᾱ)∗.

Let f : M(S2, ᾱ) −→ R be the function which associates to a pair(Σ, θ) in M(S2, ᾱ) =

M(S2, ᾱ)∗ × S1 the area ofΣ. The spaceM1(S
2, ᾱ)∗ can be considered as the quotient of the

locusf−1(1) by the action ofS1.

- By Theorem4.1.1, we know thatM(S2, ᾱ) is a complex orbifold, letJ denote the complex struc-
ture ofM(S2, ᾱ). Let ρ : f−1(1) −→ f−1(1)/S1 = M1(S

2, ᾱ)∗ denote the natural projection.
We define the volume form̂µ1

Tr onM1(S
2, ᾱ)∗ to be the one such that :

ρ∗µ̂1
Tr ∧ df ∧ (df ◦ J) = µTr

Our goal in this section is to prove

Proposition 4.4.1 There exists a constantλ depending on(α1, . . . , αn) such that̂µ1
Tr = λµHyp.

This proposition together with Thurston’s result implies

Corollary 4.4.2 The volume ofM1(S
2, ᾱ)∗ with respect tôµ1

Tr is finite.
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4.4.1 Local formulae for µ̂1
Tr and µHyp

First, we recall the construction of local charts forC(κ1, . . . , κn) as presented in [Th], and conse-
quently the definition ofµHyp.

Given a surfaceΣ inM1(S
2, ᾱ)∗, we considerΣ as a point inC(κ1, . . . , κn). LetT be a triangulation

of Σ by geodesic segments whose set of vertices is the set of singular points. Choose a singular point of
Σ and denote this pointxlast. We will call all the edges ofT which containxlast as an endpointfollowers
. Pick a treeÃ in T which connects all other singular points ofΣ, and call the edges of this treeleaders.
The remaining edges ofT are also calledfollowers.

Using a developing map, one can associate to each of the leaders a complex number, there aren − 2

of them. Let(z1, . . . , zn−2) denote those complex numbers. The same developing map also defines an
associated complex number for each of the followers, but these numbers can be calculated from those
associated to leaders by complex linear functions. Thus, the complex numbers associated to leaders de-
termine a local coordinate systemϕ : U −→M(S2, ᾱ) forM(S2, ᾱ) in a neighborhood of(Σ, 1), where
U is a neighborhood of(z1, . . . , zn−2) in Cn−2. Consequently, a neighborhood ofΣ in C(κ1, . . . , κn) is
then identified to an open set ofPCn−3 which contains[z1 : . . . : zn−2].

If we add toÃ a follower which containsxlast as an endpoint, then we have an erasing treeA on
Σ. We can then construct a local chartΨT ,A forM(S2, ᾱ) from T andA. Recall thatΨT ,A is defined
on an open subsetUT ofM(S2, ᾱ), with image inkerAT , where linear mapAT : CN1 −→ CN2 is
determined by the treeA, and the anglesα1, . . . , αn. By definition, the volume formµTr onM(S2, ᾱ) is
identified in this local chart to the volume form onkerAT which is induced by the Lebesgue measures
of CN1 andCN2 .

Now, observe that the following sequence is exact

0 −→ C
n−2 ΨT ,A◦ϕ

−→ C
N1

AT−→ C
N2 −→ 0.

Thus, the mapΨT ,A◦ϕ is the restriction of an isomorphism betweenCn−2 andkerAT onto an open sub-
set ofCn−2. Hence, in the local chartϕ, the volume formµTr is identified to the volume formcλ2(n−2),
whereλ2(n−2) is the Lebesgue measure ofCn−2, andc is a constant.

In the local chartϕ, the area functionf onM(S2, ᾱ) is expressed as a Hermitian formH. More
precisely, ifv ∈ Cn−2 is a vector such thatϕ(v) = (Σ, θ) ∈ M(S2, ᾱ) thenf((Σ, θ)) = Area(Σ) =
tvHv. It is proven in [Th] that H is of signature(1, n − 3). Changing the basis and the sign ofH, we
can assume that
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H =




1 . . . 0 0

· · · · · · · · · · · ·

0 . . . 1 0

0 . . . 0 −1




Thus we can write

f(z1, . . . , zn−2) = |z1|
2 + · · ·+ |zn−3|

2 − |zn−2|
2.

Note that by these changes, the vectors ofCn−2 representing surfaces inM1(S
2, ᾱ)∗ are contained in

the setQ1 = f−1(−1), and we still haveµTr = c0λ2(n−2) with c0 a constant.

We use the symbol〈, 〉 to denote the scalar product defined by Hermitian formH. By definition
f(Z) = 〈Z,Z〉, ∀Z ∈ Cn−2. LetJ denote the natural complex structure ofCn−2, that isJ(z1, . . . , zn−2) =

(ız1, . . . , ızn−2). Let η denote the real symmetric form induced by〈, 〉, that is

η(X,Y ) = Re〈X,Y 〉.

Let Z be a vector inQ1 which represents a surface inM1(S
2, ᾱ)∗. The tangent space ofQ1/S

1 at
the orbitS1 · Z is naturally identified to the orthogonal complement ofZ with respect to〈, 〉. Denote
this spaceZ⊥. The restriction of〈, 〉 onZ⊥ is a definite positive Hermitian form, which determines the
complex hyperbolic metric onM1(S

2, ᾱ)∗ = C(κ1, . . . , κn).

We have

df = (z̄1dz1 + · · ·+ z̄n−3dzn−3 − z̄n−2dzn−2) + (z1dz̄1 + · · ·+ zn−3dz̄n−3 − zn−2dz̄n−2),

and

df ◦ J = ı(z̄1dz1 + · · ·+ z̄n−3dzn−3 − z̄n−2dzn−2)− ı(z1dz̄1 + · · ·+ zn−3dz̄n−3 − zn−2dz̄n−2).

Note that bothdf anddf ◦ J are invariant by the action ofS1. Put

Uk = (0, . . . , 0,
(k)
z̄n−2, 0, . . . , z̄k), k = 1, . . . , n− 3.

andVk = J · Uk = ıUk. One can verify easily that{U1, V1, . . . , Un−3, Vn−3} spanZ⊥ as a real vector
space. We consider{U1, V1, . . . , Un−3, Vn−3} as a basis of the tangent space ofM1(S

2, ᾱ)∗ atϕ(Z).

We know that the restriction of the symmetric formη onZ⊥ defines a Riemannian metric. LetU∗
k , V

∗
k

denote theR-linear1-forms dual toUk andVk respectively with respect toη. We have :

U∗
k =

1

2
[(zn−2dzk − zkdzn−2) + (z̄n−2dz̄n−2 − z̄kdz̄n−2)],
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and

V ∗
k =

−ı

2
[(zn−2dzk − zkdzn−2)− (z̄n−2dz̄n−2 − z̄kdz̄n−2)].

We can consider{U∗
1 , V

∗
1 , . . . , U

∗
n−3, V

∗
n−3} as a basis of the cotangent space ofM1(S

2, ᾱ)∗ atϕ(Z).
Let ρ be the projection fromQ1 to Q1/S

1. We define a volume form̂µ1
Tr on Q1/S

1 by the following
condition :

ρ∗µ̂1
Tr ∧ df ∧ (df ◦ J) = (

ı

2
)n−2dz1dz̄1 . . . dzn−2dz̄n−2 = dλ2(n−2) (4.4)

Sincedf anddf ◦J are invariant by the action ofS1, the volume form̂µ1
Tr is well defined by this condition.

We wish to expresŝµ1
Tr(S

1 · Z) in terms ofU∗
k , V

∗
k , k = 1, . . . , n− 3.

Claim 1 : We have

µ̂1
Tr(S

1 · Z) =
c0

|zn−2|2(n−4)
(U∗

1 ∧ V
∗
1 ) ∧ · · · ∧ (U∗

n−3 ∧ V
∗
n−3),

where c0 = µTr/λ2(n−2).

Proof: ConsiderU∗
k ∧ V

∗
k , we have

U∗
k ∧ V

∗
k =

−ı

4
(Xk +Xk) ∧ (Xk −Xk)

=
ı

2
Xk ∧Xk

whereXk = zn−2dzk − zkdzn−2, andXk = z̄n−2dz̄k − z̄kdz̄n−2.

We can also write

df = X +X, anddf ◦ J = ı(X −X)

with X = z̄1dz1 + · · ·+ z̄n−3dzn−3 − z̄n−2dzn−2, andX = z1dz̄1 + · · ·+ zn−3dz̄n−3 − zn−2dz̄n−2.

Hence

df ∧ (df ◦ J) = 2ıX ∧X.

Now
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(U∗
1 ∧ V

∗
1 ∧ · · · ∧ U

∗
n−3 ∧ V

∗
n−3) ∧ df ∧ (df ◦ J)

= −( ı
2)n−4X1 ∧X1 ∧ · · · ∧Xn−3 ∧Xn−3 ∧X ∧X

= −( ı
2)n−4(−1)

(n−2)(n−3)
2 (X1 ∧ · · · ∧Xn−3 ∧X) ∧ (X1 ∧ · · · ∧Xn−3 ∧X)

Simple computations give

X1 ∧ · · · ∧Xn−3 ∧X = zn−4
n−2(|z1|

2 + · · ·+ |zn−3|
2 − |zn−2|

2)dz1 . . . dzn−2

= −zn−4
n−2dz1 . . . dzn−2

and similarly

X1 ∧ · · · ∧Xn−3 ∧X = −z̄n−4
n−2dz̄1 . . . dz̄n−2.

Therefore,

(X1 ∧ · · · ∧Xn−3 ∧X) ∧ (X1 ∧ · · · ∧Xn−3 ∧X) = |zn−2|
2(n−4)dz1 . . . dzn−2dz̄1 . . . dz̄n−2

= 2n−2ı(n−2)(n−4)|zn−2|
2(n−4)dλ2(n−2)

and we get

U∗
1 ∧ V

∗
1 ∧ · · · ∧ U

∗
n−3 ∧ V

∗
n−3 ∧ df ∧ (df ◦ J) = 4|zn−2|

2(n−4)dλ2(n−2).

By the definition ofµ̂1
Tr, we obtain

µ̂1
Tr(S

1 · Z) =
c0

4|zn−2|2(n−4)
U∗

1 ∧ V
∗
1 ∧ · · · ∧ U

∗
n−3 ∧ V

∗
n−3.

�

Remark:
- Even though the1-formsU∗

k andV ∗
k are not invariant by theS1 action, the2-form U∗

k ∧ V
∗
k is.

Hence, the2(n− 3)-formU∗
1 ∧ V

∗
1 ∧ · · · ∧ U

∗
n−3 ∧ V

∗
n−3 is invariant by theS1 action.

- Let µ1
Tr be the volume form onQ1 verifying the following condition

µ1
Tr ∧ df = µTr.

The tangent vector to theS1 orbit at a pointZ ∈ C2 is given byıZ, and we have

df ◦ J(ıZ) = −df(Z) = −〈Z,Z〉 = 1.

Therefore, the volume form̂µ1
Tr can be considered as the push-forward ofµ1

Tr ontoQ1/S
1.
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Now, we will proceed to compute the volume form defined byη onZ⊥ in terms ofU∗
k , V

∗
k . Let (ηij)

with i, j = 1, . . . , 2(n − 3) be the (real) matrix ofη in the basis{U1, V1, . . . , Un−3, Vn−3}. Since the
volume formµHyp is defined by the metricη, we have

µHyp(S
1 · Z) =

1√
det(ηij)

U∗
1 ∧ V

∗
1 ∧ · · · ∧ U

∗
n−3 ∧ V

∗
n−3.

Claim 2 : det(ηij) = |zn−2|
4(n−4).

Proof: Sinceη is the real part ofH, the matrix(ηij) is the real interpretation of the matrix(Hij), i, j =

1, . . . , n− 3, of H in the complex basis{U1, . . . , Un−3} of Z⊥. This implies

det(ηij) = |det(Hij)|
2.

We have

Hij = 〈Ui, Uj〉 =

{
−ziz̄j , if i 6= j ;
|zn−2|

2 − |zi|
2, if i = j.

Hence

det(Hij) = det




|zn−2|
2 − |z1|

2 −z̄1z2 . . . −z̄1zn−3

−z̄2z1 |zn−2|
2 − |z2|

2 . . . −z̄2zn−3

· · · · · · · · · · · ·

−z̄n−3z1 −z̄n−3z2 . . . |zn−2|
2 − |zn−3|

2




= |zn−2|
2(n−3) det




1− |ε1|
2 −ε̄1ε2 . . . −ε̄1εn−3

−ε̄2ε1 1− |ε2|
2 . . . −ε̄2εn−3

· · · · · · · · · · · ·

−ε̄n−3ε1 −ε̄n−3ε2 . . . 1− |εn−3|
2




whereεk = zk/zn−2, k = 1, . . . , n− 3.

