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1. Notions on ommutative algebra

In what follows, A denotes a ommutative ring with unit. Ring homomorphisms map units to units.

1.1. Rings.

1.1.1. Ideals.

De�nition 1.1.2. An ideal of A is a subset I � A suh that:

(1) p�x, y P Iqx� y P I (so that I is a subgroup of pA,�q);

(2) p�a P Aq p�x P Iq ax P I.

Given an ideal I � A, the quotient group A{I is endowed with a unique ring struture suh that the

anonial map AÑ A{I is a ring homomorphism.

Example 1.1.3. (0) t0u is an ideal.

(1) A is an ideal (alled the unit ideal). We say that an ideal I � A is strit if I � A.

(2) Ideals of Z are of the form nZ for a unique n P Z
¥0.

(3) Similarly, ifK is a �eld, nonzero ideals ofKrXs are of the form P pXqKrXs for a unique moni polynomial

P pXq P KrXs.

De�nition 1.1.4. Let I � A be a strit ideal.

(1) I is maximal if it is maximal (for the inlusion) among strit ideals in A.

(2) I � A is prime if p�x, y P Aq pxy P I ñ px P I or y P Iqq.

Example 1.1.5.  The ring A is an integral domain if and only if t0u is prime.

 nZ is prime in Z if and only if nZ is maximal if and only if n is a prime integer. Similarly, P pXqKrXs

is prime in KrXs if and only if P pXqKrXs is maximal if and only if P pXq is irreduible.

Remark 1.1.6. (1) A maximal ideal is prime.

(2) An ideal I � A is maximal (reps. prime) if and only if A{I is a �eld (resp. an integral domain).

(3) Let Λ be a set and pIλqλPΛ be ideals in A. Then
�

λPΛ

Iλ is an ideal of A.

Theorem 1.1.7. (Krull). Let I � A be a strit ideal. There exists

(1)

a maximal ideal m � A suh that

I � m.

Proof. Let E be the set of strit ideals J � A ontaining I: it is non empty sine I P E . We (partially) order

E with the relation given by J1 ¤ J2 � J1 � J2. The ordered set pE ,¤q is indutive: if pJλqλPΛ is a hain

(i.e. a totally ordered subset) of E , then J :�
�

λPΛ

Jλ is an element in E , and an upper bound of pJλqλPΛ.

By Zorn's lemma, pE ,¤q admits a maximal element m. If J � A is a strit ideal ontaining m, then J P E ,

hene J � m by maximality. This shows that m is a maximal ideal, that ontains I by de�nition. �

Remark 1.1.8. One an show that Krull's theorem is equivalent to the axiom of hoie.

De�nition 1.1.9.  If X � A, the ideal generated by X is the smallest ideal of A that ontains X , this is

nothing but the intersetion of all ideals

(2)

of A that ontain X .

 If I � A is an ideal and X � I, we say that X generates I if the ideal generated by X is I. We sometimes

denote it by xXy.

 A prinipal ideal of A is an ideal generated by one element. The ring A is alled prinipal (PID) if it is

an integral domain and its ideals are all prinipal.

Example 1.1.10. (1) Z and KrXs are prinipal, more generally eulidean rings are prinipal.

(2) If K is a �eld, xX,Y y is not prinipal in KrX,Y s. Similarly, x2, Xy is not prinipal in ZrXs.

(3) Zri
?

5s is not prinipal.

De�nition 1.1.11.  Let Λ be a set and pIλqλPΛ be ideals in A. Their sum is the ideal generated by

�

λPΛ

Iλ.

This is nothing but the set of �nite A-linear ombinations
n
°

i�1

aixi with r P Z
¥0, a1, . . . , ar P A and xi P Iλi

for all i P t1, . . . , ru.

 Let I, J � A be ideals. Their produt IJ is the ideal generated by txyuxPI
yPJ

.

De�nition 1.1.12. Two ideals I, J � A are oprime (or I is prime to J) when I � J � A.

(1)

This statement is equivalent to the axiom of hoie.

(2)

This makes sense by Remark 1.1.6 (3).



4 Number theory

Proposition 1.1.13. (1) Two distint maximal ideals are oprime.

(2) If I1, . . . , In are prime to J , then I1 � � � In is prime to J .

(3) If I, J � A are oprime and n,m P Z
¡0, then I

n
and Jm are oprime.

Proof. (1) As I � I � J � A, we have I � J � A.

(2) As Ik � J � A for all k P t1, . . . , nu, we have A � pI1 � JqpI2 � Jq � � � pIn � Jq �� I1 � � � In � J , whene

I1 � � � In � J � A.

(3) Applied to Ik � I for all k P t1, . . . , nu, (2) implies that In and J are oprime. After replaing I by J

and J by In, we dedue that In and Jm are oprime. �

Theorem 1.1.14. (Chinese remainder theorem). Assume I1, . . . , In � A are pairwise oprime ideals

(i.e. i � j ñ Ii � Ij � A). Then:

(1) I1 X I2 X � � � X In � I1I2 � � � In;

(2) the anonial ring homomorphism A{I1I2 � � � In Ñ
n
±

k�1

A{Ik is an isomorphism.

Proof. By proposition 1.1.13, the ase n � 2 implies the general ase: let I, J � A be oprime ideals. There

exist eI P I and eJ P J suh that eI � eJ � 1.

(1) We have always IJ � I X J . Let a P I X J : we have a � apeI � eJq � aeI � aeJ . As a P J and eI P I,

we have aeI P IJ . Similarly aeJ P IJ , hene a P IJ , proving the equality.

(2) Let ϕ : AÑ pA{Iq � pA{Jq be the natural map. If x, y P A, we have ϕpxeJ � yeIq � px� I, y� Jq, so ϕ

is surjetive. As Kerpϕq � I X J � IJ , it indues an isomorphism A{IJ
�

ÑpA{Iq � pA{Jq. �

1.1.15. UFDs.

De�nition 1.1.16. Assume that A is an integral domain.

 An element α P AzpA� Yt0uq is prime (resp. irreduible) if the ideal αA is prime (resp. p�a, b P Aq pab �

αñ pa P A� or b P A�qq). A prime element is always irreduible

(3)

, but the onverse is not true in general.

 The ring A is a unique fatorization domain (UFD) if it is an integral domain in whih every non-zero

element an be written as a produt of or irreduible elements, uniquely up to order and multipliation by

units. More preisely, for any α P Azt0u, there exist n P Z
¥0 and irreduible elements p1, . . . , pn suh that

αA � p1 � � � pnA

and if αA � q1 � � � qmA with m P Z
¥0 and q1, . . . , qm irreduible, then m � n and there exists σ P Sn suh

that qkA � pσpkqA for all k P t1, . . . , nu.

There exists u P A� suh that α � up1 � � � pn: suh an quality is alled a prime deomposition of α.

Example 1.1.17. (0) A �eld is a UFD.

(1) Z and KrXs (where K is a �eld) are UFD.

(2) The subring Zri
?

5s � tx� iy
?

5 P C ; x, y P Zu of C is not a UFD, beause 2, 3, 1� i
?

5 and 1� i
?

5

are irreduible, the unit are 1 and �1, but 2.3 � p1 � i
?

5qp1 � i
?

5q (i.e. there is no uniity for a prime

deomposition of 6).

Lemma 1.1.18. In a PID, irreduible element are prime.

Proof. Let p P A be an irreduible element. Let m � A be a maximal ideal suh that p P m (f Krull

theorem, or use the noetherianity of A). As A is a PID, there exists α P A suh that m � aA, so p � αa for

some a P A. As p is irreduible, we must have a P A� (beause α R A� sine m � aA � A). Thus pA � m

is maximal. �

De�nition 1.1.19. Assume A is a UFD, and let p P A be an irreduible element. If α P Azt0u, the p-adi

valuation of α is

vppαq � maxtk P Z
¥0 ; p

k
| αu

This is well de�ned and only depends on the ideals pA and αA.

Proposition 1.1.20. (Properties of valuations). Assume A is a UFD and let a, b P A.

(1) vppabq � vppaq � vppbq ;

(2) a | b if and only if vppaq ¤ vppbq for all irreduible element p P A;

(3) a P A� if and only if vppaq � 0 for all irreduible element p P A.

(4) vppa� bq ¥ mintvppaq, vppbqu with equality when vppaq � vppbq.

(3)

Beause A is a domain. Note that 2 is prime in Z {6Z, but not irreduible sine 2 � 2� 4.
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Proof. (1)-(3) follow from the de�nition and the uniity of deomposition into a produt of prime elements.

For (4), if v � inftvppaq, vppbqu, then pv | a and pv | b, so pv | a � b, thus vppa � bq ¥ v. Assume

vppaq � vppbq: we may assume that v � vppaq   vppbq. Write a � pva1 with p ∤ a1 and b � pvb1 with p | b1,

so that a� b � pvpa1 � b1q and p ∤ a1 � b1: we have vppa� bq � v. �

Proposition 1.1.21. Assume A is a UFD and let p P Azt0u. Then p is irreduible if and only if p is prime.

Proof. If p is irreduible and p | ab, then vppaq � vppbq � vppabq ¥ 1 so vppaq ¥ 1 or vppbq ¥ 1 i.e. p | a or

p | b. Conversely, a prime element is always irreduible. �

Remark 1.1.22. It is easy to show that a noetherian ring (f de�nition 1.3.3) in whih irreduible elements

are prime is a UFD. This said, there exist non-noetherian UFD (eg ZrXnsnPZ
¥0
).

De�nition 1.1.23. Assume A is a UFD and let a, b P Azt0u. The gd (greatest ommon divisor) and the

lm (least ommon multiple) of a and b are the greatest lower bound (resp. smallest upper bound) of the

set ta, bu for the divisibility relation. They are denoted gcdpa, bq and lcmpa, bq respetively. We say that a

and b are oprime when gcdpa, bq � 1.

Remark 1.1.24. (1) Stritly speaking, gcdpa, bq and lcmpa, bq are only de�ned up to multipliation by a

unit: only the ideal they generate are well de�ned.

(2) Let a, b P Azt0u and an irreduible element p P A. Then vppgcdpa, bqq � mintvppaq, vppbqu and

vpplcmpa, bqq � maxtvppaq, vppbqu. Note that gcdpa, bq lcmpa, bqA � abA.

(3) By indution, one an easily extend the de�nition and onsider gd and lm of a�nite family in Azt0u.

Lemma 1.1.25. (Gauss lemma). Assume that A is a UFD and let a, b, c P Azt0u be suh that gcdpa, bq � 1.

If a | bc, then a | c.

Proof. If p P A is irreduible and divides a, then vppbq � 0 sine p ∤ b (beause a and b are oprime). This

implies that vppaq ¤ vppbcq � vppcq. As this holds for any irreduible element p dividing a, we have a | c (f

proposition 1.1.20 (2)). �

Proposition 1.1.26. A PID is a UFD.

Lemma 1.1.27. Assume that A is an integral domain in whih irreduible elements are prime (f proposition

1.1.21). If an element admits a prime deomposition, the latter is unique (in the sense of de�nition 1.1.16).

Proof. Assume α � up1p2 � � � pn � vq1q2 � � � qm, with n,m P Z
¥0, u, v P A� and p1, . . . , pn, q1, . . . , qm

irreduible elements. Possibly after exhanging the deompositions, we may assume n ¤ m. We proeed

by indution on n. If n � 0, then α � u P A�: the produt vq1q2 � � � qm is invertible so all its fators are:

we must have m � 0. Assume n ¥ 1. As p1 is irreduible and divides the produt vq1q2 � � � qs, it divides

one of the fators (sine it is prime). As v P A�, it is not divisible by p1: after renumbering the qi, we

may assume that p1 | q1 i.e. p1A � q1A. Dividing α by p1, we redue to the ase n� 1, and use indution

hypothesis. �

Proof of proposition 1.1.26. Assume A is a PID. By lemmas 1.1.18 and 1.1.27, it is enough to shows that

any nonzero element in A admits at least one prime deomposition. Let E be the set of elements in Azt0u

that do not admit a prime deomposition. Assume E is not empty. As A is noetherian, the set E admits a

minimal element α (for the divisibility relation). The element α an be nor a unit, nor irreduible: it an

be written α � α1α2 with α1, α2 P AzpA
�

Y t0uq. Then α1 and α2 are strit divisors of α, so α1, α2 R E

by minimality of α: they admit prime deomposition. This implies that their produt α admits a prime

deomposition: ontradition. �

Remark 1.1.28.  When A is a PID, there is an other haraterization of gd and lm of two element

a, b P A: we have gcdpa, bqA � aA� bA and lcmpa, bqA � aAX bA. Let's prove it for the gd (the proof for

the lm is similar). As A is prinipal, there exists d P A suh that aA� bA � dA. As x P A divides a and b

if and only if aA � xA and bA � xA i.e. dA � xA, so gcdpa, bq � d.

 This haraterization does not hold in any UFD. For instane, QrX,Y s is a UFD (f theorem 1.1.41). As

X and Y are irreduible and oprime, we have gcdpX,Y q � 1, though XQrX,Y s � Y QrX,Y s � QrX,Y s

(the LHS is the ideal of polynomials vanishing at p0, 0q). Of ourse, this follows from the fat that QrX,Y s

is not a PID.

Example 1.1.29. If K is a �eld and n P Z
¡0, the ring KrX1, . . . , Xns is a UFD (f theorem 1.1.41) but

not a PID (f remark above). Similarly the ring ZrXs is a UFD (f lo. it.) but not a PID (the ideal

generated by 2 and X is not prinipal).

Proposition 1.1.30. In a PID, nonzero prime ideals are maximal.
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Proof. Assume A is a PID, and let p � A be a nonzero prime ideal. Write p � xay with a P Azt0u: if I � A

is an ideal ontaining p, we have I � xby with b P Azt0u dividing a: write a � bc with c P A. As a is prime,

we have a | b or a | c. If a | b (resp. a | c) there exists d P A suh that b � ad (resp. c � ad). Then we have

a � bc � acd (resp. a � bc � abd), hene 1 � cd (resp. 1 � bd) beause a � 0 and A is integral, so that

I � p (resp. I � A), showing that p is maximal. �

De�nition 1.1.31. Assume that A is a integral domain.

 An eulidean funtion is a map φ : Azt0u Ñ Z
¥0 suh that if b | a in Azt0u, then φpbq ¤ φpaq.

 An eulidean funtion φ de�nes an eulidean division if for all pa, bq P A�Azt0u, there exist q, r P A suh

that a � bq � r and (r � 0 or φprq   φpbq). �The� element q is alled the quotient and r the remainder of

the division.

 The ring A is eulidean if it admits an eulidean funtion that de�nes an eulidean division.

Remark 1.1.32. If A is an eulidean domain, there is not uniity for an eulidean funtion. Moreover,

uniity of quotient and remainder is not required.

Exemples 1.1.33. A �eld is an eulidean domain. The ring Z is eulidean domain, an eulidean funtion

being given by φpaq � |a| (absolute value). In that ase, eulidean division is the usual one. When K is a

�eld, the ring of polynomials KrXs is eulidean, an eulidean funtion being given by φpP q � degpP q. Here

again, eulidean division is the usual one.

The ring Zris � ta� ib P C ; a, b P Zu of Gauss integers is eulidean, endowed with the eulidean funtion

given by φpa� ibq � a2 � b2.

Proposition 1.1.34. An eulidean domain is a PID.

Proof. Assume A is an eulidean domain, let φ : Azt0u Ñ Z
¥0 be an eulidean funtion and I � A an ideal.

To prove that I is prinipal, we may assume that I � 0. In that ase, φpIzt0uq is an nonempty subset

of Z
¥0, so it admits a smallest element: let b P Izt0u be suh that φpbq is minimal. One has bA � I.

Conversely, let a P I. There exist q, r P A suh that a � qb� r with r � 0 or φprq   φpbq. Assume r � 0, so

that φprq   φpbq. As r � a� qb P I and r � 0, we have φpbq ¤ φprq by minimality of φpbq, whih s absurd:

we must have r � 0, i.e. a � qb P bA. Thus I � bA is prinipal. �

Remark 1.1.35. There are PID that are not eulidean domains, for instane Z
�

1�i
?

19
2

�

.

Corollary 1.1.36. Let K be a �eld, the rings Z and KrXs are PID, hene UFD (f proposition 1.1.26).

A ring homomorphism f : A Ñ B indues a ring homomorphism ArXs Ñ BrXs. If A is a subring of B,

then ArXs is a subring of BrXs.

De�nition 1.1.37. Assume that A is a UFD and let P � a0 � a1X � � � � � anX
n
P ArXszt0u. The ontent

of P is

cpP q � gcdtai ; ai � 0u.

Lemma 1.1.38. (Gauss Lemma). If A is a UFD and P,Q P ArXszt0u, then cpPQq � cpP qcpQq.

Remark 1.1.39. As gd is de�ned up to multipliation by a unit, one should write cpPQqA � cpP qcpQqA.

In what follows, we will keep this abusive notation to avoid heaviness.

Proof. Write P � cpP q rP and Q � cpQq rQ with cp rP q � 1 and cp rQq � 1: we have PQ � cpP qcpQq rP rQ.

Replaing P and Q by

rP and

rQ respetively, we may assume that cpP q � 1 and cpQq � 1: we have to show

that cpPQq � 1.

Assume instead that there exist a prime element p P A suh that p | cpPQq. Denote by P and Q the images

of P and Q in pA{pAqrXs respetively, this implies that PQ � 0 in pA{pAqrXs. As p is prime, the ring

A{pA is an integral domain: so is the ring pA{pAqrXs. This implies that P � 0 or Q � 0, i.e. p | cpP q or

p | cpQq, ontraditing cpP q � 1 and cpQq � 1. �

Proposition 1.1.40. Assume that A is a UFD. Let K � FracpAq and P P ArXs suh that cpP q � 1. Then

P is irreduible in ArXs if and only if P is irreduible in KrXs.

Proof.  Assume that P is irreduible inKrXs and write P � Q1Q2 with Q1, Q2 P ArXs. As P is irreduible

in KrXs, possibly after exhanging Q1 and Q2, the polynomial Q1 is onstant so Q1 � cpQ1q. By lemma

1.1.38, we have 1 � cpP q � cpQ1qcpQ2q, so Q1 P A
�

. Thus P is irreduible in ArXs.

 Conversely, assume that P is irreduible in ArXs write P � Q1Q2 with Q1, Q2 P KrXs. There exist

a1, a2 P Azt0u suh that a1Q1 P ArXs and a2Q2 P ArXs. We have a1a2 � cpa1a2P q � cpa1Q1qcpa2Q2q by

lemma 1.1.38, beause cpP q � 1. Write a1Q1 � cpa1Q1q
rQ1 and a2Q2 � cpa2Q2q

rQ2 with

rQ1, rQ2 P ArXs:



Number theory 7

we have a1a2P � cpa1Q1q
rQ1cpa2Q2q

rQ2 � a1a2 rQ1
rQ2 whene P �

rQ1
rQ2 (the ring A is an integral domain).

As P is irreduible in ArXs, we may assume, possibly after exhanging

rQ1 and

rQ2, that
rQ1 P A

�

. Then

Q1 P K
�

and P is irreduible in KrXs. �

Theorem 1.1.41. If A is a UFD, then

(4) ArXs is a UFD.

Proof.  If p P A is an irreduible element, the onstant polynomial p is irreduible in ArXs. Indeed, A{pA

is an integral domain: so is ArXs{pArXs � pA{pAqrXs and p is prime hene irreduible in ArXs.

 If P P ArXs is of degree ¥ 1 and irreduible, then cpP q � 1. Indeed one an write P � cpP q rP with

rP P ArXs, providing a non trivial fatorization if cpP q is not invertible.

 Existene of a prime deomposition. Let P P ArXszt0u. Write P � cpP q rP with

rP P ArXs suh that

cp rP q � 1. As A is a UFD, cpP q has a prime deomposition, so it is enough to show that

rP has a prime

deomposition: we may assume that cpP q � 1. If P P A, then P � 1: we may assume that degpP q ¥ 1.

Put K � FracpAq. As KrXs is a UFD (f orollary 1.1.36), we may write P � P1P2 � � �Pr with Pi P KrXs

irreduible for all i P t1, . . . , ru. For i P t1, . . . , ru, let ai P Azt0u be suh that aiPi P ArXs, and rPi �

cpaiPiq
�1
paiPiq P ArXs. As rPi has ontent 1 and is irreduible in KrXs (beause Pi is), it is irreduible in

ArXs (f proposition 1.1.40). We have a1a2 � � �ar � cpa1P1q � � � cparPrq by lemma 1.1.38, beause cpP q � 1,

hene the prime deomposition P �

rP1
rP2 � � �

rPr.

 Uniity of prime deomposition. Let P P ArXszt0u and P � P1P2 � � �Pr and P � Q1Q2 � � �Qs two prime

deompositions in ArXs. Possibly after renumbering the Pi (resp. the Qj), there exist r0 ¤ r (resp. s0 ¤ s)

suh that Pi P Azt0u for i ¤ r0 and degpPiq ¡ 0 for r0   i ¤ r (resp. Qj P Azt0u for j ¤ s0 and degpQjq ¡ 0

for s0   j ¤ s). By the seond point above, we have cpPiq � cpQjq � 1 for r0   i ¤ r and s0   j ¤ s. Taking

ontents in the equality P1P2 � � �Pr � Q1Q2 � � �Qs, we get P1P2 � � �Pr0 � Q1Q2 � � �Qs0 , whih is an equality

of two prime deompositions in the UFD A: we have r0 � s0, and after renumbering, we may assume that

PiA � QiA for all i P t1, . . . , r0u. Dividing P by P1P2 � � �Pr0 , we get Pr0�1 � � �PrArXs � Qr0�1 � � �QsArXs.

This is a prime deomposition in KrXs, whih is a UFD: we have r � s and after renumbering, we

may assume that PiKrXs � QiKrXs for all i P tr0 � 1, . . . , ru. As cpPiq � cpQiq � 1, we have in fat

PiArXs � QiArXs for all i P tr0 � 1, . . . , ru. �

Remark 1.1.42. (1) During the proof, we showed that a omplete family of representative of irreduible

elements in ArXs is given by the union of a omplete family of representative of irreduible elements in A

and that of a family of polynomials in ArXs with ontent 1 that forms a omplete family of representatives

of irreduible elements in KrXs.

(2) In general, A may be a UFD without ArrXss being one.

To summarize the relationships between the lasses of rings realled above, we have the following impliations

(whose reverses are false):

�eldsñ Eulidean domainsñ PIDñ UFDñ integrally losed domainsñ integral domains

1.2. Modules and algebras.

1.2.1. Modules.

De�nition 1.2.2. An A-module is a triple pM,�, �q where pM,�q is an abelian group and � : A �M Ñ M

an external omposition law suh that :

(1) p�a, b P Aq p�m PMq pa� bq �m � a �m� b �m ;

(2) p�a, b P Aq p�m PMq pabq �m � a � pb �mq ;

(3) p�a P Aq p�m1,m2 PMq a � pm1 �m2q � a �m1 � a �m2 ;

(4) p�m PMq 1 �m � m

This amounts to give a ring homomorphism AÑ EndpMq.

Remark 1.2.3. Elements in A are alled salars. As usual, we usually denote a module by the underlying

set and write am instead of a �m.

Example 1.2.4. (1) A Z-module in nothing but an abelian group.

(2) If K is a �eld, an K-module is just a K-vetor spae.

(3) If K is a �eld, a KrXs-module is a K-vetor spae endowed with a K-linear endomorphism (orrespond-

ing to the multipliation by X).

(4) If I � A is an ideal, then I and A{I are A-modules.

(4)

The onverse is true and easy.
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De�nition 1.2.5. Let M be an A-module. A sub-A-module of M is an additive subgroup N �M whih is

stable under multipliation by salars, i.e. suh that

p�a P Aq p�n1, n2 P Nq n1 � an2 P N.

Exemples 1.2.6. Submodules of A are nothing but its ideals. When A is a �eld, submodules are sub-vetor

spaes.

Operations on submodules of an A-module. Let M be an A-module and pMλqλPΛ a family of sub-A-

modules of M . The intersetion

�

λPΛ

Mλ is a submodule of M . Put

¸

λPΛ

Mλ �

!

¸

λPΛ

mλ ; pmλqλPΛ P

à

λPΛ

Mλ

)

(the set of �nite sums of elements in

�

λPΛ

Mλ). This is a sub-A-module of M , alled the sum of pMλqλPΛ.

De�nition 1.2.7. Let M be an A-module.

(1) Let X � M . There exists a smallest sub-A-module N of M suh that X � N : it is alled the sub-A-

module of M generated by X (it is the intersetion of all sub-A-modules of M that ontain X). It is also

the sum

°

xPX

Ax (where Ax � tax, a P Au).

(2) A subset X �M generates M when the sub-A-module of M generated by X is M itself.

(3) The A-module M is of �nite type if it is generated by a �nite part.

(4) The A-module M is alled noetherian if all its sub-A-modules are of �nite type.

De�nition 1.2.8. Let Λ be a set and pMλqλPΛ a family of A-modules.

(1) The produt

±

λPΛ

Mλ is the A-module of maps f : ΛÑ
�

λPΛ

Mλ suh that fpλq PMλ for all λ P Λ.

(2) The (diret) sum

À

λPΛ

Mλ is the sub-A-module of

±

λPΛ

Mλ made of maps f : Λ Ñ

�

λPΛ

Mλ suh that the

set tλ P Λ, fpλq � 0u is �nite.

(3) If Mλ � M for all λ P Λ, one writes MΛ
and M pΛq

instead of

±

λPΛ

M and

À

λPΛ

M . When n P Z
¥0 and

Λ � t1, . . . , nu, one denotes it Mn
.

Remark 1.2.9. When Λ is �nite, the A-modules

±

λPΛ

Mλ and

À

λPΛ

Mλ are the same.

De�nition 1.2.10. (1) Let M and N be A-modules. An A-linear map from M to N is a group homomor-

phism f : M Ñ N suh that fpamq � afpmq for all a P A and m P M . The set of A-linear maps from M

to N is an abelian group denoted HomApM,Nq.

(2) The kernel of f P HomApM,Nq is the submodule Kerpfq � f�1
p0q of M , and the image of f is the

submodule Impfq � fpMq of N . The okernel of f is Cokerpfq :� N{ Impfq.

(3) We say that f is an isomorphism when f is bijetive (the inverse map f�1
is then A-linear). This is

equivalent to Kerpfq � t0u (i.e. f is injetive) and Impfq � N (that is Cokerpfq � t0u, i.e. f is surjetive).

De�nition 1.2.11. Let M be an A-module and N a sub-A-module. The quotient group M{N is naturally

endowed with a A-module struture (beause apm�Nq � am� aN � am�N for all m PM and a P A).

The A-module M{N is alled the quotient of M by N . The anonial map π : M Ñ M{N ;m ÞÑ m�N is

A-linear, and has the following universal property: for all A-linear map f : M ÑM 1

suh that N � Kerpfq,

there exists a unique A-linear map

rf : M{N ÑM 1

suh that f � rf � π.

M
f //

π

��

M 1

M{N

rf

<<①①①①①①①①①

In partiular, if f : M ÑM 1

is A-linear, there is a anonial deomposition f � ι� rf �π where ι : Impfq ÑM 1

is the inlusion,

rf an isomorphism and π : M ÑM{Kerpfq the anonial projetion.

De�nition 1.2.12. (1) A free A-module is an A-module isomorphi to ApΛq for some set Λ.

(2) Let Λ be a set. For λ P Λ, let eλ P A
pΛq

be the element de�ned by eλpηq � δλ,η (Kroneker symbol).

The family peλqλPΛ is alled the anonial basis of ApΛq.
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Proposition 1.2.13. (1) If a P ApΛq, then a �
°

λPΛ

apλqeλ (the sum is �nite).

(2) If M is an A-module, the A-linear map

HomApA
pΛq,Mq ÑMΛ

f ÞÑ pfpeλqqλPΛ

is an isomorphism. In other words, the data of an A-linear map f : ApΛq Ñ M is equivalent to that of the

family pfpeλqqλPΛ.

Proof. (1) For η P Λ, one has
�

°

λPΛ

apλqeλ

	

pηq � apηq.

(2) Follows from fpaq �
°

λPΛ

apλqfpeλq for all f P HomApA
pΛq,Mq and a P ApΛq. �

De�nition 1.2.14. Let M be an A-module and tmλuλPΛ � M . Form proposition 1.2.13 (2), there exists

a unique A-linear map f : ApΛq Ñ M suh that fpeλq � mλ for all λ P Λ. The A-module Impfq is the

submodule of M generated by tmλuλPΛ. In partiular, the family tmλuλPΛ generates M if and only if f

is surjetive. When f is injetive, we say that tmλuλPΛ is free (or linearly independent). When f is an

isomorphism (so that M is free), we say that pmλqλPΛ is a basis of M . In that ase, any m P M an be

uniquely written m �

°

λPΛ

aλmλ with paλqλPΛ P ApΛq. Suh a family pmλqλPΛ is alled a basis of M (this

generalizes the usual notion of basis of a vetor spae over a �eld).

Remark 1.2.15. When A is a �eld, any A-module is free (any vetor spae has a basis). This is not true if

A is not a �eld: there exists a non zero ideal I � A suh that I � A, and the A-module A{I is not free (if

e P A{I and a P Izt0u, then ae � 0). For instane, Z {2Z is a Z {4Z-module, and it is not free. It an be

shown (this in not obvious) that ZZ
¥0

is not free over Z (though it has no torsion).

Proposition 1.2.16. Bases of a free modules have all the same ardinality.

Proof. We have to show that if Λ and Λ1 are sets suh that the A-modulesApΛq and ApΛ
1

q

are isomorphi, then

Λ and Λ1 have the same ardinality. Let f : ApΛq Ñ ApΛ
1

q

be an isomorphism, and I � A a maximal ideal A

(f Krull's theorem). As f is A-linear, it indues an isomorphism f : pA{IqpΛq Ñ pA{IqpΛ
1

q

. As I is maximal,

A{I is a �eld: the A{I-vetor spaes pA{IqpΛq and pA{IqpΛ
1

q

are isomorphi, so CardpΛq � CardpΛ1q. �

De�nition 1.2.17. From the preeding proposition, if M is isomorphi to An with n P Z
¥0, the integer n

is an invariant of M , alled the rank of M and denoted by rkpMq.

Remark 1.2.18. When M and N are free A-module of ranks m and n, proposition 1.2.13 (2), implies that

the hoie of bases of M and N provide an isomorphism

HomApM,Nq � HomApA
m, Anq � Mn�mpAq.

As for vetor spaes over a �eld, after the hoie of bases, the data of a A-linear map between free A-modules

of �nite rank is equivalent to that of its matrix in the hosen bases.

De�nition 1.2.19. Let M be an A-module and m PM . Put annApmq � ta P A ; am � 0u. This is an ideal

of A, alled annihilator of m. We say that m is torsion if annApmq � t0u, i.e. if it exists a P Azt0u suh

that am � 0. We denote Mtors the set of torsion elements in M , and we say that M is torsion-free (resp.

has torsion) if Mtors � t0u (resp. Mtors �M).

Put annApMq � ta P A ; p�m P Mq am � 0u �
�

mPM

annApmq (the annihilator of A): this is an ideal. The

A-module struture on M indues an A{ annApMq-module struture on M . Note that M may have torsion

even if annApMq � t0u: for instane annZpQ {Zq � t0u.

Example 1.2.20. If I � A is a non zero ideal, the A-module A{I has torsion. For instane, Z {2Z is a

Z {6Z-module with torsion. Idem for the Z-module Q {Z.

Proposition 1.2.21. If A is an integral domain and M is an A-module, then Mtors is a submodule of M

and the quotient A-module M{Mtors is torsion-free.

Proof. If m1,m2 P Mtors and α P A, there exist a1, a2 P Azt0u suh that a1m1 � 0 and a2m2 � 0. As A is

an integral domain, we have a1a2 � 0 and a1a2pm1 � αm2q � 0 so that m1 � αm2 PMtors.

Let m PM whose imagem�Mtors is torsion inM{Mtors: there exists a P Azt0u suh that am�Mtors �Mtors

i.e. am P Mtors, so that there exists b P Azt0u suh that bpamq � 0. As A is an integral domain, we have

ab � 0, and m PMtors. �
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Remark 1.2.22. (1) The previous statement does not hold if A is not an integral domain. For instane, if

A �M � Z�Z, then Mtors � pZ�t0uq Y pt0u � Zq is not a submodule of M .

(2) A free A-module is torsion-free, but the onverse is false in general (it holds for modules of �nite type

over prinipal rings).

1.2.23. Algebras.

De�nition 1.2.24. An A-algebra is a ring homomorphism f : AÑ B (whih may not be injetive), whose

image lies in the enter of B. We will often denote it by the underlying ring B. A morphism between two

A-algebras f1 : AÑ B1 and f2 : AÑ B2 is a ring homomorphism g : B1 Ñ B2 suh that g � f1 � f2.

B1

g // B2

Af1

aa❉❉❉
f2

==④④④

Remark 1.2.25. (0) Any ring is a Z-algebra, in a unique way.

(1) If f : AÑ B is an algebra, then B is naturally endowed with an A-module struture, and the multipli-

ation law B � B Ñ B is A-bilinear. Conversely, if B is a ring endowed with an A-module struture suh

that the multipliation B �B Ñ B is A-bilinear, then the map f : AÑ B; a ÞÑ a1B is an A-algebra.

Example 1.2.26. (1) A �eld extension L{K is a K-algebra.

(2) If K is a �eld and V a K-vetor spae, the (non ommutative) ring EndKpV q is a K-algebra.

(3) If A is a ring, the polynomial ring ArXλsλPΛ is an A-algebra.

(4) If B and C are A-algebras, so is their produt B � C.

(5) If B is an A-algebra and I � B an ideal, then B{I is an A-algebra.

De�nition 1.2.27. Let f : AÑ B an A-algebra.

(1) A sub-A-algebra is a subring B1

� B suh that f fators through a ring homomorphism A Ñ B1

(in

other words suh that the inlusion map B1

Ñ B is a morphism of A-algebras).

(2) Let X :� txλuλPΛ � B. There exists a smallest sub-A-algebra of B that ontains X (this is nothing but

the intersetion of all the sub-A-algebras of B ontaining X). This subalgebra is denoted ArxλsλPΛ and is

alled the sub-A-algebra generated by X . If it is B itself, we say that txλuλPΛ generates the A-algebra B.

(3) An A-algebra is of �nite type if it is generated by a �nite set. This is equivalent to the existene of a

surjetive morphism of A-algebras ArX1, . . . , Xns Ñ B.

(4) An A-algebra is �nite if it is �nite as an A-module.

Remark 1.2.28. (1) A �nite A-algebra is of �nite type, but the onverse does not hold (for instane the

polynomial A-algebra ArXs is not �nite).

(2) Let B a �nite A-algebra andM a B-module of �nite type. TheM is an A-module of �nite type. Indeed,

one an write B �

r
°

i�1

biA and M �

s
°

j�1

Bmj , so that M �

°

1¤i¤r
1¤j¤s

Abimj .

1.3. Noetherianity.

Proposition 1.3.1. (1) Let M be an A-module. The following properties are equivalent:

(i) M is noetherian (f de�nition 1.2.7 (4));

(ii) every asending sequene of sub-A-modules of M is stationary;

(iii) every non empty subset of submodules ofM ontains elements that are maximal under the inlusion.

(2) Let M be an A-module and N �M a submodule. Then M is noetherian if and only if the A-modules

N and M{N are.

Proof. (1) (i)ñ(ii). Let pMnqPZ
¥0

be an asending sequene of submodules. As the submodule

°

nPZ
¥0

Mn

is of �nite type, it is generated by a �nite set tm1, . . . ,mru: let N P Z
¥0 be suh that tm1, . . . ,mru �MN ,

so that MN �

°

nPZ
¥0

Mn �MN , hene
°

nPZ
¥0

Mn �MN , and Mn �MN for all n ¥ N .

(ii)ñ(iii). Let E be suh a subset. If it has no maximal element, one an indutively onstrut a stritly

asending (for the inlusion) sequene of elements in E , ontraditing (ii).

(iii)ñ(i). Let N � M be a submodule and E the set of submodules of �nite type in N . As t0u P E , we

have E � ∅: by (iii), the set E ontains a maximal element N0. Assume N0 � N : there exists x P NzN0

and N 1

� N0 �Ax � N P E . As N0 � N 1

, this ontradits the maximality of N0: we have N0 � N and N

is of �nite type.
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(2)  If M is noetherian, then N is noetherian. If N 1

is a submodule of M{N , we an write N 1

�

rN{N

with

rN � π�1
pN 1

q (where π : M Ñ M{N is the anonial map). As M is noetherian,

rN is of �nite type,

whih implies that N 1

�

rN{N is of �nite type as well, and M{N is noetherian.

 Assume N and M{N are noetherian. Let pMnqnPZ
¥0

be an asending sequene of submodules of M . The

sequenes pMn X NqnPZ
¥0

and ppN �Mnq{NqnPZ
¥0

are asending in N and M{N respetively. As they

are noetherian, those sequenes are stationary: there exists n0 P Z
¥0 suh that Mn X N � Mn0

XN and

pN �Mnq{N � pN �Mn0
q{N i.e. N �Mn � N �Mn0

for all n ¥ n0. If m P Mn, there exists x P N

and y P Mn0
� Mn suh that m � x � y. As x � y �m P N XMn � N XMn0

, we have m P Mn0
, hene

Mn �Mn0
i.e. Mn �Mn0

. The A-module M is thus noetherian. �

Corollary 1.3.2. If M1 and M2 are noetherian, so is their produt M1 �M2.

Proof. As M1 � M1 � t0u and M2 � pM1 �M2q{pM1 � t0uq are noetherian, this follows from proposition

1.3.1 (2). �

De�nition 1.3.3. The ring A is noetherian if it is as an A-module. By de�nition, this means that every

ideal of A is of �nite type. By proposition 1.3.1, this is equivalent to the fat that any asending sequene

of ideals in A is stationary.

Proposition 1.3.4. If A is noetherian, every A-module of �nite type is noetherian.

Proof. LetM be an A-module of �nite type: there exists n P Z
¥0 and a surjetive A-linear map f : An ÑM .

As A is noetherian, so is An (orollary 1.3.2), and M � An{Kerpfq (proposition 1.3.1 (2)). �

Example 1.3.5. (1) Let R be a ring and I an in�nite set. The ring of polynomials A � RrXisiPI is not

noetherian: the ideal generated by tXiuiPI is not of �nite type.

(2) Let A � Zr2X, 2X2, 2X3, . . .s � Z�2X ZrXs � ZrXs. Then A is not noetherian: the ideal I generated

by t2X i
uiPZ

¡0
is not �nitely generated. Indeed, the ring homomorphism f : ZrXisiPZ

¡0
Ñ ZrXs de�ned by

fpXiq � 2X i
fators through an injetive morphism ZrXisiPZ

¡0
{x2i�1Xi �X i

1yiPZ¡1
Ñ ZrXs, induing an

isomorphism ZrXisiPZ
¡0
{x2i�1Xi � X i

1yiPZ¡1

�

ÑA, hene an isomorphism F2rXisiPZ
¡0
{xX2

1y
�

ÑA{2A: the

image of I in A{2A orresponds to the ideal generated by tXiuiPZ
¡0
: it is not �nitely generated. Moreover,

the ideal x2XyX x2X2
y � x4X2, 4X3, . . .y is not �nitely generated: this gives an example of an intersetion

of two prinipal ideal whih is not �nitely generated (same reasoning as above).

Theorem 1.3.6. (Hilbert) If the ring A is noetherian, so is ArXs.

Proof. Let I � ArXs be an ideal. For n P Z
¥0, let Jn denote the set of leading oe�ients of elements

in I whih are of degree n. As I is an ideal in ArXs, the set Jn is an ideal in A. If n ¤ m and a P Jn
(so that there exists P P I of degree n whose leading oe�ient is a), then a P Jm (sine a is the leading

oe�ient of Xm�nP ): the sequene of ideals pJnqnPZ
¥0

is asending. As A is noetherian, this sequene

is stationary: let d P Z
¥0 be suh that n ¥ d ñ Jn � Jd. As A is noetherian, the ideal Jd is of �nite

type: hoose α1, . . . , αr generators of Jd, these are the leading oe�ients of P1, . . . , Pr P Jd respetively.

On the other hand, denote by ArXs
 d the sub-A-module of ArXs made of elements of degree   d, and put

M � I X ArXs
 d. As ArXs d is an A-module of �nite type, it is noetherian (f proposition 1.3.4), hene

M is of �nite type: let Q1, . . . , Qs be generators of M . We have of ourse

α1ArXs � � � � � αrArXs �Q1ArXs � � � � �QsArXs � I

If P P I has degree n ¥ d, its leading oe�ient a belongs to Jd: there exists a1, . . . , ar P A suh that

a � aaα1 � � � � � arαr. The polynomial P �

r
°

i�1

aiX
n�dPi P I has degree   n: after subtrating an

element of α1ArXs � � � � � αrArXs to P , we may assume degpP q   d. Then P P M � I X ArXs
 d, hene

P P Q1ArXs � � � � � QsArXs, whih shows that P P α1ArXs � � � � � αrArXs � Q1ArXs � � � � � QsArXs.

The I is of �nite type, and ArXs is noetherian. �

Corollary 1.3.7. Let A be a noetherian ring and B an A-algebra of �nite type. Then B is a noetherian

ring.

Proof. As B is of �nite type, there exist b1, . . . , br P B suh that B � Arb1, . . . , brs: there is a surjetive

morphism of A-algebras f : ArX1, . . . , Xrs Ñ B de�ned by fpXiq � bi for i P t1, . . . , ru. Put I � Kerpfq:

we have B � ArX1, . . . , Xrs{I. As A is noetherian, so is ArX1, . . . , Xrs (apply theorem 1.3.6 r times), so

that B is a noetherian ArX1, . . . , Xrs-algebra: it is a noetherian ring. �
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1.4. Modules of �nite type over PIDs. In this paragraph, we assume that A is a PID. The ring A is

an integral domain: denote by K its fration �eld. Reall that A is a UFD (f proposition 1.1.26): there

are gd and lm. Moreover, as ideals in A are generated by one element, A is noetherian.

In what follows, empty entries in a matrix orrespond to zeros. If n P Z
¡0 and a1, . . . , an P A, we put

diagpa1, . . . , anq �
� a1 . . .

an

	

P MnpAq.

De�nition 1.4.1. If n P Z
¡0, we put GLnpAq � tM P MnpAq ; detpMq P A�u. Cramer formulas imply that

this is the group of units in the (non ommutative) ring MnpAq (note that the detpAq � 0 is not enough).

Put SLnpAq � tM P MnpAq ; detpMq � 1u: this is a subgroup of GLnpAq.

Proposition 1.4.2. Let n P Z
¥2 and a1, . . . , an be elements in A generating the unit ideal. Then there

exists a matrix in SLnpAq whose �rst row is pa1, . . . , anq.

Proof. Put X � pa1, . . . , anq: we have to build M P SLnpAq suh that XM�1
� p1, 0, . . . , 0q. We work by

indution on n ¥ 2.

Case n � 2. As A � Aa1�Aa2, there exist u, v P A suh that va1�ua2 � 1. The matrix M � p

a1 a2
u v q does

the job.

Case n ¡ 2. Let dA � gcdpa2, . . . , anq and b2, . . . , bn P A suh that dbi � ai for i P t2, . . . , nu. We have

gcdpb2, . . . , bnq � A: by indution, there exists M 1

1 P SLn�1pAq suh that YM 1�1
1 � p1, 0, . . . , 0q where

Y � pb2, . . . , bnq. Let

M1 �

�

1
M 1

1

	

We have detpM1q � detpM 1

1q � 1 and XM�1
1 � pa1, d, 0, . . . , 0q. Use ase n � 2: as gcdpa1, dq � A, there

exists M 1

2 P SL2pAq with pa1, dqM
�1
2 � p1, 0q. Let

M2 �

�

M 1

2

In�2

	

(In�2 P SLn�2pAq is the unit matrix). We have detpM2q � detpM 1

2q � 1 and XM�1
1 M�1

2 � p1, 0, . . . , 0q, i.e.

XM�1
� p1, 0, . . . , 0q with M �M2M1 P SLnpAq. �

Remark 1.4.3. This proof provides an e�etive proedure to onstrut the matrix provided one an deal

with the ase n � 2 (whih is the ase, for instane, when A is eulidean).

De�nition 1.4.4. If n,m P N
¡0, we make the group SLnpAq � SLmpAq at on the A-module Mn�mpAq by

pP,Qq �M � P�1MQ.

Two matriesM1,M2 P Mn�mpAq are equivalent if they are in the same orbit for this ation. We write then

M1 � M2 (this de�nes an equivalene relation). Note that we may also make GLnpAq � GLmpAq at in a

similar way.

Remark 1.4.5. When n � m, one should not onfuse this notion with the �ner notion of similarity: two

matries M1,M2 P MnpAq are similar if there exists P P GLnpAq suh that M2 � P�1M1P .

De�nition 1.4.6. A redued matrix is a matrix of the form

� α1 . . .
αr




P Mn�mpAq

with r P t0, . . . ,mintm,nuu and α1, . . . , αr P Azt0u suh that αi | αi�1 for all i P t0, . . . r � 1u.

Notation. (1) Fix a family ppλqλPΛ of representatives of irreduible elements in A. Any element a P Azt0u

admits a unique deomposition as a produt of irreduible fators:

a � u
¹

λPΛ

pnλ

λ

where u P A� and pnλqλPΛ is a family of integers, all but �nitely many being equal to zero. We put

ℓpaq �
¸

λPΛ

nλ P Z
¥0

that we all the length of a. This is nothing but the number of irreduible fators in a (for instane, we

have ℓpaq � 0� a P A� and ℓpaq � 1 if and only if A is irreduible). If M � rmi,js 1¤i¤n
1¤j¤m

P Mn�mpAqzt0u,

we put

ℓpMq � min
 

ℓpmi,jq ; 1 ¤ i ¤ n, 1 ¤ j ¤ m, mi,j � 0
(

.
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(2) If σ P Sn is a permutation, we put Pσ �

�

δσpiq,j
�

1¤i,j¤n
P MnpAq (where δi,j is the Kroneker

symbol). We have detpPσq � εpσq (where εpσq is the signature of σ), so that Pσ P GLnpAq. Put

rPσ � diag
�

1, . . . , 1, εpσq
�

Pσ P SLnpAq.

If M P Mn�mpAq, the matrix PσM is the element in Mn�mpAq whose i-th row is the σpiq-th row of M .

Similarly, if γ P Sm is a permutation, the matrix MPγ is dedued from M by permuting the olumns

aording to γ. Multiplying M by

rPσ on the left (resp. by

rPγ on the right), permutes rows aording to σ

(resp. olumns aording to γ) and multiplies the last row (resp. olumn) by εpσq (resp. εpγq).

Theorem 1.4.7. Every matrix M P Mn�mpAq is equivalent to a redued matrix.

Proof. We may assume M � 0. We proeed by indution on d � mintm,nu.

Assume d � 1. Transposing if neessary, we may assume n � 1, so that M is a row. If m � 1, there is

nothing to do: assume m ¥ 2. Let α1 be the gd of the oe�ients of M : we have M � α1X where X is

a row vetor whose entries generate the unit ideal. By proposition 1.4.2, there exists Q P SLnpAq suh that

the �rst row of Q�1
is X . Then XQ � p1, 0, . . . , 0q thus MQ � pα1, 0, . . . , 0q is redued.

Assume d ¡ 1. Reall that M � 0. Let δ � min
 

ℓpM 1

q ; M 1

�M
(

P Z
¥0. Replaing M by an appropriate

equivalent matrix, we may assume that ℓpMq � δ. There exist i0 P t1, . . . , nu and j0 P t1, . . . ,mu suh

that ℓpmi0,j0q � δ. Let τ1,i0 P Sn (resp. τ1,j0 P Sm) be the transposition of t1, . . . , nu (resp. t1, . . . ,mu)

that exhanges 1 and i0 (resp. j0), and put M 1

�

rP�1
τ1,i0

M rPτ1,j0 P Mn�mpAq (where rPτ1,i0 P SLnpAq and

rPτ1,j0 P SLmpAq are the modi�ed permutation matries, f de�nition 1.4.1 (2)). We have M 1

� M and

m1

1,1 � mi0,j0 : replaing M by M 1

, we may assume that ℓpm1,1q � δ. Put α1 :� m1,1.

We �rst show that α1 divides the oe�ients of the �rst row and of the �rst olumn of M . Transposing if

neessary, it is enough to deal with the �rst olumn. Assume there exists i P t2, . . . , nu suh that α1 ∤ mi,1.

Exhanging the seond and the i-th rows, we may assume i � 2. Let rα1 � gcdpα1,m2,1q. As rα1 stritly

divides α1, we have ℓprα1q   δ. On the other hand, there exist a, b P A suh that rα1 � am1,1 � bm2,1. Put

P �

�

�

a b
�m2,1{rα1 m1,1{rα1

1 . . .
1

�



We have detpP q � 1 and the entry of index p1, 1q in M 1

� PM is rα1: this implies that M 1

� M and

ℓpM 1

q ¤ ℓprα1q   δ, ontraditing the de�nition of δ.

 Multiplying M on the left by the matrix

�

1
�m2,1{α1 1

...
. . .

�mn,1{α1 1

�

P SLnpAq

on the left, and by

�

1 �m1,2{α1 ��� �m1,m{α1

1 . . .
1

�

P SLmpAq

on the right, we may assume that mi,1 � 0 for P t2, . . . , nu and m1,j � 0 for j P t2, . . . ,mu. Indeed this

provides an equivalent matrix, with same length (the entry of index p1, 1q was not modi�ed).

 The matrix M is now of the form

� α1

M1

�

with M1 P M
pn�1q�pm�1qpAq. By indution hypothesis, there exist P1 P SLn�1pAq, Q1 P SLm�1pAq, r P N,

and elements α2, . . . , αr P Azt0u suh that αi | αi�1 for all i P t2, . . . , r � 1u and

P�1
1 M1Q1 �

� α2 . . .
αr




Multiplying M by

�

1

P
�1
1

	

P SLnpAq on the left and by

�

1
Q1

�

P SLmpAq on the right, we may assume that

M �

� α1 . . .
αr




It remains to hek that α1 | α2. Assume the ontrary. Let α11 � gcdpα1, α2q. As α1 ∤ α2, we have

ℓpα11q   ℓpα1q � δ. There exist a, b P A suh that aα1 � bα2 � α11. The equality

p

1
a 1 q p

α1
α2
q p

1
b 1 q �

�

α1

α11 α2

	

imply that there exists M 1

� pmi,jq 1¤i¤n
1¤j¤m

P Mn�mpAq equivalent to M and suh that m1

2,1 � α11: we have

ℓpM 1

q ¤ ℓpα11q   δ, ontraditing the de�nition of δ. �
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Remark 1.4.8. (1) When A is eulidean, it is possible to make this statement onstrutive, using elementary

operations.

(2) When A is a �eld, one reovers the well known fat that the orbits for the equivalene relation are

haraterized by the rank: every matrix M is equivalent to

�

1 . . .
1




(where the number of 1 is rkpMq).

Notation. Let M P Mn,mpAq. If k P t0, . . . ,mintn,muu, let IkpMq be the ideal generated by the minors of

order k ofM (so this is the gd of those minors). The sequene of ideals pIkpMqq0¤k¤mintn,mu is dereasing
(5)

,

and IkpMq � t0u if k ¡ rkpMq. These are alled the invariant fators of M .

Lemma 1.4.9. Two matries that are equivalent have the same invariant fators.

Proof. Let M P Mn,mpAq and P P GLnpAq. Put M 1

� P�1M . Lines of M 1

are A-linear ombinations of

those of M : by multilinearity of the determinant, a minor of order k of M 1

is an A-linear ombination of

minors of M of order k. This implies that IkpM
1

q � IkpMq. As M � PM 1

, we have also IkpMq � IkpM
1

q,

i.e. IkpM
1

q � IkpMq. Similarly, we have IkpMQq � IkpMq for all Q P GLmpAq (using the fat that olumns

of MQ are A-linear ombinations of those of M). �

Theorem 1.4.10. With the notations of theorem 1.4.7, we have IkpMq � α1 � � �αkA for k P t1, . . . , ru

(where r � rkpMq). In partiular, the sequene of ideals α1A � α2A � � � � � αrA is unique.

Proof. By lemma 1.4.9, we have IkpMq � Ikpdiagpα1, . . . , αr, 0, . . . , 0qq � α1 � � �αkA for k P t1, . . . , ru. �

Theorem 1.4.11. (Adapted basis theorem). Let M be a sub-A-module of an A-module L free of �nite

rank n. Then M is free, and there exists a basis pe1, . . . , enq of L, an integer r ¤ n and α1, . . . , αr P Azt0u

suh that

#

αi | αi�1 for all i P t0, . . . r � 1u

pα1e1, . . . , αrerq is a basis of M.

Proof. As A is a PID, it is noetherian. As L is of �nite type, it is noetherian (proposition 1.3.4): its

sub-A-module M is of �nite type as well. Choose a generating family x1, . . . , xm PM : we have an A-linear

map

f : Am Ñ L

pa1, . . . , amq ÞÑ

m̧

j�1

ajxj

whose image is nothing but M . After the hoie of a basis B of L, this map is given by an n �m matrix

(whose j-th olumn onsists in the oordinates of xj in B). By theorem 1.4.7, this matrix is equivalent to

a redued matrix: after a hange of bases in Am and L, it has the form
� α1 . . .

αr




with r P t0, . . . ,mintm,nuu and α1, . . . , αr P Azt0u suh that αi | αi�1 for i P t0, . . . r � 1u. Denote by

pe1, . . . , enq the new basis of L: the imageM of f is then the free sub-A-module with basis pα1e1, . . . , αrerq.

�

Remark 1.4.12. The previous result is obviously false when A is not a PID. For instane Z {2Z is a

sub-Z {4Z-module of Z {4Z. Similarly, the sub-Z�Z-module Z�t0u of Z�Z is not free.

Theorem 1.4.13. (Invariant fator deomposition). Let M be an A-module of �nite type. There

exist integers d, r P Z
¥0 and a1, . . . , ad P Az

�

t0u YA�
�

suh that

#

ai | ai�1 for all i P t0, . . . d� 1u

M � pA{a1Aq � � � � � pA{adAq �Ar

Moreover, the integers d, r and the ideals a1A, . . . , adA are unique. The integer r is alled the rank of M

and when r � 0, the elements pa1, . . . , adq �the� invariant fators of M .

(5)

This follows from the fat that minors of order k a linear ombinations of minors of order k�1, as an be seen by developing

determinant along the �rst row.
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Proof. We start with the existene. As M is of �nite type, we an hoose a generating family m1, . . . ,mn:

we have a surjetive A-linear map

f : An ÑM

pλ1, . . . , λnq ÞÑ

ņ

i�1

λimi.

As An is free of �nite rank, there is a basis pe1, . . . , enq suh that

Kerpfq �
s
à

i�1

Aαiei

with s P t1, . . . , nu and α1, . . . , αs P Azt0u suh that αi | αi�1 for all i P t0, . . . s� 1u (f theorem 1.4.11).

Taking the quotient, f indues an A-linear isomorphism

M � An{Kerpfq �
� s
à

i�1

pA{αiAqei

	

`

� n
à

i�s�1

Aei

	

Let t � max
 

i P t1, . . . , su ; αi P A
�

(

(we have t � 0 if α1 R A
�

). Put d � s� t, r � n� s and ai � αt�i
for i P t1, . . . , du. We have a1, . . . , ad P Az

�

t0u YA�
�

and ai | ai�1 for all i P t0, . . . d� 1u. Moreover, as

A{αiA �

#

0 if i ¤ t

A{ai�tA if t   i ¤ s

we have

M � pA{a1Aq � � � � � pA{adAq �Ar.

 We now prove the uniity. We have Mtors � pA{a1Aq � � � � � pA{adAq thus M{Mtors � Ar . The integer

r thus depends only on M (f proposition 1.2.16). We are thus redued to the ase where M is a torsion

module. We have M �

d
±

i�1

pA{aiAq with a1 | a2 | � � � | ad in Azt0u. Let P be the set of irreduible

elements in A. If p P P, the ideal pA is prime an non-zero, hene maximal

(6)

: the A-module M{pM is an

A{pA-vetor spae of �nite dimension dppMq (we have dppMq � #ti P t1, . . . , du ; p | aiu). This shows in

partiular that d � dpMq :� max
pPP

dppMq only depends on M .

For all n P Z
¥0, we have dppp

nM{pn�1Mq � #ti P t1, . . . , du ; vppaiq ¥ n � 1u. This implies that for all

n P Z
¡0, the integer

#ti P t1, . . . , du ; vppaiq � nu � dppp
n�1M{pnMq � dppp

nM{pn�1Mq

only depends on M and p. As vppa1q ¤ vppa2q ¤ � � � ¤ vppadq, this implies that for all p P P and all

i P t1, . . . , du, the integer vppaiq only depends on M and p. This means that the ideals aiA only depend on

M .

Remark: an other way to onlude.

Lemma 1.4.14. If a, b P Azt0u, we have apA{bAq � A{ b
gcdpa,bq

A.

Proof. Write a � α gcdpa, bq and b � β gcdpa, bq: we have gcdpα, βq � 1. Let π : A Ñ A{bA be the anonial projetion. Then apA{bAq is the

image of the omposite π �ma, where ma : A Ñ A is the multipliation by a. We have x P Kerpπ �maq � ax P bA � αx P βA � x P βA (beause

gcdpα, βq � 1). The surjetive morphism π �ma : A Ñ apA{baq thus indues an isomorphism A{βA
�

Ñ apA{bAq. �

We prove the uniity of the ideals taiAu1¤i¤d by indution on d, the ase d � 0 being empty. Assume that M �

d
±

i�1

pA{aiAq �
d
±

i�1

pA{biAq

with a1 | a2 | � � � | ad and b1 | b2 | � � � | bd. Let s � maxti P t1, . . . , du ; aiA � a1Au. We have a1M �

d
±

i�s�1

a1pA{aiAq �
d
±

i�1

a1pA{biAq.

By lemma 1.4.14, this means that a1M �

d
±

i�s�1

A{
ai
a1

A �

d
±

i�1

A{
bi

gcdpa1,biq
A. By uniity of dpa1Mq, this implies that A{

bi
gcdpa1,biq

A � t0u,

i.e. biA � gcdpa1, biqA whene a1A � biA for all i P t1, . . . , su. Symmetrially, we also have biA � a1A, so aiA � biA for i P t1, . . . , su.

Moreover, we have a1M �

±d
i�s�1 A{

ai
a1

A �

±d
i�s�1 A{

bi
a1

A: the indution hypothesis implies that

ai
a1

A �

bi
a1

A and thus aiA � biA for all

i P ts� 1, . . . , du, �nishing the proof. �

Corollary 1.4.15. A torsionfree A-module of �nite type is free.

Corollary 1.4.16. The ideals α1A, . . . , αrA in theorems 1.4.7 and 1.4.11 are unique.

(6)

If A is a PID and p � A is prime and non-zero, then p is maximal. Indeed, let m � p be a maximal ideal (f Krull's theorem,

f theorem 1.1.7). As A is a PID, there exist a, b P Azt0u suh that p � aA and m � bA. As p � m, we have b | a: there

exists c P A suh that a � bc. As p is prime, we have b P p or c P p. In the last ase, there would exist d P A suh that

c � ad, whene a � abd i.e. bd � 1 sine A is a domain and a � 0. This would imply that b P A� i.e. m � A whih is not.

We thus have b P p, hene m � p i.e. p � m is maximal.
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Proof. If M �

r
À

i�1

Aαiei �
n
À

i�1

Aei � L, we have L{M �

r
À

i�1

pA{αiAqei � An�r. Let s be the number of

indies i P t1, . . . , ru suh that αiA � A (i.e. αi P A
�

). We have L{M � pA{αs�1Aq�� � ��pA{αrAq�A
n�r

.

By theorem 1.4.13, the integers r � s and n � r and thus s only depend on L and M , and the ideals

αs�1A, . . . , αrA as well, whih implies uniity in theorem 1.4.11. This implies uniity in theorem 1.4.7. �

1.5. Tensor produt. Let M and N be A-modules.

De�nition 1.5.1. Let L be an A-module. A map f : M � N Ñ L is bilinear if it satis�es the following

onditions:

(1) f is left-linear, i.e. p�a P Aq p�m1,m2 PMq p�n P Nq fpam1 �m2, nq � afpm1, nq � fpm2, nq ;

(2) f is right-linear, i.e. p�a P Aq p�m PMq p�n1, n2 P Nq fpm, an1 � n2q � afpm,n1q � fpm,n2q.

The set BilApM,N ;Lq of bilinear maps M �N Ñ L is an A-module.

Proposition 1.5.2. There exists a pair pMbAN,ϕq whereMbAN is an A-module and ϕ : M�N ÑMbAN

a bilinear map, having the following universal property: if f : M �N Ñ L is a bilinear map, there exists a

unique A-linear map

rf : M bA N Ñ L suh that f � rf � ϕ.

M �N
f //

ϕ
))❙❙❙

❙
L

M bA N
rf

77♦♦♦♦

Remark 1.5.3. (1) The universal property of the pair pM bA N,ϕq implies its uniity up to a unique

isomorphism.

(2) One an slightly generalize the previous onstrution to over the ase where A may not be ommutative

(this is useful for representation theory for instane).

Proof. Consider the A-module ApM�Nq
of mapsM�N Ñ A having a �nite support, and its anonial basis

�

e
pm,nq

�

pm,nqPM�N
. Let K be the submodule of ApM�Nq

generated by the following elements:

 e
pm1�m2,nq � e

pm1,nq � e
pm2,nq for m1,m2 PM and n P N ;

 e
pm,n1�n2q

� e
pm,n1q

� e
pm,n2q

for m PM and n1, n2 P N ;

 e
pam,nq � ae

pm,nq and epm,anq � ae
pm,nq for a P A, m PM and n P N .

Put M bA N � ApM�Nq
{K. Let i : M �N Ñ ApM�Nq; pm,nq ÞÑ e

pm,nq and π : A
pM�Nq

Ñ M bA N the

anonial projetion. Put ϕ � π � i: by de�nition of K, the map ϕ is bilinear. If f : M �N Ñ L is bilinear,

we de�ne an A-linear map

pf : ApM�Nq
Ñ L by

pfpe
pm,nqq � fpm,nq for all m P M and n P N . As f is

bilinear, we have K � Kerp pfq: the map

pf fators through a map

rf : M bA N Ñ L, so that f � rf � ϕ (we

have

rfpπpe
pm,nqqq � fpm,nq for all m PM and n P N).

M �N
f

%%

ϕ

))❚❚❚
❚❚❚

❚

i

��

M bA N
rf //❴❴❴ L

ApM�Nq
π

55❦❦❦❦❦❦
pf

77

�

De�nition 1.5.4. M bA N is alled the tensor produt of M and N over A.

Remark 1.5.5. (1) The universal property of tensor produt means that there is a funtorial isomorphism

BilpM,N ;Lq � HomApM,HomApN, .qq � HomApM bA N, .q

(2) If M is an A-module and B an A-algebra, then B bAM is endowed with a B-module struture (base

hange).

Notation. With notations of proposition 1.5.2, put mbn � πpe
pm,nqq PM bAN for all m PM and n P N .

Elements in M bA N of this form are alled simple tensors. They generate M bA N as an A-module, but

in general, all elements in M bA N are not simple tensors.

Proposition 1.5.6. Let M be an A-module.

(1) If N is an A-module, there is an isomorphism M bA N
�

ÑN bAM sending xb y to y b x.

(2) If pNλqλPΛ is a family of A-modules, thenM bA

�

À

λPΛ

Nλ

	

�

À

λPΛ

pM bANλq (distributivity of the tensor

produt).



Number theory 17

Proof. Follow from the universal property of the tensor produt. �

Proposition 1.5.7. If M and N are free, with bases peλqλPΛ and pfδqδP∆ respetively, then M bAN is free,

with base peλ b fδq
pλ,δqPΛ�∆.

Proof. Write N �

À

δP∆

Afδ. By proposition 1.5.6 (2), we haveM bAN �

À

δP∆

M bAAfδ. Similarly, we have

M bA Afδ �
À

λPΛ

Aeλ bA Afδ. As Aeλ bA Afδ � Aeλ b fδ, we get M bA N �

À

λPΛ
δP∆

Aeλ b fδ, whene the

result. �

Funtoriality of tensor produt. Let f : M ÑM 1

and g : N Ñ N 1

be two A-linear maps. They indue

a map M �N Ñ M 1

bA N
1; pm,nq ÞÑ fpmq b gpnq. It is bilinear, so fators uniquely through an A-linear

map

f b g : M bA N ÑM 1

bA N
1.

In partiular, if N an A-module, there is a natural A-linear map M bA N
fbIdN
ÝÝÝÝÑM 1

bA N . An important

speial ase is base hange: if B is an A-algebra, f indues a B-linear map B bAM Ñ B bAM
1

.

Remark 1.5.8. If f : M ÑM 1

is an isomorphism, then M bA N
fbIdN
ÝÝÝÝÑM 1

bA N is an isomorphism. If f

is only injetive, then M bA N
fbIdN
ÝÝÝÝÑ M 1

bA N may not be injetive. If f is surjetive, then f b IdN is

surjetive (even better, Cokerpf b IdN q � Cokerpfq bA N , see below).

Example 1.5.9. (1) pZ {aZq bZ pZ {bZq � Z { gcdpa, bqZ for all a, b P Z
¡0.

(2) pQ {Zq bZ pQ {Zq � 0.

(3) QbZQ � Q.

(4) The maps CbCCÑ C; z1 b z2 ÞÑ z1z2 and CbRCÑ C2; z1 b z2 ÞÑ pz1z2, z1z2q are isomorphisms.

(5) Let K be a �eld, V and W be K-vetor spaes, and let V _

� HomKpV,Kq be the dual of V . The map

W bK V _

Ñ HomKpV,W q sending w b α (with w P W and α P V _

) to the rank 1 linear map given by

x ÞÑ αpxqv is an isomorphism (beause it is surjetive sine any element in HomKpV,W q an be written as

a sum of rank 1 maps, and dimKpW bK V _

q � dimKpV q dimKpW q � dimKpHomKpV,W qq). In partiular,

one has V bK V _

�

ÑEndKpV q. Note that the map V bK V _

Ñ K; v b α ÞÑ αpvq orresponds, via this

isomorphism, to the trae map Tr : EndKpV q Ñ K.

1.5.10. Tensor produt of algebras. Let B and C be A-algebras. The multipliation on B (resp. C) provides

maps mB : BbAB Ñ B; xby ÞÑ xy and mC : CbAC Ñ C; xby ÞÑ xy. Moreover, there is an isomorphism

ε : C bA B
�

ÑB bA C; xb y ÞÑ y b x. Consider the omposite

pB bA Cq bA pB bA Cq
IdB bεbIdC

µ

11pB bA Bq bA pC bA Cq
mBbmC // B bA C

(here we taitly used the natural isomorphisms pB bA Cq bA pB bA Cq
�

ÑB bA pC bA Bq bA C and

B bA pB bA Cq bA C
�

ÑpB bA Bq bA pC bA Cq i.e. the assoiativity of tensor produt).

De�nition 1.5.11. The preeding map µ : pBbACqbA pBbACq Ñ BbAC endows the A-module BbAC

with an A-algebra struture: the produt law is simply given by

pb1 b c1q � pb2 b c2q � pb1b2q b pc1c2q

on simple tensors. This A-algebra is alled the tensor produt of the A-algebras B and C.

Remark 1.5.12. Note that this onstrution is funtorial.

There are natural morphisms of A-algebras iB : B Ñ BbAC; b ÞÑ bb1C and iC : C Ñ BbAC; c ÞÑ 1Bb c.

Proposition 1.5.13. (Universal property of the tensor produt of algebras). If X is an A-

algebra, then

HomA -alg

pBbAC,Xq �
 

pf, gq P HomA -alg

pB,Xq�HomA -alg

pC,Xq ; p�b P Bq p�c P Cq fpbqgpcq � gpcqfpbq
(

In partiular, if B and C are ommutative, the tensor produt pB bA C, iB, iCq is the oprodut of B and

C in the ategory of ommutative A-algebras.

B
iB
))❘❘

❘❘
❘❘

f

%%
A

88♣♣♣♣♣♣

&&◆◆
◆◆

◆◆ B bA C // X

C
iC

55❧❧❧❧❧❧
g

99
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Example 1.5.14. (1) ArX1, . . . , Xns bA B � BrX1, . . . , Xns.

(2) If I � B is an ideal and I � B bA C the ideal generated by iBpIq, then pB{Iq bA C � pB bA Cq{I .

For instane, assume that P1, P2 P A :� CrX,Y s, and let B � CrX,Y s{xP1y and C � CrX,Y s{xP2y. Then

BbAC � CrX,Y s{xP1, P2y. Geometrially, this orresponds to the funtions on the intersetion of the two

urves de�ned by P1 and P2 in the a�ne plane A2
C.

(3) (Example 1.5.9 (4) ontinued) Let L{K is a �nite Galois extension with group G, the natural map

L bK L Ñ

À

σPG

L; x b y ÞÑ pxσpyqqσPG is an isomorphism of L-algebras (for the left struture on the

LHS, and the diagonal struture on the RHS). Indeed, hoose a primitive element α P L (i.e. suh that

p1, α, α2, . . . , αd�1
q is a K-basis of L, where d � rL : Ks), and let P pXq �

±

σPG

pX � σpαqq P KrXs be

its minimal polynomial over K. Then L bK L � L bK KrXs{xP y � LrXs{xP y �
À

σPG

L, the last map

sending the lass of X to pσpαqqσPG (this is nothing but the Chinese remainder theorem). By L-linearity,

it is obvious that the omposite maps xb y to pxσpyqqσPG (remark: in down to earth terms, p1b αiq0¤i d
is an L-basis of L bK L, whih is mapped to ppσpαqiq0¤i dqσPG, whih is an L-basis of

À

σPG

L beause the

Vandermonde matrix pσpαqiq0¤i d
σPG

P MdpLq is invertible).

1.6. Tensor, symmetri and exterior algebras.

1.6.1. Graded algebras.

De�nition 1.6.2. Let AÑ B be an A-algebra. A grading on B is a olletion of sub-A-modules tBnunPZ
¥0

suh that

 B �

8

À

n�0

Bn;

 p�m,n P Z
¥0qBnBm � Bn�m.

A graded A-algebra is an A-algebra endowed with a grading.

Remark 1.6.3. If B �

8

À

n�0

Bn is a graded A-algebra, then B0 is an A-algebra.

Example 1.6.4.  B � ArX1, . . . , Xds has a natural grading, for whih Bn is the sub-A-module made of 0

and homogeneous polynomials of degree n.

 Idem for ArrX1, . . . , Xnss.

Remark 1.6.5. By analogy with the previous example, elements in Bn are sometimes alled homogeneous

of degree n.

De�nition 1.6.6. Let B �

8

À

n�0

Bn be a graded A-algebra. An ideal I � B is alled graded if I �
8

À

n�0

pIXBnq.

Example 1.6.7. If B � ArXs and I � x1 � Xy � B, then I is not graded (beause I X Bn � t0u for all

n P Z
¥0).

Proposition 1.6.8. If B �

8

À

n�0

Bn is a graded A-algebra and I � B an ideal generated by homogeneous

elements, then I is graded.

Proof. Write I �
°

λPΛ

βλB with βλ homogeneous of degree nλ P Z
¥0 for all λ P Λ. Let x P I: there exists

λ1, . . . , λr P Λ and b1, . . . , br P B suh that x �
r
°

k�1

βλk
bk. For k P t1, . . . , ru, write bk �

8

°

n�0

bk,n with

bk,n P Bn, and bk,n � 0 for n " 0: we have x �
8

°

n�0

xn with xn �
°

kPZ
¥0

nλk
¤n

βλk
bk,n�nλk

P I X Bn, so that

I �
8

À

n�0

pI XBnq. The reverse inlusion is trivial. �

Proposition 1.6.9. Let B �

8

À

n�0

Bn be a graded A-algebra and I � B a graded ideal. For n P Z
¥0, let

pB{Iqn � pBn � Iq{I � Bn{pI XBnq be the image of Bn in B{I. Then B{I �
8

À

n�0

pB{Iqn, so that B{I is a

graded A-algebra.



Number theory 19

Proof. The map B �

8

À

n�0

Bn Ñ
8

À

n�0

pB{Iqn is surjetive (beause Bn Ñ pB{Iqn � Bn{pI X Bnq is for eah

n P Z
¥0) and its kernel is

8

À

n�0

pI XBnq � I. �

De�nition 1.6.10. Let B �

8

À

n�0

Bn and C �

8

À

n�0

Cn be graded A-algebras.

 A morphism of A-algebras ϕ : B Ñ C is graded if ϕpBnq � Cn for all n P Z
¥0.

 The tensor produt algebra B bA C is naturally graded by pB bA Cqn �
n
À

k�0

Bk bA Cn�k.

Remark 1.6.11. As B �

8

À

n�0

Bn and C �

8

À

n�0

Cn, we have B bA C �

À

n,mPZ
¥0

Bn bA Cm (f proposition

1.5.6 (2)), so B bA C �

8

À

n�0

pB bA Cqn. Moreover, if 0 ¤ k ¤ n and 0 ¤ ℓ ¤ m are integers, and x P Bk,

x1 P Bℓ, y P Cn�k and y
1

P Cm�ℓ, we have pxbyqpx
1

by1q � xx1byy1 P Bk�ℓbACn�m�pk�ℓq � pBbACqn�m,

so the previous de�nition makes sense.

1.6.12. Tensor, symmetri and exterior algebras. In this setion M denotes an A-module. If n P Z
¥0, we

put

Mbn
�M bAM bA � � � bAM
loooooooooooooomoooooooooooooon

n times

.

(in partiular Mb0
� A and Mb1

�M).

De�nition 1.6.13. The tensor algebra of M is

TApMq :�
8

à

n�0

Mbn

where the A-algebra struture is haraterized by

px1 b � � � b xnq b py1 b � � � b ymq ÞÑ x1 b � � � b xn b y1 b � � � b ym.

It is a graded A-algebra, the n-th graded piee being Mbn
.

Remark 1.6.14. In general, TApMq is not ommutative.

Example 1.6.15.  If M � Ax in free of rank 1, then Mbn
� Axbn is of rank 1 for all n P Z

¥0, and

TApMq �

8

À

n�0

Axbn � ArXs is isomorphi to the ring of polynomials in one variable X orresponding to

p0, x, 0, . . .q P TApMq.

 If M � Ax`Ay is free of rank 2, then TApMq is isomorphi to the free A-algebra on two indeterminates

X and Y (that orrespond to p0, x, 0, . . .q and p0, y, 0, . . .q respetively).

De�nition 1.6.16. Let IspMq � TApMq (resp. IapMq � TApMq) be the two-sided ideal generated by

elements of the form x1 b � � �xn � xσp1q b � � � b xσpnq with n P Z
¡0, x1, . . . , xn P M and σ P Sn (resp. of

the form x1 b � � � b xn where n P Z
¥2 and x1, . . . , xn PM are suh that there exist 1 ¤ i   j ¤ n suh that

xi � xj).

Remark 1.6.17. As Sn is generated by transpositions, a set of generators for IspMq (resp. IapMq) is given

by txb y � y b xux,yPM (resp. txb xuxPM ).

Being generated by homogeneous elements, the ideals IspMq and IapMq of TApMq are graded.

De�nition 1.6.18. The symmetri algebra (resp. exterior algebra) of M is

SymApMq :� TApMq{IspMq presp. AltApMq � TApMq{IapMqq

By proposition 1.6.9, these are graded A-algebras: SymApMq �

8

À

n�0

Symn
ApMq and AltApMq �

8

À

n�0

AltnApMq

where Symn
ApMq �Mbn

{pIspMq XMbn
q and AltnApMq �Mbn

{pIapMq XMbn
q.

Remark 1.6.19. (1) As A-algebras, SymApMq and AltApMq are generated by Sym1
ApMq � Alt1ApMq � M .

As A is ommutative, this implies in partiular that the ring SymApMq is ommutative, and that the graded

A-algebra AltApMq is antiommutative, whih means that yx � p�1qnmxy if x P AltnApMq and y P AltmA pMq.

(2) These onstrutions are funtorial: an A-linear map f : M Ñ M 1

indues morphisms of A-algebras

TApfq : TApMq Ñ TApM
1

q, SymApfq : SymApMq Ñ SymApM
1

q and AltApfq : AltApMq Ñ AltApM
1

q.

(3) Base hange: if B is a ommutative A-algebra and M an A-module, then TBpBbAMq � BbA TApMq,

SymBpB bAMq � B bA SymApMq and AltBpB bAMq � B bA AltApMq.
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De�nition 1.6.20. The A-module Symn
ApMq (resp. AltnApMq) is alled the n-th symmetri power (resp.

exterior power) of M .

Notation.  Quite often, AltnApMq is denoted by

�n
AM .

 Let t : Mn
Ñ Mbn; px1, . . . , xnq ÞÑ x1 b � � � b xn and s : Mn

Ñ Symn
ApMq (resp. a : Mn

Ñ AltnApMq) be

the omposite of t with the natural projetion. Then one writes x1 � x2 � � �xk�1 � xn instead of spx1, . . . , xnq

and x1 ^ � � � ^ xn instead of apx1, . . . , xnq.

Example 1.6.21.  If M � Ax in free of rank 1, then SymApMq � TApMq � ArXs, and AltApMq � A`Ax.

 If M � Ax ` Ay is free of rank 2, then SymApMq � ArX,Y s, and AltApMq � A ` Ax ` Ay ` Ax ^ y is

free of rank 4.

De�nition 1.6.22. Let L be an A-module and n P Z
¡0. A map f : Mn

Ñ L is n-linear if it is A-linear

with respet to eah of its variables. A n-linear map f : Mn
Ñ L is symmetri (resp. alternating) if

fpxσp1q, . . . , xσpnqq � fpx1, . . . , xnq for all x1, . . . , xn P M and σ P Sn (resp. fpx1, . . . , xnq � 0 as soon as

there are 1 ¤ i   j ¤ n suh that mi � mj).

Remark 1.6.23. If f : Mn
Ñ L is an alternating n-linear map, then f it is antisymmetri, i.e.

fpxσp1q, . . . , xσpnqq � εpσqfpx1, . . . , xnq

for all x1, . . . , xn P M and σ P Sn. When 2 P A�, the onverse holds, i.e. an antisymmetri map is

alternating.

Proposition 1.6.24. The n-linear map t : Mn
ÑMbn

(resp s : Mn
Ñ Symn

ApMq, resp. a : Mn
Ñ AltnApMq)

has the following universal property: if f : Mn
Ñ L is a n-linear map (resp. a symmetri, resp. an

alternating n-linear map), then there exists a unique A-linear map

rf : Mbn
Ñ L (resp.

rf : Symn
ApMq Ñ L,

resp.

rf : AltnApMq Ñ L) suh that f � rf � t (resp. f � rf � s, resp. f � rf � a), i.e. suh that the diagram

Mn f //

t
''◆◆

◆ L

Mbn rf

99rrr
presp.Mn f //

s ((◗◗
◗◗

L

Symn
ApMq

rf

77♥♥♥♥
, resp.Mn f //

a ((PP
PP

L

AltnApMq

rf

77♦♦♦♦
q

ommutes.

Proof. By the universal property of tensor produt, there exists a unique A-linear map f̆ : Mbn
Ñ L suh

that f � f̆ � t. By de�nition, f is symmetri (resp. alternating) if and only if IspMqXMbn
� Kerpf̆q (resp.

IapMqXMbn
� Kerpf̆q), i.e. if and only if the map f̆ fatorizes through an A-linear map

rf : Symn
ApMq Ñ L

(resp.

rf : AltnApMq Ñ L). �

Proposition 1.6.25. (Universal property of the symmetri algebra). Let f : AÑ B be a ommu-

tative A-algebra. The map

HomA -alg

pSymApMq, Bq Ñ HomA -mod

pM,Bq

is bijetive. In other words, any A-linear map ψ : M Ñ B extends uniquely into a morphism of A-algebras
pψ : SymApMq Ñ B.

M
ψ //

''❖❖
❖❖

❖ B

SymApMq

pψ

77

Proof. If h : SymApMq Ñ B is a morphism of A-algebras, and ψ � h
|M , then ψ is A-linear, and for n P Z,

we have

hpx1 � x2 � � �xnq � ψpx1qψpx2q � � �ψpxnq

for all x1, . . . , xn PM , whih implies that h is entirely determined by ψ (we are just using the fat that M

generates SymApMq as an A-algebra). This shows that the map HomA -alg

pSymApMq, Bq Ñ HomA -mod

pM,Bq

is well de�ned and injetive.

Let ψ P HomA -mod

pM,Bq. If n P Z
¥0, the mapMn

Ñ B; px1, . . . , xnq ÞÑ ψpx1qψpx2q � � �ψpxnq is n-linear, so

fators through a map

phn : M
bn

Ñ B. The map

ph �
8

À

n�0

phn : TpMq Ñ B is a morphism of A-algebras. As B

is ommutative, we have IspMq � Kerpphq, so ph fators through a morphism of A-algebras h : SymApMq Ñ B

suh that h
|M � ψ, whih shows the surjetivity of HomA -alg

pSymApMq, Bq Ñ HomA -mod

pM,Bq. �

Similarly:
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Proposition 1.6.26. (Universal property of the exterior algebra). Let f : AÑ B be an antiom-

mutative A-algebra. The map

HomA -alg

pAltApMq, Bq Ñ HomA -mod

pM,Bq

is bijetive. In other words, any A-linear map ψ : M Ñ B extends uniquely into a morphism of A-algebras
pψ : AltApMq Ñ B.

M
ψ //

&&◆◆
◆◆

B

AltApMq

pψ

88

Corollary 1.6.27. Let M1 and M2 be A-modules. There are natural isomorphisms

SymApM1q bA SymApM2q � SymApM1 `M2q

AltApM1q bA AltApM2q � AltApM1 `M2q

Proof. Let f : AÑ B be an A-algebra. Assume B is ommutative: we have natural bijetions

HomA -alg

pSymApM1 `M2q, Bq � HomA -mod

pM1 `M2, Bq

� HomA -mod

pM1, Bq � HomA -mod

pM2, Bq

� HomA -alg

pSymApM1q, Bq � HomA -alg

pSymApM2q, Bq

� HomA -alg

pSymApM1q bA SymApM2q, Bq

by the universal property of symmetri algebras and tensor produt of A-algebras. Sine this holds for any

ommutative A-algebra B, we get an isomorphism SymApM1 `M2q � SymApM1q bA SymApM2q. The ase

of the exterior algebra is similar. �

Remark 1.6.28. If n, k P Z
¥0 and x1, . . . , xk PM1, y1, . . . , yn�k PM2, then

x1 b � � �xk b y1 b � � � b yn�k P pM1 `M2q
bn

so we get a map

k
à

k�0

Mbk
1 bAM

bn�k
2 Ñ pM1 `M2q

bn

This map is not an isomorphism in general. For instane, using proposition 1.5.6 (2) we have

pM1 `M2q
b2
�Mb2

1 `M1 bAM2 `M2 bAM1 `Mb2
2

and the fator M2 bAM1 is not inluded in the image.

If we add all those maps, we get a graded morphism of A-algebras

TApM1q bA TApM2q Ñ TApM1 `M2q

(whih is not an isomorphism in general). It indues graded morphisms of A-algebras

SymApM1q bA SymApM2q
�

Ñ SymApM1 `M2q AltApM1q bA AltApM2q
�

ÑAltApM1 `M2q

whih are nothing but those provided by orollary 1.6.27.

Considering the graded piees of the graded isomorphisms of orollary 1.6.27, we get A-linear isomorphisms:

n
à

k�0

Symk
ApM1q bA Symn�k

A pM2q
�

Ñ Symn
ApM1 `M2q

n
à

k�0

AltkApM1q bA Altn�kA pM2q
�

ÑAltnApM1 `M2q.

Corollary 1.6.29. Assume M �

d
À

k�1

Axk is free of rank d.

(1) We have SymApMq � ArX1, . . . , Xds (where Xk orresponds to the image of p0, xk, 0, . . .q P TpMq), so

in partiular Symn
ApMq is a free module of rank

�

n�d�1
n

�

(a basis being given by homogeneous monomials

of degree n).

(2) The A-module AltnApMq is free of rank

�

d
n

�

with basis pxi1 ^ � � � ^xinq0 i1 ��� in¤d, so AltApMq is free of

rank 2d.

Proof. The ase d � 1 is nothing but example 1.6.21. The general ase follows by indution, using orollary

1.6.27 for the symmetri algebra, and the seond isomorphism above for the exterior power. �
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De�nition 1.6.30. Let M be a free A-module of rank d and f P EndApMq. By funtoriality, f indues an

A-linear endomorphism AltdApfq : AltdApMq Ñ AltdApMq, whih is the multipliation by a salar detpfq P A

sine AltdApMq is free of rank 1 over A by orollary 1.6.29 (2). This salar is alled the determinant of f .

Remark 1.6.31. This de�nition mathes the �usual� one: let B � pe1, . . . , edq be a basis of M and

pαi,jq1¤i,j¤d P MdpAq the matrix of f in B, so that fpeiq �
d
°

j�1

αi,jej . We have AltdApMq � Ae where

e � e1 ^ � � � ^ ed, so that:

AltdApfqpeq �
�

ḑ

j�1

α1,jej

	

^ � � � ^

�

ḑ

j�1

αn,jej

	

�

¸

1¤j1,...,jd¤d

α1,j1α2,j2 � � �αd,jd ej1 ^ ej2 ^ � � � ^ ejn
looooooooooomooooooooooon

�0 if jk�jℓ with k�ℓ

�

¸

σPSd

α1,σp1q � � �αd,σpdq eσp1q ^ � � � ^ eσpdq
loooooooooomoooooooooon

εpσqe

�

�

¸

σPSd

εpσqα1,σp1q � � �αd,σpdq

	

e

1.6.32. Symmetri and anti-symmetri tensors. Assume from now on that n P Z
¥2 and that n! P A�.

If x1, . . . , xn P M
n
, put fspx1, . . . , xnq �

°

σPSn

xσp1q b � � � b xσpnq. This de�nes a map fs : M
n
Ñ Mbn

whih is n-linear and symmetri: it fators uniquely through an A-linear map ιs : Symn
ApMq Ñ Mbn

(the

symmetrization operator). Likewise, put fapm1, . . . ,mnq �
°

σPSn

εpσqmσp1qb� � �bmσpnq: this de�nes a map

fa : M
n
ÑMbn

whih is n-linear and antisymmetrial (whene alternating given the hypothesis): it fators

uniquely through an A-linear map ιa : AltnApMq ÑMbn
(the anti-symmetrization operator).

Endow Mbn
with the ation of Sn given by σpm1b� � �bmnq � mσp1qb� � �bmσpnq. Then

1
n!
ιs �πs (where

πs : M
bn

Ñ Symn
ApMq is the anonial map) is a projetor onto the subspae

�

Mbn
�Sn

(of invariants under

the ation of Sn). Similarly,

1
n!
ιa � πa (where πa : M

bn
Ñ AltnApMq is the anonial map) is a projetor

onto the subspae of anti-invariants, i.e. elements x PMbn
suh that σpxq � εpσqx for all σ P Sn.

Remark 1.6.33. When n � 2, the previous projetors provide a deompositionMb2
� Sym2

ApMq`Alt2ApMq.

Indeed, as 2 P A� we have pSpMq X Mb2
q ` pApMq X Mb2

q � Mb2
and they provide identi�ations

Sym2
ApMq � ApMq XMb2

and Alt2ApMq � SpMq XMb2
.

1.7. Flatness.

De�nition 1.7.1.  A omplex of A-modules is a sequene of A-linear maps

�

fi : Mi Ñ Mi�1

�

iPI
(where

I � Z is an interval) suh that fi�1 � fi � 0 for all i P I. It is exat when Kerpfi�1q � Impfiq for all i P I.

