Documents are not allowed. The quality of writing will be an important assessment factor.

Exercise 1

(1) Find the limit of the sequence of integers $(3, 33, 333, 333, \ldots)$ (written in base 10) in \mathbf{Q}_5 .

(2) Let p be a prime integer and $x \in \mathbb{Z}$ such that gcd(p, x) = 1. Show that the sequence $(x^{p^n})_{n \in \mathbb{Z}_{\geq 0}}$ converges

in \mathbf{Q}_p . Show that the limit is a root of unity, that depends only on the image of x in \mathbf{F}_p^{\times} .

(3) Let p be a prime integer. Prove that $X^p - X - 1$ is irreducible in $\mathbf{Q}_p[X]$.

Exercise 2

Let (K, |.|) be a non-archimedean valued field such that $char(K) = char(\kappa_K)$. Show that if $x, y \in K$ are distinct roots of unity, then |x - y| = 1.

Exercise 3

Show that the polynomial $(X^2 - 2)(X^2 - 17)(X^2 - 34)$ has a root in **R** and in **Z**_p for every prime p, but no root in **Q**.

Exercise 4

Let K be a field. A subring $A \subset K$ is a valuation ring of K when $(\forall x \in K) x \notin A \Rightarrow x^{-1} \in A$ (this implies in particular that $K = \operatorname{Frac}(A)$).

(1) Show if A is a valuation ring of K and I, J are ideals in A, then either $I \subset J$ or $J \subset I$. Deduce that A is local (we denote henceforth its maximal ideal by \mathfrak{m}_A).

(2) Let F be a field, A = F[[X, Y]] the ring of formal series and K = F((X, Y)) = Frac(A) the field of formal Laurent series. Is the local ring A a valuation ring of K?

(3) Show that a valuation ring of K is integrally closed.

(4) Let $A \subset K$ be a subring and $\mathfrak{p} \subset A$ a maximal ideal. The aim of this question is to show that there exists a valuation ring R of K such that $A \subset R$ and $A \cap \mathfrak{m}_R = \mathfrak{p}$.

- (a) Show that the set \mathscr{E} of subrings $B \subset K$ such that $A \subset B$ and $1 \notin \mathfrak{p}B$ contains an element R which is maximal for the inclusion [hint: Zorn].
- (b) Show that R is local, and that its maximal ideal \mathfrak{m}_R satisfies $A \cap \mathfrak{m}_R = \mathfrak{p}$ [hint: consider the localization of R at maximal ideal $\mathfrak{m} \subset R$ such that $\mathfrak{p}_R \subset \mathfrak{m}$].
- (c) Let $x \in K^{\times}$ be such that $x, x^{-1} \notin R$. Using the fact that $R[x], R[x^{-1}] \notin \mathcal{E}$, show that there exist relations $1 = a_1x + \cdots + a_nx^n$ and $1 = b_1x^{-1} + \cdots + b_mx^{-m}$ with $a_1, \ldots, a_n, b_1, \ldots, b_m \in \mathfrak{m}_R$. Assuming $n, m \in \mathbb{Z}_{>0}$ minimal, derive a contradiction an deduce that R is a valuation ring.

(5) Let $A \subset K$ be a subring, $B \subset K$ the integral closure of A in K, and B' the intersection of all the valuation rings of K that contain A.

- (a) Show that $B \subset B'$.
- (b) Let $x \in K$ such that x is not integral over A. Show that $x^{-1}A[x^{-1}]$ is a strict ideal in $A[x^{-1}]$. Conclude that there exists a valuation ring R such that $x \notin R$ [hint: use question (4)].
- (c) Conclude that B' = B.

(6) Let A be a PID, K = Frac(A). Show that the valuation rings of K that contain A and are distinct from

K are the localizations A_{pA} where p is a prime element in A. (7) Let $A \subset K$ be a valuation ring such that there exists a prime ideal $\mathfrak{p} \subset A$ such that $\{0\} \subsetneq \mathfrak{p} \subsetneq \mathfrak{m}_A$. Show that the ring R = A[X] is not integrally closed [hint: take $a \in \mathfrak{m}_A \setminus \mathfrak{p}$ and $b \in \mathfrak{p} \setminus \{0\}$, and show that the polynomial $T^2 + aT + X$ has a root f such that $bf \in XR$ but $f \notin R$].