Since
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

1− |ε1|
2 −ε̄1ε2 . . . −ε̄1εn−3

−ε̄2ε1 1− |ε2|
2 . . . −ε̄2εn−3

· · · · · · · · · · · ·

−ε̄n−3ε1 −ε̄n−3ε2 . . . 1− |εn−3|
2



=



1 −ε̄1ε2 . . . −ε̄1εn−3

0 1− |ε2|
2 . . . −ε̄2εn−3

· · · · · · · · · · · ·

0 −ε̄n−3ε2 . . . 1− |εn−3|
2



−

−ε1



ε̄1 −ε̄1ε2 . . . −ε̄1εn−3

ε̄2 1− |ε2|
2 . . . −ε̄2εn−3

· · · · · · · · · · · ·

ε̄n−3 −ε̄n−3ε2 . . . 1− |εn−3|
2



=



1− |ε2|
2 −ε̄2ε3 . . . −ε̄2εn−3

−ε̄3ε2 1− |ε3|
2 . . . −ε̄3εn−3

· · · · · · · · · · · ·

−ε̄n−3ε2 −ε̄n−3ε3 . . . 1− |εn−3|
2



−

−ε1



ε̄1 0 . . . 0

ε̄2 1 . . . 0

· · · · · · · · · · · ·

ε̄n−3 0 . . . 1



=



1− |ε2|
2 −ε̄2ε3 . . . −ε̄2εn−3

−ε̄3ε2 1− |ε3|
2 . . . −ε̄3εn−3

· · · · · · · · · · · ·

−ε̄n−3ε2 −ε̄n−3ε3 . . . 1− |εn−3|
2



− |ε1|
2,

we deduce

det




1− |ε1|
2 −ε̄1ε2 . . . −ε̄1εn−3

−ε̄2ε1 1− |ε2|
2 . . . −ε̄2εn−3

· · · · · · · · · · · ·

−ε̄n−3ε1 −ε̄n−3ε2 . . . 1− |εn−3|
2


 = 1− (|ε1|

2 + · · ·+ |εn−3|
2).

It follows that

det(Hij) = |zn−2|
2(n−3)(1− (|ε1|

2 + · · ·+ |εn−3|
2))

= |zn−2|
2(n−4)(|zn−2|

2 − (|z1|
2 + · · ·+ |zn−3|

2))

= |zn−2|
2(n−4)

Consequently, we havedet(ηij) = |det(Hij)|
2 = |zn−2|

4(n−4). The claim is then proved. �

From Claim 1, and Claim 2, we obtain

Lemma 4.4.3 The quotient̂µ1
tr/µHyp is a locally constant function onM1(S

2, ᾱ)∗.

4.4.2 Connectedness ofC(κ1, . . . , κn)

To complete the proof of4.4.1, we will prove

Lemma 4.4.4 For any(α1, . . . , αn), the spaceC(κ1, . . . , κn) is connected.
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Proof: To prove this lemma, first, we recall the construction of a surface withn− 1 singular points from
an arbitrary surfaceΣ in C(κ1, . . . , κn). Let x1, . . . , xn denote the singular points ofΣ such that the
curvature atxi is κi. Suppose that we haveκn−1 + κn < 2π. Choose a geodesic segments joining xn−1

toxn which does not pass through any other singular point ofΣ (the geodesic segment of minimal length
verifies this condition). Slit openΣ alongs, and glue to boundary of the surface obtained by this opera-
tion a cone so that the pointsxn−1 andxn become regular. The apex angle of the added cone must be
2π−(κn−1+κn). Therefore, after a rescaling, we obtain a flat surfaceΣ′ inC(κ1, . . . , κn−2, κn−1+κn).

The spaceC(κ1, . . . , κn−1 +κn) is contained in the metric closureC(κ1, . . . , κn) of C(κ1, . . . , κn).
A neighborhood ofC(κ1, . . . , κn−1 +κn) in C(κ1, . . . , κn) looks likeC(κ1, . . . , κn−1 +κn)×D2. By
this construction, we see that any surface inC(κ1, . . . , κn) can be deformed insideC(κ1, . . . , κn) into a
surface close to the stratumC(κ1, . . . , κn−1 + κn). Hence, ifC(κ1, . . . , κn−1 + κn) is connected, so is
C(κ1, . . . , κn).

If n > 5, then there existi 6= j ∈ {1, . . . , n} such thatκi+κj < 2π. Thus, by induction, we only need to
prove the lemma for the casen = 4. Without loss of generality, we can assume thatκ1 > κ2 > κ3 > κ4.
We only have two possibilities :

• Case 1 :κ3 + κ4 < 2π. SinceC(κ1, κ2, κ3 + κ4) is only a point, the argument above shows that
C(κ1, . . . , κ4) is connected.

• Case 2 :κ1 = κ2 = κ3 = κ4 = π. Every surface inC(π, π, π, π) is the quotient of a flat torus
by a holomorphic involution which fixes exactly4 points. This correspondence gives a bijection
betweenC(π, π, π, π) and the moduli space of flat tori up to homothety. Since the latter is the mo-
dular surfaceH2/SL(2,Z), which is connected, we deduce thatC(π, π, π, π) is also connected.
The lemma is then proved. �

Proposition4.4.1follows immediately from Lemma4.4.3, and Lemma4.4.4.
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Chapitre 5

Finiteness of integrals

5.1 Definitions and main results

Let ᾱ, β̄ be as in Chapter2. Consider the Teichm̈uller spaceTT(ᾱ; β̄). Let us define

F : TT(ᾱ; β̄) −→ R+

([(Σ, φ)], ξ) 7−→ exp(−Area(Σ)− ℓ2(∂Σ))

whereℓ(∂Σ) is the total length of the boundary ofΣ.

For surfaces with erasing trees, fix a family of topological treesÂ = {A1, . . . ,Am} and the numbers
ᾱ = (α1, . . . , αn) as in Chapter3, one can also define a similar function onT et(Â, ᾱ) as follows :

Fet : T et(Â, ᾱ) −→ R+

([(Σ, φ)], ξ) 7−→ exp(−Area(Σ)− ℓ2(φ(Â)))

whereℓ(φ(Â)) is the total length of the trees inφ(Â).

Clearly, the functionF (resp.Fet) induces a function on the moduli spaceMT(ᾱ; β̄) (resp.Met(Â, ᾱ)),
in the sequel of this chapter we will callF andFet energy functionsonMT(ᾱ; β̄), andMet(Â, ᾱ) res-
pectively. The main result of this chapter is the following

Theorem 5.1.1 a) If the spaceMT(ᾱ; β̄) consists of surfaces with non-empty boundary, then the
integral of the energy functionF with respect to the volume formµTr is finite

∫

MT(ᾱ;β̄)
FdµTr <∞ (5.1)
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b) If the forestÂ contains trees which are not isolated points, then the integral of the energyfunction
Fet with respect to the affine volume formµTr onMet(Â, ᾱ) is finite

∫

Met(Â,ᾱ)
FetdµTr <∞. (5.2)

Recall thatH1(k1, . . . , kn) is the moduli space of closed translation surfaces of area one, or equiva-
lently, the subspace ofH(k1, . . . , kn) consisting of pairs(M,ω) such that

∫
M |ω|

2 = 1. Even though
Theorem5.1.1concerns only translation surfaces with boundary, it turns out that onecan use this result
to prove the classical factVolµ0(H1(k1, . . . , kn)) <∞.

For spherical flat surfaces, using Theorem5.1.1, we will prove the following

Theorem 5.1.2 LetµTr denote the volume form onM(S2, ᾱ) defined in Chapter4, then we have
∫

M(S2,ᾱ)
exp(−Area)dµTr <∞ (5.3)

Consequently, the volume of the setM1(S
2, ᾱ) is finite.

This result is a generalization of the result of Thurston in [Th], and analogue to a result in [V2] which
is proven by a different method.

This chapter is organized as follows : we start by the demonstration of Theorem5.1.1for a particular
case, where the base surface is a torus, by this example, we introduce themain ideas of the proof for the
general case. The proof of Theorem5.1.1itself is given in the next two Sections5.3and5.4. In Section
5.5, we show how to obtain the fact that the volume ofH1(k1, . . . , kn) is finite by using5.1.1. Finally,
in Section5.6, we prove Theorem5.1.2.

5.2 First example

In this section, we prove Theorem5.1.1for the caseg = 1,m = 1, β1 = 2π, s1 = 2, andn = 0. In
this case,S is homeomorphic to a torus with an open disk removed. Via this simple case, we would like
to introduce the main ideas of the proof for the general case.

Let Σ be a translation surface with boundary homeomorphic toS such that
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• int(Σ) contains no singular points,

• the cone angle associated to the unique boundary component ofΣ is 2π, and

• there are two pointsp, q in ∂Σ such that∂Σ \ {p, q} is the union of two geodesic segments.

Let ξ be a normalized parallel vector field onΣ. By definition, the pair(Σ, ξ) represents a point in
MT(∅; {2π, 2}). First, we prove

Lemma 5.2.1 The open surfaceint(Σ) is isometric to a flat torus with a geodesic segment removed.

Proof: Let a1, anda2 denote the two geodesic segments with endpointsp, q which are contained in∂Σ.
Let η1, η2 denote the corner angles atp, andq respectively. We have to show thatη1, η2 are2π, and the
segmentsa1 anda2 have the same length.

Since the cone angle associated to∂Σ is 2π we have :

η1 + η2 = 4π. (5.4)

Letz1, z2 denote the complex numbers associateda1 anda2 respectively in a local chart ofMT(∅; {2π, 2})

constructed as in the proof of Theorem2.2.7for a neighborhood of(Σ, ξ). Assume thata1 anda2 are
both oriented fromp to q, we then have

z1 − z2 = 0. (5.5)

Remark that the numbersz1 andz2 are obtained by a developing map, therefore, the angle betweenz1
andz2 is equal to the angleη1 modulo2π. Since bothη1, η2 must be positive, it follows from (5.4) that
η1 = η2 = 2π. Moreover, (5.5) also implies that|a1| = |a2|, therefore, we can glue the segmentsa1, and
a2 together. We then get a flat torus with a marked geodesic segment, and the lemmafollows. �

By Lemma5.2.1, we can identifyMT(∅; {2π, 2}) to the moduli space of triples(Σ, I, ξ) whereΣ

is a flat torus,I is a geodesic segment onΣ, andξ is a normalized parallel vector field onΣ.

Now, let(Σ, I, ξ) be a triple inMT(∅; {2π, 2}). Letψt, t ∈ R+, denote the flow generated byξ. Let
p, q denote the endpoints ofI. Let us prove the following lemma

Lemma 5.2.2 There always exists a pair of parallel simple closed geodesicγp, γq ofΣ such thatγp∩I =

{p}, andγq ∩ I = {q}.
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Proof: Assume thatI is not parallel toξ, and lett0 be the infimum of the set

{t > 0 : ψt(I) ∩ I 6= ∅}.

The valuet0 exists because the stripe which is swept out by{ψs(I) : 0 6 s 6 t} has areaλt if
ψs(I) ∩ I = ∅, ∀s ∈ [0, t], whereλ > 0 is the transversal measure ofI with respect toξ.

By the definition oft0, there exists an isometric immersion

ϕ : P −→ Σ,

which is defined on a closed parallelogramP in R2 with two vertical sides of lengtht0, such that the
restriction ofϕ onto int(P) is an embedding, andϕ maps the lower side ofP ontoI, and the upper side
of P ontoψt0(I).

Since the segmentsI andψt0(I) are parallel and have the same length, the intersection setI ∩ψt0(I)

contains at least one endpoint ofI. Without loss of generality, we can assume thatp ∈ I ∩ ψt0(I).
Consequently,ϕ−1(p) contains exactly two points, one in lower side, and the other in the upper side of
P.

Let s be the geodesic segment inP joining two points inϕ−1(p), thenϕ(s) is a closed geodesic inΣ
which intersectsI atp. We chooseγp to beϕ(s), andγq the closed geodesic parallel toγp which passes
throughq. By construction,γp, andγq verify the condition in the statement of the lemma.

In the case whereI is parallel toξ, it suffices to replaceξ by the normalized parallel vector field
perpendicular to it, and use the same arguments. The lemma is then proved. �

p q

γqγp

I
δ

γq

The closed geodesicγp andγq cutΣ into two cylinders, the one which containsI will be denoted by
C1, the other one byC2. Let δ be a geodesic segment joiningp andq which is contained inC2.
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The complement inΣ of the setI ∪ γp ∪ γq ∪ δ is the disjoined union of two open parallelograms. By an
embedding ofΣ \ {I ∪ γp ∪ γq ∪ δ} into R2 which sendsξ onto the constant vertical vector field(0, 1),
we can associate the complex numbersZ, z, w to I, γp, andδ respectively. We can choose the orientation
of I, γp, andδ so that :

θ1(Z, z, w) = Im(Zz) > 0 andθ2(Z, z, w) = Im(zw) > 0.

Note that the area of the cylinderC1 equalsθ1, and the area of the cylinderC2 equalsθ2. Remark that,
given(Z, z, w) in C3 verifying θ1(Z, z, w) > 0 andθ2(Z, z, w) > 0, one can construct a flat torus with
a marked segment. Set

D = {(Z, z, w) ∈ C
3 : θ1(Z, z, w) > 0, θ2(Z, z, w) > 0}.

We then get a map :

ρ : D −→MT(∅; {2π, 2}),

which is onto and locally homeomorphic. The pull-back of the volume formµTr onD is equal toκλ6,
whereλ6 is the Lebesgue measure ofC3, andκ is a constant. Clearly, the pull-back of the energy function
F onMT(∅; {2π, 2}) is the following function

F̂(Z, z, w) = exp(−2|Z|2 − (θ1(Z, z, w) + θ2(Z, z, w))).

We say that a triple(Σ, I, ξ) is in special positionif either I is parallel toξ, or the trajectory
{ψt(p) : t ∈ R+} returns top without meeting any other point ofI. LetMT(∅; {2π, 2})sp denote
the set of triples in special position inMT(∅; {2π, 2}).