 A short exat sequene of A-modules is an exat omplex of the form

0ÑM 1

f
ÝÑM

g
ÝÑM2

Ñ 0

Remark 1.7.2. If 0ÑM 1

f
ÝÑM

g
ÝÑM2

Ñ 0 is exat, then M 1

� Kerpgq and M2

� Cokerpgq.

Proposition 1.7.3. Let

(♣) M 1

f
ÝÑM

g
ÝÑM2

Ñ 0

be a diagram of A-modules. Then (♣) is an exat sequene if and only if for any A-module N , the sequene

(♠) 0Ñ HomApM
2, Nq

�g
ÝÑ HomApM,Nq

�f
ÝÑ HomApM

1, Nq

is exat.

Proof. The exatness of the sequene (♠) for all A-module N means that for any A-linear map v : M Ñ N ,

the omposite v � f is zero if and only if v fators through g, i.e. if and only if there exists a (unique)

A-linear map u : M2

Ñ N suh that v � u � g, whih preisely means that g : M Ñ M2

has the universal

property of the okernel of f . This is thus equivalent to the exatness of (♣). �

Remark 1.7.4. (1) Proposition 1.7.3 implies in partiular that if N is an A-module, the funtor

HomAp., Nq : ModpAq ÑModpAq

is left exat.
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(2) Similarly, a diagram of A-modules 0 Ñ M 1

f
ÝÑ M

g
ÝÑ M2

is an exat sequene if and only if for any

A-module N , the sequene 0 Ñ HomApN,M
1

q

f�
ÝÑ HomApN,Mq

g�
ÝÑ HomApN,M

2

q is exat. This implies

in partiular that for any A-module N , the funtor HomApN, .q : ModpAq ÑModpAq is left exat.

Proposition 1.7.5. Let N be an A-module. The funtor ModpAq Ñ ModpAq; M ÞÑ M bA N is right

exat. This means that if 0ÑM 1

f
ÝÑM

g
ÝÑM2

Ñ 0 is an exat sequene of A-modules, then the omplex

M 1

bA N
fbIdN
ÝÝÝÝÑM bA N

gbIdN
ÝÝÝÝÑM2

bA N Ñ 0

is exat.

Proof. By proposition 1.7.3, it is enough to hek the exatness of the sequene

0Ñ HomApM
2

bA N,Lq Ñ HomApM bA N,Lq Ñ HomApM
1

bA N,Lq

i.e. that of the sequene

0Ñ BilApM
2, N ;Lq Ñ BilApM,N ;Lq Ñ BilApM

1, N ;Lq

for any A-module L. This is trivial: an element ϕ lies in the kernel of BilApM,N ;Lq Ñ BilApM
1, N ;Lq if

and only if ϕp., yq vanishes onM 1

hene fators throughM2

for all y P N , i.e. if and only if ϕ � ψ�pgb IdN q

for some unique ψ P BilApM
2, N ;Lq. �

Example 1.7.6. The sequene 0 Ñ Z
2
ÝÑ Z Ñ Z {2Z Ñ 0 is exat. After tensoring by Z {2Z, we get the

sequene

0Ñ Z {2Z
2�0
ÝÝÑ Z {2ZÑ Z {2ZÑ 0.

De�nition 1.7.7. An A-module N is alled �at if the funtor ModpAq ÑModpAq; M ÞÑMbAN is exat,

that is if for all exat sequene 0ÑM 1

f
ÝÑM

g
ÝÑM2

Ñ 0, the omplex

0ÑM 1

bA N
fbIdN
ÝÝÝÝÑM bA N

gbIdN
ÝÝÝÝÑM2

bA N Ñ 0

is a short exat sequene.

Remark 1.7.8. By proposition 1.7.5, N is �at if and only if M 1

bAN
fbIdN
ÝÝÝÝÑM bAN is injetive whenever

M 1

ÑM is injetive.

Proposition 1.7.9. An A-module N is �at over A if and only if for all ideal I � A of �nite type, the natural

map I bA N Ñ IN is injetive.

Proof.  Assume N is �at over A. As I Ñ A is injetive, so is I bA N Ñ N .

 Conversely, assume that the natural map IbAN Ñ IN is injetive for every ideal of �nite type I � A. Let

I � A be any ideal. An element ξ P KerpI bA N Ñ INq an be written ξ �
r
°

k�1

αi b xi with α1, . . . , αr P I

and x1, . . . , xr P N . Let J � A be the ideal generated by α1, . . . , αr, so that ξ P KerpJ bA N Ñ JNq. As

J is of �nite type, the map J bA N Ñ JN is injetive, hene ξ � 0 in J bA N , so ξ � 0 in I bA N . This

shows that the natural map I bA N Ñ IN is injetive for any ideal I � A.

Let M 1

� M be a submodule: we want to show that M 1

bA N Ñ M bA N is injetive. As above, we

an redue to the ase where M is of �nite type (this follows from the fat that tensor produt ommutes

with diret limits, and that M is the diret limit of its sub-modules of �nite type), in partiular where

M{M 1

is of �nite type, so that there exist m1, . . . ,mr P M suh that M � M 1

� Am1 � � � � � Amr. For

k P t0, . . . , ru, put Mk � M 1

� Am1 � � � � � Amk, so that M 1

�M0 � M1 � � � � � Mr�1 � Mr � M . The

map M 1

bA N ÑM bA N is the omposite

M0 bA N ÑM1 bA N Ñ � � � ÑMr�1 bA N ÑMr bA N

so it is enough to show the injetivity of eah map Mk�1 bA N Ñ Mk bA N : we an redue to the ase

where M �M 1

�Am.

Put I � ta P A ; am PM 1

u: this is an ideal in A. The map π : M 1

`AÑM ; px, aq ÞÑ x� am is surjetive.

If px, aq P Kerpπq, then am � �x P M 1

, so a P I. This implies that the map ι : I Ñ Kerpπq; λ ÞÑ p�λm, λq

is an isomorphism. Form the exat sequene 0Ñ I
ι
ÝÑM 1

`A
π
ÝÑM Ñ 0 we get the exat sequene

I bA N
ιbIdN
ÝÝÝÝÑ pM 1

bA Nq `N
πbIdN
ÝÝÝÝÑM bA N Ñ 0

Let ξ P KerpM 1

bA N Ñ M bA Nq. Then pξ, 0q P Kerpπ b IdN q, so there exists η P I bA N suh that

pξ, 0q � pι b IdN qpηq. Projeting on the seond fator, the image of η P I bA N in N is zero. As the map

I bA N Ñ N in injetive, we have η � 0, whene ξ � 0, as required. �
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Remark 1.7.10. There is a more natural proof of this result using derived funtors of the tensor produt.

Proposition 1.7.11. (1) If N is projetive over A (i.e. a diret summand in a free A-module), then N is

�at. In partiular, �atness is automati when A is a �eld.

(2) If A is prinipal, that N is �at if and only if it is torsion-free.

Proof. (1) This is true when N is free by example 1.5.9 (2). In general, write N ` S � L with L a free

A-module. Let f : M 1

Ñ M be an injetive map of A-modules. By example 1.5.9 (2) again, the injetive

map f b IdL identi�es with pf b IdN q ` pf b IdSq, so f b IdN is injetive as well.

(2) Assume N is �at and let α P Azt0u. The multipliation map α : AÑ A is injetive: so is αb IdN : AbA
N Ñ AbA N . The latter identi�es with the multipliation map α : N Ñ N , so N has no α-torsion.

Assume N is torsion-free. If I � A is a nonzero ideal, then I � αA with α P Azt0u. The map IbAN Ñ IN

identi�es to the multipliation by α on N : it is injetive sine N is torsion-free. This implies that N is �at

over A by proposition 1.7.9. �

Remark 1.7.12. There are �at modules that are not projetive. For instane Q is �at over Z (sine it is

torsion-free), but it is not projetive (beause it is divisible).

1.8. Loalization.

De�nition 1.8.1. A subset S � A is alled multipliative if 0 R S, 1 P S and if S is stable under multipli-

ation.

Example 1.8.2. (1) A�.

(2) tfnunPZ
¥0

where f P A is not nilpotent.

(3) Azp where p � A is a prime ideal.

Proposition 1.8.3. Let S � A a multipliative set. There exists an A-algebra A
ι
ÝÑ S�1A, unique up to

isomorphism, having the following universal property: if f : A Ñ B is a ring homomorphism suh that

p�s P Sq fpsq P B�

, then there exists a unique ring homomorphism

rf : S�1AÑ B suh that f � rf � ι.

A
f //

ι !!❈
❈❈

❈❈
B

S�1A
rf

==④④④④④

Proof. Endow the set A� S with the binary relation � de�ned by

pa1, s1q � pa2, s2q � pDt P Sq tpa1s2 � a2s1q � 0

This is an equivalene relation. Denote by S�1A � pA�Sq{ � the quotient set. If pa, sq P A�S, we denote by
a
s
its image in S�1A. Let pa1, s1q, pa2, s2q P A�S. One heks easily that the elements

a1
s1
�

a2
s2

:� a1s2�a2s1
s1s2

and

a1
s1
.a2
s2

:� a1a2
s1s2

only depend one

a1
s1

and

a2
s2
, and that this de�nes two internal laws � and . over S�1A,

making S�1A a ommutative ring with unit

1
1
. Moreover, the map

ι : AÑ S�1A

a ÞÑ a
1

is a ring homomorphism. Note that if s P S, then ιpsq � s
1
is invertible in S�1A, with inverse

1
s
.

Let f : AÑ B a ring homomorphism suh that p�s P Sq fpsq P B�

. The map

rf : S�1AÑ B

a
s
ÞÑ fpsq�1fpaq

is a well de�ned ring homomorphism, and it is the unique one suh that f � rf � ι. The uniity of pS�1A, ιq

follows from the universal property. �

De�nition 1.8.4. The A-algebra S�1A is the loalization of A with respet to the multipliative set S.

Remark 1.8.5. (1) As usual, if a P A, we will write a instead of ιpaq its image in S�1A.

(2) In some sense, S�1A is the �minimal� A-algebra in whih elements in S are invertible.

(3) When A is an integral domain, � is nothing but the "usual" relation pa1, s1q � pa2, s2q � a1s2 � a2s1.

When A is not a domain, the latter is not an equivalene relation (why?), and the "t" is neessary.

(4) Kerpιq � ta P A ; pDs P Sq sa � 0u, so ι is injetive when A is an integral domain.

(5) Unless A is a fatorial domain, there is no notion of �irreduible fration�.
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Example 1.8.6. (1) Assume A is an integral domain. Then Azt0u is multipliative (t0u is prime), and

pAzt0uq�1A � FracpAq is the fration �eld of A. For instane, FracpZq � Q, and FracpKrXsq � KpXq when

K is a �eld.

If moreover S � A is a multipliative set, the universal property provides an injetive ring homomorphism

S�1AÑ FracpAq: loalizations of A identify with subrings of FracpAq.

(2) More generally, if we do not assume integrity of A, the set S � tf P A ; f is not a zero-divisor in Au � A

is multipliative. In this ase the loalization QpAq :� S�1A is alled the total ring of frations of A.

(3) Let f P A. We denote by A
pfq the loalization of A with respet to the multipliative set tfnunPZ

¥0
.

One an easily show that A
pfq � ArXs{xfX � 1y. For instane, Z

p10q is nothing but the ring of deimal

numbers.

(4) If p � A is a prime ideal, we denote by Ap the loalization of A with respet to the multipliative set

Azp. When A is an integral domain and p � t0u, one reovers FracpAq.

(5) Exerise: �nd multipliative sets S � Z other than Z zt0u suh that S�1Z � Q.

De�nition 1.8.7. Let S � A be a multipliative set and M an A-module. The loalization S�1M of M

with respet to S is de�ned similarly as S�1A: it is the quotient of the setM�S by the equivalene relation

given by pm1, s1q � pm2, s2q � pDt P Sq tpm1s2�m2s1q � 0. This is a S�1A-module with the laws given by

m1

s1
�

m2

s2
:� m1s2�m2s1

s1s2
and

a
s
.m
s1

:� am
ss1

. Moreover, an A-linear map f : M Ñ N indues a S�1A-linear map

fS : S
�1M Ñ S�1N (suh that fS

�

m
s

�

�

fpmq

s
for all m PM and s P S). It enjoys the following property:

for any S�1A-module N , the natural map

HomS�1ApS
�1M,Nq Ñ HomApM,Nq

is an isomorphism.

In partiular, if I � A, is an ideal (i.e. a submodule of A), S�1I is an ideal in S�1A.

Proposition 1.8.8. (1)

�

IdM
�

S
� IdS�1M .

(2) If f : M ÑM 1

and g : M 1

ÑM2

are A-linear maps, then pg � fqS � gS � fS .

(3) If M � N , then S�1M � S�1N and S�1
pN{Mq � S�1N{S�1M .

(4) If f : M Ñ N is A-linear, then KerpfSq � S�1 Kerpfq and CokerpfSq � S�1 Cokerpfq.

Proof. (3) The omposite M � N
ι
ÝÑ S�1N extends into i : S�1M Ñ S�1N (by S�1A-linearity). Let

x P S�1M : write x � m
s
with m P M and s P S. If ipxq � 0, there exists t P S suh that tm � 0 in

M � N , whih implies that x � m
s
� 0 in S�1M : the map i is injetive. We onsider it as an inlusion in

S�1M � S�1N .

The anonial map π : N Ñ N{M indues a S�1A-linear map S�1N
πS
ÝÝÑ S�1

pN{Mq. It is surjetive: if

x P S�1
pN{Mq, there exists n P N{M and s P S suh that x � n

s
. Let n P N lifting n: we have πS

�

n
s

�

� x.

Of ourse S�1M � KerpπSq. Conversely, if x �
n
s
P KerpπSq (with n P N and s P S), we have

πpnq

s
� 0 in

S�1
pN{Mq: there exists t P S suh that tπpnq � πptnq � 0 in N{M , i.e. tn P M , thus x � tn

ts
P S�1M .

Hene KerpπSq � S�1M and S�1N{S�1M
�

ÑS�1
pN{Mq.

(4) Follows from (3). �

Proposition 1.8.9. Let M be an A-module and S � A a multipliative part. Then S�1A bAM
�

ÑS�1M

as S�1A-modules. In partiular, the A-algebra S�1A is �at.

Proof. (1) The map S�1A �M Ñ S�1M ;
�

a
s
,m

�

ÞÑ

am
s

is bilinear so fators through an A-linear map

u : S�1A bA M
�

ÑS�1M , suh that u
�

a
s
b m

�

�

am
s
. Its inverse is nothing but the preimage of the

A-linear map M Ñ S�1A bA M given by m ÞÑ 1 bm under the isomorphism HomS�1
pS�1M,S�1A bA

Mq

�

ÑHomApM,S�1
bAMq (f de�nition 1.8.7). It is in fat S�1A-linear. Assume

m
s
�

m1

s1
in S�1M : there

exists t P S suh that tps1m�sm1

q � 0, so 1
s
bm �

ts1

tss1
bm �

1
tss1

bpts1mq � 1
tss1

bptsm1

q �

ts
tss1

bm1

�

1
s1
bm1

.

This implies that the map v : S�1M Ñ S�1A bAM given by v
�

m
s

�

�

1
s
bm is well de�ned, and it is an

inverse of u.

(2) This is a reformulation of proposition 1.8.8 (3) �

If S, S1 � A are multipliative sets, then SS1 :� tss1 ; s P S, s1 P S1u is also a multipliative set of A.

Proposition 1.8.10. Let S be the image of S in S1�1A, then there is an natural isomorphism of rings

S�1
pS1�1Aq

�

ÑpSS1q�1A.

Proof. Let f : A Ñ B be an A-algebra suh that fpSS1q � B�

. As fpS1q � B�

, the map f extends

uniquely into a ring homomorphism

rf : S1�1A Ñ B. Similarly,

rfpSq � B�

, so

rf extends uniquely into a
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ring homomorphism

pf : S�1
pS1�1Aq Ñ B. This implies that S�1

pS1�1Aq has the universal property de�ning

pSS1q�1A: there is an natural isomorphism of rings S�1
pS1�1Aq

�

ÑpSS1q�1A. �

Corollary 1.8.11. If M is an A-module, there is a natural isomorphism S�1
pS1�1Mq

�

ÑpSS1q�1M .

Proof. Tensored withM , the isomorphism S�1AbAS
1�1A

�

ÑpSS1q�1A provides an isomorphism pS�1AbA
S1�1AqbAM

�

ÑpSS1q�1AbAM (f proposition 1.8.9 (1)). As there are isomorphisms S1�1AbAM
�

ÑS1�1M

and pSS1q�1AbAM
�

ÑpSS1q�1M (f proposition 1.8.9 (1) again), we dedue a hain of isomorphisms

S�1AbA pS
1�1AbAMq

��

// pS�1AbA S
1�1Aq bAM

��
S�1AbA pS

1�1Mq

��

pSS1q�1AbAM

��
S�1

pS1�1Mq //❴❴❴❴❴❴❴❴ pSS1q�1M

�

Lemma 1.8.12. Let M be an A-module and N 1

a sub-S�1A-module of S�1M . Then N 1

� S�1N where

N is the inverse image of N 1

under the natural map M Ñ S�1M .

Proof. If x � m
s
P N 1

, then sx � m
1
, i.e. m P N , so x P S�1N . Conversely, x � n

s
P S�1N (with n P N and

s P S), then n
1
P N 1

, thus x P N 1

sine N 1

is a S�1A-module. �

Corollary 1.8.13. Let S � A is a multipliative set. Ideals in S�1A are loalizations of ideals in A. In

partiular, A is noetherian implies S�1A is noetherian.

Notation. We denote by SpecpAq the set of prime ideals in A. It is alled the spetrum of A.

Proposition 1.8.14. Let S � A be a multipliative set. The maps

tp P SpecpAq ; pX S � ∅u Ø SpecpS�1Aq

p ÞÑ S�1p

qXA :� ι�1
pqq �ß q

are inreasing (for the inlusion) bijetions inverse one to the other.

Proof. Let p P SpecpAq suh that pX S � ∅. Then S�1A{S�1p � S�1
pA{pq (f proposition 1.8.8). Let S

be the image of S in A{p: as pX S � ∅, we have 0 R S , and S is a multipliative set in A{p. As A{p is an

integral domain, so is its loalization S�1
pA{pq � S�1

pA{pq � FracpA{pq, so that S�1p is prime in S�1A.

Conversely, if q P SpecpS�1Aq, then A{ι�1
pqq ãÑ S�1A{q is an integral domain: we have qX A P SpecpAq.

If s P pq X Aq X S, then s P q. As s is invertible in S�1A, we have q � S�1A, whih is not: we have

pqXAq X S � ∅.
Let p P SpecpAq be suh that pX S � ∅. We have of ourse p � S�1pX A. Conversely, let a P S�1pX A:

write a � α
s
with α P p and s P S. As sa � α P p and s R p (beause p X S � ∅), we have a P p, whih

proves the equality p � S�1pXA.

Let q P SpecpS�1Aq. We have of ourse S�1
pqXAq � q. Conversely, let x P q : write x � a

s
with a P A and

s P S. We have sx � a P qXA, so x � a
s
P S�1

pqXAq, whih proves the equality q � S�1
pqXAq. �

Remark 1.8.15. In partiular we have SpecpS�1Aq � SpecpAq. The set SpecpAq an be equipped with a

topologial spae struture (and even more...) and the bijetion of proposition 1.8.14 identi�es SpecpS�1Aq

to an open subset of SpecpAq, whih explains the terminology of "loalization".

De�nition 1.8.16. A loal ring is a ring having only one maximal ideal.

Exemples 1.8.17. (1) A �eld is a loal ring.

(2) If K is a �eld, the ring of formal series KrrXss is loal, with maximal ideal XKrrXss.

(3) Exerise: A is loal if and only if AzA� is an ideal

(7)

: it is then the maximal ideal of A.

De�nition 1.8.18. Let A and B be loal rings with maximal ideals mA and mB respetively. A ring

homomorphism f : AÑ B is loal when fpmAq � mB.

(7)

If A is loal with maximal ideal m, then m � AzA�, and if a P AzA�, the ideal aA is strit: it is ontained in a maximal

ideal (f theorem 1.1.7), hene a P m, whih proves the equality m � AzA�. Conversely, if m :� AzA� is an ideal, and if

I � A is a strit ideal, we have I X A� � ∅, i.e. I � m and m ontains all ideals in A.
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Example 1.8.19. Let A be a loal ring, m its maximal ideal, k � A{m its residue �eld. Then the anonial

projetion A Ñ k is a loal homomorphism. Assume moreover that A is an integral domain, and let

K � FracpAq be its fration �eld. Then the inlusion AÑ K is not loal when A is not a �eld.

Corollary 1.8.20. If p P SpecpAq, then SpecpApq � tqAp ; q P SpecpAq, q � pu. In partiular, Ap is a loal

ring with maximal ideal pAp.

Proof. The equality follows from the equivalene qX pAzpq � ∅� q � p and proposition 1.8.14. Bijetions

of lo. it. being inreasing (for inlusions), maximal elements orrespond. �

Lemma 1.8.21. Let M be an A-module. Then M � t0u if and only if Mm � t0u for all maximal ideal

m � A.

Proof. Assume Mm � t0u for all maximal ideal m � A. Let m P M . Put I � ta P A, am � 0u: this is an

ideal in A. Assume I � A: there exists m � A maximal suh that I � m (theorem 1.1.7). As m �

m
1
is 0 in

Mm, there exists t P Azm suh that tm � 0 in M , i.e. t P I. We have thus t P Izm, whih is a ontradition:

I � A and m � 0. �

Proposition 1.8.22. (Loal-global priniple). Let M be an A-module and M 1

, M2

submodules of M .

Then M 1

�M2

(resp. M 1

�M2

) if and only if M 1

m �M2

m (resp. M 1

m �M2

m) in Mm for all maximal ideal

m of A.

Proof. If M 1

�M2

, we already know that M 1

m �M2

m for all maximal ideal m in A (proposition 1.8.8 (3)).

Conversely, assume that M 1

m � M2

m for all maximal ideal m in A. Put M � M{M2

and π : M Ñ M the

anonial map, so πpM 1

q � M . By assumption, we have πpM 1

qm � t0u (beause the image of M 1

m � M2

m

in Mm � Mm{M
2

m is zero, f proposition 1.8.8 (3)) for all maximal ideal m in A. By lemma 1.8.21, this

implies that πpM 1

q � t0u in M , i.e. M 1

�M2

. �

Remark 1.8.23. An important speial ase of last proposition is the following: if I and J are ideals in A,

then I � J if and only if Im � Jm for all maximal ideal m in A.

1.8.24. Disrete valuation rings.

De�nition 1.8.25. A disrete valuation ring (DVR) is a PID having a unique nonzero prime ideal. A

generator of this nonzero prime ideal is alled a uniformizer of A.

Remark 1.8.26. Assume that A is a DVR. Its unique nonzero prime ideal m is maximal: the ring A is loal.

Elements is m are not invertible: as m � 0, the ring A is not a �eld.

Proposition 1.8.27. Assume that A is a DVR, and denote by m its maximal ideal and π a uniformizer.

(1) Any element a P Azt0u an be written uniquely a � uπvpaq with u P A� and vpaq P Z
¥0;

(2) nonzero ideals in A are of the form mi � πiA (with i P Z
¥0);

(3)

�

iPZ
¥0

mi � t0u;

Proof. (1) As A is a PID, it is a UFD. As m � πA is the only nonzero prime ideal, π is the only irreduible

element (up to multipliation by an invertible element). The prime deomposition of a P Azt0u is thus of

the form a � uπvpaq where u P A� and vpaq � vπpaq P Z
¥0 is the π-adi valuation of a.

(2) If I � A is an ideal, it is prinipal: we have I � aA with a P A. If I � t0u, then a � 0, so a � uπi with

u P A� and i � vpaq P Z
¥0, thus I � πiA � mi.

(3) If a P Azt0u, we have a � uπi with u P A� and i � vpaq, so a P mizmi�1
, and a R

�

iPZ
¥0

mi. Thus

�

iPZ
¥0

mi � t0u. �

1.9. Integral extensions. In what follows, f : AÑ B is an A-algebra.

De�nition 1.9.1. (1) An element b P B is integral over A if there exists a moni polynomial P P ArXs suh

that P pbq � 0. The equality P pbq � 0 is then alled an equation of integral dependene of b over A.

(2) We say that B is integral over A (or that AÑ B is integral) when all its elements are integral over A.

Example 1.9.2.

?

2 P C is integral over Z, but 1
?

2
is not.

Proposition 1.9.3. Let b P B. The following are equivalent:

(i) b is integral over A;

(ii) Arbs is a �nite A-algebra;
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(iii) there exists a sub-A-module B1

� B of �nite type suh that B1

ontains an element whih is not a

zero divisor, and bB1

� B1

(i.e. B1

is stable under multipliation by b).

Proof.  Assume (i): let P P ArXs moni and suh that P pbq � 0. If degpP q � n, the A-module Arbs is

generated by t1, b, . . . , bn�1
u (eulidean division), hene of �nite type.

 Assume (ii): the A-module B1

� Arbs satis�es (iii).

 Assume (iii): let pβ1, . . . , βnq be a generating family of the A-module B1

. As bβi P B1

, there exist

M � pai,jq1¤i,j¤n P MnpAq suh that bβi �
n
°

j�1

ai,jβj for all i P t1, . . . , nu. Put X � pβiq1¤i¤n P Mn�1pBq:

we have MX � bX , i.e.

(�) pb In�MqX � 0.

Let P pXq � detpX In�Mq: this is a moni polynomial of degree n, with oe�ients in A. Multiplying

equality (�) by the transpose of the ofators matrix of b In�M , we get P pbqX � 0, so P pbqB1

� 0, whene

P pbq � 0 (sine B1

ontains an element whih is not a zero divisor by hypothesis). �

Lemma 1.9.4. Let b1, . . . , bn P B suh that bi is integral over Arb1, . . . , bi�1s for all i P t1, . . . , nu. Then

the A-algebra Arb1, . . . , bns is �nite.

Proof. By indution on n P Z
¡0, the ase n � 1 following from proposition 1.9.3. Let n P Z

¡1 and put

A1 � Arb1, . . . , bn�1s � B. By indution, the A-algebra A1 is �nite. As bn is integral over A1, the A1-algebra

A1rbns is �nite: the A-algebra Arb1, . . . , bns � A1rbns is �nite. �

Proposition 1.9.5. The A-algebra B is �nite if and only if it is integral and of �nite type.

Proof. If B is �nite over A, it is integral by proposition 1.9.3 (impliation (iii)ñ(i) with B1

� B). Moreover,

if tb1, . . . , bnu generates the A-module B, the morphism of A-algebras ArX1, . . . , Xns Ñ B sending Xi to bi
is surjetive, so that B is of �nite type (as an algebra) over A.

Conversely, assume B is integral and of �nite type over A. We an write B � Arb1, . . . , bns, and as b1, . . . , bn
are integral over A, the A-module B is of �nite type by lemma 1.9.4. �

Proposition 1.9.6. If AÑ B and B Ñ C are integral, so is AÑ C.

Proof. Let c P C and P pcq � 0, with P pXq � Xn
� b1X

n�1
� � � � � bn P BrXs, an equation of integral

dependene. As A Ñ B is integral, the elements b1, . . . , bn are integral over A: by lemma 1.9.4, B1

�

Arb1, . . . , bns is �nite over A. As B1

rcs is �nite over B, it is �nite over A, whih implies that c is integral

over A (proposition 1.9.3, noting that 1 P B1

rcs). �

Corollary 1.9.7. Let b, b1 P B be integral over A. Then b� b1 and bb1 are integral over A.

Proof. By lemma 1.9.4, the morphism AÑ Arb, b1s is �nite hene integral: as b� b1, bb1 P Arb, b1s, they are

integral over A. �

Remark 1.9.8. If b P B�

is integral over A, the inverse b�1
P B is not integral over A in general.

De�nition 1.9.9. (1) By orollary 1.9.7, the set of elements in B that are integral over A is a sub-A-algebra

of B, whih is alled the integral losure of A in B.

(2) Assume A is an integral domain and put K � FracpAq. The integral losure of A is its integral losure

in K. We say that A is integrally losed if it is equal to its integral losure, i.e. when the only element in

K that are integral over A are elements in A.

Proposition 1.9.10. UFD are integrally losed. In partiular, PID are integrally losed.

Proof. Assume that A is a UFD, put K � FracpAq and let x P K integral over A. Write x � a{b with

a P A and b P Azt0u oprime. Let xn � α1x
n�1

� � � � � αn � 0 be an equation of integral dependene (with

α1, . . . , αn P A). Multiplying by bn, we get

an � α1a
n�1b� � � � � αnb

n
� 0

so that b divides an. As a and b are oprime, this implies that b P A�, whene x � ab�1
P A. �

Example 1.9.11. Let F be a �eld, t an indeterminate, and put A � F rt2, t3s � B � F rts. Then we have

FracpAq � FracpBq � F ptq. As B is a PID, it is integrally losed by proposition 1.9.10. The element t is

integral over A, but t R A, so that A is not integrally losed (hene not a UFD by proposition 1.9.10).

Proposition 1.9.12. Assume that A is an integral domain, put K � FracpAq and let L{K be an algebrai

�eld extension. Denote by B the integral losure of A in L. If x P L, there exists a P Azt0u suh that

ax P B. In partiular

(8) L � FracpBq and B is integrally losed.

(8)

As the proof shows, we have in fat L � pAzt0uq�1B.
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Proof. Let Xd
�α1X

d�1
�� � ��αd P KrXs be the minimal polynomial of x overK, and a P Azt0u suh that

aαi P A for all i P t1, . . . , du. The minimal polynomial of ax overK is thenXd
�aα1X

d�1
�� � ��adαn P ArXs,

so ax P B. This implies that FracpBq � L. If x P L is integral over B, then it is integral over A (proposition

1.9.6), i.e. x P B, and B is integrally losed. �

Proposition 1.9.13. (Integral losure ommutes to loalization). Under the hypothesis of propo-

sition 1.9.12, let S � A be a multipliative part. The integral losure of S�1A � K in L is S�1B.

Proof. Let b P B and bn � a1b
n�1

� � � � � an � 0 an equation of integral dependene over A. If s P S and

x � b
s
P S�1B, then xn � a1

s
xn�1

� � � � �

an
sn
� 0, whih shows that x is integral over S�1A. Conversely, let

x P L integral over S�1A and xn � α1x
n�1

� � � � � αn � 0 an equation of integral dependene over S�1A.

There exists s P S suh that ai :� sαi P A for all i P t1, . . . , nu (take a ommon denominator to the αi).

Put b � sx P L: we have bn � a1b
n�1

� sa2b
n�2

� � � � � sn�2an�1b� sn�1an � 0, so that b is integral over

A. We thus have b P B, and x P S�1B. �

De�nition 1.9.14. Reall that a number �eld is a �nite extension of Q (usually seen as a sub�eld of C). If

K is a number �eld, its ring of integers is the integral losure OK of Z in K. By last proposition, it is an

integrally losed ring and K � pZ zt0uq�1OK .

Proposition 1.9.15. Assume A is integrally losed, let K � FracpAq and L{K be an algebrai extension.

An element in L is integral over A if and only if its minimal polynomial over K has oe�ients in A.

Proof. Let x P L and P P KrXs its minimal polynomial over K. If P P ArXs, the equality P pxq � 0 is

an equation of integral dependene, and x is integral over A. Conversely, if x P L is integral over A, �x an

algebrai losure L of L, and let x1, . . . , xn be the roots of P in L (i.e. the onjugates of x, ounted with

multipliities). If i P t1, . . . , nu, there exists a K-isomorphism of �elds f : Kpxq Ñ Kpxiq mapping x to

xi (isomorphism extension theorem). If Qpxq � 0 is an equation of integral dependene (with Q P ArXs),

then Qpxiq � Qpfpxqq � fpQpxqq � 0, so that xi is integral over A for all i P t1, . . . , nu. From orollary

1.9.7, so are the oe�ients of P (whih are, up to a sign, symmetri polynomials in x1, . . . , xn). As those

oe�ients belong to K and A is integrally losed in K by hypothesis, we have P P ArXs. �

Example 1.9.16.

?

2
2

is not integral over Z (its minimal polynomial over Q is X2
�

1
2
R ZrXs).

Exerise 1.9.17. Let d P Z zt0, 1u without square fator and K � Qp
?

dq. Then

OK �

#

Z
�

1�
?

d
2

�

if d � 1 mod 4Z

Zr
?

ds if d � 1 mod 4Z

Proposition 1.9.18. Assume A Ñ B is injetive and that B is an integral domain

(9)

and integral over A.

then A is a �eld if and only if B is a �eld.

Proof.  Assume A is a �eld, and let b P Bzt0u. As B is integral over A, there is an equation of integral

dependene bn � a1b
n�1

� � � � � an � 0 with a1, . . . , an P A. As B is an integral domain, we an assume

that an � 0 (otherwise we an divide the equation by b): we have bc � 1 with

c � �a�1
n pbn�1

� a1b
n�2

� � � � � an�1q P B

so that b is invertible in B, and B is a �eld.

 Conversely, assume that B is a �eld. If a P Azt0u, then a has a nonzero (by injetivity of AÑ B) hene

invertible image in B: let a�1
P B be its inverse. As B is integral over A, there is a equation of integral

dependene pa�1
q

n
� α1pa

�1
q

n�1
� � � � � αn � 0 with α1, . . . , αn P A and

a�1
� �α1 � α2a� � � � � αna

n�1
P A

so that A is a �eld. �

Proposition 1.9.19. Assume f : AÑ B is integral.

(1) If M � B is a maximal ideal, then MXA is a maximal ideal in A.

(2) If f is injetive and m � A is a maximal ideal, there exists a prime ideal M � B suh that m �MXA,

and any suh M is maximal in B.

(9)

This implies that A is an integral domain.
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Proof. (1) Assume M � B is maximal, and put m � M X A. the morphism A{m Ñ B{M is injetive.

The A{m-algebra B{M is integral beause B is over A (if b P B and P pbq � 0 is an equation of integral

dependene with P P ArXs, we have P pbq � 0 where P P pA{mqrXs and b P B{M denote the redutions

of P modulo mArXs and of b modulo M respetively). As B{M is a �eld, so is A{m by proposition 1.9.18,

and m is maximal in A.

(2) Let m � A be a maximal ideal. Assume that mB � B, i.e. 1 P mB: we an write

(�) 1 �

ŗ

i�1

αibi

with α1, . . . , αn P m and b1, . . . , bn P B. As B is integral over A, so is B1

� Arb1, . . . , bns. As B
1

is of �nite

type over A, the A-algebra B1

is in fat �nite (f proposition 1.9.5): we an write B1

� Aβ1 � � � � � Aβn.

On the other hand, equality (�) implies that mB1

� B1

: for all i P t1, . . . , nu, there exists λi,1, . . . , λi,n P m

suh that

βi �

ņ

j�1

λi,jβj .

IfM � pλi,jq1¤i,j¤n P MnpAq andX � pβiq1¤i¤n P Mn�1pB
1

q, we haveMX � X , thus pIn�MqX � 0: mul-

tiplying by the transpose of the ofator matrix of In�M , we get detpIn�MqX � 0, i.e. detpIn�MqB1

� 0,

thus detpIn�Mq � 0 in B sine 1 P B1

. Beause f is injetive, we have detpIn�Mq � 0 in A: as

detpIn�Mq � 1 mod m, we dedue that 1 P m whih is absurd, so we neessarily have mB � B.

As the ideal mB � B is strit, there exists a maximal ideal M � B suh that mB �M (f theorem 1.1.7).

We of ourse m �MXA, whene m �MXA sine m is maximal in A.

If P � B is a prime ideal suh that m � P X A, the morphism A{m Ñ B{P is injetive. It makes B{P

an integral A{m-algebra sine B is over A, and B{P is an integral domain: as A{m is a �eld, so is B{P (f

proposition 1.9.18), i.e. P is maximal in B. �

1.10. Disriminants. Let A be a ring.

1.10.1. Traes and norms.

De�nition 1.10.2. (1) Let M be a free

(10) A-module of �nite rank and f P EndApMq. If B is an A-basis

of M , we an desribe f by its matrix pai,jq1¤i,j¤n in B (where n � rkApMq). The trae, the determinant

and the harateristi polynomial of f are

Trpfq �

ņ

i�1

ai,i P A, detpfq � detpai,jq1¤i,j¤n P A,

and χf pXq � det
�

XIn � pai,jq1¤i,j¤n
�

P ArXs

respetively. They depend on f and not on the hoie of the basisB. Reall that Trpf�αgq � Trpfq�αTrpgq,

detpfgq � detpfq detpgq and detpαfq � αn detpfq for α P A and f, g P EndApMq.

(2) Let B be a free A-algebra(11) of �nite rank over A. If x P B, let mx P EndApBq be the map de�ned by

mxpbq � xb for all b P B. Put

TrB{Apxq � Trpmxq P A, NB{Apxq � detpmxq P A and χx,B{A � χmx
P ArXs

that we all the trae, the norm and the harateristi polynomial of x respetively (note that χmx
is moni).

Proposition 1.10.3. Let B be a free A-algebra of rank n, x, y P B and a P A. Then

(1) TrB{Apx � yq � TrB{Apxq � TrB{Apyq ;

(2) TrB{Apaq � na ;

(3) NB{Apxyq � NB{ApxqNB{Apyq ;

(4) NB{Apaq � an.

Proposition 1.10.4. Let L{K be a �nite �eld extension, x P L, and x1, . . . , xn the roots (in some algebrai

losure K of K, ounted with multipliities) of the minimal polynomial P of x over K. Then

TrL{Kpxq � rL : Kpxqs

ņ

i�1

xi, NL{Kpxq �
�

n
¹

i�1

xi

	

rL:Kpxqs

and χx,L{K � P rL:Kpxqs

(10)

It is possible to extend the following de�nitions to the ase where M is a projetive module of �nite rank. This generalization

is useful when working with extension of number �elds whose ring of integers is not a PID for instane.

(11)

I.e. suh that B is free seen as an A-module.
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Proof. Assume �rst that L � Kpxq. Let B � p1, x, . . . , xn�1
q: this is a basis of L over K. Let P P KrXs be

the minimal polynomial of x over K: write P pXq � Xn
�λ1X

n�1
� � � � � λn. The matrix of multipliation

by x in B is the ompanion matrix:

C � Cpλ1, . . . , λnq �

�

�

0 ��� ��� 0 λn

1
. . .

... λn�1

0
. . .

. . .
...

......
. . . 1 0 λ2

0 ��� 0 1 λ1

�



P MnpKq

We have χCpXq � detpXIn � Cq � Xn
� λ1X

n�1
� � � � � λn, so that χx,L{K � P . In partiular, we have

TrL{Kpxq � λ1 �
n
°

i�1

xi and NL{Kpxq � p�1qn�1λn �
n
±

i�1

xi.

In general, let d � rL : Kpxqs and py1, . . . , ydq be basis of L over Kpxq, so that L � Kpxqy1 ` � � � `Kpxqyd.

As the multipliation by x preserves eah fator Kpxqyi, we have TrL{Kpxq � dTrKpxq{Kpxq � d
n
°

i�1

xi,

NL{Kpxq � NKpxq{Kpxq
d
�

� n
±

i�1

xi

	d

and χx,L{K � χdx,Kpxq{K � P d. �

Corollary 1.10.5. Assume L{K is not separable. Then TrL{K � 0.

Proof. We have charpKq � p ¡ 0. Let x P L, and x1, . . . , xn the roots (in some algebrai losure K of K,

ounted with multipliities) of its minimal polynomial P over K. If x is separable over K, then L{Kpxq is

not separable, hene p | rL : Kpxqs, thus TrL{Kpxq � rL : Kpxqs
n
°

i�1

xi � 0. If x is not separable over K,

we have P pXq � QpXpe
q with e P Z

¡0 and Q P KrXs separable: eah root of P has multipliity pe. This

implies that

n
°

i�1

xi � 0, hene TrL{Kpxq � rL : Kpxqs
n
°

i�1

xi � 0. �

Example 1.10.6. (1) Let K be a �eld, x algebrai over K and P pXq � Xn
� a1X � � � � � an P KrXs its

minimal polynomial. We have TrKpxq{Kpxq � �a1, NKpxq{Kpxq � p�1qnan and χx,L{K � P .

(2) If L{K is a separable �nite extension, K an algebrai losure of K and HomK-algpL,Kq � tσ1, . . . , σdu,

we have d � rL : Ks, and

TrL{Kpxq �

ḑ

i�1

σipxq and NL{Kpxq �

d
¹

i�1

σipxq

(3) Let d P Z zt0, 1u be a squarefree integer and K � Qp
?

dq. We have K � Q`Q
?

d and GalpK{Qq �

tIdK , σu where σp
?

dq � �

?

d. If z � x � y
?

d P K (with x, y P Q), we thus have TrK{Qpzq � 2x and

NK{Qpzq � px� y
?

dqpx� y
?

dq � x2 � dy2.

Corollary 1.10.7. Let A be an integrally losed domain, K � FracpAq, L{K a �nite extension and B the

integral losure of A in L. If b P B, then TrL{Kpbq,NL{Kpbq P A and χb,L{K P ArXs. Moreover, we have

b P B�

� NL{Kpbq P A
�

.

Proof. As the onjugates of b are also integral over A (beause its minimal polynomial has oe�ients in

A, f proposition 1.9.15), so are their sum, their produt, and more generally any symmetri polynomial

evaluated on these onjugates. This implies that TrL{Kpbq,NL{Kpbq P A and χb,L{K P ArXs.

Let b P Bzt0u and P its minimal polynomial over K. By proposition 1.9.15, we have P P ArXs. Write

P pXq � Xd
�a1X

d�1
�� � ��ad: the minimal polynomial of b�1

overK is thenXd
�

ad�1

ad
Xd�1

�� � ��

a1
ad
X� 1

ad
.

By proposition 1.9.15, we have thus b P B�

� ad P A
�

. We onlude sine NL{Kpbq �
�

p�1qdad
�

rL:Kpbqs
. �

Exemples 1.10.8. (1) Let d P Z zt0, 1u be a squarefree integer and K � Qp
?

dq. If d � 1 mod 4Z, we have

OK � Zr
?

ds. If z � x� y
?

d P Zr
?

ds, then NK{Qpzq � x2 � dy2 (f example 1.10.6 (3)). As Z� � t�1u,

we thus have z P Zr
?

ds� � x2 � dy2 P t�1u. When d   0, this is equivalent to x2 � dy2 � 1: if d ¤ �2,

we have Zr
?

ds� � t�1u and when d � �1, we have Zris� � t�1,�iu.

(2) Let p be an odd prime number, ζ P C a primitive p-th root of unity and K � Qpζq. The minimal

polynomial of ζ over Q is P pXq � Xp�1
� Xp�2

� � � � � X � 1. We thus have TrK{Qpζq � �1 and

NK{Qpζq � 1, so TrK{Qpζ � 1q � TrK{Qpζq � TrK{Qp1q � �p. The minimal polynomial of ζ � 1 over Q is

P pX� 1q, whene NK{Qpζ� 1q � P p1q � p. Similarly, the minimal polynomial of ζ� 1 over Q is P pX� 1q,

thus NK{Qpζ � 1q � P p�1q � 1 (whih shows that

1
ζ�1

is integral over Z by the preeding orollary).

Proposition 1.10.9. (Transitivity). If L{K and K{F are �nite �eld extensions, we have

TrL{F � TrK{F �TrL{K and NL{F � NK{F �NL{K
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Lemma 1.10.10. Let L{K and K{F be algebrai extension, and F an algebrai losure of F . There exists

a bijetion

HomF -algpL, F q
�

ÑHomK-algpL, F q � HomF -algpK,F q.

Proof. For eah ρ P HomF -algpK,Lq, �x an extension pρ P HomF -algpF , F q (use Steinitz' theorem). If

σ P HomF -algpL, F q let σK denote its restrition to K and put σK � yσ
|K

�1
� σ. By onstrution, the �eld

K is invariant under σK : we have σK P HomK-algpL, F q. We thus have a map

HomF -algpL, F q Ñ HomK-algpL, F q � HomF -algpK,F q

σ ÞÑ pσK , σKq

It is injetive beause σ � xσK � σK . It is surjetive sine pρ, τq P HomK-algpL, F q � HomF -algpK,F q, and if

σ � pρ � τ , then we have σK � ρ and σK � τ . �

Proof of proposition 1.10.9.  Case where L{F is separable. Keep notations from lemma 1.10.10. Let x P L:

by example 1.10.6, we have

TrL{F pxq �
¸

σPHomF -algpL,F q

σpxq (beause L{F is separable, f example 1.10.6 (2))

�

¸

τPHomK-algpL,F q

ρPHomF -algpK,F q

pρ
�

τpxq
�

(by lemma 1.10.10)

�

¸

ρPHomF -algpK,F q

pρ
�

¸

τPHomK-algpL,F q

τpxq
	

�

¸

ρPHomF -algpK,F q

pρpTrL{Kpxqq (beause L{K is separable, f example 1.10.6 (2))

As TrL{Kpxq P K, we have pρpTrL{Kpxqq � ρpTrL{Kpxqq for all ρ P HomF -algpK,F q, whih implies that

TrL{F pxq � TrK{F pTrL{Kpxqq (f example 1.10.6 (2)). The proof is the same for the norm, replaing sums

by produts.

 Case where L{F is not separable. By orollary 1.10.5, we have TrL{F � 0. Also, one among L{K and

K{F is not separable, so TrL{K � 0 or TrK{F � 0 (f orollary 1.10.5), so the statement on traes is lear.

Let x P L. By proposition 1.10.4, we have NL{F pxq � NF pxq{F pxq
rL:F pxqs

�

�

NF pxq{F pxq
rKpxq:F pxqs

�

rL:Kpxqs

and NL{Kpxq � NKpxq{Kpxq
rL:Kpxqs

: the statement on norms is equivalent to the equality

(�) NF pxq{F pxq
rKpxq:F pxqs

� NK{F pNKpxq{Kpxqq.

When x P K, we have Kpxq � K so the equality follows from proposition 1.10.4 in that ase. In general,

let P pXq � Xn
� an�1X

n�1
� � � � � a1X � a0 P KrXs be the minimal polynomial of x over K, so that

NKpxq{Kpxq � p�1qna0, whene NK{F pNKpxq{Kpxqq � p�1qndNK{F pa0q where d � rK : F s. Fix a basis

B � pe1, . . . , edq of K over F . Then rB � peix
j
q1¤i¤d
0¤j n

� pe1, . . . , ed, xe1, . . . , xed, . . . , x
n�1e1, . . . , x

n�1edq is

a basis of Kpxq over F . As xn � �a0 � a1x� � � � � an�1x
n�1

, the matrix of the multipliation by x in the

basis

rB is

M �

�

�

0 ��� ��� 0 �M0

In
. . .

... �M1

0
. . .

. . .
...

......
. . .

. . . 0
...

0 ��� 0 In �Mn�1

�



P MndpF q

(ompanion matrix by bloks), where Mi is the matrix of the multipliation by ai in the basis B. Then

(12)

we have TrKpxq{F pxq � detpMq � p�1qpnd�dqd detp�M0q � p�1qpn�1qd2
p�1qdNK{F pa0q � p�1qndNK{F pa0q

(beause detpM0q � NK{F pa0q and p�1q
d2
� p�1qd), proving equality (�). �

1.10.11. Disriminant.

De�nition 1.10.12. Let B be a free A-algebra of rank n and x1, . . . , xn P B. The disriminant of

px1, . . . , xnq is

Dpx1, . . . , xnq � det
�

�

TrB{Apxixjq
�

1¤i,j¤n

	

P A

(12)

This follows from the equality det
�

0 X
Ir Y

�

� p�1qrs detpXq whenever X P MspF q, an equality whih follows from a

straightforward indution on r (developing the determinant along the �rst olumn).
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Proposition 1.10.13. Under the hypothesis of de�nition 1.10.12, let M � pai,jq1¤i,j¤n P MnpAq and

yi �
n
°

j�1

ai,jxj P B for i P t1, . . . , nu. Then

Dpy1, . . . , ynq � detpMq

2 Dpx1, . . . , xnq

Proof. Put X �

�

TrB{Apxixjq
�

1¤i,j¤n
and Y �

�

TrB{Apyiyjq
�

1¤i,j¤n
. For all i, j P t1, . . . , nu, we have

yiyj �
�

ņ

k�1

ai,kxk

	�

ņ

l�1

aj,lxl

	

�

ņ

k�1

ņ

l�1

ai,kxkxlaj,l

hene

TrB{Apyiyjq �

ņ

k�1

ņ

l�1

ai,k TrB{Apxkxlqaj,l

thus Y �MXtM , hene detpY q � detpMq

2 detpXq i.e. Dpy1, . . . , ynq � detpMq

2 Dpx1, . . . , xnq. �

Corollary 1.10.14. Under the hypothesis of de�nition 1.10.12, let px1, . . . , xnq and py1, . . . , ynq be bases of

B over A. Then

Dpy1, . . . , ynqA � Dpx1, . . . , xnqA

Proof. There exists M � pai,jq1¤i,j¤n P GLnpAq suh that yi �
n
°

j�1

ai,jxj P B for i P t1, . . . , nu. We

have then Dpy1, . . . , ynq � detpMq

2 Dpx1, . . . , xnq (1.10.13): as detpMq P A�, we have Dpy1, . . . , ynqA �

Dpx1, . . . , xnqA. �

Remark 1.10.15. When B � px1, . . . , xnq is a basis of B over A, the element Dpx1, . . . , xnq is the disrim-

inant of the bilinear form B �B Ñ A; px, yq ÞÑ TrB{Apxyq in the basis B.

De�nition 1.10.16. By orollary 1.10.14, under the hypothesis of de�nition 1.10.12, the idealDpx1, . . . , xnqA

does not depend of basis px1, . . . , xnq of B over A. This prinipal ideal is alled the disriminant of B over

A and is denoted dB{A.

Proposition 1.10.17. Under the hypothesis of de�nition 1.10.12, let S � A be a multipliative part. then

S�1B is free over S�1A and

dS�1B{S�1A � S�1dB{A.

Proof. This is obvious sine a basis of B over A provides a basis of S�1B over S�1A. �

Remark 1.10.18. The previous proposition shows that the de�nition of the ideal dB{A shea��es: one an

de�ne it for loally free sheaves on a sheme. This shows in partiular that it generalizes to the ase where

B is projetive over A.

Proposition 1.10.19. Under the hypothesis of de�nition 1.10.12, if dB{A ontains an element whih is not

a zero divisor, and if x1, . . . , xn P B, the following onditions are equivalent:

(i) px1, . . . , xnq is a basis of B over A ;

(ii) Dpx1, . . . , xnq generates dB{A.

Proof. Impliation (i)ñ(ii) follows from de�nition of the ideal dB{A. Conversely, assume that Dpx1, . . . , xnq

generates dB{A. Let pb1, . . . , bnq be a basis of B over A and d � Dpb1, . . . , bnq so that dB{A � dA. There

exists M � pai,jq1¤i,j¤n P MnpAq suh that xi �
n
°

j�1

ai,jbj for all i P t1, . . . , nu. By proposition 1.10.13,

we have Dpx1, . . . , xnq � detpMq

2d. As Dpx1, . . . , xnq generates dB{A � dA, there exists u P A� suh that

Dpx1, . . . , xnq � ud, so that dpu � detpMq

2
q � 0. As d is not a zero divisor (otherwise dB{A would only

ontain zero didisors, whih is exluded by the hypothesis), we have detpMq

2
� u thus detpMq P A�, so

that M P GLnpAq, whih implies that px1, . . . , xnq is a basis of B over A. �

Corollary 1.10.20. Under the hypothesis of de�nition 1.10.12, assume moreover that A is a UFD. Let

x1, . . . , xn P B be suh that d � Dpx1, . . . , xnq P Azt0u is squarefree. Then px1, . . . , xnq is a basis of B over

A, and dB{A � dA.

Proof. Let pe1, . . . , enq be a basis of B over A: there exists M � pai,jq1¤i,j¤n P MnpAq suh that for all

i P t1, . . . , nu, we have xi �
n
°

j�1

ai,jej . We haveDpx1, . . . , xnq � detpMq

2 Dpe1, . . . , enq (proposition 1.10.13),

i.e. dA � detpMq

2dB{A. As d is squarefree by hypothesis, we have detpMq P A�, so that px1, . . . , xnq is a

basis of B over A. �
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Theorem 1.10.21. (Dedekind). Let K{F and L{F be extensions. Then elements in HomF -algpK,Lq are

linearly independent in the L-vetor spae HomF - linpK,Lq.

Proof. Assume the ontrary. Let

r
°

i�1

λiσi � 0 with λi P L and σi P HomF -algpK,Lq for i P t1, . . . , ru be

a non trivial linear dependene relation suh that r is minimal. By minimality, we have λi � 0 for all

i P t1, . . . , ru, and the σi are pairwise distint. After dividing the relation by λr, we may assume that

λr � 1. For all x P K, we have thus

(�)

r�1̧

i�1

λiσipxq � σrpxq � 0.

Equality (�) applied to the produt of x, y P K gives

r�1̧

i�1

λiσipxqσipyq � σrpxqσrpyq � 0

Subtrating σrpyq times (�) to the preeding equality gives

r�1̧

i�1

λiσipxqpσipyq � σrpyqq � 0

for all x, y P K. In partiular, y being �xed, we have

r�1̧

i�1

λipσipyq � σrpyqqσi � 0.

By minimality of r, the oe�ients of this linear ombination are all zero: we have σipyq � σrpyq for all

y P K. The σi being pairwise distint, this implies r � 1, whih is impossible. �

Proposition 1.10.22. Let L{K be a �nite separable �eld extension, K an algebrai losure of K, and

x1, . . . , xn a basis of L over K. Write HomK-algpL,K q � tσ1, . . . , σnu (this has n elements sine L{K is

separable). Then

Dpx1, . . . , xnq � det
�

pσipxjqq1¤i,j¤n
�2
� 0.

Proof. Reall that TrL{Kpxq �
n
°

k�1

σkpxq for all x P L (exemple 1.10.6 (2)). We have

TrL{Kpxixjq �

ņ

k�1

σkpxixjq �

ņ

k�1

σkpxiqσkpxjq

so that

�

TrL{Kpxixjq
�

1¤i,j¤n
�

tMM where M � pσipxjqq1¤i,j¤n P MnpKq. We have thus

Dpx1, . . . , xnq � det
�

tMM
�

� detpMq

2
� det

�

pσipxjqq1¤i,j¤n
�2
.

It remains to hek that detpMq � 0. Let X � pλiq1¤i¤n P M1�npKq suh that XM � 0. We have

then

n
°

i�1

λiσipxjq � 0 for all j P t1, . . . , nu. By K-linearity, this implies

n
°

i�1

λiσi � 0 in HomK- linpL,K q.

Dedekind's theorem (theorem 1.10.21) implies that X � 0: the matrixM is invertible, and detpMq � 0. �

Corollary 1.10.23. Let L{K be a separable �eld extension of degree n. A family px1, . . . , xnq P L
n
is a

K-basis of L if and only if Dpx1, . . . , xnq � 0.

Proposition 1.10.24. (Transitivity of disriminant). Let K{F and L{K be two �nite separable �eld

extensions, x1, . . . , xn a basis of K over F and py1, . . . , ymq a basis of L over K. Then

Dpxiyjq 1¤i¤n
1¤j¤m

� Dpx1, . . . , xnq
rL:Ks NK{F pDpy1, . . . , ymqq.

Proof. Write HomF -algpK,F q � tρ1, . . . , ρnu and HomK-algpL, F q � tτ1, . . . , τnu (where F is an algebrai

losure of F ). Fix liftings pρ1, . . . , pρn P HomF -algpF , F q of ρ1, . . . , ρn: we have HomF -algpL, F q �
 

pρiτj
(

1¤i¤n
1¤j¤m

(f lemma 1.10.10). On the other hand, we have Dpxiyjq 1¤i¤n
1¤j¤m

� detpMq

2
where M P MmnpF q is the

matrix with entries pρiτjpxkyℓq � ρipxkqpρiτjpyℓq for pi, jq, pk, ℓq P
�

t1, . . . , nu � t1, . . . ,mu
�2

(f proposition

1.10.22). Put Y � pτjpyℓqq1¤j,ℓ¤m P MmpF q: we have M �

�

ρ1px1qpρ1pY q ��� ρ1pxnqpρ1pY q
...

...
ρnpx1qpρnpY q ��� ρnpxnqpρnpY q




� M1M2 (blok
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matrix) where M1 � diag
�

pρ1pY q, . . . , pρnpY q
�

P MmnpF q and M2 �

�

ρ1px1q Im ��� ρ1pxnq Im
...

...
ρnpx1q Im ��� ρnpxnq Im




P MmnpF q. We

have detpM1q
2
�

±

ρPHom
-

alg F pK,F q
pρpdetpY q2q � NK{F pDpy1, . . . , ymqq. On the other hand, there exists a

permutation matrix P P GLmnpZq suh that P
�1M2P � diagpX, . . . , Xq with X � pρipxkqq1¤i,k¤n P MnpF q.

We thus have detpM2q � detpXqm, whene detpM2q
2
� Dpx1, . . . , xnq

rL:Ks
(beause rL : Ks � m). At the

end, we have Dpxiyjq 1¤i¤n
1¤j¤m

� detpMq

2
� detpM1q

2 detpM2q
2
� Dpx1, . . . , xnq

rL:KsNK{F pDpy1, . . . , ymqq.

�

Corollary 1.10.25. (Transitivity of disriminant). Let A be an integral domain, F � FracpAq and

K{F and L{K �nite separable �elds extensions. Let B (resp. C) be the integral losure of A in K

(resp. L). Assume B is free over A and C is free over B. Then dC{A � d
rkBpCq

B{A
NB{ApdC{Bq (where

(13)

NB{ApdBq � NB{ApdqA).

1.10.26. Disriminant of polynomials.

De�nition 1.10.27. Let K a �eld, P P KrXs moni and α1, . . . , αn P K the roots of P in an algebrai

losure K of K (ounted with multipliities). The disriminant of P is

discpP q �
¹

1¤i j¤n

pαi � αjq
2
� p�1q

npn�1q

2

¹

1¤i�j¤n

pαi � αjq

It is a symmetri polynomial in the roots of P , hene a polynomial in the oe�ients of P , and discpP q P K.

By de�nition, P is separable if and only if discpP q � 0.

Lemma 1.10.28. With notations of de�nition 1.10.27, we have

discpP q � p�1q
npn�1q

2

n
¹

i�1

P 1

pαiq

Proof. We have P 1

pXq �
n
°

i�1

±

1¤j�i¤n

pX � αjq, hene P 1

pαiq �
±

1¤j�i¤n

pαi � αjq whih implies that

n
±

i�1

P 1

pαiq �
±

1¤i�j¤n

pαi � αjq � p�1q
npn�1q

2 discpP q. �

Example 1.10.29. (1) The disriminant of X2
� aX � b is a2 � 4b. That of X3

� pX � q is �4p3 � 27q2

(exerise).

(2) Let n P Z
¡0 and P pXq � Xn

� 1 P QrXs. Put µn � tz P C ; zn � 1u: we have P pXq �
±

ζPµn

pX � ζq.

For ζ P µn, we have P
1

pζq � nζn�1
: as

±

ζPµn

ζ � p�1qn�1
, we have

±

ζPµn

P 1

pζq � nnp�1qn
2
�1
, and thus

discpP q � p�1q
npn�1q

2

¹

ζPµn

P 1

pζq � p�1q
n2
�n�2
2 nn

Remark 1.10.30. Up to a normalization, the disriminant is nothing but the resultant of P and P 1

.

Proposition 1.10.31. Let L{K a separable �eld extension of degree d, α P L suh that L � Krαs and

P P KrXs the minimal polynomial of α over K. Then p1, α, α2, . . . , αn�1
q is a basis of L over K and

Dp1, α, α2, . . . , αn�1
q � discpP q � p�1q

npn�1q

2 NL{KpP
1

pαqq

Proof. Let K be an algebrai losure of K and HomK-algpL,K q � tσ1, . . . , σnu. the onjugates of α are the

αi :� σipαq for i P t1, . . . , nu. The extension L{K is separable: by proposition 1.10.22, we have

Dp1, α, . . . , αn�1
q � det

�

pσipα
j�1

qq1¤i,j¤n

�2
� det

�

pα
j�1
i q1¤i,j¤n

�2

As det
�

pα
j�1
i q1¤i,j¤n

�

�

±

1¤i j¤n

pαi � αjq (Vandermonde determinant), this proves the �rst equality.

By lemma 1.10.28, we have discpP q � p�1q
npn�1q

2

n
±

i�1

P 1

pαiq. For i P t1, . . . , nu, we have αi � σipαq, hene

n
±

i�1

P 1

pαiq �
n
±

i�1

σpP 1

pαqq � NL{KpP
1

pαqq, proving the seond equality. �

(13)

This does not depend on the hoie of the generator d.
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Example 1.10.32. Let K be a �eld and P pXq � Xn
� aX � b P KrXs, that we assume irreduible and

separable. If α is a root of P in an algebrai losure of K, we have

(14)

Dp1, α, α2, . . . , αn�1
q � discpP q � p�1q

npn�1q

2 NKpαq{KpP
1

pαqq

� p�1q
npn�1q

2

�

nnbn�1
� p�1qn�1

pn� 1qn�1an
�

For n P t2, 3u, we reover formulas of example 1.10.29 (1).

1.10.33. Integral losure in a separable extension.

Proposition 1.10.34. Let L{K be a �nite separable �eld extension.

L� LÑ K

px, yq ÞÑ TrL{Kpxyq

is a non degenerate pairing.

Proof. Bilinearity follows from proposition 1.10.3. Let x P L be suh that TrL{Kpxyq � 0 for all y P L. LetK

an algebrai losure de K and HomK-algpL,K q � tσ1, . . . , σnu, we have TrL{Kpxyq �
n
°

i�1

σipxqσipyq, so that

n
°

i�1

σipxqσi. As tσ1, . . . , σnu is linearly independent in HomK-lin

pL,K q (Dedekind's theorem, f theorem

1.10.21), this implies σipxq � 0 for all i P t1, . . . , nu, thus x � 0. The kernel of the bilinear map is zero: it

is non degenerate. �

Remark 1.10.35. By orollary 1.10.5, the preeding proposition is an equivalene.

Corollary 1.10.36. Let L{K be a �nite separable �eld extension. The map

LÑ HomK- linpL,Kq

x ÞÑ
�

y ÞÑ TrL{Kpxyq
�

is an isomorphism of K-vetor spaes. If px1, . . . , xnq is a basis de L over K, there exists a unique basis

py1, . . . , ynq of L over K suh that TrL{Kpxiyjq � δi,j for all i, j P t1, . . . , nu: it is alled the dual basis of

px1, . . . , xnq.

Proof. The map f : L Ñ HomK- linpL,Kq is is the linear map assoiated to the symmetri bilinear map

px, yq ÞÑ TrL{Kpxyq. As the latter is not degenerate, the map f is injetive: it is an isomorphism sine

dimK

�

HomK- linpL,Kq
�

� dimKpLq. If px1, . . . , xnq is a basis of L over K, the family pfpx1q, . . . , fpxnqq is

a basis of HomK- linpL,Kq over K. The family py1, . . . , ynq satis�es TrL{Kpxiyjq � fpxiqpyjq � δi,j for all

i, j P t1, . . . , nu if and only if it is the dual basis of pfpx1q, . . . , fpxnqq in L: it exists and is unique. �

Proposition 1.10.37. Let A be an integrally losed domain, K its fration �eld and L{K a �nite separable

�eld extension. Let B be the integral losure of A in L. Then B ontains a basis of L over K, and it is a

sub-A-module of a free A-module of rank rL : Ks ontained in L.

Proof. If pe1, . . . , enq is a basis of L overK, there exists a P Azt0u suh that xi :� aei P B for all i P t1, . . . , nu

(f proposition 1.9.12). The family px1, . . . , xnq is still a basis of L over K, made of elements in B.

Let py1, . . . , ynq be the dual basis of px1, . . . , xnq for the trae form, and B1

the sub-A-module of L generated

by ty1, . . . , ynu. As py1, . . . , ynq is a basis of L over K, the A-module B1

is free of rank n � rL : Ks. If

x P B, write x �
n
°

j�1

λjyj with λ1, . . . , λn P K: as xix P B thus TrL{Kpxixq �
n
°

j�1

λj TrL{Kpxiyjq � λi P A

for all i P t1, . . . , nu (orollary 1.10.7), we have x P B1

. �

Proposition 1.10.38. Under the hypothesis of proposition 1.10.37, we have in fat the following more

expliit statement. If px1, . . . , xnq is a basis of L over K made of elements in B, we have

B �

1

d

�

Ax1 ` � � � `Axn
�

where d � Dpx1, . . . , xdq.

(14)

We have P 1

pαq � nαn�1
� a � n�aα�b

α
� a � �

nb
α
� pn� 1qa. The minimal polynomial of α�1

being Xn
�

a
b
Xn�1

�

1
b
,

that of �

nb
α

is QpXq � Xn
�naXn�1

�p�nqnbn�1
and that of P 1

pαq is thus QpX�pn�1qaq: we have NKpαq{KpP
1

pαqq �

p�1qnQppn� 1qaq � nnbn�1
� p�1qn�1

pn� 1qn�1an.
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Proof. By the proof of proposition 1.10.37, if py1, . . . , ynq is the dual basis of px1, . . . , xnq, we have

B � B1

� Ay1 ` � � � `Ayn

Write yi �
n
°

j�1

αi,jxj with αi,j P K for all i, j P t1, . . . , nu. We have

δi,j � TrL{Kpxiyjq �

ņ

k�1

αj,k TrL{Kpxixkq

so that if M �

�

TrL{Kpxixjq
�

1¤i,j¤n
P MnpAq and N � pαi,jq1¤i,j¤n P MnpKq, we have M tN � In, i.e.

tN �M�1
P

1
d
MnpAq by Cramer's formulas: we have αi,j P

1
d
A for all i, j P t1, . . . , nu. �

Corollary 1.10.39. Under the hypothesis of proposition 1.10.37, we have:

(1) if A is noetherian, then B is a �nite A-algebra (in partiular, B is noetherian);

(2) if A is a PID, then B is a free A-module of rank rL : Ks.

Proof. By proposition 1.10.37, there exists a sub-A-module B1

of L whih is free of rank rL : Ks and suh

that B � B1

.

(1) If A is noetherian, so is B1

(proposition 1.3.4): the A-module B is of �nite type (thus noetherian by

proposition 1.3.4).

(2) If A is a PID, B is free of �nite rank as a sub-A-module of the free A-module of �nite rank B1

(theorem

1.4.11). As it ontains a basis de L over K (proposition 1.10.37), its rank is rL : Ks. �

Remark 1.10.40. Under the hypothesis of proposition 1.10.37, assume moreover that A is a PID. By

orollary 1.10.20, if x1, . . . , xn P B are suh that Dpx1, . . . , xnq is squarefree in A (whih is a PID hene a

UFD), then px1, . . . , xnq is a basis of B over A.

1.11. Inverse limits.

1.11.1. Generalities. Let C be a ategory and pI,¤q a direted set

(15)

(i.e. a preordered

(16)

set in whih

every pair of elements has an upper bound: p�i, j P Iq pDk P Iq i ¤ k, j ¤ kq).

De�nition 1.11.2.  A inverse system in C indexed by I is a pair

�

tXiuiPI , tui,jui,jPI
i¤j

�

where tXiuiPI is a

family of objets of C , and tui,jui,jPI
i¤j

a family of morphisms Xj
ui,j
ÝÝÑ Xi (alled transition morphisms) suh

that ui,k � ui,j � uj,k whenever i ¤ j ¤ k in I. As often, it will be denoted by pXiqiPI alone.

 Let

�

tXiuiPI , tui,jui,jPI
i¤j

�

be a inverse system in C indexed by I. Its inverse limit

(17)

(or simply limit)

is an objet X P C with morphisms πi : X Ñ Xi for all i P I suh that p�i ¤ j P Iq πi � ui,j � πj ,

having the following universal property: whenever Y P C and ψi : Y Ñ Xi are morphisms suh that

p�i ¤ j P Iq ψi � ui,j � ψj , then there exists a unique morphism

rψ : Y Ñ X suh that p�i P Iq ψi � πi � rψ.

Xj

ui,j

��
Y

ψj ,,

rψ //

ψj

22

X

πj 77♥♥♥♥♥♥

πi ((PP
PP

PP

Xi

Being the solution of a universal problem, the inverse limits of

�

tXiuiPI , tui,jui,jPI
i¤j

�

, if it exists, is unique

up to isomorphism: it is denoted lim
�Ý

I

Xi.

 A diret system in C indexed by I is an inverse system in C op
indexed by I. Its indutive limit (or olimit)

is the orresponding inverse limit.

Remark 1.11.3. An inverse system in C indexed by I is nothing but a ontravariant funtor I Ñ C . There

is the obvious inlusion funtor i : C Ñ C Iop
that maps an objet to the orresponding onstant inverse

(15)

Whih an be seen as a ategory whose objets are elements of I and there is exatly one arrow i Ñ j if i ¤ j, and no

arrow otherwise.

(16)

Re�exive and transitive i.e. an order without the antisymmetry ondition.

(17)

�Limite projetive� in Frenh.



38 Number theory

system. If

�

tXiuiPI , tui,jui,jPI
i¤j

�

is an inverse system in C indexed by I, its inverse limits, if it exists, is

haraterized by

HomC Iop

�

ipY q, pXiqiPI

�

�

ÑHomC

�

Y, lim
�Ý

I

Xi

�

for all Y P C , i.e. is a �nal objet in the ategory of pairs pY, ψq where Y P C and ψ : ipY q Ñ pXiqiPI (one

an also say that it represents the ontravariant funtor Y ÞÑ HomC Iop

�

ipY q, pXiqiPI

�

).

Example 1.11.4. (1) When I is trivial (i.e. i ¤ j � i � j), the inverse limit is the produt

±

I

Xi.

(2) If C is preabelian

(18)

and u P HomC pX,Y q, the kernel of u is the inverse limit of X
u
ÝÑ Y � 0.

(3) Assume that C is a subategory of Set that admits produts indexed by I. Then

lim
�Ý

I

Xi �

!

pxiqiPI P
±

iPI

Xi ; p�i, j P Iq i ¤ j ñ ui,jpxjq � xi

)

�

±

iPI

Xi.

The map πk : lim
�Ý

I

Xi Ñ Xk is the restrition of the projetion on the fator of index k. In partiular, inverse

limits exist in Set, Gr, ModR (where R is a ommutative ring) and Top.

(4) An inverse limit lim
�Ý

I

Xi in Gr (resp. ModR, resp. Top) oinide with the inverse limit in Set,

endowed with the struture of group (resp. R-module, resp. topologial spae) indued by the inlusion

lim
�Ý

I

Xi �
±

iPI

Xi.

Remark 1.11.5. Assume I � Z
¥0 (endowed with the natural order). The data of an inverse system is

equivalent to that Of a sequene of sets pXnqnPZ
¥0
, and for eah n P Z

¥0, a map ρn : Xn�1 Ñ Xn. The

inverse limits is then simply:

lim
�Ý

n

Xn :�
!

pxnqnPZ
¥0
P

8

±

n�0

Xn ; p�n P Z
¥0q ρnpxn�1q � xn

)

�

8

±

n�0

Xn.

De�nition 1.11.6. A morphism of inverse systems

�

tXiuiPI , tui,jui,jPI
i¤j

�

Ñ

�

tYiuiPI , tvi,jui,jPI
i¤j

�

is a family

of morphisms pfi : Xi Ñ YiqiPI suh that fi � ui,j � ui,j � fj whenever i ¤ j.

Proposition 1.11.7. (Funtoriality of inverse limits). Let pfi : Xi Ñ YiqiPI be a morphism of inverse

systems in a ategory C . Assume that the inverse limits X � lim
�Ý

iPI

Xi and Y � lim
�Ý

iPI

Yi exist in C . Then there

exists a unique map f : X Ñ Y suh that fi � πX,i � πY,i � f (where πX,i : X Ñ Xi and πY,i : Y Ñ Yi are

the projetions).

Proof. This follows from the universal property of Y :

Xj

ui,j

��

fj // Yj

vi,j

��

X

πX,j
99rrrrrr

f
//

πX,i %%▲
▲▲

▲▲
▲ Y

πY,j

99ssssss

πY,i
%%❑

❑❑
❑❑

❑

Xi
fi

// Yj

�

1.11.8. Exatness properties. Referenes for this setion are [12, �1.12℄ and [24, Setion 0594℄. Here, we

assume that C is a subategory of Gr that is stable under inverse limits (hene under kernels) and okernels

(hene under images).

De�nition 1.11.9. An exat sequene in C is a sequene of morphisms pfn : Xn Ñ Xn�1qnPJ (where J � Z

is an interval)

� � � Ñ Xn
fn
ÝÑ Xn�1

fn�1
ÝÝÝÑ Xn�2 Ñ � � �

suh that Impfnq � Kerpfn�1q for all n P J . A short exat sequene is an exat sequene of the form

0Ñ X 1

Ñ X Ñ X2

Ñ 0.

Proposition 1.11.10. The inverse limit funtor lim
�Ý

I

: C
Iop
Ñ C is left exat.

(18)

Whih means that C is additive and has kernels and okernels.

https://stacks.math.columbia.edu/tag/0594


Number theory 39

Proof. Let 0 Ñ
�

tX 1

iuiPI , tu
1

i,jui,jPI
i¤j

�

pfiqiPI
ÝÝÝÝÑ

�

tXiuiPI , tui,jui,jPI
i¤j

�

pgiqi,jPI
ÝÝÝÝÝÑ

�

tX2

i uiPI , tu
2

i,jui,jPI
i¤j

�

Ñ 0 be an

exat sequene of inverse systems of groups. The �rst row in

0 //
±

iPI

X 1

i

f //
±

iPI

Xn

g //
±

iPI

X2

i
// 0

lim
�Ý

iPI

X 1

i

f //
?�

lim
�Ý

iPI

Xi

g //
?�

lim
�Ý

iPI

X2

i

?�

is exat. This implies the injetivity of f : lim
�Ý

iPI

X 1

i Ñ lim
�Ý

iPI

Xi. Let x � pxiqiPI P lim
�Ý

iPI

Xi be suh that gpxq � e

(the unit in lim
�Ý

iPI

X2

i ). By the exatness of the �rst row, we have x � fpx1q for a unique x1 � px1iqiPI P
±

iPI

X 1

i.

If i ¤ j in I, we have xi � ui,jpxjq i.e. fipx
1

iq � ui,jpfjpx
1

jqq � fipu
1

i,jpx
1

jqq, thus x
1

i � u1i,jpx
1

jq by injetivity

of fi. Sine this holds for all i ¤ j in I, we get x1 P lim
�Ý

iPI

X 1

i, and the proposition follows. �

Remark 1.11.11. The inverse limit funtor is not exat in general. For instane, passing to the inverse

limit on the exat sequenes 0Ñ pn ZÑ ZÑ Z {pnZÑ 0 gives the exat sequene 0Ñ 0Ñ ZÑ Zp, and

ZÑ Zp is not surjetive.

De�nition 1.11.12. Let

�

tXiuiPI , tui,jui,jPI
i¤j

�

be an inverse system in Set. If i P I, the family pui,jpXjqqjPI

of subsets of Xi is dereasing, in the sense that i ¤ j1 ¤ j2 ñ ui,j2pXj2q � ui,j1pXj1q � Xi. We say that

�

tXiuiPI , tui,jui,jPI
i¤j

�

satis�es the Mittag-Le�er ondition if for any i P I, the family pui,jpXjqqjPI stabilizes,

i.e. there exists npiq ¥ i suh that

p�j ¥ npiqqui,jpXjq � ui,npiqpXnpiqq � Xi.

Remark 1.11.13. If the maps ui,j are all surjetive, then

�

tXiuiPI , tui,jui,jPI
i¤j

�

satis�es the Mittag-Le�er

ondition. Conversely, assume that

�

tXiuiPI , tui,jui,jPI
i¤j

�

satis�es the Mittag-Le�er ondition. If i P I, let

npiq ¥ i be suh that j ¥ npiq ñ ui,jpXjq � ui,npiqpXnpiqq �: rXi � Xi. If i ¤ j in I and x P rXj , let k P I be

suh that k ¥ npiq and k ¥ npjq: we an write x � uj,kpyq with y P Xk, and ui,jpxq � ui,kpyq P rXi (sine

k ¥ npiq). Moreover, if z P rXi, there exists pz P Xk suh that z � ui,kppzq � ui,jpuj,kppzqq P ui,jp rXjq, whih

shows that the maps ui,j : Xj Ñ Xj indue surjetive maps ui,j : rXj Ñ
rXi. By funtoriality, the inlusions

rXi � Xi indue an injetive map lim
�Ý

iPI

rXi Ñ lim
�Ý

iPI

Xi. The latter is in fat an equality: if pxiqiPI P lim
�Ý

iPI

Xi, then

xi � ui,jpxjq P ui,jpXjq for all j ¥ i, hene xi P rXi for all i P I.

Lemma 1.11.14. Assume that I is ountable. Let

�

tXiuiPI , tui,jui,jPI
i¤j

�

be an inverse system of nonempty

sets satisfying the Mittag-Le�er ondition. Then lim
�Ý

iPI

Xi � ∅.

Proof. This is obvious when pI,¤q � pZ
¥0,¤q: we redue to this ase as follows. Write I � tinunPZ

¥0
:

one onstruts indutively a stritly inreasing map ϕ : Z
¥0 Ñ Z

¥0 suh that ϕp0q � 0 and iϕpnq ¥ in and

iϕpnq ¥ iϕpn�1q for all n P Z
¡0. Using notations of remark 1.11.13, we have

rXin � uin,iϕpmq

pXiϕpmq

q for some

m " n. As the sets Xiϕpmq

are nonempty, so are the sets

rXin . As the transition maps of the inverse system

�

t

rXiuiPI , tui,jui,jPI
i¤j

�

are surjetive, we an �nd indutively a sequene pξnqnPZ
¥0
P lim
�Ý

nPZ
¥0

rXiϕpnq : hoose any

ξ0 P rX0, and ξ0, . . . , ξn being onstruted, hoose ξn�1 P
rXiϕpn�1q

suh that uiϕpnq,iϕpn�1q
pξn�1q � ξn. If

i P I, let xi � ui,iϕpnqpξnq for n P Z
¥0 large enough so that i ¤ iϕpnq. Then pxiqiPI P lim

�Ý

iPI

rXi � lim
�Ý

iPI

Xi, so the

latter is nonempty �

Remark 1.11.15. Some examples that show that the hypothesis are really neessary in the previous lemma.

(1) Put I � Z
¥0, Xn � Z

¥0, and un,m : Z
¥0 Ñ Z

¥0; x ÞÑ x�m� n if n ¤ m. An element in X � lim
�Ý

n

Xn

is thus a sequene pxnqnPZ
¥0

suh that xn � xn�1 � 1, so that xn � x0 � n for all n P Z
¥0. Suh sequenes

do not exist, so X � ∅.
(2) Put I � Z

¥0, Xn �s0, 1r, and un,m : Xm Ñ Xn; x ÞÑ

x
2m�n . Then u0,npXnq �

�

0, 1
2n

�

, so that if

pxnqnPZ
¥0
P X � lim

�Ý

n

Xn, we have x0 P
8

�

n�0

�

0, 1
2n

�

� ∅.
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(3) For eah �nite subset A � R, let XA be the set of injetions AÑ N. If A � B, the restrition provides a

surjetive map XB Ñ XA, so we get an inverse system (indexed by the �nite subsets of R, partially ordered

by the inlusion) with surjetive transition maps. However, the inverse limit is the set of injetions from R

to N: it is empty (this example is due to Waterhouse).

Proposition 1.11.16. Let

0Ñ
�

tX 1

iuiPI , tu
1

i,jui,jPI
i¤j

�

pfiqiPI
ÝÝÝÝÑ

�

tXiuiPI , tui,jui,jPI
i¤j

�

pgiqi,jPI
ÝÝÝÝÝÑ

�

tX2

i uiPI , tu
2

i,jui,jPI
i¤j

�

Ñ 0

be an exat sequene of inverse systems indexed by I in ModR (where R is a ommutative ring). Assume

that I is ountable and that

�

tX 1

iuiPI , tu
1

i,jui,jPI
i¤j

�

has the Mittag-Le�er property. Then the sequene

0Ñ lim
�Ý

iPI

X 1

i

f
ÝÑ lim

�Ý

iPI

Xi
g
ÝÑ lim
�Ý

iPI

X2

i Ñ 0

is exat.

Proof. By proposition 1.11.10, it is enough to show the surjetivity of g. Let x2 � px2i qiPI P lim
�Ý

iPI

X2

i . For

i P I, put Ei � g�1
i ptx2i uq � Xi: the set Ei is nonempty sine gi is surjetive. If j ¥ i in I and ξ P Ej ,

then gipui,jpξqq � u2i,jpgjpξqq � u2i,jpx
2

j q � x2i so that ui,jpξq P Ei. This implies that pEi, ui,j|Ej
qi,jPI is a

sub-inverse system of pXi, ui,jqi,jPI : we have an inlusion E :� lim
�Ý

iPI

Ei � lim
�Ý

iPI

Xi, and gpxq � x2 for any

x P lim
�Ý

iPI

Ei. We have thus to show that E is nonempty. As I is ountable, it is enough to hek that the

inverse system

�

tEiuiPI , tui,j|Ej
ui,jPI
i¤j

�

satis�es the Mittag-Le�er ondition (f lemma 1.11.14).

As

�

tX 1

iuiPI , tu
1

i,jui,jPI
i¤j

�

has the Mittag-Le�er property, for eah i P I, there exists npiq ¥ i in I suh that

ui,jpX
1

jq � ui,npiqpX
1

npiq
q for all j ¥ npiq. Let j ¥ npiq. We have ui,jpEjq � ui,npiqpEnpiqq. Conversely, let

ξ P Enpiq. If η is any element in Ej , we have gnpiqpunpiq,jpηqq � u2
npiq,j

pgjpηqq � u2
npiq,j

px2j q � x2
npiq

� gnpiqpξq,

so that ξ�unpiq,jpηq P Kerpgnpiqq � Impfnpiqq: we an write ξ�unpiq,jpηq � fnpiqpλq with λ P X
1

npiq
. We have

ui,npiqpξq � ui,jpηq�ui,npiqpfnpiqpλqq � ui,jpηq�fipu
1

i,npiq
pλqq. As u1

i,npiq
pλq P u1

i,npiq
pX 1

npiq
q � u1i,jpX

1

jq, there

exists µ P X 1

j suh that u1
i,npiq

pλq � u1i,jpµq, hene ui,npiqpξq � ui,jpηq � fipu
1

i,jpµqq � ui,jpη � fjpµqq. As

η� fjpµq P Ej , this shows that ui,npiqpξq P ui,jpEjq, showing that the inverse system
�

tEiuiPI , tui,j|Ej
ui,jPI
i¤j

�

satis�es the Mittag-Le�er ondition indeed. �

1.11.17. Pro�nite groups.

De�nition 1.11.18. A inverse limit of �nite sets (resp. groups) is alled a pro�nite set (resp. a pro�nite

group). We endow these �nite sets with the disrete topology, their produt with the produt topology and

their inverse limit with the indued topology. Let p be a prime integer. A pro-p-group is an inverse limit of

p-groups.

Proposition 1.11.19. Pro�nite sets are ompat

(19)

.

Proof. Let

�

tXiuiPI , tui,jui,jPI
i¤j

�

be a inverse system of �nite sets. Being �nite, eah Xi is ompat: by

Tyhono�'s theorem, the produt

±

iPI

Xi is ompat as well. If J � I is �nite, let πJ :
±

iPI

Xi Ñ
±

iPJ

Xi

be the projetion on fators of index P J , and lim
�Ý

J

Xj the inverse limit of

�

tXjujPJ , tui,jui,jPJ
i¤j

�

. Then

πJ plim
�Ý

I

Xiq � lim
�Ý

J

Xj , and lim
�Ý

I

Xi �
�

J�I
J �nite

π�1
J plim

�Ý

J

Xjq. Sine
±

J

Xj is �nite, lim
�Ý

J

Xj is losed, so π
�1
J plim

�Ý

J

Xjq

is losed in

±

iPI

Xi (by de�nition of the produt topology). Being an intersetion of losed subsets, lim
�Ý

I

Xi is

losed in

±

J

Xj , hene ompat

(20)

. �

(19)

Reall it means Hausdor� (i.e. separated) and quasi-ompat.

(20)

Another way of formulating it: X �

�

i¤j

pπi, ui,j � πjq
�1
p∆P q where P �

±

kPI

Xk and ∆P � tpx, xq ; x P P u is the diagonal

of P . As ∆P is losed in P �P , the sets pπi, ui,j � πjq
�1
p∆P q are losed in P for all i ¤ j, so that X is losed in P . As P

is ompat (by Tyhonof's theorem), this shows that X is ompat as well.
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Remark 1.11.20. If G is a pro�nite group and H � G an open subgroup, then H is losed as well: indeed

GzH �

�

gRH

gH is a union of open subsets, so it is open. Similarly, if H ¤ G is a subgroup of �nite index,

it is open if and only if it is losed in G.

Proposition 1.11.21. Let G be a topologial group. Then G is pro�nite if and only if it is ompat, and

admits a basis of neighborhoods of 1 onsisting of normal subgroups.

Proof. Assume G is pro�nite: G � lim
�Ý

I

Gi. Sine

±

I

Gi is separated (eah Gi is), so is G. Moreover G is

ompat thanks to the previous proposition. Finally, a basis of neighborhoods of 1 is given by tKerpπiquiPI
where πi is the projetion to the fator of index i, whih onsists of normal subgroups.

Conversely, assume G is Hausdor�, ompat, and admits a basis of neighborhoods of 1 onsisting of normal

subgroups. Let tNiuiPI be the family of open normal subgroups. As G is ompat, the quotient Gi :� G{Ni
is �nite for all i P I. Write i ¤ j if Ni � Nj , so that I beomes a direted set (an upper bound of Ni and Nj
is given by Ni XNj). The family tGiuiPI is then a inverse system. The anonial maps πi : GÑ Gi indue

a anonial morphism ψ : GÑ lim
�Ý

I

Gi. Its kernel is
�

I

Ni � t1u (sine tNiuiPI is a basis of neighborhoods of

1), so ψ is injetive. A sub-basis of neighborhoods of 1 in

±

I

Gi is given by US �
±

iPIzS

Gi �
±

iPS

t1u, where S

runs through the �nite subsets of I. As ψ�1
pUSq �

�

iPS

Ni is open, the map ψ is ontinuous. In partiular,

as G is ompat, ψpGq is ompat hene losed inside lim
�Ý

I

Gi. In fat, ψ is surjetive, beause ψpGq is dense

in lim
�Ý

I

Gi. Indeed, let g � pgiqiPI P lim
�Ý

I

Gi and S a �nite subset of I; let k P I be suh that Nk �
�

iPS

Ni, and

g P G a lift of gk P Gk � G{Nk. Then gi � g mod Ni for all i P S, so ψpgq P gpUS X ψplim
�Ý

I

Giqq. As ψ is a

ontinuous and G is ompat, it maps losed subsets to losed subsets: it is open. This shows that ψ is an

isomorphism and a homeomorphism. �

Remark 1.11.22. If G is any group, its pro�nite ompletion is the natural map GÑ lim
�Ý

NEG
rG:Ns 8

G{N . In the

previous proof, we have seen that G is pro�nite if and only if this is an isomorphism and a homeomorphism.

Example 1.11.23. (1) If p is a prime number, Zp :� lim
�Ý

nPN
¡0

Z {pn Z.

