| université ${ }^{\text {de } B O R D E A U X ~}$ | ANNÉE UNIVERSITAIRE $2018 / 2019$ <br> Session 1 D'automne <br> PARCOURS / ÉTAPE : 4TMA903U <br> Code UE : 4TTN901S, 4TTN901S <br> Épreuve : Algebraic number theory <br> Date : 5/11/2018 Heure : 8h30 Durée : 1h30 <br> Documents : non autorisés <br> Épreuve de Mr Brinon | Collège Sciences et technologies |
| :---: | :---: | :---: |

Documents are not allowed.
The quality of writing will be an important assessment factor.

## Exercise 1

(1) Find the limit of the sequence of integers $(3,33,333,3333, \ldots)$ (written in base 10 ) in $\mathbf{Q}_{5}$.
(2) Let $p$ be a prime integer and $x \in \mathbf{Z}$ such that $\operatorname{gcd}(p, x)=1$. Show that the sequence $\left(x^{p^{n}}\right)_{n \in \mathbf{Z}}^{\geqslant 0}$ converges in $\mathbf{Q}_{p}$. Show that the limit is a root of unity, that depends only on the image of $x$ in $\mathbf{F}_{p}^{\times}$.
(3) Let $p$ be a prime integer. Prove that $X^{p}-X-1$ is irreducible in $\mathbf{Q}_{p}[X]$.

## Exercise 2

Let $(K,|\cdot|)$ be a non archimedean valued field such that $\operatorname{char}(K)=\operatorname{char}\left(\kappa_{K}\right)$. Show that if $x, y \in K$ are distinct roots of unity, then $|x-y|=1$.

## Exercise 3

Show that the polynomial $\left(X^{2}-2\right)\left(X^{2}-17\right)\left(X^{2}-34\right)$ has a root in $\mathbf{R}$ and in $\mathbf{Z}_{p}$ for every prime $p$, but no root in $\mathbf{Q}$.

## Exercise 4

Let $K$ be a field. A subring $A \subset K$ is a valuation ring of $K$ when $(\forall x \in K) x \notin A \Rightarrow x^{-1} \in A$ (this implies in particular that $K=\operatorname{Frac}(A))$.
(1) Show if $A$ is a valuation ring of $K$ and $I, J$ are ideals in $A$, then either $I \subset J$ or $J \subset I$. Deduce that $A$ is local (we denote henceforth its maximal ideal by $\mathfrak{m}_{A}$ ).
(2) Let $F$ be a field, $A=F \llbracket X, Y \rrbracket$ the ring of formal series and $K=F((X, Y))=\operatorname{Frac}(A)$ the field of formal Laurent series. Is the local ring $A$ a valuation ring of $K$ ?
(3) Show that a valuation ring of $K$ is integrally closed.
(4) Let $A \subset K$ be a subring and $\mathfrak{p} \subset A$ a maximal ideal. The aim of this question is to show that there exists a valuation ring $R$ of $K$ such that $A \subset R$ and $A \cap \mathfrak{m}_{R}=\mathfrak{p}$.
(a) Show that the set $\mathscr{E}$ of subrings $B \subset K$ such that $A \subset B$ and $1 \notin \mathfrak{p} B$ contains an element $R$ which is maximal for the inclusion [hint: Zorn].
(b) Show that $R$ is local, and that its maximal ideal $\mathfrak{m}_{R}$ satisfies $A \cap \mathfrak{m}_{R}=\mathfrak{p}$ [hint: consider the localization of $R$ at maximal ideal $\mathfrak{m} \subset R$ such that $\mathfrak{p} R \subset \mathfrak{m}]$.
(c) Let $x \in K^{\times}$be such that $x, x^{-1} \notin R$. Using the fact that $R[x], R\left[x^{-1}\right] \notin \mathscr{E}$, show that there exist relations $1=a_{1} x+\cdots+a_{n} x^{n}$ and $1=b_{1} x^{-1}+\cdots+b_{m} x^{-m}$ with $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m} \in \mathfrak{m}_{R}$. Assuming $n, m \in \mathbf{Z}_{>0}$ minimal, derive a contradiction an deduce that $R$ is a valuation ring.
(5) Let $A \subset K$ be a subring, $B \subset K$ the integral closure of $A$ in $K$, and $B^{\prime}$ the intersection of all the valuation rings of $K$ that contain $A$.
(a) Show that $B \subset B^{\prime}$.
(b) Let $x \in K$ such that $x$ is not integral over $A$. Show that $x^{-1} A\left[x^{-1}\right]$ is a strict ideal in $A\left[x^{-1}\right]$. Conclude that there exists a valuation ring $R$ such that $x \notin R$ [hint: use question (4)].
(c) Conclude that $B^{\prime}=B$.
(6) Let $A$ be a PID, $K=\operatorname{Frac}(A)$. Show that the valuation rings of $K$ that contain $A$ and are distinct from $K$ are the localizations $A_{p A}$ where $p$ is a prime element in $A$.
(7) Let $A \subset K$ be a valuation ring such that there exists a prime ideal $\mathfrak{p} \subset A$ such that $\{0\} \subsetneq \mathfrak{p} \subsetneq \mathfrak{m}_{A}$. Show that the ring $R=A \llbracket X \rrbracket$ is not integrally closed [hint: take $a \in \mathfrak{m}_{A} \backslash \mathfrak{p}$ and $b \in \mathfrak{p} \backslash\{0\}$, and show that the polynomial $T^{2}+a T+X$ has a root $f$ such that $b f \in X R$ but $f \notin R$ ].