Observe that the setMT(∅; {2π, 2})sp is of measure0 with respect toµTr as it is the image byρ of the
set

{(Z, z, w) ∈ D : Re(Z) = 0 or Re(z) = 0},

which is obviously of measure zero with respect to the Lebesgue measureλ6.

Now, let (Σ, I, ξ) be a triple inMT(∅; {2π, 2}) \ MT(∅; {2π, 2})sp. Let (Z, x,w) be the com-
plex numbers associated toI, γp, and δ as above. SetA = Re(Z), a = Re(z), b = Re(w) and
B = Im(Z), x = Im(z), y = Im(w).

If the closed geodesicγp is chosen as in Lemma5.2.2, then we have|a| 6 |A|. Remark that, since
(Σ, I, ξ) is not in special position, we have|a| > 0. BecauseC2 is a cylinder, we can choose the segment
δ such that|b| 6 |a|. We deduce that the image byρ of the set

D0 = {(Z, z, w) ∈ D : |A| > |a| > |b|}
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contains the setMT(∅; {2π, 2}) \ MT(∅; {2π, 2})sp, and hence, the result of Theorem5.1.1for this
case will follow from the following proposition :

Proposition 5.2.3 We have

I =

∫

D0

F̂(Z, z, w)dλ6 =

∫

D0

exp(−2(A2 +B2)− (θ1 + θ2))dAdBdadbdxdy <∞.

Proof: By definition of the domainD0, we have

I =

∫ ∫
exp(−2(A2 +B2))× [

∫ |A|

−|A|
[

∫ |a|

−|a|
[

∫ ∫
exp(−θ1 − θ2)dxdy]db]da]dAdB.

Consider
∫ ∫

exp(−θ1 − θ2)dxdy for fixedA,B, a, b. By definition we have :

θ1 = Ba−Ax andθ2 = xb− ay.

Using the change of variables(x, y) 7−→ (θ1, θ2), we havedθ1dθ2 = |Aa|dxdy. Sinceθ1(Z, z, w) > 0,

andθ2(Z, z, w) > 0 for every(Z, z, w) ∈ D0, it follows

∫ ∫

(Z,z,w)∈D0

exp(−θ1 − θ2)dxdy =

∫ +∞

0

∫ +∞

0

e−θ1e−θ2

|Aa|
dθ1dθ2 =

1

|Aa|
.

Consequently

I =

∫ ∫
exp(−2A2 − 2B2)[

∫ |A|

−|A|
[

∫ |a|

−|a|

1

|Aa|
db]da]dAdB = 4

∫ ∞

−∞

∫ ∞

−∞
e−2A2

e−2B2
dAdB = 2π.

This proves the proposition, and hence, Theorem5.1.1is proved for the case ofMT(∅; {2π, 2}). �

5.3 Proof of Theorem5.1.1, Part a)

Let S be the base surface, andV be the finite subset ofS as in Section2.2. Let ᾱ = (α1, . . . , αn),
andβ̄ = {(β1, s1), . . . , (βm, sm)} be the data corresponding toS andV. In this section, we will always
assume thatm > 0, which means that the boundary ofS is not empty.

Let T be a triangulation ofS whose set of vertices isV. Assume in addition that every edge ofT which
is contained in the interior ofS belongs to the closures of two different triangles (i.e. no edges in the
interior of S bound the same triangle on both sides). As usual letN1, andN2 denote the number of
edges, and the number of triangles ofT . Set
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K =
m∑

j=1

sm.

Recall that we have

dimCMT(ᾱ; β̄) = 2g + n+m− 2 +K = N1 −N2.

Note that a point inMT(ᾱ; β̄) is represented by a pair(Σ, ξ), whereΣ is a translation surface with
geodesic boundary homeomorphic toS, andξ is a normalized parallel vector field onΣ.

5.3.1 Admissible matrix

Definition 5.3.1 A matrixA in MC(N2, N1) is said to beadmissible, if it has the following properties :

• Any entry ofA belongs to the set{−1, 0, 1}.

• On any row ofA, there are exactly three non-zero entries.

• On any column ofA, there are either one or two non-zero entries. If a column has two non-zero
entries, then one entry equals1, the other equals−1.

Note that ifΣ is a translation surface inMT(ᾱ; β̄)∗, andT is an admissible triangulation ofΣ, then
the normalized matrix associated toT is admissible.

Given an admissible matrixA, we will call elementary movesthe following transformations ofA :

a) interchanging two columns,

b) interchanging two rows,

c) changing the sign of a column.

Two matrices ares said to beequivalentif one of them can be obtained from the other by elementary
moves.

Remark: If A is the normalized matrix associated to a triangulationT of a translation surface in
MT(ᾱ; β̄)∗, then the elementary movesa), b), c) of A correspond respectively to a renumbering of
the edges ofT, a renumbering of triangles ofT, and a change of orientation of an edge inT.
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Let AD denote the set of equivalence classes of admissible matrices inMC(N2, N1), for eachs in
AD, choose a representativeAs of s, we then get a finite family{As, s ∈ AD}.

Let Vs denote the kernel of the linear map fromCN1 ontoCN2 which is defined by the matrixAs in the
canonical basis ofCN1 andCN2 .

For anyZ ∈ Vs, letΣZ denote the ‘surface’ which is obtained by the construction described in theproof
of Lemma2.4.2. LetUs denote the open subset ofVs, such thatΣZ is a translation surface homeomorphic
to S for anyZ in Us. We define a map fromUs intoMT(ᾱ; β̄) as follows :

Φs : Us −→ MT(ᾱ; β̄)

Z 7−→ (ΣZ , ξ)

whereξ is the parallel vector field onΣZ which is induced by the vertical constant vector field(0, 1) of
R2. From the proof of Theorem2.2.7, we have

Proposition 5.3.2 For everys ∈ AD, Φs(Us) is an open inMT(ᾱ; β̄), and{Φs(Us), s ∈ AD} is a
finite open cover ofMT(ᾱ; β̄).

In the remaining of this section, for anys ∈ AD, we will assume that, ifZ ∈ CN1 is a vector inUs,
then theK =

∑m
j=1 sj first coordinates ofZ correspond to the geodesic segments on the boundary of

Φs(Z).

5.3.2 Primary and Auxiliary system of indices

Set

N = dim Vs = 2g +m+ n− 2 +K.

Given an equivalence classs in AD, let (i1, . . . , iN ) be an ordered subset of{1, . . . , N1}.

Definition 5.3.3 We say that(i1, . . . , iN ) is a primary system of indicesassociated toAs, if there exist
N1 complex linear functions

fi : C
N1 −→ C, i = 1, . . . , N1,

such that, ifZ = (z1, . . . , zN1) ∈ Vs, thenzi = fi(zi1 , . . . , ziN ).

Given a primary system of indices(i1, . . . , iN ) associated toAs, let (jK , . . . , jN ) be an ordered sub-
set of{1, . . . , N1}.
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Definition 5.3.4 We say that(jK , . . . , jN ) is anauxiliary systemfor (i1, . . . , iN ) if, for anyk in {K, . . . , N},
we have

i) The functionfjk
depends only onzi1 , . . . , zik−1

.

ii) There is a row inAs whosejk-th andik-th entries are non-zero.

Remark: If (jK , . . . , jN ) is an auxiliary system for(i1, . . . , iN ), then for anyZ = (z1, . . . , zN1) in Us,
we have

• zjk
can be written as a linear function of(zi1 , . . . , zik−1

), ∀k = K, . . . , N .

• Let (Σ, ξ) = Φs(Z), and letT be the geodesic triangulation ofΣ which is obtained from the
construction ofΦs. Recall that each coordinate ofZ is the complex number associated to an edge
of T. The conditionii) of 5.3.4implies thatzik andzjk

correspond to two sides of a triangle inT.

Clearly, the set of triples(As, (i1, . . . , iN ), (jK , . . . , jN )), with s ∈ AD, (i1, . . . , iN ) a primary system
for As, and(jK , . . . , jN ) an auxiliary system for(i1, . . . , iN ) is finite.

5.3.3 Proof of (5.1)

Let (Σ, ξ) be a point inMT(ᾱ; β̄), we denoteψt, t ∈ R, the flow generated byξ onΣ. Recall that on
Σ, we have a specified finite subsetV corresponding to the subsetV of S, the complement ofV contains
only regular points ofΣ. With a slight abuse of notation, we will call any point inV a singular point ofΣ.

Let p be a point inint(Σ) \ V , if there existst0 > 0 (resp.t0 < 0) such thatψt0(p) ∈ V ∪ ∂Σ, then, for
everyt > t0 (resp.t < t0), we consider, by convention, thatψt(p) = ψt0(p). In other words, we consider
that the flowψt is stationary in the setV ∪ ∂Σ. By this convention,ψt(p) can be defined for everyt ∈ R

,andp ∈ int(Σ) \ V .

Let a be a geodesic segment contained in the boundary ofΣ with endpoints inV . We can extend the
field ξ by continuity ontoint(a). Assume thata is not parallel to the fieldξ, then we say thata is an
upper(resp.lower) boundary segment, if the fieldξ on int(a) points outward (resp. inward). Observe
that in this case, the image ofint(a) byψt is well defined for allt ∈ R.

We say that the pair(Σ, ξ) is in special positionif there exists a geodesic segment onΣ with end-
points inV , and parallel to the fieldξ. LetMT(ᾱ; β̄)sp denote the subset ofMT(ᾱ; β̄) consisting of
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pairs(Σ, ξ) which are in special position.

The formula (5.1) is the consequence of the following propositions.

Proposition 5.3.5 The setMT(ᾱ; β̄)sp is a null set inMT(ᾱ; β̄) with respect toµTr.

Proof: For everys in AD, letµs denote the volume form onUs which is induced by the Lebesgue mea-
sures ofCN1 andCN2 via the linear mapAs. By definition, we haveµs = Φ∗

sµTr.

Let (Σ, ξ) be a pair inMT(ᾱ; β̄)sp, lete be a geodesic segment ofΣ with endpoint inV which is parallel
to the fieldξ. There exists an admissible triangulationT of Σ which contains the edgee.

Sincee is parallel toξ, the complex number associated toe in the local chart arising fromT is purely
real. As a consequence, there exists ∈ AD, andi0 ∈ {1, . . . , N1} such that(Σ, ξ) = Φs(Z), with
Z ∈ {(z1, . . . , zN1) ∈ Us Im(zi0) = 0}. Remark that the converse assertion is also true.

For everys ∈ AD, and everyi ∈ {1, . . . , N1}, set

U i
s = Us ∩ {(z1, . . . , zN1) ∈ C

N1 | Im(zi) = 0}).

It follows that

MT(ᾱ; β̄)sp =
⋃

s∈AD

N1⋃

i=1

Φs(U
i
s).

Clearly,µs(U
i
s) = 0, ∀s ∈ AD, i ∈ {1, . . . , N1}, therefore,µTr(MT(ᾱ; β̄)sp) = 0. �

Let (Σ, ξ) be a point inMT(ᾱ; β̄), andT an admissible triangulation ofΣ. Let e be an edge ofT,
we denoteh(e) the transversal measure ofe with respect toξ. If we choose an isometric embedding of
a neighborhood ofe into R2 such that the vector fieldξ is mapped to the constant vertical vector field
(0, 1) of R2, thenh(e) is nothing other than the length of the projection into the horizontal axis of the
image ofe. We callh(e) the horizontal length ofe.

A triangle inT whose sides are denoted bye1, e2, e3 is said to begoodif h(ei) > 0, ∀i = 1, 2, 3. Given
a good triangle∆ in R2, we call the unique side of∆ of maximal horizontal length thebaseof ∆. If all
of triangles ofT are good,T is called agood triangulation.

Proposition 5.3.6 Let (Σ, ξ) be a point inMT(ᾱ; β̄) \MT(ᾱ; β̄)sp, then there exists a good triangula-
tion T of Σ whose edges are denoted by{e1, . . . , eN1} so that,
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• The boundary edges ofT are denoted by{e1, . . . , eK}.

• For everyi ∈ {K + 1, . . . , N1}, there existsj < i, and a triangle∆ of T which contains both
ei, ej such thatej is the base of∆.

Proof: As usual, letV denote the set of distinguished singularities ofΣ. We define an admissible trian-
gulation ofΣ as follows :

Let e1, . . . , eK denote the (closed) geodesic segments with endpoints inV , which are contained in the
boundary ofΣ. Assume that the segmenteK is of maximal horizontal length among the set{e1, . . . , eK}.
Since(Σ, ξ) is not inMT(ᾱ; β̄)sp, we haveh(eK) > 0. Let p, q denote the two endpoints ofeK . Consi-
der the following procedure :

Assume thateK is a lower boundary segment. Consider the stripe swept by{ψt(int(eK)), t > 0}. Since
h(eK) > 0, this stripe must meet a singular point in the interior ofΣ, or the boundary ofΣ, other-
wise its area would tend to infinity ast tens to+∞. Remark that, since the horizontal length ofeK is
maximal among the set{h(e1), . . . , h(eK)}, for everyt ∈ R+, ψt(int(eK)) cannot be contained in a
geodesic segment (with endpoints inV ) in the boundary ofΣ. Therefore, there existst > 0 such that
ψt(int(eK)) ∩ V 6= ∅.