(2) If we endow N
¡0 with the order given by n ¤ m � n | m, then tZ {nZunPN

¡0
is an inverse system,

whose inverse limit is denoted by

pZ. This is the pro�nite ompletion of Z.

Remark 1.11.24. The maps Z Ñ Zp and Z Ñ

pZ are injetive, but are not isomorphisms: their image is

only dense (beause Z {pn ZÑ Zp {p
nZp and Z {nZÑ pZ{npZ are isomorphisms for all n P N

¡0).

Example 1.11.25. The natural map

pZ
�

Ñ

±

pPP

Zp is an isomorphism and a homeomorphism. This follows

from the Chinese remainder theorem.

1.11.26. Completion of a ring with respet to an ideal. Referenes for this setion are [17, �8℄ and [21, II

�5℄. Let I � A be an ideal.

De�nition 1.11.27. Let M be an A-module.

(1) The I-adi topology on M is the topology for whih tInMunPZ
¡0

is a basis of neighborhoods of 0.

(2) The I-adi ompletion of M is

xM � lim
�Ý

nPZ
¡0

M{InM . The A-module M is I-adially omplete when the

natural map M Ñ

xM is bijetive.

Remark 1.11.28. (1) The I-adi topology on M is separated if and only if

8

�

n�1

InM � t0u.

(2) The addition M �M Ñ M and the multipliation A �M Ñ M are ontinuous

(21)

. In partiular, the

ring operations are ontinuous on A for the I-adi topology.

(3) Eah InM is open in M , hene also losed sine its omplement in M is the open

�

mRInM

pm � InMq:

the quotient module M{InM is disrete.

(21)

If x, x1, y, y1 P M are suh that x� x1, y � y1 P InM , then px � yq � px1 � y1q P InM ; moreover, if a, a1 P A are suh that

a � a1 P In, then ax� a1x1 � apx� x1q � pa � a1qx1 P InM .
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(4)

xM is an

pA-module.

(5) If f : M1 ÑM2 is an A-linear map, then fpInM1q � InM2, so f indues a map M1{I
nM1 ÑM2{I

nM2

for all n P Z
¡0, hene a map

pf : xM1 Ñ
xM2 between the I-adi ompletions.

(6) In general,

xM is I-adially separated, but if n P Z
¡0, the natural map M{InM Ñ

xM{InxM may not be

an isomorphism, and the map

xM Ñ

x

xM not an isomorphism, i.e.

xM may not be omplete for the I-adi

topology.

Lemma 1.11.29. Let A be a ring, m � A a maximal ideal. Denote by

pA (resp.

xAm) the ompletion of

A (resp. Am) with respet to the m-adi (resp. mAm-adi) topology. The natural map

pA Ñ

xAm is an

isomorphism.

Proof. Let n P Z
¡0. As loalization is an exat funtor, we have Am{m

nAm � S�1
pA{mnq where S denotes

the image of S � Azm in A{mn. If x P S , the image of x in A{m is nonzero, hene invertible sine m is

maximal: there exists y P A{mn suh that xy � 1 mod m{mn, so that xy � 1 is nilpotent. This implies

that xy hene x is invertible in A{mn. In partiular, the map A{mn Ñ Am{m
nAm indued by A Ñ Am is

an isomorphism for all n P Z
¡0: passing to the limit, the map

pAÑ

xAm is an isomorphism. �

Example 1.11.30. Assume m1, . . . ,mr are pairwise distint maximal ideals in A and e1, . . . , er P Z
¡0. Put

I � me11 � � �merr . Denote by

pAmi
the ompletion of the loal ring Ami

with respet to the miAmi
-topology.

The natural map

pAÑ

r
à

i�1

pAmi

is an isomorphism. Indeed, for all n P Z
¡0, the natural map

A{InAÑ

r
à

i�1

A{mneii

is an isomorphism (by the Chinese remainder theorem, f 1.1.14). Passing to inverse limits provides an

isomorphism

pAÑ

r
À

i�1

lim
�Ý

n

A{mneii : we onlude by lemma 1.11.29.

Lemma 1.11.31. An A-module M is separated and omplete for the I-adi topology if and only if Cauhy

sequenes in M onverge.

Proof. The A-module M is separated and omplete if and only if for any sequene pmkqkPZ
¡0

suh that

p�k P Z
¡0qmk�1 � mk P I

kM , there exists a unique m P M suh that p�k P Z
¡0qmk � m mod IkM .

This ertainly holds if Cauhy sequenes onverge. Conversely, assume that M is separated and omplete

and let pxiqiPZ
¡0

be a Cauhy sequene in M . If k P Z
¡0, there exists ϕpkq P Z

¡0 suh that i, j ¥ ϕpkq ñ

xi � xj P I
kM . We an assume that the map ϕ is stritly inreasing. Put mk � xϕpkq P M : we have

mk�1 �mk P I
kM for all k P Z

¡0, so there is a m P M suh that mk � m mod IkM for all k P Z
¡0. If

i ¥ ϕpkq, we have thus xi �mϕpkq,mϕpkq �m P IkM , whene xi � m mod IkM , showing that pxiqiPZ
¡0

onverges to m. �

Corollary 1.11.32. If M is an A-module whih is separated and omplete for the I-adi topology, then a

series

8

°

n�0

mn onverges in M if and only if its general term mn tends towards 0.

Theorem 1.11.33. (Hensel's lemma). Let A be a loal ring, m � A its maximal ideal and k � A{m its

residue �eld. Assume that A is m-adially separated and omplete, and let F P ArXs be a moni polynomial.

Assume there are moni polynomials g, h P krXs suh that gcdpg, hq � 1 and gh � F , where F is the image

of F in krXs. Then there exist moni polynomials F,G P ArXs suh that F � GH , and whose images in

krXs are g and h respetively.

Proof. Note that the assumption imply that degpgq � degphq � d :� degpP q. Let i P t0, . . . , d � 1u. As

gcdpg, hq � 1, there exist ui, vi P krXs suh that gui � hvi � X i
. Replaing ui by its remainder modulo h

and vi by its remainder modulo g, we may further assume

(22)

that degpuiq   degphq and degpviq   degpgq.

Choose lifts Ui, Vi P ArXs of ui and vi respetively suh that degpUiq � degpuiq and degpViq � degpviq.

(22)

Let indeed rui and rvi be these remainders: we have ui � rui � hδi with δi P krXs, so that gprui � hδiq � hvi � Xi
, i.e.

grui � hpvi � gδiq � Xi
. This implies that degphpvi � gδiqq � degpgrui � Xi

q   d, thus degpvi � gδiq   degpgq, i.e.

vi � gδi � rvi, and grui � hrvi � Xi
.
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Let G1, H1 P ArXs be moni lifts of g and h respetively (so that G1 � g and H 1 � h). We onstrut by

indution moni polynomials Gn, Hn P ArXs suh that

(�)

$

'

&

'

%

GnHn � P mod mnrXs

Gn�1 � Gn mod mnrXs

Hn�1 � Hn mod mnrXs

for all n P Z
¡0. Let n P Z¡0 be suh that tGiu1¤i¤n and tHiu1¤i¤n have been onstruted. Conditions (�)

imply that Gn � g and Hn � h, and that

(23) degpGnq � degpgq and degpHnq � degphq. This implies in

partiular that degpGnUi�HnViq   d and that GnUi�HnVi � X i mod mrXs. Write P�GnHn �

d�1
°

i�0

αiX
i

with α0, . . . , αd�1 P mn: we have P �GnHn �

d�1
°

i�0

αipGnUi �HnViq mod mn�1
rXs. Put

$

'

'

&

'

'

%

Gn�1 � Gn �
d�1
°

i�0

αiVi

Hn�1 � Hn �

d�1
°

i�0

αiUi

so that Gn�1 � Gn mod mnrXs and Hn�1 � Hn mod mnrXs. We have

Gn�1Hn�1 � GnHn �

d�1̧

i�0

αipGnUi �HnViq mod m2n
rXs

� P mod mn�1
rXs

(as n � 1 ¤ 2n), whih ompletes the onstrution of the sequenes pGnqnPZ
¡0

and pHnqnPZ
¡0
. As A is

separated and omplete for the m-adi topology, these sequenes onverge in ArXs (note that both are given

by d sequenes of oe�ients): denote by G and H their limits. By onstrution we have F � GH . �

From now on, A is assumed to be noetherian.

Notation.  Put A �

8

À

n�0

In: this is naturally an A-algebra (the produt of x in the fator In with y in the

fator Im is xy in the fator In�m). As I is of �nite type, so is A as an A-algebra: it is noetherian.

 More generally, let M be an A-module endowed with a dereasing �ltration, i.e. a dereasing sequene

of sub-A-modules pMnqnPZ
¥0

suh that IMn � Mn�1 for all n P Z
¥0. The assoiated graded group is

M �

8

À

n�0

Mn. It is naturally endowed with an A-module struture (the produt of a in the fator In with

m in the fator Mm is am in the fator Mn�m).

Lemma 1.11.34. Assume M is of �nite type over A. The following properties are equivalent:

(i) Mn�1 � IMn for n su�iently large;

(ii) there exists c P Z
¥0 suh that Mn�c � InMc for all n P Z

¥0;

(iii) M is a �nitely generated A-module.

Proof. (i)�(ii) is trivial. If (ii) holds then M is generated by

c
°

i�0

Mi, so that we have (iii). Conversely,

assume (iii): the A-moduleM an be generated by �nitely many elements x1, . . . , xr , with xi homogeneous,

i.e. belonging to some fator Mni
�M for i P t1, . . . , ru. Then Mn�1 � IMn for all n ¥ c :� max

1¤i¤r
ni. �

Theorem 1.11.35. (Artin-Rees lemma). LetM be an A-module of �nite type. If N �M is a submodule,

there exists c P Z
¥0 suh that for every n P Z

¥0, we have I
n�cM XN � InpIcM XNq for all n P Z

¥0.

Proof. For n P Z
¥0, put Mn � InM and Nn � Mn X N : we have N � M . As A is noetherian and M

�nitely generated as an A-module (by lemma 1.11.34), so is N : by lemma 1.11.34 again, there exists c P Z
¥0

suh that Nn�c � InNc i.e. I
n�cM XN � InpIcM XNq. �

Remark 1.11.36. This theorem essentially says that the I-adi topology on N oinides with the topology

indued on N by the I-adi topology on M .

Corollary 1.11.37. Let 0 Ñ M 1

Ñ M Ñ M2

Ñ 0 be an exat sequene of A-modules of �nite type. The

sequene 0Ñ xM 1

Ñ

xM Ñ

xM2

Ñ 0 is exat.

(23)

The degree of a moni polynomial is equal to that of its redution modulo m.
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Proof. By right exatness of the tensor produt (f proposition 1.7.5), the sequene

M 1

{InM 1

ÑM{InM ÑM2

{InM2

Ñ 0

is exat (reall that M{InM � M bA pA{I
n
q) for all n P Z

¥0. On the other hand, there exists c P Z
¥0

suh that InM XM 1

� In�cpIcM XM 1

q for integers n ¥ c (Artin-Rees lemma, f theorem 1.11.35). This

implies that for n P Z
¥c, we have

InM 1

� InM XM 1

� In�cpIcM XM 1

q � In�cM 1

and the sequene

0ÑM 1

{pIn�cpIcM XM 1

qq ÑM{InM ÑM2

{InM2

Ñ 0

is exat. This gives an exat sequene of inverse systems. The inverse system pM 1

{pIn�cpIcM XM 1

qqqnPZ
¡0

has the Mittag-Le�er property (the transition maps are surjetive): by proposition 1.11.16, the sequene

0Ñ lim
�Ý

n

M 1

{pIn�cpIcM XM 1

qq Ñ

xM Ñ

xM2

Ñ 0

is exat. Moreover, the surjetive maps

M 1

{InM 1

ÑM 1

{pIn�cpIcM XM 1

qq ÑM 1

{InM 1

provide surjetive maps

xM 1

Ñ lim
�Ý

n

M 1

{pIn�cpIcM XM 1

qq Ñ

xM 1

(here again the surjetivity follows from

the Mittag-Le�er ondition satis�ed by the kernels of these maps), whose omposite is the identity: we

have lim
�Ý

n

M 1

{pIn�cpIcM XM 1

qq

�

Ñ

xM 1

hene the result. �

Corollary 1.11.38. Let M be an A-module of �nite type. Then

pAbAM
�

Ñ

xM .

Proof. This is obvious when M is free. In the general ase, let L1 Ñ L0 Ñ M Ñ 0 be an exat sequene

where L0 and L1 are free of �nite rank (suh a sequene exists sine M in of �nite type and A noetherian).

The exatness of ompletion on short exat sequenes of A-modules of �nite type imply that the sequene

pL1 Ñ
pL0 Ñ

xM Ñ 0 is exat. We thus have the following ommutative diagram with exat rows

pAbA L1
//

φ1 ��

pAbA L0
//

φ0 ��

pAbAM //

φ ��

0

pL1
// pL0

// xM // 0

As φ0 and φ1 are isomorphisms, so is φ. �

Corollary 1.11.39.

pA is �at over A.

Proof. This follows from orollaries 1.11.37 and 1.11.38. �

1.12. Exerises. The following two exerises show that the ring Z
�

1�i
?

19
2

�

is not eulidean, though a PID.

Exerise 1.12.1. Put A � Zrζs where ζ2 � ζ � 5 � 0. We denote by N the norm of the number �eld Qrζs.

(1) Compute Npx� yζq for x, y P Q an determine Zrζs�.

(2) Let a, b P Zrζszt0u. Show that there exist q, r P Zrζs suh that: (r � 0 or Nprq   Npbq) and (a � bq� r

or 2a � bq � r).

(3) Show that the ideal 2Zrζs is maximal in A.

(4) Show that A is a PID.

Exerise 1.12.2. Let A be an integral domain whih is not a �eld. We onstrut (by indution on n P Z
¥0)

a sequene of subsets of A by: A0 � t0u and An�1 � An Y tx P A ; A � xA � Anu for all n P Z
¥0. For

x P
8

�

n�0

An, we put φpxq � inftn P Z
¥0 ; x P Anu.

(1) Assume that A �

8

�

n�0

An. Show that A eulidean for the eulidean funtion φ.

(2) Assume that A is eulidean for a eulidean funtion ψ : Azt0u Ñ Z
¡0. Show that:

(i) φpxq ¤ ψpxq for all x P
�

nPN

An;

(ii) A �

8

�

n�0

An [Hint: redutio ad absurdum using (i));

(iii) A is eulidean for the eulidean funtion φ;

(iv) if a divides b in A, then φpaq ¤ φpbq;
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(v) there exists x P AzA� suh that the restrition of the projetion AÑ A{xA to A�Yt0u is surjetive.

(3) Determine φ in the following ases: A � Z and A � krXs (where k is a �eld).

(4) Let A � Zrζs � C where ζ2 � ζ � 5 � 0.

(i) Show that the equation z2 � z � 5 � 0 has no solution in F2 nor in F3.

(ii) Dedue that A is not eulidean [Hint: redutio ad absurdum using (2-v)℄.

Exerise 1.12.3. Let A be a domain.

(1) Show that if A is a UFD if and only if non-zero elements an be fatored into a produt of irreduible

elements, and irreduible elements are prime in A.

(2) Show that if A is noetherian, non-zero elements an be fatored into a produt of irreduible elements.

(3) Give an example of non noetherian UFD.

Exerise 1.12.4. Let A be a UFD, and S � A a multipliative part. Show that S�1A is a UFD.

Exerise 1.12.5. Let A be a domain and f, g P A suh that A
�

1
f

�

X A
�

1
g

�

� A � FracpAq. Show that the

map ArXs Ñ A
�

f
g

�

;P ÞÑ P
�

f
g

�

(resp. A
�

X, 1
X

�

Ñ A
�

f
g
, g
f

�

;P ÞÑ P
�

f
g

�

) is surjetive, with kernel xgX � fy

(resp.

�

gX � f, f
X
� g

D

).

Exerise 1.12.6. Let A be a ring, M an A-module of �nite type and ϕ : M Ñ An a surjetive morphism.

Show that M � N `Kerpϕq, where N is a submodule of M isomorphi to An through ϕ. Show that Kerpϕq

is of �nite type.

Exerise 1.12.7. Let A be an integral domain and M an A-module. Assume that M an be generated by

n elements, and ontains a submodule whih is free of rank n. Show that M is free of rank n.

Exerise 1.12.8. (1) Let L{K is a �nite Galois extension with group G. Show that the natural map

LbK LÑ
à

σPG

L

xb y ÞÑ pxσpyqqσPG

is an isomorphism of L-algebras (for the left struture on the LHS, and the omponentwise on the RHS).

(2) More generally, let L{K be a �nite separable extension, and F {K be any extension. Show that LbK F

is isomorphi, as an F -algebra, to a �nite produt of separable extensions of F .

(3) Is it still true when L{K is not assumed to be separable?

Exerise 1.12.9. (Nakayama's lemma). Let A be a ring, I � A an ideal and M an A-module of �nite

type suh that IM �M .

(1) Show that there exists an element a P A suh that a � 1 mod I and aM � t0u.

(2) Dedue that if I � radpAq, then M � t0u.

(3) Assume that A is loal and denote by k its residue �eld. Show that if k bAM � t0u, then M � t0u.

(4) Give a ounter-example of (3) when M is not assumed to be of �nite type.

Exerise 1.12.10. (Nakayama's lemma, ontinuation). Assume that A is loal, with residue �eld k,

and let M be an A-module of �nite type, N an A-module.

(1) If N is of �nite type over A and M bA N � t0u, show that M � t0u or N � t0u.

(2) Let f : N ÑM be an A-linear map suh that Idk bf : k bA N Ñ k bAM is surjetive. Show that f is

surjetive.

Exerise 1.12.11. Let A be a ring and I � A be an ideal of �nite type suh that I2 � I. Show that I is

generated by an element e P I suh that e2 � e.

Exerise 1.12.12. Let A be a ring, M an A-module of �nite type and f P EndApMq a surjetive endomor-

phism. Show that f is injetive.
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Exerise 1.12.13. Let A be a ring. Show the following:

(i) if An � Am then n � m;

(ii) if there exists a surjetive A-linear map An Ñ Am then n ¥ m;

(iii) [di�ult℄ if there exists an injetive A-linear map An Ñ Am, then n ¤ m.

Exerise 1.12.14. Let A be a domain andM an torsion-free A-module. Let Σ be a set of maps σ : M ÑM ,

eah of whih is semi-linear with respet to a ring endomorphism σ of A, i.e. suh that σpamq � σpaqσpmq

for all a P A and m PM . If FracpAqΣ � AΣ
, show that the natural map α : B bBΣ MΣ

ÑM is injetive.

Exerise 1.12.15. Let A be a ring. An A-module P is projetive if the funtor HomApP, .q is exat, i.e.

whenever a sequene

0ÑM 1

ÑM ÑM2

Ñ 0

is exat, so is the sequene

0Ñ HomApP,M
1

q Ñ HomApP,Mq Ñ HomApP,M
2

q Ñ 0.

(1) Show that a free module is projetive.

(2) Show that an A-module is projetive if and only if it is a diret fator of a free module.

De�nition 1.12.16. Let A be a ring. An A-module M is of �nite presentation if there exists an exat

sequene

L1 Ñ LÑM Ñ 0

where L,L1 are free A-modules of �nite rank, i.e. if there exists a surjetive A-linear map u : LÑM suh

that L is free of �nite rank and Kerpuq of �nite type. Being of �nite presentation implies being of �nite

type, but the onverse is false in general. It holds true when A is noetherian.

Exerise 1.12.17. (Snake lemma). Let A be a ommutative ring.

(1) Assume there is a ommutative diagram of A-modules

M 1

a //

u

��

M
b //

v

��

M2 //

w

��

0

0 // N 1

c // N
d // N2

with exat rows. Show that there is an exat sequene of A-modules

Kerpuq
a
ÝÑ Kerpvq

b
ÝÑ Kerpwq

δ
ÝÑ Cokerpuq

b
ÝÑ Cokerpvq

d
ÝÑ Cokerpwq.

(2) Let 0 Ñ M 1

Ñ M Ñ M2

Ñ 0 be an exat sequene of A-modules with M of �nite type and M2

of

�nite presentation. Show that M 1

is of �nite type.

Exerise 1.12.18. Let A be a loal ring, with maximal ideal m and residue �eld k � A{m.

(1) Let 0ÑM 1

ÑM Ñ M2

Ñ 0 be an exat sequene of A-modules with M2

�at over A. Show that the

sequene 0Ñ k bAM
1

Ñ k bAM Ñ k bAM
2

Ñ 0 is exat.

(2) Let M be an A-module. Show that the following are equivalent:

(i) M is �at of �nite presentation;

(ii) M is free of �nite rank.

(in partiular, when A is noetherian, then M is free of �nite rank if and only if it is �at of �nite type).

(3) Dedue that an A-module is projetive of �nite type if and only if it is free of �nite rank.

Exerise 1.12.19. Let A be a ring and M an A-module. Show that the following are equivalent:

(i) M is projetive of �nite type over A;

(ii) M is �at and �nitely presented over A.

Exerise 1.12.20. Let A be a loal ring with maximal ideal m and k � A{m its residue �eld. Let u : M Ñ N

be an A-linear map suh that M is of �nite type, N is projetive, and kbu : kbAM Ñ kbAN is injetive.

(1) Show that M is free of �nite rank.

(2) Show that u is left invertible (i.e. there exists an A-linear map v : N ÑM suh that v � u � IdM ).
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Exerise 1.12.21. Let R be a ring, M � RZ
¡0

and A � EndRpMq: this is a nonommutative ring. Use the

maps

ϕ1 : M ÑM ; px1, x2, . . .q ÞÑ px1, x3, x5, . . .q

ϕ2 : M ÑM ; px1, x2, . . .q ÞÑ px2, x4, x6, . . .q

ψ1 : M ÑM ; px1, x2, . . .q ÞÑ px1, 0, x2, 0, . . .q

ψ2 : M ÑM ; px1, x2, . . .q ÞÑ p0, x1, 0, x2, . . .q

to show that A2
� A (as left A-modules), so that the rank of a free module is not well de�ned in the non

ommutative setting.

Exerise 1.12.22. Let K be a �eld and A the sub-K-algebra of KrX,Y s generated by tXkY k�1
ukPZ

¥0
.

Show that ArXY s is inluded in a sub-A-module of KrX,Y s of �nite type, but that XY is not integral over

A.

Exerise 1.12.23. Let A � B be a ring extension with A noetherian, x P B�

, and y P Arxs X Arx�1
s.

Show that there exists n P Z
¥0 suh that the sub-A-module M � A�Ax� � � � �Axn � B is stable under

multipliation by y, and that y is integral over A.

Exerise 1.12.24. Let A be a domain and α P Azt0u. Assume that A{αA is redued and that Arα�1
s is

integrally losed. Show that A is integrally losed.

Exerise 1.12.25. Let A Ñ B be an integral morphism of rings, p1 � p2 prime ideals in B suh that

p1 XA � p2 XA. Show that p1 � p2.

Exerise 1.12.26. Let A be a ring, A � B a �nitely generated integral extension, and p � A a prime ideal.

Show that B has only a �nite number of prime ideals lying over p.

Exerise 1.12.27. (1) Let pXn, ρnqnPZ
¥0

be an inverse system of �nite and non empty sets. Show that

X � lim
�Ý

n

Xn is non empty. [Hint: redue to the ase where the maps ρn are surjetive.℄

(2) Give an example of an inverse system (indexed by Z
¥0) of non empty sets whose inverse limit is empty.

Exerise 1.12.28. Prove that any ontinuous bijetion from one pro�nite group to another is a homeomor-

phism.

Exerise 1.12.29. Let G and H be pro�nite groups, and let f : G Ñ H be a ontinuous group homomor-

phism. Prove that Kerpfq is a losed normal subgroup of G, that fpGq is a losed subgroup of H , and that

f indues an isomorphism G{Kerpfq
�

Ñ fpGq of pro�nite groups (here G{Kerpfq has the quotient topology

indued by the topology on G, and fpGq has the relative topology indued by the topology on H .

Exerise 1.12.30. The pro�nite ompletion of a group G is the pro�nite group

pG � lim
�Ý

N

G{N , with N

ranging over the set of normal subgroups of G of �nite index in G, ordered by ontainment, the transition

maps being the natural ones.

(1) Prove that there is a natural group homomorphism ϕG : GÑ

pG, and that its image is dense in G. Find

a group G for whih it is not injetive.

(2) Prove that ϕG is an isomorphism if and only if G is pro�nite.

(3) What is the pro�nite ompletion of the additive group of Z?

Exerise 1.12.31. Let p be a prime number.

(1) Show that there is a group G whose pro�nite ompletion is isomorphi to the additive group Zp. Can

you �nd suh a G that is ountable?

(2) Let A be the produt of a ountably in�nite olletion of opies of Z {pZ. Is there a ountable group G

suh that A is isomorphi to the pro�nite ompletion of G?

Exerise 1.12.32. Show that for a pro�nite group G the following are equivalent:

(i) the topology of G is indued by a metri;



48 Number theory

(ii) G � lim
�Ý

n

Gn, with Gn �nite and Gn�1 Ñ Gn surjetive for all n P Z
¥0;

(iii) the number of open subgroups of G is ountable.

Show that the equivalent onditions (i)-(iii) imply that G ontains a ountable dense subset (soG is separable

as a topologial spae), and give an example showing that the onverse does not hold.

Exerise 1.12.33. Let p be a prime. Give examples of groups that are not separated for the p-adi topology.

Exerise 1.12.34. Let A be a topologial group. We say that A is pro�nite when the underlying abelian

group is pro�nite.

(1) Show that if A is pro�nite, then the natural map AÑ lim
�Ý

I

A{I is an isomorphism (where I runs through

the losed ideals of �nite index in A).

(2) Assume that A is noetherian, loal and that its topology is given by the powers if its maximal ideal.

Show that A is pro�nite if and only if its residue �eld is �nite.

Exerise 1.12.35. Find examples where Artin-Rees lemma's onlusion does not hold beause one of its

assumptions is not ful�lled [Hint: try A � QrX,Z, Y1, Y2, . . .s{xX�ZiYiyiPZ
¡0

for the non noetherian ase.℄

Exerise 1.12.36. Let A be a ring, I � A and f : N Ñ M a surjetive A-linear map. Show that the map

indued on the I-adi ompletions

pf : pN Ñ

xM is surjetive. Dedue that if M is an A-module of �nite type,

the natural map

pAbAM Ñ

xM is surjetive.

Exerise 1.12.37. Let A be a ring, α P A and M � N two A-modules. Assume that M is omplete and N

separated for the α-adi topology and that the indued map M Ñ N{αN is surjetive. Show that M � N .

Exerise 1.12.38. (1) Let A be a ring, α P A and N a torsion-free A-module whih is separated and

omplete for the α-adi topology. Let M � N be a sub-A-module: the inlusion extends into an A-linear

map f : xM Ñ N where

xM � lim
�Ý

n

M{αnM is the α-adi ompletion of M . Show that if αiN XM � αM for

some i P Z
¡0, then f is injetive [hint: show that αi�kN XM � αk�1M for all k P Z

¥0℄.

(2) Let p be a prime, A � Zp, N � ZprrXss and M � ZpppT q `
8

À

n�1

ZpppT
n�1

� T nq � N . Show that

x � pt� pppT 2
� T q � p2ppT 3

� T 2
q � � � � de�nes a non-zero element in

xM , whose image in N is zero.

Exerise 1.12.39. Let A be a ring, I � A an ideal and 0 Ñ M1 Ñ M2 Ñ M3 Ñ 0 an exat sequene

of A-modules. Assume M3 is annihilated by a power of I. Then ompletion produes an exat sequene

0Ñ xM1 Ñ
xM2 ÑM3 Ñ 0.

Exerise 1.12.40. Let A be a ring, I � A and M an A-module. Denote by

xM the I-adi ompletion of M .

(1) Show that

xM is I-adially separated.

(2) Show that the following are equivalent:

(i) the A-module

xM is I-adially omplete;

(ii) for all n P Z
¡0, the natural map M{InM Ñ

xM{InxM is surjetive;

(iii) for all n P Z
¡0, we have I

n
xM � Kerpπnq where πn : xM ÑM{InM is the anonial map.

(3) Let K be a �eld, A � KrXisiPZ
¡0

and I � xXiyiPZ
¡0
� A. Show that

pA is not I-adially omplete.

(4) Assume that I is �nitely generated. Show that InxM � KerpxM ÑM{InMq �

zInM for all n P Z
¥0 and

that

xM is I-adially omplete.

Exerise 1.12.41. Let A be ring, I � A an ideal and M an A-module.

(1) Show that if A is I-adially separated and omplete, then I � radpAq.

(2) Show that if M is I-adially separated and omplete and a P I, the multipliation by 1 � a is an

automorphism of M .
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Exerise 1.12.42. (Completion is not an exat funtor.) Let K be a �eld, A � KrXs,M � ApZ¡0q

and C �

8

À

n�1

A{XnA. Show that the ompletion for the X-adi topology of the natural exat sequene

0ÑM ÑM Ñ C Ñ 0 is not exat.

Exerise 1.12.43. (Formal Nakayama's lemma). Let A be a ring, I � A an ideal suh that A is

I-adially separated and omplete, and M an A-module of �nite type.

(1) Show that if M � IM , then M � t0u.

(2) Assume that f : M 1

ÑM is an A-linear map suh that fbpA{Iq is surjetive. Show that f is surjetive.

Exerise 1.12.44. Let A be a ring, I � A an ideal and M an A-module. Assume that A is I-adially

separated and omplete, and thatM is separated for the I-adi topology. Assume there are m1, . . . ,mr PM

whose images m1, . . . ,mr PM{IM generate M{IM . Show that m1, . . . ,mr generate the A-module M .

Exerise 1.12.45. Let A be a noetherian loal ring, with maximal ideal m and residue �eld k � A{m. Show

that the m-adi ompletion

pA of A is a loal ring with maximal ideal m pA, and residue �eld k.

Exerise 1.12.46. Let A be a DVR, m its maximal ideal, and

pA the m-adi ompletion of A. Show that

pA

is a DVR.

Exerise 1.12.47. Let A be a omplete DVR with uniformizer π and M an A-module. Let K � FracpAq

and k � A{πA the residue �eld. Put MK :� K bA M and Mk � K bA M . Assume that M is �at (i.e.

torsion-free) and that dimKpMKq � dimkpMkq   �8. Show that M is free of �nite rank over A. Give a

ounter-example without the �atness assumption.

Exerise 1.12.48. (Krull intersetion theorem). Let A be a noetherian ring and I � A an ideal.

(1) Let M be an A-module of �nite type and N �

8

�

n�0

InM . Then there exists a P A suh that a � 1

mod I and aN � 0.

(2) If I � radpAq, then any A-module of �nite type is I-adially separated, and its submodules are all losed.

(3) If A is a domain and I a proper ideal, then

8

�

n�0

In � t0u.

Exerise 1.12.49. Let A be a noetherian ring and I � xξ1, . . . , ξny be an ideal. Let

pA be the I-adi

ompletion of A. Then there is a isomorphism

ArrX1, . . . , Xnss{xX1 � ξ1, . . . , Xn � ξny
�

Ñ

pA

that maps Xi to ξi for all i P t1, . . . , nu.

Exerise 1.12.50. Let A be a noetherian ring and I, J � A ideals. Assume that A is both I-adially and

J-adially separated and omplete. Show that A is I � J-adially separated and omplete.

Exerise 1.12.51. Let A be a noetherian ring and J � I � A ideals suh that A is I-adially separated and

omplete. Show that A is also J-adially separated and omplete.

Exerise 1.12.52. Let A be a ring, I � xf1, . . . , fry � A a �nitely generated ideal, M an A-module and

xM

its I-adi ompletion.

(1) Show that if M Ñ lim
�Ý

n

M{fni M is surjetive for eah i P t1, . . . , ru, then M Ñ

xM is surjetive.

(2) Let J � A be an ideal suh that I � J . Show that if M is J-adially omplete, then M is I-adially

omplete.

Exerise 1.12.53. (1) Let g P Z
¡1, and de�ne Zg � lim

�Ý

n

Z {gnZ. Prove that Zg is a pro�nite group

isomorphi to

±

p|g

Zp, the produt ranging over the primes p dividing g.

(2) Prove that

pZ �

±

p

Zp, the produt ranging over all primes p.
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Exerise 1.12.54. (1) Prove that eah a P pZ has a unique representation as a �
8

°

n�1

cnn!, with cn P t0, . . . , nu

for all n P Z
¡0. Give this representation for a � �1.

(2) Let b P Z
¥0, and de�ne the sequene panqnPZ

¥0
of non-negative integers by a0 � b and an�1 � 2an .

Prove that panqnPZ
¥0

onverges in

pZ and that the limit is independent of the hoie of b.

(3) Let a � lim
nÑ8

an be the limit of the sequene in (2), and write a �
8

°

n�1

cnn!. Determine cn for 1 ¤ n ¤ 10.

Exerise 1.12.55. Show that

pZ � EndpQ {Zq and pZ
�

� AutpQ {Zq.

Exerise 1.12.56. (1) Prove that for every positive integer n the natural map Z {nZ Ñ

pZ{npZ is an

isomorphism.

(2) Prove that there is a bijetion from the set of positive integers to the set of open subgroups of

pZ mapping

n to npZ.

(3) Can you lassify all losed subgroups of

pZ?

Exerise 1.12.57. Let p be a prime number and view Zp � lim
�Ý

n

Z {pnZ as a losed subset of A �

8

±

n�1

Z {pnZ.

(1) Prove that A{Zp � A as pro�nite groups.

(2) Prove that A and Zp�pA{Zpq are isomorphi as groups, but not as pro�nite groups.

Exerise 1.12.58. Prove that

pZ
�

�

pZ�
8

±

n�1

Z {nZ as pro�nite groups.
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2. Dedekind rings

2.1. De�nition, �rst properties.

De�nition 2.1.1. Assume that A is an integral domain. We say that A is a Dedekind ring if:

(0) A is not a �eld;

(1) A is noetherian;

(2) A is integrally losed;

(3) nonzero prime ideals of A are maximal.

Proposition 2.1.2. PID that are not �elds are Dedekind rings.

Proof. If A is a PID, it is an integral domain and noetherian by de�nition. It is integrally losed by

proposition 1.9.10. Its nonzero prime ideals are maximal by proposition 1.1.30. �

Theorem 2.1.3. Let A be a Dedekind ring, K its fration �eld, L{K a �nite separable �eld extension, and

B the integral losure of A in L. Then B is a Dedekind ring.

Proof. The ring A is noetherian: by orollary 1.10.39 (1), the ring B is noetherian. It is integrally losed

by proposition 1.9.12. Finally, if P � B is a nonzero prime ideal, the ideal p � PXA is prime and nonzero

(it ontains NL{Kpbq � 0 for all b P Pzt0u), hene maximal. This implies that P is maximal (f proposition

1.9.19). �

Corollary 2.1.4. The ring of integers of a number �eld is a Dedekind ring.

2.2. Loal haraterization of Dedekind rings.

Proposition 2.2.1. Let A be a Dedekind ring and S � A a mulipliative part. Then S�1A is a �eld or a

Dedekind ring.

Proof. The ring S�1A is noetherian by orollary 1.8.13. As A is integrally losed, so is S�1A by proposition

1.9.13. Also, proposition 1.8.14 provides an inreasing bijetion (for inlusion)

tp P SpecpAq ; pX S � ∅u Ø SpecpS�1Aq

p ÞÑ S�1p

qXA :� ι�1
pqq �ß q

As nonzero elements in SpecpAq are maximal, so are nonzero elements in SpecpS�1Aq. �

Lemma 2.2.2. A loal Dedekind ring is a DVR.

Proof. Assume that A is a loal Dedekind ring: we have to show that A is a PID (f de�nition 1.8.25). As

A is not a �eld: its maximal ideal m is nonzero, so SpecpAq � tp0q,mu.

 Let α P mzt0u. We �rst show that there exists r P Z
¡0 suh that mr � αA. As A is noetherian, the ideal

m is of �nite type: there exists f1, . . . , fn P Azt0u suh that m �

n
°

i�1

fiA. Let i P t1, . . . , nu. By proposition

1.8.14, we have SpecpA
pfiqq � tp P SpecpAq ; fi R pu � tp0qu, hene A

pfiq is a �eld (thus A
pfiq � FracpAq).

The element α is thus invertible in A
pfiq: there exists ri P Z

¥0 and ai P A suh that

1
α
�

ai
f
ri
i

. We have of

ourse ri ¡ 0 (beause α R A� sine α P m), and f rii P αA. If r � r1 � � � � � rn P Z
¡0, we have indeed

mr � pf1A� � � � � fnAq
r
� f r11 A� � � � � f rnn A � αA.

 Next we show that m is prinipal. Let α P mzt0u and r P Z
¡0 minimal suh that mr � αA. We have

mr�1
� αA: take β P mr�1

zαA and let π � α
β
P FracpAq. we have

π�1m �

β
α
m � α�1mr � A

and π�1m is an ideal of A. If this ideal was not the unit ideal, we would have π�1m � m, implying that

π�1
is integral over A (f proposition 1.9.3 (iii)ñ (i)). As A is integrally losed, this would imply π�1

P A

i.e. β P αA whih is not: we neessarily have π�1m � A, so that m � πA is prinipal.

 Now let I � A be any strit nonzero ideal: we have I � m. Let α P Izt0u: we have α P mzt0u. By what

preedes, there exists r P Z
¡0 suh that mr � αA � I. If we had I � mr�1

, this would imply πr P πr�1A,

i.e. 1 P πA � m whih is absurd. The set tn P Z
¥0 ; I � mnu is thus bounded above. As it is nonempty (it

ontains 1), it has a greatest element nI . We have I � πnIA i.e. π�nI I � A is an ideal of A, but π�nI I � m

(otherwise I � mnI�1
), thus π�nI I � A, i.e. I � πnIA. �
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Theorem 2.2.3. Let A be a noetherian integral domain whih is not a �eld. Then A is a Dedekind ring if

and only if for all maximal ideal m � A, the loalization Am is a DVR.

Proof. If A is a Dedekind ring and m � A a maximal ideal, the loalization Am is a loal Dedekind ring (by

proposition 2.2.1). As A is not a �eld, m is nonzero, and Am is not a �eld: this implies that Am is a DVR

(lemma 2.2.2).

Conversely, assume that for all maximal ideal m � A, the loalization Am is a DVR.

Let x P K � FracpAq be integral over A. Write x � a
b
with a, b P A and b � 0. For every maximal ideal

m � A, the element x is a fortiori integral over Am. As the latter is a Dedekind ring, we have x P Am, i.e.

aAm � bAm. By the loal-global priniple (proposition 1.8.22), this implies aA � bA, i.e. x P A, proving

that A is integrally losed.

Let p � A be a nonzero prime ideal. By Krull's theorem (theorem 1.1.7), there exists a maximal ideal m � A

suh that p � m. By proposition 1.8.14, the ideal pAm is prime in Am. Being nonzero by assumption, it is

maximal, i.e. pAm � mAm, whih implies that p � m (thanks to proposition 1.8.22), and p is maximal. �

2.3. Fatorization of ideals, lass group. Theorem 2.2.3 implies that Dedekind rings are loally PIDs,

hene loally UFDs. Nevertheless, there are Dedekind rings that are not UFDs.

Example 2.3.1. Let K � Qpi
?

5q: we have OK � Zri
?

5s. Assume 2 � xy with x, y P OK : write

x � a� ib
?

5 and y � c� id
?

5. We have NK{Qp2q � NK{QpxqNK{Qpyq i.e. 4 � pa2�5b2qpc2�5d2q, whih

implies b � d � 0 whene x, y P Z, i.e. x P t�1u or y P t�1u. The element 2 is thus irreduible in OK . On

the other hand, we have p1 � i
?

5qp1 � i
?

5q � 6 P 2OK but 1 � i
?

5, 1 � i
?

5 R 2OK , i.e. 2 is not prime.

This implies that OK (whih is a Dedekind ring) is not a UFD (f proposition 1.1.21).

As we will see, Dedekind rings have nevertheless a unique fatorization property, not for nonzero elements

into a produt of prime elements, but for nonzero ideals into a produt of prime ideals.

Lemma 2.3.2. Let A be a noetherian ring and I � A a nonzero ideal.

(1) The ideal I ontains a produt p1 � � � pn of nonzero prime ideals (non neessarily distint).

(2) If A is a Dedekind ring, there are only �nitely many maximal ideals of A that ontain I.

Proof. (1) We use a noetherian indution: let E be the set of nonzero ideals in A that do not ontain a

�nite produt of nonzero prime ideals. Assume E � ∅: as A is noetherian, it admits an element I whih is

maximal for the inlusion (f proposition 1.3.1 (1)). We have of ourse I � A (beause A ontains at least

a prime ideal by Krull's theorem, f theorem 1.1.7), and I itself is not prime: there exists x, y R I suh that

xy P I. The ideals I�xA and I�yA stritly ontain I: by maximality of I in E , we have I�xA, I�yA R E ,

whih implies the existene of p1, . . . , pn and q1, . . . , qm nonzero prime ideals suh that p1 � � � pn � I � xA

and q1 � � � qm � I � yA. We have then

p1 � � � pnq1 � � � qm � pI � xAqpI � yAq � I

ontraditing I P E . It follows that E is empty.

(2) By (1), there exists p1 � � � pn nonzero prime ideals (hene maximal sine A is a Dedekind ring) suh that

p1 � � � pn � I. If m is a maximal ideal in A suh that I � m, we have a fortiori p1 � � � pn � m. If pi � m for all

i P t1, . . . , nu, there exists ai P pizm, and a1 � � � an P p1 � � � pnzm whih is absurd: there exists i P t1, . . . , nu

suh that pi � m. �

Theorem 2.3.3. Let A a Dedekind ring and I � A a nonzero ideal. There exist pairwise distint nonzero

prime ideals p1, . . . , pn and integers α1, . . . , αn P Z
¡0 suh that

I � pα1

1 � � � pαn
n

This deomposition is unique up to the order of fators, and the set of nonzero prime ideals ontaining I is

preisely tp1, . . . , pnu.

Proof.  Let tp1, . . . , pnu be the set of prime ideals ontaining I (f lemma 2.3.2 (2)). For i P t1, . . . , nu,

the ring Api
is a DVR (f theorem 2.2.3). The ideal IApi

� Api
is strit: there exists αi P Z

¡0 suh that

IApi
� pαi

i Api
. Put J � pα1

1 � � � pαn
n . By onstrution, we have IApi

� JApi
for all i P t1, . . . , nu. On

the other hand, if m R tp1, . . . , pnu is a maximal ideal in A, we have IAm � Am � JAm. The loal-global

priniple (f proposition 1.8.22) implies that I � J .

 It remains to prove uniity up to the order. Assume that I � q
β1

1 � � � qβm
m where q1, . . . , qm are pairwise

distint nonzero prime ideals and β1, . . . , βm P Z
¡0. For i P t1, . . . , nu, we have q

β1

1 � � � qβm
m � pi: there

exists j P t1, . . . ,mu suh that pi � qj . This implies that tp1, . . . , pnu � tq1, . . . , qmu. Exhanging the

fatorizations, we have the reverse inlusion, i.e. tp1, . . . , pnu � tq1, . . . , qmu, hene m � n, and after
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runumbering, pi � qi for all i P t1, . . . , nu. Also, we have p
βi

i Api
� IApi

� pαi

i Api
, whih implies αi � βi

for all i P t1, . . . , nu. �

Remark 2.3.4. A way to formulate uniity is to say that the ideals p1, . . . , pn that appear in the fatorization

are exatly the nonzero prime ideals that ontain I (indeed its prime divisors), and that for all i P t1, . . . , nu,

the multipliity αi is the valuation of the ideal IApi
in the DVR Api

.

Example 2.3.5. With the notations of example 2.3.1, we have the isomorphism

ZrXs{xX2
� 5y

�

ÑOK

X ÞÑ i
?

5

It indues an isomorphism F2rXs{xp1�Xq
2
y

�

ÑOK{2OK : let p be the ideal generated by 2 and θ :� 1� i
?

5

(it is the image of the maximal ideal x1 � Xy of F2rXs{xp1� Xq2y by the preeding isomorphism). The

indued isomorphism is an isomorphism OK{p
�

ÑF2, so that p is maximal. On the other hand, the image

of p2 in OK{2OK is zero: we have p2 � 2OK � p. As 2OK is not prime, we have 2OK � p, showing that

2OK � p2.

De�nition 2.3.6. Let A an integral domain and K its fration �eld.

(1) A frational ideal is a sub-A-module I � K suh that there exists d P Azt0u with I � d�1A.

(2) Operations on frational ideals. Let I, J � K be frational ideals: there exists d, δ P Azt0u suh that

I � d�1A and J � δ�1A. Let I�J (resp. IJ) be the sub-A-module of K generated by IYJ (resp. elements

of the form

(24) xy with x P I and y P J). Then IJ � pdδq�1A and I X J � I � J � pdδq�1A so that IJ ,

I X J and I � J are frational ideals.

(3) If I � K is a frational ideal, we put

I�1
� tx P K ; xI � Au

it is a sub-A-module of K. If I � t0u, then I�1
is a frational ideal (if a P Izt0u, we have aI�1

� A, so

that I�1
� a�1A).

(4) A nonzero frational ideal I � K is alled invertible if the inlusion II�1
� A is an equality.

Remark 2.3.7. (1) A frational ideal is nothing but a set of the form d�1a where a � A is an ideal and

d P Azt0u. In partiular, every ideal in A is a frational ideal. Also, for all x P K�

, the set xA is a

frational ideal. Suh a frational ideal is alled prinipal. A prinipal frational ideal is invertible, and

pxAq�1
� x�1A.

(2) If I � J � K are frational ideals, we have J�1
� I�1

. In partiular, if I � A, we have A � I�1
.

(3) If I, J � K are invertible frational ideals, so is the produt IJ , and pIJq�1
� I�1J�1

.

(4) If S � A is a multipliative part and I � K a invertible frational ideal over A, then S�1I is an invertible

frational ideal over S�1A, and pS�1Iq�1
� S�1I�1

(indeed we have pS�1I�1
qpS�1Iq � S�1II�1

� S�1A).

Corollary 2.3.8. In a Dedekind ring, every nonzero frational ideal is invertible.

Proof. Let A a Dedekind ring, K its fration �eld and I � K a nonzero frational ideal. Assume �rst that

I � A is an ideal. Let x P Izt0u � Azt0u. By theorem 2.3.3, there exists nonzero prime ideals p1, . . . , pn

and α1, . . . , αn P Z
¡0 suh that xA � pα1

1 � � � pαn
n . As xA � I, we have neessarily I � p

β1

1 � � � pβn
n with

0 ¤ βi ¤ αi for all i P t1, . . . , nu. Put J � p
α1�β1

1 � � � pαn�βn
n � A: we have IJ � xA, thus Ipx�1Jq � A,

proving that I is invertible and I�1
� x�1J . In the general ase, we have I � d�1a with d P Azt0u and

a � A. By what preedes, the ideal a is invertible: we have aa�1
� A, hene Ipda�1

q � A, so that I is

invertible, with inverse da�1
. �

Theorem 2.3.9. Let A be a Dedekind ring, PA the set of its nonzero prime ideals and K its fration �eld.

If I � K is a nonzero frational ideal, there exists a unique family

�

vppIq
�

pPPA
P ZpPAq

suh that

I �
¹

pPPA

pvppIq

(the produt is �nite sine only �nitely many vppIq are nonzero).

Proof. There exists a nonzero ideal a � A and d P Azt0u suh that I � d�1a. By theorem 2.3.3 applied to

the ideals a, dA � A, the existene of the deomposition follows. For uniity, assume that

¹

pPPA

pnp
�

¹

pPPA

pmp

(24)

We have thus IJ �

!

x P K, pDn P Z
¥0q pDx1, . . . , xn P Iq pDy1, . . . , yn P Jq x �

n
°

k�1

xkyk

)

.
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with pnpqpPPA
, pmpqpPPA

P ZpPAq
. We have

±

pPPA

pnp�mp
� A, i.e.

¹

pPPA

np�mp¥0

pnp�mp
�

¹

pPPA

np�mp 0

p�np�mp
� A.

By uniity in theorem 2.3.3, this implies that np �mp � 0 i.e. np � mp for all p P PA (note that the sets

tp P PA, np �mp ¥ 0u and tp P PA, np �mp   0u are disjoint). �

Notation. If A is an integral domain, we denote by FrpAq the set of its nonzero frational ideals, and

PrincpAq the subset of its nonzero prinipal frational ideals.

Proposition 2.3.10. Let A be a Dedekind ring and PA the set of its nonzero prime ideals.

(1) Endowed with the law pI, Jq ÞÑ IJ , the set FrpAq is an abelian group with unit element A and with

inverse map I ÞÑ I�1
. Moreover, the map

fA : ZpPAq
Ñ FrpAq

pnpqpPPA
ÞÑ

¹

pPPA

pnp

is a group isomorphism, with inverse I ÞÑ
�

vppIq
�

pPPA
. In partiular, we have

vppIJq � vppIq � vppJq

vppI
�1
q � �vppIq

for all I, J P FrpAq and p P PA.

(2) If I, J P FrpAq, we have I � J � p�p P PAq vppIq ¥ vppJq. In partiular I is an ideal in A if and only

if vppIq ¥ 0 for all p P PA.

Proof. (1) By de�nition 2.3.6, if I, J P FrpAq, then IJ P FrpAq and I�1
P FrpAq. The law pI, Jq ÞÑ IJ is

assoiative, ommutative and admits A as unit element. Moreover, every element is invertible by orollary

2.3.8: FrpAq is an abelian group. The map fA is a group homomorphism, with inverse I ÞÑ
�

vppIq
�

pPPA

(theorem 2.3.9): it is thus an isomorphism.

(2) by theorem 2.3.3, if I � A is an ideal, we have vppIq ¥ 0 for all p P PA. The onverse is obvious. If

I, J P FrpAq, we have thus I � J � IJ�1
� A� p�p P PAq vppIq � vppJq � vppIJ

�1
q ¥ 0. �

De�nition 2.3.11. Let A be a Dedekind ring. The set PrincpAq is a subgroup of FrpAq. We denote

ClpAq � FrpAq{PrincpAq

the quotient group, that we all the ideal lass group of A.

Example 2.3.12. Let A be a Dedekind ring.

(1) A is a PID if and only if ClpAq � t1u.

(2) Let I be a nonzero frational ideal. The lass of I in ClpAq is of �nite order if and only if there exists

n P Z
¡0 suh that In is prinipal.

De�nition 2.3.13. A ring is semi-loal if it has only �nitely many maximal ideals.

Remark 2.3.14. (1) A loal ring is semi-loal.

(2) If A is a Dedekind ring and I � A a nonzero ideal, then A{I is semi-loal: let I � pα1

1 � � � pαr
r be the

deomposition of I into a produt of nonzero prime ideals; the Chinese remainder theorem implies that

A{I �
Àr

i�1 A{p
αi

i , and eah fator A{pαi

i is loal, with maximal ideal pi{p
αi

i .

Proposition 2.3.15. Let A be a Dedekind ring, p1, . . . , pn � A nonzero prime ideals and I � A an ideal.

There exists a P A suh that p�i P t1, . . . , nuq IApi
� aApi

. In partiular, a semi-loal Dedekind ring is a

PID.

Proof. We have I � pα1

1 � � � pαn
n J with α1, . . . , αn P Z

¥0 and J prime to p1 � � � pn (theorem 2.3.3). By lemma

2.2.2, for all i P t1, . . . , nu, the ring Api
is a DVR: let πi P pi be suh that piApi

� πiApi
. We have

IApi
� παi

i Api
for all i P t1, . . . , nu. As p1, . . . , pn are pairwise oprime, so are pα1�1

1 , . . . , pαn�1
n : by the

hinese remainder theorem (f theorem 1.1.14), the natural morphism

A{pα1�1
1 � � � pαn�1

n Ñ pA{pα1�1
1 q � � � � � pA{pαn�1

n q

is an isomorphism: there exists a P A suh that a � παi

i mod pαi�1
i hene aApi

� IApi
for all i P t1, . . . , nu.

If A is semi-loal, take tp1, . . . , pnu the set of maximal ideals of A. By the loal-global priniple (proposition

1.8.22), we have I � aA. As A is an integral domain by de�nition, it is a PID. �
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Corollary 2.3.16. Let A be a Dedekind ring, I � A a nonzero ideal and a P Izt0u. There exists b P A suh

that I � aA� bA.

Proof. Let p1, . . . , pn � A be the nonzero prime ideals ontaining a (lemme 2.3.2 (2)). By proposition

2.3.15, there exists b P A suh that p�i P t1, . . . , nuq IApi
� bApi

. Put J � aA� bA � A. If p is a maximal

ideal that does not ontain a, we have aAp � Ap: as a P I and a P J , this implies that IAp � JAp � Ap.

If i P t1, . . . , nu, we have aApi
� IApi

, hene IApi
� bApi

� JApi
� IApi

, so that JApi
� IApi

. By the

loal-global priniple (proposition 1.8.22), we have I � J . �

2.4. Fatorization in an extension, rami�ation. Let A be a Dedekind ring and K � FracpAq. The

aim of this setion is to explain the deomposition of the ideal generated by an ideal of A in the integral

losure of A in a �nite separable extension of K. If p is a nonzero prime ideal in A, we denote κppq � A{p

the residue �eld of A at p.

De�nition 2.4.1. Let A be a Dedekind ring, and L{K a �nite separable �eld extension. Let B be the integral

losure of A in L. By orollary 1.10.39 (1) and theorem 2.1.3, B is a �nite A-algebra and a Dedekind ring.

(1) If p � A and P � B are nonzero prime ideals, we say that P divides p, or that P lies above p (and we

denote P | p) if PXA � p.

(2) As B is a Dedekind ring, we have

pB �

±

P|p

PeP

with eP � vPppBq P Z
¡0. The integer eP is alled the rami�ation index of p en P.

(3) If P | p, the �eld κpPq � B{P is a �nite extension of κppq � A{p alled the residual extension at P.

We put fP �

�

κpPq : κppq
�

: this integer is alled the residual degree of p at P.

(4) If eP � 1 and the �eld extension κpPq{κppq is separable, we say that p (or even L{K) is unrami�ed

at P, and rami�ed at P otherwise. If p is unrami�ed at every prime ideal dividing it, we say that p is

unrami�ed, or that L{K is unrami�ed at p.

(5) When there is only one prime ideal P above p and fP � 1, we say that L{K is totally rami�ed at p.

(6) If the ideal pB is prime in B, we say that p is inert in L{K. If eP � fP � 1 for all P | p, we say that p

is totally split in L{K.

Theorem 2.4.2. Under the hypothesis of de�nition 2.4.1, we have

dimκppqpB{pBq � rL : Ks �
°

P|p

ePfP

Proof. There are isomorphisms A{p
�

ÑAp{pAp and B{pB
�

ÑS�1B{pS�1B (with S � Azp): replaing A by

Ap (whih is liit by proposition 1.9.13), we may assume that A is a DVR, with maximal ideal p (f lemma

2.2.2). The ring A is a PID: the A-module B is free of rank rL : Ks (f orollary 1.10.39 (2)). This implies

that dimκppqpB{pBq � rL : Ks.

For P | p, the ideals PeP
are pairwise oprime: the Chinese remainder theorem provides an isomorphism

B{pB � B{
±

P|p

PeP �

Ñ

À

P|p

B{PeP

Consider the �ltration PeP
� PeP�1

� � � � � P2
� P � B. As BP is a DVR (lemma 2.2.2), we have

isomorphisms BP{PBP
�

ÑPkBP{P
k�1BP

�

�Pk
{Pk�1

(the �rst isomorphism is indued by the multipli-

ation by πkP, where πP is a uniformizer of BP). This implies that Pk
{Pk�1

is a κpPq-vetor spae of

dimension 1, hene a κppq-vetor spae of dimension fP. This shows that

dimκppqpB{P
eP
q �

eP�1
°

k�0

dimκppqpP
k
{Pk�1

q � ePfP

hene dimκppqpB{pBq �
°

P|p

dimκppqpB{P
eP
q �

°

P|p

ePfP. �

Lemma 2.4.3. (prime avoidane). Let R be a ring, p1, . . . , pn � R prime ideals and I �
n
�

i�1

pi an ideal.

There exists i P t1, . . . , nu suh that I � pi.

Proof. Removing some pi if neessary, we may assume that p�i P t1, . . . , nuq pi �
�

j�i

pj: let ai P piz
�

j�i

pj.

Assume moreover that for all i P t1, . . . , nu, we have I � pi: let xi P Izpi. Put x �
n
°

i�1

xi
±

j�i

aj P I. If
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i P t1, . . . , nu, we have ai P pi hene x � xi
±

j�i

aj mod pi. As xi R pi and aj R pi for j � i, we have

xi
±

j�i

aj R pi whene x R pi, so that x P Iz
n
�

i�1

pi, ontraditing the hypothesis. �

Remark 2.4.4. The terminology omes from the ontrapositive.

Theorem 2.4.5. Under the hypothesis of theorem 2.4.2, assume moreover that the �eld extension L{K is

Galois. The group GalpL{Kq ats transitively on the set of prime ideals that divide p. The integers eP and fP
only depend of p and not of P: we denote them ep and fp respetively. If GalpL{KqP denotes the stabilizer of

P, then GalpL{KqσpPq � σGalpL{KqPσ
�1

for all σ P GalpL{Kq: the integer gp �
�

GalpL{Kq : GalpL{KqP
�

only depends of p and not of P. We have rL : Ks � epfpgp.

Proof. Let P and P1

be prime ideals above p suh that P1

� σpPq for all σ P GalpL{Kq. As the ideals

P1

and σpPq are maximal, we have P1

� σpPq for all σ P GalpL{Kq: there exists x P P1

suh that

x R σpPq for all σ P GalpL{Kq (f lemma 2.4.3). This implies that y � NL{Kpxq �
±

σPGalpL{Kq

σpxq R P,

ontraditing the fat that y P A XP1

� p � P. The ation of GalpL{Kq on the set of prime ideals that

divide p is thus transitive, and the integers eP and fP thus only depend of p and not of P. We also have

GalpL{KqσpPq � σGalpL{KqPσ
�1

for all σ P GalpL{Kq. Moreover, we have #tP P SpecpBq ; P | pu �
�

GalpL{Kq : GalpL{KqP
�

� gp: this shows that

rL : Ks �
°

P|p

ePfP � #tP P SpecpBq ; P | puepfp � epfpgp

thanks to proposition 2.4.2. �

Proposition 2.4.6. Under the hypothesis of theorem 2.4.2, assume that B � Arθs. Let F P ArXs be the

minimal polynomial of θ over K. For a nonzero prime ideal p � A, the fatorization of the redution F

of F in κppqrXs has the form F pXq �
s
±

i�1

fipXq
ri

with f1, . . . , fs irreduible and pairwise oprime. The

deomposition of pB is then

pB �

s
±

i�1

Pri
i

with Pi � pB�FipθqB (where Fi P ArXs is any lifting of fi). Moreover, we have B{Pi � κppqrXs{xfipXqy.

Proof. By hypothesis, there is an isomorphism

ArXs{xF pXqy
�

ÑB

X ÞÑ θ

It indues isomorphisms κppqrXs{xF pXqy
�

ÑB{pB thus κppqrXs{xfipXqy
�

ÑB{Pi for all i P t1, . . . , su. This

shows that Pi is maximal in B, divides p, and that fPi
� rκpPiq : κppqs � degpfiq.

On the other hand, if i � j, we have κppqrXs � fipXqκppqrXs � fjpXqκppqrXs (beause fi and fj are

oprime), hene ArXs � FipXqArXs � FjpXqArXs � prXs, whih implies that Pi � Pj � B: the ideals

P1, . . . ,Ps are pairwise oprime.

Conversely, let P � B be a maximal maximal ideal suh that P | p. As F pXq �
s
±

i�1

FipXq mod prXs,

we have

s
±

i�1

Fipθq P P: there exists i P t1, . . . , su suh that Fipθq P P, hene Pi � P, i.e. Pi � P by

maximality of Pi. The set of prime ideals of B that divide p is thus preisely tP1, . . . ,Psu.

It remains to show that for all i P t1, . . . , su, the rami�ation index ePi
is ri. By the Chinese remainder

theorem, there is an isomorphism

B{pB � κppqrXs{xF pXqy
�

Ñ

s
±

i�1

κppqrXs{xfipXq
ri
y

For j � i, we have Fjpθq R Pi by what preedes: the loalization of the fator κppqrXs{xfjpXq
rj
y at Pi is

zero. This shows that

BPi
{pBPi

� κppqrXs{xfipXq
ri
y

hene ePi
fPi

� dimppBPi
{pBPi

q � dimppκppqrXs{xfipXq
ri
yq � ri degpfiq � rifPi

, i.e. ePi
� ri. �
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2.4.7. Relative norm. If I � K is a nonzero nonzero frational ideal, then IB is a nonzero frational

ideal: this provides a group homomorphism FrpAq Ñ FrpBq. If I � xA is prinipal, so IB � xB: this

homomorphism indues a group homomorphism

iB{A : ClpAq Ñ ClpBq

We want to built an homomorphism in the reverse diretion. Reall that we denote by PA (resp. PB)

the set of nonzero prime ideals of A (resp. B). If P P PB , we have p :� P X A P PA, and we have

fP :� rκpPq : κppqs. We put

NB{ApPq � pfP

As valuations indue group isomorphisms FrpAq
�

ÑZpPAq
and FrpBq

�

ÑZpPBq
(proposition 2.3.10), this

de�nes a unique group homomorphism

NB{A : FrpBq Ñ FrpAq

Proposition 2.4.8. (1) (Transitivity) Let M{L be a �nite separable �eld extension and C the integral

losure of A in M (or of B, this is the same). We have NB{ApNC{BpJqq � NC{ApJq for all nonzero frational

ideal J �M .

(2) If I � K is a nonzero frational ideal, we have NB{ApiB{ApIqq � In (where n � rL{Ks).

(3) If x P L�, we have NB{ApxBq � NL{KpxqA.

Proof. (1) We may assume that J is a nonzero prime ideal. Put P � B X J and p � A X J � A X P.

We have extensions κpJq{κpPq and κpPq{κppq, so that rκpJq : κpPqsrκpPq : κppqs � rκpJq : κppqs. As

NC{BpJq � PrκpJq:κpPqs
and NB{ApPq � prkpPq:κppqs, we get

NB{ApNC{BpJqq � NB{ApP
rκpJq:κpPqs

q � NB{ApPq
rκpJq:κpPqs

� prκpPq:κppqsrκpJq:κpPqs � prκpJq:κppqs � NC{ApJq

(2) We may assume that I � p is a nonzero prime ideal: we have iB{ApIq � pB �

±

P|p

PeP
hene

NB{ApiB{ApIqq �
¹

P|p

NB{ApPq
eP
� p

°

P|p

ePfP

� In

by theorem 2.4.2.

(3)  Assume that L{K is Galois with group Γ. We �rst show that iB{ApNB{ApJqq � NB{ApJqB �

±

γPΓ

γpJq

for all nonzero frational ideal J � L. As above, we may assume that J � P is a nonzero prime ideal. Put

p � A X P: by theorem 2.4.5, the group Γ ats transitively on the set of prime ideals of B above p, and

the integers eP and fP only depend of p and not of P (they are denoted ep and fp respetively). Let ΓP

be the stabilizer of P: we have #Γ � rL : Ks � epfpgp with gp �
�

Γ : ΓP

�

, so #ΓP � epfp. Moreover, we

have pB �

±

γPΓ{ΓP

γpPqep , whih implies

NB{ApJqB � pfpB �

±

γPΓ{ΓP

γpPqepfp �
±

γPΓ{ΓP

γpPq#ΓP
�

±

γPΓ

γpPq

as wanted. Applied to J � xB with x P L�, this formula gives NB{ApxBqB �

±

γPΓ

γpxqB � NL{KpxqB. This

shows that the valuations of the frational ideals NB{ApxBq and NL{KpxqA are the same at every nonzero

prime ideal of A: they are equal.

 In the general ase, let M be a normal losure of L{K and C the integral losure of A in M . The �eld

extensions M{L and M{K are Galois: by what we have seen above, if x P L we have

NM{KpxqA � NC{ApxCq � NB{ApNC{BpxCqq � NB{ApNM{LpxqBq � NB{Apx
dBq � NB{ApxBq

d

(where d � rM : Ls). On the other hand, we have NM{Kpxq � NL{KpNM{Lpxqq � NL{Kpx
d
q � NL{Kpxq

d
by

proposition 1.10.9: we have NL{Kpxq
dA � NB{ApxBq

d
, whih implies NL{KpxqA � NB{ApxBq (looking at

p-adi valuations). �

Corollary 2.4.9. The group homomorphism NB{A : FrpBq Ñ FrpAq indues a group homomorphism

NB{A : ClpBq Ñ ClpAq

Proof. Follows from proposition 2.4.8 (3), whih implies that NB{ApPrincpBqq � PrincpAq. �
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Remark 2.4.10. (1) By proposition 2.4.8 (2), the morphism iB{A : FrpAq Ñ FrpBq is injetive. The indued

morphism iB{A : ClpAq Ñ ClpBq is not injetive in general (non prinipal ideals may "beome" prinipal in

an extension). Similarly, the map NB{A is not injetive in general.

(2) If S � A is a multipliative part and J � L a nonzero frational ideal, we have

NS�1B{S�1ApS
�1Jq � S�1 NB{ApJq.

2.5. Di�erent and disriminant. Let A be a Dedekind ring, K its fration �eld, L{K a �nite separable

extension, and B the integral losure of A in L. By orollary 1.10.39 (1) and theorem 2.1.3, B is a �nite

A-algebra and a Dedekind ring. Let

B�

� ty P L ; p�x P Bq TrL{Kpxyq P Au

By de�nition, it is a sub-B-module of L.

Lemma 2.5.1. B�

is a frational ideal of L that ontains B.

Proof. Put n � rL : Ks. Let pe1, . . . , enq be a basis of L made of elements in B, and px1, . . . , xnq in L

the dual basis. Let x P B�

: we an write x �
n
°

j�1

λjxj with λ1, . . . , λn P K. For i P t1, . . . , nu, we have

λi � TrL{Kpeixq P A. This implies that B�

� Ax1` � � � `Axn � d�1B for any element d P Bzt0u suh that

dxi P B for all i P t1, . . . , nu (we an in fat take d in Azt0u). This shows that B�

is a frational ideal of L.

We have obviously B � B�

beause TrL{KpBq � A by orollary 1.10.7. �

Remark 2.5.2. Of ourse, the proof is very lose to that of proposition 1.10.37.

De�nition 2.5.3. The di�erent of B{A is the inverse of the frational ideal B�

(the latter is alled the

inverse di�erent). It is an ideal of B denoted DB{A.

Remark 2.5.4. When there is no ambiguity on A, the di�erent is often simply denoted DL{K . Similarly,

the disriminant is often denoted dL{K .

Proposition 2.5.5. Let a (resp. b) be a frational ideal in K (resp. L). The following are equivalent:

(i) TrL{Kpbq � a;

(ii) b � aD�1
B{A

.

Proof. This is obvious if a � t0u: assume a � t0u. Then we have the equivalenes

TrL{Kpbq � a� a�1TrL{Kpbq � A� TrL{Kpa
�1bq � A� a�1b � D�1

B{A
� b � aD�1

B{A
.

�

Remark 2.5.6. The previous proposition is a haraterization of the di�erent.

Proposition 2.5.7. Let A be a Dedekind ring, K � FracpAq and L{K a �nite separable �eld extension of

degree n. Denote B the integral losure of A in L. Fix x P B suh that L � Kpxq, put C � Arxs � B and

let P P ArXs the minimal polynomial of x over K.

(1) We have TrL{K
�

xk

P 1pxq

�

�

#

0 if 0 ¤ k ¤ n� 2

1 if k � n� 1
.

(2) The A-module C�

is free with basis

�

xk

P 1pxq

�

0¤k n
.

(3) For all c P C, we have cB � C � c P P 1

pxqD�1
B{A

(so that DB{A divides P 1

pxqB).

(4) We have B � C � DB{A � P 1

pxqB, in whih ase Ω1
B{A � B{DB{A.

Proof. (1)  Let K be an algebrai losure of K, and x1, . . . , xn P K are the onjugates of x over K:

as L � Kpxq, we have rL : Ks � n. As L{K is separable, the polynomial P is separable: we have

P pT q �
n
±

i�1

pT �xiq where the roots x1, . . . , xn are pairwise distint. We have thus

1
P pT q

�

n
°

i�1

λi

T�xi
, so that

1 �
n
°

i�1

λi
P pT q

T�xi
. Evaluation at xi gives 1 � λiP

1

pxiq whene
1

P pT q
�

n
°

i�1

1
P 1pxiqpT�xiq

.

 For all i P t1, . . . , nu, we have

1
T�xi

�

1
T

�

1 � xi

T

�

�1
�

8

°

k�0

xk
i

Tk�1 P K
��

1
T

��

. What preedes implies that

1
P pT q

�

8

°

k�0

1
Tk�1

n
°

i�1

xk
i

P 1pxiq
�

8

°

k�0

TrL{K
�

xk

P 1pxq

�

1
Tk�1 . On the other hand, P pT q � T n � a1T

n�1
� � � � � an,

so that P pT q � T n
�

1� a1
T
�� � ��

1
Tn

�

, whih implies that

1
P pT q

P

1
Tn �

1
Tn�1K

��

1
T

��

. Identifying oe�ients

gives the required formulas.
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(2) It is enough to show thatM :�
�

TrL{K
�

xi xj

P 1pxq

��

0¤i,j n
P GLnpAq. By (1), we have TrL{K

�

xi xj

P 1pxq

�

� 0

if i � j   n � 1 and TrL{K
�

xi xj

P 1pxq

�

� 1 if i � j � n � 1. Moreover, if n ¤ i � j   2n� 1, then we have

TrL{K
�

xi xj

P 1pxq

�

� TrL{K
�

xn x
i�j�n

P 1pxq

�

P A sine xn is an A-linear ombination of 1, x, . . . , xn � 1. This shows

that

M �

�

1
. .
.
�

1 � �

	

P MnpAq

so that detpMq � p�1qnpn�1q{2
.

(3) Note that (2) means that C�

�

1
P pxq

C (sine C � Arxs �
n�1
À

k�0

Axk). If c P C, we have thus

cB � C � P 1

pxq�1cB � C�

� TrL{KpP
1

pxq�1cBq � A� P 1

pxq�1c P D�1
B{A

� c P P 1

pxqD�1
B{A

(beause P 1

pxq�1cB is a sub-C-module of L). The set of suh c is a sub-B-module of B i.e. an ideal in B

by its very de�nition, so is P 1

pxqD�1
B{A

: we have P 1

pxqB � DB{A, i.e. DB{A divides P 1

pxqB.

(4)  We have C � B, so that B � C � 1 P tc P C ; cB � Cu. By (3), this is equivalent to 1 P P 1

pxqD�1
B{A

,

i.e. B � P 1

pxqD�1
B{A

that is DB{A � P 1

pxqB. As the reverse inlusion always holds, this is equivalent to the

equality DB{A � P 1

pxqB.

 If B � C, we have ArXs{xP y
�

ÑArxs � B, whih implies that Ω1
B{A is the B-module generated by dx,

and that the annihilator of dx is P 1

pxqB: we have Ω1
B{A � B{xP 1

pxqy � B{DB{A. �

Proposition 2.5.8. Let S � A be a multipliative part. Then DS�1B{S�1A � S�1DB{A.

Proof. Reall that the integral losure ommutes with loalization: the integral losure of S�1A in L is

S�1B (f proposition 1.9.13). As S�1D�1
B{A

� pS�1DB{Aq
�1

(f remark 2.3.7 (4)), it is enough to show

that D�1
S�1B{S�1A

� S�1D�1
B{A

.

If x P B, y P D�1
B{A

and s, t P S, we have TrL{Kps
�1xt�1yq � pstq�1 TrL{Kpxyq P S

�1A: as this holds for all

x P B and s P S, this shows that t�1y P D�1
S�1B{S�1A

, showing that S�1D�1
B{A

� D�1
S�1B{S�1A

.

Conversely, let tb1, . . . , bru be a generating family of B as an A-module, and let β P D�1
S�1B{S�1A

: for all

i P t1, . . . , ru, we have TrL{Kpbiβq P S
�1A. Taking a ommon denominator, there exists s P S suh that

sTrL{Kpbiβq P A for all i P t1, . . . , ru, whih implies that sβ P DB{A, hene β P S
�1DB{A. �

Proposition 2.5.9. Assume

(25)

that B is free over A. Then dB{A � NB{ApDB{Aq.

Proof. As integral losure, disriminant, di�erent and relative norm ommute with loalization (f propo-

sitions 1.9.13, 1.10.17, 2.5.8 and remark 2.4.10 (2)), this an be heked after loalizing at nonzero prime

ideals of A. We thus may assume that A is a DVR, with maximal ideal p.

 Let pe1, . . . , enq be a basis of B over A, and denote by B � pe�1 , . . . , e
�

nq the dual basis for the trae

map. Then we have B� :� D�1
B{A

� Ae�1 ` � � � ` Ae�n. For all i P t1, . . . , nu, we have ei �
n
°

j�1

xi,je
�

j where

M � pxi,jq1¤i,j¤n P MnpAq. Then eiej �
n
°

k�1

xi,ke
�

kej so that TrL{Kpeiejq � xi,j for all i, j P t1, . . . , nu.

This implies that dB{A is the ideal generated by detpMq. On the other hand, M is the matrix, in the basis

B of an A-linear endomorphism u of B�

, whose image is B. By theorem 1.4.7, there exist P,Q P SLnpAq

suh that M � P�1 diagpa1, . . . , anqQ where a1, . . . , an P A are suh that a1A � � � � � anA. Changing the

basis B, we may assume that P � In: this implies that Cokerpuq �
n
À

i�1

A{aiA. Writing aiA � pℓi , we have

dB{A � detpMqA � a1 � � � anA � pℓ, where ℓ �
n
°

i�1

ℓi is the length of Cokerpuq � B�

{B.

On the other hand, write DB{A �
±

P|p

PαP
: we have NB{ApDB{Aq � pδ with δ �

°

P|p

fPαP. Moreover, we

have B�

{B � D�1
B{A

{B � B{DB{A �

À

P|p

B{PαP
: as the length of B{PαP

as an A-module is fPαP (f

proof of theorem 2.4.2), that of B�

{B is ℓ � δ, proving the equality. �

Proposition 2.5.10. (Transitivity of the different). Let M{L be a �nite separable �eld extensions,

and C the integral losure of B in M . Then DC{A � DC{BDB{A.

(25)

As observed earlier, this ondition is not really neessary.
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Proof. Let c �M be a nonzero frational ideal. We have

c � D�1
C{B

� TrM{Lpcq � B � D�1
B{A

TrM{Lpcq � D�1
B{A

� TrL{KpD
�1
B{A

TrM{Lpcqq � A

� TrL{KpTrM{LpD
�1
B{A

cqq � A� TrM{KpD
�1
B{A

cq � A� D�1
B{A

c � D�1
C{A

� c � DB{AD
�1
C{A

(here we used the transitvity of the trae, f proposition 1.10.9) whih shows that D�1
C{B

� DB{AD
�1
C{A

, i.e.

DC{A � DC{BDB{A. �

This allows to reover 1.10.24 in a speial ase.

Corollary 2.5.11. Under the assumtions of proposition 2.5.10, assume that C is free over B and B is free

over A. Then dC{A � NB{ApdC{Bqd
rM :Ls

B{A
.

Proof. We apply NC{A to the equality DC{A � DC{BDB{A (f proposition 2.5.10). By proposition 2.5.9,

this shows that dC{A � NC{ApDC{BqNC{ApDB{Aq. The equality the follows from NC{A � NB{A �NC{B,

whih implies NC{ApDC{Bq � NB{ApdC{Bq and NC{ApDB{Aq � NB{ApD
rM :Ls

B{A
q � d

rM :Ls

B{A
. �

2.6. Rings of integers of number �elds. In what follows, Q denotes the algebrai losure of Q in C.

Reall that a number �eld is a �nite extension of Q, and that if K is a number �eld, we denote by OK the

ring of integers of K, i.e. the integral losure of Z in K.

Proposition 2.6.1. Let K be a number �eld and n � rK : Qs. The ring of integers OK is a free Z-module

of rank n.

Proof. Follows from the fat that Z is PID and from orollary 1.10.39 (2). �

Example 2.6.2. (1) Let d P Z zt0, 1u be a square free integer, and K � Qp
?

dq. Then

OK �

#

Z
�

1�
?

d
2

�

if d � 1 mod 4Z

Zr
?

ds otherwise

(2) If p is an odd prime integer, ζ P C a primitive p-th root of unity and K � Qpζq, then OK � Zrζs.

Proposition 2.6.3. Let px1, . . . , xnq be a basis of OK over Z and M � pmi,jq1¤i,j¤n P MnpZq suh that

detpMq � 0. For i P t1, . . . , nu, put yi �
n
°

j�1

mi,jxj . If R �

n
°

i�1

Z yi � OK , then rOK : Rs � #pOK{Rq is

�nite and Dpy1, . . . , ynq � rOK : Rs2Dpx1, . . . , xnq.

Proof. The hypothesis detpMq � 0 implies that R is a free Z-module of rank n. It is a sub-module of OK

whih is also of rank n (proposition 2.6.1), it is of �nite index (this follows from the adapted basis theorem,

f 1.4.11), i.e. rOK : Rs � #pOK{Rq   �8. We have Dpy1, . . . , ynq � detpMq

2 Dpx1, . . . , xnq: it is enough

to show that |detpMq| � rOK : Rs, whih follows from theorem 1.4.7. �

De�nition 2.6.4. Let px1, . . . , xnq and py1, . . . , ynq be Z-bases of OK . Let M � pmi,jq1¤i,j¤n P GLnpZq be

the hange of basis matrix, i.e. suh that yi �
n
°

j�1

mi,jxj for all i P t1, . . . , nu. Proposition 2.6.3 implies

that

Dpy1, . . . , ynq � detpMq

2 Dpx1, . . . , xnq � Dpx1, . . . , xnq

(beause detpMq P t�1u � Z�). The integer

dK � Dpx1, . . . , xnq

does not depend on the hoie of the basis px1, . . . , xnq. It is alled the absolute disriminant of K.

Corollary 2.6.5. If px1, . . . , xnq is a basis de K over Q, made of elements in OK , and R �

n
À

i�1

Zxi � OK ,

then

Dpx1, . . . , xnq � rOK : Rs2dK .

Corollary 2.6.6. A prime p rami�es in K if and only if p | dK .

Proof. This is a speial ase of theorem 3.5.24. �
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Example 2.6.7. (1) Let d P Z zt0, 1u be squarefree and K � Qp
?

dq. If d � 1 mod 4Z, then OK � Zrαs

with α � 1�
?

d
2

: the family p1, αq is a basis of OK over Z (f example 2.6.2 (1)). The minimal polynomial

of α over Q is P pXq � X2
�X �

d�1
4
: we have thus dK � Dp1, αq � discpP q � d (an be heked by diret

omputation). If d � 1 mod 4Z, we have OK � Zr
?

ds: the family p1,
?

dq is a basis of OK over Z. The

minimal polynomial of

?

d over Q is P pXq � X2
� d: we have thus dK � Dp1,

?

dq � discpP q � 4d. At the

end, we have

dK �

#

d if d � 1 mod 4Z

4d if d � 1 mod 4Z

(2) If p is an odd prime integer, ζ P C a primitive p-th root of unity and K � Qpζq, we have OK � Zrζs (f

example 2.6.2 (2)) and thus dK � p�1q
p�1
2 pp�2

. By orollary 2.6.6, p is the unique prime whih is rami�ed

in K.

Proposition 2.6.8. Let K be a number �eld and n � rK : Qs.

(1) A family x1, . . . , xn P OK is a basis of OK over Z if and only if Dpx1, . . . , xnq � dK .

(2) If x1, . . . , xn P OK is suh that Dpx1, . . . , xnq � 0 is squarefree, then px1, . . . , xnq is a Z-basis of OK .

Proof. Follows from proposition 1.10.19 and orollary 1.10.20. �

It is usually di�ult to ompute the ring of integers of a number �eld K. Using the primitive element

theorem, we an start from an element α suh that K � Qpαq. After multiplying α by an appropriate

integer (as small as possible), we may assume that α P OK , so that Zrαs � OK . In general, the inlusion is

strit, but Zrαs is of �nite index in OK . More preisely, by proposition 1.10.38, we have Zrαs � OK �

1
d
Zrαs

with d � Dp1, α, . . . , αn�1
q (where n � rK : Qs), whih is easily omputed using the minimal polynomial

of α over Q and proposition 1.10.31. This redues a lot the number of possibilities for OK . From this, on

an searh onditions on oordinates in the basis p1, α, . . . , αn�1
q for an element x P K to belong to OK .

To �nd suh onditions, one uses the trae and the norme. For instane, if x P K is integral over Z, so is

αix, hene TrK{Qpα
ixq P Z for all i P t0, . . . , n� 1u.

Remark 2.6.9. Unlike number �elds, rings of integers of number �elds are not monogen in general: if K is

a number �eld, in general, there is no α P K suh that OK � Zrαs.

Example 2.6.10. Let p be an odd prime integer, ζ P C a primitive p-th root of unity and K � Qpζq. We

have of ourse Zrζs � OK . The minimal polynomial of ζ over Q is

ΦppXq � Xp�1
�Xp�2

� � � � �X � 1 �
Xp

� 1

X � 1

We have pX � 1qΦ1

ppXq � ΦppXq � pXp�1
, thus Φ1

ppζq �
pζp�1

ζ�1
: by exemple 1.10.8 (2), we have thus

NK{QpΦ
1

ppζqq �
NK{QppqNK{Qpζq

p�1

NK{Qpζ�1q
�

pp�1

p
� pp�2

(we have NK{Qpζq � 1 and NK{Qpζ � 1q � p), whih

implies that

Dp1, ζ, ζ2, � � � , ζp�2
q � discpΦpq � p�1q

pp�1qpp�2q

2 pp�2
� p�1q

p�1
2 pp�2

(proposition 1.10.31). We thus have

Zrζs � OK �

1
pp�2 Zrζs.

Let's prove that OK � Zrζs.

First observe p1� ζqOK XZ � pZ. Indeed we have p P p1� ζqOK beause 1� ζ | NK{Qpζ � 1q � p. If the

inlusion pZ � p1 � ζqOK X Z was strit, we would have p1 � ζqOK X Z � Z, thus 1 P p1 � ζqOK : there

would exist z P OK suh that 1 � p1� ζqz, whene 1 � pNK{Qpzq in Z, whih is absurd.

If x � x0 � x1ζ � � � � � xp�2ζ
p�2

P OK (with x0, . . . , xp�2 P Q), we have

p1� ζqx � x0p1� ζq � x1pζ � ζ2q � � � � � xp�2pζ
p�2

� ζp�1
q

As TrK{Qp1� ζq � p and TrK{Qpζ
k
� ζk�1

q � 0 for 1 ¤ k   p� 1, we have

TrK{Qpp1� ζqxq � px0

As onjugates of p1 � ζqx are of the form p1 � ζkqy with k P Z and y P OK , hene dividible by 1 � ζ, we

have TrK{Qpp1� ζqxq P p1� ζqOK X Z � pZ. This implies that x0 P Z.

If we have x0, . . . , xk�1 P Z with k   p� 2, then

ζ�k
�

x� px0 � x1ζ � � � � � xk�1ζ
k�1

q

�

� xk � xk�1ζ � � � � � xp�2ζ
p�2�k

P OK

whih implies that xk P Z from what preedes. At the end, we have x0, . . . , xp�2 P Z and x P Zrζs.
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Proposition 2.6.11. (Stikelberger). Let K be a number �eld. We have dK � 0 mod 4Z or dK � 1

mod 4Z.

Proof. Write HomQ -algpK,Qq � tσ1, . . . , σnu: if tα1, . . . , αnu is a basis ofOK over Z, we have dK � detpMq

2

with M � pσipαjqq1¤i,j¤n (proposition 1.10.22). We have detpMq � S � A where S �

°

τPSn

εpτq�1

n
±

i�1

σipατpiqq

and A �

°

τPSn

εpτq��1

n
±

i�1

σipατpiqq. We thus have dK � pS �Aq2 � 4SA: we have to see that S �A,SA P Z. As

S and A are polynomials in σipαjq P OK , we have S,A P OK : it is enough to show that S � A,SA P Q.

Let L � Q be the Galois losure of K. If g P GalpL{Qq, the map

HomQ -algpK,Qq Ñ HomQ -algpK,Qq

σ ÞÑ g � σ

is a permutation. If the latter is even, we have gpSq � S and gpAq � A, if it is odd, we have gpSq � A and

gpAq � S: in all ases we have gpS �Aq � S �A and gpSAq � SA, hene S �A,SA P LGalpL{Qq

� Q. �

Corollary 2.6.12. (Re�nement of proposition 2.6.8 (2)). If K is a number �eld of degree n and tx1, . . . , xnu

a family whose disriminant is 4a with a � 2, 3 mod 4Z and squarefree, then px1, . . . , xnq is a basis of OK

over Z.

Proof. Let B be a basis of OK over Z and M P MnpZq the matrix whose olumns are the oordinates

of px1, . . . , xnq in the basis B. By proposition 1.10.13, we have 4a � Dpx1, . . . , xnq � detpMq

2dK . If

px1, . . . , xnq was not a basis, we would have detpMq ¡ 1 thus detpMq � 2 sine a is squarefree. This would

imply dK � a � 2, 3 mod 4Z, ontraditing proposition 2.6.11. �

2.7. Exerises.

Exerise 2.7.1. Let L{K be an extension of number �elds. Denote by n its degree and �x p � OK a

maximal ideal: we know that OL{pOL is a kppq-vetor spae of dimension n (where kppq � OK{p is the

residue �eld of p). A family of elements in OL is alled independent modulo p if its image in OL{pOL

is linearly independent over kppq. Let P1, . . . ,Pr be the nonzero prime ideals of OL above p. For eah

i P t1, . . . , ru, �x Bi � OL whose image modulo Pi is a basis of OL{Pi (so that Bi has fi elements, where

fi :� fPi{p is the residul degree at Pi). Let ei � ePi{p be the rami�ation index at Pi.

(1) Let N ¥ maxte1, . . . , eru. For i P t1, . . . , ru and j P t1, . . . , eiu, show there exist αi,j P P
j�1
i X

�

k�i

PN
k

suh that αi,j R P
j
i .

(2) Put L �
 

αi,jβ ; i P t1, . . . , ru, j P t1, . . . , eiu, β P Bi

(

. Show that #L � n.

(3) Assume

°

ℓPL

λℓℓ P pOL with λℓ P OK for all ℓ P L. Looking modulo Pi for all i P t1, . . . , ru, then modulo

P2
i for all i P t1, . . . , ru, et, show that p�ℓ P Lq λℓ P p, and dedue that L is independent modulo p.

We assume heneforth that K � Q, so that p � pZ where p is a prime number.

(4) Let tα1, . . . , αnu � OL be an independent family modulo p. Show that it is a basis of L over Q.

(5) Let A be the sub-Z-module of OL generated by tα1, . . . , αnu. Show that OL{A is �nite, then that

p ∤ rOL : As [hint: redutio ad absurdum℄.

(6) Dedue that discpα1, . . . , αnq � mdL with p ∤ m.

(7) Assume now that tα1, . . . , αnu is the family onstruted in question (3). Show that ps | discpα1, . . . , αnq,

then that ps | dL, with s �
r
°

i�1

pei � 1qfi � n�
r
°

i�1

fi.

Exerise 2.7.2. Let fpXq � Xn
� a1X

n�1
� � � � � an�1X � an P ZrXs and p a prime number dividing an.

Write an � pdbn with p ∤ bn. Assume that pd | ai for all i P t1, . . . , nu and that fpXq is irreduible(26) in

ZrXs. Let α P C be a root of fpXq and L � Qrαs.