Let t0 be the smallest value oft such thatt0 > 0, andψt0(int(eK)) ∩ V 6= ∅. Let r denote a point in
ψt0(eK) ∩ V . Let e′ ande′′ denote the two geodesic segments contained in the stripe∪06t6t0ψt(eK)

which joinr to p, and toq. It can happen that one of the edgee′, e′′ is already contained in the boundary
of Σ but not both of them, unlessΣ is a triangle. We will calleK thesupporterof e′ ande′′.

By construction, we haveh(eK) > max{h(e′), h(e′′)}. Clearly, the triangle bounded byeK , e′, e′′ is
embedded inΣ andeK is the base of this triangle. Since(Σ, ξ) is not inMT(ᾱ; β̄)sp, neithere′ nor e′′

is parallel toξ.

In the case whereeK is an upper boundary segment, by considering{ψt(int(eK)), t < 0} instead of
{ψt(int(eK)), t > 0}, we get a similar result.

Cut off the triangle bounded byeK , e′, e′′ from the surfaceΣ along the segmentse′ ande′′. The re-
maining surface is a translation surface with geodesic boundary, which is not necessarily connected.

We can now reapply the same action to the new surface. The assumption that(Σ, ξ) is not in special
position allows us to continue until we get a triangulationT of Σ, which is clearly a good triangulation.

We number the edges ofT which are contained in the interior ofΣ according to their appearing order
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in the procedure above, the ordering of two edges which appear in the same step is not important. Since
every edge ofT in the interior ofΣ admits a supporter which appears in the procedure before itself, the
proposition is then proved. �

Corollary 5.3.7 If (Σ, ξ) is a point inMT(ᾱ; β̄) \MT(ᾱ; β̄)sp, then there exists ans ∈ AD, a primary
system of indicesPr = (i1, . . . , iN ) for As, an auxiliary system of indicesAu = (jK , . . . , jN ) for Pr,
and a vectorZ ∈ Us such that

• |Re(zjk
)| > |Re(zik)| for anyk = K, . . . , N .

• (Σ, ξ) = Φs(Z).

Proof: Let T be the good triangulation ofΣ which is obtained from Proposition5.3.6. Let AT be the
matrix inMZ(N2, N1) associated toT, letZ = (z1, . . . , zN1) be the vector inkerAT whose coordinates
are complex numbers associated to edges ofT. We can assume thatzi is the complex number associated
to ei.

We choose a primary system of indicesPr and an auxiliary system of indicesAu for AT as follows :

• The firstK − 1 elements ofPr are{1, . . . ,K − 1}.

• Assume that we have chosenk indices(i1, . . . , ik) for Pr, andk + 1−K indices(jK , . . . , jk) for
Au. The indexik+1 of Pr is the smallest indexi such thatzi can not be written as a linear function
of zi1 , . . . , zik , and the indexjk+1 of Au is the index such thatejk+1

is a supporter ofeik+1
, and

jk+1 < ik+1. From Proposition5.3.6, jk+1 exists, and by assumption,zjk+1
is a linear function of

(zi1 , . . . , zik).

By this procedure, we obtain a primary system of indices(i1, . . . , iN ), and an auxiliary system of indices
(jK , . . . , jN ) associated toAT. Since for anyk = K, . . . , N, ejk

is the supporter ofeik , it follows that

|Re(zjk
)| = h(ejk

) > h(eik) = |Re(zik)|.

We know thatAT is equivalent to a matrixAs with s in AD. The transformation ofAT into As

consists of renumbering the coordinates inCN1 , changing their sign. By this transformation,(i1, . . . , iN )

and(jK , . . . , jN ), become a primary system and an auxiliary system of indices forAs, and the vectorZ
becomes a vector inUs which verifies the condition in the statement of the corollary. �

From now on, we call a triple(As; I; J), with s ∈ AD, I = (i1, . . . , iN ) a primary system of indices
of As, andJ = (jK , . . . , jN ) an auxiliary system forI, anadmissible triple. Given such a triple, set
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Us(I; J) = {(z1, . . . , zN1) ∈ Us | |Re(zik)| 6 |Re(zjk
)|, ∀k = K, . . . , N}.

From Corollary5.3.7, we deduce that the family

{Φs(Us(I; J))| (As; I; J) is admissible}

covers the setMT(ᾱ; β̄) \MT(ᾱ; β̄)sp. SinceµTr(MT(ᾱ; β̄)sp) = 0, to prove (5.1), all we need is the
following :

Proposition 5.3.8 Let (As; I; J), whereI = (i1, . . . , iN ), J = (jK , . . . , jN ), be an admissible triple.
LetFs denote the pull back of the energy functionF ontoUs byΦs. Then we have :

∫

Us(I;J)
Fsdµs <∞,

whereµs is the volume form onUs which is induced by the Lebesgue measures ofCN1 andCN2 via the
linear mapAs.

Proof: By definition, there areN1 complex linear functions with real coefficientsf1, . . . , fN1 such that,
if (z1, . . . , zN1) ∈ Us, thenzi = fi(zi1 , . . . , ziN ). Note thatfik = zik , therefore, we can define a complex
linear map

Bs : CN −→ kerAs

(z1, . . . , zN ) 7−→ (f1(z1, . . . , zN ), . . . , fN1(z1, . . . , zN ))

Observe thatBs is an isomorphism. By definition, we have

B−1
s (Us(I; J)) = {(z1, . . . , zN ) ∈ C

N | |Re(zk)| 6 |Re(fjk
(z1, . . . , zN ))|, ∀k = K, . . . , N}.

Consider a vectorZ = (z1, . . . , zN1) in Us, let (Σ, ξ) denote the image ofZ by Φs. Recall that the
mapΨs specifies an admissible triangulationT of Σ such that each edge ofT corresponds to a coordinate
of Z.

By the definition, for anyk = K, . . . , N , the complex numberszik andzjk
correspond to two edgeseik ,

andejk
which bound a triangle∆k of T. With appropriate choices of orientation ofeik , andejk

, the area
θ̂k of ∆k is given by the function

θ̂k =
1

2
(Re(zik)Im(zjk

)− Im(zik)Re(zjk
)).

Clearly, the triangles∆k, k = K, . . . , N, are all distinct. Hence, we have

129



5. FINITENESS OF INTEGRALS

Area(Σ) >

N∑

k=K

θ̂k.

Let θk, k = K, . . . , N, denote the pull back of the function̂θk by Bs. It follows thatB−1
s ((Us(I; J)) is

a subset of a setWs where

Ws = {(z1, . . . , zN ) ∈ C
N | |Re(zk)| 6 |Re(fjk

)|, θk > 0, ∀k = K, . . . , N}.

LetGs denote the pull back ofFs by Bs. Since the volume formB∗
sµs equals toκλ2N , whereλ2N is the

Lebesgue measure ofCN , andκ is a constant, all we need to show is the following

Lemma 5.3.9 We have

∫

Ws

Gsdλ2N <∞.

Proof: Let (z1, . . . , zN ) be a vector inWs, and(Σ, ξ) be the image of(z1, . . . , zN ) by Φs ◦Bs. We can
assume that(z1, . . . , zK−1) are complex numbers associated to geodesic segments in the boundary ofΣ.

To simplify the notations, fork = 1, . . . , N , setxk = Re(zk), yk = Im(zk). For k = K, . . . , N , we
write fk in the place offjk

, and setak = Re(fk), bk = Im(fk). Recall that, by definition,fk depends
only on(z1, . . . , zk−1), and sincefk is a linear function with real coefficients, it follows thatak depends
only on (x1, . . . , xk−1), andbk depends only on(y1, . . . , yk−1), for anyk = K, . . . , N1. With these
notations, we have

ℓ2(∂Σ) >

K−1∑

k=1

|zk|
2, (5.6)

θk =
1

2
(xkbk − ykak), ∀k = K, . . . , N, (5.7)

|ak| > |xk|, ∀k = K, . . . , N. (5.8)

Area(Σ) >

N∑

k=K

θk. (5.9)

Consequently, we have

Gs 6 exp(−
K−1∑

k=1

|zk|
2 −

N∑

k=K

θk).

Therefore, to prove the proposition, it suffices to show that
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I =

∫

Ws

exp(−
K−1∑

k=1

|zk|
2 −

N∑

k=K

θk)dλ2N <∞. (5.10)

Fix (z1, . . . , zK−1) ∈ CK−1 and(xK , . . . , xN ) ∈ RN−K+1, and let

Ws((z1, . . . , zK−1); (xK , . . . , xN ))

denote the set

{(yK , . . . , yN ) ∈ R
N−K+1| (z1, . . . , zK−1, (xK + ıyK), . . . , (xN + ıyN )) ∈ Ws}.

Consider the following integral

I((z1, . . . , zK−1); (xK , . . . , xN )) =

∫

Ws((z1,...,zK−1);(xK ,...,xN ))
exp(−

N∑

k=K

θk)dyK . . . dyN .

Consider the variable change(yK , . . . , yN ) 7−→ (θK , . . . , θN ). Using (5.7), and the fact thatbk depends
only on(y1, . . . , yk−1), for anyk = K, . . . , N , we have :

dθK . . . dθN =
|aK . . . aN |

2N−K+1
dyK . . . dyN .

Since the functionsθk, k = K, . . . , N , are positive onWs, it follows

I((z1, . . . , zK−1); (xK , . . . , xN )) 6
2N−K+1

|aK . . . aN |

∫ +∞

0
e−θKdθK . . .

∫ +∞

0
e−θNdθN

6
2N−K+1

|aK . . . aN |
.

Now, set

W∗
s = {((z1, . . . , zK−1); (xK , . . . , xN )) ∈ C

K−1 × R
N−K+1 | |ak| > |xk|, ∀k = K, . . . , N}.

We have
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I =

∫

W∗
s

exp(−
K−1∑

k=1

|zk|
2)I((z1, . . . , zK−1); (xK , . . . , xN ))dx1dy1 . . . dxK−1dyK−1dxK . . . dxN ,

6

∫

W∗
s

exp(−
K−1∑

k=1

|zk|
2)

2N−K+1

|aK . . . aN |
dx1dy1 . . . dxK−1dyK−1dxK . . . dxN ,

6

∫

CK−1

exp(−
K−1∑

k=1

|zk|
2)[

∫ |aK |

−|aK |
[. . . [

∫ |aN |

−|aN |

2N−K+1

|aK . . . aN |
dxN ] . . . ]dxK ]dx1dy1 . . . dxK−1dyK−1,

Using the fact thatak does not depend onxj if k 6 j, ∀k = K, . . . , N , we deduce that

I 6 4N−K+1

∫

CK−1

e−(|z1|2+···+|zK−1|
2)dx1dy1 . . . dxK−1dyK−1 <∞.

The lemma is then proved. �

The proof of Proposition5.3.8is now complete, and (5.1) follows. �

5.4 Proof of Theorem5.1.1, Part b)

The proof of (5.2) is essentially the same as the proof of (5.1) with some minor modifications.

Assume that the forest̂A containsm trees denoted byA1, . . . ,Am, and the vertices of those trees are
{p1, . . . , pn}. Through out this section, we assume thatm < n, which means that there is at least a tree
in Â which is not a point, in the sequel, such a tree is callednon-trivial. Note that the total number of
edges of the tree in̂A is n−m. Recall that we have

dimCM
et(Â, ᾱ) = N =

{
2g + n− 1, if αi ∈ 2πN, ∀i = 1, . . . , n ;
2g + n− 2, otherwise.

A point inMet(Â, ᾱ) is a triple(Σ, Â, ξ), whereΣ is a flat surface homeomorphic toSg, Â is an erasing
forest isomorphic toÂ, andξ is a normalized parallel vector field onΣ.

Choose a triple(Σ, Â, ξ) inMet(Â, ᾱ), let Σ♮ be the translation surface with boundary obtained by
slitting openΣ along the trees in the forest̂A. LetT be an admissible triangulation ofΣ♮, and letN1,N2

denote the number of edges, and the number of triangles inT respectively.
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In Section3.4, we have seen that one can associate toT a systemS∗
T of N1 unknowns which contains :

• N2 equations of type (2.3), which will be calledtriangle equations;

• (n−m) equations of type (3.1), which will be calledboundary equations.

Note that the boundary equations ofS∗
T are determined by the forest̂A, and the angles in̄α.

SetN∗
2 = N2 + (n−m). Recall that a matrix is callednormalized if each of its entries is either0, or

a complex number of module1. We can now define

Definition 5.4.1 LetA be a matrix inMC(N∗
2 , N1). We say thatA is ∗-admissibleif

i) A is normalized.

ii) Every column ofA contains exactly two non-zero entries.

iii) There areN2 rows ofA which form an admissible matrix defined in Definition5.3.1. These rows
will be calledordinary.

iv) There exists a bijection from a set of(n −m) rows ofA onto the set of boundary equations of
S∗

T such that, each of these rows is the vector of coefficients of the corresponding equation inS∗
T.

These rows ofA will be calledexceptional.

By definition, ifA∗
T is the matrix inMC(N∗

2 , N1) associated to the systemS∗
T, thenA∗

T is ∗-admissible.

Given a∗-admissible matrixA, the following transformations ofA will be calledelementary moves

• interchanging two columns,

• interchanging two rows,

• changing sign of a columns,

Two ∗-admissible matrices are said to beequivalent, if one can be obtained from the other by a sequence
of elementary moves. LetAD∗ denote the set of equivalence classes of matrices inMC(N∗

2 , N1).

For eachs in AD∗, choose a matrixA∗
s in the equivalence classs, we then get a finite family

{A∗
s, s ∈ AD

∗} of ∗-admissible matrices inMC(N∗
2 , N1).
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Givens in AD∗, for anyZ ∈ kerA∗
s, let ΣZ be the ‘surface’ obtained fromZ by the construction

described in Lemma3.4.5. LetU∗
s be the open subset ofkerA∗

s which is defined by the condition :

U∗
s = {Z ∈ kerA∗

s : ΣZ is a flat surface homeomorphic toSg}.

We can then define a mapΦ∗
s from U∗

s intoMet(Â, ᾱ) by associating to a vectorZ in U∗
s the triple

(ΣZ , Â, ξ), whereÂ is the forest obtained from the exceptional rows inA∗
s, andξ is the vector field

induced from the vertical constant vector field(0, 1) of R2.

From Lemma3.4.5, the following proposition is clear,

Proposition 5.4.2 The family{Φ∗
s(U

∗
s ), s ∈ AD∗} is an open cover of the spaceMet(Â, ᾱ).

Let us now define the notions of primary and auxiliary system of indices fora matrixA∗
s, s ∈ AD

∗.
Set

K =

{
n−m+ 1, if N = 2g + n− 1 ;
n−m, if N = 2g + n− 2.

Definition 5.4.3 Given a matrixA∗
s, aprimary system of indicesfor A∗

s is an ordered subset(i1, . . . , iN )

of (1, . . . , N1) such that there existN1 complex linear functions

fi : C
N −→ C, i = 1, . . . , N1,

such that ifZ = (z1, . . . , zN1) is a vector inkerA∗
s then

• zi = fi(zi1 , . . . , ziN ), ∀i = 1, . . . , N1.

• ∀i = 1, . . . , N1,∀k = K, . . . , N , the coefficient ofzik in fi(zi1 , . . . , zN ) is real.

Definition 5.4.4 Given a primary system of indicesI = (i1, . . . , iN ) for A∗
s, an auxiliary system of

indicesfor I is an ordered subset(jK , . . . , jN ) of {1, . . . , N1) such that
• fjk

depends only on(zi1 , . . . , zik−1
) ;

• There exists an ordinary row inA∗
s whoseik-th andjk-th entries are both non-zero.

Remark: There is a natural way to specify a primary system of indices ofA∗
s as follows : letAs be the

admissible matrix consisting of the ordinary rows ofA∗
s, and letĨ = (i1, . . . , iÑ ) be a primary system

of indices forAs.
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If the i-th column ofAs has only one non-zero entry, we say thati is a boundary index. Two boundary
indicesi1 andi2 are said to be paired up, if there exists an exceptional row inA∗

s whosei1-th andi2-
th entries are non-zero whereas all other entries are zero. By construction, there are(n − m) pairs of
boundary indices, they correspond to the edges of the trees in the forest Â, therefore there are exactly
2(n−m)− 1 boundary indices in the familỹI.

Assume that(i1, . . . , i2(n−m)−1) is the set of boundary indices iñI, we have two issues :

- If N = 2g + n − 1, that isαi ∈ 2πN, ∀i = 1, . . . , n, we haveÑ = N + (n − m) − 1. In
this case, by eliminating one boundary index in each pair if both indices of this pair appear in
{i1, . . . , i2(n−m)−1}, we obtain a primary system of indices forA∗

s.

- If N = 2g+n−2, that is there existsi ∈ {1, . . . , n} such thatαi 6∈ 2πN, we haveÑ = N+(n−m).
In this case, to obtain a primary system forA∗

s, we have to eliminate(n − m) indices from
(i1, . . . , i2(n−m)−1) so that any two indices in the remaining family are not paired up.

Let I denote the primary system forA∗
s which is obtained from̃I by this method without changing

the ordering, observe that an auxiliary system forĨ is also an auxiliary system forI.

Finally, we say that a triple(Σ; Â; ξ) ∈ Met(Â, ᾱ) is in special position, if the pair (Σ♮, ξ) is in
special position as defined in Section5.3, whereΣ♮ is the translation surface with boundary obtained
by slitting openΣ along the trees in̂A. LetMet(Â, ᾱ)sp denote the set of triples in special position in
Met(Â, ᾱ). With these settings, we have

Proposition 5.4.5 The setMet(Â, ᾱ)sp is of measure zero with respect toµTr.

Proposition 5.4.6 For any triple (Σ, Â, ξ) in Met(Â, ᾱ) which is not in special position, there exist
an s ∈ AD∗, a primary system of indicesI = (i1, . . . , iN ) for A∗

s, an auxiliary system of indices
J = (jK , . . . , jN ) for I, and a vectorZ ∈ U∗

s such that

• for k = K, . . . , N , |Re(zik)| < |Re(zjk
)|.

• Φ∗
s(Z) = (Σ, Â, ξ).

We call a triple(A∗
s; I; J), with s in AD∗, I a primary system of indices forA∗

s, andJ an auxiliary
system of indices forI, an∗-admissible triple.

Given an∗-admissible triple(A∗
s; I; J), with I = (i1, . . . , iN ), J = (jK , . . . , jN ), set
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U∗
s (I; J) = {(z1, . . . , zN1) ∈ U

∗
s | |Re(zik)| 6 |Re(zjk

)|, ∀k = K, . . . , N}.

LetFet
s denote the pull back of the energy functionFet by Φ∗

s ontoU∗
s .

Proposition 5.4.7 We have
∫

U∗
s (I;J)

Fet
s dµs <∞,

whereµs is the volume form onU∗
s which is induced by the Lebesgue measure ofCN1 , and the Lebesgue

measure of eitherCN∗
2 , or W = {(z1, . . . , zN∗

2
) ∈ CN∗

2 | z1 + · · ·+ zN∗
2

= 0} via A∗
s.

The proofs of Propositions5.4.5, 5.4.6, and5.4.7will be omitted since they are completely analogue
to the proofs of Proposition5.3.5, Corollary5.3.7, and Proposition5.3.8.

Part b) of Theorem5.1.1follows directly from these propositions. �

5.5 Volume of moduli spaces of closed translation surfaces of constant
area is finite

In this section, we use Theorem5.1.1to prove the well-known fact that the volume ofH1(k1, . . . , kn)

is finite. Recall thatH(k1, . . . , kn) can be considered as the moduli space of translation surfaces (with
parallel vector field) having cone angles2(k1 +1)π, . . . , 2(kn +1)π at singularities, andH1(k1, . . . , kn)

is the subspace ofH(k1, . . . , kn) which contains all surfaces of area one.

OnH(k1, . . . , kn), we have a volume formµ0 which is defined by the period mapping. Letµ1
0 denote

the volume form onH1(k1, . . . , kn) which is induced byµ0. Our goal in this section is to prove that

µ1
0(H1(k1, . . . , kn)) <∞. (5.11)

First, we remark that (5.11) is equivalent to
∫

H(k1,...,kn)
exp(−Area)dµ0 <∞.

This is because we can identifyH(k1, . . . , kn) toH1(k1, . . . , kn) × R∗
+, and by this identification, we

can write

dµ0 = tsdµ1
0dt, wheres = dimRH1(k1, . . . , kn).
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Therefore, we have

∫

H(k1,...,kn)
exp(−Area)dµ0 =

∫

H1(k1,...,kn)

∫ +∞

0
tse−t2dtdµ1

0,

=
1

2
(
s− 1

2
)!

∫

H1(k1,...,kn)
dµ1

0.

Consequently, all we need to prove is the following

Proposition 5.5.1 We have
∫

H(k1,...,kn)
exp(−Area)dµ0 <∞ (5.12)

Proof: At first glance, it seems that this proposition is a direct consequence of Theorem5.1.1, Part a),
but, unfortunately, the arguments used in the proof of5.1.1cannot work without the assumption that the
boundary of the surfaces considered is not empty. To overcome this misfortune we will make use of (5.2)
in a particular case.

Setαi = 2(ki + 1), i = 1, . . . , n. Let A1 be a topological tree isomorphic to a segment, and
for i = 2, . . . , n, let Ai be just a point. Let̄α denote(2π, α1, . . . , αn), and Â denote the family
{A1, . . . ,An}.

Consider the spaceMet(Â, ᾱ) with the previous data. In this case,Met(Â, ᾱ) is the moduli space of
triples (Σ; (I(x1, x), x2, . . . , xn; ξ), whereΣ is a closed translation surface,{x1, . . . , xn} is the set of
singularities ofΣ with cone angles{α1, . . . , αn} respectively, andI(x1, x) is a geodesic segment joining
the singular pointx1 to a regular pointx.

Let α̃ denote the sequence{α1, . . . , αn}, and letMT(α̃) denote the moduli space of triples
(Σ;x1, . . . , xn; ξ), whereΣ is a closed translation surface,{x1, . . . , xn} is the ordered set of singula-
rities of Σ with cone angles{α1, . . . , αn} respectively, andξ is as usual a parallel vector field onΣ.
If the angles{α1, . . . , αn} are pairwise distinct, thenMT(α̃) is identified toH(k1, . . . , kn), otherwise
MT(α̃) is a finite covering ofH(k1, . . . , kn).

Let ̺ denote the map fromMet(Â, ᾱ) ontoMT(α̃) which is defined by

̺ : (Σ; (I(x1, x), x2, . . . , xn); ξ) 7−→ (Σ; (x1, . . . , xn); ξ).

Let µ̂Tr denote the volume form which is defined by using admissible triangulations onMet(Â, ᾱ).
Let µ̂0, andµ0 denote the volume forms defined by the period mappings onMet(Â, ᾱ), andMT(α̃)

respectively. To prove the proposition, it suffices to show
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∫

MT(α̃)
exp(−Area(Σ))dµ0 <∞ (5.13)

By Theorem5.1.1, Part b), we know that

∫

Met(Â,ᾱ)
exp(−Area(Σ)− ℓ2(I))dµ̂Tr <∞ (5.14)

Recall that on each connected component ofMet(Â, ᾱ) there exists a constantλ such thatµ̂Tr =

λµ̂0. By a result of Konsevitch-Zorich [KZ], we know thatH(k1, . . . , kn) has finitely many connected
components. It follows thatMet(Â, ᾱ) also so has finitely many connected components. Therefore,
(5.14) implies

∫

Met(Â,ᾱ)
exp(−Area(Σ)− ℓ2(I))dµ̂0 <∞ (5.15)

Consider a point(Σ; (x1, . . . , xn); ξ) inMT(α̃). Fix a tangent vectorv1 ∈ Tx1Σ, we can then iden-
tify the set of tangent vector of norm one inTx1Σ to the setR/α1Z. Any geodesic segment inΣ which
containsx1 as an endpoint is uniquely determined by its tangent vector atx1, and its length. Conse-
quently, we have an injective map :

ϕ : ̺−1{(Σ; (x1, . . . , xn); ξ)} −→ (R/α1Z)× R
+,

Let U is a neighborhood of(Σ; (x1, . . . , xn); ξ) inMT(α̃) such that the period mappingΦ defines a
local chart onU . For each point(Σ′; (x′1, . . . , x

′
n); ξ′) in U , we choose a tangent vectorv′1 in Tx′

1
Σ′ to be

the reference vector, we can assume thatv′1 varies continuously as(Σ′; (x′1, . . . , x
′
n); ξ′) varies inU so

that the mapϕ extended into a map :

ϕ̂ : ̺−1(U) −→ U × (R/α1Z)× R
+,

which is continuous and injective.

Let (Σ; (I(x1, x), x2, . . . , xn); ξ) be a point inMet(Â, ᾱ) such that

̺((Σ; (I(x1, x), x2, . . . , xn); ξ)) = (Σ, (x1, . . . , xn), ξ).

Let Φ̂ denote the period mapping defining a local chart ofMet(Â, ᾱ) in a neighborhood of(Σ; (I(x1, x), x2, . . . , xn); ξ).
Suppose that if̂Φ(Σ; (I(x1, x), x2, . . . , xn); ξ) = (z1, . . . , zN+1), thenzN+1 is the complex number cor-
responding to the segmentI(x1, x). It follows that in the local chartŝΦ, andΦ the map̺ can be written
as

̺(z1, . . . , zN+1) = (z1, . . . , zN )

and the map̂ϕ verifies
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ϕ̂(z1, . . . , zN+1) = ((z1, . . . , zN ); arg(zN+1) + c; |zN+1|), with c constant,

whereN = dimCMT(α̃). Consequently, we can write

ϕ̂∗dµ̂0 = rdµ0dθdr.

It follows that

∫

̺−1(U)
e−Area(Σ)−ℓ2(I)dµ̂0 =

∫

ϕ̂(̺−1(U))
e−Area(Σ)−r2

rdµ0dθdr. (5.16)

By a well known result (for example, see [MT], Theorem 1.8), we know that on a translation surface,
there are no geodesic segments with endpoints in the set of singularities in all directions except a coun-
table set. This implies that there exists a countable subsetΘ of R/α1Z such that ifθ is not inΘ, then the
geodesic ray starting fromx1 in the directionθ can be extended infinitely. It follows immediately that
ϕ̂(̺−1(U)) is an open dense set ofU × (R/α1Z)× R+. Therefore, we have

∫

ϕ̂(̺−1(U))
e−Area(Σ)−r2

rdµ0dθdr =

∫

U×(R/α1Z)×R+

e−Area(Σ)−r2
rdµ0dθdr,

=

∫ +∞

0
e−r2

rdr

∫ α1

0
dθ

∫

U
e−Area(Σ)dµ0,

=
α1

2

∫

U
e−Area(Σ)dµ0.