(1) Show that αn � pdβ with β P OL prime to p.

(2) Dedue that pdOL is the n-th power of an ideal of OL.

(3) Show that if d is prime to n, then pOL is the n-th power of an ideal of OL, and onlude that p is totally

rami�ed in L in that ase.

(4) Show that if d is prime to n, then pn�1
| dL [hint: use exerise 2.7.1℄.

(5) What an be said when gcdpd, nq ¡ 1?

(26)

By Eisenstein's riterion, this is automati when d � 1.
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Exerise 2.7.3. Let A be a ommutative ring. Show that A is a DVR if and only if A is loal, noetherian,

and its maximal ideal is prinipal, generated by a non nilpotent ideal.

Exerise 2.7.4. A Dedekind ring whih is a UFD is a PID.

Exerise 2.7.5. Show that the ring of integers of Qp
?

10q (i.e. the integral losure of Z in Qp
?

10q) is a

Dedekind ring but not a PID [hint: show that the ideal generated by 3 and

?

10� 1 is not prinipal℄.

Exerise 2.7.6. Show that a module over a Dedekid ring is �at if and only if it is torsion-free.

Exerise 2.7.7. Let R be a Dedekind ring and I � R a nonzero ideal. Show that R{I ontains only �nitely

many ideals.

Exerise 2.7.8. Let R be a Dedekind ring, and I, J nonzero ideals of R. Show that there exists an integral

ideal I1 � R whih is prime to both I and J and suh that II1 � xay is prinipal in R [hint: use the Chinese

remainder theorem℄. Prove also that there exists a nonzero element α P FracpRq suh that αI and J are

oprime integral ideals in R.

Exerise 2.7.9. Let A be a Dedekind ring, K its fration �eld, and I, J � K nonzero frational ideals.

(1) Let X be a �nite set of nonzero prime ideals of A, and pnpqpPX a sequene of integers. Show that there

exists x P K suh that vppxq � np for all p P X and vppxq ¥ 0 if p R X .

(2) Show that there are x, y P K�

suh that xI and yJ are oprime ideals of A.

(3) Dedue that I ` J � A` IJ .

(4) Let I, J � K be nonzero frational ideals in K, and n,m P Z
¥0. Show that An ` I � Am ` J if and

only if n � m and rIs � rJs in ClpAq (i.e. if and only if there exists z P K�

suh that J � zI).

Exerise 2.7.10. Let A be a Dedekind ring, and M an A-module of �nite type.

(1) Show that if M is torsion-free, then it is projetive.

(2) Show that if M is torsion-free, then M is isomorphi to a diret sum of ideals [hint: indution on the

rank of a free A-module ontaining M ℄.

(3) In general, show that M � Ak ` a` T where k P Z
¥0, a � A is an ideal and T is the torsion of M .

(4) Show that T , k and ras P ClpAq are uniquely determined.

Exerise 2.7.11. Let A be a Dedekind ring, and M a nonzero �nitely generated torsion A-module.

(1) Put I � annApMq � ta P A ; p�m PMq am � 0u. Show that I is a nonzero ideal in A. Let p1, . . . , pr be

nonzero the prime ideals of A that divide I.

(2) Show that S :� Az
r
�

i�1

pi is a multipliative part in A, and that S�1A is a PID.

(3) Let N be an A-module suh that IN � 0. Show that N � pA{Iq bA S
�1N .

(4) Show that there are uniquely determined ideals I1 � I2 � � � � � Im � 0 suh that

M �

m
à

k�1

A{Ik.

Exerise 2.7.12. Let A � Z
�

?

�5
�

and K � FracpAq � Qp
?

�5q. Explain why I � 3A� p1�
?

�5qA � K

is a projetive A-module. Show it expliitely as a diret fator of A2
. Show that it is not free.

Exerise 2.7.13. Let A be an integral domain whih is not a �eld and suh that for eah ideal I � A and

eah a P Izt0u, there exists b P I suh that I � xa, by. Show that A is a Dedekind ring [hint: show that for

eah nonzero prime ideal p, the ring Ap is a DVR℄.

Exerise 2.7.14. Let A be a ring. Show that A is a Dedekind ring if and only if A is a noetherian integrally

losed domain suh that A{I is artinian

(27)

for every non-zero ideal I � A.

Exerise 2.7.15. Let K be a �eld, A � KrX,Y s and I � XA� Y A. Show that I�1
� A, hene I is not

invertible.

(27)

I.e. satis�es the desending hain ondition on ideals; that is, there is no in�nite desending sequene of ideals.
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Exerise 2.7.16. Let A � Z
�

?

�3
�

� K � Qp
?

�3q and I � A�Aj � K the frational ideal generated by

1 and j � �1�
?

�3
2

. Is I invertible?

Exerise 2.7.17. Let A be an integral domain in whih every nonzero ideal is invertible. Show that A is a

�eld or a Dedekind ring [hint: start by showing that A is noetherian, then that every nonzero ideal has a

unique (up to the order) fatorization as a produt of maximal ideals℄.

Exerise 2.7.18. Let A be a noetherian integral domain in whih every maximal ideal is invertible. Show

that A is a �eld or a Dedekind ring.

Exerise 2.7.19. Let B � CrX,Y s{xY 2
� pX3

� Xqy. The aim of this exerise is to show that B is a

Dedekind ring. Put A � CrXs and K � CpXq � FracpAq. Let y P K be a root of Y 2
� pX3

�Xq P ArY s,

L � Krys and OL the ring of elements in L that are integral over A.

(1) Show that B is isomorphi to Arys.

(2) What is dimKpLq? Show that FracpArysq � L and that Arys � OL.

(3) Let z � apXq� bpXqy P OL. Using the trae, show that apXq P A and that there exists P P A suh that

bpxq �
P pXq

X3
�X

.

(4) Using the norm, show that X3
�X divides P 2

. Dedue that bpXq P A.

(5) Show that B is a Dedekind ring.

Exerise 2.7.20. Let A be a Dedekind ring, K its fration �eld and X an indeterminate.

(1) The ontent of a polynomial P P ArXs is the ideal cpP q generated by the oe�ients of P . Show that

cpPQq � cpP qcpQq for all P,Q P ArXs.

(2) Let S � tP P ArXs ; cpP q � Au. Show that S is a multipliative part in ArXs: let

B � S�1
pArXsq � FracpArXsq

be the assoiated loalization. Show that if P,Q P ArXs and Q � 0, then P
Q
P B if and only if cpP q � cpQq.

(3) Show that K XB � A. Let J � B be an ideal: show that J � IB where I � J XA, and that the map

I ÞÑ IB is a bijetion between the set of ideals of A onto the set of ideals of B.

(4) Prove that B is a PID.

Exerise 2.7.21. (1) Let R be a noetherian loal ring with maximal ideal m and residue �eld κ. Show that

m{m2
is a κ-vetor spae of �nite dimension, and that d � dimκpm{m

2
q is the minimal number of generators

of the ideal m.

(2) Let A be a noetherian integral domain whih is not a �eld. Show that A is a Dedekind ring if and only

if for every maximal ideal p of A, there are no ideals I � R suh that p2 � I � p.

Exerise 2.7.22. Let m,n P Z zt0, 1u be oprime squarefree integers. Assume that m,n � 1 mod 4Z and

put K � Qp
?

m,
?

nq where α �
1�

?

m

2
and β �

1�
?

n

2
.

(1) Show that rK : Qs � 4.

(2) Compute TrQp
?

mq{Qp
?

mq, and dedue TrK{Qp
?

mq. Likewise, ompute TrK{Qp
?

nq and TrK{Qp
?

mnq.

(3) Show that Dp1, α, β, αβq � m2n2
.

(4) What are the rings of integers of Qp
?

mq, Qp
?

nq and Qp
?

mnq?

(5) Let x � a� b
?

m� c
?

n� d
?

mn P K (with a, b, c, d P Q). Compute TrK{Qp
?

mqpxq, TrK{Qp
?

nqpxq and

TrK{Qp
?

mnqpxq.

(6) Show that 4OK � Zrα, βs, and that OK � Zrα, βs.

We assume heneforth that m,n � 1 mod 8Z.

(7) What is the minimal polynomial of α (resp. β) over Q (resp. over Qp
?

mq)?

(8) Dedue an isomorphism

A :� pZ {2ZqrX,Y s{xX2
�X,Y 2

� Y y
�

ÝÑ OK{2OK

(9) Show that there are exatly four ring homomorphisms AÑ Z {2Z.

(10) Dedue that A is not isomorphi to pZ {2ZqrXs{xP pXqy with P pXq P pZ {2ZqrXs of degree 4 [hint:

the ring homomorphisms pZ {2ZqrXs{xP y Ñ Z {2Z are in bijetion with the set of roots of P in Z {2Z℄.

(11) Dedue that there is no x P OK suh that OK � Zrxs.

(12) What is the deomposition of 2OK as a produt of nonzero prime ideals of OK? Same question for

pOK where p is a prime number dividing m.
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Exerise 2.7.23. Let A be a Dedekind ring, K � FracpAq and L{K a �nite separable �eld extension of

degree n. Denote B the integral losure of A in L. Fix x P B suh that L � Kpxq, put C � Arxs � B and

let P P ArXs the minimal polynomial of x over K.

(1) Show that

1
P pT q

�

n
°

i�1

1
P 1pxiqpT�xiq

where x1, . . . , xn P K are the onjugates of x over K.

(2) Show that TrL{K
�

xk

P 1pxq

�

�

#

0 if 0 ¤ k ¤ n� 2

1 si k � n� 1
.

(3) Show that the A-module C�

is free with basis

�

xk

P 1pxq

�

0¤k n
.

(4) Show that for all c P C, we have cB � C � c P P 1

pxqD�1
B{A

(so that DB{A divides P 1

pxqB).

(5) Dedue that B � C � DB{A � P 1

pxqB.

(6) Assuming that B � C, show that Ω1
B{A � B{DB{A.

Exerise 2.7.24. Let A be a Dedekind ring, K � FracpAq and L{K a �nite separable �eld extension of

degree n. Denote B the integral losure of A in L. If P is a nonzero prime ideal in B above p � A is

suh that κpPq{κppq is separable, show that vPpDB{Aq ¥ eP � 1, with equality if and only if eP is prime

to charpκppqq [hint: loalize an omplete to redue to the ase where A and B are omplete DVRs, and use

previous exerises℄.

Exerise 2.7.25. Let A � B be DVRs with fration �elds K � L. Assume L{K that the residual extension

κL{κK is purely inseparable of height 1 (i.e. suh that κ
p
L � κK , where p � charpκKq), and not monogeni.

Show that Ω1
B{A is not monogeni.

Exerise 2.7.26. Let A be a Dedekind ring, K � FracpAq and L{K a �nite and separable �eld extension.

Denote by B the integral losure of A in L, and PA the set of nonzero prime ideals of A. An A-order of L

is a subring R of L suh that A � R and R is an A-module of �nite type.

(1) Let R be a subring of L suh that A � R. Show that R is an A-order of L if and only if R � B.

(2) Assume that R is an A-order of L.

(i) Show that for all p P PA, the loalization Rp is an Ap-order of L.

(ii) Show that R � B if and only if Rp � Bp for all p P PA.

(iii) Show that nonzero prime ideals of R are maximal.

(3) Let R be an A-order of L and θ P R suh that L � Kpθq. Denote by P pXq the minimal polynomial of

θ over K. Let p P PA and P the image of P in κppqrXs, where κppq � A{p. Show that if P is separable,

then Rp � Bp and the prime ideals of B above p are unrami�ed [hint: reall that Arθs� � 1
P 1pθq

Arθs℄.

(4) Let R � R1

be an extension of rings, the ondutor of R1

{R is cR1{R � tr P R ; rR1

� Ru.

(i) Show that cR1{R is the largest ideal of R1

that is ontained in R.

(ii) Let R be an A-order of L and S � R a multipliative part. Show that cS�1B{S�1R � S�1cB{R [hint:

use the fat that B is �nite over R℄.

(iii) Let R be an A-order of L. Show that c :� cB{R � t0u if and only if FracpRq � L.

Assume heneforth that FracpRq � L.

(5) Show that cR�

� D�1
B{A

(where R�

� ty P L ; p�x P Rq TrL{Kpxyq P Au), and that this inlusion is an

equality when R � Arθs for some θ P L suh that L � Kpθq.

(6) In this question we assume that A � Z.

(i) Let a be an ideal of OL and put R � Z�a. Show that R is a Z-order of L, with ondutor dZ�a,

where d P Z
¡0 is suh that ZXa � dZ.

(ii) Assume that L � Qp
?

5q. Show that R � Zr
?

5s is a Z-order of L. What is its ondutor?

(7) Let q P PB. Show that c � q if and only if c � q X R. Dedue that if FracpRq � L, there are only

�nitely many prime ideals of R that ontain c.

(8) (hard) Let p be a nonzero prime ideal of R. Show that the following are equivalent:

(a) p does not ontain c;

(b) R � tx P L ;xp � pu;

() p is invertible;

(d) Rp is a DVR.

[hint: to show (a)ñ(b), use the fat that p� c � R; to show (b)ñ(), use the fat that if α P pzt0u, there

exists r P Z
¡0 suh that prRp � αRp; to show ()ñ(d), show that nonzero ideals of Rp are powers of pRp,

then that Rp is integrally losed.℄
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(9) (hard) Show that under the equivalent onditions of question (8), pB is the only maximal ideal of B

that ontains p [hint: take q P PB suh that p � q, and show that Rp � Bq.℄
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3. Valued fields

In this setion, K denotes a �eld.

3.1. Absolute values.

De�nition 3.1.1. An absolute value on K is a map |.| : K Ñ R
¥0 suh that:

(1) p�x P Kq p|x| � 0� x � 0q;

(2) p�x, y P Kq |xy| � |x| |y| (multipliativity);

(3) p�x, y P Kq |x� y| ¤ |x| � |y| (triangle inequality).

If it satis�es the stronger requirement

(3') p�x, y P Kq |x� y| ¤ maxt|x| , |y|u (strong triangle inequality),

the absolute value is alled non arhimedean. It is alled arhimedean otherwise.

The pair pK, |.|q is alled a valued �eld. We say that pK, |.|q is arhimedean (resp. non arhimedean) if |.| is.

Example 3.1.2. (0) The trivial absolute value on K is given by |0| � 0 and |x| � 1 for all x P K�

(it is non

arhimedean).

(1) The �usual� absolute value |.|
8

on K � R, and the modulus |.|
8

on C are arhimedean.

(2) Let p be a prime number, and vp : Z Ñ Z
¥0Yt�8u the p-adi valuation. It extends into a map

vp : QÑ ZYt�8u: if x P Q, put |x|p � p�vppxq. This de�nes a non arhimedean absolute value alled the

p-adi absolute value.

Remark 3.1.3. (1) Let |.| be an absolute value on K. By (2), we have |1|
2
� |1|, so |1| � 1 sine |1| � 0 by

(1). In partiular, we have

�

�x�1
�

�

� |x|
�1

for all x P K�

, and |.| : K�

Ñ R
¡0 is a group homomorphism.

(2) Assume |.| is a non arhimedean absolute value on K. If x, y P K are suh that |x| � |y|, say |x|   |y|,

then |y| ¤ maxt|x| , |x� y|u by (3), so |y| ¤ |x� y| whene |x� y| � |y|. This shows that (3') is an equality

whenever |x| � |y|.

(3) The group of the absolute value |.| is |K�

|: this is a subgroup of R
¡0. There exist notions of absolute

values with groups more ompliated that subgroups of R
¡0, but we will not need these. The absolute value

|.| is alled disrete if |K�

| is a disrete subgroup of R
¡0. Note that |K

�

| is dense in R
¡0 otherwise.

De�nition 3.1.4. Let pK1, |.|1q and pK2, |.|2q be valued �elds. A morphism of valuation �elds from K1 to

K2 is a morphism of �elds f : K1 Ñ K2 (so it is automatially injetive) suh that |fpxq|2 � |x|1 for all

x P K1. It is an isomorphism when f is surjetive.

De�nition 3.1.5. An absolute value on K de�nes a topology on K (indeed a metri spae struture): a

basis of open neighborhoods of a P K is given by Bpa, rq � tx P K ; |x� a|   ru for r P R
¡0.

Two absolute values are equivalent when they de�ne the same topology on K.

Example 3.1.6. The topology de�ned by the trivial absolute value is the disrete topology.

Proposition 3.1.7. Two absolute values |.|1 and |.|2 on K are equivalent if and only if there exists γ P R
¡0

suh that |.|2 � |.|
γ
1 .

Proof. Assume |.|1 and |.|2 are equivalent. If |.|1 is trivial, then the topology de�ned by |.|2 is disrete. If

x P K and |x|2   1, then lim
nÑ8

xn � 0, so x � 0. If x P K�

, then |x|2 ¥ 1, and also |x|
�1

2 � |x|
�1

2 ¥ 1,

i.e. |x|2 ¤ 1, so |x|2 � 1, and |.|2 is disrete as well. Assume from now on that |.|1 and |.|2 are not trivial:

there exists x0 P K suh that 0   |x0|1   1. If |x|1   1, then lim
nÑ8

xn � 0, so |x|2   1 as well, in partiular

0   |x0|2   1: put γ �
lnp|x0|2q

lnp|x0|1q
P R

¡0.

Let x P K be suh that 0   |x|1   1 and put λ �
lnp|x|1q

lnp|x0|1q
P R

¡0. If r P QXsλ,�8r, then r � m
n

with

m,n P Z
¡0, and the inequality λ   m

n
is equivalent to |x|

n
1   |x0|

m
1 , i.e.

�

�

�

xn

xm
0

�

�

�

1
  1. This implies that

�

�

�

xn

xm
0

�

�

�

2
  1 from what preedes, i.e.

lnp|x|2q

lnp|x0|2q
 

m
n
� r. Sine this holds for all r P QXsλ,�8r, we have

lnp|x|2q

lnp|x0|2q
¤ λ, i.e.

lnp|x|2q

lnp|x0|2q
¤

lnp|x|1q

lnp|x0|1q
. As |.|1 and |.|2 play symmetri roles, we have in fat

lnp|x|2q

lnp|x0|2q
�

lnp|x|1q

lnp|x0|1q
,

thus

lnp|x|2q

lnp|x|1q
� γ, i.e. |x|2 � |x|

γ
1 , whenever x P K

�

satis�es |x|1   1. Replaing x by x�1
shows that it holds

true also when |x|1 ¡ 1. Exhanging |.|1 and |.|2, we have similarly the impliation |x|2 � 1ñ |x|1 � 1, so

|x|1 � 1ñ |x|2 � 1, i.e. |x|2 � |x|
γ
1 for all x P K. �

Remark 3.1.8. If |.| is an arhimedean absolute value on K, the map |.|
γ
is not an absolute value for any

γ P R
¡0 in general, for the triangle inequality might not be satis�ed by |.|

γ
(it is when 0   γ ¤ 1 by

onvexity of the map t ÞÑ tγ).



68 Number theory

De�nition 3.1.9. Let K be a �eld. A plae of K is a lass of equivalene of non trivial absolute values on

K. The set of plae is denoted VpKq.

Theorem 3.1.10. (Ostrowski). A non-trivial absolute value on Q is equivalent to either the �usual�

absolute value or to a p-adi absolute value.

Proof. Let |.| : QÑ R
¥0 be a non trivial absolute value. Let a, b P Z

¡1. For n P Z¥0, let

an � α0 � α1b� � � � � αrb
r

be the writing of an in base b: we have r � tn logbpaqu and αi P t0, . . . , b�1u for i P t0, . . . , ru (and αr � 0).

Then |a|
n
¤

r
°

i�0

|αi| |b|
i
¤ pr � 1qMbmaxt1, |b|

r
u, where Mb � max

0¤i b
|i|, so that

|a| ¤
�

n logbpaq � 1
�1{n

M
1{n

b max
 

1, |b|
logbpaq

(

.

As lim
nÑ8

�

n logbpaq � 1
�1{n

M
1{n

b � 1, we get |a| ¤ max
 

1, |b|
logbpaq

(

.

 First ase. |a| ¡ 1. This implies that |a| ¤ |b|
logbpaq

, so in partiular |b| ¡ 1, and |a|
1{ lnpaq

¤ |b|
1{ lnpbq

. As

|b| ¡ 1, we have |b|
1{ lnpbq

¤ |a|
1{ lnpaq

as well, so that |x|
1{ lnpxq

, hene c :�
ln|x|

lnpxq
does not depend on x P Z

¡1.

This implies that |x| � xc for all x P Z
¡1. The axioms of absolute value imply that |x| � |x|

c
8

for all x P Q,

and |.| is equivalent to the �usual� absolute value.

 Seond ase. For all a P Z
¡1, we have |a| ¤ 1 (so that |x| ¤ 1 for all x P Z). As |.| is non trivial, there

exists a P Z
¡1 suh that |a|   1. Fatoring a into a produt of primes, we get at least one prime p suh

that |p|   1. If q is an other prime and n P Z
¥0, we have gcdppn, qnq � 1: there exist u, v P Z suh that

upn� vqn � 1, so that 1 ¤ |u| |p|
n
�|v| |q|

n
¤ |p|

n
�|q|

n
. As lim

nÑ8

|p|
n
� 0, this implies that |q| ¥ 1, whene

|q| � 1. This shows in partiular that |x| � 1 whenever x P Z zpZ, so that |x| � |x|
c
p with c � �

ln|p|

lnppq
for all

x P Z, whene for all x P Q, so that |.| is equivalent to the p-adi absolute value. �

Remark 3.1.11. We have the produt formula

¹

vPVpQq

|x|v � 1

for all x P Q�

.

3.1.12. The approximation theorem. Let K be a �eld.

Lemma 3.1.13. Let |.| be an absolute value on K and x P K. Then

lim
mÑ8

xm

1� xm
�

#

0 if |x|   1

1 if |x| ¡ 1

Proof. We have

xm

1�xm � 1 � �

1
1�xm . �

Lemma 3.1.14. Let |.|1 , . . . , |.|n be pairwise non equivalent non trivial absolute values on K. There exists

a P K suh that |a|1 ¡ 1 and |a|i   1 for all i P t2, . . . , nu. For eah ε P R
¡0, there exists α P K suh that

|α� 1|1   ε and |α|i   ε for all i P t2, . . . , nu.

Proof. We use indution on n P Z
¥2.

 Assume n � 2 and that suh an a does not exist: for all x P K, we have |x|1 ¡ 1 ñ |x|2 ¥ 1. Applied

to x�1
when x � 0, this implies that |x|1   1 ñ |x|2 ¤ 1. Taking ontrapositives, we have the same

impliations after exhanging |.|1 and |.|2. As |.|1 and |.|2 are non trivial, there exists y1, y2 P K
�

suh that

|y1|1   1 and |y2|2   1: this implies that |y|1   1 and |y|2   1 where y � y1y2. If x P K and n P Z
¡0 are

suh that |x|1   |y|
n
1 , we have

�

�

�

x
yn

�

�

�

1
  1, whih implies that

�

�

�

x
yn

�

�

�

2
¤ 1 i.e. |x|2 ¤ |y|

n
2 . This shows that for

all a P K, we have B1pa, |y|
n
q � B2pa, |y|

n
2 q � B2pa, |y|

n�1

2 q. As the balls B2pa, |y|
n�1

2 q for a basis for the

topology on K de�ned by |.|2, this shows that the topology de�ned by |.|1 is �ner than that de�ned by |.|2.

Symmetrially, the topology de�ned by |.|2 is �ner than that de�ned by |.|1: they are the same, so |.|1 and

|.|2 are equivalent, ontraditing the hypothesis.

 Assume that n ¡ 2. By the indution hypothesis, there exists b P K suh that |b|1 ¡ 1 and |b|i   1 for all

i P t2, . . . , n� 1u. By the ase n � 2, there exists c P K suh that |c|1 ¡ 1 and |c|n   1.

Case where |b|n ¤ 1. For m P Z
¡0, put am � cbm. We have |am|1 � |c|1 |b|

m
1 ¡ 1 and |am|n � |c|n |b|

m
n   1.

If i P t2, . . . , n� 1u, we have |am|i � |c|i |b|
m
i ÝÝÝÝÑ

mÑ8

0, so we an take a � am with m is large enough.
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Case where |b|n ¡ 1. For m P Z
¡0, put am �

cbm

1�cbm
. As |b|1   1 and |b|n ¡ 1, lemma 3.1.13 implies that

lim
mÑ8

am � c for the absolute values |.|1 and |.|n. As |c|1 ¡ 1 and |c|n   1, this implies that |am|1 ¡ 1 and

|am|n   1 whenever m is large enough. On the other hand, if i P t2, . . . , n � 1u, we have lim
mÑ8

am � 0 for

the absolute value |.|i, so that |am|i   1 for m large enough. Here again we an take a � am with m is large

enough.

 Using the a we onstruted, we have lim
mÑ8

am

1�am
� 1 for the absolute value |.|1 and lim

mÑ8

am

1�am
� 0 for the

absolute values |.|i if i P t2, . . . , nu: we an take α � am

1�am
with m large enough. �

Theorem 3.1.15. (Approximation theorem). Let |.|1 , . . . , |.|n be pairwise non equivalent non trivial

absolute values on K. Given ε P R
¡0 and y1, . . . , yn P K, there exists x P K suh that |x� yi|i   ε for all

i P t1, . . . , nu.

Proof. Let M � max
1¤i¤n

n
°

k�1

|yk|i. By lemma 3.1.14, there exist a1, . . . , an P K suh that |αi � 1|i  
ε
M

and

|αi|j  
ε
M

for all j P t1, . . . , nuztiu. Put x �
n
°

k�1

αkyk. For i P t1, . . . , nu, we have

|x� yi|i �

�

�

�

�

pαi � 1qyi �
°

k�i

αkyk

�

�

�

�

i

¤ |αi � 1|i |yi|i �
°

k�i

|αk|i |yk|i  
ε
M

n
°

k�1

|yk|i ¤ ε.

�

3.2. Valuations.

De�nition 3.2.1. A valuation

(28)

on a �eld K is a map v : K Ñ RYt�8u suh that:

(1) vpxq � �8� x � 0;

(2) p�x, y P Kq vpxyq � vpxq � vpyq;

(3) p�x, y P Kq vpx� yq ¥ mintvpxq, vpyqu.

Remark 3.2.2. In ondition (3), we have

(29) vpx� yq � mintvpxq, vpyqu as soon as vpxq � vpyq (f remark

3.1.3 (2)).

De�nition 3.2.3. (1) The valuation v is trivial if vpK�

q � t0u. Condition (2) in de�nition 3.2.1 implies

that vpK�

q is a subgroup of pR,�q. It also implies that vp1q � 0. The valuation v is alled disrete when

vpK�

q is a disrete subgroup of R: it is then of the form λZ for some λ P R
¥0. A disrete valuation v is

alled normalized when vpK�

q � Z.

(2) Let K be a �eld and v : K Ñ RYt�8u be a valuation. Then

OK,v � tx P K ; vpxq ¥ 0u

is a subring of K alled the ring of integers of v. Similarly,

mK,v � tx P K ; vpxq ¡ 0u

is an ideal in OK,v.

Proposition 3.2.4. An element x P OK,v is invertible in OK,v if and only if vpxq � 0. In partiular, OK,v

is a loal ring with maximal ideal mK,v. For all x, y P OK,vzt0u, we have x | y in OK,v if and only if

vpxq ¤ vpyq. Moreover K � OK,vrα
�1
s for all α P mK,vzt0u, and OK,v is integrally losed.

Proof.  If x P O�

K,v, then x
�1
P OK,v, i.e. vpx

�1
q ¥ 0. As vpxq�vpx�1

q � vp1q � 0, we must have vpxq � 0.

Conversely, assume that vpxq � 0: as vpxq � vpx�1
q � vp1q � 0 we have vpx�1

q � 0, i.e. x�1
P OK,v and

x P O�

K,v.

 Let x P OK,vzmK,v: we have vpxq � 0, so that x P O�

K,v by what preedes. This implies that OK,v is a

loal ring with maximal ideal mK,v.

 Let x, y P OK,vzt0u. If y � xz with z P OK,v, then vpyq � vpxq � vpzq ¥ vpxq sine vpzq ¥ 0. Conversely,

assume that vpxq ¤ vpyq. Put z � x�1y P K. We have vpzq � vpyq � vpxq ¥ 0, hene z P OK,v i.e. x | y.

 Assume α P mK,vzt0u. We ertainly have OK,vrα
�1
s � K: let x P K. As lim

nÑ8

vpxq � nvpαq � �8 (sine

vpαq ¡ 0), there exists n P Z
¥0 suh that vpαnxq ¥ 0, i.e. αnx P OK,v, so that x P OK,vrα

�1
s.

 Let z P K�

be integral overOK,v: write z �
x
y
with x, y P OK,vzt0u. Let z

n
�a1z

n�1
�� � ��an�1z�an � 0

be an equation of integral dependene over OK,v. We have xn � a1x
n�1y� � � � � any

n
� 0, so that nvpxq ¥

(28)

Some authors all �valuation� what we alled �absolute value�.

(29)

The proof is the same: if vpxq � vpyq, say vpxq   vpyq, then vpyq ¡ vpxq � vpx � y � yq ¥ mintvpx � yq, vpyqu, so

vpx � yq ¥ vpxq ¥ vpx� yq i.e. vpx � yq � vpxq.
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min
1¤i¤n

pvpaiq�pn�iqvpxq�ivpyqq: there exists i0 P t1, . . . , nu suh that nvpxq ¥ vpai0q�pn�i0qvpxq�i0vpyq,

hene i0vpxq ¥ i0vpyq i.e. vpxq ¥ vpyq, so that vpzq ¥ 0 i.e. z P OK,v. �

Corollary 3.2.5. The valuation v is non trivial and disrete if and only if OK,v is a DVR

(30)

.

Proof.  Assume v is non trivial and disrete: write vpK�

q � αZ with α P R
¡0. Let π P OK,v be suh that

vpπq � α : if x P OK,V zt0u, we have u :� xπ�vpxq P O�

K,v (beause vpuq � 0, f proposition 3.2.4). This

implies that OK,v is a PID (its ideals are t0u and xπyn with n P Z
¥0), whose only nonzero prime ideal is

xπy, so that OK,v is a DVR (f de�nition 1.8.25).

 Conversely, assume that OK,v is a DVR: let π P K be a uniformizer. Any non-zero element x P K�

an

be written in a unique way x � uπn with u P OK,v and n P Z: we have vpxq � vpuq � nvpπq � nvpπq, so

that vpK�

q � vpπqZ. �

Remark 3.2.6. The map v indues a group homomorphism K�

Ñ R. By proposition 3.2.4, its kernel is

O�

K,v � tx P K ; vpxq � 0u (this is the unit group of v), so that v indues a group isomorphism

K�

{O�

K,v

�

Ñ vpK�

q � R .

De�nition 3.2.7. The quotient �eld κK,v � OK,v{mK,v is alled the residue �eld of K at v.

Proposition 3.2.8. Let A be a UFD, p P A a irreduible element and vp : A Ñ Z
¥0 the p-adi valuation

(f de�nition 1.1.19). Then vp extends uniquely into a normalized valuation vp : FracpAq Ñ ZYt�8u. If

x P FracpAq, then x P A if and only if vppxq ¥ 0 for every irreduible element p P A.

Proof. (1) If x �

a
b
P FracpAq, with a P A and b P Azt0u, then vppxq � vppaq � vppbq P ZYt�8u,

proving uniity. If x �

a1

b1
is an other writing, then ab1 � a1b (beause A is an integral domain), so

vppaq � vppb
1

q � vppa
1

q � vppbq (by proposition 1.1.20) i.e. vppaq � vppbq � vppa
1

q � vppb
1

q, proving the

existene. The fat that this map is a valuation on FracpAq follows from proposition 1.1.20.

(2) Let x � a
b
P FracpAq with a P A and b P Azt0u. Assume that vppxq ¥ 0 i.e. vppaq ¥ vppbq for every

irreduible element p P A. Then b | a (f proposition 1.1.20 (2)), so x P A. The onverse is trivial. �

Example 3.2.9. Let A be a DVR with maximal ideal m and π a uniformizer. The π-adi valuation map

v : Azt0u Ñ Z
¥0 extends uniquely into a normalized disrete valuation v : FracpAq Ñ ZYt�8u, and we

have A � tx P FracpAq ; vpxq ¥ 0u and m � tx P FracpAq ; vpxq ¡ 0u.

Proposition 3.2.10. Let v be a valuation on K and ρ Ps0, 1r. Then the map

K Ñ R
¥0

x ÞÑ ρvpxq

is a non arhimedean absolute value. Conversely, if |.| is a non arhimedean absolute value on K, then

� ln |.| : K Ñ RYt�8u (with the onvention that � lnp0q � �8) is a valuation on K.

De�nition 3.2.11. (1) A valuation v on K de�nes a topology on K for whih a basis of neighborhoods of

0 is given by tx P K ; vpxq ¥ rurPR.

(2) We say that two valuations v and v1 are equivalent if they de�ne the same topology. By propositions

3.2.10 and 3.1.7, this is equivalent to the existene of a onstant γ P R
¡0 suh that v1 � γv.

Remark 3.2.12. (1) The topology de�ned by a valuation v and the absolute value ρv (for any ρ Ps0, 1r) are

the same.

(2) If v is a valuation on K and α P mK,vzt0u, the α-adi topology oinides with that de�ned by v on

OK,v (beause αnOK,v � tx P OK,v ; vpxq ¥ nvpαqu). Note that in general, the mK,v-topology does not

oinide with that de�ned by v on OK,v: when vpK
�

q is a divisible group for instane, one has m2
K,v � mK,v.

Nevertheless, these topologies oinide when v is disrete.

Example 3.2.13. (1) On Z the p-adi valuation indues a valuation vp on Q for every prime number p. The

assoiated p-adi absolute value is de�ned by |x|p � p�vppxq for all x P Q. The ring of integers of Q with

respet to vp is the loalization Z
ppq with respet to the prime ideal pZ. Its residue �eld is Fp.

(2) Let F be a �eld and K � F pXq � FracpF rXsq the �eld of rational frations with oe�ients in F . The

map � deg : F rXs Ñ Z
¥0Yt8u extends into a valuation on K (with the onvention that degp0q � �8), so

that for any r P R
¡1, the map R ÞÑ rdegpRq de�nes a non arhimedean absolute value.

(30)

Obviously, the terminology well thought-out.
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3.3. Complete valued �elds. Assume K is endowed with an absolute value |.|.

De�nition 3.3.1. (1) A sequene pxnqnPZ
¥0

with values in K is a Cauhy sequene if for every ε P R
¡0

there exists N P Z
¥0 suh that for all m,n ¥ N , we have |xn � xm|   ε.

(2) A onvergent sequene is a Cauhy sequene, and we say that K is omplete (for |.|) when the onverse

holds.

Example 3.3.2. The �eld Q is not omplete for the arhimedean absolute value |.|
8

, nor for the p-adi

absolute values.

Proposition 3.3.3. There exists a omplete valued �eld p

pK, |.|q and a morphism of valued �elds ι : K Ñ

pK

suh that ιpKq is dense in pK.

Proof. Let C pKq be the set of Cauhy sequenes with values in K. This is a ring when endowed with

omponentwise addition and multipliation. Denote by I pKq the set of sequenes with values in K that

onverge to 0. This is an ideal in C pKq: put pK � C pKq{I pKq, and let ι : K Ñ

pK be the map de�ned by

ιpxq � πpx, x, x, . . .q where π : C pKq Ñ pK is the projetion. The map ι is a ring homomorphism making

pK

into a K-algebra.

 The ring

pK is a �eld. Let x � pxnqnPZ
¥0
P C pKqzI pKq: we have to show that πpxq is invertible. There

exists ε0 Ps0, 1r suh that for all N P Z
¥0, there exists n ¥ N suh that |xn| ¥ ε0. As x is Cauhy, there

exists N0 P Z
¥0 suh that n,m ¥ N0 ñ |xn � xm|  

ε0
2
. By what preedes, there exists N1 ¥ N0 suh that

|xN1
| ¥ ε0. This implies that |xn| ¡

ε0
2
for all n ¥ N1. Now hanging �nitely many terms in x does not

modify πpxq: we may assume that xn � 1 for all n   N1. This implies in partiular that |xn| ¡
ε0
2
hene

xn � 0 for all n P Z
¥0: we may onsider the sequene y � px�1

n qnPZ
¥0
. Let's show it is a Cauhy sequene:

�x ε P R
¡0. There existsN P Z

¥0 suh that n,m ¥ N ñ |xn � xm|  
ε20ε

4
. Then

�

�x�1
n � x�1

m

�

�

�

|xn�xm|

|xnxm|

  ε

for all n,m ¥ N . Thus y P C pKq, and xy � 1.

 The �eld

pK is valued. Let x � pxnqnPZ
¥0
P C pKq. For all n,m P Z

¥0, we have ||xn| � |xm|| ¤ |xn � xm|:

this implies that p|xn|qnPZ
¥0

is a Cauhy sequene in R: it onverges. Its limit in R depends only on πpxq:

this de�nes a map |.| : pK Ñ R
¥0. The absolute value axioms pass to the limit: the map |.| : pK Ñ R

¥0 is

an absolute value. It extends |.| on K, so ι is a morphism of valued �elds.

 If x � pxnqnPZ
¥0
P C pKq, the sequene pιpxnqqnPZ

¥0
onverges to πpxq in p pK, |.|q. Indeed, let ε P R

¡0:

there exists N P Z
¥0 suh that n,m ¥ N ñ |xn � xm|   ε, so that |ιpxnq � πpxq| � lim

mÑ8

|xn � xm| ¤ ε for

all n ¥ N . In partiular, ιpKq is dense in pK.

 p

pK, |.|q is omplete. Let pξnqnPZ
¥0

be a Cauhy sequene in

pK. For eah n P Z
¥0, hoose xn P K suh that

|ξn � ιpxnq|  
1

n�1
. Let ε P R

¡0: there existsN P Z
¥0 suh that n,m ¥ N ñ |ξn � ξm|  

ε
3
. We an assume

that

1
N�1

 

ε
3
: then |xn � xm| � |ιpxnq � ιpxmq| ¤ |ξn � ιpxnq|�|ξn � ξm|�|ξm � ιpxmq|   ε: the sequene

x :� pxnqnPZ
¥0

is Cauhy in K. Put ℓ � πpxq P pK: we have |ξn � ℓ| ¤ |ξn � ιpxnq|�|ιpxnq � ℓ| ÝÝÝÑ
nÑ8

0. �

De�nition 3.3.4. The valued �eld p

pK, |.|q has the following universal property: if pL, |.|Lq is a omplete

valued �eld and f : K Ñ L a morphism of valued �elds, there exists a unique morphism of valued �elds

pf : pK Ñ L suh that f � pf � ι. In partiular, the valued �eld p

pK, |.|q is unique up to unique isomorphism.

It is alled the ompletion of pK, |.|q.

Remark 3.3.5. The ompletion of Q with respet to the �usual� absolute value |.|
8

is nothing but R (this

is in fat the very de�nition of R). Note that the proof of proposition 3.3.3 uses R (essentially to de�ne the

absolute value on

pK), so rigorously, one has to build the ordered �eld R �rst.

De�nition 3.3.6. Let p be a prime integer. The ompletion of Q with respet to the p-adi absolute value

is denoted by Qp. It is alled the �eld of p-adi numbers.

Lemma 3.3.7. Let A be a ring, α P A and

pA � lim
�Ý

n

A{αnA its α-adi ompletion. Then

pA is separated and

omplete for the α-adi topology.

Proof. For all integers 0   n ¤ m, the sequene 0 Ñ Kn Ñ A
αn

ÝÝÑ αnA Ñ 0 is exat: tensoring by

A{αmA gives the exat sequene Kn bA pA{α
mAq Ñ A{αmA

αn

ÝÝÑ αnA bA pA{α
mAq Ñ 0. By right

exatness of the tensor produt, the maps Kn bA pA{α
m�1Aq Ñ Kn bA pA{α

mAq are surjetive, so that

the inverse system tKn bA pA{α
mAqumPZ

¡0
has the Mittag-Le�er property. This implies that the map

pA
αn

ÝÝÑ

zαnA � lim
�Ý

m

αnAbA pA{α
mAq is surjetive.
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On the other hand, the sequene 0 Ñ αnA{αmA Ñ A{αmA Ñ A{αnA Ñ 0 is exat for all m ¥ n. The

inverse system tαnA{αmAum¥n has the Mittag-Le�er property: the sequene 0ÑzαnAÑ

pAÑ A{αnAÑ 0

is exat.

Put together, this provides an exat sequene

pA
αn

ÝÝÑ

pA Ñ A{αnA Ñ 0, so that A{αnA
�

Ñ

pA{αn pA: passing

to inverse limit gives an isomorphism

pA
�

Ñ

x

xA, whene the result. �

Proposition 3.3.8. (Algebrai onstrution of the ompletion in the non arhimedean ase).

Assume |.| is a non arhimedean valuation on K, and let v be an assoiated valuation. Let α P mK,vzt0u,

and

pOK,v be the α-adi ompletion of OK,v. Then O
xK,v

�

pOK,v and
pK �

pOK,vrα
�1
s.

Proof.  Let x � pxnqnPZ
¡0
P

pOK,v � lim
�Ý

n

OK,v{α
nOK,v. For eah n P Z

¡0, let rxn P OK,v be a lift of xn.

Assume that x � 0: there exist N P Z
¡0 suh that rxN R αNOK,v. If n ¥ N , we have rxn � rxN P αNOK,v,

so that vprxnq � vprxN q (f remark 3.2.2). This implies that vprxnq does not depend on n large enough.

Likewise, vprxnq does not depend on the hoie of the lifting when n is large enough. This implies that the

map v : pOK,v Ñ R
¥0Yt8u de�ned by x ÞÑ lim

nÑ8

vprxnq is well de�ned. The valuation properties extend to

v on

pOK,v. Condition (2) imply in partiular that

pOK,v is an integral domain.

 Let x P pOK,vzt0u: we have vpxq P R
¥0. Let m P Z

¥0 large enough suh that vpxq   mvpαq. Using

previous notations, we may assume that vprxnq   mvpαq for all n ¥ m. By proposition 3.2.4, we have

rxm�1 | α
m
in OK,v: let y P OK,v be suh that rxm�1y � αm. This implies that xy P αm � αm�1

pOK,v: there

exists z P pOK,v suh that xy � αmp1�αzq. As 1�αz is invertible in pOK,v (the series

8

°

n�0

pαzqn onverges),

we dedue that x | αm in

pOK,v, whih implies that x is invertible in

pOK,vrα
�1
s, whih thus is the �eld of

frations of

pOK,v.

 The valuation v extends uniquely to pOK,vrα
�1
s. The natural map OK,v Ñ

pOK,v loalizes into a morphism

of valued �elds K Ñ

pOK,vrα
�1
s. If x P pOK,vrα

�1
s, there exists m P Z

¥0 suh that αmx P pOK,v: if N P Z
¥0,

we an hoose y P OK,v suh that vpαmx � yq ¥ N �m, so that vpx � α�myq ¥ N . As α�my P K, this

shows that the image of K in

pOK,vrα
�1
s is dense.

 Let pxnqnPZ
¥0

be a Cauhy sequene in

pOK,vrα
�1
s. It is bounded: there exists m P Z

¥0 suh that

αmxn P pOK,v for all n P Z
¥0. The ring

pOK,v is omplete for the α-adi topology (f lemma 3.3.7), hene

for the topology de�ned by v (f remark 3.2.12 (2)). This implies that pαmxnqnPZ
¥0

is onvergent in

pOK,v,

so that

pOK,vrα
�1
s is omplete for v. By the universal property, we have

pK �

pOK,vrα
�1
s. Heneforth, we

identify them and write abusively

pK �

pOK,vrα
�1
s.

 We ertainly have

pOK,v � O
xK,v

. Let x P O
xK,v

. Fix m P Z
¥0 suh that y � αmx P pOK,v: we have

vpyq � mvpαq � vpxq ¥ mvpαq. By proposition 3.2.4 applied to the valuation ring

pOK,v, we know that

αm | y in

pOK,v, whih means that x P pOK,v, showing the equality O
xK,v

�

pOK,v. �

Example 3.3.9. Algebrai onstrution of Qp. The ring of integers of Q with respet to the p-adi valuation

is Z
ppq, the loalization of Z at the prime ideal pZ. Then Qp � Zprp

�1
s where

Zp � lim
�Ý

n

Z
ppq {p

nZ
ppq

�

� lim
�Ý

n

Z {pnZ

The ring of integers Zp is alled the ring of p-adi integers.

Theorem 3.3.10. (Newton's lemma). Assume that pK, |.|q is a omplete non arhimedean valued �eld

with ring of integers OK . Let P P OKrXs and α P OK . Assume that there exists ε P r0, 1r suh that

|P pαq| ¤ ε
�

�P 1

pαq
�

�

2
.

Then there exists a unique rα P OK suh that P prαq � 0 and |rα� α| ¤ ε |P 1

pαq|.

Proof.  If P pαq � 0, we take rα � α: assume that P pαq � 0, the hypothesis imply that P 1

pαq � 0. We have

P pα � Xq � P pαq � P 1

pαqX � P r2s
pαqX2

� � � � � P rns
pαqXn

where n � degpP q (here P ris
is the divided

i-th derivative, whih formally is

1
i!
P piq

: it is

�

n
i

�

Xn�i
P ZrXs when P � Xn

, so P ris
P OK rXs). Put

x1 � �

P pαq

P 1pαq
P K. We have |x1| �

|P pαq|

|P 1pαq|
¤ ε |P 1

pαq| ¤ ε   1 (sine P 1

P OK , whene P
1

pαq P OK). This

implies that x1 P OK , so α1 � α� x1 P OK . Moreover, we have

P pα1q � P r2s
pαqx21 � � � � � P rns

pαqxn1
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so that |P pα1q| ¤ max
2¤i¤n

t

�

�P ris
pαq

�

�

|x1|
i
u. As

�

�P ris
pαq

�

�

¤ 1 (beause P ris
pαq P OK) and |x1| ¤ 1, we dedue

that |P pα1q| ¤ |x1|
2
¤ ε2 |P 1

pαq|
2
. Note also that

P 1

pα1q � P 1

pαq � P p2q
pαqx1 � � � � � pP

1

q

rn�1s
pαqxn�1

1

so that |P 1

pα1q � P 1

pαq| ¤ |x1| ¤ ε |P 1

pαq|: as ε P r0, 1r, this implies that |P 1

pα1q| � |P 1

pαq|.

What preedes show that we an onstrut indutively a sequene pαmqmPZ
¥0

of elements in OK suh

that α0 � α, |P pαmq| ¤ ε2
m

|P 1

pαq|
2
, |αm�1 � αm| ¤ ε2

m

|P 1

pαq| (and αm�1 � αm if P pαmq � 0) for all

m P Z. By onstrution, the sequene pαmqmPZ
¥0

is Cauhy, hene onverges to a limit rα P OK (sine K is

omplete). Passing to the limit we have P prαq � 0 and |rα� α| ¤ ε |P 1

pαq|.

 The uniity of rα is obvious if P 1

pαq � 0 (we must have rα � α): assume that P 1

pαq � 0. Let rα1 P OK

be suh that P prα1q � 0 and |rα1 � α| ¤ ε |P 1

pαq|. What preedes shows that |P 1

prαq| � |P 1

pαq|. We have

0 � P prα1q�P prαq �
n
°

i�1

P ris
prαqprα1�rαqi. Assume that rα1 � rα: dividing the preeding equality by rα1�rα gives

�P 1

prαq �
n
°

i�1

P ris
prαqprα1 � rαqi�1

, so that |P 1

prαq| ¤ max
2¤i¤n

�

�P ris
prαq

�

�

|rα1 � rα|
i�1

. As P P OKrXs and rα P OK ,

we have

�

�P ris
prαq

�

�

¤ 1, and as rα1, rα P OK , we have |rα1 � rα| ¤ 1. This implies that |P 1

prαq| ¤ |rα1 � rα|,

ontraditing the inequalities |rα1 � rα| ¤ maxt|rα1 � α| , |rα� α|u ¤ ε |P 1

prαq| and ε   1. �

Remark 3.3.11. The onvergene of the sequene pαmqmPZ
¥0

is quadrati.

Example 3.3.12. (Roots of unity in Qp). Let p be a prime number. If α P K is a root of unity: assume

αd � 1 with d P Z
¡1. We have |α|

d
� 1, so |α| � 1 i.e. α P Z�p . Let α be the image of α in Fp � Zp {pZp.

 Assume that d � p. As αp � α, we have α � 1, i.e. α � 1� x with x P pZp. Then 1 � αp � p1� xqp �

1�px�
p�1
°

i�2

�

p
i

�

xi�xp. If x � 0, this implies that p�
p�1
°

i�2

�

p
i

�

xi�1
�xp�1

� 0: as vp
��

p
i

�

x
�

¥ 2 (sine p |
�

p
i

�

),

we have vppx
p�1

q � 1, thus p � 2 and α P t�1u. This shows that if p � 2, we have α � 1.

 Assume d � 4 and p � 2. We have α2
P t�1u by what preedes. If we had α2

� �1, this would imply

that p1� αq2 � 2α, hene 2v2p1� αq � 1 (beause v2pαq � 0), so that v2p1� αq � 1
2
R Z, whih is absurd.

This shows that α2
� 1. More generally, if α2r

� 1 with r P Z
¡0, then α � t�1u.

 Assume that p ∤ d. As α � 0, we have αp�1
� 1, so that αp�1

� 1� x for some x P pZp. Here again we

have 1 � αpp�1qd
� 1� dx�

p�1
°

i�2

�

d
i

�

xi � xd. If x � 0, this implies that d�
p�1
°

i�2

�

d
i

�

xi�1
� xd�1

� 0: this is a

ontradition sine p |
p�1
°

i�2

�

d
i

�

xi�1
� xd�1

. So we must have x � 0, i.e. αp�1
� 1.

 What preedes imply that α2
� 1 if p � 2 and αp�1

� 1 if p � 2. Conversely, let's show that roots of

unity in Qp are t�1u if p � 2 and µp�1 if p � 2. This is trivial if p � 2: assume that p � 2. Consider the

polynomial P � Xp�1
� 1. It splits with simple roots in Fp. For any α P Zp lifting an element of F�

p , we

have P 1

pαq � pp� 1qαp�2
P Z�p , so that |P 1

pαq|p � 1, whereas |P pαq|p ¤
1
p
. Newton's lemma applies (with

ε � 1
p
): there exists a root rα P Zp of P suh that |rα� α|   1, so that rα and α have same redution mod p.

This means that the p� 1 elements in F�

p an be lifted by p� 1 roots of unity.

3.4. Normed vetor spaes. Let pK, |.|q be a valued �eld.

De�nition 3.4.1.  Let V be a K-vetor spae. A norm on V is a map

}.} : V Ñ R
¥0

suh that

(1) p�v P V q }v} � 0� v � 0 (separation);

(2) p�λ P Kq p�v P V q }λv} � |λ| }v} (multipliativity);

(3) p�v1, v2 P V q }v1 � v2} ¤ }v1} � }v2} (triangle inequality).

When pK, |.|q is not arhimedean, we require the stronger:

(3') p�v1, v2 P V q }v1 � v2} ¤ maxt}v1} , }v2}u (strong triangle inequality),

The pair pV, }.}q is then alled a normed vetor spae.

 A normed K-algebra is a K-algebra A endowed with a norm }.} suh that:

(4) p�a, b P Aq }ab} ¤ }a} }b}.

Example 3.4.2. (1) If pL, |.|q is a valued �eld and K � L a sub�eld, endowed with the restrition of |.|,

then the absolute value |.| endows L with a normed vetor spae (even a normed K-algebra) struture.
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(2) Let X be a set and BpX,Kq the spae of bounded maps on X with values in K. If f P BpX,Kq, put

}f}
8

� sup
xPX

|fpxq|. Then pBpX,Kq, }.}
8

q is a normed vetor spae over K.

As a speial ase, x � px1, . . . , xnq ÞÑ }x}
8

� max
1¤i¤n

|xi| is a norm on Kn
.

(3) Let ℓ1pKq �
!

x � pxnqnPZ
¥0

P KZ
¥0 ;

8

°

n�0

|xn|   �8

)

. For x � pxnqnPZ
¥0

P ℓ1pKq, we put

}x}1 �
8

°

n�0

|xn|. The map }.}1 satis�es onditions (1), (2) and (3) of de�nition 3.4.1, but not ondition

(3') (even when pK, |.|q is non arhimedean). Thus pℓ1pKq, }.}1q is a normed vetor spae over K when K

is arhimedean, but not when pK, |.|q is non arhimedean.

De�nition 3.4.3. Let pV, }.}q be a normed K-vetor spae. Then the open balls Bpv, rq (with v P V and

r P R
¡0) form a basis for a topology on V . In what follows, V will always be endowed with this topology.

Assuming that K is omplete, we say that pV, }.}q is a Banah spae when pV, }.}q is omplete.

Proposition 3.4.4. If pK, |.|q is omplete, then pBpX,Kq, }.}
8

q is.

Proof. Let pfnqnPZ
¥0

be a Cauhy sequene in pBpX,Kq, }.}
8

q: for x P X , the sequene pfnpxqqnPZ
¥0

is Cauhy in K, hene onverges to a limit fpxq P K. Let ε P R
¡0: there exists N P Z

¥0 suh that

N ¤ n ¤ m ñ }fn � fm}
8

  ε. For x P X , we have |fpxq � fnpxq| ¤ |fpxq � fmpxq| � |fmpxq � fnpxq|  

|fpxq � fmpxq| � ε. Passing to the limit as m Ñ 8, we get |fpxq � fnpxq| ¤ ε. As this holds for all x P X ,

we thus have }f � fn}
8

¤ ε as soon as n ¥ N . This shows that f P BpX,Kq, and also that pfnqnPZ
¥0

onverges to f for }.}
8

. �

Example 3.4.5. The spae pKn, }.}
8

q is omplete.

De�nition 3.4.6. Let V be a K-vetor spae. Two norms }.} , }.}
1

on V are equivalent when they de�ne the

same topology on V .

Form now on, we assume that the absolute value |.| is non trivial.

Proposition 3.4.7. Two norms }.} , }.}
1

on V are equivalent if and only if there exist onstants c1, c2 P R
¡0

suh that

p�v P V q c1 }v} ¤ }v}
1

¤ c2 }v}

Proof. Assume }.} , }.}
1

are equivalent. The ball Bp0, 1q is open for the topology de�ned by }.}
1

: there exists

r P R
¡0 suh that Bp0, rq1 � Bp0, 1q. Let π P K be suh that

(31) 0   |π|   1. If v P V zt0u there exists n P Z

suh that |π| r ¤ |π|
n
}v}

1

  r. Then we have |π|
n
}v} � }πnv} ¤ 1, i.e.

|π|r

}v}1
}v} ¤ 1, so that c1 }v} ¤ }v}

1

with c1 � |π| r. This also holds when v � 0. Similarly, there exists c2 P R
¡0 suh that }v}

1

¤ c2 }v} for all

v P V . The onverse is obvious. �

Remark 3.4.8. Assume that |.| is the trivial absolute value, and let V be a K-vetor spae. If }.} and }.}
1

are two equivalent norms on V , there might not exist onstants c1, c2 P R
¡0 as in the previous statement.

For instane, if V � KrrXss, and ρ Ps0, 1r, let }.}ρ be the norm on V de�ned by }f}ρ � ρordpfq where

ordpfq � inftn P Z
¥0 ; an � 0u (this orresponds to the X-adi norm, with }X}ρ � ρ). If r Ps0, 1r, there

exists t P R
¡0 suh that r � ρt, so that }.}r � }.}

t
ρ, so that the norms }.}r and }.}ρ de�ne the same

balls hene the same topology: they are equivalent. Assume r ¡ ρ, and that we have c P R
¡0 suh that

}.}r ¤ c }.}ρ: applied to Xn
, this gives rn ¤ cρn, i.e.

�

r
ρ

�n
¤ c: this is a ontradition.

Nevertheless, proposition 3.4.7 is still valid when |.| is trivial if V has �nite dimension: let pe1, . . . , edq be

a basis of V over K and }.} a norm on V . If v �
d
°

i�1

λiei P V , we have }v} ¤
d
°

i�1

|λi| }ei} ¤ c2 :�
d
°

i�1

}ei}.

On the other hand, for n P Z
¡0, let Vn be the span of vetors v P V suh that }v}   1

n
. The sequene of

sub-spaes pVnqnPZ
¡0

is dereasing: V being �nite dimensional, there exists N P Z
¡0 suh that Vn � VN

for all n ¥ N . If v P VN and n ¥ N , then v an be written as a linear ombination of elements in Vn:

the previous omputation implies that }v} ¤ d
n
. As n is arbitrary, we have }v} � 0, hene VN � t0u: this

implies that if v � 0, then c1 :� 1
N
¤ }v} ¤ c2.

Proposition 3.4.9. Let pV, }.}V q and pW, }.}W q be normed vetor spaes over pK, |.|q, and ϕ P HomKpV,W q.

The following are equivalent:

(1) ϕ is ontinuous;

(2) ϕ is ontinuous at 0;

(3) there exists c P R
¥0 suh that p�v P V q }ϕpvq}W ¤ c }v}V .

(31)

Reall that |.| is not trivial.
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Proof. (1)�(2) and (3)ñ(2) are obvious.

Assume (2): there exists r P R
¡0 suh that ϕpBp0, rqV q � Bp0, 1qW , thus ϕpBp0, 1qV q � B

�

0, 1
r

�

W
. Let

v P V zt0u. There exists n P Z suh that |π| ¤ |π|
n
}v}V   1, so that }ϕpπnvq}W  

1
r
, i.e. }ϕpvq}W ¤ c }v}V

with c � 1
|π|r

. This also holds when v � 0. �

De�nition 3.4.10. We denote by HomK,ontpV,W q the set of elements in HomKpV,W q that are ontinuous.

If ϕ P HomK,ontpV,W q, we put

~ϕ~ � sup
vPV zt0u

}ϕpvq}W
}v}V

P R
¥0 .

This is the smallest onstant c P R
¥0 suh that p�v P V q }ϕpvq}W ¤ c }v}V .

Proposition 3.4.11. If pV, }.}V q and pW, }.}W q be normed vetor spaes over pK, |.|q, then HomK,ontpV,W q

is a sub-K-vetor spae of HomKpV,W q. The map ~.~ : HomK,ontpV,W q Ñ R
¥0 is a norm. Finally

pHomK,ontpV,W q,~.~q is a Banah spae when pW, }.}W q is.

Proof. The �rst point is obvious. We ertainly have ~ϕ~ � 0ñ ϕ � 0, and ~λϕ~ � |λ| ~ϕ~ for all λ P K.

If ϕ, ψ P HomK,ontpV,W q and v P V , we have

}pϕ� ψqpvq}W ¤ }ϕpvq}W � }ψpvq}W ¤ ~ϕ~ }v}V � ~ψ~ }v}V when pK, |.|q is arhimedean,

}pϕ� ψqpvq}W ¤ maxt}ϕpvq}W , }ψpvq}W u ¤ maxt~ϕ~ }v}V ,~ψ~ }v}V u otherwise,

whih implies that ~ϕ� ψ~ ¤ ~ϕ~ � ~ψ~ if pK, |.|q is arhimedean and ~ϕ� ψ~ ¤ maxt~ϕ~ ,~ψ~u

otherwise.

Assume now that pW, }.}W q is omplete, and let pϕnqnPZ
¥0

be a Cauhy sequene in pHomK,ontpV,W q,~.~q.

If v P V , then }ϕnpvq � ϕmpvq}W ¤ ~ϕn � ϕm~ }v}V for all n,m P Z
¥0, so that the sequene pϕnpvqqnPZ

¥0

is Cauhy in pV, }.}W q: it onverges to a limit ϕpvq P W . The linearity of the maps ϕn imply that of

ϕ. Moreover, a Cauhy sequene is bounded: there exists C P R
¥0 suh that p�n P Z

¥0q ~ϕn~ ¤ C,

so that for any v P V , we have }ϕnpvq}W ¤ C }v}V , thus }ϕpvq}W ¤ C }v}V � }ϕpvq � ϕnpvq}W , whene

}ϕpvq}W ¤ C }v}V (passing to the limit as nÑ8). This shows that ϕ P HomK,ontpV,W q.

Let ε P R
¡0: there exists N P Z

¥0 suh that N ¤ n ¤ m ñ ~ϕn � ϕm~   ε. If v P V , we have

}ϕpvq � ϕnpvq}W ¤ }ϕpvq � ϕmpvq}W �}ϕnpvq � ϕmpvq}W ¤ }ϕpvq � ϕmpvq}W � ε }v}V . This implies that

}ϕpvq � ϕnpvq}W ¤ ε }v}V (passing to the limit as m Ñ 8) for all v P V , whene ~ϕ� ϕn~ ¤ ε. This

shows that the sequene pϕnqnPZ
¥0

onverges to ϕ in pHomK,ontpV,W q,~.~q. �

Theorem 3.4.12. Assume pK, |.|q is omplete. Let pV, }.}q be a normed vetor spae of �nite dimension over

K, and B � pe1, . . . , enq a basis of V . Then the dual basis B�

� pe�1 , . . . , e
�

nq is made of ontinuous linear

forms. Moreover, all norms on V are equivalent, and V is a Banah spae. In partiular, sub-K-vetor

spaes are losed in V .

Proof. We proeed by indution on n � dimKpV q. This is trivial when n P t0, 1u: assume n ¡ 1. Let

H � Vectpe1, . . . , en�1q: by indution hypothesis, this is a Banah spae when endowed with the restrition

of }.}. Assume that e�n is not ontinuous. This implies that there exists a sequene pviqiPZ
¥0

in V suh that

lim
iÑ8

vi � 0 but pe�npviqqiPZ¥0
does to onverge to 0: after extrating a sub-sequene, we may assume that

there exists ε P R
¡0 suh that |e�npviq| ¥ ε for all i P Z

¥0. For i P Z
¥0, put ui �

vi
e�n pviq

: we have e�npuiq � 1

i.e. ui � en P H , and }ui} ¤
}vi}

ε
ÝÝÝÑ

iÑ8

0. This implies in partiular that the sequene pui � enqiPZ
¥0
,

whih has values in H , onverges to �en. But H being omplete, this shows that en P H , whih is absurd.

Thus we have shows that e�n is ontinuous. Permuting the elements in B, we dedue that e�1 , . . . , e
�

n are all

ontinuous.

Consider the map }.}B : V Ñ R
¥0 given by }v}B � }fpvq}

8

, where fpvq � pe�1 pvq, . . . , e
�

npvqq P K
n
for

all v P V : this de�nes a norm }.}B on V . We have }v} �

�

�

�

�

n
°

i�1

e�i pvqei

�

�

�

�

¤

n
°

i�1

|e�i pvq| }ei} ¤ c }v}B where

c �
n
°

i�1

}ei} P R
¡0, whene c1 }v} ¤ }v}B with c1 � c�1

for all v P V . On the other hand, the linear forms

e�1 , . . . , e
�

n, hene f , are ontinuous: there exists c2 P R
¥0 suh that p�v P V q }v}B � }fpvq}

8

¤ c2 }v}.

This shows that the norms }.} and }.}B are equivalent, so all norms are equivalent to }.}B.

As f : V Ñ Kn
is an isometry for the norms }.}B and }.}

8

, and sine pKn, }.}
8

q is a Banah, so in V . �

Remark 3.4.13. Theorem 3.4.12 is not valid without the assumtion of ompleteness. For instane onsider

Qp
?

2q � R as a Q-vetor spae, endowed with the restrition }.} of the �usual� absolute value |.|
8

, and

let B � p1,
?

2q. Pell's equation x2 � 2y2 � �1 has in�nitely many solutions: one an onstrut a sequene
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pun, vnqnPZ
¥0

in Z2
¡0 suh that

�

�un � vn
?

2
�

�

8

¤

1

un�vn
?

2
and un, vn ÝÝÝÑ

nÑ8

�8. This implies that if

xn � un � vn
?

2 P Qp
?

2q, the sequene pxnqnPZ
¥0

onverges to 0 in pQp
?

2q, }.}q, whereas the sequenes of

oordinates punqnPZ
¥0

and pvnqnPZ
¥0

do not. In partiular, the norm x � y
?

2 ÞÑ maxt|x| , |y|u and }.} are

not equivalent on Qp
?

2q.

3.4.14. The Hahn-Banah theorem. What follows is taken from [7℄. Assume pK, |.|q is omplete and let

pV, }.}q be a normed K-vetor spae.

Theorem 3.4.15. LetW � V be a losed sub-K-vetor spae and x1, . . . , xn P V . ThenW�Kx1�� � ��Kxn
is a losed sub-K-vetor spae of V . In partiular, every �nite dimensional sub-K-vetor spae of V is losed.

Proof. The seond statement follows from the �rst. By indution, it is enough to show the �rst statement

when n � 1: write x � x1. If x PW , there is nothing to do: we may assume that x P V zW . Let pwnqnPZ
¥0

and pλnqnPZ
¥0

be sequenes in W and K respetively, suh that pwn�λnxqnPZ
¥0

onverges in V . Let ℓ P V

be its limit: we have to show that ℓ PW �Kx. As W is losed in V , it is enough to show that the sequene

pλnqnPZ
¥0

onverges in K (indeed, if λ P K is its limit, the sequene pwnqnPZ
¥0

onverges in V , hene in W

sine W is losed in V : let w PW be its limit; passing to the limit, we have ℓ � w � λx PW �Kx).

 Assume ℓ � 0, and that the sequene pλnqnPZ
¥0

does not onverge to 0 in K: there exists ε P R
¡0 and a

stritly inreasing map ϕ : Z
¥0 Ñ Z

¥0 suh that

�

�λϕpnq
�

�

¥ ε for all n P Z
¥0. We have

�

�

�

λ�1
ϕpnq

pwϕpnq � λϕpnqxq
�

�

�

�

�

�λϕpnq
�

�

�1 �
�wϕpnq � λϕpnqx

�

�

¤ ε�1
�

�wϕpnq � λϕpnqx
�

�

whih onverges to 0. This implies that lim
nÑ8

λ�1
ϕpnq

wϕpnq � �x: as W is losed, this shows that x P W ,

ontraditing the hypothesis. We thus have shown that if ℓ � 0, then lim
nÑ8

λn � 0.

 General ase. For n P Z
¥0, put w

1

n � wn�1 � wn and λ1n � λn�1 � λn. As lim
nÑ8

pwn � λnxq � ℓ, we have

lim
nÑ8

pw1n�λ
1

nxq � 0: by the speial ase treated above, we have lim
nÑ8

λ1n � 0. This implies that the sequene

pλnqnPZ
¥0

is Cauhy, hene onverges (sine pK, |.|q is omplete). �

Theorem 3.4.16. (Hahn-Banah). Assume that |.| is non arhimedean and disrete. Let W � V be a

sub-K-vetor spae and ϕ : W Ñ K a ontinuous linear form. Then there exists a ontinuous linear form

rϕ : V Ñ K suh that ϕ � rϕ
|W and ~rϕ~ � ~ϕ~.

Proof. We of ourse may assume that ϕ � 0, so that M :� ~ϕ~ ¡ 0.

 Case where |.| is trivial. Let E � tx P V ; }x}   M�1
u: as |.| is trivial, this is a sub-K-vetor spae

of V . If x P E XW , we have |ϕpxq| ¤ M }x}   1, hene ϕpxq � 0: the map ϕ fators through a linear

form ϕ : W {pW X Eq Ñ K. We an extend ϕ into a linear form

rϕ : V {E Ñ K (by the axiom of hoie).

Let π : V Ñ V {E be the projetion and rϕ � rϕ � π : V Ñ K: this is a linear form suh that ϕ � rϕ
|W . If

x P V zKerprϕq, we have x R E, whene }x} ¥ M�1
, i.e. |rϕpxq| � 1 ¤ M }x}. As this obviously holds for

x � 0, we have ~rϕ~ � ~ϕ~.

 Case where |.| is not trivial. Using Zorn's lemma as usual, we redue to the ase where V � W �Kx

with x P V zW . As pK, |.|q is omplete, we an extend ϕ by ontinuity to the losure of W : we may assume

that W is losed. Put ρ � inf
�

|K|Xs1,�8r
�

: as |.| is disrete and non trivial, we have ρ ¡ 1, and there

exists λ P K suh that |λ| � ρ. Let d � inf
wPW

}x� w} be the distane form x to W : as W is losed and

x RW , we have d ¡ 0. Let k P Z be suh that ρk�1
¤ dM   ρk, i.e. M�1ρk�1

¤ d  M�1ρk: there exists

w0 P W suh that }x� w0}   M�1ρk. Replaing x by x � w0, we may assume that }x}   M�1ρk (and

d ¤ }x� w} for all w P W as before). If v P V , we an write uniquely v � w � λx with w P W and λ P K.

Put rϕpvq � ϕpwq. This de�nes a linear form rϕ : V Ñ K suh that ϕ � rϕ
|W . Moreover, we have

|rϕpvq| � |ϕpwq| ¤M }w}

so that |rϕpvq| ¤ M }v} as soon as }w} ¤ }v}. Assume now that }w � λx} � }v}   }w}: this implies that

λ � 0 and }w} � }λx}, whene
�

�λ�1w
�

�

� }x}   M�1ρk, so that

�

�λ�1ϕpwq
�

�

  ρk. As the absolute value

is disrete, this implies that

�

�λ�1ϕpwq
�

�

¤ ρk�1
¤ Md, i.e. |rϕpvq| � |ϕpwq| ¤ Md |λ|. Now λ�1w P W , so

d ¤
�

�x� λ�1w
�

�

, so d |λ| ¤ }λx� w} � }v}, so we get |rϕpvq| ¤M }v}, as required. �

Remark 3.4.17. A ounterexample when the absolute value is not disrete. Let V be the set of all power

series v � a1t
α1
� a2t

α2
� � � � where α1   α2 � � � is a stritly inreasing sequene of rational numbers and

a1, a2, . . . P Qp. Put }v} � e�α1
. De�ning addition and multipliation in the obvious way, V is a �eld, and

}.} is an absolute value on V . Let K be the sub�eld onsisting of all elements a1t
α1
� a2t

α2
� � � � suh that

lim
iÑ8

αi � �8, and denote by |.| the restrition of }.} to K. Consider V as a normed K-vetor spae. K is

itself a subspae of V , and ϕpλq � λ (for λ P K) de�nes a linear form on K suh that ~ϕ~ � 1.
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Assume there exists a linear form rϕ : V Ñ K suh that ~rϕ~ � 1. Consider v � a1t
α1
� a2t

α2
� � � � P V suh

that lim
iÑ8

αi � α. Write

rϕpvq � c1t
γ1
� c2t

γ2
� � � � P K.

As |rϕpvq| ¤ }v}, we have α1 ¤ γ1. If we had α1   γ1, we ould write

rϕpa2t
α2
� � � � q � �a1t

α1
� c1t

γ1
� c2t

γ2
� � � �

so that |rϕpa2t
α2
� � � � q| � e�α1

¡ e�α2
� }a2t

α2
� � � � } (sine α1   α2), ontraditing ~rϕ~ � 1. We thus

have α1 � γ1, and

rϕpa2t
α2
� � � � q � pc1 � a1qt

α1
� c2t

γ2
� � � �

whih again implies that c1 � a1. By indution, one thus shows that αi � γi and ai � ci for all i P Z
¡0,

whih is impossible sine lim
iÑ8

αi � α and lim
iÑ8

γi � �8.

3.5. Extensions of absolute values. Let pK, |.|q be a non arhimedean valued �eld, and L{K an extension.

Lemma 3.5.1. For P pXq � a0 � a1X � � � � � anX
n
P KrXs, put

}P } � max
0¤i¤n

|ai| .

Then }PQ} � }P } }Q} for all P,Q P KrXs. In partiular, }.} extends into an absolute value on KpXq that

extends |.|.

Proof. Write P pXq �
8

°

i�0

aiX
i
and QpXq �

8

°

j�0

bjX
j
with paiqiPZ

¥0
, pbjqjPZ

¥0
P KpZ

¥0q
. Then we have

P pXqQpXq �
8

°

n�0

cnX
n
with cn �

n
°

i�0

aibn�i, so |cn| ¤ max
0¤i¤n

|aibn�i| ¤ }P } }Q}: as this holds for all

n P Z
¥0, we get }PQ} ¤ }P } }Q}.

Assume now that PQ � 0, and let i0 � minti P Z
¥0 ; |ai| � }P }u and j0 � mintj P Z

¥0 ; |bj| � }Q}u

so that |ai|   }P } if i   i0 and |bj |   }Q} if j   j0. Then ci0�j0 �
°

i,jPZ
¥0

i�j�i0�j0

aibj. If i, j P Z
¥0 are

suh that i � j � i0 � j0 and i   i0 or j   j0, we have |aibj|   }P } }Q}. As |ai0bj0 | � }P } }Q}, we have

|ci0�j0 | � }P } }Q} (beause |.| in non arhimedean, f remark 3.1.3 (2)). Thus we have }PQ} � }P } }Q}.

We ertainly have }P } � 0 ñ P � 0, and }P1 � P2} ¤ maxt}P1} , }P2}u for all P1, P2 P KrXs. Extend }.}

to KpXq � FracpKrXsq by putting

�

�

�

�

P

Q

�

�

�

�

�

}P }

}Q}

for all P,Q P KrXs with Q � 0. The multipliativity proved above implies that }.} is multipliative

on KpXq. Moreover, if R P KpXq, we have }R} � 0 ñ R � 0, and if R1, R2 P KpXq, there exists

Q P KrXszt0u suh that P1 � QR1, P2 � QR2 P KrXs: as }P1 � P2} ¤ maxt}P1} , }P2}u, we dedue

}R1 �R2} ¤ maxt}R1} , }R2}u, so that }.} is an absolute value on KpXq, that obviously extends |.|. �

De�nition 3.5.2. The norm }.} on KrXs de�ned in lemma 3.5.1 is alled the Gauss norm, and we will

heneforth denote by |.|Gauss the absolute value it indues on KpXq.

Theorem 3.5.3. (Krull's existene theorem, f [18, Theorem 14.1℄

(32)

). There exists an absolute

value on L that extends |.|.

Remark 3.5.4. Of ourse, any extension of |.| to L is non arhimedean.

Proof of theorem 3.5.3. This is obvious if |.| is trivial: assume from now on that it is non trivial.

 Case where L{K is �nite. Consider the set Σ of maps ν : LÑ R
¥0 having the following properties:

(1) p�λ P Kq p�x P Lq νpλxq � |λ| νpxq;

(2) p�x, y P Lq νpxyq ¤ νpxqνpyq;

(3) νp1q � 1;

(4) p�x P Lq p�k P Z
¥0q νpx

k
q � νpxqk;

(5) p�x, y P Lq νpx� yq ¤ maxtνpxq, νpyqu.

(32)

The sentene �Obviously ρ satis�es properties (2)-(7)� on the last line of [18, p.38℄ is �shy, beause of property (7), whih

explains why we modi�ed the latter.
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Observe that if ν P Σ and x P L�, then 1 � νpxx�1
q ¤ νpxqνpx�1

q, so νpxq ¡ 0, whene νpxq � 0� x � 0.

� We �rst show that Σ is non empty. Let pe1, . . . , edq be a basis of L over K. If x �
d
°

i�1

λiei P L, put

}x}1 � max
1¤i¤d

|λi|. This de�nes a norm }.}1 : L Ñ R
¥0. If x �

d
°

i�1

λiei P L and y �
d
°

i�1

µiei P L, we have

xy �
°

1¤i,j¤d

λiµjeiej , so }xy} ¤ max
1¤i,j¤d

|λiµj | }eiej}, i.e. }xy} ¤ C }x} }y} where C � max
1¤i,j¤d

}eiej} P R
¡0.

If }.}2 � C }.}1, then }.}2 is a norm on L suh that }xy}2 ¤ }x}2 }y}2 for all x, y P L. Now put

ν0pxq � lim sup
kÑ8

k

b

}xk}2

for all x P L. As

�

�xk
�

�

2
¤ }x}

k
2 for all k P Z

¥0, this de�nition makes sense, and 0 ¤ ν0pxq ¤ }x}2 for all

x P L.

Let x P L and a � inf
kPZ

¡0

k
a

}xk}2. If ε P R
¡0, there exists d P Z

¡0 suh that

�

�xd
�

�

2
¤ pa� εqd. If k P Z

¡0,

let k � qpkqd � rpkq with qpkq P Z
¥0 and 0 ¤ rpkq   d be the eulidean division of k by d: we have

�

�xk
�

�

2
¤

�

�xd
�

�

qpkq

2

�

�xrpkq
�

�

2
¤ pa� εqqpkqd

�

�xrpkq
�

�

2
, whih implies that a ¤ k

a

}xk}2 ¤ pa � εqqpkqd{kb1{k where

b � max
0¤r d

}xr}2. As lim
kÑ8

qpkqd

k
� 1 and lim

kÑ8

b1{k � 1, this implies that lim
kÑ8

k
a

}xk}2 � a, so that in fat

ν0pxq � lim
kÑ8

k

b

}xk}2 � inf
kPZ

¡0

k

b

}xk}2.

As }λx}2 � |λ| }x}2 for all λ P K and x P L, the map ν0 satis�es (1). As }xy}2 ¤ }x}2 }y}2 for all x, y P L, it

satis�es (2). Moreover ν0p1q � lim
kÑ8

k
a

}1}2 � 1 so ν0 satis�es (3). Also, ν0px
k
q � lim

mÑ8

m
a

}xkm}2 � ν0pxq
k

so ν0 satis�es (4). To prove it satis�es (5), let x, y P L�. By symmetry, we may assume that ν0pxq ¤ ν0pyq.

After saling x and y by some appropriate λ P K, we may further assume that ν0pyq ¡ 1 (reall that |.| is

non trivial). Let ε P R
¡0: there exists N P Z

¥2 suh that i ¥ N ñ

�

�xi
�

�

2
¤ pν0pxq � εqi ¤ pν0pyq � εqi.

As ν0pyq ¡ 1, we may also assume that N is large enough so that k ¥ N ñ 1 ¤
�

�yk
�

�

2
¤ pν0pyq � εqk. If

n P Z
¥0, we have

}px� yqn}2 �

�

�

�

�

�

ņ

k�0

�

n

k




xn�kyk

�

�

�

�

�

2

¤ max
0¤k¤n

�

�xn�k
�

�

2

�

�yk
�

�

2

Assume n ¡ N2
¥ 4, so that n ¡ 2

?

n. If 0   k ¤
?

n, we have 0   k ¤
?

n ñ n � k ¡
?

n ¥ N , whih

implies that

�

�xn�k
�

�

2

�

�yk
�

�

2
¤ pν0pyq�εq

n�k
}y}

k
2 ¤ pν0pyq�εq

nmax
 

1, }y}
?

n
2

(

. If

?

n   k ¤ n, then k ¡ N ,

so

�

�yk
�

�

2
¤ pν0pyq� εq

k
. If N ¤ n� k, then

�

�xn�k
�

�

2
¤ pν0pyq� εq

n�k
, whene

�

�xn�k
�

�

2

�

�yk
�

�

2
¤ pν0pyq� εq

n
.

If n � k   N , we have

�

�xn�k
�

�

2
¤ maxt1, }x}

N
u, so that

�

�xn�k
�

�

2

�

�yk
�

�

2
¤ maxt1, }x}

N
upν0pyq � εqn. All

together, we get }px� yqn}2 ¤ pν0pyq � εqnmax
 

1, }y}
?

n
2 , }x}

N
2

(

, thus

n

b

}px� yqn}2 ¤ pν0pyq � εqmax
!

1, }y}
1{
?

n
2 , }x}

N{n
2

)

.

Passing to the limit as n Ñ 8, we get ν0px � yq ¤ ν0pyq � ε. As this holds for all ε P R
¡0, we have

ν0px� yq ¤ ν0pyq: we have proved that ν0 satis�es (5), i.e. ν0 P Σ.

� If ν1, ν2 P σ, we write ν1 ¤ ν2 if ν1pxq ¤ ν2pxq for all x P L. This endows Σ with a partial order. If

pνλqλPΛ is a hain in Σ, then ν : x ÞÑ inf
λPΛ

νλpxq de�nes an element in Σ. Indeed, properties (1), (3) and

(4) are obvious. Property (2) follows from the fat that pνλqλPΛ is a hain. Assume x, y P L are suh that

νpxq ¤ νpyq: if ε P R
¡0, there exists λ0 P Λ suh that νλ0

pxq ¤ νpxq � ε. If λ P Λ is suh that νλ ¤ νλ0
,

we have νpx � yq ¤ νλpx � yq ¤ maxtνλpxq, νλpyqu ¤ maxtνpxq � ε, νλpyqu ¤ maxtνpyq � ε, νλpyqu, whih

implies that νpx � yq ¤ νpyq � ε by taking the in�mum on λ. As this holds for all ε P R
¡0, we have

νpx � yq ¤ νpyq � maxtνpxq, νpyqu, showing that ν has property (5). Thus ν is a lower bound for pνλqλPΛ
in Σ: by Zorn's lemma (f theorem 9.1.1), Σ ontains a minimal element ν.

� Fix a P L� (so νpaq ¡ 0) and let x P L�: for all k P Z
¡0 we have νpxakq ¤ νpxak�1

qνpaq, hene

νpxakqνpaq�k ¤ νpxak�1
qνpaq�pk�1q

: the sequene pνpxakqνpaq�kqkPZ
¥0

is dereasing in R
¡0: it onverges

to a limit τpxq P R
¥0, and τpxq ¤ νpxq.

The map τ obviously satis�es (1). As νpxya2kqνpaq�2k
¤ νpxakqνpyakqνpaq�2k

for all k P Z
¥0, we have

τpxyq ¤ τpxqτpyq for all x, y P L, so τ satis�es (2). As ν satis�es (4), τ satis�es (3). If x P L and k, n P Z
¡0,

we have νpxkaknqνpaq�kn � pνpxanqνpaq�nqk so τpxkq � τpxqk by passing to the limit as n Ñ 8, showing

that τ satis�es (4). Finally, if x, y P L, we have

νppx � yqakqνpaq�k � νpxak � yakqνpaq�k ¤ maxtνpxakqνpaq�k, νpyakqνpaq�ku
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(sine ν has property (5)). Passing to the limit as k Ñ8 gives τpx� yq ¤ maxtτpxq, τpyqu.

This implies that τ P Σ. As τ ¤ ν, we have τ � ν by minimality of ν. This shows that the inequalities

τpxq ¤ νpxaqνpaq�1
¤ νpxq are equalities, so that νpxaq � νpxqνpaq, whih implies that ν : L Ñ R

¥0 is an

absolute value. As it has properties (1) and (3), it extends |.|.

 General ase. Let S be the set of pairs pF, |.|F q where F is a sub�eld of L ontaining K, and |.|F an

absolute value extending |.|. We endow S with the partial order given by pF1, |.|1q ¤ pF2, |.|2q if and only

if F1 � F2 and |.|2|F1
� |.|1. If pFλ, |.|λqλPΛ is a hain in S, then F �

�

λPΛ

Fλ is a sub�eld of L, ontains

K, and the map |.|F : F Ñ R
¥0 given by |x|F � |x|λ whenever x P Fλ is well de�ned, and is an absolute

value on F . The pair pF, |.|F q is an upper bound for pFλ, |.|λqλPΛ. We may apply Zorn's lemma (f theorem

9.1.1): there exists an maximal element pF, |.|F q in S. If F � L, hoose α P LzF . If α is algebrai (resp.

transendant) over F , the absolute value |.|F extends to F pαq by what preedes (resp. by lemma 3.5.1),

ontraditing the maximality of pF, |.|F q. This means that F � L. �

Remark 3.5.5. The situation is ompletely di�erent for arhimedean valued �elds. If L{C is a omplete

valued extension ofC, then L � C (this is a onsequene of a theorem of Gel'fand-Mazur). As a onsequene,

a omplete arhimedean �eld is topologially isomorphi to R or C.

Theorem 3.5.6. Assume pK, |.|q is omplete and L{K is algebrai. Then there is a unique absolute value

extending |.| on L.

Proof. We already know the existene of suh an absolute value |.|L.

 Assume that |.| is trivial. If x P L�, then xn�a1x
n�1

�� � ��an � 0 for some n P Z
¥0 and a1, . . . , an P K.

This implies the existene of 0 ¤ i   j ¤ n suh that

�

�aix
n�i

�

�

L
�

�

�ajx
n�j

�

�

L
¡ 0 (with the onvention

a0 � 1), so that |x|
n�i
L � |x|

n�j
L , i.e. |x|

j�i
L � 1, whene |x|L � 1, and |.|L is the trivial absolute value.

 Assume that |.| is non trivial. Let |.|
1

L be a other absolute value extending |.| on L. As L is a �nite

dimensional K-vetor spae and pK, |.|q is omplete, the norms |.|L and |.|
1

L are equivalent (f theorem

3.4.12): they de�ne the same topology. This implies that the absolute values |.|L and |.|
1

L are equivalent:

there exists γ P R
¡0 suh that |.|

1

L � |.|
γ
L (f proposition 3.1.7). As |λ|L � |λ|

1

L � |λ|, we have |λ| � |λ|
γ

for all λ P K. As |.| is non trivial, this implies that γ � 1, whene |.|
1

L � |.|L. �

Corollary 3.5.7. Assume pK, |.|q is omplete and let K an algebrai losure of K. Then |.| extends uniquely

to K .

Corollary 3.5.8. Assume pK, |.|q is omplete and let L{K and L1{K be �nite extensions. Denote by |.|L
(resp. |.|L1) the unique absolute value on L (resp. L1) extending |.|. Then |σpxq|L1 � |x|L for all x P L and

all K-morphism σ : LÑ L1.

Proposition 3.5.9. Under the hypothesis of theorem 3.5.6, assume L{K is �nite. Then the unique absolute

value |.|L extending |.| is given by:

|x|L �
rL:Ks

b

�

�NL{Kpxq
�

�

for all x P L.

Proof. Let N be a normal losure of L{K. Denote by x1, . . . , xd P N the onjugates of x over K (i.e.

the roots of the minimal polynomial of x over K), ounted with multipliities, so that d � rKpxq : Ks.

For eah i P t1, . . . , nu, there exists a unique K-morphism σi : Kpxq Ñ N suh that σipxq � xi: by

orollary 3.5.8, we have |xi|N � |x|L, where |.|N is the unique absolute value on N extending |.|. Then

�

�NKpxq{Kpxq
�

�

�

�

�

�

�

d
±

i�1

xi

�

�

�

�

N

� |x|
d
L. As NL{Kpxq � NKpxq{KpNL{Kpxqpxqq � NKpxq{Kpxq

rL:Kpxqs
, we dedue

�

�NL{Kpxq
�

�

� |x|
drL:Kpxqs
L � |x|

rL:Ks
L .

�

Corollary 3.5.10. Assume pK, |.|q is omplete, let L{K be a �nite extension and denote by |.| the unique

absolute value on L extending |.|. Then pL, |.|q is omplete, and the ring of integers OL is the integral

losure of OK in L.

Proof.  As pK, |.|q is omplete and pL, |.|q is a �nite dimensional normed vetor spae overK, it is omplete

by theorem 3.4.12.

 Let x P L be integral over OK . Its onjugates over K are integral over OK (apply an automorphism to

an equation of integral dependene for x over OK): their produt NL{Kpxq P K is integral over OK . As
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the latter is integrally losed (f proposition 3.2.4), we have NL{Kpxq P OK , so

�

�NL{Kpxq
�

�

¤ 1, whene

|x| � n

b

�

�NL{Kpxq
�

�

¤ 1, i.e. x P OL.

 Conversely, let x P OL. The oe�ients of its minimal polynomial P are (up to a sign) elementary

symmetri polynomials in the onjugates of x (replaing L by its normal losure, we may assume that L{K

is normal). As eah of these belongs to the ring OL, so do the oe�ients of P , whih thus belong to

K XOL � OK , and x is integral over OK . �

Remark 3.5.11. The ring of integers of a valuation thus deserves its name.

Until the end of this setion, we drop the assumption on |.| (i.e. we allow it to be arhimedean).

Proposition 3.5.12. Assume |.| is not trivial, and that L{K is �nite. There are �nitely many absolute

values |.|1 , . . . , |.|n extending |.| on L. The map

δ : pK bK LÑ
n
À

i�1

xLi

indued by the diagonal map (where

xLi denotes the ompletion of L with respet to |.|i) is surjetive. In

partiular, we have

n
°

i�1

r

xLi : pKs ¤ rL : Ks and there are at most rL : Ks absolute values extending |.| on L.

When |.| is non arhimedean, Kerpδq is the radial of pK bK L.

Proof.  Let |.|1 , . . . , |.|n be distint absolute values extending |.| on L. The omposite L
∆
ÝÑ

n
À

i�1

LÑ
n
À

i�1

xLi

(where ∆ is the diagonal map) is K-linear: as

xLi is a pK-vetor spae for all i P t1, . . . , nu, it extends into

the

pK-linear map δ. Note that the absolute values |.|1 , . . . , |.|n are pairwise nonequivalent, otherwise there

would exist integers 0   i   j ¤ n and γ P R
¡0 suh that |.|j � |.|

γ
i , and we would have γ � 1 (beause

|.| � |.|
γ
and |.| is not trivial), ontraditing the hypothesis.

 Let pz1, . . . , znq P
n
À

i�1

xLi: for ε P R
¡0, there exists py1, . . . , ynq P Ln suh that |zi � yi|i   ε for all

i P t1, . . . , nu. By theorem 3.1.15, there exists x P L suh that |x� yi|i   ε, whene |x� zi|i   2ε for all

i P t1, . . . , nu. This shows that the image of δ is dense in
n
À

i�1

xLi. As dim
xK
p

pK bK Lq � rL : Ks   8, this

image is also a �nite dimensional sub-

pK-vetor spae: by theorem 3.4.12, it is losed in the �nite dimensional

pK-vetor spae

n
À

i�1

xLi (sine rxLi : pKs   8 for all i P t1, . . . , nu), so δ is surjetive.

 As δ is

pK-linear and surjetive, we have dim
xK

� n
À

i�1

xLi

	

¤ dim
xK
p

pK bK Lq, i.e.
n
°

i�1

r

xLi : pKs ¤ rL : Ks.

this shows that there are �nitely many absolute values extending |.| on L.

 Assume that |.| is non arhimedean. Take n maximal, i.e. so that |.|1 , . . . , |.|n are exatly the absolute

values extending |.| on L. The pK-algebra

pK bK L has �nite dimension: its prime ideals are maximal, and

there are only �nitely many of them, that we denote m1, . . . ,mr. This implies that radp pK bK Lq �
r
�

i�1

mi is

the nilradial of

pKbK L. If x P radp pKbK Lq, there exists m P Z
¡0 suh that xm � 0: if δpxq � px1, . . . , xnq,

we have xmi � 0 in

xLi, hene xi � 0 for all i P t1, . . . , nu, so that x P Kerpδq. Conversely, let i P t1, . . . , ru.

Put

rLi :� p

pK bK Lq{mi: this is a �nite �eld extension of

pK: by theorem 3.5.6, there exists a unique

absolute value }.}i on
rLi that extends |.|: there exists a unique σpiq P t1, . . . , nu suh that }.}i|L � |.|σpiq.

Moreover,

rLi is omplete (by theorem 3.5.6 again) and L is dense in

rLi: we have rLi � zLσpiq. This implies

in partiular that if x R mi, then the image of x P zLσpiq is nonzero, so that x R Kerpδq. We thus have

Kerpδq �
r
�

i�1

mi � radp pK bK Lq. �

Corollary 3.5.13. Under the hypothesis of proposition 3.5.12, the following are equivalent:

(i)

pK bK L is redued;

(ii) δ is an isomorphism;

(iii)

n
°

i�1

r

xLi : pKs � rL : Ks.
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If these onditions are satis�ed, then χx,L{KpXq �
n
±

i�1

χ
x,xLi{

xK
pXq so in partiular TrL{Kpxq �

n
°

i�1

Tr
xLi{K

pxq

and NL{Kpxq �
n
±

i�1

N
xLi{K

pxq for all x P L. Moreover, we have

�

�NL{Kpxq
�

�

�

n
±

i�1

|x|
r

xLi:xKs
i for all x P L.

Proof. The equivalene between the three statements is obvious, as is the equality of harateristi polyno-

mials, that imply the equalities of traes and norms. Taking the absolute value of NL{Kpxq �
n
±

i�1

N
xLi{K

pxq

provides the last equality, noting that

�

�

�

N
xLi{K

pxq
�

�

�

� |x|
r

xLi:xKs
i by proposition 3.5.9. �

Corollary 3.5.14. Under the hypothesis of proposition 3.5.12, if L{K is separable, the onditions of orollary

3.5.13 are satis�ed.

Proof. If L{K is separable, there exists α P L suh that L � Kpαq (primitive element theorem). Let

P P KrXs be the minimal polynomial of α over K: we have L � KrXs{xP y, so that

pK bK L � pKrXs{xP y.

As P is separable, the ring

pKrXs{xP y is a produt of �nite extensions of pK (orresponding to the irreduible

fators of P in

pKrXs): it is redued. �

Proposition 3.5.15. Under the hypothesis of proposition 3.5.12, assume that L{K is Galois. Then the

extensions

pLi{ pK are Galois, and

GalppLi{ pKq � tσ P GalpL{Kq ; p�x P Lq |σpxq|i � |x|iu

(the RHS is the deomposition subgroup of L{K relative to |.|i).

Proof.  By hypothesis, L is the deomposition �eld of a separable polynomial P pXq P KrXs � pKrXs. As

L � pLi, the polynomial P is split in

pLi. Let rLi be the subextension of

pLi{ pK generated by the roots of P :

we have L � rLi. As rLi is losed in

pLi with respet to |.|i (sine
pLi is �nite dimensional) and L is dense in

pLi, we have rLi � pLi, implying that

pLi{ pK is Galois.

 Put Di :� tσ P GalpL{Kq ; p�x P Lq |σpxq|i � |x|iu: any σ P Di extends by ontinuity into an automor-

phism of

pLi, so we have an injetive group homomorphism Di Ñ GalppLi{ pKq. If σ P GalppLi{ pKq, we have

σ
|K � IdK and σpLq � L (sine L{K is Galois), so the restrition σ

|L belongs to GalpL{Kq. As p

pK, |.|q is

omplete, orollary 3.5.8 implies that |σpxq|i � |x|i for all x P
pLi, so a fortiori for all x P L, so that σ

|L P Di,

and showing that Di Ñ GalppLi{ pKq is an isomorphism. �

3.5.16. Completion of Dedekind rings. Let L{K be a �nite separable �eld extension, |.| a non arhimedean

disrete absolute value on K and A � OK,|.| its ring of integers (this is a DVR). We have

pK � Fracp pAq

(f proposition 3.3.8). Let B be the integral losure of A in L: this is a Dedekind ring by theorem 2.1.3.

Denote by p the maximal ideal of A and let pB �

r
±

i�1

Pei
i if fatorization in B (so that the nonzero prime

ideals of B are tP1, . . . ,Pru). In partiular, B is semi-loal: by proposition 2.3.15, it is in fat a PID.

Proposition 3.5.17. There are exatly r absolute values |.|1 , . . . , |.|r extending |.| to L. If
xLi denotes the

ompletion of L with respet to |.|i, there is an isomorphism

δ : pK bK L
�

Ñ

r
À

i�1

xLi

induing an isomorphism

pAbA B
�

Ñ

r
À

i�1

xBi

where

xBi is the ring of integers of

xLi for all i P t1, . . . , ru. Moreover, we have r

xLi : pKs � eifi where

fi � rκpPiq : κppqs.

Proof.  Let i P t1, . . . , ru. The loalization BPi
is a DVR: let πi P B be a uniformizer. As PjBPi

� BPi

if j � i, we have pBPi
� Pei

i BPi
� πeii BPi

: there exists ui P B
�

Pi
suh that uiπ

ei
i is a uniformizer of

A. Denote |.|i the unique absolute value on L � FracpBPi
q whose ring of integers is BPi

and suh that

|πi|
ei
i � |uiπ

ei
i |: this normalization implies that |.|i extends |, | on L. We have Pi � B X mL,|.|i , showing

that the absolute values |.|1 , . . . , |.|r are pairwise distint.

 Let }.} be an absolute value extending |.| on L. As OL,}.} is integrally losed (f proposition 3.2.4) and

ontains A, it ontains B, and B X mL,}.} is a nonzero prime ideal of B: there exists i P t1, . . . , ru suh

that B XmL,}.} � Pi. This implies that BzPi � O�

L,}.}
, so that BPi

� OL,}.}. As }.} extends |.|, we must
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have }πi}
ei
� |uiπ

ei
i |, so that }.} and |.|i oinide on BPi

hene on L. This shows that the absolute values

extending |.| on L are exatly |.|1 , . . . , |.|r.

We have pnB �

r
±

i�1

Pnei
i : by the Chinese remainder theorem, the natural map B{pnB Ñ

r
À

i�1

B{Pnei
i is an

isomorphism. As A is a DVR, it is a PID, so B is a free A-module of �nite rank, so lim
�Ý

n

B{pnB �

pAbA B:

passing to the limit provides a natural isomorphism

pAbAB
�

Ñ

r
À

i�1

xBi, where xBi � lim
�Ý

m

B{Pm
i . Note that for

all i P t1, . . . , ru, we have B{Pm
i

�

ÑBPi
{Pm

i BPi
, so that

xBi oinides with the ompletion of the DVR BPi
.

Moreover,

pKbAB �

pKbK L (beause L � KB) and similarly

pKbA
xBi is a �eld: this is the ompletion

xLi

of L with respet to |.|i. The preeding isomorphism thus indues a

pK-linear isomorphism

pKbK L
�

Ñ

r
À

i�1

xLi.

 The statement on rings of integers follows, noting that

xBi � lim
�Ý

m

BPi
{Pm

i BPi
is the ring of integers of

xLi

sine BPi
is that of L for the absolute value |.|i.

We have seen that pBPi
� Pei

i BPi
: this implies that e

xLi{
xK
� ei. Similarly, we have κ

xLi
�Pi

{Pi � κpPiq

and κ
xK
� A{p � κppq, so that f

xLi{
xK
� rκpPiq : κppqs: the equality r

xLi : pKs � eifi follows from theorem

3.8.4. �

Remark 3.5.18. (1) Taking dimensions, the isomorphism δ implies the equality of theorem 2.4.2.

(2) As A is noetherian and B is of �nite type,

pAbAB is nothing but the p-adi ompletion of B (f orollary

1.11.38).

(3) The previous proposition is a speial ase of proposition 3.5.12 and its orollaries.

Corollary 3.5.19. If x P L, we have TrL{Kpxq �
r
°

i�1

Tr
xLi{
xK
pxq and NL{Kpxq �

r
±

i�1

N
xLi{
xK
pxq.

Corollary 3.5.20. If L{K is Galois, so is

xLi{ pK, and GalpxLi{ pKq identi�es with the deomposition subgroup

Di � tσ P GalpL{Kq ; σpPiq � Piu.

Proof. Any σ P Di extends by ontinuity into an element in Aut
xK
p

xLiq: the statement follows from the

equalities #Di � eifi � r

xLi : pKs (f theorem 2.4.5). �

Proposition 3.5.21. Let P be a nonzero prime ideal in B and p � A X P. Denote by

pB (resp.

pA) the

P-adi (resp. p-adi) ompletion of B (resp. A). Then D
pB{ pA

�

pB bB DB{A (i.e. "the di�erent of the

ompletion is the ompletion of the di�erent").

Proof. As

pA oinides with the p-adi ompletion of Ap (and similarly for B) by lemma 1.11.29, and as

taking integal losure ommutes with loalization (f proposition 1.9.13), we may replae A by Ap, and

assume that A is a DVR. We use the notation of setion 3.5.16.

By proposition 3.5.17, the isomorphism δ : pKbKL
�

Ñ

r
À

i�1

xLi indues an isomorphism

pAbAB
�

Ñ

r
À

i�1

xBi, where

xBi is the ring of integers of

xLi. The K-bilinear form L � L Ñ K de�ned by the trae TrL{K indues a

pK-bilinear map ψ : p pKbK Lq�p pKbKLq Ñ pK by extension of salars. Then we have p

pAbABq
�

�

pAbAB
�

(this an be seen using dual bases of B and B�

). Moreover, ψ indues the bilinear map attahed to Tr
xLi{
xK

on

xLi �xLi for all i P t1, . . . , ru. With obvious notations, this implies that

r
À

i�1

p

pA bA B
�

i q �
pA bA B

�

�

� r
À

i�1

xBi

	

�

�

r
À

i�1

xBi
�

, hene

pAbAB
�

i �
xBi

�

for all i P t1, . . . , ru (sine the fatorsxLi are pairwise orthogonal

for ψ). Taking inverses, this gives D
xBi{

pA
�

pAbA DBPi
{A �

xBi bB DB{A. �

Corollary 3.5.22. Let p be a nonzero prime ideal in A, and pdB{A the ideal of

pA � lim
�Ý

n

A{pn generated by

dB{A. Then pdB{A �
±

P|p

d
yBP{

pA
(where

yBP � lim
�Ý

n

B{Pn
).

Proof. Follows from proposition 3.5.21 by taking the norm (f proposition 2.5.9). �

Theorem 3.5.23. Let P be a nonzero ideal of B and p � AXP. The extension L{K is unrami�ed at P if

and only if P does not divide the di�erent DB{A.
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Proof. Normalization and the di�erent ideal are ompatible with loalization (f propositions 1.9.13 and

2.5.8): we may replae A by Ap and assume that A is a DVR with maximal ideal p. By proposition 3.5.21,

we may also replae A (resp. B) by its p-adi (resp. P-adi) ompletion, and assume that B is a DVR with

maximal ideal P. In that ase, L{K is unrami�ed (at P) if and only if B{pB is a separable �eld extension

of κppq � A{p: we have to prove this is equivalent to DB{A � B, i.e. to dB{A � A (f proposition 2.5.9).

Let px1, . . . , xdq a basis de B over A (so that dB{A � Dpx1, . . . , xdqA). As d
pB{pBq{κppq � Dpx1, . . . , xdqA{p

(beause px1, . . . , xdq is a basis de B{pB over κppq), it is enough to show that B{pB is a separable extension

of κppq if and only if d
pB{pBq{κppq � t0u. If B{pB is a separable extension of κppq, then d

pB{pBq{κppq � t0u by

proposition 1.10.22. Conversely, assume that d
pB{pBq{κppq � 0. We have pB � Pe

: assume that e ¡ 1. We

may assume that some elements in the basis px1, . . . , xdq belong to P{pB. By de�nition, this implies that

d
pB{pBq{κppq P P{pB hene d

pB{pBq{κppq � t0u, whih is not: we have neessarily e � 1, so that B{pB � κpPq

is a �eld, and a �nite extension of κppq. If it was not separable, we would have TrκpPq{κppq � 0 (f orollary

1.10.5), so that dκpPq{κppq � 0, whih is not: κpPq{κppq is separable. �

Theorem 3.5.24. Assume

(33)

that B is a free A-module. Nonzero prime ideals of A that are rami�ed in

the extension L{K are preisely the divisors of the disriminant ideal dB{A. In partiular, there are only

�nitely many suh ideals.

Proof. Follows from theorem 3.5.23 sine dB{A � NB{ApDB{Aq (f proposition 2.5.9). �

3.6. Hensel's lemma. Let pK, |.|q be a omplete non arhimedean valued �eld. Reall that KpXq is

endowed with the Gauss absolute value |.|Gauss de�ned by

|P |Gauss � max
0¤i¤n

|ai|

for P � a0 � a1X � � � � � anX
n
P KrXs (f lemma 3.5.1 and de�nition 3.5.2)

For n P Z
¥0, we putWn � tP P KrXs ; degpP q   nu. If F,G P KrXs are suh degpF q � n and degpGq � m,

the determinant of the K-linear map

Θ: Wn `Wm Ñ Wn�m

pf, gq ÞÑ fG� gF

is, up to a sign, the Sylvester resultant RespF,Gq of F and G (in the anonial bases ofWn,Wm andWn�m).

Theorem 3.6.1. (Hensel's lemma). Assume P, F,G P OKrXs and ε P r0, 1r are suh that:

(i) degpF q � n, degpGq � m and degpP q � n�m;

(ii) |P � FG|Gauss ¤ ε |RespF,Gq|
2
;

(iii) P � FG PWn�m, i.e. degpP � FGq   n�m.

Then there exist

rF , rG P OKrXs suh that:

 P �

rF rG;



rF � F PWn and

rG�G PWm;

 |

rF � F |Gauss ¤ ε |RespF,Gq| and | rG�G|Gauss ¤ ε |RespF,Gq|.

Proof.  We an of ourse assume that |RespF,Gq| ¡ 0. Put Vn � tf P Wn ; |f |Gauss ¤ ε |RespF,Gq|u and

Vm � tg P Wm ; |g|Gauss ¤ ε |RespF,Gq|u and }pf, gq} :� maxt|f |Gauss , |g|Gaussu for all pf, gq P Vn ` Vm.

Property (iii) implies that the map

Φ: Vn ` Vm ÑWn�m

pf, gq ÞÑ P � FG� fg

is well de�ned, so we an onsider the map Θ�1
� Φ: Vn ` Vm ÑWn `Wm. By ondition (ii), we have

|P � FG� fg|Gauss ¤ maxt|P � FG|Gauss , |fg|Gaussu

¤ maxtε |RespF,Gq| , ε2 |RespF,Gq|
2
u � ε |RespF,Gq|

2
.

As F,G P OKrXs, the matrix of Θ in the anonial bases has oe�ients in OK . By Cramer's formulae,

we have

�

�Θ�1
�

�

¤

1
|RespF,Gq|

, so that

�

�

pΘ�1
�Φqpf, gq

�

�

¤ ε |RespF,Gq|, i.e. pΘ�1
� Φqpf, gq P Vn ` Vm. This

implies that Θ�1
� Φ indues a map Λ: pVn ` Vmq Ñ Vn ` Vm.

(33)

Again, this is not really neessary one the disriminant ideal has been properly de�ned.
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 Let pf1, g1q, pf2, g2q P Vn ` Vm. We have

}Λpf1, g1q � Λpf2, g2q} �
�

�Θ�1
pf2g2 � f1g1q

�

�

�

�

�Θ�1
pf2pg2 � g1q � g1pf2 � f1qq

�

�

¤

1

|RespP,Qq|
maxt|f2|Gauss |g2 � g1|Gauss , |g1|Gauss |f2 � f1|Gaussu

¤ εmaxt|g2 � g1|Gauss , |f2 � f1|Gaussu

whih shows that Λ is a ontrative map. Now Wn and Wm are �nite dimensional K-vetor spaes: they

are omplete (f theorem 3.4.12). The same holds for the losed subsets Vn and Vm. We may thus apply

the �xed point theorem: there exists pf, gq P Vn ` Vm suh that Λpf, gq � pf, gq, i.e. Φpf, gq � Θpf, gq,

whih means that P � FG � fg � fG � gF , in other words P � pF � fqpG � gq, so that P �

rF rG where

rF � F � f and

rG � G� g satisfy the ontition of the statement. �

Remark 3.6.2. Newton's lemma (theorem 3.3.10) is a speial ase of theorem 3.6.1: let α P OK be suh that

|P pαq| ¤ ε |P 1

pαq|
2
. Put F pXq � X�α and GpXq �

P pXq�P pαq

X�α
�

degpP q
°

i�1

P ris
pαqpX �αqi�1

in OKrXs. The

assumption (i) of theorem 3.6.1 is satis�ed with n � 1 andm � d�1 where d � degpP q. As P�FG � P pαq,

the assumtion (iii) is also satis�ed. As RespF,Gq is the determinant

�

�

�

�

�

�

�

1 0 ��� 0 P rdspαq

0
. . .

. . .
...

......
. . .

. . . 0
......

. . . 1 P r2spαq

0 ��� ��� 0 P 1pαq

�

�

�

�

�

�

�

� P 1

pαq

(we made the hange of variable Y � X � α), the hypothesis |P pαq| ¤ ε |P 1

pαq|
2
translates into the

inequality |P � FG|Gauss ¤ ε |RespF,Gq|
2
, whih is preisely assumtion (ii) of theorem 3.6.1. We thus have

rF , rG P OKrXs satisfying the onlusion thereof: we have P �

rF rG and

rF pXq � X � rα, so that P prαq � 0,

and |rα� α| � |

rF � F |Gauss ¤ ε |RespF,Gq| � ε |P 1

pαq|.

Corollary 3.6.3. Let P, F,G P OK rXs be suh that:

(i) degpF q � n, degpGq � m and degpP q � n�m;

(ii) P � FG has degree n�m and gcdpF ,Gq � 1 (where P denotes the image of P in κKrXs);

(iii) P � FG PWn�m,

Then there exist

rF , rG P OKrXs suh that:

 P �

rF rG;



rF � F PWn and

rG�G PWm;

 |

rF � F |Gauss   1 and |

rG�G|Gauss   1.

Proof. As F,G P OKrXs, we have RespF,Gq P OK . As degpP q � n � m, we have degpF q � n and

degpGq � m, so that RespF,Gq � RespF ,Gq. As gcdpF ,Gq � 1 by hypothesis, we have RespF ,Gq P κ�K , so

|RespF,Gq| � 1. As P � FG, we have ε :� |P � FG| P r0, 1r: the result follows from theorem 3.6.1. �

3.7. Struture of omplete disrete valuation �elds. In this setion, we assume that pK, |.|q is a

omplete and disrete non arhimedean valued �eld. This implies that OK is noetherian. Let vK be the

normalized valuation assoiated to |.|, i.e. suh that vKpK
�

q � Z, and πK a uniformizer of K.

3.7.1. Struture of the additive group.

Proposition 3.7.2. (Struture of the ring of integers of a finite extension). If L{K be a �nite

separable extension of degree d, then OL is a free OK-module of rank d.

Proof. As OL is the integral losure of OK in L (f orollary 3.5.10), it is noetherian hene of �nite type

over OK (f orollary 1.10.39 (1)). As OK is a PID and OL is torsionfree, it is a free OK-module (f

orollary 1.4.15). Its rank is d � rL : Ks sine L � OL

�

1
πK

�

� K bOK
OL. �

We have the �ltration

t0u � � � � � mn�1
K � mnK � � � � � mK � OK

and frational ideals in K are of the form mnK � πnKOK with n P Z.
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Proposition 3.7.3. Let Σ � OK be a omplete set of representatives for κK ontaining 0. For eah

n P Z, let πn P K
�

be suh that vKpπnq � n (for instane one may take πn � πnK for all n P Z). Put

E � tpxnqnPZ P ΣZ ; xn � 0 for n ! 0u, and

f : E Ñ K

pxnqnPZ ÞÑ
¸

nPZ

xnπn.

Then f is a bijetion.

Proof. First observe that f is well de�ned, beause K is omplete for vK .

 Let x � pxnqnPZ and y � pynqnPZ be distint elements in E : there exists N P Z suh that xN � yN

and p�i   Nqxi � yi. We thus have fpyq � fpxq �
8

°

n�N

pyn � xnqπn P K. As yN � xN , we have

vKpyN � xN q � 0, hene vKppyN � xN qπN q � N   n ¤ vKppyn � xnqπnq for all n ¡ N . This implies that

vKpfpyq � fpxqq � N   �8, so that fpyq � fpxq � 0, showing that the map f is injetive.

 Let x P K�

. There exists a unique n0 P Z suh that x P πn0

K OKzπ
n0�1
K OK , i.e. x P πn0

O�

K (we have

vKpxq � n0vKpπKq). By de�nition of Σ, there exists a unique xn0
P Σzt0u suh that x�xn0

πn0
P πn0�1OK .

Let m ¥ n0 be suh that xn0
, . . . , xm P Σ have been onstruted suh that x�

m
°

n�n0

xnπn P πm�1OK : write

x�
m
°

n�n0

xnπn � πm�1ym�1 with ym�1 P OK . By de�nition of Σ again, there exists a unique xm�1 P Σ suh

that ym�1 � xm�1 mod mK , and we have x �
m�1
°

n�n0

xnπn P πm�2OK . By indution, we thus onstrut a

sequene x � pxnqnPZ P E suh that xn � 0 for all n   n0 and x�
m
°

n�n0

xnπn P πm�1OK for all n P Z
¥n0

.

Passing to the limit an mÑ8, we get x � fpxq, showing that f is surjetive. �

Corollary 3.7.4. We have CardpKq � CardpκKq
N
. In partiular, K is unountable.

Corollary 3.7.5. The restrition of f indues an homeomorphism

f : ΣZ
¥0 �

ÑOK

where ΣZ
¥0

is endowed with the produt topology, eah opy of Σ being endowed with the disrete topology.

Proof.  We know that f : ΣZ
¥0

�

ÑOK is bijetive by proposition 3.7.3.

 Let a P OK and N P Z
¥0. Write f�1

paq � panqnPZ
¥0
. By onstrution we have

f�1
pa� πNKOKq � tpxnqnPZ

¥0
; p�n   Nqxn � anu.

This implies that via f , the open subsets ta� πNKOKu aPOK

NPZ
¥0

(whih form a basis for the topology on OK)

orrespond to the open subsets

 

tpxnqnPZ
¥0

; p�n   Nqxn � anu
(

aPOK

NPZ
¥0

(whih form a basis for the produt

topology on ΣZ
¥0
). This preisely means that the bijetion f is an homeomorphism. �

Example 3.7.6. If K � Qp, we have κK � Fp, and we an take Σ � t0, 1, . . . , p � 1u. An other hoie is

given by Σ � t0uYµp�1 (f example 3.3.12). In partiular, we have CardpQpq � CardpZpq � pN � CardpRq.

3.7.7. Struture of the multipliative group. The sequene

t1u Ñ O�

K Ñ K�

vK
ÝÝÑ ZÑ t0u

is exat. The hoie of the uniformizer πK provides a splitting for this sequene: we have

K�

� O�

K � πZ
K

De�nition 3.7.8. For i P Z
¥0, we put

U
piq

K �

#

O�

K if i � 0

1�miK � tx P K ; vKpx� 1q ¥ iu if i ¡ 0

This de�nes a �ltration of O�

K by subgroups

t1u � � � � � U
pi�1q

K � U
piq
K � � � � � U

p1q

K � U
p0q

K � O�

K
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Remark 3.7.9. As OK � Bp0, 1q � B
�

0, 1
?

|πK |

�

is both open and losed in K, so are the subgroups U
piq

K in

K�

. Note that as open balls are both open and losed, the topology on K is totally disonneted, i.e. its

onneted omponents are its points.

Proposition 3.7.10. (1) The anonial projetion OK Ñ κK ; x ÞÑ px mod mKq indues a group isomor-

phism

U
p0q

K {U
p1q

K

�

Ñκ�K .

(2) The map U
piq
K Ñ κK ; 1� πiKx ÞÑ px mod mKq indues a group isomorphism

U
piq
K {U

pi�1q

K

�

ÑκK .

Proof. (1) As x P OK is invertible if and only if x mod mK P κ�K , the anonial map U
p0q

K Ñ κ�K is

surjetive. Its kernel is tx P OK ; x � 1 mod mKu � U
p1q

K , whene the result.

(2) The map U
piq
K Ñ κK ; 1 � πiKx ÞÑ px mod mKq is surjetive (beause OK Ñ κK is) and its kernel is

U
pi�1q

K . �

3.8. Rami�ation. Here again, we assume that pK, |.|q is a non arhimedean valued �eld.

De�nition 3.8.1. Let L{K be a �nite extension, and |.|L an absolute value extending |.| to L. As pK, |.|q is

non arhimedean, so is pL, |.|Lq. Denote by OK and OL (resp. κK and κL) the rings of integers (resp. the

residue �elds) of pK, |.|q and pL, |.|Lq respetively (note that OL and κL depend on the extension |.|L).

The inlusion OK � OL indues a �eld extension κL{κK , whose degree

fL{K �

�

κL : κK
�

is alled the residual degree of the extension pL, |.|Lq{pK, |.|q. As |.|L extends |.|, the subgroup |K�

| � R
¡0

is a subgroup in |L�|L. The index

eL{K �

�

�

�L�
�

�

L
:
�

�K�

�

�

�

is alled the rami�ation index of the extension pL, |.|Lq{pK, |.|q.

Theorem 3.8.2. eL{KfL{K ¤ rL : Ks.

Proof. Let n,m P Z
¡0 be suh that n ¤ eL{K and m ¤ fL{K . Fix x1, . . . , xn P L

�

suh that the osets

t|xi|L |K
�

|u1¤i¤n are pairwise distint. Similarly, let y1, . . . , ym P OL whose images y1, . . . , ym P κL are

linearly independant over κK : we have to show that txiyju 1¤i¤n
1¤j¤m

are linearly independent over K.

 We �rst prove that if λ1, . . . , λm P K and α �
m
°

j�1

λjyj P L, then |α|L � max
1¤j¤m

|λj |. This is obvious if

λ1 � � � � � λm � 0: assume the ontrary. Renumbering if neessary, we may assume that |λ1| � max
1¤j¤m

|λj |.

Dividing α by λ1, we redue to the ase where λ1 � 1 and λj P OK for all j P t1, . . . ,mu. As the elements

y1, . . . , ym P κL are linearly independant over κK , the image of α in κL is non zero, so |α|L � 1, proving

the laim.

 Let pλi,jq 1¤i¤n
1¤j¤m

be elements in K suh that

°

1¤i¤n
1¤j¤m

λi,jxiyj � 0: we have
n
°

i�1

αixi � 0 with αi �
m
°

j�1

λi,jyj

for i P t1, . . . , nu. If one among the α1, . . . , αn is non zero, there exist 1 ¤ i1   i2 ¤ n suh that

|αi1xi1 |L � |αi2xi2 |L ¡ 0. Then αi1 , αi2 � 0, so |αi1 |L � max
1¤j¤m

|λi1,j | P |K
�

|, and similarly |αi2 |L P |K
�

|,

ontraditing the fat that the osets |xi1 | |K
�

| and |xi2 |L |K
�

| are distint. This implies that we have

α1 � � � � � αn � 0, whene λi,j � 0 for all i P t1, . . . , nu and j P t1, . . . ,mu (sine |αi| � max
1¤j¤m

|λi,j | by

what preedes). �

Remark 3.8.3. The theorem implies the �niteness of eL{K and fL{K . Note that the inequality in theorem

3.8.2 an be strit.

Theorem 3.8.4. Assume pK, |.|q is omplete and |.| is disrete. Then eL{KfL{K � rL : Ks.

Proof. Put e � eL{K and f � fL{K . We know that |.|L is unique (f theorem 3.5.6). As e is �nite and |.|

is disrete, so is |.|L: let πL P OL be a uniformizer. As |L�|L and |K�

| are isomorphi to Z, the quotient

group |L�|L { |K
�

| is yli of order e. This implies that |πL|
eZ
L � |K�

|.
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Let y1, . . . , yf P OL whose images y1, . . . , yf P κL are linearly independant over κK . This implies that

OL � y1OK � � � � � yfOK � πLOL: an immediate indution shows that

OL �

¸

0¤i¤e�1
1¤j¤f

πiLyjOK � πeLOL �

¸

0¤i¤e�1
1¤j¤f

πiLyjOK � πKOL

where πK is a uniformizer of K. By indution, we have OL �
°

0¤i¤e�1
1¤j¤f

πiLyjOK � π
n
KOL for all n P Z

¡0. As

OL is omplete for the πK-adi topology, we dedue OL �
°

0¤i¤e�1
1¤j¤f

πiLyjOK , whene L �

°

0¤i¤e�1
1¤j¤f

KπiLyj,

so rL : Ks � ef . �

Proposition 3.8.5. Assume that pK, |.|q is omplete, |.| disrete, and let L{K be a �nite extension suh that

κL{κK is separable. Then there exists α P OL suh that OL � OKrαs.

Proof.  As κL{κK is separable, there exists α P OL whose image α P κL is a primitive element, i.e.

suh that κL � κKpαq. Let πL P OL be a uniformizer. Put e � eL{K and f � fL{K . The proof of

previous theorem shows that tπiLα
j
u0¤i e
0¤j f

generates the OK-module OL. As OK is a DVR hene a PID,

the OK-module OL is free (of rank n � ef): this shows that tπiLα
j
u0¤i e
0¤j f

is an OK-basis of OL.

 Denote by vL the normalized valuation on OL. Let P P OKrXs be a moni polynomial (neessarily of

degree f) lifting the minimal polynomial of α over κK � A{mA: we have P pαq P mL.

Assume that vLpP pαqq ¡ 1. As κL{κK is separable, we have P 1

pαq � 0 (where P P κKrXs denotes the

image of P mod mArXs), i.e. P 1

pαq P O�

L . Now we have P pα � πLq � P pαq � P 1

pαqπL � βπ2
L (where

β �
f
°

i�2

P ris
pαqπi�2

L P OL). As vLpP
1

pαqπLq � 1   mintvLpP pαqq, vLpβπ
2
Lqu, we have vLpP pα � πLqq � 1:

replaing α by α� πL if neessary, we an assume that vLpP pαqq � 1, i.e. that π :� P pαq is a uniformizer

of L.

 As above, tπiαju0¤i e
0¤j f

is an OK-basis of OL. As πiαj P OKrαs for all i, j P Z
¥0, this implies that

OL � OKrαs. The reverse inlusion is trivial sine α P OL. �

De�nition 3.8.6. Assume that pK, |.|q is omplete, and let L{K be a �nite extension: the absolute value |.|

extends uniquely into an absolute value |.| on L.

(1) The extension L{K is unrami�ed when κL{κK is a separable extension of degree rL : Ks. By theorem

3.8.2, this implies that eL{K � r|L�| : |K�

|s � 1 (the onverse holds automatially when |.| is disrete and

κK perfet by theorem 3.8.4).

(2) The extension L{K is totally rami�ed when κL � κK (i.e. fL{K � 1).

Theorem 3.8.7. Assume that pK, |.|q is omplete, let L{K be a �nite extension, and k a subextension of

κL{κK suh that k{κK is separable. Then there exists a unique subextension M of L{K suh that M{K is

unrami�ed and κM � k.

Proof.  Existene. By hypothesis, there exists α P κL suh that k � κKrαs and the minimal polynomial P

of α over κK is separable, whene P 1

pαq � 0. Let P P OKrXs be any moni lift of P , and α P OL any lift

of α. Put ε � |P pαq| P r0, 1r (sine the image of P pαq in κL is P pαq � 0). We have |P 1

pαq| � 1 sine the

image of P 1

pαq in κL is P 1

pαq � 0. As |P pαq| ¤ ε |P 1

pαq|
2
, Newton's lemma (f theorem 3.3.10) implies the

existene of a root rα of P in L, suh that |rα� α| ¤ ε |P 1

pαq| � ε   1, so that the image of rα in κL is α.

Replaing α by rα, we may assume that P pαq � 0. PutM � Kpαq � L. Note that sine P is moni and P is

irreduible in κKrXs, the polynomial P is irreduible in OKrXs, hene in KrXs (assume P � P1P2 inKrXs:

resaling P1 and P2, we an assume that P1 and P2 are moni, so that |P1|Gauss ¥ 1 and |P2|Gauss ¥ 1; as

|P1|Gauss |P2|Gauss � |P |Gauss � 1, we have in fat |P1|Gauss � |P2|Gauss � 1, i.e. P1, P2 P OKrXs). This

implies that rM : Ks � degpP q � degpP q � rk : κKs. As α P κM , we have k � κM , whene

rM : Ks � rk : κKs ¤ rκM : κKs ¤ rM : Ks

(the seond inequality follows from theorem 3.8.2), so κM � k and rκM : κKs � rM : Ks, whene M{K is

unrami�ed.

 Uniity. Let M 1

be an other subextension of L{K suh that M 1

{K is unrami�ed and κpM 1

q � k. As

α P k � κpM 1

q, Newton's lemma (f theorem 3.3.10) applied to P P M 1

rXs provides a root β P M 1

of

P , whose image in κpM 1

q is α. Then we have 0 � P pβq � P pαq �
degpP q
°

i�1

pβ � αqiP ris
pαq. If β � α, we
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an divide this equality by β � α, and get 0 � P 1

pαq �
degpP q
°

i�2

pβ � αqi�1P ris
pαq. As P ris

P OKrXs for all

i P Z
¡0 and α, β P OL, we have P 1

pαq P pβ � αqOL, thus |P
1

pαq|   1 sine β � α P mL (beause β and

α both lift α). This ontradits the fat that |P 1

pαq| � 1: we have β � α, so that M � Kpαq � M 1

. As

rM 1 : Ks � rk : κKs � rM : Ks, we have M 1

�M . �

Proposition 3.8.8. Under the assumptions of theorem 3.8.7, if α P OM maps to α P k suh that k � κKpαq,

then OM � OKrαs. Moreover, if x �
d�1
°

i�0

λiα
i
PM � Kpαq (with d � rM : Ks and λ0, . . . , λd�1 P K), then

|x| � max
0¤i d

|λi|.

Proof. We have α P M thus Kpαq � M , and k � κKpαq, thus rM : Ks � rk : κKs | rKpαq : Ks | rM : Ks:

this implies that rKpαq : Ks � rM : Ks, i.e. M � Kpαq. Let x �
d�1
°

i�0

λiα
i
PM with λ0, . . . , λd�1 P K. Fix

i0 P t0, . . . , d�1u suh that |λi0 | � max
0¤i d

|λi|: if x � 0, we have λi0 � 0. Then λ�1
i0
x �

d�1
°

i�0

λ�1
i0
λiα

i
P OKrαs

beause

�

�λ�1
i0
λi
�

�

¤ 1, with equality for i � i0: as p1, α, α
2, . . . , αd�1

q is a basis of k over κK , this implies that

the image of λ�1
i0
x in κM � k is not zero, whene

�

�λ�1
i0
x
�

�

� 1, i.e. |λi0 | � |x|, proving the seond assertion.

If x P OM , this implies that |λi| ¤ |x| ¤ 1 i.e. λi P OK for all i P t0, . . . , d� 1u, so that x P OKrαs: we have

OM � OKrαs. The reverse inlusion is obvious. �

Corollary 3.8.9. Assume that pK, |.|q is omplete, and let L{K be a �nite extension suh that κL{κK is

separable. There exists a unique subextension T of L{K suh that T {K is unrami�ed and L{T is totally

rami�ed. If M is a subextension of L{K suh that M{K is unrami�ed, then M � T . Conversely, any

subextension M of T {K is unrami�ed over K.

Proof. By theorem 3.8.7 applied to k � κL, there exists a unique subextension T of L{K suh that T {K is

unrami�ed and κT � κL. This last property means that L{T is totally rami�ed.

LetM be a subextension of L{K suh thatM{K is unrami�ed. Theorem 3.8.7 applied to the extension T {K

and k � κM implies that there exists a unique subextension M 1

of T {K suh that M 1

{K is unrami�ed and

κM 1

� κM . Similarly, it implies that M is the unique subextension of L{K suh that M{K is unrami�ed

and whose residue �eld is κM : by uniity, we have M 1

�M , so that M � T .

If M is a subextension of T {K, we have rκT : κM s ¤ rT : M s and rκM : κKs ¤ rM : Ks. The produt of

these inequalities is the equality rκT : κKs � rT : Ks: these inequalities must be equalities, in partiular

rκM : κKs � rM : Ks. As κM{κK is separable sine κT {κK is, the extension M{K is unrami�ed. �

De�nition 3.8.10. The subextension T of L{K is alled the maximal unrami�ed subextension

(34)

of L{K.

Corollary 3.8.11. Under the assumptions of orollary 3.8.9, if M1 and M2 are two subextensions of L{K

that are unrami�ed over K, their ompositum M1M2 is unrami�ed over K.

Theorem 3.8.12. Assume that pK, |.|q is omplete, and let L{K be a �nite Galois extension suh that

κL{κK is separable. Then κL{κK is Galois, and there exists a natural, surjetive group homomorphism

GalpL{Kq Ñ GalpκL{κKq, whose kernel is GalpL{T q, where T is the maximal unrami�ed subextension of

L{K. It indues a group isomorphism GalpT {Kq
�

ÑGalpκL{κKq.

Proof. As we have seen during the proof of theorem 3.8.7, if α P κL is suh that κL � κKpαq, and if

P P OKrXs is any moni polynomial lifting the minimal polynomial P P κKrXs of α over κK , then P is

irreduible in KrXs, has a unique root α P L lifting α, and T � Kpαq.

 As L{K is Galois and P pαq � 0, the polynomial P is split in LrXs with simple roots in L (sine α

is separable over K sine L is): we an write P pXq �
d
±

i�1

pX � αiq, where α � α1, . . . , αd are pairwise

distint elements in L. If i P t1, . . . , du, there exists σ P GalpL{Kq suh that αi � σpαq, whih implies

that |αi| � |σpαq| � |α|, so that αi P OL: let αi be its image in κL. The fatorization above indues the

fatorization P pXq �
d
±

i�1

pX�αiq. This implies in partiular that κL � κKpαq is a splitting �eld for P over

κK : as P is separable over κK (sine α is, beause κL{κK is), the extension κL{κK is Galois.

 Let σ P GalpL{Kq. We have σpOLq � OL and σpmLq � mL (beause σ is an isometry by uniity of the

absolute value on L extending |.| on K). This implies that σ indues a ring homomorphism σ : κL Ñ κL,

(34)

Trägheitskörper in German.
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i.e. a �eld automorphism of κL. As σ
|K � IdK , we have σ

|κK
� IdκK

, so that σ P GalpκL{κKq. The indued

map GalpL{Kq Ñ GalpκL{κKq is obviously a group homomorphism.

 Let γ P GalpκL{κKq : there exists i P t1, . . . , du suh that γpαq � αi (sine the onjugates of α over κK
are α1, . . . , αd beause P is irreduible). As α and αi are onjugate over K (being roots of the irreduible

polynomial P ), there exists σ P GalpL{Kq suh that σpαq � αi. This implies that γ and σ oinide on α:

they are equal sine κL � κKpαq. This shows the surjetivity of the map GalpL{Kq Ñ GalpκL{κKq.

 Let σ P GalpL{Kq be suh that σ � IdκL
. This implies that σpαq maps to α in κL. As the only root of P

lifting α is α, we have σpαq � α, and σ P GalpL{T q. The onverse is obvious.

 As GalpL{T q � KerpGalpL{Kq Ñ GalpκL{κKqq, the subgroup GalpL{T q is normal in GalpL{Kq, so that

T {K is Galois (a fat that an be heked diretly by observing that T � Kpαq ontains all the onjugates

α1, . . . , αd of α over K), thus GalpT {Kq
�

ÑGalpκL{κKq passing to the quotient. �

De�nition 3.8.13. Under the assumptions of theorem 3.8.12, the subgroup IL{K :� GalpL{T q is normal in

GalpL{Kq. It is alled the inertia subgroup of the extension L{K. We thus have an exat sequene

t1u Ñ IL{K Ñ GalpL{Kq Ñ GalpκL{κKq Ñ t1u

Proposition 3.8.14. Assume that pK, |.|q is omplete, and let L{K and L1{K two �nite and unrami�ed

extensions. The natural map

HomK-algpL,L
1

q Ñ HomκK -algpκL, κL1q

is a bijetion.

Proof.  The extension κL{κK is �nite and separable: there exists α P k suh that k � κKpαq (primitive

element theorem). Let P P κKrXs be the minimal polynomial of α over κK , and P P OKrXs a moni lifting

of P . As α is separable over κK , we have P
1

pαq � 0: we an apply Newton's lemma (f theorem 3.3.10),

so there exists a unique element α P OL mapping to α in κL and suh that P pαq � 0.

 Let σ P HomK-algpL,L
1

q: we have σpOLq � OL1 , so that σ indues a morphism σ : κL Ñ κL1 of κK-

algebras. As P pαq � 0 in L, we have P pσpαqq � 0 in L1 as well (sine P P OKrXs). The image of σpαq in

κL1 oinides with σpαq. Again, we an apply Newton's lemma to P in OL1 : the uniity implies that σpαq

is the unique element α1 P OL1 mapping to σpαq in κL1 and suh that P pα1q � 0. This shows that there is a

bijetion between the possible values for σpαq (these are the roots of P in κL1) and the possible values for

σpαq (these are the roots of P in L1). As σ and σ are uniquely determined by σpαq and σpαq respetively,

this proves the bijetivity. �

Theorem 3.8.15. Assume that pK, |.|q is omplete, and let k{κK be a �nite and separable extension. There

exists a �nite unrami�ed extension L{K suh that κL � k. This extension is unique up to isomorphism.

Proof.  As k{κK is �nite and separable, there exists α P k suh that k � κKpαq (primitive element

theorem): let P P κKrXs be its minimal polynomial over κK . Let P P OKrXs be any moni lift of P : as

P is irreduible in κKrXs, so is P in OKrXs, hene in KrXs. This implies that L � KrXs{xP pXqy is a

�nite �eld extension of K, and that rL : Ks � rk : κKs. Put A � OK rXs{xP pXqy: as P P OKrXs, the

inlusion OK � KrXs indues a morphism of OK algebras A Ñ OL, whene a morphism of κK-algebras

κKrXs{xP y Ñ OL{mKOL. Composed with the anonial map OL{mKOL Ñ κL, we dedue a morphism

k Ñ κL of extensions of κK . This implies in partiular that rκL : κKs ¥ rk : κKs � rL : Ks: we must have

rκL : κKs � rk : κKs � rL : Ks, so that the map k Ñ κL is an isomorphism, and L{K is unrami�ed.

 The uniity follows from proposition 3.8.14. �

Corollary 3.8.16. Assume that pK, |.|q is omplete. The funtor L ÞÑ κL is an equivalene of ategories

between the ategory of �nite unrami�ed extensions of K and that of �nite and separable extensions of κK .

Proof. This is proposition 3.8.14 and theorem 3.8.15. �

Remark 3.8.17. The preeding statement is a speial ase of a very general result (on �nite étale overings

of shemes).

3.8.18. The ase of a �nite residue �elds. Here we assume that pK, |.|q is a non arhimedean omplete valued

�eld, suh that κK � Fq is a �nite �eld (so that q is a power of a prime p). If L{K is a �nite extension, then

κL{κK is a �nite extension of degree f , so κL � Fqf � Fq
�

ζqf�1

�

, where ζqf�1 is a primitive pqf � 1q-th

root of unity, i.e. a root of the separable polynomial Φqf�1pXq, the latter has a root in L, and T is a

splitting �eld of Φqf�1pXq: we have T � Kpζqf�1q where ζqf�1 is a (any) primitive pqf �1q-th root of unity

in L.
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The extension κL{κK being Galois, T {K is Galois as well, and GalpT {Kq
�

ÑGalpFqf {Fqq is yli of order

f , generated by the Frobenius automorphism ϕ de�ned by ϕpxq � xq for all x P Fqf . This means that

GalpT {Kq is generated by the Frobenius automorphism ϕ, whih is haraterized by

ϕpxq � xq mod mT

for all x P T . Note that by uniity of lifts of roots of Xqf�1
� 1 in T , we have ϕpζqf�1q � ζ

q

qf�1
.

Proposition 3.8.19. Let K be an algebrai losure of K. For f P Z
¡0, there exists a unique subextension

Kf of K{K whih is unrami�ed and whose residue �eld is Fqf .

By what theorem 3.8.15, Kf is the splitting �eld of Xqf
�X in K .

Notation. We denote by Qq the unique unrami�ed extension of Qp (in some �xed algebrai losure of Qp)

whose residue �eld is Fq. Its ring of integers is denoted Zq.

De�nition 3.8.20. (Teihmüller representatives) Let Qp be an algebrai losure of Qp. If f P Z
¡0

and x P Fpf , then x is a root of the polynomial Xpf
�X . As the latter is separable modulo p, Newton's

lemma (f theorem 3.3.10) implies that there is a unique element rxs P Zpf whih is a root of Xpf
�X , and

whose image in Fpf is x. Put together, those maps provide a anonial map

r.s : Fp Ñ OQp

whih is a setion of the anonial projetion OQp
Ñ Fp. Note that by uniity, we have rxys � rxsrys for

all x, y P Fp. The element rxs is alled the Teihmüller (or multipliative) representative of x.

Of ourse, we have r0s � 0 and r1s � 1. If x generates Fpf , then x is a primitive ppf � 1q-th root of unity

in Fp, hene rxs is a primitive ppf � 1q-th root of unity in Qp.

3.8.21. Totally rami�ed extensions. If L{K is a �nite extension whose residual extension κL{κK is separable,

there is a unique subextension T of L{K suh that T {K is unrami�ed with residue �eld κL, and L{T is

totally rami�ed. We have rT : Ks � fL{K , whene rL : T s � eL{K (beause rL : Ks � eL{KfL{K by theorem

3.8.4). As unrami�ed �nite extensions are well understood by orollary 3.8.9 and theorem 3.8.12, we now

explain the struture of totally rami�ed �nite extensions, in the ase where the value group |K�

| is disrete.

We heneforth assume that pK, |.|q is a omplete and disrete non arhimedean valued �eld.

Let K be a �xed algebrai losure of K and EpXq � Xe
�a1X

e�1
�� � ��ae�1X�ae P KrXs an Eisenstein

polynomial, i.e. suh that ai P mK for all i P t1, . . . , eu and ae P mKzm
2
K (in other words vKpaiq ¡ 0 for

i P t1, . . . , eu and vKpaeq � vKpπKq). Let Π P K be a root of E and L � KpΠq. As rL : Ks � e is �nite, |.|

extends uniquely to L by theorem 3.5.6 (i.e. vK extends uniquely into a valuation vL on L).

Lemma 3.8.22. The extension L{K is totally rami�ed, Π is a uniformizer of L and OL � OKrΠs.

Proof.  Note that L is omplete sine it is �nite dimensional over K (f theorem 3.4.12). As P pΠq � 0,

we have Π P OL, and

(�) Πe � uπK

where u � �

1
πK

�

ae � ae�1Π � � � � � a1Π
e�1

�

. For i P t1, . . . , eu, we have

�

�

�

aiΠ
e�i

πK

�

�

�

¤ 1 sine |ai| ¤ |πK |

(beause ai P mK � πKOK) and |Π| ¤ 1 sine Π P OL. This implies that u P OL: equation (�) implies that

|Π|
e
� |u| |πK |   1, showing that Π P mL. This implies that

�

�

�

aiΠ
e�i

πK

�

�

�

  1 if i P t1, . . . , e� 1u. On the other

hand, we have

�

�

�

ae
πK

�

�

�

� 1 beause ae P πKO�

K (sine E is an Eisenstein polynomial). As

�

�

�

ae
πK

�

�

�

¡

�

�

�

aiΠ
e�i

πK

�

�

�

for

all i P t1, . . . , e � 1u, we have |u| � max
1¤i¤e

�

�

�

aiΠ
e�i

πK

�

�

�

� 1, so that u P O�

L . This implies that |Π| � |πK |
1{e

,

showing that

e
a

|K�

| � |L�|, whene r|L�| : |K�

|s ¥ e � rL : Ks. By theorem 3.8.4, this implies that L{K

is totally rami�ed, and |L�| � |Π|
Z
�

e
a

|K�

|. In partiular, Π is a uniformizer of L.

 As Π P OL, we have OKrΠs � OL. Conversely, let x P OLzt0u. As p1,Π,Π2, . . . ,Πe�1
q is a K-basis of

L, we an write x � λ0 � λ1Π � � � � � λe�1Π
e�1

with λ0, . . . , λe�1 P K. If 0 ¤ i   j   e are integers, we

have

�

�λiΠ
i
�

�

�

�

�λjΠ
j
�

�

unless λi � λj � 0, beause |Π|
j�i

R |K�

|. This implies that |x| � max
0¤i e

|λi| |Π|
i
. As

x P OL, have thus |λi| |Π|
i
¤ 1, i.e. |λi| ¤ |Π|

�i
  |πK |

�1
for all i P t0, . . . , e� 1u, i.e. |λi| ¤ 1 i.e. λi P OK

for all i P t0, . . . , e� 1u, hene x P OKrΠs. �

Theorem 3.8.23. A �nite extension L{K is totally rami�ed if and only if L � KpπLq, where πL is a

uniformizer of L, and a root of an Eisenstein polynomial over K. Then OL � OKrπLs.
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Proof.  Assume L{K is totally rami�ed, and let πL a uniformizer of L. We have |L�| � |πL|
Z
and

|K�

| � |πK |
Z
: as r|L�| : |K�

|s � e :� rL : Ks, we have |πK | � |πL|
e
. The family p1, πL, π

2
L, . . . , π

e�1
L q

is linearly independent over K: if we had a non trivial relation λ0 � λ1πL � � � � � λe�1π
e�1
L � 0 with

λ0, . . . , λe�1 P K, there would be 0 ¤ i   j   e integers suh that 0  
�

�λiπ
i
L

�

�

�

�

�

�

λjπ
j
L

�

�

�

, ontraditing the

fat that πL
j�i

R |K�

|. This implies that p1, πL, π
2
L, . . . , π

e�1
L q is a basis of L over K, so that L � KpπLq.

Let EpXq � Xe
� a1X

e�1
� � � � � ae�1X � ae P KrXs be the minimal polynomial of πL over K. As πL

belongs to OL, it is integral over OK (f orollary 3.5.10): we have EpXq P OKrXs. If i P t1, . . . , eu, the

oe�ient ai is, up to the sign, the i-th elementary symmetri polynomial in the onjugates of πL. Sine all

of these belong to mN (where N is a normal losure of L{K), we have ai P mN XK � mK . Moreover, the

onstant term satis�es ae � �NL{KpπLq, so that |ae| �
�

�NL{KpπLq
�

�

� |πL|
e
� |πK | (f proposition 3.5.9),

whih shows that E is an Eisenstein polynomial.

 The onverse and the statement on OL are nothing but lemma 3.8.22. �

3.8.24. Tame and wild rami�ation. Here again, we assume that pK, |.|q is a omplete and disrete non

arhimedean valued �eld.

De�nition 3.8.25. A �nite extension L{K is tamely rami�ed when its residual extension is separable and

eL{K is prime to charpκKq, and wildly rami�ed otherwise.

Remark 3.8.26. When charpκKq � 0, every �nite extension is tamely rami�ed.

In what follows, we put p � charpκKq if charpκKq ¡ 0 and p � 1 if charpκKq � 0.

Lemma 3.8.27. Let L{K be a totally rami�ed extension. Write rL : Ks � prm with gcdpp,mq � 1. It

z P L is suh that zm � 1, then z P K.

Proof. Put e � rL : Ks, and let πL be a uniformizer of L: we have OL �

e�1
À

i�0

OKπ
i
L. As |z| � 1, we have

z P OL: there exists a unique y P OK suh that z � y P
e�1
À

i�1

OKπ
i
L: we have |z � y| ¤ |πL|, so in partiular

|y| � 1. Let P pXq � Xm
� 1 P OK rXs. We have |P pyq| � |P pyq � P pzq| � |ym � zm| ¤ |y � z| ¤ |πL|. On

the other hand, we have P 1

pyq � mym�1
, so that |P 1

pyq| � 1 sine gcdpp,mq � 1 and |y| � 1. Newton's

lemma (f theorem 3.3.10) implies that there exists a unique element ry P K suh that P pryq � 0 and

|ry � y| ¤ |πL|. This implies that |ry � z| ¤ |πL|. Applying uniity in L then shows that z � ry P K. �

Theorem 3.8.28. Let L{K be a totally rami�ed extension of degree e � prm with gcdpp,mq � 1. There

exists a unique subextension V of L{K suh that V {K is tamely rami�ed and rL : V s � pr. Moreover, there

exists a uniformizer π of K suh that V � Kp m
?

πq.

Proof.  Existene of V . Let πK (resp. πL) be a uniformizer in K (resp. L). As the extension L{K is

totally rami�ed, we have OL �

e�1
À

i�0

OKπ
i
L, and π

e
L � uπK , with u P O�

L . As κL � κK , there exists u0 P O�

K

suh that u and u0 have same image in κL, so that z � u
u0
P OL satis�es |z � 1|   1.

Now let P pXq � Xm
� z P OLrXs: as |z � 1|   1, we have |P p1q|   1. Also, |P 1

p1q| � |m| � 1 sine

gcdpp,mq � 1: by Newton's lemma (f theorem 3.3.10), there exists a unique w P OL suh that P pwq � 0

and |w � 1| ¤ |P p1q| � |z � 1|. We thus have π
prm
L � u0w

mπK , so that πV :�
π
pr

L

w
P OL is suh that

πmV � u0πK �: π is a uniformizer of K. Let V � KpπV q: as πV is a root of the Eisenstein polynomial

Xm
� π P OK , we have rV : Ks � m: the extension V {K is tamely rami�ed, and rL : V s �

rL:Ks

rV :Ks
� pr.

 Uniity of V . Let V 1

be a subextension of L{K suh that rV : Ks � m. Applying the onstrution above

inside V 1

instead of L provides an element πV 1 P V
1

suh that πmV 1 is a uniformizer of K: if x �
πV 1

πV
P OL, we

have λ :� xm P O�

K . There exists y P OK suh that |x� y| ¤ |πL|, then |y
m
� xm| ¤ |πL|, i.e. |Qpyq| ¤ |πL|,

where QpXq � Xm
� λ P OK . As |Q

1

pyq| �
�

�mym�1
�

�

� 1 (sine gcdpp,mq � 1 and |y| � |x| � 1), Newton's

lemma again provides an element ry P O�

K suh that rym � λ. If z � x
ry
P OL, we have z

m
� 1. Lemma 3.8.27

implies that z P O�

K , so that x � ryz P O�

K , showing that πV 1 P V , whene V
1

� V . �

Remark 3.8.29. In the previous theorem, one annot take any uniformizer π.

De�nition 3.8.30. Let L{K be a �nite �eld extension suh that κL{κK is separable. Let L{K be a �nite

extension whose residual extension is separable. What preedes shows that there are unique subextensions
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T � V suh that T {K is unrami�ed, L{T is totally rami�ed, V {K is tamely rami�ed and L{V is totally

rami�ed of degree a power of p.

K
unrami�ed

T
tame

totally rami�ed

V
wild

L

The subextension V of L{K is the maximal subextension of L{K whih is tamely rami�ed over K: it is

alled the maximal tamely rami�ed subextension

(35)

of L{K. Note that by theorem 3.8.28, there exists a

uniformizer π of T suh that V � T p m
?

πq, where eL{K � prm and gcdpp,mq � 1. Note that in general, one

may not take π in K.

3.9. Exerises.

Exerise 3.9.1. Let k be a �nite �eld. Show that the only absolute value on k is the trivial one.

Exerise 3.9.2. Let pK, |.|q be a valued �eld.

(1) Show that if |.| is non arhimedean, then |.|
γ
is an absolute value for all γ P R

¡0.

(2) Show that if |.| is arhimedean, then |.|
γ
is an absolute value for all γ Ps0, 1s.

(3) What are the γ P R
¡0 suh that |.|

γ
8

is an absolute value on Q?

Exerise 3.9.3. Let p and q be two distint prime numbers. Show that the absolute values |.|p and |.|q are

not equivalent. Show also that |.|p and |.|8 are not equivalent.

Exerise 3.9.4. (Inompleteness of Q). Let pK, |.|q be a omplete valued �eld, suh that |.| is non

trivial. Using Baire's theorem, show that K is unountable. Dedue that Q is non omplete any of its non

trivial absolute values.

Exerise 3.9.5. Let pK, |.|q be a non arhimedean valued �eld. Show that CardpKq ¤ CardpκKq
Cardp|K�

|q

.

Exerise 3.9.6. Let p be a prime number. Show that Qp is not algebraially losed.

Exerise 3.9.7. Show that Qp {Zp � Zrp�1
s{Z.

Exerise 3.9.8. Show that if p � 2, then 1 is the only p-th root of unity in Qp.

Exerise 3.9.9. (Approximation). Let K be a �eld.

(1) Let |.| and |.|
1

be two absolute values on K. Show that the following are equivalent:

(i) |.| and |.|
1

are equivalent;

(ii) for all x P K, we have |x|   1� |x|
1

  1.

Let v0, . . . , vn be pairwise distint plaes, and |.|1 , . . . , |.|n absolute values representing v1, . . . , vn.

(2) Show by indution on n P Z
¡0 that there exists x P K suh that |x|0 ¡ 1 and |x|i   1 for i P t1, . . . , nu.

(3) Dedue that the diagonal morphism K Ñ

n
±

i�1

Kvi has dense image, where Kvi denotes the �eld K

endowed with the topology de�ned by vi.

Exerise 3.9.10. Let K be a �eld, r1, . . . , rn P R and |.|1 , . . . , |.|n non-trivial inequivalent absolute values

on K. Assume that |x|
r1
1 � � � |x|

rn
n � 1 for all x P K�

. Prove that r1 � � � � � rn � 0 (in other words, there is

no �nite produt formula).

Exerise 3.9.11. Let pK, |.|q be a valued �eld.

(1) Show that the following are equivalent:

(i) |.| is ultrametri;

(ii) |n| ¤ 1 for all n P Z.

(iii) |2| ¤ 1.

[Hint: to prove (ii)ñ(i), use the binomial expansion.℄

(2) Dedue that if charpKq � 0, then every absolute value on K is ultrametri.

(35)

Verzweigungskörper in German.
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Exerise 3.9.12. Let K be a �eld, |.| a nontrivial non arhimedean absolute value on K, and OK its ring

of integers.

(1) Show that OK is integrally losed.

(2) Show that the following are equivalent:

(i) OK is a DVR;

(ii) OK is noetherian;

(iii) the maximal ideal mK :� tx P K ; |x|   1u is prinipal;

(iv) |K�

| is a disrete subgroup of R
¡0.

Exerise 3.9.13. Let K be a �eld. A subring A � K is a valuation ring of K when p�x P Kqx R A ñ

x�1
P A (this implies in partiular that K � FracpAq).

(1) Show if A is a valuation ring of K and I, J are ideals in A, then either I � J or J � I. Dedue that A

is loal (we denote heneforth its maximal ideal by mA).

(2) Let F be a �eld, A � F rrX,Y ss the ring of formal series and K � F ppX,Y qq � FracpAq the �eld of formal

Laurent series. Is the loal ring A a valuation ring of K?

(3) Show that a valuation ring of K is integrally losed.

(4) Let A � K be a subring and p � A a maximal ideal. The aim of this question is to show that there

exists a valuation ring R of K suh that A � R and AXmR � p.

(a) Show that the set E of subrings B � K suh that A � B and 1 R pB ontains an element R whih

is maximal for the inlusion [hint: Zorn℄.

(b) Show that R is loal, and that its maximal ideal mR satis�es A X mR � p [hint: onsider the

loalization of R at maximal ideal m � R suh that pR � m℄.

() Let x P K�

be suh that x, x�1
R R. Using the fat that Rrxs, Rrx�1

s R E , show that there exist

relations 1 � a1x � � � � � anx
n
and 1 � b1x

�1
� � � � � bmx

�m
with a1, . . . , an, b1, . . . , bm P mR.

Assuming n,m P Z
¡0 minimal, derive a ontradition an dedue that R is a valuation ring.

(5) Let A � K be a subring, B � K the integral losure of A in K, and B1

the intersetion of all the

valuation rings of K that ontain A.

(a) Show that B � B1

.

(b) Let x P K suh that x is not integral over A. Show that x�1Arx�1
s is a strit ideal in Arx�1

s.

Conlude that there exists a valuation ring R suh that x R R [hint: use question (4)℄.

() Conlude that B1

� B.

(6) Let A be a PID, K � FracpAq. Show that the valuation rings of K that ontain A and are distint from

K are the loalizations ApA where p is a prime element in A.

(7) Let A � K be a valuation ring suh that there exists a prime ideal p � A suh that t0u � p � mA.

Show that the ring R � ArrXss is not integrally losed [hint: take a P mAzp and b P pzt0u, and show that

the polynomial T 2
� aT �X has a root f suh that bf P XR but f R R℄.

Exerise 3.9.14. Let A be a omplete DVR, π P A a uniformizer, and Σ � A a omplete set of representatives

for A{πA. Show that any element in A an be written uniquely as the sum of a onvergent series x0�x1π�

x2π
2
� � � � in A.

Exerise 3.9.15. Let pK, |.|q be a non arhimedean valued �eld and pL, |.|q its ompletion. Show that

|K�

| � |L�| and that κK � κL.

Exerise 3.9.16. Let K be a �eld and |.|1 , |.|2 two equivalent non arhimedean absolute values on K. Show

that their value groups (resp. residue �elds) are isomorphi.

Exerise 3.9.17. Let pK, |.|q be a non arhimedean valued �eld. Prove the following:

(1) for eah r P R
¡0, the balls Bp0, rq � tx P K ; |x|   ru and Bp0, rq � tx P K ; |x| ¤ ru are additive

subgroups of K;

(2) the unit sphere is a multipliative subgroup of K�

;

(3) Bp1, 1q � tx P K ; |x� 1|   1u is a multipliative subgroup of the unit sphere;

(4) for eah r Ps0, 1r, the balls Bp1, rq and Bp1, rq are multipliative subgroups of Bp1, 1q.

Exerise 3.9.18. Let pK, |.|q be a non arhimedean loally ompat valued �eld. Show that its residue �eld

is �nite and its value group is disrete.
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Exerise 3.9.19. Find examples of two omplete non arhimedean valued �elds whose respetive residue

�elds and value groups are isomorphi, but whih are not isomorphi as �elds.

Exerise 3.9.20. Show that every non-trivial non arhimedean absolute value on R has divisible value

group and algebraially losed residue �eld.

Exerise 3.9.21. Let pK, |.|q be a omplete valued �eld suh that |2| � 2.

(1) Show that R � K and that |.| extends the �usual� absolute value on R.

(2) Show that if K � R, then K � C endowed with its �usual� absolute value |.|
8

[hint: if α P KzR, show

that the map f : CÑ R
¥0; z ÞÑ

�

�α2
� pz � zqα� zz

�

�

has a zero.℄

Exerise 3.9.22. Let pV, }.}V q and pW, }.}W q be normed vetor spaes over a omplete valued �eld pK, |.|q.

Assume that V is �nite dimensional. Show that eah sub-K-vetor spae of V is losed, and that any

K-linear map f : V ÑW is ontinuous.

Exerise 3.9.23. Find an example of a (neessarilly non omplete) non arhimedean �eld pK, |.|q and a

�nite dimensional K-vetor spae that admits two unequivalent norms.

Exerise 3.9.24. (Ostrowski for funtion fields). Let K be a �eld. As KrXs is fatorial, we an

assoiate an absolute value |.|P on KpXq to any moni irredutible P P KrXs: �x c Ps0, 1r, we have

|R|P � cvP pRq where vP pRq is the P -adi valuation of R P KpXq. Also we have the absolute value |.|
8

whose restrition to KrXs is given by |F |
8

� c� degpF q
for any F P KrXs.

(1) Compute the rings of integers and the residue �elds of the absolute values mentionned above.

(2) Show that |.|
8

an be seen, after an appropriate hange of indeterminate, as a P -adi absolute value.

(3) Show that any nontrivial absolute value on KpXq that is trivial on K is equivalent to |.|P for some

moni irreduible P P KrXs or to |.|
8

.

(4) Explain how to normalize the absolute values |.|P so that the produt formula

±

vPV

|R|v � 1 holds, where

V is the set of irreduible moni polynomials union t8u.

(5) When K � Q, onstrut absolute values on QpXq that are not equivalent to the absolute values above.

(6) What happens when K is �nite?

Exerise 3.9.25. (Newton polygons). Let pK, |.|q be a omplete non arhimedean valued �eld, K an

algebrai losure of K and v an assoiated valuation. If P pXq � anX
n
�an�1X

n�1
�� � ��a1X�a0 P KrXs,

the Newton polygon NPpP q of P is the onvex hull in R2
of the set of points tpi, vpaiqqu0¤i¤n Y t8u where

8 denotes the point at in�nity of the positive vertial axis.



M0



M1





M2







M3

M4

(1) Let λ P R. Show that PλpXq :�
±

αPK
vpαq��λ
P pαq�0

pX � αq P KrXs.

(2) Let λ P R. Show that the number (ounting multipliities) of roots x of P (in K) suh that vpxq � �λ

is equal to the length of the projetion on the horizontal of the side of NPpP q of slope λ (so it is 0 if there

is no suh side).

(3) Dedue that if NPpP q has more than one �nite slope, then P is reduible in KrXs.

(4) (Irreduibility riterion) Assume that v is disrete and normalized, that P is moni and that NPpP q

has only one side of �nite slope �

m
n

where gcdpm,nq � 1. Show that P is irreduible in Krxs. Reover

Eisenstein's irreduibility riterion.
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Exerise 3.9.26. Let x P Q�

p and x �

8

°

n�vppxq

anp
n
(with an P t0, 1, . . . , p � 1u for all n) its p-adi

development. What is the p-adi development of �x?

Exerise 3.9.27. Let x P Qp. Show that x P Q if and only if its p-adi development x �
8

°

n�vppxq

anp
n
(with

an P t0, 1, . . . , p� 1u) eventually beomes periodi [hint: redue to the ase where x P Q
 0XZp℄.

Exerise 3.9.28. Let x �
8

°

k�0

2k! P Q2. Show that x is transendental over Q.

Exerise 3.9.29. Let x P Q�

p and x �
8

°

n�v

anp
n
its p-adi development. Let n0   n1   � � � be the sequene

of indies suh that ank
� 0. Assume that lim sup

kÑ8

nk�1

nk
� �8. Show that x is transendental over Q.

Exerise 3.9.30. Let pK, |.|q be a omplete non arhimedean valued �eld. Denote by OK its ring of integers

and let P pXq � a0 � a1X � � � � � an�1X
n�1

� anX
n
P KrXs suh that a0an � 0.

(1) Show that if P is irreduible, then |P |Gauss � maxt|a0| , |an|u.

(2) Assume that P is moni, irreduible, and a0 P OK . Show that P P OKrXs.

Exerise 3.9.31. Let p be a prime integer.

(1) Let u P Q�

p . Show that the following are equivalent:

(i) u P Z�p ;

(ii) up�1
is an n-th power in Qp for in�nitely many n P Z

¡0.

(2) Prove that the only �eld automorphism of Qp is IdQp
.

Exerise 3.9.32. Assume that p is odd. Show that Q�

p {Q
�p
p � pZ {pZq2.

Exerise 3.9.33. Let p be a prime number, K be a omplete disretely valued extension of Qp. Denote

by v : K�

Ñ Z its normalized valuation and by e � vppq its absolute rami�ation index. For i P N
¡0, put

U iK � 1�miK , where mK is the maximal ideal of K. Prove that

�

U iKq
p
� U i�eK when i ¥ e

p�1
.

Exerise 3.9.34. (1) Let F be a �eld suh that charpF q � 2 and x, y P F zF 2
. Show that F p

?

xq � F p
?

yq

if and only if there exists z P F�

suh that y � xz2.

(2) Let x P Q�

2 : write x � 2v2pxqu with u P Z�2 . Show that x is a square in Q2 if and only if 2 | v2pxq and

u � 1 mod 8Z2. Desribe the group Q�

2 {Q
�2
2 .

(3) Desribe quadrati extensions of Q2.

Exerise 3.9.35. Let a P Z. Show that the polynomial X2
�X�a has a root in Q2 if and only if a is even.

Exerise 3.9.36. Show that Q�2
p � tx2uxPQ�

p
is open in Q�

p .

Exerise 3.9.37. (Hensel's lemma). Let pK, |.|q be a omplete disretely valued �eld and P P OKrXs a

moni polynomial.

(1) Show that if P is irreduible in OKrXs, its image in κKrXs is the power of an irreduible polynomial.

(2) Assume that the image P of P in κKrXs fators as P pXq � g1pXqg1pXq where g1, g2 P κKrXs are moni

polynomials suh that gcdpg1, g1q � 1. Show that there exist unique G1, G2 P OKrXs moni polynomials

whose images in κKrXs are g1 and g2 respetively, and P pXq � G1pXqG2pXq.

Exerise 3.9.38. (A multivariate Newton's lemma). Let pK, |.|q be a non arhimedean valued �eld,

n P Z
¡0 and P1, . . . , Pn P OKrX1, . . . , Xns. Endow Kn

with the norm de�ned by }x} � max
1¤i¤n

|xi| for

all x � px1, . . . , xnq P Kn
, and put P � pP1, . . . , Pnq. Assume that a � pa1, . . . , anq P On

K satis�es

}P paq} ¤ ε |detpJpaqq|
2
with ε Ps0, 1r, where Jpaq P MnpOKq denotes the Jaobian matrix of P at a. Show

that there exists b P On
K suh that }b� a} ¤ ε |detpJpaqq| and }P pbq} ¤ ε2 |detpJpaqq|

2
. In partiular, if

pK, |.|q is omplete, there exists ra P On
K suh that }ra� a} ¤ ε |Jpaq| and P praq � 0.
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Exerise 3.9.39. Let p be a prime. Show that Zp � tx P Qp ; pDy P Qpq y
2
� 1� p3x4u (this shows that Zp

is algebraially de�nable in Qp).

Exerise 3.9.40. Is the p-adi absolute value the only non trivial absolute value on Qp, up to equivalene?

Exerise 3.9.41. Let pK, |.|q be a non arhimedean valued �eld, and ρ P R
¡0. If P pXq � a0 � a1X � � � � �

anX
n
, put |P |ρ � max

0¤i¤n
|ai| ρ

i
. Chek that |.|ρ extends into an absolute value on KpXq. When are two suh

absolute values equivalent?

Exerise 3.9.42. (Classifiation of degree 1 transendental valued extensions). (f [16, �0.2℄)

Let K be an algebraially losed �eld, X an indeterminate, and |.| be an absolute value on KpXq. Put

rX � inf
αPK

|X � α|

(1) Assume that there exist α0, π P K suh that rX � |X � α0| � |π|. Show that |KpXq�| � |K�

| and that

κKpXq is purely transendental extension of degree 1 of κK (the extension of valued �elds KpXq{K is alled

inert).

(2) Assume that there exists α0 P K suh that rX � |X � α0| R |K
�

|. Show that |KpXq�| � |K�

| rZX and

κKpXq � κK (the extension of valued �elds KpXq{K is alled totally rami�ed).

(3) Assume that |X � α| ¡ rX for all α P K. Show that |KpXq�| � |K�

| and κKpXq � κK (then KpXq is

alled an immediate (valued) extension of K).

Exerise 3.9.43. Show that the map C Ñ R
¥0; z ÞÑ |z| �

?

zz is the unique absolute value on C that

extends the absolute value |.| of R.

Exerise 3.9.44. Let L{K be an algebrai extension, and |.| an absolute value on L. Show that if the

restrition of |.| to K is trivial, then |.| is trivial.

Exerise 3.9.45. Let L{K be a �nite extension of valued �elds. Shows that if α P L is integral over OK ,

then α P OL. The onverse holds when K is omplete: show with an example that the onverse does not

hold in general.

Exerise 3.9.46. Let L{K be a purely inseparable �eld extension. Show that any absolute value on K has

a unique extension to L.

Exerise 3.9.47. Let pK, |.|q be a omplete non arhimedean valued �eld, and L{K a �nite extension. Show

that if }.} is any norm on the K-vetor spae L, the map x ÞÑ lim
nÑ8

n
a

}xn} oinides with the unique absolute

value extending |.| on L.

Exerise 3.9.48. Let p be a prime number. Show that X2
� p is irreduible in QprXs. Let K � Qpp

?

pq

and |.|K the extension of |.|p to K. If x � a�b
?

p P K (where a, b P Qp), show that |x|K � max
!

|a|p ,
|b|p
?

p

)

.

What are the residue �eld and the value group of pK, |.|Kq?

Exerise 3.9.49. Let p be a prime number suh that p � 3 mod 4. Show that X2
� 1 is irreduible in

QprXs. Let K � Qppiq (where i is a root of X2
� 1) and |.|K the extension of |.|p to K. Find a formula for

|a� ib|K , where a, b P Qp.

Exerise 3.9.50. How many extensions to Qp
n
?

2q does the arhimedean absolute value |.| of Q admit?

Exerise 3.9.51. Let P pXq � X3
� 17 and j P Q3 a primitive ubi root of unity.

(1) Show that j R Q3 [hint: ompute pj � 1q2℄.

(2) What are the degrees of the irreduible fators of P in Q3rXs [hint: ompute P p5q℄?

(3) How many extensions to Qp 3
?

17q does the 3-adi absolute value have?

Exerise 3.9.52. Let pK, |.|q be a non arhimedean valued �eld. Is the map |.| : K Ñ R
¥0 ontinuous when

R
¥0 is endowed with its �usual� topology? What if R

¥0 is endowed with the disrete topology?
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Exerise 3.9.53. Let pK, |.|q be a omplete non arhimedean valued �eld and P P KrXszK.

(1) Let pxnqnPZ
¥0

be a sequene of elements in K suh that lim
nÑ8

|P pxnq| � 0. Show that there is a

subsequene of pxnqnPZ
¥0

that onverges to a root of P in K.

(2) If F � K is losed, then its image P pF q is losed.

(3) If C � K is ompat, then its inverse image P�1
pCq is ompat.

Exerise 3.9.54. Let Qp be an algebrai losure of Qp. The p-adi absolute value extends uniquely to an

absolute value |.|p on Qp. For n P Z
¡0, put Hn � tx P Qp ; rQppxq : Qps ¤ nu.

(1) Show that Hn is losed.

(2) Show that Hn � Qp for all n P Z
¡0.

(3) Show that Hn �Hm � Hnm for all n,m P Z
¡0.

(4) Dedue that Qp is not omplete for |.|p [hint: Baire℄.

Exerise 3.9.55. Prove that there are exatly two non-isomorphi ubi extensions of Q2.

Exerise 3.9.56. Let Q2 be an algebrai losure of Q2, and �x a sequene pαnqnPZ
¥0

in Q2 suh that α0 � 2

and α2
n�1 � αn for all n P Z

¥0. Let F � Q2pαnqnPZ¥0
� Q2: the 2-adi absolute value |.|2 extends uniquely

to Q2. Let pK, |.|q be the ompletion of pF, |.|2q, and L � Kpiq where i2 � �1.

(1) For n P Z
¥0, put xn � 1 � 2pα�1

1 � � � � � α�1
n q. Show that v2pi � xnq � 1 � 1

2n�1 [Hint: ompute

v2p1� x2nq℄. Dedue that rQ2pαn, iq : Q2pαnqs � 2.

(2) Determine the residue �eld of Q2pαn, iq for all n P Z
¥0.

(3) Show that the rami�ation index e and the residual degree f of L{K are equal to 1, so that the inequality

ef ¤ rL : Ks is strit.

Exerise 3.9.57. Let pK, |.|q be a omplete non arhimedean valued �eld, and L{K a �nite extension suh

that the residual extension κpLq{κpKq is Galois. Let T be the maximal unrami�ed subextension of L{K.

Show that T {K is Galois and that there exists a natural group isomorphism GalpT {Kq
�

ÑGalpκpLq{κpKqq.

Exerise 3.9.58. Let pK, |.|q be a omplete non arhimedean valued �eld, K an algebrai losure, and L,

M �nite subextensions. Show that if L{K is unrami�ed, so is ML{M .

Exerise 3.9.59. Let pK, |.|q be a omplete non arhimedean valued �eld, K an algebrai losure of K and

e P Z
¡0 prime to charpκKq. Show that if α P K is suh that αe P O�

K , the extension Kpαq{K is unrami�ed.

Exerise 3.9.60. Let |.| be the Gauss absolute value on Q2pXq, and pK, |.|q the ompletion thereof. Let L

the deomposition �eld of the polynomial P pY q � pY 2
�Xq2 � 2 P KrY s, and |.| the unique absolute value

on L that extends |.|.

(0) What is the residue �eld κK of K?

(1) Show that rL : Ks � 8, that eL{K � 4 and fL{K � 2.

(2) Show that there is no subextension M of L{K suh that rM : Ks � 2 and κM � κL.

Exerise 3.9.61. Let A � Z
p2q and α �

�1�
?

4
?

2�3

2
P R. Put B � Arαs. Show that B is a DVR whose

residue �eld is F4 and whose rami�ation index is eB{A � 2. Show that there is no DVR C � B whih is

unrami�ed over A and whose residue �eld is F4 [hint: determine the subextensions of Qpαq{Q℄.

Exerise 3.9.62. Let pK, |.|q be a omplete and disrete non arhimedean valued �eld, L{K a �nite extension

and α P O�

L suh that L � Kpαq. Denote by α the image of α in κL. Let P pXq P OKrXs (resp.

ΠpXq P κKrXs) be the minimal polynomial of α (resp. α) over K (resp. over κK), and P pXq the image of

P pXq in κKrXs. Show that P pXq � ΠpXqd, for some integer d suh that e | d (where e � eL{K denotes the

rami�ation index of L{K).

Exerise 3.9.63. Show that the unique unrami�ed extension of degree n of Qp (in a �xed algebrai losure

Qp of Qp) is the deomposition �eld of Xpn
�X .
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Exerise 3.9.64. Let pK, |.|q be a omplete disrete non arhimedean valued �eld, and K an algebrai

losure.

(1) Let M � L be �nite subextensions of K{K. Show that L{K is tamely rami�ed if and only if L{M and

M{K are tamely rami�ed.

(2) Assume that L{K is a �nite subextension of K , and T {K a �nite unrami�ed subextension of K . Show

that L{K is tamely rami�ed if and only if LT {T is tamely rami�ed.

(3) Let e P Z
¡0 be prime to charpκKq and b P OKzt0u, and L � K be the extension obtained by adjoining a

root of Xe
� b. Show that L{K is tamely rami�ed, and that eL{K � e1 :� e

gcdpe,vKpbqq
(where vK denotes the

normalized valuation onK) [hint: by question (2), this an be heked after omposition with any unrami�ed

extension of K: use an appropriate one to redue to the ase where b � πe
1

K with πK a uniformizer in K℄.

(4) Let L, M be �nite subextensions of K{K. Show that if L{K is tamely rami�ed, so is ML{M .

(5) Dedue that if L{K and M{K are both tamely rami�ed, so is ML{K.

Exerise 3.9.65. Let C be an algebrai losed �eld of harateristi 0, and K � CppXqq � FracpKrrXssq

the �eld of formal Laurent series with oe�ients in C. Let K be an algebrai losure of K. Show that

K �

�

nPZ
¡0

CppX1{n
qq.

Exerise 3.9.66. Let L{K be a �nite extension of loal �elds, and M1, M2 two subextensions suh that

M1{K and M2{K are totally rami�ed. Is the omposite M1M2{K neessarily totally rami�ed?

Exerise 3.9.67. Let p be a prime number. Show that the maximal unrami�ed extension of Qp in Qp is

obtained by adjoining all roots of unity of order prime to p.

Exerise 3.9.68. Let L{K be a totally tamely rami�ed �nite extension of omplete, disrete non arhimedean

valued �elds. Show that the intermediate �elds of L{K orrespond bijetively to subgroups of |L�| { |K�

|

(where |.| denotes the absolute value on L).

Exerise 3.9.69. (1) Let L{K be a �nite tamely rami�ed Galois extension of omplete and disrete non

arhimedean valued �elds. Denote by T be the maximal unrami�ed subextension of L{K. Put GL{K �

GalpL{Kq and IL{K � GalpL{T q, so that we have an isomorphism GL{K{IL{K
�

ÑGalpκL{κKq. Show that

IL{K is abelian and that GalpκL{κKq ats on I by pσI, τq ÞÑ στσ�1
.

(2) Show that every tamely rami�ed extension of K an be embedded into a �nite tamely rami�ed extension

L{K suh that GL{K � IL{K � GalpκL{κKq.

Exerise 3.9.70. Show that the maximal tamely rami�ed abelian extension V of Qp is �nite over the

maximal unrami�ed extension T of Qp.

Exerise 3.9.71. Show that the maximal unrami�ed extension of K � FpppXqq is T �

�

nPZ
¡0

FpnppXqq and

that the maximal tamely rami�ed extension is V � T
�

 

n
?

X
(

nPZ
¡0

p∤n

	

.

Exerise 3.9.72. Let p be an odd prime number, ΦppXq � Xp�1
� � � � �X � 1 P QprXs and ζ P Qp a root

of Φp. Put K � Qppζq.

(1) Set Y � X � 1: show that ΦppXq � P pY q where P is an Eisenstein polynomial. Dedue that K{Qp is

tamely totally rami�ed.

(2) Show that K � Qppπq where π
p�1

� �p [hint: use the polynomial �

1
p
P pπZq to show that ζ P Qppπq℄.

Exerise 3.9.73. Let α be a root of P pXq � X4
� 50 P Q5rXs (in some algebrai losure of Q5) and

K � Q5pαq.

(1) Prove that K{Q5 is a yli extension of degree 4.

(2) Prove that the maximal unrami�ed subextension T of K{Q5 is quadrati over Q5, so K{T is a totally

tamely rami�ed extension with degree 2.

(3) Find a uniformizer π of T suh that K � T p
?

πq.

(4) Show that suh a π annot be found inside Q5.
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Exerise 3.9.74. Let pK, |.|q be a non arhimedean omplete valued �eld and L{K a �nite separable exten-

sion.

(1) Assume that L{K is unrami�ed. Show that TrL{KpOLq � OK .

(2) Assume that |.| is disrete. Show that TrL{KpOLq � OK if and only if is tamely rami�ed.

Exerise 3.9.75. Let K be a omplete disretely valued �eld of harateristi 0, whose residue �eld κK has

harateristi p ¡ 0. We denote by vK : K Ñ ZYt8u its normalized valuation.

(1) Let L{K be a totally rami�ed �nite extension and EpXq � Xe
� ae�1X

e�1
� � � � � a0 P OKrXs the

minimal polynomial overK of a uniformizer πL of L. Put cpLq � vLpDL{Kq�e�1 (where vL : LÑ ZYt8u

is the normalized valuation and DL{K the di�erent of L{K). Show that cpLq P Z
¥0 and that cpLq � 0 if

and only if L{K is tamely rami�ed [hint: use the equality DL{K � E1

pπLqOL℄.

(2) Show that if L{K is not tamely rami�ed, then cpLq � mintevKpeq, evKpaiq � e� iu1¤i e.

Let K be a �xed separable losure of K and π a uniformizer of K. We denote by UK � 1� πOK the group

of prinipal units of K. Heneforth, we assume that κK is �nite: let q be its order.

(3) Show that an element u P O�

K an be written uniquely u � rαsru where α P κ�K , rαs P O�

K is the unique

pq � 1q-th root of unity lifting α and ru P UK .

We denote by Σe the set of subextensions L{K of K that are totally rami�ed of degree e P Z
¡0.

(4) Assume that p ∤ e. Reall that, being tamely rami�ed overK, elements in Σe are of the form Kθ :� Kpθq

where θ P K is a root of the polynomial Xe
� uπ for some u P O�

K .

(a) Let ru P UK . Show that there exists λ P UK suh that λe � ru. Dedue that we may restrit to

elements u of the form rαs with α P κ�K .

(b) Let α, α1 P κ�K and θ, θ1 P K suh that θe � rαsπ and θ1e � rα1sπ. Show that Kθ � Kθ1 if and only

if there exists β P κ�K suh that α1 � βeα and an e-th root of unity ζ P K suh that θ1 � rβsζθ.

Dedue that it is equivalent to the existene of γ P κ�K suh that θ1 � rγsθ.

() Show that #Σe � e.

(5) In this question, we assume that p | e: by question (1), we have L P Σe ñ cpLq P t1, . . . , evKpequ.

(a) For eah j P t1, . . . , e� 1u, onstrut an element L P Σe suh that cpLq � j.

(b) Dedue that #Σe ¥ e.