From (5.16), we deduce that

∫

̺−1(U)
e−Area(Σ)−ℓ2(I)dµ̂0 =

α1

2

∫

U
e−Area(Σ)dµ0 (5.17)

Since (5.17) is true for any small neighborhood inMT(α̃), we can conclude that

∫

MT(α̃)
e−Area(Σ)dµ0 =

2

α1

∫

Met(Â,ᾱ)
e−Area(Σ)−ℓ2(I)dµ̂0. (5.18)

From (5.15), we know that the right hand side of this equality is finite, hence, so is the left hand side, and
(5.13) follows. The proposition is then proved. �
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5.6 Volume ofM1(S
2, ᾱ) is finite

In this section, we are interested in the moduli space of spherical flat surfaces. We have defined the
volume formµTr on the spaceM(S2, ᾱ) = M(S2, ᾱ)∗ × S1, whereM(S2, ᾱ)∗ is the moduli space
of spherical flat surfaces whose singularities have cone angles given by ᾱ = (α1, . . . , αn). Recall that
M1(S

2, ᾱ)∗ is the set of flat surfaces having area1 inM(S2, ᾱ)∗, andM1(S
2, ᾱ) is the product space

M1(S
2, ᾱ)∗× S1. By Proposition3.2.3, the spaceM1(S

2, ᾱ)∗ can be considered as the moduli space of
the configurations ofn points on the sphereS2 up to Möbius transformations.

The volume formµTr induces a volume formµ1
Tr onM1(S

2, ᾱ). Pushing forwardµ1
Tr by imposing

the condition that the volume of eachS1 fiber is 2π, we get a volume form̂µ1
Tr onM1(S

2, ᾱ)∗. The
goal in this section is to prove Theorem5.1.2. Note that a direct consequence of Theorem5.1.2, is the
following

Corollary 5.6.1 µ̂1
Tr(M1(S

2, ᾱ)∗) is finite.

Remark: A similar result was proved in [V2], Section 18,19.

Proof: Since we have
∫

M(S2,ᾱ)
exp(−Area)dµTr = C

∫

M1(S2,ᾱ)
dµ1

Tr,

whereC is a constant depending only on the dimension ofM(S2, ᾱ), Theorem5.1.2implies that

µ1
Tr(M1(S

2, ᾱ)) <∞.

It follows immediately that

µ̂1
Tr(M1(S

2, ᾱ)∗) <∞.

�

5.6.1 The functionδ

Let Σ be a flat surface inM(S2, ᾱ)∗. Let x1, . . . , xn denote the singular points ofΣ so that the cone
angle atxi is αi. Letd denote the distance defined by the metric onΣ.

For any subsetI of {1, . . . , n}, let diamI(Σ) denote the diameter of the set{xi, i ∈ I}. We define
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δI(Σ) = min{d(xi, xj) : i ∈ I, j 6∈ I}

and

δ+I (Σ) =

{
δI(Σ) if δI(Σ) > 3diamI(Σ) ;
0 otherwise.

A subsetI of {1, . . . , n} is calledessentialif we have

∑

i∈I

αi 6∈ 2πZ.

We define a functionδ on the spaceM(S2, ᾱ)∗ as follows

∀Σ ∈M(S2, ᾱ)∗, δ(Σ) = max{δ+I (Σ) : I ⊂ {1, . . . , n}, I is essential}.

The functionδ is always positive since whenI = {i}, δ+I (Σ) = min{d(xi, xj), j 6= i} > 0, and there
always existsi ∈ {1, . . . , n} such thatαi 6∈ 2πZ.

To simplify the notations, we also denoteδ the composition ofδ and the natural projectionpr1 from
M(S2, ᾱ) ontoM(S2, ᾱ)∗.

The proof of Theorem5.6.1splits naturally into two propositions :

Proposition 5.6.2 We have

∫

M(S2,ᾱ)
exp(−Area− δ2)dµTr <∞,

and

Proposition 5.6.3 There exists a constantC(ᾱ) depending on̄α such that for any surfaceΣ inM(S2, ᾱ)∗

we have

δ2(Σ) < C(ᾱ)Area(Σ).

5.6.2 Good tree and good forest

Let Σ be a surface inM(S2, ᾱ)∗. Letx1, . . . , xn denote the singular points ofΣ so that the cone angle
atxi isαi. Let V denote the set{x1, . . . , xn}, and as usual letd be the distance defined by the metric on
Σ. Set

δ = δ(Σ).
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For any geodesic treeA onΣ, we denoteVer(A) the vertex set ofA, max(A) the length of the longest
edge ofA, andR(A) the distance fromVer(A) to the setV \Ver(A).

Definition 5.6.4 LetA be a geodesic tree inΣ whose set of vertices is a subset ofV. Letk be the number
of edges ofA. The treeA is said to begood, if eitherA is a singular point with cone angle in2πN, or
k > 1 and we have

• max(A) 6 4k−1δ,

• diam(Ver(A)) 6 4k−1δ,

• The index set corresponding to the vertex set ofA is non essential, that is the sum of all cone angles
at the vertices ofA belongs to the set2πN.

• EitherVer(A) = V , or R(A) > 3.4k−1δ.

Let us start by

Lemma 5.6.5 There always exists a good tree onΣ.

Proof: First, lete be a geodesic segment which realizes the distance

min{d(xi, xj), αi 6∈ 2πN andi 6= j}.

By definition, we have

leng(e) 6 δ.

LetA1 denote the tree which contains only the segmente. By assumption, we have

max(A1) = diam(Ver(A1)) = leng(e1) 6 δ.

Consider the following procedure, which will be called thepoints adding procedure:

Suppose that we already have a geodesic treeAk connectingk + 1 points in{x1, . . . , xn} verifying the
following condition :

(∗)

{
max(Ak) 6 4k−1δ,

diam(Ver(Ak)) 6 4k−1δ.

Let I be the subset of{1, . . . , n} corresponding to the vertex set ofAk. We have two cases :
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- Case 1 :I is essential. In this case, letek+1 be a segment realizing the distanceδI(Σ), and letxj

be the endpoint ofek+1 which does not belong toVer(Ak).

By definition, we have eitherleng(ek+1) 6 3diam(Ver(Ak)), or leng(ek+1) 6 δ. Since we have
diam(Ver(Ak)) 6 4k−1δ, we deduce that, in both cases

leng(ek+1) 6 3.4k−1δ.

Slit open the surfaceΣ along the treeAk, and denote the new surfaceΣ′. The vertex setVer(Ak)

gives rise to a finite subsetV k of the boundary ofΣ′. Let us prove that the distance fromV k to the
pointxj , with respect to the distance inΣ′, is at most4kδ.

Considerek+1 as a ray exiting fromxj , and lety be the first intersection point betweenek+1 and the
treeAk. Since we havemax(Ak) 6 4k−1δ, there exists a path onΣ joiningxj to an endpoint of the
edge containingy without crossing the treeAk, whose length is at most3.4k−1δ + 4k−1δ = 4kδ.
Because this path does not cross the treeAk, it represents a path onΣ′ joining xj to a point inV k.
Thus, we deduce that the distance betweenxj andV k in Σ′ is at most4kδ.

Let a′ be the path realizing the distance fromxj to V k in Σ′. The patha′ corresponds to a
patha in Σ which is piecewise geodesic, and meets the treeAk at one of its vertices. Note that
leng(a) = leng(a′) 6 4kδ.

Adding a to Ak, we obtain a new tree which will be denoted byAk+r, wherer is the number of
geodesic segments contained ina. Let us prove that this new tree also verifies the condition(∗).

• If r = 1 thenVer(Ak+1) = Ver(Ak) ∪ {xj}. Sincediam(Ak) 6 4k−1δ, and the distance from
xj to Ver(Ak) is at most3.4k−1δ, we deduce that

diam(Ver(Ak+1)) 6 4k−1δ + 3.4k−1δ = 4kδ.

By assumption we know thatmax(Ak) 6 4k−1δ, and we have proved that the length of the
added edge is at most4kδ, hence we havemax(Ak+1) 6 4kδ.

• If r > 1, it means that the patha contains some singular points in its interior. The distance from
those points to the setVer(Ak) is bounded by the length ofa which is at most4kδ. Hence, the
diameter of the setVer(Ak+r) is at most

4k−1δ + 4kδ 6 4k+r−1δ.

As for max(Ak+r), we have

max(Ak+r) = max{max(Ak), leng(a)} 6 4kδ.

143



5. FINITENESS OF INTEGRALS

We can now restart the procedure withAk+r in the place ofAk.

- Case 2 :I is non-essential. In this case, ifVer(Ak) = V, or R(Ver(Ak)) > 3.4k−1δ, then the
procedure stops. Otherwise, by the same arguments as in Case 1, we can add toAk some edges so
that the new tree also verifies the condition(∗), and we restart the procedure.

Since we only have finitely many singular points inΣ, the points adding procedure must stop, and we
obtain a good tree. �

Definition 5.6.6 A union of disjoint geodesic trees with vertices inV is called agood forestif every tree
in this union is good.

Lemma 5.6.7 There exists a good forest inΣ whose set of vertices isV.

Proof: By Lemma5.6.5, we know that there exists a good treeA1 in Σ. Clearly,A1 itself is a good
forest. IfVer(A1) = V, or every point in the setV \ Ver(A1) has cone angle in2πN, then we are done.
Otherwise, there exists a pointxi in V \Ver(A1), with cone angle not in the set2πN.

In this case, we would like to construct a good treeA2 containingxj by the points adding procedure.
However, this procedure can not be carried out straightly because ofthe presence of the treeA1. Namely,
it may happen that we haveR(Ver(A2)) 6 3.4k2−1δ, wherek2 is the number of edges ofA2, but the
segment realizing this distance intersects the treeA1. We will call this theblocking situation.

Let us consider the following procedure, which will be called thetrees joining procedure:

Assume that we already havel disjoint geodesic treesA1, . . . , Al with the following properties :

a) Aj is a good tree∀j = 1, . . . , l − 1.

b) Al satisfies the condition(∗).

c) d(Al,⊔
l−1
j=1Aj) 6 4klδ.

Let k1, . . . , kl be the numbers of edges ofA1, . . . , Al respectively. Letc be a path of length less than
4klδ joining a point inAl to a point in⊔l−1

j=1Aj .
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Without loss of generality, we can assume thatc joins a point inAl to a point inAl−1. Since bothAl−1

andAl verify the condition(∗), we deduce that there exists a pathĉ joining a vertex ofAl−1 to a vertex
of Al without intersecting the set⊔l−1

j=1Aj (except at the endpoints) whose length is at most

4kl−1δ + 4klδ + 4kl−1−1δ 6 4kl+kl−1δ.

Consider the surface with boundary obtained by slitting openΣ along the treesA1, . . . , Al. The patĥc
represents a path in this new surface, joining a point in the boundary component corresponding toAl−1

to a point in the component corresponding toAl.

Consider a path of minimal length joining these two points in the new surface. Thispath contains a pie-
cewise geodesic pathc0 in Σ joining a vertex ofAl−1 to a vertex ofAl without crossing the edges of
A1, . . . , Al. Note that the endpoints of the geodesic segments inc0 are singular points ofΣ. The union of
c0 and all the trees in{A1, . . . , Al} which have at least a common point withc0 is a geodesic tree. This
new tree contains obviouslyAl−1 andAl as subtrees.

Denote the remaining trees, ones that have no common points withc0, A′
1, . . . , A

′
l′−1, and the new tree

A′
l′ . Note thatl′ < l and the treeA′

l′ contains at leastkl−1 + kl + 1 edges.

It is a routine to verify that the family{A′
1, . . . , A

′
l′} also satisfies the conditionsa), and b). If the

conditionc) still holds, then we can restart the procedure. Therefore the procedure can be repeated until
we get a familyÃ1, . . . , Ãl̃ of disjoint geodesic trees, verifyinga), andb), and in addition we have :

d(Ãl̃, (Ã1 ⊔ · · · ⊔ Ãl̃−1)) > 4k
l̃δ,

wherekl̃ is the number of edges of̃Al̃.

It is clear that, if we have a blocking situation, then the hypothesis of the treesjoining procedure are
satisfied, we can then use the trees joining procedure to get out of the blocking situation, and reapply the
points adding procedure until we get to a blocking situation again. Since the number of singular points
in Σ is finite, this algorithm must stop, and we obtain a good forest. �

Corollary 5.6.8 There exists a constantκ, such that for anyΣ in M(S2, ᾱ)∗, there exists an erasing
forestÂ in Σ which verifies

ℓ(Â) 6 κδ.

Proof: By Lemma5.6.7, we know that there exists a good forestÂ = ⊔m
j=1Aj in Σ. By definition,Â is

an erasing forest. Since every tree inÂ verifies the condition(∗), we haveℓ(Aj) 6 kj4
kjδ, wherekj is

the number of edges ofAj , ∀j = 1, . . . ,m.
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Observe thatk1 + · · ·+ km = n−m 6 n− 1, therefore we have

ℓ(Â) =
m∑

j=1

ℓ(Aj) 6 (n− 1)4n−1δ,

and the corollary follows. �

5.6.3 Proof of Proposition5.6.2

LetAad(ᾱ) denote the set of all familieŝA = {A1, . . . ,Am} of m (0 < m < n) topological trees,
whose vertices are labelled by{1, . . . , n}, verifying the following condition : ifIj , j = 1, . . . ,m, is the
subset of{1, . . . , n} corresponding to the vertices of the treeAj , then

∑

i∈Ij

αi ∈ 2πZ.