() Assume #Σe � e. Using (2), show that vKpeq � 1, then that e � p is a uniformizer of K [hint:

onsider the extension generated by the roots of Xe
� π, then that generated by a root of Xe

� uπ

for an appropriate root of unity u P O�

K ℄.

(d) Dedue #Σe ¡ e.

Exerise 3.9.76. Let pK, |.|q be a omplete disretely valued �eld and K an algebrai losure of K. We

assume that the residue �eld κK of K ontains the �nite �eld Fq (where q � pf with f P Z
¡0). Fix a

uniformizer π of K and let P pXq � Xq
�πX P KrXs. Choose a sequene pπnqnPZ

¥0
in K suh that π0 � 0,

π1 � 0 and P pπnq � πn�1 for all n P Z
¡0. For n P Z

¥0, we put Kn � Kpπnq.

(1) Explain why the group µq�1pKq of pq � 1q-th roots of unity is yli of order q � 1.

(2) Show that K1{K is totally rami�ed and that π1 is a uniformizer of K1.

(3) Show that K1{K is Galois and desribe its Galois group.

(4) Show that for all n P Z
¡0, the extension Kn�1{Kn is separable, totally rami�ed of degree q, and that

πn�1 is a uniformizer of Kn�1 [hint: use indution℄.

(5) Show that OKn
� OKrπns for all n P Z

¥0.

(6) Compute the di�erent DKn�1{Kn
[ do the ase n � 0 separately℄, and dedue DKn{K and the disrim-

inant dKn{K for all n P Z
¥0.
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4. Loal fields

4.1. De�nition and �rst properties.

De�nition 4.1.1. A loal �eld is a omplete disrete valued �eld pK, |.|q suh that |.| is non trivial and

whose residue �eld is perfet

(36)

.

Heneforth, pK, |.|q denotes a loal �eld, πK a uniformizer of K, and vK a valuation on K assoiated to |.|.

4.1.2. Galois extensions of loal �elds. Let L{K be a �nite Galois extension. By theorem 3.8.12, the

extension T {K is Galois, and we have the exat sequene

t1u Ñ IL{K Ñ GalpL{Kq Ñ GalpκL{κKq Ñ t1u

where IL{K � GalpL{T q is the inertia subgroup. Assume now that charpκKq � p ¡ 0. The extension

L{T is totally rami�ed. Let V be the unique subextension of L{T suh that V {T is tamely rami�ed and

rL : V s � pr, where r � vpprL : T sq. If σ P GalpL{T q, then σpV q � L satis�es rσpV q : T s � rV : T s, so by

uniity we have σpT q � T : the extension V {T is Galois.

4.2. Struture of rings of integers of loal �elds. Let pK, |.|q be a loal �eld, and π a uniformizer of

K. If charpKq � p ¡ 0, then charpκKq � p. There are two possibilities:

 charpKq � charpκKq: this is the equiharateristi ase;

 charpKq � 0 and charpκKq � p ¡ 0: this is the mixed harateristi ase.

4.2.1. The equiharateristi ase.

Theorem 4.2.2. Assume charpKq � charpκKq. Then OK is isomorphi to κKrrT ss.

De�nition 4.2.3. A �eld of representatives in OK is a �eld F � OK whih is also a omplete set of

representatives for κK , in other words suh that the anonial map OK Ñ κK indues an isomorphism

F
�

ÑκK .

Lemma 4.2.4. If charpκKq � 0, then OK admits a �eld of oe�ients.

Proof. As Z Ñ OK Ñ κK is injetive (sine charpκKq � 0), we have ZXmK � t0u, so that Q is a sub�eld

of OK . By Zorn's lemma (f theorem 9.1.1), there exists a maximal sub�eld F � OK : we have to show

that the omposite F � OK Ñ κK is surjetive (it is automatially injetive sine F is a �eld). Let F be

the image of F in κK .

 Assume κK{F is not algebrai: there exists x P O�

K whose image x in κK is transendental over F . The

projetionOK Ñ κK maps F rxs surjetively hene bijetively onto F rxs. This implies that F rxsXmK � t0u,

so that elements in F rxszt0u are invertible in OK : we have F pxq � OK , ontraditing the maximality of F .

 Let x P κK . As κK{F is algebrai, we an onsider the minimal polynomial P pXq P F rXs of x over F .

Let P pXq P F rXs be a moni lifting of P (so P is irreduible in F rXs), and x0 P OK be any lifting of

x. As charpκKq � 0, the polynomial P is separable, so P 1

pxq � 0: we have |P px0q|   1 and |P 1

px0q| � 1.

Newton's lemma (f theorem 3.3.10) implies that there exists a unique x P OK suh that P pxq � 0 and

|x� x0| ¤ |P px0q|   1. This implies that the omposite F rXs{xP y
�

ÑF pxq Ñ F pxq is an isomorphism,

hene F pxq is a sub�eld of OK : by maximality we have F pxq � F , i.e. x P F , whene x P F . This shows

that F � κK , and F is a �eld of oe�ients for OK . �

Lemma 4.2.5. If charpκKq � 0, then OK admits a �eld of oe�ients.

Proof.  Let x P κK . For eah n P Z
¥0, let pxn, rxn P OK be liftings of xp

�n

P κK (reall that κK is perfet):

the elements pxp
n

n and rxp
n

n are lifts of x. We have pxn � rxn mod πKOK , so pxpn � rxpn mod π
p
KOK (by the

binomial theorem, and the fat that charpOKq � p), and pxp
n

n � rxp
n

n mod π
pn

K OK by an immediate indution.

Applied with rxn � px
p
n�1, we dedue that px

pn�1

n�1 � pxp
n

n mod π
pn

k OK , whih implies that

�

pxp
n

n

�

nPZ
¥0

is a

Cauhy sequene in OK for the πK -adi topology. As OK is omplete, this sequene onverges to a limit

ρpxq P OK , whih lifts x. The ongruene pxp
n

n � rxp
n

n mod π
pn

K OK proved above shows that this limit ρpxq

does not depend on the hoie of the lifts ppxnqnPZ
¥0
, but only on x. This provides a map ρ : κK Ñ OK ,

that is a setion of the anonial map OK Ñ κK .

 If x, y P κK , let ppxnqnPZ
¥0

and ppynqnPZ
¥0

sequenes in OK lifting the sequenes

�

xp
�n�

nPZ
¥0

and

�

yp
�n�

nPZ
¥0

respetively. Then the sequene of produts ppxnpynqnPZ
¥0

lifts

�

pxyqp
�n�

nPZ
¥0
, whih implies

that ρpxyq � lim
nÑ8

pxp
n

n pyp
n

n � ρpxqρpyq. Similarly, the sequene of sums ppxn�pynqnPZ
¥0

lifts

�

px�yqp
�n�

nPZ
¥0

(36)

Some authors restrit this terminology to the �nite residue �eld ase.
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(beause px � yqp
�n

� xp
�n

� yp
�n

), so that ρpx � yq � lim
nÑ8

ppxn � pynq
pn
� ρpxq � ρpyq (as charpOKq � p,

we have ppxn � pynq
pn
� pxp

n

n � pyp
n

n for all n P Z
¥0). This implies that ρ is a ring homomorphism. As κK is a

�eld, it is an isomorphism onto its image: the latter is a �eld of oe�ients for OK . �

Proof of theorem 4.2.2. Lemmas 4.2.4 and 4.2.5 show that OK has a �eld of oe�ients F . As OK is πK -

adially separated and omplete, there exists a unique ontinuous morphism of F -algebras h : F rrT ss Ñ OK

suh that hpT q � πK . Corollary 3.7.5 imply that h is an isomorphism. Composed with the isomorphism

κKrrT ss
�

ÑF rrT ss gives the result. �

4.2.6. Witt vetors. The referenes for this part are [20, Chap. II, �6℄, [5, Chap. IX, �1℄ and [10, Chap. I℄.

In what follows, �ring� means ommutative unitary ring. Let p be a prime integer. Let X � pX0, X1, . . .q

be a indeterminate.

De�nition 4.2.7. Let n P Z
¥0, the n-th Witt polynomial is

ΦnpXq � X
pn

0 � pX
pn�1

1 � � � � � pn�1X
p
n�1 � pnXn �

ņ

i�0

piX
pn�i

i

If A is ring, the ghost map is:

ΦA : AZ
¥0
Ñ AZ

¥0

a ÞÑ
�

Φnpaq
�

nPZ
¥0

Lemma 4.2.8. Let A be a ring, and x, y P A suh that x � y mod pA. Then xp
i

� yp
i

mod pi�1A for

every i P Z
¥0.

Proof. We proeed by indution on i P Z
¥0, the ase i � 0 being the hypothesis. Let i P Z

¥0 be suh

that xp
i

� yp
i

mod pi�1A: write xp
i

� yp
i

� pi�1z with z P A. By the binomial theorem, we have

xp
i�1

�

�

yp
i

� pi�1z
�p

� yp
i�1

�

p�1
°

k�1

�

p
k

�

pkpi�1qyp
i
pp�kqzk � pppi�1qzp. For k P t1, . . . , p � 1u, we have

vp
��

p
k

�

pkpi�1q
�

� 1� kpi� 1q ¥ i� 2, and ppi� 1q ¥ i� 2 (beause p ¥ 2), so xp
i�1

� yp
i�1

mod pi�2A. �

Lemma 4.2.9. (Dwork). Let ϕ : A Ñ A be a ring homomorphism suh that ϕpaq � ap mod pA for all

a P A. Then a sequene pxnqnPZ
¥0
P AZ

¥0
is in the image of ΦA if and only if ϕpxnq � xn�1 mod pn�1A

for all n P Z
¥0.

Proof.  As ϕ is a ring homomorphism, we have ϕpΦnpaqq �
n
°

i�0

piϕpaiq
pn�i

for all a � panqnPZ
¥0
. As

ϕpaiq � a
p
i mod pA, we have ϕpaiq

pn�i

� a
pn�1�i

i mod pn�1�iA for all i P t0, . . . , nu by lemma 4.2.8. This

implies that ϕpΦnpaqq �
n
°

i�0

pia
pn�1�i

i mod pn�1A, i.e. ϕpΦnpaqq � Φn�1paq mod pn�1A.

 Conversely, assume that pxnqnPZ
¥0

P AZ
¥0

satis�es ϕpxnq � xn�1 mod pn�1A for all n P Z
¥0: we

onstrut a � panqnPZ
¥0

P AZ
¥0

indutively suh that xn � Φnpaq for all n P Z
¥0. Put a0 � x0 P A.

Let n P Z
¥0 be suh that a0, . . . , an P A have been onstruted suh that for all k P t0, . . . , nu, we have

xk � Φkpa0, . . . , akq. By the omputation above, we have ϕpxnq � ϕpΦnpaqq �
n
°

i�0

pia
pn�1�i

i mod pn�1A

i.e. xn�1 �

n
°

i�0

pia
pn�1�i

i P pn�1A (sine xn�1 � ϕpxnq � 0 mod pn�1A): there exists an�1 P A (that may

not be unique when A has p-torsion) suh that xn�1 �

n�1
°

i�0

pia
pn�1�i

i � Φn�1pa0, . . . , an�1q. �

Let Y � pY0, Y1, . . .q be a indeterminate.

Proposition 4.2.10. (f [20, Chap. II, �6, Theorem 5℄). There exist unique sequenes of polynomials

pSnqnPZ
¥0
, pPnqnPZ

¥0
P ZrX,Y sZ¥0

and pInqnPZ
¥0
P ZrXsZ¥0

suh that:

SnpX,Y q, PnpX,Y q P ZrX0, . . . , Xn, Y0, . . . , Yns

InpXq P ZrX0, . . . , Xns

Φn
�

S0pX,Y q, . . . , SnpX,Y q
�

� ΦnpXq � ΦnpY q

Φn
�

P0pX,Y q, . . . , PnpX,Y q
�

� ΦnpXqΦnpY q

Φn
�

I0pXq, . . . , InpXq
�

� �ΦnpXq
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Proof.  Let A � ZrX,Y s be the polynomial ring. Denote by ϕ : A Ñ A the unique ring endomorphism

suh that ϕpXnq � Xp
n and ϕpYnq � Y pn for all n P Z

¥0. We have ϕpaq � ap mod pA for all a P A.

As ϕ is a ring endomorphism and Φn has integral oe�ients, we have ϕpΦnpXq � ΦnpY qq � ΦnpϕpXqq �

ΦnpϕpY qq (resp. ϕpΦnpXqΦnpY qq � ΦnpϕpXqqΦnpϕpY qq, resp. ϕp�ΦnpXqq � �ΦnpϕpXqq) for all n P Z
¥0.

As ΦnpϕpXqq � Φn�1pXq � pn�1Xn�1 and ΦnpϕpY qq � Φn�1pY q � pn�1Yn�1 by de�nition, this implies

that ϕpΦnpXq � ΦnpY qq � Φn�1pXq � Φn�1pY q mod pn�1A (resp. ϕpΦnpXqΦnpY qq � Φn�1pXqΦn�1pY q

mod pn�1A, resp. ϕp�ΦnpXqq � �Φn�1pXq mod pn�1A) for all n P Z
¥0. Lemma 4.2.9 thus implies that

ΦApXq�ΦApY q, ΦApXqΦApY q and �ΦApXq belong to the image of ΦA, whih preisely means the existene

of the sequenes of polynomials pSnqnPZ
¥0
, pPnqnPZ

¥0
P ZrX,Y sZ¥0

and pInqnPZ
¥0
P ZrXsZ¥0

.

 The uniity is obvious in Zrp�1
srX,Y s by indution. �

Example 4.2.11. One has

#

S0pX0, Y0q � X0 � Y0

P0pX0, Y0q � X0Y0

and

$

&

%

S1pX0, X1, Y0, Y1q � X1 � Y1 �
p�1
°

i�1

1
p

�

p
i

�

X i
0Y

p�i
0

P1pX0, X1, Y0, Y1q � X1Y
p
0 �X

p
0Y1 � pX1Y1

De�nition 4.2.12. Let A be a ring. Put

WpAq � AZ
¥0

(as a set). If a � pa0, a1, . . .q, b � pb0, b1, . . .q PWpAq, put

a� b �
�

Snpa, bq
�

nPZ
¥0

a.b �
�

Pnpa, bq
�

nPZ
¥0

�a �
�

Inpaq
�

nPZ
¥0

Remark 4.2.13. The map ΦA : AZ
¥0
Ñ AZ

¥0
above is seen as a map ΦA : WpAq Ñ AZ

¥0
.

Proposition 4.2.14. (1) A ÞÑ pWpAq,�, .q is a funtor on Ring to the ategory of sets endowed with two

omposition laws.

(2) If p is not a zero-divisor (resp. is a unit) in A, then ΦA is injetive (resp. bijetive).

(3) pWpAq,�, .q is a ommutative ring with zero element 0 � p0, 0, . . .q and unit p1, 0, 0, . . .q. The map ΦA
is a ring homomorphism.

Proof. (1) and (2) are obvious. For (3), let B Ñ A be a surjetive ring homomorphism, suh that p is not

a zero-divisor in B (one an take B � ZrXasaPA, and B Ñ A; Xa ÞÑ a). As ΦB is injetive, pWpBq,�, .q

identi�es (via ΦB) with a subring of BZ
¥0

(with the produt struture). Sine B Ñ A is surjetive, so is

WpBq Ñ WpAq, and pWpAq,�, .q ful�lls the ring axioms. �

De�nition 4.2.15. Let A be a ring. The Teihmüller representative of a P A is ras :� pa, 0, 0, . . .q PWpAq.

Proposition 4.2.16. Let A be a ring. If a, b P A, then rabs � ras.rbs in WpAq.

Proof. Here again, it is enough to hek the equality when A has no p-torsion, hene after applying ΦA
(sine it is injetive in the p-torsionfree ase), but ΦAprasq � pa, ap, ap

2

, . . .q is multipliative. �

Proposition 4.2.17. There exists a sequene pFnqnPZ
¥0
P ZrXsZ¥0

suh that FnpXq P ZrX0, . . . , Xn�1s and

p�n P Z
¥0q Φn

�

F0pXq, . . . , FnpXq
�

� Φn�1pXq

Proof. As in the proof of proposition 4.2.10, it is enough, using lemma 4.2.9, to hek that if A � ZrXs,

we have ϕpΦnpXqq � Φn�1pXq mod pn�1A for all n P Z
¥0, whih is trivial. Here again, the uniity in

Zrp�1
srXs is obvious by indution. �

Example 4.2.18. We have

$

&

%

F0pX0, X1q � X
p
0 � pX1

F1pX0, X1, X2q � X
p
1 � pX2 �

p
°

i�1

�

p
i

�

pi�1X i
1X

ppp�iq
0

De�nition 4.2.19. Let A be a ring. The Frobenius map of WpAq is

F paq �
�

F0paq, F1paq, . . .
�
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Proposition 4.2.20. Let A be a ring.

(1) p�a P AqF prasq � raps.

(2) p�n P Z
¥0qFnpXq � Xp

n mod pZrXs. In partiular, it pA � 0, then F pa0, a1, . . .q � pa
p
0, a

p
1, . . .q.

Proof. (1) Considering a surjetive ring homomorphism B Ñ A where B has no p-torsion, whih gives

rise to a surjetive ring homomorphism WpBq Ñ WpAq, we may redue to the ase where A has no p-

torsion. Then ΦA : WpAq Ñ AZ
¥0

is injetive: it is enough to hek that ΦApF prasqq � ΦApra
p
sq, i.e. that

Φn�1prasq � ap
n�1

� Φnpra
p
sq.

(2) By indution on n P Z
¥0, the ase n � 0 following from the equality F0pXq � X

p
0 �pX1. Let n P Z

¡0 be

suh that FipXq � X
p
i mod pZrXs for i P t0, . . . , n� 1u: we have FipXq

pn�i

� X
pn�1�i

i mod pn�1�i ZrXs

for i P t0, . . . , n� 1u by lemma 4.2.8, hene

Φn�1pXq � Φn
�

F0pXq, . . . , FnpXq
�

�

ņ

i�0

piFipXq
pn�i

� pnFnpXq �

n�1̧

i�0

piX
pn�1�i

i mod pn�1 ZrXs

As

n�1
°

i�0

piX
pn�1�i

i � Φn�1pXq � pnXp
n � pn�1Xn�1, this implies that pnFnpXq � pnXp

n mod pn�1 ZrXs i.e.

FnpXq � Xp
n mod pZrXs. �

De�nition 4.2.21. Let A be a ring. The Vershiebung of a � pa0, a1, . . .q PWpAq is

V paq � p0, a0, a1, . . .q

Proposition 4.2.22. Let A be a ring and a, b PWpAq.

(1) We have

#

ΦApF paqq �
�

Φ1paq,Φ2paq, . . .q � fpΦApaqq

ΦApV paqq �
�

0, pΦ0paq, pΦ1paq, . . .q � vpΦApaqq

where fpXq � pX1, X2, . . .q and vpXq � p0, pX0, pX1, . . .q.

(2) F is a ring endomorphism.

(3) V is an group endomorphism of pWpAq,�q.

(4) FV � p Id
WpAq and V F paq � p0, 1, 0, . . .q.a.

(5) V pa.F pbqq � V paq.b and V paq.V pbq � pV pa.bq.

(6) F paq � ap mod pWpAq.

(7) a � ra0s � V pa1q where a1 � pa1, a2, . . .q. In partiular a �
8

°

n�0

V npransq.

Proof. (1) is omputation. Using the usual trik, the proof of properties (2)-(7) redues to the ase when

A has no p-torsion, hene after applying ΦA sine the latter is injetive. (2) (resp. (3)) follows from the

fat that f (resp. v) is a ring (resp. a group) homomorphism. (4) follows from the equality f � v � p and

ΦAp0, 1, 0, 0, . . .q � p0, p, p, . . .q. (5) follows from the orresponding statements on f and v in ZrXsZ¥0
. To

prove (6), we hek that ΦApF paqq � ΦApa
p
q mod p ImpΦAq, i.e. that fpΦApaqq � ΦApa

p
q P p ImpΦAq. By

lemma 4.2.9, this follows from the ongruenes

ϕ
�

Φn�1pXq � ΦnpXq
p
�

� Φn�2pXq � Φn�1pXq
p mod pn�2 ZrXs,

whih are obvious sine ϕpΦnpXqq � Φn�1pXq�p
n�1Xn�1. Finally, (7) follows from the equalities Φ0paq � a0

and Φnpaq � a
pn

0 � pΦn�1pa
1

q for all n P Z
¡0, whih preisely mean that ΦApaq � ΦApra0s � V pa1qq. �

De�nition 4.2.23. Let A be a ring. For n P Z
¥0, let

FilnWpAq � V npWpAqq �
 

p0, . . . , 0, an, an�1, . . .q ; pakqk¥n P A
Z
¥n
(

�WpAq.

This de�nes a dereasing �ltration on WpAq.

As V npa� bq � V npaq � V npbq and V npaq.b � V npa.Fnpbqq, FilnWpAq is an ideal of WpAq.

De�nition 4.2.24. Let A be a ring. The ring of Witt vetors of length n is WnpAq :�WpAq{FilnWpAq.

Remark 4.2.25. In general, we have V npWpAqqV mpWpAqq � V n�mpWpAqq, so the �ltration is not om-

patible with the ring struture (however this is true if pA � 0).

Proposition 4.2.26. Let A be a ring suh that pA � 0.

(1) FV paq � V F paq � pa � p0, a
p
0, a

p
1, . . .q (so p0, 1, 0, 0 . . .q � p).

(2) V npaqV mpbq � V n�m
�

Fmpaq.Fnpbq
�

.

(3) The p-adi and the V pWpAqq-adi �ltration are the same, and �ner than that de�ned by the �ltration.

In partiular, WpAq is omplete and separated for the p-adi topology.
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(4) If A is perfet

(37)

, all these topologies are the same, and WpAq{pWpAq
�

ÑA, and(38)

a � pa0, a1, . . .q �

8

¸

n�0

V npransq �

8

¸

n�0

V nFn
��

ap
�n

n

��

�

8

¸

n�0

pn
�

ap
�n

n

�

Proof. (1) Follows from proposition 4.2.20 (2): if a � panqnPZ
¥0
P WpAq, we have F paq � pa

p
0, a

p
1, . . .q, so

V F paq � p0, a
p
0, a

p
1, . . .q � FV paq, so that V F � FV � p Id

WpAq.

By proposition 4.2.22 (5), we have V paq.b � V pa.F pbqq, hene V npaq.b � V npa.Fnpbqq by an immediate

indution on n P Z
¥0. Applied to Vmpbq instead of b, we get V npaq.V mpbq � V n

�

a.FnVmpbq
�

. As

FnV mpbq � V mFnpbq (by (1)), we have a.FnV mpbq � V mpFmpaq.Fnpbqq, hene the result.

For (3), one proves by indution that pV pWpAqqqk � pk�1V pWpAqq (using the seond formula of proposition

4.2.22 (5)). As pWpAq � V F pWpAqq � V pWpAqq, one has pkWpAq � pV pWpAqqqk � pk�1
WpAq. Moreover,

we have

(�) pkWpAq � V nFnpWpAqq �
 

p0, . . . , 0, ak, ak�1, . . .q PWpAq ; p�n P Z
¥0q an P A

pk
(

� FilkWpAq

so that the p-adi topology is �ner that that de�ned by the �ltration FilWpAq.

(4) follows from the fat that (�) is an equality when A is perfet. �

4.2.27. The mixed harateristi ase. In this paragraph, we assume that charpKq � 0 and charpκKq � p ¡ 0.

As p P OK maps to 0 in κK , there exists eK P Z
¡0 suh that p P πeKO�

K . As charpKq � 0, we have Q � K,

so that K is an extension of Qp.

De�nition 4.2.28. The integer eK is alled the absolute rami�ation index of K. It is nothing but the

rami�ation index of the extension K{Qp. The �eld K is absolutely unrami�ed when eK � 1, i.e. when p

is a uniformizer of OK .

Lemma 4.2.29. (Multipliative representants). There exists a unique map ρ : κK Ñ OK whih

is a setion of the anonial map OK Ñ κK and suh that ρpxpq � ρpxqp for all x P κK . This map is

multipliative, i.e. ρpxyq � ρpxqρpyq for all x, y P κK .

Proof. Existene.  Let s, s1 : κK Ñ OK be setions of the anonial map OK Ñ κK (so that spxq and

s1pxq are liftings of x in OK). For all n P Z
¥0, the elements s

�

xp
�n�

and s1
�

xp
�n�

both lift xp
�n

: we have

s
�

xp
�n�

� s1
�

xp
�n�

mod πOK , so that

(♣) s
�

xp
�n�pn

� s1
�

xp
�n�pn

mod πn�1OK

by an argument analogous to that of the lemma 4.2.8 (using the fat that π divides p). Applied with

s1 : x ÞÑ s
�

xp
�1�p

, we get

(♠) s
�

xp
�n�pn

� s
�

xp
�n�1�pn�1

mod πn�1OK ,

showing that

�

s
�

xp
�n�pn�

nPZ
¥0

is a Cauhy sequene in OK : it onverges to a limit ρpxq P OK , whih is a

lifting of x. Equation (♣) implies that ρpxq does not depend on the hoie of s.

 Passing to the limit as nÑ 8 in (♠), we get ρpxq � ρ
�

xp
�1�p

hene ρpxpq � ρpxqp for all x P κK .

 If x, y P κK , and n P Z
¥0, the elements ρ

�

pxyqp
�n�

and ρ
�

xp
�n�

ρ
�

yp
�n�

both lift pxyqp
�n

in OK : we

have ρ
�

pxyqp
�n�

� ρ
�

xp
�n�

ρ
�

yp
�n�

mod πOK so ρ
�

pxyqp
�n�pn

� ρ
�

xp
�n�pn

ρ
�

yp
�n�pn

mod πn�1OK (by

lemma 4.2.8 again), i.e. ρpxyq � ρpxqρpyq mod πn�1OK for all n P Z
¥0, hene ρpxyq � ρpxqρpyq.

Uniity. Let ρ1 : κK Ñ OK be a setion of the anonial map OK Ñ κK and suh that ρ1pxpq � ρ1pxqp for

all x P κK . Using s � ρ1, we have ρpxq � lim
nÑ8

ρ1
�

xp
�n�pn

� ρ1pxq for all x P κK , hene ρ
1

� ρ. �

Remark 4.2.30. (1) As the proof shows, the previous statement an be generalized to the following situation:

let A be a p-adially separated and omplete ring suh that the Frobenius endomorphism on A{pA is

surjetive. Then there exists a unique setion ρ : A{pA Ñ A of the anonial map A Ñ A{pA suh that

ρpxpq � ρpxqp for all x P A{pa, and ρ is multipliative.

(2) Of ourse, ρ is not additive sine charpKq � 0.

Proposition 4.2.31. There exists a unique ring homomorphism WpκKq Ñ OK that indues the identity on

residue �elds. It is injetive and OK is a freeWpκKq-module of rank eK (in partiular, we haveOK �WpκKq

when K is absolutely unrami�ed).

(37)

This means that the p-th power map A Ñ A is surjetive.

(38)

Using proposition 4.2.22 (7).
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Proof. Uniity. Let f : WpκKq Ñ OK be a ring homomorphism induing the identity on residue �elds. The

map κK Ñ OK ; x ÞÑ fprxsq is a multipliative (beause the Teihmüller map is), and it is a setion of the

anonial map OK Ñ κK (beause f indues the identity on residue �elds). By uniity in lemma 4.2.29,

we have fprxsq � ρpxq for all x P κK . Now if a � pa0, a1, . . .q P WpκKq, we have a �
8

°

n�0

pn
�

ap
�n

n

�

(f

proposition 4.2.26 (4)): by ontinuity of f (sine fppmWpκKqq � pmOK for all m P Z
¥0), we have

(z) fpaq �

8

¸

i�0

piρ
�

a
p�i

i

�

whih proves uniity.

Existene. We have to show that the map f : WpκKq Ñ OK given by formula (z) is indeed a ring homo-

morphism that indues the identity on residue �elds.

 If a � pa0, a1, . . .q PWpκKq, the image of a in κK �WpκKq{pW pκKq is a0 (f proposition 4.2.26 (4)), and

that of fpaq is that of ρpa0q i.e. a0: this shows that f indues the identity on residue �elds. Formula (z)

also implies that for all n P Z
¥0, we have fpp

n
WpκKqq � fpV npWpκKqqq � pnOK , so that f is ontinuous

for the p-adi topology.

 Let n P Z
¥0. By de�nitions of Witt vetors, the map Φn : WpOK{p

n�1OKq Ñ OK{p
n�1OK is a ring

homomorphism. Let a � paiqiPZ
¥0
, b � pbiqiPZ

¥0
P WpOK{p

n�1OKq suh that ai � bi mod pOK{p
n�1OK

for all i P Z
¥0: lemma 4.2.8 implies that a

pn�i

i � b
pn�i

i mod pn�i�1OK{p
n�1OK , so that pia

pn�i

i � pib
pn�i

i

for all i P Z
¥0. This implies that Φnpaq only depends on the image of a in WpOK{pOKq, whih means that

Φn fators through a ring homomorphism

rΦn : WpOK{pOKq Ñ OK{p
n�1OK .

WpOK{p
n�1OKq

Φn //

����

OK{p
n�1OK

WpOK{pOKq

rΦn

44❥❥❥❥❥❥❥❥❥❥

For the same reason, if a � paiqiPZ
¥0
, b � pbiqiPZ

¥0
P WpOK{pOKq suh that ai � bi mod πOK{pOK for

all i P Z
¥0, we have a

pk

i � b
pk

i in OK{pOK if k P Z
¥eK�1, so that F kpaq only depends on the image of a in

WpκKq (reall that sine OK{pOK has harateristi p, the Frobenius map on WpOK{pOKq is just raising

the omponents to the p-th power): the ring endomorphism F k fators through a ring homomorphism

ϕk : WpκKq ÑWpOK{pOKq.

WpOK{pOKq
Fk

//

����

WpOK{pOKq

WpκKq
ϕk

55❥❥❥❥❥❥❥❥❥❥

Now let a � pa0, a1, . . .q PWpκKq. As pρpaiq mod pOKqiPZ
¥0
PWpOK{pOKq maps to a PWpκKq, we have

ϕkpaq � F k
�

pρpaiq mod pOKqiPZ
¥0

�

�

�

ρ
�

a
pk

i

�

mod pOK

�

iPZ
¥0

(here again, we used the fat the F is the

Frobenius map on omponents in WpOK{pOKq, and that ρ ommutes to p-th powers). Similarly, as

�

ρ
�

a
pk

i

�

mod pn�1OK

�

iPZ
¥0

maps to

�

ρ
�

a
pk

i

�

mod pOK

�

iPZ
¥0

in WpOK{pOKq, we have

p

rΦn � ϕkqpaq � rΦn
��

ρ
�

a
pk

i

�

mod pOK

�

iPZ
¥0

�

� Φn
��

ρ
�

a
pk

i

�

mod pn�1OK

�

iPZ
¥0

�

�

ņ

i�0

piρ
�

a
pk

i

�pn�i

mod pn�1OK

� pf � Fn�kqpaq mod pn�1OK

whih shows that

f � rΦn � ϕk � F
�n�k mod pn�1OK

for all k ¥ eK � 1. This implies that f mod pn�1OK is a ring homomorphism for all n P Z
¥0, so f is a

ring homomorphism (beause OK is separated for the p-adi topology).

 As f indue the identity on residue �elds, we have Kerpfq � pWpκKq: as OK has no p-torsion, this

implies that Kerpfq � pnWpκKq for all n P Z
¥0 by indution, so that Kerpfq �

8

�

n�1

pnWpκKq � t0u, and f

is injetive.

 Passing to fration �elds, we have an extension of loal �elds K{WpκKqrp
�1
s. The residue extension is

trivial, and the index of rami�ation is eK : by theorem 3.8.4, we have rK : WpκKqrp
�1
ss � eK , and by

theorem 3.8.23, the WpκKq-module OK �WpκKqrπs is free of rank eK . �



106 Number theory

Corollary 4.2.32. OK is isomorphi to WpκKqrXs{xEpXqy where EpXq P WpκKqrXs is an Eisenstein

polynomial.

4.3. Rami�ation groups. The ontent of this setion is taken from [20, Chapitre IV℄. Heneforth, K

denotes a omplete disrete valuation �eld, and L{K a �nite and Galois extension, with group G. We

assume that the residual extension κL{κK is separable (this is automati when K is a loal �eld). Let T the

maximal unrami�ed subextension of L{K. Denote by vL (resp. vK) the normalized valuation on L (resp.

K), so that vK � eL{KvL|K .

4.3.1. First de�nitions. By proposition 3.8.5, there exists α P OL suh that OL � OKrαs.

Notation. If γ P G, we put iGpγq � vLpγpαq � αq P Z
¥0. If i P Z

¥�1, we put

Gi � tγ P G ; p�x P OLq vLpγpxq � xq ¥ i� 1u.

Proposition 4.3.2. Let γ P G and i P Z
¥�1. The following onditions are equivalent:

(i) γ ats trivially on OL{m
i�1
L ;

(ii) γ P Gi;

(iii) iGpγq ¥ i� 1.

In partiular, iG does not depend on the hoie of α P OL suh that OL � OKrαs. Moreover, pGiqiPZ
¥�1

is

a dereasing sequene of normal subgroups of G suh that Gi � tIdLu for i " 0.

Proof. (i)�(ii) by de�nition and (ii)�(iii) is trivial. We have i�1
G ptiuq � Gi�1zGi for all i P Z

¥0, showing

that iG does not depend of the hoie of α. Finally, Gi � Ker
�

G Ñ AutpOL{m
i�1
L q

�

so Gi is a normal

subgroup of G, and Gi � tIdLu id i ¥ max
γPGztIdLu

iGpγq. �

Example 4.3.3. We have G
�1 � G and G0 � GalpL{T q is the inertia subgroup of L{K.

De�nition 4.3.4. The subgroup Gi is alled the i-th rami�ation subgroup (with lower numbering) of G.

The groups pGiqiPZ
¥�1

form a dereasing �ltration on G.

Proposition 4.3.5. (Ramifiation subgroups with lower numbering are ompatible with sub-

groups). Let H ¤ G be a subgroup and M � LH (so that H � GalpL{Mq). Then iHpηq � iGpηq for all

η P H , and Hi � H XGi for all i P Z
¥�1.

Proof. Follows immediately from haraterisation (i) of proposition 4.3.2. �

Proposition 4.3.6. Let H � G be a normal subgroup, M � LH and σ P G{H � GalpM{Kq. Then

iG{Hpσq �
1

eL{M

°

γPG
γ ÞÑσ

iGpγq.

Proof. Both sides are equal to �8 when σ � IdM : assume that σ � IdM . Let β P OM be suh that

OM � OKrβs: we have iG{Hpσq � vM pσpβq � βq so that eL{M iG{Hpσq � vLpσpβq � βq. If γ0 P G maps to

σ P G{H , the others preimages are of the form γ0η with η P H : we have to prove that a �
±

ηPH

pα� γ0ηpαqq

and b � σpβq � β have the same valuation, i.e. that they generate the same ideal in OL.

 Let P P OM rXs be the minimal polynomial of α over M : we have P pXq �
±

ηPH

pX � ηpαqq, so that

σpP qpXq �
±

ηPH

pX � γ0ηpαqq, i.e. a � σpP qpαq � σpP qpαq � P pαq. As the oe�ients of σpP q � P are

divisible by b, we have a P bOL.

 To prove that b P aOL, write β � Qpαq, with Q P OKrXs. The polynomial QpXq�β P OM rXs vanishes at

α: it is divisible by P in OM rXs. Write QpXq�β � P pXqDpXq with D P OM rXs. As Q P OKrXs, we have

σpQq � Q, so QpXq�σpβq � σpP qpXqσpDqpXq: evaluating at α gives Qpαq�σpβq � σpP qpαqσpDqpαq, i.e.

b P aOL sine Qpαq � σpβq � �b and σpP qpαq � a. �

Corollary 4.3.7. If H � Gj with j P Z
¥0, we have

pG{Hqi �

#

Gi{H if i ¤ j

tIdMu if i ¥ j
.

Proof. Let σ P G{HztIdMu, there exists a unique i   j suh that σ P pGi{HqzpGi�1{Hq. If γ P G maps to

σ P G{H , then γ P GizGi�1, whene iGpγq � i� 1. Moreover, as j ¥ 0, we have H ¤ G0, so that L{M is

totally rami�ed, i.e. eL{M � rL : M s � #H . Proposition 4.3.6 implies thus that iG{Hpσq � i � 1, so that

the �ltration pGi{Hqi¤j oinides with ppG{Hqiqi¤j . As moreover pG{Hqj � Gj{H � tIdMu, we also have

pG{Hqi � tIdMu if i ¥ j. �
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Remark 4.3.8. For a general normal subgroup H � G, rami�ation groups of G{H are also images of

rami�ation groups of G in G{H , but one needs to modify the numbering (see theorem 4.3.31).

Theorem 4.3.9. We have

vLpDL{Kq �

¸

γPGztIdLu

iGpγq �

8

¸

i�0

p#Gi � 1q

(as Gi � tIdLu for i " 0, the sum is �nite).

Proof.  Let P P OK rXs be the minimal polynomial of α overK. We have DL{K � P 1

pαqOL by proposition

2.5.7 (beause OL � OKrαs). As P pXq �
±

γPG

pX � γpαqq, we have P 1

pαq �
±

γPGztIdLu

pα� γpαqq, proving the

�rst formula.



°

γPGztIdLu

iGpγq �
8

°

i�0

pi�1qp#Gi�#Gi�1q �

8

°

i�0

pi�1qp#Gi�1q�
8

°

i�0

pi�1qp#Gi�1�1q �
8

°

i�0

p#Gi�1q. �

Remark 4.3.10. We reover the fat that L{K is unrami�ed if and only if DL{K � OL.

Corollary 4.3.11. Let H ¤ G be a subgroup and M � LH . We have vM pDM{Kq �
1

eL{M

°

γPGzH

iGpγq.

Proof. By proposition 4.3.9, we have vLpDL{Kq �
°

γPGztIdLu

iGpγq and vLpDL{M q �
°

γPHztIdLu

iGpγq. By the

transitivity of di�erent (f proposition 2.5.10), we have DL{K � DL{MDM{K , whene

eL{MvM pDM{Kq � vLpDM{Kq � vLpDL{Kq � vLpDL{M q �
°

γPGzH

iGpγq.

�

4.3.12. The quotients Gi{Gi�1. Let π be a uniformizer of L. Reall (f setion 3.7.7) that we de�ned a

�ltration of O�

L by subgroups

U
piq

L :�

#

O�

L if i � 0

1�miL if i P Z
¡0

This is a basis of neighbourhoods of 1 in O�

L for the topology indued by that on L�. As O�

L is losed hene

omplete, we have O�

L � lim
�Ý

i

O�

L {U
piq

L .

Lemma 4.3.13. Let γ P G0 � GalpL{T q and i P Z
¥0. We have γ P Gi �

γpπq

π
P U

piq

L .

Proof. By proposition 4.3.5 applied with H � G0, we have pG0qi � Gi (sine i ¥ 0). As OL � OT rπs

(theorem 3.8.23), we have iG0
pγq � γpπq � π, i.e. γ P Gi � vLpγpπq � πq ¥ i� 1�

γpπq

π
� 1 mod miL. �

Proposition 4.3.14. If i P Z
¥0, the map γ ÞÑ

γpπq

π
indues as isomorphism θi from Gi{Gi�1 onto a subgroup

of U
piq
L {U

pi�1q

L . This isomorphism is independent of the hoie of π.

Proof.  If π1 is another uniformizer, we have π1 � uπ with u P O�

L , so that

γpπ1q

π1
�

γpuq

u

γpπq

π
. If γ P Gi, we

have γpuq � u P mi�1
L , so

γpuq

u
� 1 mod mi�1

L , showing that θi does not depend on the hoie of π.

 If γ1, γ2 P Gi, we have

pγ1γ2qpπq

π
�

γ1pπq

π

γ2pπq

π

γ1puq

u
with u �

γ2pπq

π
P O�

L . As

γ1puq

u
� 1 mod mi�1

L (f

above), we get

pγ1γ2qpπq

π
�

γ1pπq

π

γ2pπq

π
mod mi�1

L , showing that θi is a group homomorphism. It is obviously

injetive. �

Corollary 4.3.15. (1) The group G0{G1 is yli, and identi�es (via θ0) to a subgroup of the group of roots

of unity in κ�L . Its order is prime to charpκLq.

(2) If charpκLq � 0, then G1 � tIdLu, so G0 is yli.

(3) If charpκLq � p ¡ 0, and i P Z
¡0, the group Gi{Gi�1 is a Fp-vetor spae of �nite dimension. In

partiular G1 is a p-group.

Proof. (1) By proposition 4.3.14, the map θ0 indues an isomorphism from G0{G1 onto a subgroup of

U
p0q

L {U
p1q

L

�

Ñκ�L (f proposition 3.7.10). Finite subgroups of κ�L are yli, made of roots of unity, of order

prime to charpκLq.

(2) By proposition 4.3.14, θi indues an isomorphism from Gi{Gi�1 onto a subgroup of U
piq
L {U

pi�1q

L

�

ÑκL
(f proposition 3.7.10). If charpκLq � 0, the additive group κL has no torsion, so that Gi{Gi�1 � t0u:

this implies that Gi � G1 for all i P Z
¡0. As Gi � tIdLu for i " 0, we dedue that G1 � tIdLu, so that

G0
�

ÑG0{G1 is yli.
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(3) If charpκLq � p ¡ 0, the group θipGi{Gi�1q identi�es with a subgroup of the additive group κL, whih

is killed by p: so is Gi{Gi�1, whih is thus a Fp-vetor spae, neessarily of �nite dimension. �

Corollary 4.3.16. If charpκLq � p ¡ 0, the group G0 is a semi-diret produt of yli subgroup of order

prime to p by a normal subgroup of order a power of p. In partiular, the group G0 is solvable. If moreover

κL is �nite, the group G is solvable.

Proof. By orollary 4.3.15, it is enough to show that there exists a subgroup H of G0 whih projets

isomorphially onto G0{G1. Let γ P G0 whose image in G0{G1 is a generator. Put #pG0{G1q � m and

#G1 � pr. As p ∤ m, there exists N P Z
¥r suh that pN � 1 mod mZ. Put σ � γp

N

P G0. As we have

pN � 1 mod m, the images of γ and σ in G0{G1 are the same. Moreover, we have #G0 � mpr | mpN

(sine N ¥ r), so that σm � γmp
N

� IdL, showing that the order of σ in G0 divides m. As it is at least m

sine the image of σ generates G0{G1, it has to be m, thus H :� xσy � Z {mZ.

If κL is �nite, then G{G0 � GalpκL{κKq is yli, so G is solvable. �

Corollary 4.3.17. Assume k is algebraially losed of harateristi 0, and let K � kppT qq. An algebrai

losureK ofK is the union of the sub�eldsKn :� kppT 1{n
qq for all n P Z

¡0, and GalpK{Kq � pZ :� lim
�Ý

n

Z {nZ.

Proof. As k is algebraially losed, we have G � G0 for every �nite subextension L of K{K, and orollary

4.3.15 (2) shows that G is yli. If L1 is another �nite extension of K suh that rL : Ks | rL1 : Ks, the

omposite extension LL1{K is yli: we have GalpLL1{L1q ¤ GalpLL1{Lq, whih shows that L � L1. This

shows in partiular that Kn � L i.e. L � Kn with n � rL : Ks. �

Let i P Z
¥0. As Gi and Gi�1 are normal subgroups of G0, the latter ats by onjugation on Gi{Gi�1.

Proposition 4.3.18. Let γ P G0 and σ P Gi{Gi�1, where i P Z
¥0. Then

θipγσγ
�1
q � θ0pγq

iθipσq

(here we see θ0pγq as an element of κ�L , ating on the one dimensional κL-vetor spae miL{m
i�1
L ).

Proof. Let σ P Gi be a lifting of σ and π1 � γ�1
pπq (this is a uniformizer of L). We have σpπ1q � π1p1� aq

with a P miL, and θipσq is the image a of a in miL{m
i�1
L . Applying γ, we have pγσγ�1

qpπq � γpπ1qp1� γpaqq,

i.e.

pγσγ�1
qpπq

π
� 1� γpaq, so that θipγσγ

�1
q is the image of γpaq in miL{m

i�1
L . Write a � bπi with b P OL,

so that γpaq � γpbqγpπqi. As γ P G0, we have γpbq � b mod mL, so that γpaq �
�

γpπq

π

�i
a mod mi�1

L , i.e.

the image of γpaq in miL{m
i�1
L is θ0pγq

iθipσq. �

Corollary 4.3.19. Let γ P G0 and σ P Gi with i P Z
¡0. Then γσγ�1σ�1

P Gi�1 if and only if γi P G1 or

σ P Gi�1.

Proof. We have γσγ�1σ�1
P Gi�1 if and only if γσγ�1

and σ have same image in Gi{Gi�1: by injetivity

of θi, this is equivalent to θipγσγ
�1
q � θipσq, i.e. θ0pγq

iθipσq � θipσq in miL{m
i�1
L . As i ¡ 0, the latter

is a κL-vetor spae of dimension 1: this is equivalent to θ0pγq
i
� 1 (i.e. γi P Kerpθ0q) or θipσq � 0 (i.e.

σ P Kerpθiq), i.e. to γ
i
P G1 or σ P Gi�1. �

Corollary 4.3.20. Assume G is abelian. If #pG0{G1q ∤ i, we have Gi � Gi�1.

Proof. Fix γ P G0 mapping to a generator of G0{G1. If σ P Gi, we have γσγ
�1σ�1

� IdL P Gi�1, so that

γi P G1 or σ P Gi�1 by orollary 4.3.19: as γi R G1 sine #pG0{G1q ∤ i, we must have σ P Gi�1, i.e.

Gi � Gi�1. �

Proposition 4.3.21. (1) Integers i P Z
¥1 suh that Gi � Gi�1 are ongruent modulo p � charpκLq.

(2) Let i, j P Z
¥1, γ P Gi and σ P Gj . Then γσγ

�1σ�1
P Gi�j�1.

Lemma 4.3.22. Let i, j P Z
¥1, γ P Gi and σ P Gj . Then γσγ

�1σ�1
P Gi�j and

θi�jpγσγ
�1σ�1

q � pj � iqθipγqθjpσq.

Proof. Write γpπq � πp1�aq and σpπq � πp1�bq with a � xπi P miL and b � yπj P m
j
L, where x, y P OL. We

get pγσqpπq � πp1� aqp1� γpbqq � πp1�a� γpbq� aγpbqq. As γpbq � γpyqγpπqj � γpyqπjp1� aqj , γpyq � y

mod mi�1
L and p1 � aqj � 1 � ja mod mi�1

L (sine i ¡ 0), we have γpbq � yπjp1 � jaq mod m
i�j�1
L , i.e.

γpbq � b� jab mod m
i�j�1
L . This implies that pγσqpπq � πp1� cq with c � a� b� pj � 1qab mod m

i�j�1
L .

Similarly, we have pσγqpπq � πp1� dq with d � a� b� pi� 1qab mod m
i�j�1
L .

Put π1 � σγpπq: this is a uniformizer of L, and

pγσγ�1σ�1
qpπ1q � pγσqpπq � πp1� cq � π1p1� cqp1� dq�1

� π1p1� eq
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where e � p1 � cqp1 � dq�1
� 1 � c � d mod m

i�j�1
L , i.e. e � pj � iqab mod m

i�j�1
L . This shows that

pγσγ�1σ�1
qpπ1q

π1
� 1 P m

i�j
K (sine a P miL and b P m

j
L), and that θi�jpγσγ

�1σ�1
q is the image of pj � iqab in

mi�1
L {m

i�j�1
L , i.e. θi�jpγσγ

�1σ�1
q � pj � iqθipγqθjpσq. �

Proof of proposition 4.3.21. (1) If G1 � tIdLu, there is nothing to do: assume that G1 � tIdLu, so that

charpκLq � p ¡ 0. Let j P Z
¡0 be the integer suh that Gj � tIdLu and Gj�1 � tIdLu. Let i P Z

¡0 be suh

that Gi � Gi�1. Let γ P GizGi�1 and σ P GjztIdLu. By lemma 4.3.22, we have γσγ�1σ�1
P Gi�j � tIdLu,

so that θi�jpγσγ
�1σ�1

q � 0. By lemma 4.3.22 again, this implies that pj � iqθipγqθjpσq � 0 in the one

dimensional κL-vetor spae m
i�j
L {m

i�j�1
L . As θipγq P pm

i
L{m

i�1
L qzt0u and θjpσq P pm

j
L{m

j�1
L qzt0u, the image

of θipγqθjpσq in nonzero in mi�1
L {m

i�j�1
L , implying that j � i � 0 in κL, i.e. p | j � i.

(2) If γ P Gi�1 or σ P Gj�1, we have γσγ
�1σ�1

P Gi�j�1 by lemma 4.3.22. Otherwise, we have Gi � Gi�1

and Gj � Gj�1, so that j � i mod pZ: this implies that θi�jpγσγ
�1σ�1

q � pj � iqθipγqθjpσq � 0, whene

γσγ�1σ�1
P Gi�j�1. �

4.3.23. Upper numbering and Herbrand's theorem.

Notation. If t P r�1,�8r, we put

Gt � G
rts

so that γ P Gt � iGpγq ¥ t� 1. Put

ϕL{Kpxq �

» x

0

dt

rG0 : Gts

(where rG0 : Gts � 1 for �1   t ¤ 0, so that ϕL{Kpxq � x for all x P r�1, 0s).

Proposition 4.3.24. The map ϕL{K is a ontinuous, pieewise linear, inreasing and onave map, suh

that ϕL{Kp0q � 0. Moreover, we have ϕ1L{K,lptq � ϕ1L{K,rptq �
1

rG0:Gts
if t R Z, but ϕ1L{K,lptq �

1
rG0:Gts

and

ϕ1L{K,rptq �
1

rG0:Gt�1s
if t P Z.

Remark 4.3.25. If i P Z
¥0 and i ¤ x ¤ i� 1, we have ϕL{Kpxq �

i�1
°

k�0

1
rG0:Gk�1s

�

x�i
rG0:Gi�1s

i.e.

ϕL{Kpxq �
1

#G0

�

#G1 � � � � �#Gi � px� iq#Gi�1

�

.

De�nition 4.3.26. The map ϕL{K indues an homeomorphism from r�1,�8r onto itself: we denote by

ψL{K : r�1,�8rÑ r�1,�8r the inverse map. It is alled the Hasse-Herbrand map.

Proposition 4.3.27. The map ψL{K is a ontinuous, pieewise linear, inreasing and onvex map, suh

that ψL{Kp0q � 0. The slopes of the linear piees of the graph of ψL{K are integers. Moreover, we have

ψL{KpZ¥0q � Z
¥0.

Proof. The only non trivial statement is the last one: let y P Z
¥0 and i � tψL{Kpyqu. By remark 4.3.25, we

have#G0y � #G1�� � ��#Gi�pψL{Kpyq�iq#Gi�1, so that ψL{Kpyq � i�rG0 : Gi�1sy�
i
°

k�1

rGk : Gi�1s P Z

(sine Gi�1 ¤ Gk for all k P t0, . . . , iu). �

De�nition 4.3.28. (Ramifiation groups with upper numbering). If y P r�1,�8r, we put

Gy � GψL{Kpyq.

Remark 4.3.29. By de�nition, we have Gx � GϕL{Kpxq
for all x P r�1,�8r.

Example 4.3.30. We have G�1
� G, G0

� G0 and Gy � tIdLu if y " 0.

The following result shows that the upper numbering is ompatible passing to the quotient (f remark

4.3.8).

Theorem 4.3.31. Let H � G be a normal subgroup. We have pG{Hqy � GyH{H for all y P r�1,�8r.

Proposition 4.3.32. (Transitivity of Hasse-Herbrand map). If M � LH , we have

ϕL{K � ϕM{K � ϕL{M and ψL{K � ψL{M � ψM{K .

Lemma 4.3.33. If x P r�1,�8r, we have ϕL{Kpxq � 1 � 1
#G0

°

γPG

inftiGpγq, x� 1u.
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Proof. Both sides are ontinuous, pieewise linear, and equal to 0 when x � �1: it is enough to show the

equality of derivatives on intervals of the form si, i � 1r. If i   x   i � 1, the derivative of the LHS is

1
rG0:Gi�1s

, and that of the RHS is

1
#G0

°

γPG
iGpγq¡x�1

1 �
#tγPG ; iGpγq¥i�2u

#G0
�

#Gi�1

#G0
�

1
rG0:Gi�1s

. �

Lemma 4.3.34. Let σ P G{H and jpσq � sup
sPG
sÞÑσ

iGpsq. Then iG{Hpσq � 1 � ϕL{M pjpσq � 1q.

Proof. Let s P G be suh that iGpsq � jpσq. If η P Hjpσq�1 � H X Gjpσq�1, we have iGpηq ¥ jpσq, so

that iGpsηq ¥ jpσq (simply beause Gjpσq�1 is a group), whene iGpsηq � jpσq (by de�nition of jpσq). If

η P HzHjpσq�1, we have iGpηq   jpσq, so(39) iGpsηq � iGpηq. In any ase, we have iGpsηq � inftiGpηq, jpσqu.

By proposition 4.3.6, this implies that

iG{Hpσq �
1

eL{M

°

γPG
γ ÞÑσ

iGpγq �
1

#H0

°

ηPH

inftiGpηq, jpσqu � ϕL{M pjpσq � 1q � 1

by lemma 4.3.33 applied to the extension L{M . �

Lemma 4.3.35. (Herbrand's theorem). We have GxH{H � pG{HqϕL{Mpxq for all x P r�1,�8r.

Proof. We have the equivalenes:

σ P GxH{H � jpσq ¥ x� 1� ϕL{M pjpσq � 1q ¥ ϕL{M pxq � iG{Hpσq � 1 ¥ ϕL{M pxq � σ P pG{HqϕL{M pxq

proving the equality. �

Proof of proposition 4.3.32. The seond equality follows from the �rst. Both maps ϕL{K and ϕM{K �ϕL{M
are ontinuous, pieewise linear and vanish at 0: it is enough to show that their derivatives on intervals of

the form si, i� 1r are the same for all i P Z
¥�1. That of ϕM{K � ϕL{M at x Psi, i� 1r is

ϕ1
M{K

pϕL{M pxqqϕ
1

L{M
pxq � 1

rpG{Hq0:pG{HqϕL{M pxqs

1
rH0:Hxs

�

1
rG0H{H:GxH{Hs

1
rH0:Hxs

�

#pGxHq#Hx

#pG0Hq#H0
�

1
rG0:Gxs

� ϕ1L{Kpxq

sine #pGxHq#Hx � #pGxHq#pGx XHq � #Gx#H and similarly #pG0Hq#H0 � #G0#H . �

Proof of theorem 4.3.31. We have pG{Hqy � pG{Hqx with x � ψM{Kpyq. As pG{Hqx � GψL{M pxqH{H by

lemma 4.3.35, this gives pG{Hqy � GψL{KpyqH{H � GyH{H sine ψL{M pxq � ψL{M pψM{Kpyqq � ψL{Kpyq

by proposition 4.3.32. �

De�nition 4.3.36. A jump in the �ltration pGyqy¥�1 is an element y P r�1,�8r suh that Gy � Gy�ε for

all ε P R
¡0.

A fundamental theorem of rami�ation is the following:

Theorem 4.3.37. (Hasse-Arf). Assume that G is abelian. The jumps of the �ltration pGyqy¥�1 are

integers. Equivalently, if i P Z
¥�1 is suh that Gi � Gi�1, then ϕL{Kpiq is an integer.

4.4. Exerises.

Exerise 4.4.1. Let p be a prime number and A a ring of harateristi p.

(1) Show that WpAq is an integral domain if and only if A is an integral domain.

(2) Show that WpAq is redued if and only if A is redued.

(3) Show that A is perfet if and only if WpAq{pWpAq is redued.

Exerise 4.4.2. Let A be a ring of harateristi p. Show that the V -adi and the p-adi topologies oinide

if and only if the map AÑ A; a ÞÑ ap is surjetive.

Exerise 4.4.3. Let k be a �eld of harateristi p. Show that Wpkq is noetherian if and only if k is perfet

[hint: ompute dimkpV pWpkqq{V pWpkqq
2
q℄.

(39)

Beause vLpsηpαq � αqq � vLpps � IdLqpηpαqq � pη � IdLqpαqq � mintvLpps � IdLqpηpαqq, vLpη � IdLqpαqq � iGpηq sine

vLpηpαq � αq � iGpηq   jpσq � vLpps� IdLqpηpαqqq, for α P OL suh that OL � OK rαs (note that for suh an α, we have

OL � ηpOLq � ηpOK rαsq � OKrηpαqs).
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Exerise 4.4.4. Let A be a ring and p a prime number whih is not a zero divisor in A. Let σ : AÑ A be

an endomorphism suh that σpaq � ap mod pA for all a P A.

(1) Show that there exists a unique ring homomorphism sσ : A Ñ WpAq suh that sσ � σ � FA � sσ and

Φ0 � sσ � IdA.

(2) Let B be a ring suh that p is not a zero divisor in B, and σ1 : B Ñ B an endomorphism suh that

σ1pbq � bp mod pB for all b P B, and u : AÑ B a ring homomorphism suh that u � σ � σ1 � u. Show that

Wpuq � sσ � sσ1 � u.

(3) Let tσ : AÑWpA{pAq be the omposite of sσ and the natural ring homomorphism WpAq Ñ WpA{pAq.

Show that tσ indues a ring homomorphism tσ,n : A{p
nAÑWnpA{pAq for all n P Z

¡0.

(4) Show that tσ,n is an isomorphism when A{pA is perfet.

(5) Show that if A{pA is perfet and A is separated and omplete for the p-adi topology, then tσ is an

isomorphism.

Exerise 4.4.5. Let A be a ring and p a prime number whih is not a zero divisor in A.

(1) Show there exists a unique ring homomorphism sA : WpAq ÑWpWpAqq suh that sA �FA � F
WpAq � sA

and Φ0 � sA � IdW pAq. Show that it is the unique ring homomorphism suh that Φn � sσ � FnA for all

n P Z
¥0.

(2) Let A � ZrXnsnPZ
¥0

and X � pXnqnPZ
¥0
PWpAq. Write sApXq � psnpXqqnPZ

¥0
, where snpXq PWpAq.

Show that sApaq � psnpaqqnPZ
¥0

for all a � pa0, a1, . . .q PWpAq.

(3) For all ring homomorphism u : AÑ B, show that sB �Wpuq �WpWpuqq � sA.

(4) Show that the maps WpsAq � sA and s
WpAq � sA from W pAq to WpWpWpAqqq are equal.

Exerise 4.4.6. Let K be a loal �eld of harateristi p ¡ 0. Show that it has only one oe�ient �eld.

Exerise 4.4.7. Let pK, |.|q be a loal �eld, K an algebrai losure of K, and k{κK a �nite �eld extension.

Denote by L the unique subextension of K{K that is unrami�ed and suh that κL � k. Show that

L �

#

k bκK
K if charpKq � charpκKq

Wpkq b
WpκKq

K if charpKq � charpκKq

Exerise 4.4.8. Let Qur
p be the maximal unrami�ed extension of Qp in Qp. Show that the ompletion of

Qur
p for |.|p is WpFpqrp

�1
s.

Exerise 4.4.9. Let A be the loalization of the polynomial ringRrXs with respet to the ideal p � xX2
�1y.

(1) Show that A is a DVR but that there is no setion κA Ñ A of the projetion.

(2) The ompletion

pA of the DVR A has a �eld of oe�ients: expliit an element in

pA whose square is �1.

Exerise 4.4.10. (Cohen rings). Let p be a prime number. A p-ring is a DVR of harateristi 0 whose

maximal ideal is generated by p.

(1) Let A be a DVR, π P A a uniformizer, and k a �eld extension of κ :� A{πA. Show that there exists a

DVR B that ontains A and suh that B{πB � k [hint: lift �rst a transendane basis of k over κ and use

Zorn's lemma℄.

(2) (Kedlaya) Let C be the ategory of omplete DVRs that are unrami�ed over A, in whih morphisms are

unrami�ed morphisms of rings (i.e. morphisms whih indue isomorphisms on value groups). If R,S P C

have residue �elds κR and κS respetively, and ϕ : κR Ñ κS is a morphism, we say the morphism f : RÑ S

is ompatible (with ϕ) if the diagram

R
f //

��

S

��
κR

ϕ // κS

ommutes. Show that if R P C and κR Ñ k is a separable �eld extension, there exists S P C with residue

�eld k and a ompatible morphism R Ñ S. Show moreover that if R,S, T P C are suh that there are

morphisms κR Ñ κS Ñ κT and f : R Ñ S and h : R Ñ T are ompatible morphisms, there exists a unique

ompatible morphism g : S Ñ T suh that h � g � f .
Remark 4.4.11. This implies in partiular that if f : R Ñ S is a ompatible morphism in C and κS{κR is Galois, then the group of f-equivariant

automorphisms of S is isomorphi to GalpκS{κRq.
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(3) Show that if k is a �eld of harateristi p, there exists a omplete p-ring having k as residue �eld (suh

a DVR is alled a Cohen ring for k).

(4) Construt a Cohen ring for FpppT qq.

(5) Show that if k is perfet, then any Cohen ring for k is uniquely isomorphi to Wpkq.

Exerise 4.4.12. Let p be a prime. Can you �nd a Galois extension of Qp whose Galois group is isomorphi

to S5?

Exerise 4.4.13. Let p be a prime number and d P Z. Assume that d is not a square in Qp and put

K � Qpp

?

dq. Compute the rami�ation groups of K{Qp [hint: treat the ases p odd and p � 2 separately℄.

Exerise 4.4.14. Let L{K be a �nite Galois extension of loal �elds of harateristi 0, with residue �eld

of harateristi p ¡ 0. Let G � GalpL{Kq be its Galois group, and π a uniformizer of L.

(1) Let i P Z
¥0 and g P Gi. Write gpπq � πp1 � aq with a P miL. Let ϕ � g � IdL : L Ñ L. Show that

ϕpxq � jax mod m
j�i�1
L for all j P Z

¥0 and x P m
j
L.

(2) Let ψ � gp � IdL : LÑ L. Show that

ψpxq �

$

'

&

'

%

pjax mod m
j�i�eL�1
L if i ¡ eL

p�1

pjax� jp1� ip�1
qapx mod m

j�i�eL�1
L if i � eL

p�1

jp1� ip�1
qapx mod m

j�pi�1
L if i   eL

p�1

(3) Show that if i ¡ eL
p�1

and g R Gi�1, then g
p
P Gi�eLzGi�eL�1. Conlude that i ¡

eL
p�1

ñ Gi � tIdLu.

(4) Similarly, show that if i � eL
p�1

, the group Gi is either trivial or yli of order p, this last ase being

possible if and only if p | i.

(5) Assume that i   eL
p�1

. Show that if p ∤ i, then gp P Gpi�1. If p | i, show that gp P Gpi and θpipg
p
q � θipgq

p
.

Conlude that if p | i, the group Gi{Gi�1 is either trivial, or yli of order p, this last ase being possible

if and only if phi � eL
p�1

for some h P Z
¡0.

(6) Show that if the integers i P Z
¡0 suh that Gi � Gi�1 all are divisible by p, then they are of the form

pki0 with k P t1, . . . , hu where phi0 �
eL
p�1

, and G1 is yli of order ph.

Exerise 4.4.15. Let K be a �eld of harateristi 0, with residue �eld of harateristi p ¡ 0. Assume that

K ontains the p-th roots of unity. Let K be an algebrai losure of K and x P K suh that xp � π is a

uniformizer of K. Put L � Kpxq. Show that L{K is a yli extension of degree p. If G � GalpL{Kq, show

that Gi � G and Gi�1 � tIdLu for i �
peK
p�1

.

Exerise 4.4.16. Let K be a loal �eld of harateristi 0, K an algebrai losure of K, and n P Z
¡0 suh

that n   peK
p�1

and p ∤ n, where p � charpκKq ¡ 0. Let y P K be suh that vKpyq � �n and x P K suh that

xp � x � y. Put L � Kpxq.

(1) Show that L{K is a yli extension of degree p.

(2) Let G � GalpL{Kq. Show that Gn � G and Gn�1 � tIdLu.

Exerise 4.4.17. Let p be a prime number, ζp2 P Qp a primitive p2-th root of unity and ζp � ζ
p

p2
. Put

F � Qppζpq, K � Qppζp2 q, L � Kpp1{pq and Ki � Qppζp, p
1{pζip2q for i P t0, . . . , p� 1u.

(1) Explain why L{F is Galois.

(2) Show that there is an injetive group homomorphism pa, bq : GalpL{F q Ñ pZ {pZq2.

(3) Show that the extensions K{F and Ki{F are Galois (for i P t1, . . . , pu), and desribe their rami�ation

�ltration (with lower numbering) [hint: show that if π � ζp� 1 P F then ̟i :�
π

ζi
p2
p1{p

P Ki is a uniformizer

of Ki℄.

(4) Dedue that Ki � K for all i P t1, . . . , pu, and that rL : F s � p2.

(5) Using these extensions, show that the lower numbering is not ompatible with quotients.

Exerise 4.4.18. Let p ¡ 3 be a prime and K a splitting �eld of P pXq � X3
� pX � p P QprXs.

(1) Show that G :� GalpK{Qpq �

#

A3 if

�

�3
p

�

� 1

S3 if

�

�3
p

�

� �1
[hint: the disriminant �4p3� 27p2 of P is δ2 with

δ � pα1 � α2qpα2 � α3qpα1 � α3q where α1, α2, α3 P K are the roots of P ℄.

(2) Compute the rami�ation �ltration on G.
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Exerise 4.4.19. Let L{K be a totally rami�ed Galois extension of loal �elds of harateristi 0. Assume

that its Galois group G � t�1,�i,�j,�ku is the quaternion group (so that C :� ZpGq � t�1u), and that

G4 � tIdLu. Show that G � G0 � G1, and G2 � G3 � C. What is the di�erent of L{K? Show that

Gy �

$

'

&

'

%

G if y ¤ 1

C if 1   y ¤ 3
2

tIdLu if

3
2
  y

Exerise 4.4.20. Let p be a prime number, Qp an algebrai losure of Qp. If n P Z
¡0, let ζ P Qp be a

primitive pn-th root of unity, and Kn � Qppζq.

(1) Show that Kn{Qp is totally rami�ed of degree pn�1
pp� 1q, whose ring of integers is Zprζs, of whih a

uniformizer is ζ � 1.

(2) Show that Kn{Qp is Galois, and that there is an isomorphism G :� GalpKn{Qpq � pZ {pn Zq�. If

m P t1, . . . , n� 1u, what is the image of GalpKn{Kmq under this isomorphism?

(3) Show that the rami�ation groups of Kn{Qp are given by

Gi �

$

'

&

'

%

G if i � 0

GalpKn{Kmq if pm�1
¤ i   pm for some m P t1, . . . , n� 1u

tIdKn
u if pn�1

¤ i

(4) Compute DKn{Qp
.

(5) Desribe the upper rami�ation groups.

Exerise 4.4.21. Assume p ¡ 2 and let K{Qp be a totally rami�ed Galois extension of degree p. Denote

by π a uniformizer of K and vK its normalized valuation. Let EpXq � Xp
� ap�1X

p�1
� � � � � a0 P Zp be

the minimal polynomial of π over Qp. Reall that vKpDK{Qp
q � mint2p� 1, vKpaiq � i� 1u1¤i p (where

DK{Qp
denotes the di�erent ideal of K{Qp).

(1) Show that p� 1 | vKpDK{Qp
q [hint: use the rami�ation �ltration℄.

(2) Dedue that vKpDK{Qp
q � 2p� 2.

(3) Compute GalpK{Qpqx for x P r�1,�8r.

(4) Dedue GalpK{Qpq
y
for y P r�1,�8r.

(5) Assume L{Qp is a totally rami�ed Galois extension suh that GalpL{Qpq � pZ {pZq2.

(a) Show that L � K1K2 where Ki{Qp is totally rami�ed Galois of degree p for i P t1, 2u.

(b) Show that GalpL{Qpq
y

ãÑ GalpK1{Qpq
y
� GalpK2{Qpq

y
for all y P r�1,�8r.

() Compute GalpL{Qpq
y
for all y P r�1,�8r.

(d) Dedue GalpL{Qpq1{GalpL{Qpq2.

(e) Derive a ontradition and onlude that no suh L exists.

Exerise 4.4.22. Unless otherwise stated, rami�ation subgroups of a �nite Galois extension L{K will be

onsidered with the lower numbering. A jump of the extension L{K is an integer i suh that GalpL{Kqi �

GalpL{Kqi�1.

Let L{K and K{F be nontrivial �nite extensions of loal �elds.

(1) Assume that L{F and K{F are Galois. Let i1   � � �   in be the jumps of the rami�ation �ltration of

L{K. Assume that the rami�ation �ltration of K{F has a unique jump i0, and that i0   i1. Show that

GalpL{F qi �

#

GalpL{F q if i ¤ i0

GalpL{Kqi if i ¡ i0

and dedue that the jumps of the rami�ation �ltration of L{F are i0, i1, . . . , in [hint: Herbrand's theorem℄.

Assume from now on that F has mixed harateristis p0, pq, that K � F pζq where ζ is a primitive p-th

root of unity, and that L � Kpαq, where a :� αp P K and α R K.

(2) Show that the extension K{F is yli of degree dividing p� 1, and that vKpζ � 1q � eK
p�1

P Z
¡0 (where

eK is the absolute rami�ation index of K).

(3) Explain why K{F has at most two jumps, and exatly one when it is totally rami�ed.

We heneforth assume that K{F is totally rami�ed. Denote by vK (resp. vL) the normalized valuation on

K (resp. on L).

(4) Show that L{K is a yli extension of degree p. When a P F , show that L{F is Galois and desribe

the struture of GalpL{F q.
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(5) Assume that p ∤ vKpaq. Show that L{K is totally rami�ed, and that vLpDL{Kq � peK � p � 1 [hint:

�rst redue to the ase where vKpaq � 1℄. Dedue the jumps of L{K. If a P F , what are the jumps of L{F?

Under whih ondition on eF are the jumps in the upper numbering integers?

Assume from now on that p | vKpaq and put E �

 

i P Z
¡0 ; pDx P K

�

q ax�p P U
piq

K

(

.

(6) (i) Show that 1 P E.

(ii) Assume that a P U
piq

K with i ¡ peK
p�1

. Show that the polynomial QpXq �
p1�pζ�1qXqp�a

pζ�1qp
belongs to

OKrXs, and use Newton's lemma to show that it has a root in OK , ontraditing the hypothesis.

The set E is thus non empty, and inluded in

 

1, . . . , peK
p�1

(

. Put c � maxE: replaing a by ax�p for some

appropriate x P K�

, we may assume that a P U
pcq
K .

(7) Show that there exists ApXq P ZrXs suh that pX � 1qp � Xp
� 1� ppX � 1qApXq and Ap1q � �1.

(8) Assume that c � peK
p�1

and put z � α�1
ζ�1

P L.

(i) Show that vLpzq � 0 [hint: use question (7)℄.

(ii) Compute the minimal polynomial P of z over K, and show that its image P in κKrXs is of the

form P pXq � Xp
�X � λ. Explain why P is irreduible, and dedue that K{F is unrami�ed.

(iii) If a P F , what are the jumps of L{F in that ase?

(9) Assume that c ¤ peK
p�1

� 1.

(i) Show that p ∤ c [hint: assume the ontrary and dedue a ontradition with the de�nition of c.℄

(ii) Compute vLpα� 1q [hint: use question (7)℄, and dedue that L{K is totally rami�ed.

(iii) Constut a uniformizer πL of L, and determine the jump of L{K [hint: onsider the ation of a

generator of GalpL{Kq on πL.℄

(iv) Dedue that vLpDL{Kq � pp � 1q
�

peK
p�1

� c � 1
�

. When a P F , what are the jumps of L{F in this

ase?

Exerise 4.4.23. Let pK, |.|q be a omplete disretely valued �eld of harateristi 0, with perfet residue

�eld κK of harateristi p. We denote by v the normalized valuation on K and by eK � vppq its absolute

rami�ation index. Let n P Z
¡0 be suh that Fpn � κK and α P K suh that vpαq ¡ �

pneK
pn�1

. Put

P pXq � Xpn
�X � α P KrXs, let λ P K be a root of P and L � Kpλq. We still denote by v its extension

to L.

(1) Reall why there is a unique multipliative map r.s : Fpn Ñ OK suh that π � r.s � IdFpn
, where

π : OK Ñ κK is the projetion.

Put QpXq � P pX � λq P LrXs.

(2) Assume vpαq   0. Show that vpλq �
vpαq

pn
. Dedue that QpXq P OLrXs and ompute the image QpXq

of QpXq in κLrXs.

(3) For x P Fpn , ompute the images of Qprxsq and Q1

prxsq in κL. Dedue that P is split in L.

What preedes shows that L{K is Galois: put G � GalpL{Kq.

(4) Show that if σ P GztIdLu, we have |σpλq � λ| � 1.

(5) Assume now that p ∤ vpαq and vpαq   0.

(a) Show that L{K is totally rami�ed, and give a uniformizer πL in terms of a uniformizer πK of K

and λ [hint: use the fat that gcdppn, vpαqq � 1℄.

(b) Show that the rami�ation �ltration with lower numbering is given by

Gi �

#

G if i ¤ �vpαq

tIdLu if i ¡ �vpαq
.

() Compute the di�erent DL{K and the disriminant dL{K .

(6) Show that if α1 P K satis�es |α� α1|   1 and λ1 is a root of P1pXq � Xpn
�X�α1, thenKpλq � Kpλ1q.

(7) Assume now that α1, α2 P K are suh that vpα1q, vpα2q ¡ �eK and |α� α1 � α2|   1. Show that

L � Kpλq lies in the ompositum of Kpλ1qKpλ2q.

Exerise 4.4.24. Let p be a prime number and n P Z
¡0. Write n � prm with r P Z

¥0 and m P Z
¡0 suh

that p ∤ m. Fix an algebrai losure Qp of Qp. In what follows, ζn will denote a (any) primitive n-th root

of unity, and Kn � Qppζnq. Let ΦnpXq P ZrXs be the n-th ylotomi polynomial.

(1) Explain why Kn{Qp is Galois and show that GalpKn{Qpq injets anonially in pZ {nZq�.

(2) Show that the extension of Fp generated by the primitive m-th roots of unity is Fpf where f is the order

of p in pZ {mZq�. Explain why the irreduible fators of the image of Φm in FprXs all are of degree f .
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(3) Show that Km is the unrami�ed extension of degree f of Qp [hint: use Newton's lemma to show that

its residue �eld is Fpf ℄.

(4) Show that Φpr p1�Xq is an Eisenstein polynomial inKmrXs. Dedue thatKm is the maximal unrami�ed

subextension of Kn{Qp [hint: show that Kn � Kmpζpr q℄. What is the degree of the extension rKn : Qps?

(5) Dedue that the ring of integers of Kn is Zprζns. Show that ζpr � 1 is a uniformizer of Kn. Is ζn � 1 a

uniformizer?

(6) Compute the di�erent and the disriminant of Kn{Qp.

(7) Determine the rami�ation �ltration of GalpKn{Qpq with lower and upper numbering.

(8) Retrieve the result of question (6) using the rami�ation �ltration.

(9) Show that there exists π0 P Kp suh that π
p�1
0 � �p.

(10) Is there neessarily an element π1 P Kp suh that π
p�1
1 � p?
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5. Infinite extensions

5.1. In�nite Galois theory. Let K be a �eld. If L{K is a �nite Galois extension, Galois theory provides a

ditionary between subextensions of L{K and subgroups of GalpL{Kq � AutK-alg

pLq. More preisely, there

is a dereasing bijetion

tsubextensions of L{Ku Ñ tsubgroups of GalpL{Kqu

F ÞÑ GalpL{F q

(the inverse bijetion is H ÞÑ LH). We extend this to (possibly) in�nite Galois extensions: let L{K be an

algebrai, separable and normal extension, and put

GalpL{Kq � AutK-alg

pLq

Remark 5.1.1. An important example, is when L � K is a separable losure of K. The group GalpK{Kq

is alled �the� absolute Galois group of K.

Denote by IL{K the set of �nite and normal subextensions of L{K. Endowed with the inlusion rela-

tion, this is a direted set (an upper bound of two extensions being their ompositum). For F1 � F2 P

IL{K , the restrition provides group homomorphisms GalpL{Kq Ñ GalpF2{Kq Ñ GalpF1{Kq: the family

pGalpF {KqqFPIL{K
(endowed with the restrition maps) is an inverse system, and there is a group homo-

morphism

ψ : GalpL{Kq Ñ lim
�Ý

FPIL{K

GalpF {Kq

Lemma 5.1.2. The previous morphism is an isomorphism.

Proof. If g P Kerpψq, then g
|F � IdF for every F P IL{K . As L �

�

FPIL{K

F (beause L{K is algebrai), this

implies that g � IdL, so that ψ is injetive. Let pgF qFPIL{K
P lim

�Ý

FPIL{K

GalpF {Kq. If x P L and F1, F2 P IL{K

are suh that x P F1 X F2, let F be the ompositum of F1 and F2. As pgF q
|F1

� gF1
and pgF q

|F2
� gF2

,

we have gF1
pxq � gF pxq � gF2

pxq, so gF pxq does not depend on the hoie of F P IL{K suh that x P F .

So we an de�ne g : L Ñ L by gpxq � gF pxq for any F P IL{K suh that x P F . We have g
|F � gF for all

F P IL{K , so g P GalpL{Kq, and ψpgq � pgF qFPIL{K
, whih proves the surjetivity of ψ. �

De�nition 5.1.3. Via the previous isomorphism, the group GalpL{Kq is endowed with a topology (alled

the Krull topology) for whih it is pro�nite (in partiular it is ompat). If g P GalpL{Kq, a basis of

neighborhoods of g is tg GalpL{F quFPIL{K
(i.e. g1, g2 P GalpL{Kq are lose if they agree on a big �nite

subextension of L{K).

Theorem 5.1.4. The map F ÞÑ GalpL{F q is a bijetion between the set of subextensions of L{K and that of

losed subgroups of GalpL{Kq. The open subgroups orrespond to �nite subextensions of L{K. The inverse

bijetion is H ÞÑ LH .

Proof.  If F is a �nite subextension of L{K, the subgroup GalpL{F q ¤ GalpL{Kq is open(40), hene losed.

Now if F {K is any (i.e. not neessarily �nite) subextension of L{K, then GalpL{F q �
�

M�F
rM :Ks 8

GalpL{Mq

(beause F �

�

M�F
rM :Ks 8

M), so GalpL{F q is a losed subgroup as the intersetion of losed subgroups. This

shows that the map is well de�ned.

 Let F be a subextension of L{K. If x P L, there exists a �nite and normal subextension N{F of L{F

suh that x P N . If x �xed by GalpL{F q, it is �xed by GalpN{F q, hene x P F (by lassial Galois theory).

This implies that LGalpL{F q
� F , so the map F ÞÑ GalpL{F q is injetive.

 It remains to show that if H ¤ GalpL{Kq is a losed subgroup, then H � GalpL{F q with F :� LH . One

has H ¤ GalpL{F q. To show the equality, is is enough to show that H is dense in GalpL{F q (beause H is

losed). Let g P GalpL{F q andM P IL{F , so that g GalpL{Mq is an open neighborhood of g in GalpL{F q. As

F � LH , one hasMH
� F as well, where H is the image of H in GalpM{F q. By lassial Galois theory, this

implies that H � GalpM{F q, so that H Ñ GalpM{F q is surjetive: there exists σ P H suh that σ
|M � g

|M ,

so that g�1σ P GalpL{Mq, i.e. σ P gGalpL{Mq: we have σ P H X g GalpL{Mq i.e. H X g GalpL{Mq � ∅,
whih proves the density.

(40)

Take N � L the normal losure of F , then N P IL{K , so GalpL{Nq is open in GalpL{Kq (by de�nition of Krull topology):

so is GalpL{F q �
�

gPGalpN{F q

gGalpL{Nq.
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 We have seen that if F {K is �nite, then GalpL{F q is open in GalpL{Kq. Conversely, if H � GalpL{F q is

open in GalpL{Kq, one has rGalpL{Kq : Hs   �8 (beause GalpL{Kq is ompat). If x P LH , then x has at

most rGalpL{Kq : Hs onjugates, so rF : Ks ¤ rGalpL{Kq : Hs is �nite. �

Proposition 5.1.5. A subextension F {K of L{K is Galois if and only if GalpL{F qEGalpL{Kq. In this ase

GalpL{Kq{GalpL{F q
�

ÑGalpF {Kq.

Proof. Let H � GalpL{F q ¤ GalpL{Kq. If g P GalpL{Kq, one has GalpL{gpF qq � gHg�1
. By Galois

orrespondene, one has gpF q � F � gHg�1
� H , so F {K is Galois if and only if H E GalpL{Kq. In

this ase, the restrition indues a surjetive group homomorphism GalpL{Kq Ñ GalpF {Kq, whose kernel is

H . �

Example 5.1.6. Let K be a �nite �eld: K � Fq with q � pn (where p � charpKq). Fix K an algebrai

losure of K. Let ϕ : K Ñ K ; x ÞÑ xq be the Frobenius map. For m P Z
¡0, let Km � Fqm be the

unique subextension of K{K of degree m. The extension Km{K is Galois, and GalpKm{Kq � Z {mZ is

yli, generated by ϕ
|Km

. Passing to the limit, the map

pZ
�

ÑGalpK{Kq; 1 ÞÑ ϕ is an isomorphism and a

homeomorphism.

Remark 5.1.7. (Ramifiation groups) Assume K is a loal �eld, and L{K a (non neessarily �nite)

Galois extension. If y P r�1,�8r, we an put

GalpL{Kqy � lim
�Ý

FPIL{K

GalpF {Kqy

(whih makes sense sine upper numbering is ompatible with quotients, f theorem 4.3.31).

5.2. Dévissage of GK . In this setion, pK, |.|q denotes a loal �eld of mixed harateristis p0, pq (so thatK

is an extension of Qp). Let v : K Ñ QYt�8u be the valuation normalized by vppq � 1. Fix K an algebrai

losure of K and let GK � GalpK{Kq be �the� absolute Galois group. Reall that |.| extends uniquely to

a (non-disrete) absolute value |.| : K Ñ R
¥0 (so that v extends uniquely into a non-disrete valuation

v : K Ñ QYt8u), whih is GK-equivariant, i.e. p�x P Kq p�g P GKq vpgpxqq � vpxq (f orollaries 3.5.7

and 3.5.8). Put W �Wpkq and F � FracpW q �W
�

1
p

�

. One has F ãÑ K, and the extension K{F is totally

rami�ed of degree eK � r|K�

| : Zs (we have vpKq � 1
eK

ZYt8u).

For every �nite and Galois subextension L of K{K, we have (f �4.1) n exat sequene

tIdLu Ñ IL{K Ñ GalpL{Kq Ñ GalpκL{κKq Ñ t1u

where IL{K � GalpL{T q is the inertia subgroup (here T is the maximal unrami�ed subextension of L{K).

As L ranges among the �nite and Galois subextension of K{K, this provides an inverse system of exat

sequenes. Passing to inverse limit gives an exat sequene:

tIdK u Ñ IK Ñ GK Ñ GalpκK{κKq Ñ t1u

(note that κK � κK by orollary 3.8.16). Under Galois orrespondane, the group IK orresponds to the

omposite Kur
of all unrami�ed subextensions of K{K: we all Kur

the maximal unrami�ed subextension

of K. Then IK � GalpK{Kur
q and GalpKur

{Kq
�

ÑGalpκK{κKq.

Remark 5.2.1. When K in a �nite extension of Qp, the group Galpκ̄K{κKq � pZ is quite expliit (f example

5.1.6). Write κK � Fq (where q � prκK :Fps
). Then κK is an algebrai losure of κK : it is obtained by

adjoining to κK the n-roots of unity for all n P Z
¡0 prime to p. Using Newton's lemma, this implies that

Kur
�

�

p∤n

Kpµnq (where µn denotes the group of n-th roots of unity in K).

De�nition 5.2.2. We denote by PK the pro-p-Sylow subgroup of IK , i.e. the maximal pro-p-subgroup of

IK . This is the losed subgroup of GK (alled the wild inertia subgroup). By de�nition, it orresponds,

under Galois orrespondane, to the omposite Ktame
of all tamely rami�ed subextensions of K{K.

De�nition 5.2.3. Let G be a pro�nite group.

(1) Let B a topologial ring endowed with a ontinuous ation of G. A B-representation of G is a free

B-module of �nite rank endowed with a ontinuous and semi-linear ation of G, i.e.

p�g P Gq p�b P Bq p�m1,m2 PMq gpbm1 �m2q � gpbqgpm1q � gpm2q

With B-linear G-equivariant maps, they form a ategory denoted by RepBpGq.

(2) Let ℓ be a prime number. A ℓ-adi representation of G is a Qℓ-representation (where the ation of G

on Qℓ is trivial). An integral ℓ-adi representation of GK is a Zℓ-representation of G.
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Proposition 5.2.4. Let G be a pro�nite group and V P RepQℓ
pGq. There exists an integral ℓ-adi repre-

sentation L � V whih is a lattie, i.e. suh that V � LbZℓ
Qℓ.

Proof. Let L0 � V be any lattie (take the Zℓ-span of a basis). This is an open neighborhood of 0 P V : as

the ation of G is ontinuous, there exists an open subgroup H ¤ G suh that p�h P HqhpL0q � L0. Put

L �

°

τPG{H

τL0. As L0 is ompat (homeomorphi to Znℓ with n � dimQℓ
pV q), so is L. As L0 � L, this

implies that L is a lattie, whih is stable by G by onstrution. �

If ℓ is a prime number, let

�

ζℓn
�

nPN
be a ompatible sequene of primitive ℓn-th roots of unity, whih means

that ζ0 � 1, ζℓ � 1 and p�n P Z
¥0q ζ

ℓ
ℓn�1 � ζℓn .

De�nition 5.2.5. (1) For n P Z
¥0, the extension Kn :� Kpζℓnq{K is Galois, and if g P GalpKn{Kq, then

gpζℓnq � ζ
χℓ,npgq

ℓn where χℓ,npgq P pZ {ℓ
nZq�: the map χℓ,n : GalpKn{Kq Ñ pZ {ℓnZq� is an injetive group

homomorphism. Put K
8

�

8

�

n�0

Kn: the subextension K
8

{K of K{K is alled the (ℓ-adi) ylotomi

extension. It is Galois, and as n varies, the morphisms χℓ,n are ompatible: passing to the inverse limit,

one gets an injetive group homomorphism

χℓ : GalpK
8

{Kq Ñ Z�ℓ

alled the (ℓ-adi) ylotomi harater. Note that the image of χℓ has �nite index in Z�ℓ .

The omposite GK Ñ GalpK
8

{Kq
χℓ
ÝÑ Z�ℓ is also denoted by χℓ and alled the ylotomi harater as well.

(2) The harater χp provides a ontinuous ation of GK on Zp (given by the multipliation by χp), in

partiular a p-adi representation of GK . We denote by Zpp1q this GK-module: one has Zpp1q � lim
�Ý

n

µpnpK q

(taken additively). If i P Z, we put Zppiq � Zpp1q
bi
: this is nothing but Zp endowed with the ation of GK

given by the multipliation by χip. If M is any (topologial) Zp-module with a ontinuous ation of GK ,

and i P Z, we put Mpiq �M bZp
Zppiq (as GK-modules). This is alled a Tate twist.

Let π be a uniformizer of K. It is a uniformizer of Kur
. For n P Z

¡0 prime to p, let πn �
n
?

π P K be a n-th

root of π. We may assume that the family pπnqp∤n is ompatible, i.e. p�m,n P N
¡0q p ∤ nm ñ πmnm � πn.

As Xn
� π P Kur

rXs is an Eisenstein polynomial, the extensions Kpπnq{K and Kur
pπnq{K

ur
have degree

n. They are totally tamely rami�ed. In partiular,

�

p∤n

Kur
pπnq � Ktame

.

Proposition 5.2.6. We have Ktame
�

�

p∤n

Kur
pπnq.

Proof. We have to show that if L is a �nite tamely rami�ed subextension of K{K, there exists a �nite

unrami�ed subextension T of K{K and n P Z
¡0 prime to p suh that L � T pπnq. Let T be the maximal

unrami�ed extension of L{K. As L{T is totally tamely rami�ed, one has L � T p̟q, where̟ is a uniformizer

of L suh that ̟e
is a uniformizer of T (where e � rL : T s is prime to p, f theorem 3.8.28): there exists

α P O�

T suh that ̟ is a root of the Eisenstein polynomial EpXq � Xe
�πα P OT rXs. Let u P κK be a root

of the redution of Xe
� α P κT rXs (where α denotes the image of α in κT ). As it is separable (beause

eα P O�

T sine p ∤ e), one an lift u to a root u P OKur
of Xe

�α P OT rXs (by Newton's lemma). Replaing

L by Lpuq (whih is liit sine T puq{T is unrami�ed), we may assume that u P T . We have ̟e
� puπeq

e
, so

that ̟ � ζuπe for some e-th root of unity ζ. Replaing L by Lpζq (whih is liit sine T pζq{T is unrami�ed),

we may assume that ζ P T , so that πe �
̟
ζu

P L, hene T pπeq � L. As rT pπeq : T s � e � rL : T s, this

implies that L � T pπeq. �

If ℓ � p is a prime number and n P Z
¡0, the onjugates of πℓn are ζkℓnπℓn with k P Z {ℓnZ: if g P GK , one

has gpπℓnq � ζ
tℓpgq

ℓn πℓn , where tℓ : IK Ñ Z {ℓnZ is a surjetive group homomorphism. These are ompatible

as n varies, giving rise to a surjetive group homomorphism

tℓ : IK Ñ Zℓp1q

Remark 5.2.7. The Tate twist (whih is relative to the ℓ-adi ylotomi harater) denotes the fat that tℓ
is a oyle. This means the following. Let g P IK and γ P GK . As IK is normal in GK , we have γgγ

�1
P IK ,

and pγgγ�1
qpπℓnq � ζ

χpγqptℓpγ
�1
q�tℓpgqq�tℓpγq

ℓn πℓn so that tℓpγgγ
�1
q � χpγqtℓpgq � χpγqtℓpγ

�1
q � tℓpγq. With

g � IdK (in whih ase tℓpgq � 0), this shows that χpγqtℓpγ
�1
q � tℓpγq � 0 for all γ P GK , so that the

previous equality gives

tℓpγgγ
�1
q � χpγqtℓpgq.
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Proposition 5.2.8. The sequene

tIdK u Ñ PK Ñ IK
ptℓqℓ
ÝÝÝÑ

¹

ℓ�p

Zℓp1q Ñ t0u

is exat.

Proof. By de�nition, one has IK{PK
�

ÑGalpKtame
{Kur

q, and the fat that GalpKtame
{Kur

q

�

Ñ

±

ℓ�p

Zℓp1q

through ptℓqℓ follows from proposition 5.2.6. �

Theorem 5.2.9. (Grothendiek's monodromy theorem), f [23, Appendix℄) Let ℓ � p be a prime

integer, and V an ℓ-adi representation of GK . Assume that Kpµℓ8q{K is in�nite. Then V is quasi-

unipotent, i.e. there exists a unique nilpotent endomorphism N : V p1q Ñ V and an open subgroup I � IK
suh that

p�g P Iqp�v P V q gpvq � expptℓpgqNqpvq

Proof. By proposition 5.2.4, V ontains a GK-stable lattie L: the representation is thus given by a

ontinuous group homomorphism ρ : GK Ñ GLpLq � GLnpZℓq where n � dimQℓ
pV q. The subgroup

IdL�ℓ
2 EndpLq � GLpLq is open and normal: let I � ρ�1

�

IdL�ℓ
2 EndpLq

�

X IK . This is an open sub-

group of IK and a normal subgroup of GK . Let ρ
|I : I Ñ IdL�ℓ

2 EndpLq be the group homomorphism

indued by ρ. As IdL�ℓ
2 EndpLq is a pro-ℓ-group and Kerptℓq is an inverse limit of groups of order prime to

p, the morphism ρ is trivial on I X Kerptℓq, i.e. ρ
|I fators through I{pI X Kerptℓqq.

If g P I, then ρpgq P IdL�ℓ
2 EndpLq, so the series logpρpgqq � �

8

°

i�1

1
i
pIdL�ρpgq

�i
onverges in ℓ2 EndpLq

(for the ℓ-adi topology). Also, sine logpρpgqq P ℓ2 EndpLq, one has ρpgq � expplogpρpgqqq. This provides

a ontinuous group homomorphism logpρq : I Ñ ℓ2 EndpLq that fators through I{pI X Kerptℓqq, i.e. by tℓ:

there exists a unique N : V p1q Ñ V suh that p�g P Iq logpρpgqq � tℓpgqN . It remains to see that N is

nilpotent.

Denote by χℓ : GK Ñ Z�ℓ be the ℓ-adi ylotomi harater. As Kpµℓ8q{K is in�nite, the image of χℓ is

in�nite. If γ P GK and g P I, one has γ�1gγ P I (beause I is normal in GK), and
(41) tℓpγ

�1gγq � χℓpγqtℓpgq.

We have ρpγ�1gγq � ρpγq�1ρpgqρpγq, taking the logarithm we get tℓpγ
�1gγqN � tℓpgqρpγq

�1Nρpγq hene

ρpγq�1Nρpγq � χℓpγqN

This implies that the spetrum of N is stable by multipliation by Impχℓq. As Impχℓq in�nite and the

spetrum of N is �nite, the latter has to be redued to t0u, and N is nilpotent. �

Remark 5.2.10. As ℓ � p, one has µℓ8pK q � µℓ8pkKq, so the ondition in the theorem is automatially

ful�lled when k is �nite.

5.3. The ompletion of a separable losure of a loal �eld. Let pF, |.|q be a omplete non arhimedean

valued �eld. Fix F an algebrai losure of F . The absolute value |.| extends uniquely into an absolute value

|.| on F (f orollary 3.5.7).

Lemma 5.3.1. (Krasner

(42)

). Let α, β P F be suh that α is separable over F and:

|α� β|   min
α1PCpαqztαu

�

�α� α1
�

�

where Cpαq is the set of onjugates of α over F . Then F pαq � F pβq.

Proof. Put γ � β�α and F 1

� F pβq: we have F 1

pγq � F 1

pαq so F 1

pγq{F 1

is separable. Let γ1 be a onjugate

of γ over F 1

. If γ1 � γ, we an write γ1 � β �α1 with α1 P Cpαqztαu. As γ1 and γ are onjugate over F 1

, we

have |γ1| � |γ|, so that

�

�α� α1
�

�

�

�

�γ1 � γ
�

�

¤ |γ| � |β � α|

whih ontradits the hypothesis. This implies that γ has only one onjugate over F 1

, i.e. γ P F 1

, whene

α P F 1

� F pβq. �

Lemma 5.3.2. If |.| is not trivial, then an in�nite and separable subextension of F {F is never omplete.

(41)

This is the preise meaning of remark 5.2.7.

(42)

This result is in fat due to Ostrowski.



120 Number theory

Proof. Let K be an in�nite subextension of F {F . Assume that pK, |.|q is omplete, and that K{F is

separable. Choose a sequene pxnqnPZ
¥0

of elements in K that are all linearly independent over F . As |.|

is not trivial, there exists a sequene panqnPZ
¥0

of elements in F suh that the sequene p|anxn|qnPZ
¥0

is

stritly dereasing and onverges to 0. As K is omplete, the series s �
8

°

n�0

anxn onverges in K. For

n P Z
¡0, put sn �

n�1
°

i�0

aixi: the elements tsnunPZ
¡0

are all linearly independent over F . For n P Z
¡0, let dn

be the smallest distane between sn and its onjugates. a0 being hosen arbitrarily, we an onstrut the

sequene panqnPZ
¥0

indutively so that |anxn|   dn for all n P Z
¡0. As p|anxn|qnPZ

¥0
is stritly dereasing,

we have |s� sn| � |anxn|   dn. By Krasner's lemma, this implies that sn P F psq. As psnqnPZ
¡0

is linearly

independent, this implies that rF psq : F s � 8, whih ontradits the fat that s P K is algebrai over F . �

Remark 5.3.3. In the lemma 5.3.2, the separability ondition is really neessary: let K � FppxiqiPZ
¥0

be

the �eld of rational frations in the indeterminates pxiqiPZ
¥0

with oe�ients in Fp, and F � KppT qq the �eld

of formal Laurent series with oe�ients in K. Endowed with the T -adi absolute value |.|, the �eld F is

omplete. Then F 1{p
� K1{p

ppT 1{p
qq is a totally inseparable algebrai extension of F . The absolute value |.|

extends uniquely to F 1{p
(f theorem 3.5.6), and the Frobenius map ϕ : F 1{p

Ñ F is a �eld isomorphism. As

|ϕpfq| � |f |
p
for all f P F 1{p

, the Frobenius map is also an homeomorphism, so that F 1{p
is also omplete.

On the other hand, the extension F 1{p
{F is in�nite, beause K1{p

{K is (this an be seen as follows: for all

i P Z
¥0, we have xi R Fppx0, . . . , xi�1, x

p
i , x

p
i�1, . . .q, so that

rFppx
1{p
0 , . . . , x

1{p
i , xi�1, . . .q : Fppx

1{p
0 , . . . , x

1{p
i�1, xi, xi�1, . . .qs � p,

whene rFppx
1{p
0 , . . . , x

1{p
i , xi�1, . . .q : Ks � pi�1

by indution).

From now on, pK, |.|q denote a omplete non arhimedean valued �eld. We assume that |.| is not trivial.

Proposition 5.3.4. κK is an algebrai losure of κK and

�

�K�

�

�

� tr P R
¡0 ; pDn P Z

¡0q r
n
P |K�

|u � ρQ

for any element ρ P |K�

| zt1u.

Proof.  Let x P κK : there exists px P OK suh that px maps to x in κK � OK {mK . There exists a �nite

subextension L{K of K{K suh that px P L, i.e. px P OL. Reduing modulo mL shows that x P κL is

algebrai over κK .

 Let P pXq P κKrXs be a moni irreduible polynomial, and

pP pXq P OKrXs a moni lift of P . Then

pP

has a root α P K , and α P OK (f orollary 3.5.10): if α denotes the image of α in κK , we have P pαq � 0,

hene P has a root in κK , proving that κK is an algebrai losure of κK .

 Let L{K be a �nite subextension of K{K. We have |L�| � |K�

|

1{e
where e is the rami�ation index of

L{K. This implies that |L�| � tr P R
¡0 ; pDn P Z

¡0q r
n
P |K�

|u. As this holds for all subextension L{K of

K{K, we have

�

�K�

�

�

� tr P R
¡0 ; pDn P Z

¡0q r
n
P |K�

|u.

 Conversely, let r P R
¡0 and n P Z

¥0 be suh that rn P |K�

|: there exists m P Z suh that |πK |
m
� rn,

where πK is a uniformizer on K. Then P pXq � Xn
� πK P OK rXs is an Eisenstein polynomial: if α P K

is a root of P , then |α| � |πK |
1{n

, so that rn � |α|
nm

, hene r � |αm| P
�

�K�

�

�

. �

Corollary 5.3.5. The �eld κK is in�nite, and

�

�K�

�

�

is dense in R
¡0.

Notation. We denote by C the ompletion of K with respet to its absolute value |.|. The latter extends

to C: we still denote by |.| this extension.

Proposition 5.3.6. The �eld C is algebraially losed.

Proof. Let L be a �nite extension of C. Replaing L by its normal losure overC, we may assume that L{C is

normal. Denote by |.| the unique extension of |.| to L. Let α P L and P pXq � Xn
�a1X

n�1
�� � ��an P CrXs

its minimal polynomial over C. Let ε P R
¡0: as K is dense in C, we an hoose b1, . . . , bn P K suh that

|bi � ai| |α|
n�i

  εn for all i P t1, . . . , nu. Put QpXq � Xn
� b1X

n�1
� � � � � bn P K rXs: we have

Qpαq � Qpαq � P pαq �
n
°

i�1

pbi � aiqα
n�i

, so that |Qpαq| ¤ max
1¤i¤n

|bi � ai| |α|
n�i

  εn. On the other hand,

let β1, . . . , βn P K be the roots of QpXq. As Qpαq �
n
±

i�1

pα � βiq, we have
n
±

i�1

|α� βi|   εn, so there exists

i P t1, . . . , nu suh that β :� βi P K satis�es |α� β|   ε. We an thus onstrut a sequene pxkqkPZ
¡0

in K

suh that |α� xk|   2�k for all k P Z
¡0. This implies that α � lim

kÑ8

xk P C. In partiular, we must have

L � C. �

De�nition 5.3.7. The ompletion of �the� algebrai losure of Qp is denoted by Cp.
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5.3.8. The Galois ation on C. The ontent of this part is taken from [2℄. Reall that pK, |.|q is a omplete

non arhimedean valued �ed suh that |.| is non trivial. Let K be a separable losure of K, and pC, |.|q the

ompletion of pK, |.|q. As the group GK :� GalpK{Kq ats by isometries on K , the ation of GK extends

to C by ontinuity. Let

?

K denote the perfet losure of K, i.e.

?

K �

#

K if charpKq � 0

Kp�8
if charpKq � p ¡ 0

Theorem 5.3.9. We have CGK
�

?

K
y

, i.e. the �eld of elements in C that are invariant under GK is the

ompletion of the perfet losure of K.

We will need a few lemmas.

Lemma 5.3.10. Let p be a prime number and n P Z
¥1. If k P t0, . . . , vppnqu, then vp

��

n
pk

��

� vppnq � k.

Proof. Let spnq be the sum of the digits of the p-adi development of n. Then vppn!q �
n�spnq

p�1
. This

implies that vp
��

n
pk

��

�

n�spnq�ppk�1�n�pk�spn�pkqq

p�1
�

spn�pkq�1�spnq

p�1
. Put v � vppnq and write n � pvm

with p ∤ m: we have spnq � spmq and n � pk � pkppv�km � 1q so that spn � pkq � sppv�km � 1q. Let

m � a0 � pa1 � � � � � prar with ai P t0, . . . , p � 1u for i P t0, . . . , ru be the p-adi development of m. We

have a0 � 0, and

pv�km� 1 � pv�k � 1� pv�kpa0 � 1q � pv�k�1a1 � � � � � pv�k�rar

� p1� p� p2 � � � � � pv�k�1
qpp� 1q � pv�kpa0 � 1q � pv�k�1a1 � � � � � pv�k�rar

so that sppv�km� 1q � pv � kqpp� 1q � spmq � 1, whih implies that spn� pvq � 1� spnq � pv � kqpp� 1q

whene vp
��

n
pk

��

� v � k. �

Lemma 5.3.11. Let P pXq �
d
±

i�1

pX � αiq �
d
°

j�0

ajX
j
P CrXs. Assume that |α1| ¤ � � � ¤ |αd|. If

j P t0, . . . , d� 1u, we have |aj | ¤ |αj�1 � � �αn|. If |αj |   |αj�1|, we have equality, more preisely

�

�

�

1� p�1qd�j
aj

αj�1���αn

�

�

�

  1.

Proof. We have aj � p�1qn�j
°

i1 ��� id�j

αi1 � � �αid�j
: the ordering of the roots implies the inequalities

�

�αi1 � � �αid�j

�

�

¤ |αj�1 � � �αn| proving the �rst inequality by the triangle inequality. When |αj |   |αj�1|, we

have

�

�αi1 � � �αid�j

�

�

  |αj�1 � � �αn| unless ik � j � k for all k P t1, . . . , d� ju, proving the seond part of the

lemma in that ase. �

Lemma 5.3.12. Let P pXq P CrXs be of degree d � pδd1 � qd1 where p � maxt1, charpκCqu, δ P Z
¥0 and

gcdpp, d1q � 1. Assume q   d and that a disk D � C ontains all the roots of P . Then P rqs
has a zero in D.

Proof. We may assume that P is moni and that 0 P D: this implies that D � Dp0, rq for some r P R
¥0.

Write P pXq �
d
±

i�1

pX � αiq �
d
°

j�0

ajX
j
with |α1| ¤ � � � ¤ |αd| ¤ r. By lemma 5.3.11, we have |aj | ¤ rd�j

for all j P t0, . . . , d� 1u. We have

P rqs
pXq �

d
°

j�q

�

j
q

�

ajX
j�q

�

d�q
°

k�0

bkX
k

where bk �
�

k�q
q

�

ak�q for k P t0, . . . d� qu. As P is moni, we have bd�q �
�

d
q

�

, so we an write

P rqs
pXq �

�

d
q

�

d�q
±

k�1

pX � βkq

so that b0 �
�

d
q

�

d�q
±

k�1

p�βkq. We have

�

�

�

�

d
q

�

�

�

�

� 1, beause the image of

�

d
q

�

is invertible in κC (this is trivial

if charpκCq � 0, and follows from lemma 5.3.10 if charpκCq � p ¡ 0). This implies that

d�q
±

k�1

|βk| ¤ rd�q, so

that there exists k0 P t1, . . . , d� qu suh that |βk| ¤ r i.e. βk P D. �

Lemma 5.3.13. Assume that charpCq � 0 and charpκCq � p ¡ 0. Let P pXq P CrXs be of degree d � pδ ¡ 1

having all its zeros in a disk D � Dpa, rq. If q � pδ�1
, then P rqs

has a zero in D
�

a, r |p|
�

1
d�q

�

.
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Proof. Again, we may assume that P is moni and that D � Dp0, rq. Write P pXq �
d
±

i�1

pX�αiq �
d
°

j�0

ajX
j
:

as before, we have

P rqs
pXq �

d
°

j�q

�

j
q

�

ajX
j�q

�

�

d
q

�

d�q
±

k�1

pX � βkq

so that aq �
�

d
q

�

d�q
±

k�1

p�βkq. As vp
��

d
q

��

� 1 by lemma 5.3.10, we have |p|
d�q
±

k�1

|βk| ¤ rd�q, so that there exists

k P t1, . . . , d� qu suh that |p| |βk|
d�q

¤ rd�q i.e. |βk| ¤ r |p|
�

1
d�q

. �

De�nition 5.3.14. If α P K , let

∆Kpαq � ∆pαq � sup
α1PCpαqztαu

|α1 � α|

with the onvention that ∆pαq � 0 if α P
?

K.

Remark 5.3.15. If α P K and x P K, we have |α1 � α| ¤ maxt|α1 � x| , |α� x|u � |α� x| for all onjugate

α1 of α (sine elements of GK at by isometries on K ). This implies that ∆pαq ¤ |α� x|. As this holds

for all x P K, this means that ∆pαq ¤ dpα,Kq. The aim of the next few lemmas is to show that ∆pαq is

"lose" to dpα,Kq.

Lemma 5.3.16. Assume that charpKq � 0 and charpκKq � p ¡ 0. If α P K has degree n over K, then there

exists x P K suh that

|α� x| ¤ ∆pαq |p|
�cpnq

where cpnq �
λpnq
°

i�1

1
pi�pi�1 and λpnq � maxte P Z

¥0 ; p
e
¤ nu.

Proof. We proeed by indution on n P Z
¡0, the ase n � 1 being trivial. Let P pXq P KrXs be the minimal

polynomial of α over K. Write n � pδn1 � qn1 with p ∤ n1. Let D be the dis entered at α with radius

∆pαq.

 If n1 ¡ 1, lemma 5.3.12 implies that P rds
has a root β P D, i.e. suh that |α� β| ¤ ∆pαq. If β1 ia a

onjugate of β over K, then there exists σ P GK suh that σpβq � β1. This implies that

|β1 � β| � |σpβq � β| � |σpβ � αq � pσpαq � αq � pα� βq| ¤ maxt|α� β| , |σpαq � α|u ¤ ∆pαq

sine |σpα � βq| � |α� β|. As this holds for every onjugate β1 of β over K, this implies that ∆pβq ¤ ∆pαq.

As rKpβq : Ks ¤ degpP rqs
q � n� q   n, the indution hypothesis implies that there exists x P K suh that

|β � x| ¤ ∆pβq |p|
�cpn�qq

. We have λpnq ¥ λpn � qq, hene cpnq ¥ cpn � qq, thus |p|
�cpn�qq

¤ |p|
�cpnq

(as

1   |p|
�1
), so |β � x| ¤ ∆pαq |p|

�cpnq
. As |α� x| ¤ maxt|α� β| , |β � x|u, we get |α� x| ¤ ∆pαq |p|

�cpnq

(sine |α� β| ¤ ∆pαq and 1 ¤ |p|
�cpnq

).

 If n1 � 1, put q � pδ�1
, lemma 5.3.13 shows that P rqs

has a root β suh that |β � α| ¤ ∆pαq |p|
�

1
d�q

. As

before, we have |β1 � β| ¤ maxt|α� β| , |σpαq � α|u ¤ ∆pαq |p|
�

1
d�q

for all onjugate β1 of β over K, so that

∆pβq ¤ ∆pαq |p|
�

1
d�q

. By the indution hypothesis, there exists x P K suh that |β � x| ¤ ∆pβq |p|
�cpn�qq

,

i.e. |β � x| ¤ ∆pαq |p|
�cpn�qq� 1

n�q
. As n � pδ, we have n � q � pδ�1

pp � 1q, so λpn � qq � δ � 1,

hene cpn � qq �
δ�1
°

i�1

1
pi�pi�1 � cpnq � 1

n�q
: this implies that |β � x| ¤ ∆pαq |p|

�cpnq
. As before, we

have |α� x| ¤ maxt|α� β| , |β � x|u, so that |α� x| ¤ ∆pαq |p|
�cpnq

(beause |α� β| ¤ ∆pαq |p|
�

1
d�q

and

|p|
�

1
d�q

¤ |p|
�cpnq

). �

Proposition 5.3.17. Assume that charpKq � 0 and charpκKq � p ¡ 0. If α P K , there exists x P K suh

that |α� x| ¤ ∆pαq |p|
�

p

pp�1q2
.

Proof. This follows from lemma 5.3.16, sine cpnq ¤
8

°

i�1

1
pi�pi�1 �

1
p�1

8

°

k�0

1
pk
�

p
pp�1q2

for all n P Z
¡0. �

Lemma 5.3.18. Assume that charpKq � p ¡ 0. If α P K has degree p over K, there exists β P K1{p
suh

that |α� β| ¤ |α|
p�1
p ∆pαq

1
p
.
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Proof. This is trivial if α is not separable over K: assume that α is separable over K. Let α1, . . . , αp be

the onjugates of α over K. For i P t1, . . . , pu, put ηi � αi � α. We have

NKpαq{Kpαq �
p
±

i�1

αi �
p
±

i�1

pα� ηiq � αp � b1α
p�1

� � � � � bp.

where bi is the i-th symmetri funtion of η1, . . . , ηp. As |ηk| ¤ ∆pαq for all k P t1, . . . , pu, we have

|bi| ¤ ∆pαqi for all i P t1, . . . , pu. Let β P K1{p
be suh that βp � NKpαq{Kpαq: we have

pβ � αqp � b1α
p�1

� � � � � bp

so that |α� β| ¤ max
1¤i¤p

|bi| |α|
p�i

� ∆pαq |α|
p�1

sine ∆pαq ¤ |α| (beause |α1 � α| ¤ maxt|α1| , |α|u � |α|

for every onjugate α1 of α over K). �

Lemma 5.3.19. Assume that charpKq � p ¡ 0. If α P K has degree p over K and j P Z
¡0, there exists

βj P
?

K suh that

|α� βj | ¤ |α|
p

p�1
p
q

j

∆pαq
1
p
�

p�1

p2
�����

pp�1qj�1

pj .

Proof. We proeed by indution on j P Z
¡0, the ase j � 1 being lemma 5.3.18. Assume βj has been

onstruted. Applying lemma 5.3.18 to α� βj P
?

K, there exists βj�1 P

?

K
1{p

�

?

K suh that

|α� βj�1| ¤ |α� βj |
p�1
p ∆pα� βjq

1
p .

As βj P
?

K, the element βj has only one onjugate, so that ∆pα � βjq � ∆pαq: we have

|α� βj�1| ¤

�

|α|
p

p�1
p
q

j

∆pαq
1
p
�

p�1

p2
�����

pp�1qj�1

pj

	

p�1
p

∆pαq
1
p
� |α|

p

p�1
p
q

j�1

∆pαq
1
p
�

p�1

p2
�����

pp�1qj

pj�1 .

�

Lemma 5.3.20. Assume that charpKq � p ¡ 0. If α P K has degree p over K is suh that |α| ¤ 1, and

ℓ P Z
¡0, there exists β P

?

K suh that |α� β| ¤ ∆pαq1�
1
ℓ
.

Proof. This follows from lemma 5.3.19 and the fat that

1
p
�

8

°

j�2

pp�1qj�1

pj
�

1
p
�

p�1
p2

8

°

k�0

�

p�1
p

�k
� 1. �

Proposition 5.3.21. Assume that charpKq � p. If α P K is suh that |α| ¤ 1 and ℓ P Z
¡0, there exists

β P
?

K suh that |α� β| ¤ ∆pαq1�
1
ℓ
.

Proof.  Case where K is perfet and every �nite extension of K has degree a power of p. Fix a tower of

extensions K � K0 � K1 � � � � � Kn suh that α P Kn and rKi : Ki�1s � p for all i P t1, . . . , nu (take for

Kn any �nite Galois extension of K ontaining α, and use the fat that p-groups are solvable). By lemma

5.3.20, there exists γ P
a

Kn�1 � Kn�1 suh that |α� γ| ¤ ∆Kn�1
pαq1�

1
2ℓ
¤ ∆pαq1�

1
2ℓ
. If γ1 is a onjugate

of γ over K, there exists σ P GK suh that γ1 � σpγq, so that

|γ1 � γ| ¤ maxt|σpγ � αq| , |σpαq � α| , |α� γ|u � maxt∆pαq, |α� γ|u ¤ ∆pαq1�
1
2ℓ

sine ∆pαq ¤ ∆pαq1�
1
2ℓ

sine ∆pαq ¤ 1 beause ∆pαq ¤ |α| ¤ 1. As this holds for every onjugate γ1 of γ

over K, this implies that ∆pγq ¤ ∆pαq1�
1
2ℓ
. By indution on n we an �nd an element β P

?

K suh that

|γ � β| ¤ ∆pβq1�
1
2ℓ
¤ ∆pαqp1�

1
2ℓ
q

2

, thus |α� β| ¤ ∆pαqp1�
1
2ℓ
q

2

¤ ∆pαq1�
1
ℓ
(sine

�

1 � 1
2ℓ

�2
¥ 1 � 1

ℓ
and

∆pαq ¤ 1).

 Case where K is perfet. Let L be the sub�eld of K �xed by the pro-p-Sylow of GK : this is the omposite

of all subextensions of K{K that are of degree prime to p. By onstrution, �nite extensions of L have

degree a power of p. By the previous ase, there exists γ P
?

L � L suh that |α� γ| ¤ ∆Lpαq
1� 1

ℓ
. As

before, this implies that ∆Kpγq ¤ ∆Kpαq
1� 1

ℓ
.

As rKpγq : Ks is prime to p, we may de�ne β �

1
rKpγq:Ks

TrKpγq{Kpγq P K. Denote by J be the set of

K-embeddings of Kpγq into K : we have #J � rKpγq : Ks sine γ is separable over K (beause K is

perfet). This implies that β � γ � 1
rKpγq:Ks

°

σPJ

pσpγq � γq. As |rKpγq : Ks| � 1 (beause p ∤ rKpγq : Ks),

we have |β � γ| �

�

�

�

�

°

σPJ

pσpγq � γq

�

�

�

�

¤ max
σPJ

|σpγq � γ| � ∆Kpγq ¤ ∆Kpαq
1� 1

ℓ
, so that |α� β| ¤ ∆Kpαq

1� 1
ℓ
.

 General ase. What preedes (with K replaed by

?

K) implies that there exists β P

?

K suh that

|α� β| ¤ ∆?

Kpαq
1� 1

ℓ
¤ ∆Kpαq

1� 1
ℓ
. �

Proposition 5.3.22. Assume that charpκKq � 0. If α P K , there exists β P K suh that |α� β| ¤ ∆pαq.
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Proof. Put β � 1
rKpαq:Ks

TrKpαq{Kpαq P K and let J be the set of K-embeddings of Kpαq into K : we have

#J � rKpαq : Ks sine charpKq � 0 (beause charpκKq � 0). We have β � α � 1
rKpαq:Ks

°

σPJ

pσpαq � αq: as

|rKpαq : Ks| � 1 (beause charpκKq � 0 again), we have |β � α| ¤ max
σPJ

|σpαq � α| � ∆pαq. �

Proof of theorem 5.3.9. Let c P CGK
. Resaling via an element of K, we may assume that |c| ¤ 1. If

λ P
�

�K�

�

�

and ℓ P Z
¡0, there exists α P K suh that |c� α| ¤ wKpλ, ℓq where

wKpλ, ℓq �

$

'

&

'

%

λ if charpκKq � 0

λ |p|
p

pp�1q2
if charpKq � 0 if charpκKq � p ¡ 0

λp1�
1
ℓ
q

�1

if charpKq � p ¡ 0

(by density of K in C). If σ P GK , we have

|σpαq � α| � |σpα � cq � c� α| ¤ maxt|σpα � cq| , |α� c|u � |c� α| ¤ wKpλ, ℓq

so that ∆pαq ¤ wKpλ, ℓq. By propositions 5.3.17, 5.3.21 and 5.3.22, there exists β P

?

K suh that

|α� β| ¤ λ. As λ was arbitrary, this implies that c P
?

K
y

. This implies that CGK
�

?

K
y

. The reverse

inlusion is obvious. �

Theorem 5.3.23. The separable losure Ksep
of K in K is dense in C, i.e. C �

zKsep
.

Proof. This is obvious when charpKq � 0 (sine Ksep
� K ): we heneforth assume that charpKq � p ¡ 0.

Put L � Ksep
, so that K �

?

L. Let c P C: we have to show that c an be approximated by elements of L.

We may assume that |c| ¤ 1. As in the proof of theorem 5.3.9, if λ P
�

�K�

�

�

, there exists α P K suh that

|c� α| ¤ λ. There exists a power q of p suh that a � αq P L. Let b P K�

(to be hosen later), and β P L�

a root of smallest absolute value of P pXq � Xq
� bX � a. We have P 1

pXq � b � 0, so P is separable, hene

β P L. We have pβ � αqq � βq � a � bβ, so that

(�) |α� β| � |bβ|
1
q .

As |.| is not trivial, we an hoose b P L� suh that

|b|   min
 

|a|
q�1
q , λq |a|

�

1
q
(

.

Let β � β1, . . . , βq be the onjugates of β overK, suh that |β1| ¤ � � � ¤ |βq|: we have |a| � |β1 � � �βq| ¥ |β|
q

whene |β| ¤ |a|
1
q
. If |β|   |a|

1
q
then |bβ|   |a|, so that |β|

q
� |bβ � a| � |a|, whene |β|

q
� |a|, ontraditing

|β|   |a|
1
q
: we have |β| � |a|

1
q
(this an be seen diretly on Newton's polygon of P , regardless to the

minimality of |β|). Equation (�) thus implies that |α� β| � |b|
1
q
|a|

1

q2
  λ, so that |c� β| ¤ λ. As λ is

arbitrary, this shows that L is dense in C. �

5.4. Exerises.

Exerise 5.4.1. Let K be a �eld, with separable losure Ksep
, and Kab

be the maximal abelian extension of

K inside Ksep
. Put GK � GalpKsep

{Kq. Prove that Kab
is a Galois extension of K, and that GalpKab

{Kq

is isomorphi to GK{rGK , GKs, where rGK , GKs denotes the losure of the ommutator subgroup of GK .

Exerise 5.4.2. Let L be a �eld, and view AutpLq as a subset of LL �
±

xPL

L of all maps L Ñ L. Give L

the disrete topology, LL the produt topology, and AutpLq the relative topology.

(1) Prove that AutpLq is a topologial group; i.e. the omposition map AutpLq � AutpLq Ñ AutpLq and the

map AutpLq Ñ AutpLq sending eah automorphism of L to its inverse are ontinuous.

(2) Let K be a sub�eld of L. Prove that L is Galois over K if and only if there is a ompat subgroup

G of AutpLq suh that K is the �eld of invariants of G. Prove also that suh a subgroup G, if it exists, is

neessarily equal to GalpL{Kq, and that its topology oinides with the Krull topology on GalpL{Kq.

Exerise 5.4.3. (0) Let F be a �eld and x, y P F . Assume that charpF q � 2, and that

?

x,
?

y,
?

xy R F .

Show that rF p
?

x,
?

yq : F s � 4. Dedue that if F pSq is an extension of F generated by n square roots of

elements in F suh that every nonempty subset of S has produt not in F , then rF pSq : F s � 2n.

Let pp1, p2, . . .q be the sequene of prime integers, and K � Qp
?

pkqkPZ
¡0
.

(1) Show that K{Q is a Galois extension and desribe its Galois group.

(2) Show that for all n P Z
¡0, the pro�nite GalpK{Qq ontains non-open subgroups of index 2n.

(3) Dedue that for all n P Z
¡0, the pro�nite GalpQ{Qq ontains non-open subgroups of index 2n.
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Exerise 5.4.4. Let G be a pro�nite group.

(1) Let L be a �eld. Assume that G � AutpLq, and that the stabilizer of eah element of L in G is an open

subgroup of G. Put K � LG. Show that L{K is Galois, and that G � GalpL{Kq (this is a generalization of

Artin's theorem).

(2) Show that G is the Galois group of some Galois �eld extension.

Exerise 5.4.5. Let Qp be an algebrai losure of Qp. Assume that Qp is omplete for |.|p. For eah

m P Z
¡0, let ζm P Qp be a primitive m-th root of unity. Put α �

8

°

n�1

pnζfpnq (where fpnq � n if p ∤ n, and

fpnq � 1 if p | n), and K � Qppαq.

(1) Show that ζfpnq P K for all n P Z
¡0.

(2) Dedue that Qp is not omplete.

Exerise 5.4.6. Show that Q is dense in Cp (this implies that Cp is separable i.e. that it ontains a

ountable dense subset).

Exerise 5.4.7. (Appliations of Krasner's lemma). Let pK, |.|q be a loal �eld, and K an algebrai

losure of K.

(1) Let P,Q P KrXs be moni polynomials of degree n P Z
¡0. Assume that P is irreduible and separable.

Show that if |P �Q|Gauss is small enough, then Q is also irreduible, and that if α P K is a root of P , then

there exists a root β of Q suh that Kpαq � Kpβq.

From now on, we assume that K is a �nite extension of Qp.

(2) Show that there are �nitely many subextensions L of K{K of given degree n.

(3) Show that there is a �nite subextension L of K{Q suh that rL : Qs � rK : Qps and K � LQp.

Exerise 5.4.8. Let A be a losed sub-Qp-algebra of Cp. Show that A is a �eld.

Exerise 5.4.9. Let p be a prime integer. Show that Cp and C are isomorphi as �elds.
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6. Rudiments in p-adi analysis

6.1. Generalities. Let K be a losed sub�eld of Cp and fpXq �
8

°

n�0

anX
n
P KrrXss be a formal power

series. Let x P Cp. As pCp, |.|q is omplete and non arhimedean, the series

8

°

n�0

anx
n
onverges in Cp if and

only if lim
nÑ8

anx
n
� 0: in that ase, we denote fpxq for the sum of this series. Just as in the arhimedean ase

(i.e. in the ase of formal power series with oe�ients in the �eld C of omplex numbers), the preeding

ondition only depends on |x|: this motivates the following de�nition.

De�nition 6.1.1. The radius of onvergene of f is

rpfq �
1

lim sup
nPZ

¡0

|an|
1{n

P R
¥0 .

Proposition 6.1.2. The series

8

°

n�0

anx
n
onverges if |x|   rpfq and diverges if |x| ¡ rpfq.

Proof. Put r � rpfq.

 Assume |x|   r: we an write |x|p � p1� εqr with ε Ps0, 1r, so |anx
n
| �

�

r |an|
1{n

p1 � εq
�n

for n P Z
¡0.

By de�nition of r, there exists N P Z
¡0 suh that |an|

1{n
 

1
r�rε{2

, whene |anx
n
| ¤

�

1�ε
1�ε{2

�n
for all n ¥ N ,

implying that lim
nÑ8

|anx
n
| � 0.

 Assume |x| ¡ r: we an write |x| � p1 � εqr with ε Ps0, 1r. We an �nd a stritly inreasing map

ϕ : Z
¡0 Ñ Z

¡0 suh that lim
nÑ8

�

�aϕpnq
�

�

1{ϕpnq
�

1
r
: there exists N P Z

¡0 suh that

�

�aϕpnq
�

�

1{ϕpnq
¡

1
r�rε{2

,

whene

�

�aϕpnqx
ϕpnq

�

�

¥

�

1�ε
1�ε{2

�n
for all n ¥ N , implying that lim

nÑ8

�

�aϕpnqx
ϕpnq

�

�

� �8, so that the series

8

°

n�0

anx
n
diverges. �

Notation. If a P Cp and r P R
¥0, we put Dpa, rq � tx P Cp ; |x� a|   ru (the �open dis� with enter a

and radius r) and Dpa, rq � tx P Cp ; |x� a| ¤ ru (the �losed dis� with enter a and radius r).

Remark 6.1.3. In ontrast with diss in the omplex plane C, both Dpa, rq and Dpa, rq are open and losed

in the topologial spae pCp, |.|q.

Corollary 6.1.4. A formal power series fpXq P KrrXss de�nes a ontinuous map f : Dp0, rpfqq Ñ Cp.

Proof. We may assume rpfq ¡ 0. Let x0 P Dp0, rpfqqzt0u, α Ps0, |x0| r and x P Cp suh that |x� x0|   α:

we have |x| � |x0|, and we may evaluate f at x0 and x. As fpxq � fpx0q �
8

°

n�0

anpx
n
� xn0 q, we have

|fpxq � fpx0q| ¤ sup
nPZ

¡0

|an| |x
n
� xn0 |. As x

n
�xn0 � px�x0qpx

n�1
�x0x

n�2
�� � ��xn�1

0 q, we have |xn � xn0 | ¤

|x� x0| max
1¤k¤n

|x|
n�k

|x0|
k�1

� α |x0|
n�1

for all n P Z
¡0. By de�nition of rpfq, the sequene p

�

�anx
n�1
0

�

�

qnPZ
¡0

is bounded (it onverges to 0): let cpx0q � 1 � sup
nPZ

¡0

�

�anx
n�1
0

�

�

P R
¥1. We have |fpxq � fpx0q| ¤

α
r
cpx0qα:

given ε P R
¡0, put α � min

 

ε
cpx0q

, |x0|
(

, so that |x� x0|   αñ |fpxq � fpx0q|   ε, showing the ontinuity

of f at x0.

Assume x0 � 0 and hoose r Ps0, rpfqr. As above, there exists Cr P R
¡0 suh that |an| r

n
¤ Cr for all

n P Z
¡0. If x P Dp0, rq, we have |fpxq � fp0q| ¤ sup

nPZ
¡0

|anx
n
|: as |anx

n
| � |an| r

n
�

|x|

r

�n
¤ Cr

|x|

r
, we dedue

that |fpxq � fp0q| ¤ Cr

r
|x|, showing the ontinuity of f at 0. �

Example 6.1.5. A formal power series with oe�ients in OK de�nes a ontinuous map Dp0, 1q Ñ OCp
.

Notation. Let r P R
¡0.

(1) We denote by HKpr0, rrq (resp. HKpr0, rsq) the set of formal power series fpXq P KrrXss that onverge

on Dp0, rq (resp. Dp0, rq).

(2) If r P R
¡0 and fpXq �

8

°

n�0

anX
n
P KrrXss, we put |f |r � sup

nPZ
¥0

|an| r
n
P R

¥0Yt�8u.

Lemma 6.1.6. Let r P R
¡0 and fpXq �

8

°

n�0

anX
n
P HKpr0, rsq. Then |f |r � max

nPZ
¥0

|an| r
n
.
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Proof. This is trivial if fpXq � 0; if fpXq � 0, we have lim
nÑ8

|an| r
n
� 0, so E �

!

n P Z
¥0 ; |an| r

n
¡

}f}ρ
2

)

is �nite, and |f |r � max
nPE

|an| r
n
. �

De�nition 6.1.7. With the notations of lemma 6.1.6, assume f � 0. Put

wrpfq � maxtn P Z
¥0 ; |an| r

n
� |f |ru

(whih makes sense sine lim
nÑ8

|an| r
n
� 0).

Proposition 6.1.8. (1) If r P R
¡0, HKpr0, rsq � HKpr0, rrq are subrings of CprrXss, in partiular they are

integral domains.

(2) If ρ P r0, rr (resp. ρ P r0, rs), the map |.|ρ de�nes an absolute value on HKpr0, rrq (resp. HKpr0, rsq).

(3) Elements in HKpr0, rsq de�ne bounded maps Dp0, rq Ñ Cp.

Proof. (2) We ertainly have |f |ρ � 0 ñ f � 0 and |f � g|ρ ¤ maxt|f |ρ , |g|ρu for all f, g P HKpr0, rrq.

Write fpXq �
8

°

n�0

anX
n
and gpXq �

8

°

n�0

bnX
n
. We have pfgqpXq �

8

°

n�0

cnX
n
with cn �

n
°

i�0

aibn�i for all

n P Z
¥0: we have |cn| ρ

n
¤ max

0¤i¤n
|ai| ρ

i
|bn�i|ρ

n�i
¤ |f |ρ |g|ρ. By lemma 6.1.6, the integers i0 � minti P

Z
¥0 ; |ai| ρ

i
� |f |ρu and j0 � mintj P Z

¥0 ; |bj| ρ
j
� |g|ρu are well de�ned. If i, j P Z

¥0 are suh that

i � j � i0 � j0 and pi, jq � pi0, j0q, we have |ai| ρ
i
|bj | ρ

j
  |ai0 | ρ

i0
|bj0 | ρ

j0
, hene |aibj |   |ai0bj0 |, so that

|fg|ρ ¥ |ci0�j0 | ρ
i0�j0

� |ai0 | ρ
i0
|bj0 | ρ

j0
� |f |ρ |g|ρ.

(3) If fpXq �
8

°

n�0

anX
n
belongs to HKpr0, rsq and x P Dp0, rq, the series fpxq :�

8

°

n�0

anx
n
onverges

absolutely, and |fpxq| ¤ sup
nPZ

¥0

|an| |x|
n
¤ |f |

|x| ¤ }f}r. �

Remark 6.1.9. (1) The restrition of |.|1 to KrXs is nothing but the Gauss absolute value (f de�nition

3.5.2). In what follows, we denote it by |.|Gauss or simply |.|.

(2) Assume r P |K�

|: let α P K be suh that |α| � r. The map φα : KrrXss Ñ KrrXss; fpXq ÞÑ fpαXq

indues an isometry

pHKpr0, rsq, |.|rq
�

ÑpHKpr0, rsq, |.|Gaussq.

This allows to redue some questions on HKpr0, rsq to the ase r � 1.

Lemma 6.1.10. If r P R
¡0, the normed vetor spae pHKpr0, rsq, |.|rq is Banah.

Proof. Let pfkqkPZ
¥0

be a Cauhy sequene in pHKpr0, rsq, |.|rq. For all k P Z
¥0, write fkpXq �

8

°

n�0

ak,nX
n
.

For all n, k1, k2 P Z
¥0, we have |ak2,n � ak1,n| r

n
¤ |fk2 � fk1 |r so that pak,nqkPZ

¥0
is a Cauhy sequene

in pK, |.|q. As the latter is omplete (beause K is losed in Cp), it onverges to limit an P K. Let

fpXq �
8

°

n�0

anX
n
P KrrXss.

Let ε P R
¡0: there exists C P Z

¥0 suh that k, k1 ¥ C ñ |fk1 � fk|r ¤ ε. For all n P Z
¥0, we have

thus |ak1,n � ak,n| r
n
¤ ε: passing to the limit, we have |an � ak,n| r

n
¤ ε for all n P Z

¥0, showing that

|f � fk| ¤ ε. This implies in partiular that |f |r ¤ ε� |fk|r   �8 for all k ¥ C, hene f P HKpr0, rsq, and

that pfkqkPZ
¥0

onverges to f for |.|r. �

6.2. The Weierstrass preparation theorem. The referene for this part is [4, �5.2℄. Again, K denotes

a losed sub�eld of Cp. Let r P R
¡0.

Theorem 6.2.1. (Weierstrass division theorem). Let f, g P HKpr0, rsq be suh that g � 0. There

exist uniquely determined elements q P HKpr0, rsq and h P KrXs suh that

(�)

#

degphq   wrpgq

f � qg � h

Moreover, we have |f |r � maxt|q|r |g|r , |h|ru.

Proof.  Assume r P |K�

|, the isometry φ : pHKpr0, rsq, |.|rq
�

ÑpHKpr0, rsq, |.|Gaussq allows to redue to the

ase where r � 1 (f remark 6.1.9). Note that wrpgq � w1pφpgqq �: wpgq. There exists λ P K�

suh that

|g| � |λ|: we may divide by λ to redue to the ase where |g| � 1, so that g P OKrrXss.

We �rst show that onditions (�) imply the estimate |f | � maxt|q| , |h|u. If q � 0 or h � 0, there exists

µ P K�

suh that maxt|µq| , |µh|u � 1. This implies in partiular that µf � µqg�µh P OKrrXss, whene
(43)

(43)

Here we denote with a bar the image of an element of OKrrXss in κKrrXss.
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µf � µqg � µh in κKrXs: this is the eulidean division of µf by g. As µq � 0 or µh � 0, we have µf � 0,

hene |µf | � 1, so that |µf | � maxt|µq| , |µh|u i.e. |f | � maxt|q| , |h|u. This holds obviously true when

q � 0 and h � 0.

In partiular, if qg� h � 0 with q P HKpr0, 1sq and h P KrXs of degree   wpgq, this implies that q � 0 and

h � 0, so that the map

ψ : HKpr0, 1sq �KrXs
 wpgq Ñ HKpr0, 1sq

pq, hq ÞÑ qg � h

is injetive, and an isometry (where the LHS is equipped with the max of the absolutes values). The estimate

proved above and the fat that HKpr0, 1sq and KrXs
 wpgq are Banah spaes (f lemma 6.1.10) imply that

the image of ψ is losed in HKpr0, 1sq: as we want to prove that ψ is surjetive, it is enough to hek that

this image is dense in HKpr0, 1sq.

Write gpXq �
8

°

n�0

bnX
n
. As lim

nÑ8

|bn| � 0 and |bn|   1 for all n ¡ wpgq, there exists ε P r0, 1r suh that

|bn|   ε for all n ¡ wpgq. Put mK,ε � tx P K ; |x| ¤ εu, OK,ε � OK{mK,ε and πε : OKrrXss Ñ OK,εrrXss

the anonial map. Then πεpgq is a polynomial of degree wpgq, whose dominant oe�ient is invertible, so

we an perform Eulidean divisions by πεpgq in OK,εrXs. Let f P HKpr0, 1sqzt0u: there exists µ P K
�

suh

that |µf | � 1. There exist q0, h0 P OKrXs suh that degph0q   wpgq and πεpµfq � πεpq0qπεpgq � πεph0q is

the Eulidean division of πεpµfq by πεpgq. Then we have |µf � q0g � h0| ¤ ε, i.e. |f � ψpq, hq| ¤ ε
|µ|
� ε |f |,

where q � q0
µ
and h � h0

µ
. This implies the density of the image of ψ, hene the result.

 The general ase. By uniity of pg, hq, we may use theorem 5.3.9 to redue to the ase where K � Cp.

Then |K�

| is dense in R
¡0. We an thus �nd a sequene priqiPZ

¥0
is R

¡0 that onverges to r from

below. Then we have |f |r � lim
iÑ8

|f |ri . Moreover, there are sequenes pqiqiPZ
¥0

and phiqiPZ
¥0

suh that

qi P HKpr0, risq, hi P KrXs
 wpgq and f � qig � hi for all i P Z

¥0. By uniity, we have qi � qj and hi � hj
in KrrXss whenever i   j, so that q :� qi and h :� hi does not depend of i P Z

¥0. Moreover, we have

|f |ri � maxt|q|ri |g|ri , |h|riu: passing to the limit on i gives |f |r � maxt|q|r |g|r , |h|ru, whih implies in

partiular that q P HKpr0, rsq (beause |q|r   �8). �

Theorem 6.2.2. (Weierstrass preparation theorem). Let f P HKpr0, rsqzt0u. There exist uniquely

determined P P KrXs and u P HKpr0, rsq
�

suh that

#

P is moni of degree wpfq

f � Pu.

Moreover, we have |P |r � rwrpfq
.

Proof.  Again, assume �rst that r P |K�

|: the isometry φ : pHKpr0, rsq, |.|rq
�

ÑpHKpr0, rsq, |.|Gaussq allows

to redue to the ase where r � 1 (f remark 6.1.9). Indeed, if the ase r � 1 is known, let α P K�

be

suh that |α| � r: we have fpαXq P HKpr0, 1sq, so we have fpαXq � P0pXqu0pXq with P0 P KrXs moni

of degree d :� wpfpαXqq � wpfq and u0 P HKpr0, 1sq
�

uniquely determined; then fpXq � P pXqupxq with

P pXq � αdP0pα
�1Xq P KrXs moni of degree d and upXq � α�du0pα

�1Xq P HKpr0, rsq
�

. Also, |P0| � 1

implies that |P |r � rd.

We prove the existene �rst. Resaling by an element in K�

, we may assume that |f | � 1. Put d � wpfq:

by the Weierstrass division theorem, there exist uniquely determined q P HKpr0, 1sq and h P KrXs suh

that degphq   d and Xd
� qf � h. Put P � Xd

� h P KrXs: as degphq   d, this is a moni polynomial

of degree d � wpfq, and P � qf . We also have 1 � |f | � maxt|q| |f | , |h|u, hene |h| ¤ 1: as degphq   d,

we have |P | � maxt
�

�Xd
�

� , |h|u � 1, and wpP q � d. As P � qf , this implies that |q| � 1. We have to hek

that q is a unit in HKpr0, 1sq. Reduing modulo mK gives P � qf in κKrrXss. As wpfq � wpP q � d, the

elements P and f are both polynomials of degree d. This implies that q P κ�K , so that |q � qp0q|   1 i.e.

�

�

�

q
qp0q

� 1
�

�

�

  1: the series s �
8

°

n�0

�

1� q
qp0q

�n
onverges in the Banah spae pHKpr0, 1sq, |.|q (lemma 6.1.10),

and

q
qp0q

s � 1. This shows that u :� qp0qs P HKpr0, 1sq
�

, and that uq � 1. In partiular, we have f � Pu:

this proves the existene.

The uniity follows from the uniity in Weierstrass division theorem, sine Xd
� u�1f � pXd

� P q has to

be Weierstrass division of Xd
by f , whih we know to be unique.

 The general ase follows as in the end of the proof of theorem 6.2.1 �

Corollary 6.2.3. A element in HKpr0, rsq has only �nitely many zeros, and these are algebrai over K.

Corollary 6.2.4. HKpr0, rsq is a PID.
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6.3. Newton polygon and appliations. A referene for this part is [8, Chapter I ��6-7, Chapter II

��2-3℄. Endow Cp with the p-adi valuation v : Cp Ñ QYt�8u normalized by vppq � 1. Let K be a losed

sub�eld of Cp.

De�nition 6.3.1. Let fpXq �
8

°

n�0

anX
n
P KrrXss.

 The Newton polygon NPpfq of f is the onvex hull of the set of points tpn, vpanqqunPN Y tp0,�8qu in the

plane. It is thus a union of segments of inreasing slopes and possibly one or two half-lines.

 The length of a segment is the length of its projetion onto the x-axis (this is an integer), that of a half-line

is that of the longest piee between to points of the form pn, vpanqq.

 The breaks are those i P Z
¥0 suh that the point pi, vpaiqq is a vertex of the polygon.

 f is said pure of slope λ if is has only one �nite slope, equal to λ.













 







Remark 6.3.2. In general, there might be in�nitely many slopes, but of ourse there are �nitely many when

f P KrXs.

De�nition 6.3.3. Let λ P R. The line support of slope λ for NPpfq is the line of equation y � λx� cλ with

cλ P R maximal suh that NPpfq lies above it.

Remark 6.3.4. (1) Let λ P R be suh that NPpfq has a line support of slope λ. If z P Cp is suh that

vpzq ¥ �λ (i.e. |z| ¤ pλ), we have vpanz
n
q ¥ npvpzq � λq � cλ i.e. |anz

n
| ¤

�

|z|

pλ

�n
p�cλ : this implies that f

onverges on Dp0, pλq, and that if f onverges at z, then |fpzq| ¤ p�cλ .

(2) Let λ
8

be the supremum of the slopes of NPpfq. The line support of slope λ exists if and only if λ ¤ λ
8

,

and what preedes imply that rpfq � pλ8 .

(3) Assume NPpfq has a line support of slope λ. There are two ases: if λ is a slope of NPpfq, then the

line support ontains the segment of slope λ of NPpfq. If not, there exists exatly one n P Z
¥0 suh that

vpanq � λn� cλ.













 



















 







Theorem 6.3.5. Let P P KrXs and λ P R.

(1) PλpXq :�
±

αPK
vpαq��λ
P pαq�0

pX � αq P KrXs.
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(2) The number (ounting multipliities) of roots x of P (in K ) suh that vpxq � �λ is equal to the length

of the side of NPpP q of slope λ (so it is 0 if there is no suh side).

(3) If NPpP q has more than one �nite slope, then P is reduible in KrXs.

(4) Assume that v is disrete on K, that P is moni and that NPpP q has only one side of �nite slope �

m
n

where gcdpm,nq � 1. Then P is irreduible in Krxs.

Proof. (1) Let α1, . . . , αn P K be the roots of P (ounted with multipliities). Put L � Kpα1, . . . , αnq. If

L{K is separable (whih is automati if charpKq � 0), it is Galois. The set tα P K ; P pαq � 0, vpαq � �λu

is stable under the ation of GalpL{Kq (beause v � σ � v for all σ P GalpL{Kq sine K is omplete), whih

proves that Pλ P KrXs. Assume that charpKq � p ¡ 0. If P is irreduible, we an write P pXq � QpXpe
q

where e P Z
¥0 and Q P KrXs is irreduible and separable. All roots of Q have the same valuation: all

roots of P have the same valuation. In general, write P �

r
±

i�1

Pi with P1, . . . , Pr irreduible: for eah

i P t1, . . . , ru, the roots of Pi all have the same valuation vi, and Pλ �
±

1¤i¤r
vi��λ

Pi P KrXs.

(2) As multiplying P by a non zero onstant (resp. by X) translates NPpP q vertially (resp. horizontally),

we may divide P by its monomial of lower degree and assume that a0 � 1. The roots α1, . . . , αn P K

of P are nonzero: put βi � �α�1
i for i P t1, . . . , nu. We have P pXq �

n
±

i�1

p1 � βiXq. Renumbering

if neessary, we may assume that vpβ1q ¤ � � � ¤ vpβnq. Write tvpβ1q, . . . , vpβnqu � tν1, . . . , νru with

ν1   � � �   νr, and for j P t1, . . . , ru, let nj be the number of indies i P t1, . . . , nu suh that vpβiq � νj

(so we have

r
°

j�1

nj � n). We have to prove that NPpP q has r non vertial sides, rM0M1s, . . . , rMr�1Mrs

with M0 � p0, 0q, M1 � pn1, n1ν1q, M2 � pn1 � n2, n1ν1 � n2ν2q, . . . ,Mj �

� j
°

k�1

nk,
j
°

k�1

nkνk

	

, . . .. This is

equivalent to

(�)

$

'

'

&

'

'

%

vpan1�����nj
q �

j
°

k�1

nkνk for j P t1, . . . , ru

vpaiq ¥
j
°

k�1

nkνk � pi� n1 � � � � � njqνj�1 if n1 � � � � � nj   i   n1 � � � � � nj�1

(the last ondition means that the points pi, vpaiqq lie above the segment rMjMj�1s). We have

ai �
¸

1¤k1¤���¤ki¤n

βk1 � � �βki

so that vpaiq ¥ min
1¤k1¤���¤ki¤n

vpβk1 q � � � � � vpβki q ¥ vpβ1q � � � � � vpβiq whih implies the seond ondition

in (�). For the �rst ondition, just observe that if i �
j
°

k�1

nk for some j P t1, . . . , ru, then we have

vpβk1 q � � � � � vpβkiq ¡ vpβ1q � � � � � vpβiq whenever the sequene pk1, . . . , kiq is di�erent from p1, 2, . . . , iq,

so that vpaiq � vpβ1q � � � � � vpβiq �
j
°

k�1

nk in that ase.

(3) The number of �nite slopes in NPpP q is equal to the number of non trivial fators in P �

±

λPR

Pλ.

(4) There are n roots of valuation m
n
, let α be any one of these. As gcdpm,nq � 1, we have vpKpαqq � 1

n
vpKq,

so that the rami�ation index e of the extension Kpαq{K satis�es n | e. As rKpαq : Ks ¤ n, we have

rKpαq : Ks � n � degpP q, so that P is irreduible.















�
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Remark 6.3.6. One reovers Eisenstein's irreduibility riterion as the speial ase m � 1 in (4).

Theorem 6.3.7. Assume f P HKpr0, rsq (resp. f P HKpr0, rrq) where r P R
¡0, and let λ P r�8, 0, lnpprqs

(resp. λ P r�8, lnpprqr).

(1) The number of zeros of f in Dp0, rq (resp. in Dp0, rq) with valuation �λ is equal to the length of the

segment of NPpfq of slope λ.

(2) If λ R t�8u is suh a slope, there exists a unique moni polynomial Pλ P KrXs and suh that fpXq �

PλpXqgpXq where g P HKpr0, rsq (resp. g P HKpr0, rrq) is suh that NPpgq is NPpfq without its piee of

slope λ.

Proof. Write fpXq �
8

°

n�0

anX
n
. We may of ourse assume that f � 0.

(1) This is obvious if r � �8 (the length of the orresponding half-line is preisely the multipliity of 0 as

a root of f : assume heneforth that λ P R.

 Assume �rst that λ is not a slope of NPpfq: by remark 6.3.4 (3), there exists exatly one N P Z
¥0 suh

that vpanq � λn� cλ. If α P Cp is suh that vpαq � �λ, we thus have |anα
n
| ¤ p�cλ , with equality if and

only if n � N . the strong triangle inequality thus implies that |fpαq| � p�cλ so that fpαq � 0, and f has

no zero of valuation �λ.

 Assume that λ is a slope of NPpfq: put ρ � pλ ¤ r (resp.   r) and d � wρpfq. By Weierstrass

preparation theorem (f theorem 6.2.2), there exists a unique moni polynomial Pλ P KrXs suh that

degpPλq � wρpPλq � d and uλ P HKpr0, ρsq
�

suh that f � Pλuλ. Dividing f and uλ by a
wλpfq, we may

assume that a
wλpfq � 1, so that |f |ρ � ρd � |Pλ|ρ. This implies that |uλ|ρ � 1. If we write uλ �

8

°

n�0

uλ,nX
n
,

this implies that |uλ,n| ¤ ρ�n, for all n P Z
¥0.

Write PλpXq �
d
°

i�0

αiX
i
(so that αd � 1 sine Pλ is moni). As |Pλ|ρ � ρd (f theorem 6.2.2), we have

|αi| ρ
i
¤ ρd, i.e. vpαiq ¥ λpi � dq, whih means that NPpPλq lies above the line of equation y � λpx � dq.

In fat, this line is the support line of NPpPλq of slope λ beause the point pd, 0q belongs to NPpPλq, sine

Pλ is moni of degree d.

Let δ   d be the integer suh that pδ, vpaδqq and pd, 0q are the endpoints of the segment of slope λ in NPpfq.

The length of the slope λ in NPpfq is thus d� δ, and vpaδq � λpδ � dq, i.e. |aδ| � ρd�δ. Now the equality

f � Pλuλ implies that

aδ �

δ̧

i�0

αiuλ,δ�i

so the strong triangle inequality implies that there exists i P t0, . . . , δu suh that |aδ| ¤ |αiuλ,d�i|, i.e.

ρd�δ ¤ |αi| ρ
i�δ

, hene ρd�i ¤ |αi|, i.e. vpαiq ¤ λpi � dq. As vpαiq ¥ λpi � dq by what preedes, we have

vpαiq � λpi � dq, whih means that the point pi, vpαiqq belongs to the support line of NPpPλq of slope λ.

This implies in partiular that the length of the slope λ in NPpPλq is ¥ d � i ¥ d � δ. In partiular, Pλ
hene f has at least d� δ roots of valuation �λ (f theorem 6.3.5).

As uλ P HKpr0, λsq
�

, the series uλ has no zero in Dp0, ρq: the zeros of f in Dp0, ρq are preisely those of Pλ, in

partiular there are exatly wρpfq suh zeros (ounting multipliities). Let λ1   � � �   λr be the slopes ¤ λ in

NPpfq, and for i P t1, . . . , ru, let ℓi be the length of the slope λi. Then f has degpPλq � wρpfq � ℓ1�� � ��ℓr
zeros in Dp0, ρq. Replaing λ by λi in what preedes, we know that Pλ has at least hene exatly ℓi zeros

of valuation �λi.

 This proves (1), and also that NPpPλq is NPpfq with the slopes ¡ λ removed. For (2), the existene was

already proved, and the uniity follows from that in Weierstrass preparation theorem (f theorem 6.2.2).

The statement on NPpgq follows from the fat that its slopes are exatly those of NPpfq that are ¡ λ (sine

its zeros are those of f of valuation ¡ �λ). �

Remark 6.3.8. One an reover orollary 6.2.3 from theorem 6.3.7.

6.4. Exponential and logarithm.

Notation. If n � a0 � a1p � � � � � arp
r
(with ai P t0, . . . , p � 1u for all i P t0, . . . , ru and ar � 0) is the

writing of n P Z
¥0 is base p, put spnq � a0 � � � � � ar (sum of the digits of the p-adi writing of n).

Lemma 6.4.1. If n P Z
¥0, we have vppn!q �

n�spnq

p�1
(where vp denotes the valuation on Cp normalized by

vpppq � 1).

Proof. Let k P Z
¡0. The number of integers less than n and that are divisible by pk is equal to Nk �

X

n
pk

\

i.e. Nk � ak � ak�1p� � � � � arp
r�k

if k ¤ r and 0 if k ¡ r. The number of integers less than n and whose
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p-adi valuation is equal to k is Nk �Nk�1. This implies that

vppn!q �
8

°

k�1

kpNk �Nk�1q �

8

°

k�1

kNk �
8

°

k�2

pk � 1qNk �
r
°

k�1

Nk �
r
°

k�1

�

ak � ak�1p� � � � � arp
r�k

�

�

r
°

i�0

aip1� p� � � � � pi�1
q

�

r
°

i�0

ai
pi�1
p�1

�

n�spnq

p�1
.

�

De�nition 6.4.2. The logarithm and exponential series are

lnp1�Xq �
8

°

n�0

p�1qn�1

n
Xn

and exppXq �
8

°

n�0

Xn

n!

respetively.

Lemma 6.4.3. We have equalities of formal power series lnpexppXqq � X , expplnp1�Xqq � 1�X in QrrXss,

and lnpp1�Xqp1� Y qq � lnp1�Xq � lnp1� Y q, exppX � Y q � exppXq exppY q in QrrX,Y ss.

Proof.  Note that the derivative of lnp1�Xq and exppXq are
8

°

m�0

p�Xqm �

1
1�X

and exppXq respetively.

Put fpXq � lnpexppXqq and gpXq � expplnpXqq: di�erentiating we get f 1pXq � 1 and g1pXq �
gpXq

1�X
. This

implies that fpXq � X (hene the �rst equality), and g2pXq � 0, whene gpXq � 1�X by identi�ation.

Remark 6.4.4. We have lnpexppXqq � lim
NÑ8

N
°

n�1

p�1qn�1

n
pexppXq � 1qn. As exppXq

k
� exppkXq (f below), we have

N
°

n�1

p�1qn�1

n
pexppXq � 1qn �

N
°

n�1

p�1qn�1

n

n
°

k�0

�

n
k

	

p�1qn�k exppkXq

�

N
°

n�1

n
°

k�0

8

°

m�0

p�1qk�1

n

�

n
k

	

pkXq

m

m!

�

8

°

m�0

ampNq

m!
Xm

with ampNq � �

N
°

n�1

αn,m
n

where αn,m :�
n
°

k�0

p�1qk
�

n
k

	

km
.

If n,m P Z
¥0 and PnpXq � p1�Xq

n
�

n
°

k�0

p�1qk
�

n
k

	

Xk
, we have P

pmq

n pXq �

n
°

k�m

p�1qk
�

n
k

	

DmpkqXk�m
with DmpT q � T pT�1q � � � pT�m�1q.

If m   n, we have
n
°

k�m

p�1qk
�

n
k

	

Dmpkq � P
pmq

m p1q � 0. With m � 0, this shows that αn,0 �
n
°

k�0

p�1qk
�

n
k

	

� 0, and a straightforward indution

implies that αn,m (when m   n). This implies that ampNq � am :� �

m
°

n�1

1
n

n
°

k�0

p�1qk
�

n
k

	

km
whenever N ¥ m, in partiular a0 � 0. Passing

to the limit as N Ñ �8, we get lnpexppxqq �
8

°

m�1

am
m!

xm
.

Assume m ¡ 0: we have �am �

m
°

k�1

p�1qkkm
m
°

n�k

1
n

�

n
k

	

. As

k
n

�

n
k

	

�

�

n�1
k�1

	

and

m
°

n�k

�

n�1
k�1

	

is the oe�ient of Xk�1
in the polynomial

m
°

n�k

p1�Xq

n�1
�

p1�Xq

m
�p1�Xq

k�1

X
, i.e. that of Xk

in p1�Xq

m
�p1�Xq

k�1
, that is

�

m
k

	

, we have �am �

m
°

k�1

p�1qk
�

m
k

	

km�1
� αm,m�1

if m ¡ 1. As we have seen above, we have αm,m�1 � 0, so am � 0 when m ¡ 1. On the other hand, we have a1 � 1, showing lnpexppXqq � X.

 If N P Z
¡0, put uNpxq �

N
°

n�0

Xn

n!
. We have

u2N pX � Y q �
2N
°

n�0

pX�Y qn

n!
�

2N
°

n�0

n
°

k�0

XkY n�k

k!pn�kq!
�

°

j,kPZ
¥0

j�k¤2N

XjY k

j!k!

and uN pXquNpY q �
°

0¤j,k¤N

XjY k

j!k!
: this implies that u2NpX � Y q � uN pXquNpY q �

°

j,kPZ
¥0

j�k¤2N
maxpj,kq¡N

XjY k

j!k!
.

Passing to the limit as N Ñ8 gives exppX � Y q � exppXq exppY q in QrrX,Y ss. This implies in partiular

that exppXqk � exppkXq in QrrXss for all k P Z.

 By what preedes, we have expplnp1�Xq� lnp1�Y qq � expplnp1�Xqq expplnp1�Y qq � p1�Xqp1�Y q:

applying ln gives lnpp1�Xqp1� Y qq � lnp1�Xq � lnp1� Y q in QrrX,Y ss.

Remark 6.4.5. These equalities also follow from the orresponding equality of power series over the omplex numbers.

�

Proposition 6.4.6. (1) The radius of onvergene of ln (resp. exp) is 1 (resp. p�
1

p�1
). Moreover, we have

|lnp1� xq|p � |x|p and |exppxq � 1|p � |x|p for all x P D
�

0, p�
1

p�1

�

.
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(2) We have lnpp1�xqp1�yqq � lnp1�xq� lnp1�yq (resp. exppx�yq � exppxq exppyq) for all x, y P Dp0, 1q

(resp. x, y P D
�

1, p�
1

p�1

�

).

(3) log and exp provide inverse group isomorphisms

�

D
�

1, p�
1

p�1

�

, .
� ln // �

D
�

0, p�
1

p�1

�

,�
�

exp
oo

.

Proof.  Let x P Cp be suh that |x|p   1. If n P Z
¡0, we have

1
|n|p

� pvppnq | n: this implies that

�

�

xn

n

�

�

p
¤ n |x|

n
p , whene lim

nÑ8

�

�

xn

n

�

�

p
� 0, so that the series

8

°

n�0

p�1qn�1

n
xn onverges. As it obviously diverges

at x � 1 (beause |n|p takes arbitrary small values), the radius of onvergene of ln is 1.

Assume that |x|p   p�
1

p�1
. If n P t2, . . . , n � 1u, we have |n|p � 1 whene

�

�

xn

n

�

�

p
� |x|

n
p   |x|p. If n ¥ p,

then

n�1
lnpnq

¥

p�1
lnppq

(beause the map f : t ÞÑ t�1
lnptq

extended by ontinuity at t � 1 by fp1q � 1, is stritly

inreasing on r1,�8r as a trivial omputation shows). This implies that

vp
�

xn

n

�

� vppxq � pn� 1qvppxq � vppnq ¡ vppxq �
n�1
p�1

�

lnpnq

lnppq
¥ vppxq

(sine vppxq ¡
1
p�1

) so that vp
�

xn

n

�

¡ vppxq as well. This implies that vpplnp1 � xqq � vppxq, i.e.

|lnp1� xq|p � |x|p.

 The series de�ning exppxq onverges if and only if lim
nÑ8

vp
�

xn

n!

�

� �8. As

vp
�

xn

n!

�

� nvppxq � vppn!q � n
�

vppxq �
1
p�1

�

�

spnq

p�1

(f lemma 6.4.1), this is equivalent to vppxq �
1
p�1

¡ 0, i.e. |x|p   p�
1

p�1
(observe that sppkq � 1 for all

k P Z
¥0).

Assume that |x|p   p�
1

p�1
, i.e. vppxq ¡

1
p�1

: if n P Z
¥2, we have

pn� 1qvppxq ¡
n�1
p�1

¥

n�spnq

p�1
� vppn!q,

i.e. vp
�

xn

n!

�

� nvppxq � vppn!q ¡ vppxq: we have vp

�

8

°

n�2

xn

n!

	

¡ vppxq, so that vppexppxq � 1q � vppxq, i.e.

|exppxq � 1|p � |x|p.

(2) & (3) follow from lemma 6.4.3, noting that we have absolute onvergene of the series involved. �

Remark 6.4.7. (1) In ontrast with the omplex analyti ase, the radius of onvergene of ln is stritly

larger that that of exp.

(2) Being ontinuous (f orollary 6.1.4) the inverse isomorphisms of proposition 6.4.6 are also homeomor-

phisms.

Proposition 6.4.8. There exists a unique ontinuous map

ln : C�

p Ñ Cp

having the following properties:

(i) p�x, y P C�

p q lnpxyq � lnpxq � lnpyq;

(ii) p�x P Dp1, 1qq lnpxq �
8

°

n�1

p�1qn�1

n
px� 1qn;

(iii) lnppq � 0.

Proof. We have the exat sequene of abelian groups:

t1u Ñ O�

Cp
Ñ C�

p

vp
ÝÑ QÑ 0

The hoie of a ompatible system

�

ppvq
�

vPQ
in C�

p (i.e. suh that pp1q � p and ppv1�v2q � ppv1qppv2q for

all v1, v2 P Q) provides a setion Q Ñ O
�

Cp
of vp. To onstrut suh a system, one an proeed as follows.

Let ppnqnPZ
¡0
P CZ

¡0

p be suh that p1 � p and pn�1 is a root of Xn�1
� pn in Cp for all n P Z

¡0. Then

vpppnq �
1
n!
, and if v P Q, the element ppvq :� pn!vn does not depend on the hoie of n P Z

¡0 suh that

n!v P Z.

This implies in partiular that there is a (non anonial) isomorphism:

O�

Cp
�Q

�

ÑC�

p

given by pu, vq ÞÑ uppvq. Similarly, we have the exat sequene of abelian groups:

t1u Ñ 1�mCp
Ñ O�

Cp
Ñ F

�

p Ñ t1u
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(the last map being the anonial projetion). The Teihmüller map (f de�nition 3.8.20) provides a setion

of the latter: there is a anonial isomorphism

p1�mCp
q �F

�

p
�

ÑO�

Cp

given by p1� x, ζq ÞÑ p1� xqrζs. Put together, this provides an isomorphism

p1�mCp
q �F

�

p �Q
�

ÑC�

p

given by p1� x, ζ, vq ÞÑ p1� xqrζsppvq.

 Assume the map ln : C�

p Ñ Cp exists. Let x P mCp
, ζ P F

�

p and v P Q. There exists f P Z
¡0 suh that

ζ
pf�1

� 1: as the map r.s is multipliative, we have rζsp
f
�1

� 1, so that ppf � 1q ln
�

rζs
�

� lnp1q � 0 (by

property (i)), so ln
�

rζs
�

� 0. If n P Z
¡0 is suh that n!v P Z, we have n!v ln

�

ppvq
�

� ln
�

ppvqn!v
�

� 0 by

properties (i) and (iii): properties (i) and (ii) imply that ln
�

p1�xqrζsppvq
�

� lnp1�xq �
8

°

n�1

p�1qn�1

n
px�1qn.

This shows the uniity of the map ln.

 The omposite of the isomorphism C�

p
�

Ñp1 � mCp
q � F

�

p � Q with the �rst projetion, followed with

the group homomorphism ln : Dp1, 1q Ñ Cp (f proposition 6.4.6 (3)) provides a group homomorphism

C�

p Ñ Cp having properties (i), (ii) and (iii).

Let z P C�

p . If z
1

P D
�

z, p�
1

p�1
|z|p

�

, we have

z1

z
� 1 P D

�

0, p�
1

p�1

�

, so that

�

�

�

ln
�

1� z1

z
� 1

�

�

�

�

p
�

�

�

�

z1

z
� 1

�

�

�

p
by

proposition 6.4.6 (1), i.e. |lnpz1q � lnpzq|p �
|

z1�z
|

p

|z|p
: this shows the ontinuity of ln. �

De�nition 6.4.9. If n P Z
¥0, we put

�

a
n

�

�

apa�1q���pa�n�1q

n!
P Qras. Evaluated at an integer, this oinides

with the usual binomial oe�ient. We also de�ne

Bpa,Xq �
8

°

n�0

�

a
n

�

Xn
P Qrra,Xss.

Lemma 6.4.10. Let x P mCp
. The map Z

¥0 Ñ O�

Cp
;m ÞÑ p1�xqm is ontinuous (for the topology de�ned

by |.|p on both sides). In partiular, it extends by ontinuity into a map Zp Ñ O�

Cp
; a ÞÑ p1� xqa.

Proof. As p1 � xqm P 1 � mCp
for all m P Z

¥0, it is enough to hek that lim
kÑ8

p1 � xqp
k

� 1 in Cp: this

follows from p1� xqp
k

� expppk lnp1� xqq and
�

�expppk lnp1� xqq � 1
�

�

p
�

�

�pk lnp1� xq
�

�

p
�

1
pk

for k ¥ 1 (f

proposition 6.4.6 (1) & (2)). �

Proposition 6.4.11. (1) Assume a P Cp. The radius of onvergene of the series Bpa,Xq is
p
�

1
p�1

|a|p
if |a|p ¡ 1

and at least p�
1

p�1
if |a|p ¤ 1.

(2) If a P Zp, then Bpa,Xq P ZprrXss so the radius of onvergene of Bpa,Xq is at least 1, and we have

Bpa, xq � p1� xqa for all x P mCp
.

(3) Assume that |x|p   p�
1

p�1 min
 

1, 1
|a|p

(

. Then Bpa, xq � exppa lnp1� xqq. In partiular, if m P Z
¥0 and

x P D
�

0, p�m�
1

p�1

�

, we have B
�

1
pm
, x
�pm

� 1� x, i.e. B
�

1
pm
, x
�

is a pm-th root of 1� x.

(4) We have Bpa,Xq � exppa lnp1�Xqq in Qrra,Xss. In partiular, Bpa1, XqBpa2, Xq � Bpa1 � a2, Xq in

Qrra1, a2, Xss, and Bpa,Xqp � Bppa,Xq in Qrra,Xss.

Proof. (1)  Assume |a|p ¡ 1: we have |a� k|p � |a|p for all k P Z, so that

�

�

�

a
n

�

�

�

p
�

|a|np
|n!|p

: the omputation

of proposition 6.4.6 (1) implies that the radius of onvergene of Bpa,Xq is p
�

1
p�1

|a|p
in this ase.

 Assume |a|p ¤ 1: we have |a� k|p ¤ |a|p for all k P Z, so that
�

�

�

a
n

�

�

�

p
¤

1
|n!|p

, and the radius of onvergene

of Bpa,Xq is equal to that of exppXq, i.e. p�
1

p�1
.

(2)  Let n P Z
¥0. The map a ÞÑ

�

a
n

�

is polynomial, hene ontinuous on Zp. It has values in Z � Zp on Z
¥0:

as Z
¥0 is dense in Zp and Zp is losed, we have

�

a
n

�

P Zp for all a P Zp. This shows that Bpa,Xq P ZprrXss,

implying that the radius of onvergene of Bpa,Xq is at least 1 (note that it might be larger: it is in�nite

when a P Z
¥0 for instane).

 Fix x P mCp
. The maps a ÞÑ

�

a
n

�

being ontinuous and bounded by 1 on Zp, the series of funtions

a ÞÑ
�

a
n

�

xn onverges normally on Zp: its sum a ÞÑ Bpa, xq is ontinuous on Zp. As a ÞÑ p1 � xqa is

ontinuous as well (f (1)), the equality p1� xqa � Bpa, xq holds for all a P Zp sine it holds when a P Z
¥0

(binomial expansion), and Z
¥0 is dense in Zp.
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(3)  If |x|p   p�
1

p�1 min
 

1, 1
|a|p

(

, both series Bpa, xq and exppa lnp1� xqq onverge absolutely in Cp: it is

enough to hek the equality in Qrra,Xss. This follows from the equality when a P Zp and x P mCp
.

 By proposition 6.4.6, and (2), we have B
�

1
pm
, x
�pm

� exp
�

1
pm

lnp1�xq
�pm

� expplnp1�xqq � 1�x when

x P D
�

0, p�m�
1

p�1

�

.

(4) This follows from (3) and lemma 6.4.3. �

6.4.12. The Artin-Hasse exponential. In ontrast with the omplex analyti ase, the p-adi exponential

formal series has a small radius of onvergene. The Artin-Hasse exponential map is a modi�ed exponential

map whose radius of onvergene is 1.

De�nition 6.4.13. The Artin-Hasse exponential map is

AHpXq � exp
�

X �

Xp

p
�

Xp2

p2
� � � �

�

P QrrXss.

Lemma 6.4.14. AHpXq �
±

nPZ
¡0

p∤n

p1�Xn
q

�

µpnq

n
in QrrXss (where µ : Z

¡0 Ñ t�1, 0, 1u is Möbius map).

Proof. By lemma 6.4.3, we have

log
�

±

nPZ
¡0

p∤n

p1�Xn
q

�

µpnq

n

	

�

°

nPZ
¡0

p∤n

�

µpnq

n
logp1�Xn

q �

°

nPZ
¡0

p∤n

µpnq

n

8

°

m�1

Xnm

m

�

8

°

k�1

Xk

k

°

n|k
p∤n

µpnq �
8

°

i�0

Xpi

pi

sine

°

n|k
p∤n

µpnq �
°

n|k{pvppkq
µpnq �

#

1 if k � pvppkq

0 otherwise

. �

Lemma 6.4.15. Assume p ∤ n and fpXq � 1 �
8

°

i�1

aiX
i
P QrrXss satis�es fpXqn P 1 � X Z

ppqrrXss, then

fpXq P 1�X Z
ppqrrXss.

Proof. Write fpXqn � 1�
8

°

i�1

biX
i
: we show that ai P Z

ppq by indution on i P Z
¡0. Assume aj P Z

ppq for

all j   i. We have bi � nai �
°

j1�����jn�i
pDk¤nq jk n

aj1 � � �ajn P nai � Z
ppq, hene nai P Z

ppq so that ai P Z
ppq sine

p ∤ n. �

Proposition 6.4.16. AHpXq P Z
ppqrrXss, so the radius of onvergene of AHpXq is at least 1.

Proof. Follows from lemmas 6.4.14 & 6.4.15. �

6.4.17. An extra useful series. If N P Z
¡0, we have

BpX,Y q
N
±

i�1

B
�

Xpi
�Xpi�1

pi
, Y p

i�

�

�

8

°

j�0

XpX � 1q � � � pX � j � 1qY
j

j!

	 N
±

i�1

�

8

°

j�0

Xpi
�Xpi�1

pi

�

Xpi
�Xpi�1

pi
� 1q � � �

�

Xpi
�Xpi�1

pi
� j � 1

�

Y jpi

j!

	

.

This is an element of QrrX,Y ss. The fators ontributing to the oe�ient of the monomial XnY m are

BpX,Y q and those B
�

Xpi
�Xpi�1

pi
, Y p

i�

for whih pi ¤ m (reall that the onstant term in Bpa, T q is 1): this

oe�ient does not depend on N ¥ m. This implies that the following de�nition makes sense:

De�nition 6.4.18. We de�ne Dwork's series by

F pX,Y q � BpX,Y q
8

±

i�1

B
�

Xpi
�Xpi�1

pi
, Y p

i�

P QrrX,Y ss.

Remark 6.4.19. (1) We thus an think of F pX,Y q as p1� Y qXp1� Y pq
Xp

�X
p

p1� Y p
2

q

Xp2
�Xp

p2
� � � .

(2) The monomials XnY m that appear in the fators BpX,Y q and B
�

Xpn
�Xpn�1

pn
, Y p

n�

satisfy n ¤ m: the

same holds for F , so we an write F pX,Y q �
°

0¤n¤m

an,mX
nY m P QrrX,Y ss.
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Proposition 6.4.20. We have F pX,Y q P ZprrX,Y ss.

Lemma 6.4.21. (Dwork) Let fpXq P 1 �XQprrXss. Then we have fpXq P 1 �X ZprrXss if and only if

fpXp
q

fpXqp
P 1� pX ZprrXss.

Proof.  Assume fpXq P 1 � X ZprrXss: we an write fpXq � 1 � XgpXq with gpXq P ZprrXss. We have

fpXqp � p1 �XgpXqqp � 1 � XpgpXp
q mod pX ZprrXss: as fpXq P ZprrXss

�

, we dedue that

fpXp
q

fpXqp
� 1

mod pX ZprrXss.

 Conversely, assume that

fpXp
q

fpXqp
� 1 mod pX ZprrXss. Write fpXq �

8

°

n�0

anX
n
and

fpXp
q

fpXqp
�

8

°

n�0

bnX
n
,

with panqnPZ
¡0
P QZ

¡0

p and pbnqnPZ
¡0
P pZZ

¡0

p (and a0 � b0 � 1). We show that an P Zp by indution on

n, starting with a0 � 1. Assume that ak P Zp for all k   n, so that hpXq :�
n�1
°

k�0

akX
k
P ZprXs. We have

fpXq � hpXq � anX
n mod Xn�1 QprrXss, hene

fpXqp � phpXq � anX
n
q

p mod Xn�1 QprrXss � hpXqp � phpXqanX
n mod Xn�1QprrXss

� hpXqp � panX
n mod Xn�1QprrXss

hene fpXqp
�

8

°

m�0

bmX
m
	

� hpXqp
� n

°

m�0

bmX
m
	

�panX
n mod Xn�1QprrXss (sine b0 � 1). On the other

hand, we have hpXqp �
n�1
°

k�0

akX
pk mod pZprXs (beause hpXq P ZprXs) and bm P pZp for m P Z

¡0: this

implies that the oe�ient of Xn
in the produt belongs to pan � an{p � pZp if p | n and to pan � pZp

otherwise. As this oe�ient is an{p if p | n and 0 otherwise, we have an P Zp in all ases. �

Similarly, we have:

Lemma 6.4.22. If fpX,Y q P 1�XQprrX,Y ss�Y QprrX,Y ss, then fpX,Y q P 1�X ZprrX,Y ss�Y ZprrX,Y ss

if and only if

fpXp,Y p
q

fpX,Y qp
P 1� pX ZprrX,Y ss � pY ZprrX,Y ss.

Proof of proposition 6.4.20. It is enough to apply lemma 6.4.22 to F pX,Y q. We have

F pXp, Y pq � BpXp, Y pq
8

±

i�1

B
�

Xpi�1
�Xpi

pi
, Y p

i�1�

� BpXp, Y pq
8

±

i�2

B
�

Xpi
�Xpi�1

pi
, Y p

i�p

so that

F pXp,Y p
q

F pX,Y qp
�

BpXp,Y p
q

BpX,Y qpB

�

Xp
�X
p

,Y p

�p �
BpXp,Y p

q

BpX,Y qpBpXp
�X,Y p

q

�

BpX,Y p
q

BpX,Y qp

by proposition 6.4.11 (4). By proposition 6.4.11 (4) again, we have

BpX,Y p
q

BpX,Y qp
�

exppX lnp1�Y p
qq

expppX lnp1�Y qq
� exp

�

X ln
�

1�Y p

p1�Y qp

��

By lemma 6.4.21, we have

1�Y p

p1�Y qp
P 1� pY ZprrY ss, hene ln

�

1�Y p

p1�Y qp

�

P pY ZprrY ss, so that

exp
�

X ln
�

1�Y p

p1�Y qp

��

P 1� pX ZprrX,Y ss � pY ZprrX,Y ss.

�

6.5. Rationality riteria. A referene for this part is [1, Chapitre 5℄.

6.5.1. The algebrai riterion. Let K be a �eld, a � panqnPZ
¥0
P KZ

¥0
and fpXq �

8

°

n�0

anX
n
P KrrXss.

If k, n P Z
¥0, the Hankel matrix (resp. the Hankel determinant) of rank n and order k is the matrix

M
pkq
n paq � pan�i�jq0¤i,j¤k P Mk�1pKq (resp. D

pkq
n paq � det

�

M
pkq
n paq

�

).

Lemma 6.5.2. If k P Z
¡0 and n P Z

¥0, we have

Dpkq
n paqD

pk�2q
n�2 paq � D

pk�1q
n�2 paqDpk�1q

n paq �D
pk�1q
n�1 paq2

(with the onvention D
p�1q
n paq � 1).

Proof. This is a diret onsequene of lemma 6.5.3 below. �

Lemma 6.5.3. (Sylvester relations). Let R be a ommutative ring and n P Z
¡0. If A P Mn�1pRq,

let

rA P Mn�1pRq denote the matrix obtained from A by removing the extremal rows and olumns. Write

compAq � pAi,jq0¤i,j¤n. Then detpAq det
�

rA
�

� A0,0An,n �A0,nAn,0.



Number theory 137

Proof. We may assume R � ZrXi,js0¤i,j¤n and A � pXi,jq0¤i,j¤n. Let B � pbi,jq0¤i,j¤n P Mn�1pAq suh

that bi,j �Mi,j if i P t0, nu and j P t0, . . . , nu, and bi,j � δi,j if i P t1, . . . , n� 1u and j P t0, . . . , nu:

B �

�

�

A0,0 A0,1 ��� A0,n�1 A0,n

0 1 0 ��� 0
...

. . .
. . .

. . .
...

0 ��� 0 1 0
An,0 An,1 ��� An,n�1 An,n

�



By de�nition of oe�ients Ai,j , we have:

BA �

�

�

detpAq 0 ��� ��� 0
� �

... rA
...