For eachÂ = {A1, . . . ,Am} ∈ Aad(ᾱ), letUÂ be the subset ofMet(Â, ᾱ) consisting of all triples
(Σ, Â, ξ) satisfying the following condition :

ℓ(Â) 6 κδ(Σ),

whereÂ = ⊔m
j=1Aj is a geodesic erasing forest ofΣ, withAj isomorphic toAj , andκ is the constant in

Corollary5.6.8.

LetρÂ denote the projection fromMet(Â, ᾱ) ontoM(S2, ᾱ)∗, which associates to every triple(Σ, Â, ξ)
the surfaceΣ. From Corollary5.6.8, we know that the family

{VÂ = ρÂ(UÂ) : Â ∈ Aad(ᾱ)}

covers the spaceM(S2, ᾱ)∗. Letρ1 be the natural projection fromM(S2, ᾱ) ontoM(S2, ᾱ)∗, it follows
that the family

{ρ−1
1 (VÂ) : Â ∈ Aad(ᾱ)}

covers the spaceM(S2, ᾱ).

Since the setAad(ᾱ) is finite, it is enough to show that, for everŷA in Aad(ᾱ), we have
∫

ρ−1
1 (V

Â
)
exp(−Area− δ2)dµTr <∞. (5.19)

Since the spaceM(S2, ᾱ) can be locally identified toMet(Â, ᾱ), we have
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∫

ρ−1
1 (V

Â
)
exp(−Area− δ2)dµTr =

∫

U
Â

exp(−Area− δ2)dµTr

By definition, for every(Σ, Â, ξ) in UÂ, we haveℓ(Â) 6 κδ(Σ). It follows
∫

U
Â

exp(−Area− δ2)dµTr 6

∫

U
Â

exp(−Area−
1

κ2
ℓ2(Â))dµTr (5.20)

By Theorem5.1.1, Part b), we know that the right hand side of (5.20) is finite. Consequently, (5.19) is
true, and the proposition follows. �

5.6.4 Proof of Proposition5.6.3

Let I0 be a subset of{1, . . . , n} such thatδ+I0(Σ) = δ(Σ) = δ. Let s be a geodesic segment joining a
pointxi0 with i0 ∈ I0 and a pointxi1 with i1 6∈ I0 such thatleng(s) = δ. Let p denote the midpoint of
s. As usual we denoted the distance induced by the flat metric ofΣ.

First, we have

Lemma 5.6.9B(p, δ/2) = {x ∈ Σ : d(p, x) < δ/2} does not contain any singular point ofΣ.

Proof: Suppose on the contrary that a singular pointxk, with k 6∈ {i0, i1}, is contained inB(p, δ/2),
then we haved(xi0 , xk) < δ, andd(xi1 , xk) < δ, but this would imply thatδI0(Σ) < δ, and we have a
contradiction. �

LetD(δ/2) denote the open disk with center(0, 0) and radiusδ/2 in the Euclidean planeE2 = R2.
Let f be the isometric immersion fromD(δ/2) to Σ, which maps the horizontal diameter ofD(δ/2) to
the segments, and the origin(0, 0) to the pointp. The immersionf can be defined because the smallest
distance fromp to a singular point ofΣ is δ/2.

Let ǫ be the maximal value such that the restriction off on the diskD(ǫδ) with center(0, 0) and radius
ǫδ is an embedding. Ifǫ > 1/4 then there is an embedded Euclidean disk of radiusδ/4 in Σ, which
means thatArea(Σ) > (πδ2)/16. In the sequel, we will suppose thatǫ < 1/4, consequently, the set
f−1(p) contains points other than(0, 0). Let p1 be the point inf−1(p) \ {(0, 0)} closest to(0, 0), andc1
be the segment joining(0, 0) to p1 in D(δ/2).

For any subsetI of {1, . . . , n}, we denoteαI the sum

αI =
∑

i∈I

αi,
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and‖αI‖ the distance fromαI to the setπZ in R. Set

α0 = min{‖αI‖ : I ⊂ {1, . . . , n}, ‖αI‖ 6= 0}.

Choose a numberǫ0 such thatǫ0 < min{1/6, sin(α0)/4}. We will prove that there exists an embed-
ded disk of radiusǫ0δ in Σ, which is enough to prove the proposition.

Let d0 denote the horizontal diameter ofD(δ/2), andd1 denote the lift ofs passing throughp1. Let c
denote the image ofc1 by f , thenc is a geodesic loop inΣ with base pointp. Let θ be angle betweend0

andd1, by this we mean the angle in[0;π/2] between the two lines supportingd0 andd1. Let us prove

Lemma 5.6.10 We have, eitherθ = 0, or ǫ > ǫ0.

Proof: Remark thatθ equals the rotation angle of the holonomy ofcmoduloπ. Suppose thatθ 6= 0, then,
by the definition ofα0, we haveθ > α0.

If ǫ < ǫ0, then the distance from(0, 0) to d1 is less than2ǫ0δ < sin(α0)δ/2. Together with the fact that
θ > α0, this implies thatd1 intersectsd0, in other words, the segments has self-intersection, which is
impossible. Therefore, we can conclude that eitherθ = 0, or ǫ > ǫ0. �

If ǫ > ǫ0, then we are done. Therefore, we only have to consider the caseθ = 0, and we have

Lemma 5.6.11 If θ = 0, then the rotation angle of the holonomy ofc is 0 modulo2π.

Proof: If it is not the case, then this angle equalsπ modulo2π, and hence, the holonomy ofc is the
composition of a rotation of angleπ and a translation which maps(0, 0) to p1.

Such a transformation must fix the midpointq1 of the segment joining(0, 0) to p1. It follows thatq1 is
mapped byf into a singular point ofΣ, which is impossible becauseq1 is contained in the diskD(δ/2).�

From Lemma5.6.11, we deduce that the setf(D(δ/2)) contains a cylinderC with length(1− 2ǫ)δ

and width bounded by2ǫδ.

Remark thatc is then a closed geodesic inC which cutsΣ into two flat surfaces with geodesic boundary,
each of which is homeomorphic to a topological closed disk. We denoteΣ0 the flat disk that containsxi0 .
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Lemma 5.6.12 For anyi in I0, xi is contained inΣ0.

Proof: Recall that by the definition ofδ, we have

diam{xi, i ∈ I0} < δ/3,

which implies thatd(xi0 , xi) < δ/3, ∀i ∈ I0.

If there existsi ∈ I0 such thatxi 6∈ Σ1, then the path realizing the distanced(xi0 , xi) must intersect the
closed geodesicc, therefore it crossesC. Consequently,

d(xi0 , xi) > (1− 2ǫ)δ > 2/3δ,

which is impossible. �

The rotation angle of the holonomy ofc equals the sum of all cone angles at singular points inΣ0

modulo2π. By assumption, we know thatαI0 6∈ 2πZ, it means thatΣ0 contains singular points which
do not belong to{xi, i ∈ I0}. Note that we have

min{d(xi, xj}, i ∈ I0, j 6∈ I0, xj ∈ Σ0} > δI0(Σ) = δ.

SinceΣ0 is a flat surface with geodesic boundary which contains no singularities onthe boundary, we
can restrict ourselves intoΣ0 and restart the whole procedure. This procedure can be continued aslong
as the rotation angle of the loopc is zero.

Since we only have finitely many singular points inΣ, the procedure must stop, and we get a point inΣ

whose injectivity radius is at leastǫ0δ. Proposition5.6.3is then proved. �

149



5. FINITENESS OF INTEGRALS

150



Appendices

151



Annexe A

Curves and Isotopies

Throughout this chapter,S will be a fixed compact surface whose Euler characteristic is negative. Our
goal in this section, is to prove the following lemma

Lemma A.0.1 Let c1, . . . , ck be a family of curves inS verifying the following conditions :

i) For everyi = 1, . . . , k, the curveci is either a simple arc, or a simple loop if its two endpoints
coincide lying in the interior ofS except its endpoints when the later are contained in the boundary.

ii) If i 6= j thenci andcj are not in the same homotopy class with fixed endpoints. Ifci is a loop then
ci is not homotopic to the constant loop, and if the endpoints ofci are contained in the boundary,
ci is not homotopic with fixed endpoints to a subsegment of a boundary component.

iii) If i 6= j, thenci andcj intersect at most at their common endpoints.

The union ofc1, . . . , ck will be denoted byC.

Letϕ be a homeomorphism ofS which is isotopic to the identity by an isotopy which is identity on the
boundary ofS, and fixes every endpoint of the arcsc1, . . . , ck. Suppose thatϕ(ci) = ci, ∀i = 1, . . . , k,
then there exists an isotopy fromϕ to IdS which is identity on the boundary, and leaves the setC inva-
riant.

It seems to the author that this lemma is classical, but he could not find a good reference for it. For-
tunately, it turns out that one can prove this lemma by a combination of classicaltheorems, and Epstein-
Zieschang, and eventually the theorem of Alexander on homeomorphisms ofthe closed disk which is
identity on the boundary.

In the sequel, we call a homeomorphismϕ of S a1-homeomorphism if it is isotopic to the identity by
an isotopy which is identity on the boundary ofS. If A is a subset ofS, then aA − 1-homeomorphism
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is a homeomorphism which is isotopic to the identity by an isotopy fixing every pointin the set∂S ∪A.

A.1 Basic Theorems

We recall here some important theorems which are useful for the proof ofLemmaA.0.1.
The following theorem follows from results of Epstein-Zieschang (see [B], Theorem A.4, Theorem

A.5 page 411).

Theorem A.1.1 (Epstein-Zieschang)Let{c1, . . . , ck} be a family of curves with the properties descri-
bed in LemmaA.0.1. Assume in addition that all the endpoints ofc1, . . . , ck lie on the boundary ofS.

Let{γ1, . . . , γk} be another family of curves verifying the same properties such thatγi andci are homo-
topic with fixed endpoints, then there exists a homeomorphismφ of S such that

• φ is isotopic to the identity by an isotopy which is identity on the boundary ofS, and fixes all the
endpoints ofc1, . . . , ck.

• φ(ci) = γi, ∀i = 1, . . . , k.

Next, we also need the following theorem of Alexander

Theorem A.1.2 (Alexander) Any homeomorphism of the unity diskD of R2 is isotopic toIdD.

A direct consequence ofA.1.2 is the following

Corollary A.1.3 Let {a1, . . . , an} be a family of curves inS verifying the properties in LemmaA.0.1
such thatint(S) \ (∪n

i=1ai) is a disjoint union of topological open disks. Letφ be a homeomorphism of
S which is identity on∂S, fixes all the endpoints of the curvesa1, . . . , an, and preserves the set∪n

i=1ai.
Thenφ is a1-homeomorphism ofS.

Proof: By assumption, we haveφ(ai) = ai, ∀i = 1, . . . , n. For eachi = 1, . . . , n, lethi : ai×[0, 1] −→

ai be an isotopy fromφ|ai
to Idai

. Since the curvesa1, . . . , an cut int(S) into open disk, we can extend
the isotopieshi, i = 1, . . . , n to an isotopy fromφ to a homeomorphismφ′ which is identity on the set
∂S ∪ (∪n

i=1ai). Note that this isotopy is identity on the boundary ofS.

Now, applying TheoremA.1.2 to the closure of each of the disks in the setint(S) \ (∪n
i=1ai), we

deduce that the homeomorphismφ′ is isotopic to the identity ofS by an isotopy which is identity on the
set∂S ∪ (∪n

i=1ai), and the corollary follows. �
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A.2 Proof of Lemma A.0.1

First, we add to the family{c1, . . . , ck} the simple curvesck+1, . . . , cn such that the family{c1, . . . , cn}
verify the same conditions as{c1, . . . , ck}, andc1, . . . , cn cut int(S) into a union of open disks.

By cutting off a small disk around each endpoint of the curvesc1, . . . , cn in the interior ofS, we can
assume that all the endpoints ofc1, . . . , cn are contained in the boundary ofS. EquipS with a hyperbolic
metric such that∂S become a union of closed geodesics. The universal coverS̃ of S is then a domain of
H2 bounded by geodesic lines and a subset of∂H2 = S1.

For i = k + 1, . . . , n, let γi denote the image ofci by ϕ. Recall that by assumptionϕ(ci) = ci,∀i =

1, . . . , k. Let S′ denote the surface we obtain by cuttingS alongc1, . . . , ck. We will show that, for all
i = k + 1, . . . , n, ci is homotopic toγi in S′.

Fix an i in {k + 1, . . . , n}, consider a liftc̃i of ci, and a lift γ̃i of γi such that̃ci and γ̃i have the
same endpoints iñS. Note that, by assumption, for everyj = 1, . . . , k, int(c)i ∩ int(cj) = ∅, and
int(cj) ∩ int(γi) = ∅, consequentlỹci andγ̃i do not intersect any lift ofcj .

Now, let r be the number of intersection points betweenc̃i and γ̃i except their common endpoints.
It follows that there existsr+1 disks inS̃ each of which is bounded by a sub-arc ofc̃i and a sub-arc of̃γi.

LetD be one of those disks. For anyj ∈ {1, . . . , k}, let c̃j be a lift of cj , observe thatD ∩ ci = ∅.
Suppose on the contrary thatD ∩ c̃j 6= ∅, then, sincẽci andγ̃i cannot intersectint(c̃j), the diskD must
contain both endpoints of̃cj . By assumption, the endpoints ofc̃j are contained in a geodesic line of the
boundary ofS̃, it follows that there is a geodesic line in∂S̃ that intersects the diskD, but this would
imply that either̃ci or γ̃i is not contained insidẽS, which is impossible.

Now, the observation above implies thatc̃i is homotopic tõγi by an isotopy which does not meet any
lift of cj , ∀j = 1, . . . , k. We deduce thatci is homotopic toγi in S′.

TheoremA.1.1 shows that there exist a1-homeomorphismϕ′ of S′ such thatϕ′(ci) = γi, ∀i =

k + 1, . . . , n. The homeomorphismϕ′ can be interpreted as a homeomorphism ofS which is identity in
the set∂S ∪ C. Hence, we deduce thatϕ is isotopic to a homeomorphism̂ϕ of S by an isotopy fixing
every point in the set∂S ∪ C, such that̂ϕ(ci) = γi, ∀i = k + 1, . . . , n. Since the curvesc1, . . . , cn cut
int(S) into a disjoint union of open disks, CorollaryA.1.3allows us to conclude. �
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Annexe B

Flat surfaces and Teichm̈uller space

Throughout this chapter,Sg will be a fixed flat surface, without boundary, havingn singularities, de-
noted byp1, . . . , pn, with cone anglesα1, . . . , αn respectively. Recall that the Teichmüller spaceT (g, n)

can be interpreted as the space of all pairs(Σ, φ), whereΣ is a Riemann surface, andφ is a homeomor-
phism fromSg on toΣ, modulo isotopy relative to{p1, . . . , pn}.

Our goal in this chapter is to prove the following

Proposition B.0.1 LetΣ0 be a flat surface of genusg, without boundary, havingn singularities, denoted
byx1, . . . , xn, with cone anglesα1, . . . , αn respectively. Letφ0 : Sg −→ Σ0 be a homeomorphism which
sends the set of singularities ofSg onto the set of singularities ofΣ0 respecting cone angles. LetT0 be a
geodesic triangulation ofΣ0 such that the set of vertices ofT0 coincides with the set of singularities of
Σ0. The pair(Σ0, φ0) represents an element of the Teichmüller spaceT (g, n) which is denoted as usual
by [(Σ0, φ0)].

Suppose that there exists a closed curveγ in Σ0 \ {x1, . . . , xn} such thatorth(γ) 6= Id. Then, every
element ofT (g, n) close enough to[(Σ0, φ0)] is represented by a pair(Σ, fΣ ◦ φ0), where

• Σ is a flat surface with cone singularities of anglesα1, . . . , αn ;

• The mapfΣ : Σ0 −→ Σ is a homeomorphism sendingT0 onto a geodesic triangulation ofΣ,
whose vertex set coincides with the set of singularities ofΣ.

B.1 Preliminaries

Setn1 = 4(2g + n− 1)− 3 andn2 = 3(2g + n− 1)− 2. First, we show that the surfaceΣ0 can be
associated to a vector inCn1 satisfying a system ofn2 linear equations.

155



B. FLAT SURFACES AND TEICHMÜLLER SPACE

We begin by choosing2g + n − 1 edges{b1, . . . , b2g+n−1} of T0 such thatΣ0 \ (∪2g+n−1
j=1 bj) is an

open disk, we call such a set of edges afamily of primitive edges. Remark that such families always exist.
To see this, consider the dual graph ofT0 on Σ0. Since this graph is connected, we can find a maximal
tree contained inside it, bymaximal treewe mean a tree which contains all the vertices of the graph.
The complement of a maximal tree is a set of2g + n − 1 (open) edges of the dual graph. These edges
correspond to a family of primitive edges inT0.

Cut open the surfaceΣ0 along the edgesb1, . . . , b2g+n−1, we obtain a flat surfaceD0 with geodesic
boundary, homeomorphic to a closed disk. Note that the boundary ofD0 contains2(2g+n−1) geodesic
segments.

Let b′j andb′′j , j = 1, . . . , 2g+n−1, denote the two geodesic segments on the boundary ofD0 which are
identified to the edgebj of T0. The triangulationT0 of Σ0 induces a geodesic triangulation ofD0 which
containsn1 edges. To simplify notations, this triangulation ofD0 is also denoted byT0. We choose an
orientation for each edge ofT0. Assume that the edges on the boundary ofD0 are oriented coherently
with the orientation ofD0.

Using a developing map ofD0, we can associate to each oriented edgee of T0 a complex numberz(e).
Let Z0 denote the vector inCn1 whose coordinates are the complex numbers associated to the edges of
T0. We assume that the first coordinatez0

1 of Z0 corresponds to the edgeb′1.

Since the developing map is defined up to a rotation, the vectorZ0 is defined up to a multiplication by
eıθ with θ in [0; 2π]. Hence, we can assume thatImz0

1 = 0.

As we have seen previously in the proof of3.1.10, the coordinates ofZ0 must verify a system of
linear equationsST0 which contains2(2g+n− 1)− 2 equations of type (2.3), and2g+n− 1 equations
of type (3.1). Observe that(2(2g + n− 1)− 2) + (2g + n− 1) = 3(2g + n− 1)− 2 = n2.

Let VT0 denote the subspace ofCn1 consisting of solutions of the systemST0 . Clearly, we haveZ0 ∈

VT0 .

For the dimension ofVT0 we have

Lemma B.1.1

dimC VT0 = n1 − n2 = 2g + n− 2.

Proof: Let us consider in more detail the equations of type (3.1) of ST0 . The equations of type (3.1) in
ST0 are of the form :

z(b′′j ) = −eıθjz(b′j),
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with j = 1, . . . , 2g + n− 1.

For eachj in {1, . . . , 2g+n−1}, letcj be a path inD0 joining the midpoint ofb′j to the midpoint ofb′′j . By
construction, there exists a maph0 : D0 −→ Σ0 which is isometric in the interior ofD0, and maps∂D0

on to the set(∪2g+n−1
j=1 bj). The image ofcj by h0, denoted bỹcj , is a closed curve inΣ0 which intersects

the set(∪2g+n−1
j=1 bj) at only one point. Observe thatθj is the angle of the rotationorth(c̃j). It is worth

noticing that the closed curves{c̃1, . . . , c̃2g+n−1} form a basis of the groupH1(Σ0 \ {x1, . . . , xn},Z).

By assumption, there exists a closed curveγ on Σ0 \ {x1, . . . , xn} such thatorth(γ) 6= Id, it follows
that there existsj ∈ {1, . . . , 2g + n− 1} such thatθj /∈ 2πZ. Now, using the arguments in the proof of
Lemma3.4.6, we conclude thatdimC V

′
T0

= n1 − n2 = 2g + n− 2. �

Let HT0 denote the Hermitian form determined by the area ofΣ0. Let WT0 denote the set{Z =

(z1, . . . , zn1) ∈ VT0 | Z
t
HT0Z = 1, Imz1 = 0}. Observe thatWT0 is a real sub-manifold ofCn1 of

real dimension2(2g + n− 2)− 2.

By assumptionZ0 is contained inWT0 . Let U1
0 denote an open subset ofWT0 containingZ0 and ho-

meomorphic to a ball inR2(2g+n−2)−2. We can then define a map

ΦT0 : U1
0 −→ T (g, n),

such that for everyZ ∈ U1
0, ΦT0(Z) is represented by a pair(Σ, fΣ ◦ φ0), whereΣ is a flat surface, and

fΣ is a homeomorphism, which sendsT0 onto a geodesic triangulation ofΣ whose vertices are the singu-
larities. This map is constructed in the same way as the one defined in the proof of Lemma3.4.5. We have

Lemma B.1.2 The mapΦT0 is continuous and injective.

Proof: For injectivity, suppose thatΦT0(Z1) = ΦT0(Z2). Let (Σi, φi), i = 1, 2 be the pair representing
ΦT0(Zi), which is obtained by the construction ofΦT0 . By definition, we can writeφi = fi ◦ φ0, where
fi is a homeomorphism mappingT0 onto a geodesic triangulation ofΣi.

By definition, there exists a conformal homeomorphismh from Σ1 to Σ2 such thatφ−1
2 ◦ h ◦ φ1 is an

element ofHomeo+
0 (Sg, {p1, . . . , pn}). Using Proposition3.2.3, we deduce thath is an isometry from

Σ1 ontoΣ2. Lemma2.3.8then implies thath maps the triangulationf1(T0) of Σ1 onto the triangulation
f2(T0) of Σ2. As a consequence, we see thatZ1 = Z2.

For the continuity, we use the same arguments as in the proof of Proposition2.5.3. �
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Since the Teichm̈uller spaceT (g, n) is of real dimension6g + 2n − 6, to proveB.0.1, we have
to extend the mapΦT0 to a continuous and injective map from a ball inR6g+2n−6 into T (g, n). To
get such a map, we introduce small perturbations of the systemST0 . First, we observe that the angles
θj , j = 1, . . . , 2g+n−1, are not independent. Choosen edges amongb1, . . . , b2g+n−1 which form a tree
A0 connecting the singular pointsx1, . . . , xn. Such edges exist because any two points in{x1, . . . , xn}

are joined by a path in(∪2g+n−1
j=1 bj). Without loss of generality we can assume thatA0 contains the edges

b2g+1, . . . , b2g+n−1.

Lemma B.1.3 For everyj ∈ {2g + 1, . . . , 2g + n− 1}, we have

θj = ηj(α1, . . . , αn, θ1, . . . , θ2g),

whereηj is a linear function with integer coefficients.

Proof: The curves{c̃1, . . . , c̃2g} form a basis of the groupH1(Σ0 \ A0,Z). Note that since the group
SO(2) is Abelian, if the closed curvesγ1 andγ2 are homologous inΣ0 \{x1, . . . , xn}, thenorth(γ1) =

orth(γ2).

For eachj in {2g + 1, . . . , 2g + n − 1}, the curvẽcj is homologous to the curveli1 ◦ · · · ◦ lik ◦ c̃
′
j ,

whereis ∈ {1, . . . , n}, lis is a curve homologous to a small loop aboutxis , andc̃′j is a closed curve in
Σ0 \A0.

The curvẽc′j represents an element of the groupH1(Σ0 \A0,Z), hence the rotationorth(c̃′j) is determi-
ned by the rotationsorth(c̃1), . . . ,orth(c̃2g). We deduce that, for everyj in {2g+ 1, . . . , 2g+ n− 1},

the rotationorth(c̃j) is determined by the anglesα1, . . . , αn and the rotationsorth(c̃1), . . . ,orth(c̃2g).
The lemma is then proved. �

B.2 Proof of PropositionB.0.1

Let ǫ be a small positive real number. Set

Λ = {λ̄ = (λ1, . . . , λ2g) ∈ R
2g : |λj | < ǫ, ∀j = 1, . . . , 2g}.

For each̄λ = (λ1, . . . , λ2g) in Λ, setθj(λ̄) = θj+λj , for j = 1, . . . , 2g, andθj(λ̄) = ηj(α1, . . . , αn, θ1+

λ1, . . . , θ2g +λ2g), for j = 2g+1, . . . , 2g+n− 1. LetST0(λ̄) denote the system obtained by replacing
θj by θj(λ̄) into ST0 . Let VT0(λ̄) denote the sub-space ofCn1 consisting of solutions ofST0(λ̄).
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Since there existsj ∈ {1, . . . , 2g + n − 1} such thatθj /∈ {2kπ : k ∈ Z}, if ǫ is small enough, then
θj(λ̄) /∈ {2kπ : k ∈ Z}, for all λ̄ ∈ Λ. It follows thatdimC VT0(λ̄) = 2g + n− 2, for all λ̄ in Λ.

Let WT0(λ̄) denote the set{Z = (z1, . . . , zn1) ∈ VT0(λ̄)| Z
t
HT0Z = 1, Imz1 = 0}. Obviously,

we haveVT0(0) = VT0 andWT0(0) = WT0 . Therefore, we can find, for each̄λ in Λ, an open subset
U1(λ̄) of WT0(λ̄) homeomorphic to a ball inR2(2g+n−2)−2 such thatU1(0) = U1

0, and the setU1(λ̄)

varies continuously as̄λ varies inΛ.

Let Ω denote the set{(Z, λ̄) ∈ Cn1 × Λ |Z ∈ U1(λ̄)}. It is now clear thatΩ is homeomorphic to an
open ball inR2(2g+n−2)−2 × R2g ≃ R6g+2n−6. Note thatΩ can be realized as a subset ofCn1 such that
U1(λ̄) = VT0(λ̄) ∩ Ω. We define a map

Φ̃T0 : Ω −→ T (g, n),

in the same way as the mapΦT0 , that is, for each(Z, λ̄) in Ω, we construct a flat surfaceΣ by forming
triangles and gluing them together usingT0 as pattern. Recall that, by this construction, we obtain a pair
(Σ, fΣ ◦ φ0), wherefΣ : Σ0 −→ Σ is a homeomorphism which sendsT0 onto a geodesic triangulation
of Σ.

Using the same arguments as in LemmaB.1.2, we can show that̃ΦT0 is continuous and injective. Since
Ω is homeomorphic to a ball inR6g+2n−6, and the Teichm̈uller spaceT (g, n) is of the same real dimen-
sion, the map̃ΦT0 is a homeomorphism. This implies thatΦ̃T0(Ω) is a neighborhood of[(Σ0, φ0)], and
the proposition is then proved. �
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