� �

0 ��� ��� 0 detpAq

�



whih implies detpAq2 det
�

rA
�

� detpAq detpBq � detpAq
�

A0,0An,n � A0,nAn,0
�

: we dedue the equality

detpAq det
�

rA
�

� A0,0An,n �A0,nAn,0 by dividing by detpAq (whih is liit in the integral domain R). �

Theorem 6.5.4. We have fpXq P KpXq if and only if there exist n0, k P Z
¥0 suh that D

pkq
n paq � 0 for all

n P Z
¥n0

.

Proof.  Assume fpXq P KpXq: there exist P pXq, QpXq P KrXs with QpXq � 0 suh that fpXq �
P pXq

QpXq
.

Write QpXq � Xk
� b1X

k�1
� � � � � bk �

k
°

ℓ�0

bk�ℓX
ℓ
(with b0 � 1). If m ¥ m0 :� maxtdegpP q, degpQqu,

the oe�ient of Xm
in QpXqfpXq � P pXq is

k
°

ℓ�0

am�ℓbk�ℓ � 0, i.e.
k
°

i�0

am�k�ibi � 0 (take i � k � ℓ). If

n ¥ n0 � m0 � k and j P t0, . . . , ku, we have m :� n� k � j ¥ m0, so that

k
°

i�0

an�i�jbi � 0, showing that

M
pkq
n paqX � 0 with X �

t
pb0, . . . , bkq P K

k�1
zt0u: we have D

pkq
n paq � 0 for all n ¥ n0.

 Conversely, assume there exist n0, k P Z
¥0 suh that D

pkq
n paq � 0 for all n P Z

¥n0
. If a is stationary,

then fpXq in rational: assume heneforth that a is not stationary. Let h be the smallest integer suh

that D
phq
n paq � 0 for n " 0. We have k ¡ 0 sine a is not stationary. Let n0 P Z

¥0 be the smallest

integer suh that D
phq
n paq � 0 for n ¥ n0. Lemma 6.5.2 implies that D

ph�1q
n�2 paqD

ph�1q
n paq � D

ph�1q
n�1 paq2

for all n ¥ n0. In partiular, if m P Z is suh that m ¥ n0 and D
ph�1q
m paq � 0, then D

ph�1q
n paq � 0

for all n ¥ m, ontraditing the minimality of h. This implies that D
ph�1q
n paq � 0 for all n ¥ n0. This

means that for n ¥ n0, the rank of M
phq
n paq is h: the K-vetor spae Ker

�

M
phq
n paq

�

has dimension 1.

Also, it oinides with the kernel of the matrix obtained from M
phq
n paq by removing its �rst or last row.

This implies that Ker
�

M
phq
n�1paq

�

� Ker
�

M
phq
n paq

�

, i.e. that Ker
�

M
phq
n paq

�

does not depend of n ¥ n0. If

X �

t
pbh, . . . , b0q P Ker

�

M
phq
n paq

�

and QpXq �
k
°

ℓ�0

bh�ℓX
ℓ
then QpXq � 0 and QpXqfpXq P KrXs, so

that

(44) fpXq P KpXq. �

Corollary 6.5.5. We have fpXq P KpXq if and only if there exist n0 P Z
¥0 suh that D

pkq
0 paq � 0 for all

k P Z
¥n0

.

Proof.  Assume fpXq P KpXq. Let A
pkq
n � pan, an�1, . . . , an�kq; then D

pkq
0 � detpA

pkq
0 , . . . , A

pkq

k q. If

QpXq � Xh
� b1X

h�1
� � � � � bh �

h
°

ℓ�0

bh�ℓX
ℓ
(with b0 � 1) is suh that QpXqfpXq P KrXs, we have

h
°

ℓ�0

bℓA
pkq

k�ℓ � 0 for k " 0, implying that the lines A
pkq

k�h, . . . , A
pkq
K of M

pkq
0 paq are linearly dependent, hene

D
pkq
0 paq � 0.

 Conversely, assume that D
pkq
0 paq � 0 for k " 0. By lemma 6.5.2, we have

Dpk�1q
n paqD

pk�2q
n�2 paq � D

pkq
n�2paqD

pkq
n paq �D

pkq
n�1paq

2

IfD
pkq
n paq � 0 for all k ¥ n0, thenD

pk�1q
n paq � D

pkq
n paq � 0 soD

pkq
n�1paq � 0 for all k ¥ n0. A straightforward

indution thus implies that D
pkq
n paq � 0 for all k ¥ n0 and all n P Z

¥0: by theorem 6.5.4, we have

fpXq P KpXq. �

(44)

In fat bh � 0, otherwise we would have M
ph�1q

n�2 paqY � 0 with X �

t
pbh�1, . . . , b0q P Kh

zt0u, ontraditing D
ph�1q

n�1 paq � 0.

This shows that degpQq � h.
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6.5.6. The analyti riterion. As usual, let p be a prime number.

Lemma 6.5.7. Let x P Z. If |x| |x|p   1, we have x � 0.

Proof. Assume x � 0, we an write x � pvppxqy with y P Z zt0u prime to p: we have |x| |x|p � |y| ¥ 1. �

Theorem 6.5.8. Let fpXq �
8

°

n�0

anX
n
P ZrrXss. Assume that f de�nes an holomorphi funtion on the dis

tz P C ; |z|   Ru and that f de�nes a meromorphi funtion (i.e. quotient of two holomorphi funtions)

on the dis tx P Cp ; |x|p   ru. If Rr ¡ 1, then f is rational.

Proof. We apply theorem 6.5.4 with K � Q.

 Making R a little smaller, we may assume that lim
nÑ8

|an|R
n
� 0 (this follows from Cauhy inequalities):

there exists N P Z
¥0 suh that |an| ¤ R�n

for all n ¥ N . If n ¥ N and 0 ¤ i, j ¤ k, we have

|an�i�j | ¤ R�pn�i�jq
: Hadamard's inequality implies that

�

�

�

Dpkq
n paq

�

�

�

2

¤

k
¹

j�0

�

ķ

i�0

|an�i�j |
2
	

¤

k
¹

j�0

�

ķ

i�0

1�R�2
�����R�2k

R2pn�jq

	

¤

C2
k

R2pk�1qn

hene

�

�

�

D
pkq
n paq

�

�

�

¤

Ck

Rpk�1qn , where Ck �

b

p1�R�2
�����R�2k

q

k�1

Rkpk�1q P R
¡0.

 Making r a little smaller, there exist g, h P HQp
pr0, rsq suh that g � hf . The order of vanishing of h is

less that that of g: dividing g and h by the appropriate power of X , we may assume that hp0q � 0. By

Weierstrass preparation theorem (f theorem 6.2.2), there exist P P QprXs and u P HQp
pr0, rsq� suh that

h � Pu. Replaing h by P and g by gu�1
, we may assume that h is a polynomial. Dividing g and h by

hp0q, we an further assume that hp0q � 1: write hpXq �
d
°

i�0

αiX
i
(so α0 � 1). Write gpXq �

8

°

n�0

bnX
n
. As

g P HQp
pr0, rsq, we have lim

nÑ8

|bn|p r
n
� 0: making N larger if neessary, we may assume that |bn|p ¤ r�n

for all n ¥ N . On the other hand, the equality g � hf implies that bm�d � am�d�α1am�d�1� � � � �αdam

for all m P Z
¥0. Assume k ¥ d: in the determinant D

pkq
n paq, we may replae an�i�j by bn�i�j whenever

j ¥ d. If n ¥ N , i P t0, . . . , ku and j P td, . . . , ku, we have

|bn�i�j |p ¤

#

r�pn�dq if r ¥ 1

r�pn�2kq
if r   1

.

As |am|p ¤ 1 sine am P Z for all m P Z
¥0, the strong triangle inequality implies that

�

�

�

Dpkq
n paq

�

�

�

p
¤

#

r�pk�1�dqpn�dq
if r ¥ 1

r�pk�1�dqpn�2kq
if r   1

.

In any ase, we have

�

�

�

D
pkq
n paq

�

�

�

p
¤

ck
rpk�1�dqn , with ck � max

 

r�pk�1�dqd, r�2pk�1�dqk
(

P R
¡0.

 Assuming that k ¥ d, we have thus
�

�

�

Dpkq
n paq

�

�

�

�

�

�

Dpkq
n paq

�

�

�

p
¤

Ckck

Rpk�1qnrpk�1�dqn
.

Now hoose k ¥ d large enough so that Rk�1rk�1�d
¡ 1 (this is possible beause Rr ¡ 1): then we have

lim
nÑ8

Ckck
Rpk�1qnrpk�1�dqn � 0. Making N larger if neessary, we have

�

�

�

D
pkq
n paq

�

�

�

�

�

�

D
pkq
n paq

�

�

�

p
  1 for all n ¥ N . As

D
pkq
n paq P Z, lemma 6.5.8 implies that D

pkq
n paq � 0 for all n ¥ N . �

6.6. Exerises.

Exerise 6.6.1. (Hensel Lemma). Let pK, |.|q a omplete non arhimedean valued �eld, P P OKrXs, and

P P κKrXs its redution modulo mK . Assume that there exist f, g P κKrXs suh that

(i) P � fg;

(ii) g is moni;

(iii) gcdpf, gq � 1.

Show that there exist F,G P OKrXs suh that:

(i) P � FG;

(ii) G is moni;

(iii) F � f and G � g.
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Exerise 6.6.2. Show that the dis of onvergene of a power series fpXq �
8

°

n�0

anX
n
is ontained in that

of its derivative f 1pXq �
8

°

n�1

nanX
n�1

. Give an example where the regions of onvergene are not the same.

Exerise 6.6.3. Find an example of an in�nite sum of nonzero rationals whih onverges with respet to

|.|p for every prime p and with respet to |.|
8

.

Exerise 6.6.4. Let K be a losed sub�eld of Cp and fpXq �
8

°

n�0

anX
n
P HKpr0, 1rq.

(1) Let ρ P r0, 1rXQ. Show that sup
|z|�ρ

|fpzq| � }f}ρ :� sup
nPZ

¥0

|an|ρ
n
(in partiular the maximum modulus

priniple holds: we have sup
|z|¤ρ

|fpzq| � }f}ρ).

(2) Show that the map f is bounded (resp. bounded by 1) if and only if fpXq P QpbZp
OK rrXss (resp.

fpXq P OKrrXss).

(3) Show that the inlusions HKpr0, 1sq � QpbZp
OKrrXss � HKpr0, 1rq are strit.

Exerise 6.6.5. Let K be a losed sub�eld of Cp and 0   r1 ¤ r2. Is the inlusion

ι : HKpr0, r2sq Ñ HKpr0, r1sq

ontinuous for the norms |.|r2 and |.|r1?

Exerise 6.6.6. LetK be a losed sub�eld of Cp and r P R
¡0. Show that KrXs is dense in pHKpr0, rsq, |.|rq.

Exerise 6.6.7. Find a loally analyti map that is not globally a power series on Cp.

Exerise 6.6.8. Let K be a losed sub�eld of Cp, r P R
¡0 and f P KrrXss.

(1) Show that if r1 ¤ r2, then wr1pfq ¤ wr2pfq.

(2) Assume f P HKpr0, rsq and let r1 ¤ r2 ¤ r. For i P t1, 2u, let f � Piui with Pi P KrXs moni of degree

wripfq and ui P HKpr0, risq
�

be Weierstrass deomposition of f . Show that P1 divides P2 in KrXs.

Exerise 6.6.9. Let fpXq � 1� a1X � a2X
2
� � � � P CprrXss de�ning an entire funtion on Cp. Show that

the reiproals of the zeros of f form a sequene pαiqiPZ
¡0

that onverges to 0, and that

fpXq �

8

¹

i�1

p1� αiXq

(for the metri de�ned by |.|r for any r P R
¡0).

Exerise 6.6.10. (1) Draw the Newton polygon of fpXq � lnp1�Xq �
8

°

n�1

p�1qn�1

n
Xn

. What is its radius

of onvergene?

(2) Show that lim
nÑ8

1
pn

�

pn

k

�

�

p�1qk�1

k
, and that fpXq � lim

nÑ8

p1�Xqp
n
�1

pn
.

(3) For n P Z
¥0, put QnpXq � Φpn�1

p1 � Xq �
p1�Xqp

n�1
�1

p1�Xqp
n
�1

P ZrXs. Show that fpXq � X
8

±

n�0

QnpXq

p
.

What are the roots of f in the open dis of onvergene?

Exerise 6.6.11. (Weierstrass preparation theorem). Let pK, |.|q be a omplete disrete valued �eld.

Fix a uniformizer π. If fpXq �
8

°

n�0

anX
n
P OKrrXss, let wpfq � inftn P Z

¥0 ; an P O�

Ku P Z
¥0Yt�8u, so

that f P πOKrrXss � wpfq � �8.

(1) Chek that wpfq � 0� f P OKrrXss
�

, and that wpfgq � wpfq � wpgq.

(2) Let f, g P OKrrXss be suh that d :� wpgq   �8. Show that there exist unique q P OK rrXss and

r P OKrXs suh that:

#

degprq   d

f � qf � r

(Weierstrass division theorem).
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A polynomial P P OKrXs is alled distinguished if P pXq � Xd
� ad�1X

d�1
� � � � � a0 with ai P mK for

all i P t0, . . . , d� 1u. By the theory of Newton polygons, a distinguished polynomial P has exatly degpP q

roots in mK .

(3) Let f P OKrrXss be suh that d :� wpfq   �8. There exists a unique distinguished polynomial P of

degree d and a unique u P OK rrXss
�

suh that f � Pu.

(4) Show that if f P K bOK
OK rrXsszt0u, there exist a unique µ P Z, a unique distinguished polynomial P

and u P OKrrXss
�

suh that f � πµPu. In partiular, f has exatly wpπ�µfq zeros in mK .

(5) Show that K bOK
OKrrXss is a PID.

(6) Assume K � Cp. Show that f P HKpr0, 1rqzt0u is bounded if and only if f has �nitely many zeros in

Dp0, 1q.

(7) Construt a bounded element in HCp
pr0, 1sq having in�nitely many zeros in Dp0, 1q.

Exerise 6.6.12. Let pK, |.|q be a omplete disrete valued �eld. Fix a uniformizer π. Show that OKrrXss

is a noetherian loal ring, with maximal ideal m � xπ,Xy, and whose other prime ideals are t0u, xπy and

xP y with P P OKrXs an irreduible and distinguished polynomial.

Exerise 6.6.13. Let p be a prime number. Construt a ontinuous surjetive map Zp Ñ r0, 1s. Desribe

ontinuous maps r0, 1s Ñ Zp.

Exerise 6.6.14. Let p be a prime number and A � C
0
pZp,Qpq. If f P A , put }f}

8

� sup
xPZp

|fpxq|p. If

n P Z
¥0, the binomial polynomial of index n is

��

X
n

��

�

XpX�1q���pX�n�1q

n!
.

(1) Show that pA , }.}
8

q is a Banah spae.

(2) Show that

�

�

�

�

X
n

�

�

�

�

8

� 1 for all n P Z
¥0.

If k P Z
¥0 and f P A , we de�ne f rks indutively by f r0s � f and f rk�1s

pxq � f rkspx � 1q � f rkspxq. The

k-th Mahler oe�ient of f is akpfq � f rksp0q.

(3) Show that if f P A , there exists m P Z
¥0 suh that

�

�f rp
m
s

�

�

8

¤

}f}
8

p
.

(4) Show that lim
nÑ8

anpfq � 0.

(5) Show that f �
8

°

n�0

anpfq
�

X
n

�

in pA , }.}
8

q.

(6) Show that }f}
8

� sup
nPZ

¥0

|anpfq|p.

Exerise 6.6.15. Show that

8

°

n�0

�

1{2
n

��

7
9

�n
� �

4
3
in Q7. Compute

8

°

n�0

�

1{2
n

��

7
9

�n
in R.

Exerise 6.6.16. Prove that AHpXq onverges in Dp0, 1q but not in Dp0, 1q (hint: ompute

AH1pXq

AHpXq
).

Exerise 6.6.17. Find the oe�ients in AHpXq through the Xp�1
term.

Exerise 6.6.18. Use Dwork's lemma to show that AHpXq P ZprrXss.

Exerise 6.6.19. A slight generalization of previous exerise. Let gpXq �
8

°

i�0

biX
pi
P QprrXss. Show that

exppgpXqq P 1�X ZprrXss if and only if bi�1 � pbi P pZp for all i P Z
¥0 (with b

�1 :� 0).
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7. Rational points

7.1. Equations over a �nite �eld. Let p be a prime number, r P Z
¡0 and q � pr. If I � FqrX1, . . . , Xns

is an ideal, we denote by

VpIq � tx P Fnq ; p�P P IqP pxq � 0u � An
pFqq.

its set of zeros in Fnq . A quite important problem is to determine if VpIq � ∅, or better understand #VpIq.

In what follows we provide partial (and lassial) results in speial ases.

Lemma 7.1.1. If n P Z
¥0, we put spnq �

°

xPFq

xn. We have spnq �

#

�1 if n ¡ 0 and q � 1 | n

0 otherwise

.

Proof.  Assume n ¡ 0 and q � 1 | n: we have xn � 1 for all x P F�

q (sine the latter has order q � 1), and

xn � 0 if x � 0, so that spnq �
°

xPF�q

1 � q � 1 � �1.

 If n � 0, we have xn � 1 for all x P Fq, so that sp0q �
°

xPFq

1 � q � 0.

 Assume n ¡ 0 and q�1 ∤ n. The group F�

q is yli: let ω be a generator. Then spnq �
°

xPF
�

q

xn �
q�2
°

k�0

ωnk,

hene ωnspnq � spnq, i.e. p1� ωnqspnq � 0. As q � 1 ∤ n, we have ωn � 1, whene spnq � 0. �

Theorem 7.1.2. (Chevalley-Warning). Let pPiq1¤i¤r P FqrX1, . . . , ns
r
and

V � VpxP1, . . . , Pryq � tx P Fnq ; p�i P t1, . . . , ruqPipxq � 0u � An
pFqq.

Assume that

r
°

i�1

degpPiq   n. Then p | #V .

Proof. Put P �

r
±

i�1

p1� P
q�1
i q P FqrX1, . . . , Xns. If x P Fnq , we have

P pxq �

#

1 if x P V

0 otherwise

.

(if Pipxq � 0, we have Pipxq
q�1

� 1, whene P pxq � 0). This means that P , seen as a map on Fnq with

values in t0, 1u is the harateristi map of V . This implies that

°

xPFn
q

P pxq is the image of #V in Fq: we

have to hek that

°

xPFn
q

P pxq � 0. The hypothesis implies that degpP q   pq � 1qn, whih implies that P is

an Fq-linear ombination of monomials Xd1
1 � � �Xdn

n with d1�� � ��dn   pq�1qn, in partiular so that there

exists i P t1, . . . , nu suh that di   q�1. By lemma 7.1.1, we have then

°

xPFn
q

xd11 � � �xdnn � spd1q � � � spdnq � 0,

implying the theorem. �

Corollary 7.1.3. Under the hypothesis of the previous theorem, if the polynomials P1, . . . , Pn have no

onstant term, they have a non trivial ommon zero.

Example 7.1.4. A non degenerate quadrati form over Fq in more than 3 variables has a nonzero isotropi

vetor.

Remark 7.1.5. The bound

r
°

i�1

degpPiq   n is optimal: if N : Fqn Ñ Fq is the norm map, then N is a

polynomial map in n variables whih is homogeneous of degree n, and V � t0u has ardinality prime to p.

7.1.6. Counting solutions using trigonometri sums. Here we assume that r � 1, i.e. q � p. Choose ζ P C

a primitive p-th root of unity.

Lemma 7.1.7. If x P Fp, we have

¸

yPFp

ζxy �

#

p if x � 0

0 otherwise

.

Proof. We have ζx � 1 if x � 0 and ζx is a primitive p-th root of unity if x � 0: the lemma follows from

°

yPFp

ζy �
p�1
°

k�0

ζk � 0. �
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Proposition 7.1.8. Let P P FprX1, . . . , Xns. Then

#VpxP yq �
1

p

¸

xPFp

xPFn
p

ζxP pxq � pn�1
�

1

p

¸

xPF�p
xPFn

p

ζxP pxq

Proof. Follows from lemma 7.1.7. �

In general, ontrolling the "error term"

1
p

°

xPF�p
xPFn

p

ζxP pxq is quite hard and the general statement for this is

Weil onjetures (f remark 7.2.9). Following [3, I �2 (2)℄, we will treat the ase of diagonal hypersurfaes,

i.e. that where

P pX1, . . . , Xnq � a1X
d1
1 � � � � � anX

dn
n

where pa1, . . . , anq P Fnp zt0u.

De�nition 7.1.9. (1) A harater of a �nite abelian group G is a group homomorphism χ : GÑ C�

. Suh

a harater has values in the group of #G-th roots of unity.

(2) Let χ : F�

p Ñ C�

be a harater. We extend it into a map χ : Fp Ñ C by putting

χp0q �

#

1 if χ is trivial

0 otherwise

.

Note that χpxyq � χpxqχpyq for all x, y P Fp. If a P Fp, we put

τapχq �
°

xPFp

χpxqζax P C

(Gauss sum).

Proposition 7.1.10. We have |τapχq| �

#

?

p if χ � 1 and a P F�

p

0 otherwise

.

Proof.  Assume χ � 1 and a P F�

p . We have |τapχq|
2
�

°

x,yPF�p

χpxqχpyqζapx�yq. As |χpyq| � 1, we have

χpyq � χpyq�1
� χpy�1

q for all y P F�

p . This implies that

|τapχq|
2
�

°

x,yPF�p

χpxy�1
qζapx�yq �

°

zPF�p

°

yPF�p

χpzqζapz�1qy

By lemma 7.1.7, we have

°

yPF�p

ζapz�1qy
� �1 unless z � 1, in whih ase it is equal to p � 1. This implies

that

|τapχq|
2
� p� 1�

°

zPF
�

p zt1u

χpzq � p�
°

zPF
�

p

χpzq

As χ is non trivial, we have

°

zPF�p

χpzq � 0, whene |τapχq|
2
� p, i.e. |τapχq| �

?

p.

 We have τap1q � 0 by lemma 7.1.7. We have τ0pχq �
°

xPFp

χpxq � 0 if χ � 1. �

Theorem 7.1.11. We have

�

�#VpxP yq � pn�1
�

�

¤ Cpp�1qp
n
2
�1

with C �

n
±

i�1

pδi�1q where δi � gcdpdi, p�1q

for i P t1, . . . , nu.

Proof. By proposition 7.1.8, we have

(�) p
�

#VpxP yq � pn�1
�

�

¸

xPF�p
xPFn

p

ζxpa1x
d1
1 �����anx

dn
n q

�

¸

xPF�p

n
¹

i�1

Σζpxai, diq

where Σζpa, dq �
°

yPFp

ζay
d

�

°

zPFp

mdpzqζ
az

with mdpzq � #ty P Fp ; y
d
� zu.

We have mdp0q � 1. Let z P F�

p . If ω is a generator of the yli group F�

p , we an write z � ωk for a

unique k P t0, . . . , p� 2u. Writing y � ωu, we have yd � z � du � k mod pp� 1qZ. If δ � gcdpd, p� 1q,

a neessary ondition for the existene of suh u is that δ | k, in whih ase the ongruene is equivalent
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to

d
δ
u � k

δ
mod p�1

δ
Z: as d

δ
is prime to

p�1
δ

hene invertible mod

p�1
δ
, this last ongruene has a unique

solution modulo

p�1
δ
, hene δ solutions mod p� 1. This shows that

mdpzq �

#

δ if δ | k

0 otherwise

.

Let ε P C be a primitive δ-th root of unity. If s P t0, . . . , δ � 1u and x P F�

p , let

χs : F�

p Ñ C�

be the harater de�ned by χspωq � εs (this makes sense sine εs is a p�1-th root of unity, beause δ | p�1).

Let z � ωk P F�

p with δ | k, we have χspzq � εsk � 1 for all s P t0, . . . , δ� 1u, so that
δ�1
°

s�0

χspzq � δ. If δ ∤ k,

we have pεk � 1q
δ�1
°

s�0

χspzq � εδk � 1 � 0, hene
δ�1
°

s�0

χspzq � 0 sine εk � 1. In any ase we have

mdpzq �
δ�1
°

s�0

χspzq

What preedes thus imply Σζpa, dq �
°

zPFp

δ�1
°

s�0

χspzqζ
az
�

δ�1
°

s�0

τapχsq �
δ�1
°

s�1

τapχsq (sine τapδ0q � τap1q � 0

by proposition 7.1.10). In partiular, we have |Σζpa, dq| ¤
δ�1
°

s�1

|τapχsq| � pδ � 1q
?

p. Thus equation (�)

implies that

p
�

�#VpxP yq � pn�1
�

�

�

°

xPF�p

n
±

i�1

�

pδi � 1q
?

p
�

� pp� 1q
� n
±

i�1

pδi � 1q
	

p
n
2

hene the result. �

7.2. Rationality of Zeta funtions of shemes of �nite type over �nite �elds. What follows is

taken almost verbatim from [19℄. Other referenes are [13, Chapter V℄ and [8, Chapter II℄. Let q be a power

of a prime p, and V a Fq-sheme of �nite type. Denote by |V | the set of losed points of V .

De�nition 7.2.1. If x P |V |, the orresponding residue �eld κpxq is a �nite extension of Fq. The degree of

x is then degpxq � rκpxq : Fqs.

Remark 7.2.2. A point of V with values in Fqd is a morphism of Fq-shemes SpecpFqdq Ñ X . The data

of suh a point is equivalent to its image in the topologial spae V , whih is a losed point x P |V |, and

a loal morphism of Fq-algebras OV,x Ñ Fqd , i.e. a Fq-linear morphism κpxq Ñ Fqd . The losed point x

being �xed, there are degpxq suh morphisms, i.e. degpxq points. The set of points with values in Fqd is

denoted V pFqdq.

Lemma 7.2.3. For all k P Z
¥1, the set V pFqkq is �nite.

Proof. Being of �nite type over Fq, the sheme V an be overed by �nitely many a�ne Fq-shemes:

write V �

r
�

i�1

SpecpAiq where Ai is a Fq-algebra of �nite type for i P t1, . . . , ru. If x P |V |, there exists

i P t1, . . . , ru suh that x P SpecpAiq. If x is the image of an element of VpFqkq, it orresponds to the kernel

of a morphism of Fq-algebras Ai Ñ Fqk (f remark 7.2.2). As Ai is a quotient of FqrX1, . . . , Xnr
s for some

nr P Z
¥0, there are �nitely many suh morphisms, a fortiori �nitely many suh losed points. Eah of these

orresponding to at most k morphisms OV,x Ñ Fqk , this shows the �niteness of V pFqkq. �

De�nition 7.2.4. The zeta funtion of V is

ZV pT q �
¹

xP|V |

1

1� T degpxq
P ZrrT ss.

Observe that the produt onverges in ZrrT ss thanks to the previous lemma.

Lemma 7.2.5. We have ZV pT q � exp
�

8

°

k�1

#V pFqkq
Tk

k

	

.

Proof. Taking the logarithm in QrrT ss, we have

lnpZV pT qq �
°

xP|V |

� ln
�

1� T degpxq
�

�

°

xP|V |

8

°

n�1

Tn degpxq

n
�

8

°

k�1

NkpV q
Tk

k
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where NkpV q �
°

xP|V |
degpxq|k

degpxq � #V pFqkq by remark 7.2.2. �

Example 7.2.6. (1) If V � An
Fq
, we have #V pFqkq � qnk for k P Z

¡0, so

8

°

k�1

#V pFqkq
Tk

k
� � lnp1� qnT q,

hene ZAn
Fq
pT q � 1

1�qnT
.

(2) As we have Pn
Fq
� An

Fq
\Pn�1

Fq
, a straightforward indution gives ZPn

Fq
pT q � 1

p1�T qp1�qT q���p1�qnT q
.

Lemma 7.2.7. If V is the union of two subshemes V 1

and V 2

, then ZV pT q �
ZV 1 pT qZV 2 pT q

ZV 1XV 2 pT q
.

Proof. Obvious. �

Theorem 7.2.8. (Dwork) ZV pT q P QpT q.

Remark 7.2.9. (1) In fat, one has ZV pT q �
P pT q

QpT q
where P pT q, QpT q P ZrT s have onstant term equal

to 1. Indeed, theorem 7.2.8 shows that We an write ZV pT q �
P pT q

QpT q
where P pT q, QpT q P QrT s. We

may assume that gcdpP,Qq � 1. As ZV p0q � 1, we may divide P and Q by their onstant terms, and

assume that P p0q � Qp0q � 1. Let p be a prime number. We have ZV pT q P ZrrT ss � ZprrT ss. Assume

P pT q R ZprT s: one oe�ient of P has negative valuation, so its Newton polygon has a negative slope. This

implies that P has a root λ P Dp0, 1q. As QpT q � P pT qZV pT q and ZV pT q onverges on Dp0, 1q (beause it

has integral oe�ients), we have Qpλq � 0 as well, ontraditing the fat that gcdpP,Qq � 1. This shows

that P pT q P ZprT s, so that QpT q � P pT qZV pT q P ZprT s. This means that the oe�ients of P and Q have

non-negative p-adi valuations for all primes p: they are integers.

(2) This result is the �rst of Weil onjetures. There are the following. Assume that V is a projetive and

geometrially irreduible

(45)

and smooth over Fq. Then the following hold:

 (Funtional equation) we have

ZV pq
�dT�1

q � �q
de
2 T e ZV pT q

where d � dimpV q and e is the �Euler harateristi� of V ;

 (Riemann hypothesis) we an write

ZV pT q �
P1pT qP3pT q � � �P2d�1pT q

P0pT qP2pT q � � �P2dpT q

where PjpT q P ZrT s are suh that P0pT q � 1�T and P2dpT q � 1� qdT and PjpT q �
bj
±

i�1

p1�αi,jT q

where

(46)

|αi,j | � qj{2 for all i P t1, . . . , bju.

For instane, if V is a urve of genus g, we have ZV pT q �
P pT q

p1�T qp1�qT q
where P P 1�T ZrT s is a polynomial

of degree 2g, whose roots have absolute value
?

q.

7.2.10. First redutions.

Lemma 7.2.11. If d P Z
¡0, we have QpT q X ZrrT dss � QpT dq.

Proof. Let P,Q P QrXszt0u be oprime and suh that

P pT q

QpT q
P ZrrT dss. We may assume that Qp0q � 1.

Let ζ P C be a primitive d-th root of unity: the hypothesis implies that

P pT q

QpT q
�

P pζT q

QpζT q
in CpT q, whene

P pT qQpζT q � P pζT qQpT q in CrT s. As gcdpP,Qq � 1, Gauss lemma implies that QpT q | QpζT q, whene

QpT q � QpζT q (sine QpT q and QpζT q have same degree and same onstant term). This shows that

QpT q � QpζkT q for all k P Z, so that QpT q � 1
d

d�1
°

k�0

P pζkT q P CrT ds XQrT s � QrT ds (beause
d�1
°

k�0

ζki � 0

unless d | i). Similarly P pT q P QrT ds, and we are done. �

Lemma 7.2.12. Theorem 7.2.8 follows from the speial ase where V � Vpfq � An
Fp

for some polynomial

fpXq P FprX1, . . . , Xns.

(45)

i.e. suh that V �Fq
Fq is irreduible.

(46)

Moreover, if V is the redution mod p of a non singular projetive variety

rV over a number �eld K, the integers bj are

preisely the �Betti numbers� of

rV , i.e. the dimensions of the Betti ohomology groups of the topologial manifold

rV pCq.
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Proof.  Put d � rFq : Fps. As V is of �nite type over Fq, it is of �nite type over Fp as well. If x P |V |,

we have rκpxq : Fps � rκpxq : Fqsd, so that ZV {Fp
pT q � ZV {Fq

pT dq. If the theorem is known for varieties

over Fp, this shows that ZV {Fq
pT dq P QpT q XZrrT dss � QpT dq by lemma 7.2.11, so that ZV {Fq

pT q P QpT q.

This implies that to prove theorem 7.2.8, we may restrit to the ase where q � p is prime.

 As V is of �nite type over Fp, we have X �

r
�

i�1

Vi where V1, . . . , Vr are a�ne open subshemes. By lemma

7.2.7, we have

ZV pT q �
±

I�t1,...,ru
I�∅

ZVI
pT qp�1q#I

where VI �
�

iPI

Vi for all I � t1, . . . , ru. It is enough to show that ZVI
pT q P QpT q when I � ∅. As VI is a

subsheme of an a�ne hene separated sheme when I � ∅, we an redue to the ase redue to the ase

where V is separated. In that ase, the intersetions VI are a�ne (f [15, Chap. 3.3, Prop. 3.6℄): we are

redued to the ase when V is a�ne, i.e. V � VpIq � An
Fp

where I � xf1, . . . , fmy � FprX1, . . . , Xns is an

ideal. Assume m ¡ 1: let V 1

� Vpxf1, . . . , fm�1yq and V
2

� Vpfmq. Then V � V 1

X V 2

: by lemma 7.2.7,

we have ZV pT q �
ZV 1 pT qZV 2 pT q

ZV 1YV 2 pT q
. As V 1

Y V 2

� Vpxf1, . . . , fm�1yfmq, a straightforward indution redues to

the ase where m � 1, i.e. where V � Vpfq � An
Fp

for some polynomial fpXq P FprX1, . . . , Xns. �

If fpXq P FprX1, . . . , Xns, put

rVpfq � Vpfq XDpX1 � � �Xnq � An
Fp
.

A point of fpXq with values in Fq thus orresponds to the data of an element x � px1, . . . , xnq P Fnq suh

that fpx1, . . . , xnq � 0 and x1 � � �xn � 0.

Lemma 7.2.13. Theorem 7.2.8 follows from the speial ase where V �

rVpfq � An
Fp

for some polynomial

fpXq P FprX1, . . . , Xns.

Proof. By lemma 7.2.12, we already redued the proof to the ase where V � Vpfq for some polynomial

fpXq P FprX1, . . . , Xns. Now we have

Vpfq � rVpfq \ pVpfq X VpX1 � � �Xnqq.

By lemma 7.2.7, the rationality of ZVpfq follows from that of Z
rVpfq

and that of ZVpF qXVpX1���Xnq
. As we

have Vpfq X VpX1 � � �Xnq �

n
�

i�1

Vpfq XVpXiq, this redues to that of Z
rVpfq

and of the zeta funtions of the

various intersetions of the VpfqXVpXiq. As those identify with subshemes of An�1
Fp

, we an use indution

on n to redue to the rationality of Z
rVpfq

. �

7.2.14. Fatorization of additive haraters on �nite �elds. Reall that in setion 6.4.17, we de�ned the

series BpX,Y q �
8

°

n�0

�

X
n

�

Y n � p1� Y qX P QrrX,Y ss and Dwork's series

F pX,Y q � BpX,Y q
8

±

i�1

B
�

Xpi
�Xpi�1

pi
, Y p

i
	

P ZprrX,Y ss

(f proposition 6.4.20). Formally, we have

F pX,Y q �
8

±

i�0

p1� Y p
i

q

Xpi
�Xpi�1

pi

Write

F pX,Y q �
8

°

m�0

BmpXqY
m.

In eah monomial of fator B
�

Xpi
�Xpi�1

pi
, Y p

i
	

, the degree in X is less or equal to that of Y : this thus

holds also for F pX,Y q. This implies that degpBmq ¤ m for all m P Z
¥0. This shows in partiular that we

have

F pX,Y q �
8

°

m�0

XmαmpY q

where αmpY q P Y
m ZprrY ss.
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Fix ε P Cp be a primitive p-th root of unity and let λ � ε� 1: we have λ � 0, so that 0 � εp�1
ε�1

�

p1�λqp�1

λ
,

so that λp�1
�

p�2
°

k�1

�

p
k

�

λk�1
�p � 0. This shows that vppλq ¡ 0, hene vp

��

p
k

�

λk�1
�

¡ 1 for k P t1, . . . , p�2u,

so that vppλ
p�1

q � 1, i.e. vppλq �
1
p�1

. Put

ΘpXq � F pX,λq �
8

°

m�0

βmX
m

where βm � αmpλq P Zprλs � Zprεs. Note that vppβmq ¥
m
p�1

sine αmpY q P Y
m ZprrY ss. This implies that

the radius of onvergene of Θ is larger that p
1

p�1
¡ 1, i.e. that Θ onverges on D

�

0, p
1

p�1

�

.

If k P Z
¡0 and t P Fpk , we have TrF

pk
{Fp

ptq �
k�1
°

j�0

tp
j

P Fp, so that ε
TrF

pk
{Fp ptq

makes sense, and de�nes a

harater

ε
TrF

pk
{Fp : Fpk Ñ C�

p

t ÞÑ ε
TrF

pk
{Fp ptq

Reall that the Teihmüller lift of t is the unique element rts P OQp
that lifts t P Fp and suh that rtsp

k

� rts

(f de�nition 3.8.20). The following statement provides an analyti expression of this harater (more

preisely its expression as the value at rts P OCp
of an analyti map de�ned on D

�

0, p
1

p�1

�

).

Proposition 7.2.15. For all t P Fpk , we have

ε
TrF

pk
{Fp ptq

� ΘprtsqΘprtpsq � � �Θprtp
k�1

sq.

Proof. The equality TrF
pk

{Fp
ptq �

k�1
°

j�0

tp
j

P Fp is the redution modulo mQp
of

Trkprtsq :�
k�1
°

j�0

rtsp
j

P Zp

so that ε
TrF

pk
{Fp ptq

� εTrkprtsq � BpTrkprtsq, λq.

On the other hand, BpTrkprtsq, Y q � p1� Y qTrkprtsq �
k�1
±

j�0

Bprtsp
j

, Y q in CprrY ss. Moreover, we have

F prtsp
j

, Y q � Bprtsp
j

, Y q
8

±

i�1

B
�

rtsp
i�j

�rtsp
i�j�1

pi
, Y

�

for all j P t0, . . . , k � 1u. Multiplying all those equalities in CprrY ss gives

k�1
±

j�0

F prtsp
j

, Y q �
� k�1
±

j�0

Bprtsp
j

, Y q
	

8

±

i�1

� k�1
±

j�0

B
�

rtsp
i�j

�rtsp
i�j�1

pi
, Y

�

	

�

� k�1
±

j�0

Bprtsp
j

, Y q
	

8

±

i�1

B
�

1
pi

k�1
°

j�0

�

rtsp
i�j

� rtsp
i�j�1�

, Y
	

�

k�1
±

j�0

Bprtsp
j

, Y q

in CprrY ss beause
k�1
°

j�0

�

rtsp
i�j

� rtsp
i�j�1�

� 0 sine rtsp
k

� rts and Bp0, yq � 1. We thus have

BpTrkprtsq, Y q �
k�1
±

j�0

F prtsp
j

, Y q

in CprrY ss. We may evaluate both sides at λ (the LHS beause Trkprtsq P Zp and the RHS beause the

radius of onvergene of Θ in greater that p
1

p�1
), and get

ε
TrF

pk
{Fp ptq

� ΘprtsqΘprtpsq � � �Θprtp
k�1

sq.

�
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7.2.16. Spetral theory of an operator in in�nite dimension. Put X � pX0, . . . , Xnq and let E � CprrXss be

the ring of formal power series in the variables X0, . . . , Xn with oe�ients in Cp.

If w � pw0, . . . , wnq P Zn�1
¥0 , put |w| � w0 � � � � � wn P Z

¥0 and Xw � Xw0

0 � � �Xwn
n . If GpXq P E, the

multipliation by GpXq de�nes a Cp-linear endomorphism µGpXq P EndCp
pEq. If m P Z

¥0, we de�ne an

element ψm P EndCp
pEq by

ψm

�

°

wPZ
n�1
¥0

awX
w
	

�

°

wPZ
n�1
¥0

amwX
w.

Let

Ψm,G � ψm � µGpXq P EndCp
pEq

be the omposite. In the anonial basis

�

Xw
�

wPZn�1
¥0

, the (in�nite) matrix of Ψm,G is pgmw�uqu,wPZn�1
¥0

,

where GpXq �
°

wPZ
n�1
¥0

gwX
w
.

Remark 7.2.17. If m,m1

P Z
¥2, we have ψm � ψm1

� ψmm1

and µGpXq � ψm � ψm � µGpXm
q

. Indeed, if

u P Zn�1
¥0 , we have ψm

�

Xu
�

�

#

Xu{m if m | u

0 otherwise

. Also, we have µGpXm
q

�

Xu
�

�

°

wPZ
n�1
¥0

gwX
mw�u

: we get

pψm � µGpXm
q

q

�

Xu
�

�

°

wPZn�1
¥0

gwψm
�

Xmw�u
�

� Gψm
�

Xu
�

by linearity, so that µG � ψm � ψm � µGpXm
q

.

Lemma 7.2.18. Assume there exists a onstant C P R
¡0 suh that vppgwq ¥ C |w| for all w P Zn�1

¥0 . Then

for all k P Z
¡0, the series giving the trae of Ψkm,G onverges, and we have

pmk
� 1qn�1TrpΨkm,Gq �

°

xPCn�1
p

xm�1
�1

GpxqGpxmq � � �Gpxm
k�1

q

(if x � px0, . . . , xnq P Cn�1
p , the ondition xm�1

� 1 means that xm�1
i � 1 for all i P t0, . . . , nu).

Proof.  An immediate indution on k using remark 7.2.17, implies that

Ψkm,G � Ψk�1
m,G �Ψm,G � ψmk�1 � µ

GpXqGpXm
q���GpXmk�2

q

� ψm � µG

� ψmk � µ
GpXm

qGpXm2
q���GpXmk�1

q

� µG

� ψmk � µ
GpXqGpXm

qGpXm2
q���GpXmk�1

q

thus we may replae m by mk
and GpXq by GpXqGpXmqGpXm

2

q � � �GpXm
k�1

q, and assume that k � 1.

 The matrix of Ψm,G being pgmw�uqu,wPZn�1
¥0

, we have TrpΨm,Gq �
°

wPZn�1
¥0

g
pm�1qw (the series onverges

thanks to the hypothesis of the lemma. On the other hand, we have

°

xPCn�1
p

xm�1
�1

xw �

#

pm� 1qn�1
if m� 1 | w

0 otherwise

.

This implies that

°

xPCn�1
p

xm�1
�1

Gpxq � pm� 1qn�1
°

wPZn�1
¥0

g
pm�1qw. �

Assume again the existene of a onstant C P R
¡0 suh that vppgwq ¥ C |w| for all w P Zn�1

¥0 . Put

detpIdE �TΨm,Gq :�
8

°

d�0

γdT
d

where

γd :� p�1qd
°

u1,...,udPZ
n�1
¥0

uj distint

σPSd

εpσq
d
±

j�1

�

ψm,G
�

uj ,uσpjq

� p�1qd
°

u1,...,udPZ
n�1
¥0

uj distint

σPSd

εpσq
d
±

j�1

gmuσpjq�uj
.

This sum does onverge in Cp beause we have

vp

�

εpσq
d
±

j�1

gmuσpjq�uj

	

�

d
°

j�1

vppgmuσpjq�uj
q ¥ Cpm� 1q

d
°

j�1

�

�uj
�

�

Lemma 7.2.19. Let F be a �eld, d P Z
¡0 and M P MdpF q. Then detpIn�TMq � exp

�

�

8

°

k�1

TrpMk
q

Tk

k

	

.
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Proof. Let F be an algebrai losure of F , and λ1, . . . , λd P F are the eigenvalues ofM . For k P Z
¡0 we have

TrpMk
q �

d
°

j�1

λkj , so that �

8

°

k�1

TrpMk
q

Tk

k
� �

d
°

j�1

8

°

k�1

pλjT q
k

k
�

d
°

j�1

lnp1� λjT q � lnpdetpIn�TMqq. �

Lemma 7.2.20. Assume there exists a onstant C P R
¡0 suh that vppgwq ¥ C |w| for all w P Zn�1

¥0 . Then

we have:

(i) detpIdE �TΨm,Gq � exp
�

�

8

°

k�1

Tr
�

Ψkm,G
�

Tk

k

	

;

(ii) the radius of onvergene of the series detpIdE �TΨm,Gq P CprrT ss is in�nite.

Proof. (i) If N P Z
¡0, let Ψm,G,¤N be the endomorphism of E whose matrix is that of Ψm,G with entries

for whih |u| ¡ N or |w| ¡ N are replaed by 0. Then detpIE �TΨm,G,¤Nq � exp
�

�

8

°

k�1

Tr
�

Ψkm,G,¤N
�

Tk

k

	

by lemma 7.2.19. Endowing CprrT ss with the topology oe�ientwise onvergene, the equality follows by

passing to the limit as N Ñ8.

(ii) It is enough to hek that lim
dÑ8

vppγdq

d
� �8. We already know that

vppγdq ¥ Cpm� 1q inf
u1,...,udPZ

n�1
¥0

uj distint

� d
°

j�1

�

�uj
�

�

	

.

Order the elements of Zn�1
¥0 into a sequene pwsqsPZ¡0

suh that |ws| ¤
�

�ws�1

�

�

for all s P Z
¡0. Then we have

vppγdq ¥ Cpm�1q
d
°

s�1

|ws|. As lim
sÑ8

|ws| � �8, we have lim
dÑ8

1
d

d
°

s�1

|ws| (Cesàro), i.e. lim
dÑ8

vppγdq

d
� �8. �

7.2.21. Analyti expression of the Zeta funtion and end of the proof. Reall (f lemma 7.2.13) that we

redued the proof of theorem 7.2.8 to the speial ase where q � p is prime and V �

rVpfq � An
Fp

for some

polynomial fpXq P FprX1, . . . , Xns. If k P Z
¡0 we have:

rVpfqpFpkq �
 

px1, . . . , xnq P Fnpk ; fpx1, . . . , xnq � 0, p�i P t1, . . . , nuqx
pk�1
i � 1

(

Lemma 7.2.22. The series Z
rVpfq

pT q de�nes a holomorphi funtion on the dis

 

z P C ; |z|   1
pn

(

.

Proof. We have 0 ¤ #rVpfqpFpkq ¤ pkn for all k P Z
¡0: the radius of onvergene of

8

°

k�1

#rVpfqpFpkq
Tk

k
is

at least

1
pn
, so does that of the series Z

rVpfq
pT q. �

Aording to theorem 6.5.8, theorem 7.2.8 follows if we an show that the series Z
rVpfq

pT q de�nes a mero-

morphi funtion on the dis

 

x P Cp ; |z|p   ru where r
pn
¡ 1. In fat, we have muh better:

Theorem 7.2.23. The series Z
rVpfq

pT q de�nes a meromorphi funtion on Cp.

Proof. Fix k P Z
¡0. If t P Fpk , we have

Θkptq :� ε
TrF

pk
{Fp ptq

� ΘprtsqΘprtpsq � � �Θprtp
k�1

sq.

where rts P Qp is the Teihmüller representative of t (f proposition 7.2.15). As Θk is a non-trivial harater

on Fpk , we have

°

x0PFpk

Θkpx0uq �

#

pk if u � 0

0 if u � 0

(the �rst equality is trivial, for the seond, pik u0 P Fpk suh that Θkpu0q � 1, whih is possible sine

Θk is non trivial, then Θkpu0q
°

x0PFpk

Θkpx0uq �
°

x0PFpk

Θkpx0u � u0q �
°

x0PFpk

Θkpx0uq beause the map

y ÞÑ y � u0 is a permutation of Fpk). If we apply this to u � fpxq and sum over all values of x P F�n
pk

, we

get

pk#rVpfqpFpkq �
°

xPF
�n

pk

°

x0PFpk

Θkpx0fpxqq � ppk � 1qn �
°

x0PF
�

pk

°

xPF
�n

pk

Θkpx0fpxqq

Write X0fpX1, . . . , Xnq �

M
°

m�1

amX
wm

P FprX0, . . . , Xns with am P Fp and wm � pwm,0, . . . , wm,nq P Zn�1
¥0

for all m P t1, . . . ,Mu (here Xwm
� X

wm,0

0 � � �X
wm,n
n ). If x0 P F�

pk
and x � px1, . . . , xnq P F�n

pk
, we have

Θkpx0fpxqq �
M
±

m�1

Θk
�

amrx
wm

�
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where
rxwm

�

n
±

i�0

x
wm,i
m P Fpk . The previous equality beomes

pk#rVpfqpFpkq � ppk � 1qn �
°

rxPF
�pn�1q

pk

M
±

m�1

Θk
�

amrx
wm

�

� ppk � 1qn �
°

rxPF
�pn�1q

pk

M
±

m�1

k�1
±

j�0

Θ
��

airx
pjwm

��

Put

GpXq �
M
±

m�1

Θ
�

ramsX
wm

�

P ZprεsrrXss.

The previous equality is then

pk#rVpfqpFpkq � ppk � 1qn �
°

rxPF
�pn�1q

pk

k�1
±

j�0

G
��

rxp
j ��

Reall the the map Θ onverges on the dis D
�

0, p
1

p�1

�

� Cp: this implies that the series GpXq onverges

on the polydis D
�

0, p
1

p�1

�n�1
. This means that we an write GpXq �

°

wPZn�1
¥0

gwX
w
P CprrXss where

vpgwq � C |w|
�

ÝÑ 8 for all C P

�

0, 1
p�1

�

. This implies in partiular that the hypothesis of lemmas 7.2.18

and 7.2.20 are satis�ed by GpXq. By lemma 7.2.18, we thus have

pk#rVpfqpFpkq � ppk � 1qn � ppk � 1qn�1 TrpΨkGq

�

n
°

i�0

p�1qi
�

n
i

�

pkpn�iq �
n�1
°

i�0

p�1qi
�

n�1
i

�

pkpn�1�iq TrpΨkGq

Multiplying by

Tk

k
, summing over k P Z

¡0 gives

ln
�

Z
rVpfq

ppT q
�

�

n
°

i�0

p�1qi
�

n
i

�

8

°

k�1

ppn�iT qk

k
�

n�1
°

i�0

p�1qi
�

n�1
i

�

8

°

k�1

TrpΨkGq
ppn�1�iT qk

k

� �

n
°

i�0

p�1qi
�

n
i

�

lnp1� pn�iT q �
n�1
°

i�0

p�1qi
�

n�1
i

�

ln
�

∆ppn�1�iT q
�

where ∆pT q � detpId�TΨGq � exp
�

�

8

°

k�1

TrpΨk
Gq

k
T k

	

(f lemma 7.2.20 (i)). Taking exponentials gives

thus:

Z
rVpfq

ppT q �
� n
±

i�0

p1� pn�iT qp�1qi�1
p

n
iq

	� n�1
±

i�0

∆ppn�1�iT qp�1qi�1
p

n�1
i q

	

As the series ∆ is holomorphi on Cp (f lemma 7.2.20 (ii)), the series Z
rVpfq

ppT q is meromorphi on Cp:

so does Z
rVpfq

pT q. �

7.3. Lifting solutions from harateristi p to harateristi 0. The following is a trivial generaliza-

tion of Newton's lemma (f theorem 3.3.10):

Theorem 7.3.1. Let pK, |.|q be a omplete non arhimedean valued �eld ,n P Z
¡0, P P OKrX1, . . . , Xns

and x � px1, . . . , xnq P On
K . Assume that there exist i P t1, . . . , nu and ε P r0, 1r suh that

|P pxq| ¤ ε
�

�

�

BP
BXi

pxq

�

�

�

2

.

Then there exists x1 � x � ηei P On
K (where pe1, . . . , enq is the anonial basis of K

n
) suh that P px1q � 0

and |η| ¤ ε
�

�

�

BP
BXi

pxq

�

�

�

.

Proof. Write x � px1, . . . , xnq and put QpXq � P px1, . . . , xi�1, X, xi�1, . . . , xnq P OKrXs: we have thus

Qpxiq � Qpxq and Q1

pxiq �
BP
BXi

pxq. The hypothesis thus imply that we may apply Newton's lemma to Q at

xi, and �nd x1i � xi�η suh that Qpx1iq � 0 and |η| ¤ ε
�

�

�

BP
BXi

pxq

�

�

�

, so that x1 � px1, . . . , xi�1, x
1

i, xi�1, . . . , xnq

has the required property. �
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Corollary 7.3.2. Let A � pai,jq1¤i,j¤n P GLnpZpq be a symmetri matrix, qpXq �
°

1¤i,j¤n

ai,jXiXj the

assoiated quadrati form on Qn
p , and a P Zp. Let x � px1, . . . , xnq P Z3

p zpZ
n
p be suh that qpxq � a

mod 4pZp. Then there exists x1 P Z3
p suh that qpx1q � a and x1 � x mod 2pZp.

Proof. We have

Bq
BXi

pxq � 2
n
°

j�1

ai,jxj for all i P t1, . . . , nu. As A P GLnpZpq and x R pZnp , there exists

i P t1 . . . , nu suh that

n
°

j�1

ai,jxj P Z�p . If p � 2, this implies that vp
�

Bq
BXi

pxq
�

� 0, so the generalized

Newton's lemma (theorem 7.3.1) implies the existene of x1. If p � 2, this implies that v2
�

Bq
BXi

pxq
�

� 1: as

v2pqpxq � aq ¥ 3 the generalized Newton's lemma again implies the existene of x1. �

7.4. The Hasse priniple for quadrati forms. What follows is almost a mere translation

(47)

of [22,

Chap. III & IV℄.

7.4.1. Squares in Q�

p . If x P Zp, denote by x the image of x in Fp.

Proposition 7.4.2. Let x P Q�

p . Write x � pvppxqu with u P Z�p . Then x is a square in Qp if and only if

2 | vppxq and
�

u
p

�

� 1 (i.e. u is a square in Fp) and u � 1 mod 8Z2 if p � 2.

Proof.  Assume x is a square: write x � y2 with y P Q�

p . We have y � pvppyqv with v P Z�p . Then

pvppxqu � p2vppyqv, hene vppxq � 2vppyq is even, and u � v2 is a square, hene u � v2 is a square in Fp. If

p � 2, we have v � 1 mod 2Z2 hene u � 1 mod 8Z2.

 Conversely, assume vppxq � 2n with n P Z and u is a square in Fp. Put P pXq � X2
� u P ZrXs: there

exists v0 P Z�p suh that P pv0q P pZp. We have P 1

pv0q � 2v. If p � 2, we have P 1

pv0q P Z�p , so Newton's

lemma implies that there exists v P Z�p suh that P pvq � 0, so that x � y2 with y � pnv. If p � 2, we have

P pv0q P 8Z2 and P 1

pv0q P 2Z�2 . By Newton's lemma again, there exists v P Z�2 suh that P pvq � 0, whih

shows that x is a square. �

Notation. If p � 2, and x P Z�2 , we have x � 1 mod 2Z2, so that x2 � 1 mod 8Z2. Let εpxq (resp. ωpxq)

be the image of

x�1
2

(resp.

x2
�1
8

) in F2. We have

εpxq �

#

0 if x � 1 mod 4Z2

1 if x � 3 mod 4Z2

and ωpxq �

#

0 if x � �1 mod 8Z2

1 if x � �3 mod 8Z2

.

Corollary 7.4.3. If p � 2, there are isomorphisms

Q�

p {Q
�2
p � pZ {2Zq � pF�

p {F
�2
p q

�

ÑpZ {2Zq2

if p � 2, there are isomorphisms

Q�

2 {Q
�2
2 � pZ {2Zq � pZ�2 {p1� 8Z2qq � pZ {2Zq2

in whih pε, ωq : Z�2 {p1 � 8Z2q Ñ pZ {2Zq2 is a group isomorphism. A system of representatives is

t1, u, p, puu (where u P Z�p is not a square) if p � 2 and t�1,�5,�2,�10u if p � 2.

In partiular, Q�2
p is an open subgroup of Q�

p .

Proof. The only thing that has to be heked is the fat that ε and ω are group homomorphisms. If

x � 1�2u and y � 1�2v are elements in Z�2 � 1�2Z2, we have xy � 1�2px�yq mod 4Z2 so that εpxyq

is the image of u�v mod 2Z2, i.e. εpxq�εpyq. Similarly, we have x2 � 1�4pu�u2q and y2 � 1�4pv�v2q,

so that pxyq2 � 1� 4pu�u2� v� v2q mod 16Z2, so that ωpxyq is the image of

u�u2

2
�

v�v2

2
mod 2Z2, i.e.

ωpxq � ωpyq. �

7.4.4. The Hilbert symbol. In what follows, K is either R or Qp for some prime p.

De�nition 7.4.5. Let a, b P K�

. The Hilbert symbol of a and b (relative to K) is

pa, bq �

#

1 if ax2 � by2 � z2 � 0 has a nonzero solution in K3

�1 otherwise

.

Obviously pa, bq only depends on the images of a and b in K�

{K�2
: we will often onsider p., .q as a map

pK�

{K�2
q � pK�

{K�2
q Ñ t�1u.

Lemma 7.4.6. Let a, b P K�

. Then pa, bq � 1 if and only if a P NKp
?

bq{K

�

K
�

?

b
�

�

�

.

(47)

It seems exluded to improve upon Serre's writing...
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Proof. If b � β2
with β P K�

, then p0, 1, βq P K3
is a nonzero solution of ax2 � by2 � z2 � 0, and

K�

� NKp
?

bq{K

�

K
�

?

b
�

�

�

: this gives the equivalene in this ase. Assume heneforth that b is not a

square in K, so that

�

K
�

?

b
�

: K
�

� 2. Elements is K
�

?

b
�

are thus of the form u� v
?

b with u, v P K, and

NKp
?

bq{Kpu � v
?

bq � u2 � bv2. If pa, bq � 1, let px, y, zq P K3
ztp0, 0, 0qu be suh that ax2 � by2 � z2 � 0.

Assume x � 0: we have y � 0 (this would imply z � 0 whih is not), so b �
�

z
y

�2
, ontraditing the fat

that b is not a square. As x � 0, we have a �
�

z
x

�2
� b

�

y
x

�2
� NKp

?

bq{K

�

z�y
?

b
x

�

P NKp
?

bq{K

�

K
�

?

b
�

�

�

.

Conversely, assume that a � NKp
?

bq{Kpu � v
?

bq � u2 � bv2: then p1, v, uq is a nonzero solution to ax2 �

by2 � z2 � 0 in K3
, hene pa, bq � 1, showing the equivalene in that ase. �

Lemma 7.4.7. If a, b, c P K�

, we have:

(i) pa, bq � pb, aq and pa, c2q � 1;

(ii) pa,�aq � 1 and pa, 1� aq � 1 if a � 1;

(iii) pa, bq � 1ñ pac, bq � pc, bq;

(iv) pa, bq � pa,�abq � pa, p1� aqbq (assuming a � 1 for the last equality).

Proof. (i) is obvious. For (ii), p1, 1, 0q (resp. p1, 1, 1q) is a nonzero solution of ax2 � ay2 � z2 � 0 (resp.

ax2 � p1� aqy2 � z2 � 0). If pa, bq � 1, then a P NKp
?

bq{KpKp
?

bq�q (f lemma 7.4.6), so

pac, bq � 1� ac P NKp
?

bq{K

�

K
�

?

b
�

�

�

� c P NKp
?

bq{K

�

K
�

?

b
�

�

�

� pac, bq � 1

(sine NKp
?

bq{K

�

K
�

?

b
�

�

�

is a subgroup of K�

), proving (iii). Finally, (iv) follows from (i)-(iii). �

Notation.  If u P Z�p , we denote by u its image in F�

p , and we put

�

u
p

�

�

�

u
p

�

(the Legendre symbol of u,

whih is �1 following to u is a square in Fp or not).

 If p � 2 and u P Z�2 , reall that we denote by εpuq (resp. ωpuq) the image of

u�1
2

(resp.

u2
�1
8

) in F2.

Theorem 7.4.8. Let a, b P K�

.

 If K � R, we have pa, bq � �1� a, b P R
 0.

 If K � Qp, write a � pαu and b � pβv with α, β P Z and u, v P Z�p . Then

pa, bq �

#

p�1qαβεppq
�

u
p

�β� v
p

�α
if p � 2

p�1qεpuqεpvq�αωpvq�βωpuq if p � 2
.

Theorem 7.4.9. The Hilbert symbol is a non degenerate pairing on the F2-vetor spae K
�

{K�2
.

Proof of theorem 7.4.8. The ase where K � R is trivial, sine K�

{K�2
� t�1u as K�2

� R
¡0. We

heneforth assume that K � Qp for some prime p.

First observe that if v P Z�p and z2 � px2 � vy2 � 0 has a nonzero solution in Q3
p, then it has a solution

suh that x P Zp and y, z P Z�p (learing the denominators, we may assume that px, y, zq P Z3
p zppZpq

3
; if

p | z, then p | vy2 hene p | y sine v P Z�p , so that p | x, ontraditing px, y, zq R pZ
3
, hene z P Z�p , whene

vy2 � z2 � px2 P Z�p , i.e. y P Z�p ).

The Hilbert symbol is symmetri, and it is a�eted by α and β only through their images in Z {2Z: we may

restrit to the following three ases:

(1) α � β � 0;

(2) α � 1 and β � 0;

(3) α � β � 1.

Case where p � 2. In ase (1), we have to hek that pa, bq � 1. By example 7.1.4, the quadrati form

ax2 � by2 � z2 has a nonzero isotropi vetor in F3
p: as its disriminant �ab belongs to Z�p , orollary 7.3.2

applies, showing that ax2 � by2 � z2 has a nonzero isotropi vetor in Z3
p, i.e. that pa, bq � 1.

In ase (2), we have to hek that ppu, vq �
�

v
p

�

. By lemma 7.4.7 (iii), we have ppu, vq � pp, vq sine

pu, vq � 1 (f ase (1)): we may assume u � 1. If pp, vq � 1, there exists px, y, zq P Z3
p suh that y, z P Z�p

suh that z2�px2�vy2 � 0 (f above): reduing modulo p gives vy2 � z2, whih implies that v is a square

in Fp, i.e.
�

v
p

�

� 1. Conversely, assume that

�

v
p

�

� 1: this implies that v is a square in Fp, so that v is a

square in Zp, so that pp, vq � 1 (f 7.4.7 (i)). This shows that pp, vq �
�

v
p

�

as required.

In ase (3), we have to hek that ppu, pvq � p�1qεppq
�

u
p

��

v
p

�

. By 7.4.7 (iv), we have

ppu, pvq � ppu,�p2uvq � ppu,�uvq �
�

�uv
p

�
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(the last equality follows from ase (2)), hene ppu, pvq � p�1qεppq
�

u
p

��

v
p

�

by multipliativity of the Legendre

symbol, and the equality

�

�1
p

�

� p�1qεppq.

Case where p � 2. Here again, we may redue to the three ases (1)-(3) as above. Assume (1): we must show

that pu, vq � 1 if εpuqεpvq � 0 and pu, vq � �1 if εpuqεpvq � 1. If u � 1 mod 8Z2, then u is a square in Z2,

so pu, vq � 1. If u � 5 mod 8Z2, then u � 4v � 1 mod 8Z2: there exists w P Z2 suh that w2
� u � 4v,

so that the for ux2 � vy2 � z2 vanishes at p1, 2, wq, and pu, vq � 1. This shows that εpuq � 0 ñ pu, vq � 1

(symmetrially, we have εpvq � 0 ñ pu, vq � 1). Assume u, v P �1 � 4Z2: if px, y, zq P Z2
is a primitive

solution of ux2 � vy2 � z2 � 0, we have x2 � y2 � z2 � 0 mod 4Z2. As squares in Z {4Z are 0 and 1, this

shows that x, y, z P 2Z2, ontraditing the fat that px, y, zq is primitive. Thus pu, vq � �1 in this ase.

In ase (2), we have to hek that p2u, vq � p�1qεpuqεpvq�ωpvq. First observe that p2, vq � p�1qωpvq, i.e. that

2x2 � vy2 � z2 represents 0 if and only if v � �1 mod 8. Indeed, assume p2, vq � 1: there exist x, y, z P Z2

suh that y, z P Z�2 and 2x2 � vy2 � z2 (from the observation above). We have y2, z2 P 1 � 8Z2, hene

2x2 � v � 1 mod 8Z2: as squares in Z {8Z are 0, 1 and 4, we have v � �1 mod 8Z8, hene ωpvq � 0 and

p2, vq � p�1qωpvq. Conversely, if v � 1 mod 8Z2, then v is a square in Z2, so p2, vq � 1, and if v � �1

mod 8Z2, then p1, 1, 1q is a solution of 2x2 � vy2 � z2 mod 8, so p2, vq � 1 by orollary 7.3.2.

It remains to hek that p2u, vq � p2, vqpu, vq. By lemma 7.4.7 (iii), this holds if pu, vq � 1 or p2, vq � 1:

assume pu, vq � p2, vq � �1. Then u, v � 3 mod 4Z2 and v � �3 mod 8Z2 hene v � 3 mod 8Z2.

Multiplying u and v by squares, we may thus assume that pu, vq P tp�1, 3q, p3,�5qu: we onlude sine

p1, 1, 1q is a solution of �2x2 � 3y2 � z2 and 6x2 � 5y2 � z2.

In ase (3), we have to show that p2u, 2vq � p�1qεpuqεpvq�ωpuq�ωpvq. As p2u, 2vq � p2u,�4uvq � p2u�uvq by

lemma 7.4.7 (iv), we get p2u, 2vq � p�1qεpuq�εp�uvq�ωp�uvq by the previous ase. As εp�1q � 1, ωp�1q � 0

and εpuqp1� εpuqq � 0, we have indeed εpuq � εp�uvq � ωp�uvq � εpuqεpvq � ωpuq � ωpvq as required. �

Proof of theorem 7.4.9. Here again, this is trivial when K � R: we heneforth assume K � Qp for some

prime p.

The formulas of theorem 7.4.8 show the bilinearity of p., .q (sine ε and ω are group homomorphisms). To

show it is non degenerate, we have to hek that whenever a P K�

is not a square, there exists b P K�

suh that pa, bq � �1. It is enough to hek this on representatives of K�

{K�2
. If p � 2, and u P Zp

is not a square, we have pu, pq � ppu, uq � �1. If p � 2, we have p5, 2xq � �1 if x P t�1,�5u and

p�1,�1q � p�1,�5q � �1. �

Notation. From now on, we denote by V the set of plaes of Q, i.e. the set of primes and 8. If v P V , we

denote by Qv the orresponding ompletion (so that Q
8

� R), and p., .qv the orresponding Hilbert symbol

on Qv �Qv.

Theorem 7.4.10. (Produt formula, Hilbert). If a, b P Q�

, then pa, bqv � 1 for all but �nitely many

v P V , and
±

vPV

pa, bqv � 1.

Proof. By bilinearity of the Hilbert symbol, it is enough to hek both statements when a and b are either

�1 or a prime. When a � b � �1, we have pa, bq2 � pa, bq
8

� �1 and pa, bqv � 1 if v P V zt2,8u. If

a � �1 and b is a prime, then p�1, bqv � 1 for all v P V if b � 2, and p�1, bqv � 1 if v P V zt2, bu and

p�1, bq2 � p�1, bqb � p�1qεpbq.

It remains to deal with the ase where a and b are prime. If a � b, we have pa, bqv � p�1, bqv for all v P V ,

by lemma 7.4.7 (iv), so we are redued to the preeding ase: assume heneforth that a � b. If b � 2,

we have pa, bqv � p�1qωpaq, pa, 2qa �
�

2
a

�

� p�1qωpaq. If a, b P V zt2, a, b,8u, we have pa, bqv � 1. Also

pa, bqv � p�1qεpaqεpbq, pa, bqa �
�

b
a

�

and pa, bqb �
�

a
b

�

, so that the produt formula redues to the equality

�

a
b

��

b
a

�

� p�1qεpaqεpbq, whih is nothing but the quadrati reiproity law. �

Theorem 7.4.11. Let paiqiPI be a �nite family of elements in Q�

, and pεi,vq iPI
vPV

a family of elements in

t�1u. Then there exists x P Q�

suh that pai, xqv � εi,v for all i P I and v P V if and only if the following

onditions are satis�ed:

(1) all but �nitely many εi,v are equal to 1;

(2)

±

vPV

εi,v � 1 for all i P I;

(3) for all v P V , there exists xv P Q
�

v suh that pai, xvqv � εi,v.

Proof. By theorem 7.4.10, the onditions are learly neessary. Conversely, assume they are satis�ed. After

multipliation of the ai by nonzero squares, we may assume that ai P Z zt0u for all i P I. Let S be the
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subset of V formed by 2, 8 and the primes that divide

±

iPI

ai: this is a �nite set. Let T be the set of those

v P V suh that εi,v � �1 for some i P I: this is a �nite set as well.

Speial ase: S X T � ∅. Put a �
±

ℓPT zt8u

ℓ and m � 8
±

ℓPSzt2,8u

ℓ: the hypothesis implies that a and m

are oprime. By Dirihlet's theorem on arithmeti progressions, there exists a prime p suh that p � a

mod mZ, and p R S Y T . Put x � ap.

Assume v P S: we have εi,v � 1 (sine S X T � ∅). As x ¡ 0, we have pai, xq8 � 1 for all i P I. If v is a

prime ℓ, we have x � ap � a2 mod mZ, so x � a2 mod 8Z and x � a2 mod ℓZ if ℓ � 2: this shows that

x is a square in Q�

v (f proposition 7.4.2), so that pai, xqv � 1 for all i P I.

Assume v � ℓ P V zS: we have ai P Z�ℓ for all i P I. As ℓ � 2, we have pai, xqℓ �
�

ai
ℓ

�vℓpxq
. If ℓ R T Y tpu,

we have x P Z�ℓ , so that pai, xqℓ � 1 � εi,v sine v R T . If ℓ P T , we have vℓpxq � 1 and there exists

xℓ P Q�

ℓ suh that pai, xℓqℓ � εi,ℓ for all i P I (by ondition (3)). As ℓ P T , at least one of the εi,ℓ is �1: as

pai, xℓqℓ �
�

ai
ℓ

�vℓpxℓq

by theorem 7.4.8 (sine vℓpaiq � 0 and ℓ � 2), we have vℓpxℓq � 1 mod 2Z, so that

pai, xqℓ �
�ai

ℓ

�

� pai, xℓqℓ � εi,ℓ

for all i P I (by theorem 7.4.8 again). If ℓ � p, we redue to the previous ases thanks to the produt

formula:

pai, xqp �
±

vPV ztpu

pai, xqv �
±

vPV ztpu

εi,v � εi,p,

whih �nishes the proof of the speial ase.

General ase. By orollary 7.4.3, squares in Q�

v form an open subgroup of Q�

v : by the approximation

theorem (f theorem 3.1.15), there exists x1 P Q�

suh that x1{xv is a square in Q�

v for all v P S. This

implies in partiular that pai, x
1

qv � pai, xvqv � εi,v for all v P V and all i P I. For all v P V and i P I, put

ε1i,v � pai, x
1

qvεi,v P t�1u. Obviously the family pε1i,vq iPI
vPV

satis�es onditions (1)-(3) (with x1v � x1xv for all

v P V ), and ε1i,v � 1 for all i P I and v P S. We an thus apply the speial ase to pε1i,vq iPI
vPV

: there exists

y P Q�

suh that pai, yqv � ε1i,v for all i P I and v P V , and we may take x � x1y. �

7.4.12. Complements on quadrati forms. In this part, K is a �eld of harateristi � 2, E a �nite dimen-

sional K-vetor spae, q a quadrati form on E, and ϕ the assoiated symmetri bilinear form. Reall that

pE, qq admits an orthogonal basis, i.e. a K-basis of E in whih (the matrix of) q is diagonal.

Notation. We denote by discpqq th disriminant of q. This is an element in K{K�2
but it will frequently

denote a representative in K.

De�nition 7.4.13. Two bases e and e1 are ontiguous if they share at least one vetor.

Theorem 7.4.14. Assume n � dimKpEq ¥ 3 and q is non-degenerate. Let e and e1 be two orthogonal

bases. then there exists a hain e0 � e, . . . , er � e1 of orthogonal bases suh that ei is ontiguous to ei�1

for all i P t1, . . . , ru (we say that the hain links e to e1).

Proof. Write e � pe1, . . . , enq and e1 � pe11, . . . , e
1

nq.

 Case where qpe1qqpe
1

1q � ϕpe1, e
1

1q
2
. This means that te1, e

1

1u is linearly independent and that the re-

strition of q to the plane P � Vectpe1, e
1

1q is non-degenerate. As qpe1qqpe
1

1q � 0 (beause e and e1 are

orthogonal and q non-degenerate), there exist ẽ2 and ẽ12 suh that pe1, ẽ2q and pe
1

1, ẽ
1

2q are orthogonal bases

of P . Let H � PK

: as P is non-degenerate, we have P
K

`H � E and H is non-degenerate. Let pẽ3, . . . , ẽnq

be an orthogonal basis of H . Then

eÑ pe1, ẽ2, ẽ3, . . . , ẽnq Ñ pe11, ẽ
1

2, ẽ3, . . . , ẽnq Ñ e1

is a hain of ontiguous bases.

 The ase qpe1qqpe
1

2q � ϕpe1, e
1

2q
2
is similar, replaing e11 by e12.

 Case where qpe1qqpe
1

iq � ϕpe1, e
1

iq
2
for i P t1, 2u. Then there exists λ P K�

suh that ẽ :� e11 � λe12 is

non-isotropi, and P � Vectpe1, ẽq is non-degenerate. Indeed, we have qpẽq � qpe11q � λ
2qpe12q, so we have to

hoose λ � �

qpe11q

qpe12q
. This is possible if #K ¡ 3. If K � F3, we an take λ � 1 (sine squares are 0 and 1).

Reall that K � F2 sine charpKq � 2. This hoie of λ made, we have

qpe11qqpẽq � ϕpe1, ẽq
2
� qpe1q

�

qpe11q � λ2qpe12q
�

�

�

ϕpe1, e
1

1q � λϕpe1, e
1

2q

�2

� qpe1qqpe
1

1q � λ2qpe1qqpe
1

2q � ϕpe1, e
1

1q
2
� λ2ϕpe1, e

1

2q
2
� 2λϕpe1, e

1

1qϕpe1, e
1

2q

� �2λϕpe1, e
1

1qϕpe1, e
1

2q � 0
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sine λ � 0 and ϕpe1, e
1

1qϕpe1, e
1

2q � 0 (beause qpe1qqpe
1

1qqpe
1

2q � 0 as e and eprime are orthogonal and q

non-degenerate) so that P is non-degenerate.

As ẽ is non-isotropi and Vectpe11, e
1

2q non-degenerate, there exists ẽ
1

suh that pẽ, ẽ1q is an orthogonal basis

of Vectpe11, e
1

2q. Put e2 � pẽ, ẽ1, e13, . . . , e
1

nq: this is an orthogonal basis of E whih is ontiguous to e1. As

Vectpe1, ẽq is non-degenerate, the �rst ase seen above shows that there exists a hain of ontigous bases

that links e to e2. �

De�nition 7.4.15. Reall that one says that q represents a P K when there exists x P Ezt0u suh that

qpxq � a (in partiular, q represents 0 when q has nonzero isotropi vetors).

Lemma 7.4.16. Let f � fpX1, . . . , Xn�1q be a non-degenerate quadrati form and a P K�

. The following

are equivalent:

(i) f represents a;

(ii) f � g ` aX2
for some quadrati form g in n� 2 variables;

(iii) f a aX2
n represents 0.

Proof. Write E � Kn�1
. Assume (i): there exists e P Ezt0u suh that qpeq � a. As f is non-degenerate, we

have Ke
K

` eK � E, and f � g` aX2
where g is the restrition of f to eK" this shows (ii). The impliation

(ii)ñ(iii) is obvious. Assume (iii): there exists px1, . . . , xnq P K
n
zt0u suh that fpx1, . . . , xn�1q � ax2n. If

xn � 0, then f
�

x1

xn
, . . . ,

xn�1

xn

�

� a. If xn � 0 then f represents 0: it ontains an hyperboli plane, so it is

surjetive and represents a. This shows (i). �

Lemma 7.4.17. Let g, h be two non-degenerate quadrati forms of rank ¥ 1 and f � g a h. The following

are equivalent:

(i) f represents 0;

(ii) there exists a P K�

whih is represented by g and h;

(iii) there exists a P K�

suh tha g a aX2
and ha aX2

represent 0.

Proof. The equivalene (ii)�(iii) follows from lemma 7.4.16 and (ii)ñ(i) is obvious. Assume (i): there exist

x, y suh that gpxq � hpyq. If a � gpxq � 0, this gives (ii). If gpxq � 0, then g and f are surjetive: they

both represent a � 1. �

Reall that two quadrati forms on a �nite �eld of odd harateristi (resp. on R) are equivalent if and

only if they have same rank and same disrimininant (resp. if they have the same signature).

7.4.18. Classi�ation of quadrati forms over Qp. In this setion p is a prime and pE, qq is a non-degenerate

quadrati spae over Qp.

Notation. Let e � pe1, . . . , enq be a orthogonal basis of E. For eah i P t1, . . . , nu, put ai � qpeiq, so that

q
� n
°

i�1

xiei

	

�

n
°

i�1

aix
2
i . We have discpqq �

n
±

i�1

ai in Q�

p {Q
�2
p . Put

εpq, eq �
±

1¤i j¤n

pai, ajqp P t�1u.

Theorem 7.4.19. The number εpq, eq does not depend of the hoie of e.

Proof. This is obvious if n � 1 sine εpq, eq � 1. If n � 2, then εpq, eq � 1 if and only if the form

a1X
2
� a2Y

2
� Z2

represents 0, i.e. if and only if q represents 1 (f lemma 7.4.16), whih is independent

of the hoie of e. We proeed by indution on n: assume heneforth that n ¥ 3. By theorem 7.4.14, it is

enough to show that εpq, eq � εpq, e1q when e and e1 are ontiguous: we may assume that e1 � pe1, e
1

2, . . . , e
1

nq

(by the bilinearity of Hilbert symbol, f theorem 7.4.9, εpq, eq does not hange when the vetors of e are

permuted). Then we have

εpq, eq � pa1, a2 � � � anqp
±

2¤i j¤n

pai, ajqp � pa1, discpqqa1qp
±

2¤i j¤n

pai, ajqp

and similarly

εpq, e1q � pa1, discpqqa1qp
±

2¤i j¤n

pa1i, a
1

jqp

(where a1i � qpe1iq for i P t2, . . . , nu). The indition hypothesis applied to the restrition of q to eK1 implies

that

±

2¤i j¤n

pai, ajqp �
±

2¤i j¤n

pa1i, a
1

jqp, so that εpq, eq � εpq, e1q. �

Theorem 7.4.19 implies that εpqq :� εpq, eq is an invariant of q, as do the rank and the disriminant.

Theorem 7.4.20. Let f be a quadrati form of rank n over Qp. The f represents 0 if and only if
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(i) n � 2 and discpfq � �1 (in Q�

p {Q
�2
p );

(ii) n � 3 and εpfq � p�1,� discpfqqp;

(iii) n � 4 and discpfq � 1 or discpfq � 1 and εpfq � p�1,�1qp;

(iv) n ¥ 5.

Corollary 7.4.21. Let f be a quadrati form of rank n over Qp. The f represents a P Q�

p if and only if

(i) n � 1 and discpfq � a (in Q�

p {Q
�2
p );

(ii) n � 2 and εpfq � pa,� discpfqqp;

(iii) n � 3 and discpfq � �1 or discpfq � �a and εpfq � p�1,� discpfqqp;

(iv) n ¥ 4.

Proof. By lemma 7.4.16, the quadrati form represents a if and only if g :� f a aX2
represents 0. As

discpgq � �a discpfq and εpgq � p�a, discpfqqpεpfq, this follows from theorem 7.4.20. �

Proof of theorem 7.4.20. Write f � a1X
2
1 � � � � � anX

2
n.

(i) Assume n � 2: the quadrati form f represents 0 if and only if �

a2
a1

is a square. As �

a2
a1
� � discpfq in

Q�

p {Q
�2
p , this is equivalent to discpfq � �1 in Q�

p {Q
�2
p .

(ii) Assume n � 3: the quadrati form f represents 0 if and only if �a3f � �a1a3X
2
1 � a2a2X

2
2 � X2

3

represents 0. By the very de�nition of the Hilbert symbol, this is equivalent to

1 � p�a1a3,�a2a3qp � p�1,�1qpp�1, a1qpp�1, a2qppa3, a3qp pa1, a2qppa1, a3qppa2, a3qp
looooooooooooooomooooooooooooooon

εpfq

.

As pa3, a3qp � p�1, a3qp by lemma 7.4.7 (ii), this is equivalent to 1 � p�1,�1qpp�1, discpfqqpεpfq hene to

the equality εpfq � p�1,� discpfqqp.

(iii) Assume n � 4: the quadrati form f represents 0 if and only if the forms a1X
2
1�a2X

2
2 and�a3X

2
3�a4X

2
4

both represent some element a P Q�

p {Q
�2
p (f lemma 7.4.17). By the ase (ii) of orollary 7.4.21 (whih

follows from the ase (ii) of theorem 7.4.20 proved above), suh an a is haraterized by the following

onditions :

pa,�a1a2qp � pa1, a2qp and pa,�a3a4qp � p�a3,�a4qp.

The subset A (resp. B) of Q�

p {Q
�2
p de�ned by the �rst (resp. the seond) ondition is an a�ne hyperplane

in the F2-vetor spae Q�

p {Q
�2
p . Thus f does not represent 0 if and only if A X B � ∅. This preisely

means that the orthogonal vetors to A and B (for the non-degenerate pairing p., .qp) are equal, i.e. that

�a1a2 � �a3a4 and that pa1, a2qp � �p�a3,�a4qp. The is equivalent to discpfq � 1. On the other hand,

we have εpfq � pa1, a2qppa1a2, a3a4qppa3, a4qp: if the �rst ondition holds, we have

εpfq � pa1, a2qpp�1, a3a4qppa3, a4qp � pa1, a2qpp�a3,�a4qpp�1,�1qp

(sine px, xq � p�1, xq by lemma 7.4.7 (ii)), so that the seond ondition is equivalent to εpfq � �p�1,�1qp.

(iv) Assume n ¥ 5. By orollary 7.4.21 (ii), a form in two variables represents half of the elements in

Q�

p {Q
�2
p (beause the equation εpfq � pa,� discpfqqp de�nes an a�ne hyperplane in the F2-vetor spae

Q�

p {Q
�2
p ). As #pQ�

p {Q
�2
p q ¥ 4 (f orollary 7.4.3), there exists at least one a P Q�

p {Q
�2
p whih is

distint from discpfq and represented by the form. This holds of ourse for quadrati forms of rank ¥ 3 as

well, hene for f . By lemma 7.4.16, we an write f � g`aX2
where g is a quadrati form of rank n�1 ¥ 4.

Then discpgq �
discpfq

a
� 1: by (iii), g represents 0, so f represents 0 as well. �

Theorem 7.4.22. Two quadrati forms over Qp are equivalent if and only if they have same rank, same

disriminant and same invariant ε.

Proof. We already know that two equivalent quadrati forms have same rank, same disriminant and same

invariant ε. Conversely, assume f and g are two quadrati forms having same rank n, same disriminant

and same invariant ε: we show by indution on n that f � g. This is obvious if n � 0: assume n ¡ 0.

By orollary 7.4.21, f and g represent the same elements in Q�

p : we an �nd a P Q�

p whih is represented

by both f and g. Then we an write f � f 1 ` aX2
and g � g1 ` aXn

, where f 1 and g1 are of rank n� 1.

As discpf 1q � a discpfq � a discpgq � discpg1q and εpf 1q � pa, discpf 1qqpεpfq � pa, discpg1qqpεpgq � εpg1q, the

indution hypothesis implies that f 1 � g1, hene f � g. �

Corollary 7.4.23. Up to equivalene, there exists exatly one anisotropi form of rank 4 over Qp, whih is

X2
1 � aX2

2 � bX2
3 � abX4X

2
4 for any a, b P Q�

p suh that pa, bqp � �1.

Proposition 7.4.24. Let n P Z
¡0, d P Q�

p and ε P t�1u. There exists rank n a quadrati form f over Qp

suh that discpfq � d and εpfq � ε if and only if n � 1 and ε � 1, or n � 2 and d � �1, or n � 2 and ε � 1

or n ¥ 3.
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Proof. This is obvious if n � 1. If n � 2, write f � aX2
1�bX

2
2 : if d � �1 we have ε � pa, bqp � pa,�dqp � 1,

so we annot have d � �1 and ε � �1 simultaneously. Conversely, if d � �1 and ε � 1, we an take

f � X2
1 �X2

2 , and if d � �1, there exists a P Q�

p suh that pa,�dqp � ε, and we take f � aX2
1 � adX2

2 . If

n ¥ 3, let a P Q�

p whose image in Q�

p {Q
�2
p is distint from �d: by what preedes, there exists a rank 2

quadrati form g suh that discpgq � ad and εpgq � εpa,�dqp, so that f � g � aX2
works. When n ¥ 3,

we redue to the ase n � 3 bytaking f � g � X2
4 � � � � � X2

n where g has rank 3, disriminant d and

εpgq � ε. �

Corollary 7.4.25. The number of equivalenes of rank n quadrati forms over Qp is summarized in the

following table:

n 1 2 ¥ 3

p � 2 8 15 16

p � 2 4 7 8

7.4.26. Classi�ation of quadrati forms over Q. Reall that V is the set of plaes of Q, i.e. the set of

prime numbers and a point 8, and that for eah v P V , we denote by Qv the orresponding ompletion of

Q (so Q
8

� R). If f is a quadrati form over Q and v P V , then if an be seen as a quadrati form fv over

Qv, so besides the global invariants given by the rank and the disriminant, we have the loal invariants

εvpfq :� εpfvq P t�1u for v P V zt8u, and the signature ps, tq. By the produt formula, we have

±

vPV

εvpfq � 1

Theorem 7.4.27. (Hasse-Minkowski). f represents 0 if and only if fv represents 0 for all v P V .

Proof. Write f � a1X
2
1 � � � � � anX

2
n with a1, . . . , an P Q�

. Replaing f by a�1
1 f , we may of ourse assume

a1 � 1. Assume fv represents 0 for all v P V : we have to prove that f represents 0 (the onverse is obvious).

 Assume n � 2. Write f � X2
1 � aX2

2 . As f8 represents 0, we have a ¡ 0: write a �
±

pPV zt8u

pvppa2q. As

fp represents 0, the element a is a square in Q�

p , so that vppaq is even. As this holds for all prime p, this

means that a is a square in Q�

, and f represents 0.

 Assume n � 3. Write f � X2
1 � aX2

2 � bX2
3 . Multiplying a and b by appropriate squares in Q�

, we may

assume that a and b are squarefree integers. We may also assume |a| ¤ |b|. We proeed by indution on

m � |a| � |b| ¡ 1 (sine ab � 0). If m � 2, we have f � X2
1 � X2

2 � X2
3 . As f

8

represents 0, the ase

f � X2
1 �X2

2 �X2
3 is impossible; in all other ases f represents 0. Assume m ¡ 2, so that |b| ¥ 2. Write

b � �p1 � � � pr where p1, . . . , pr are paiwise distint primes. Let p P tp1, . . . , pru. If p ∤ a, then a P Z�p . By

hypothesis there exists px, y, zq P Z3
p zpZ

3
p suh that x2 � ay2 � bz2, hene x2 � ay2 � 0 mod pZp. If p | y,

then p | x, so that p2 | �bz2, whene p | z (beause vppbq � 1), ontraditing the fat that px, y, zq R pZ3
p.

This implies that y P Z�p , and a is a square modulo p. Of ourse, this also holds when p | a. As this is true

for eah p P tp1, . . . , pru, this shows that a is a square modulo b (by the Chinese remainder theorem): we

an �nd t, b1 P Z suh that t2 � a�bb1. We may assume |t| ¤
|b|

2
. As bb1 � t2�a � NKp

?

aq{Kpt�
?

aq (where

K � Q or K � Qp), lemma 7.4.6 implies that f represents 0 in K if and only if f 1 :� X2
1 �aX

2
2�b

1X2
3 does.

In partiular, f 1v represents 0 for all v P V . As |b1| �
|

t2�a
|

|b|
¤

|b|

4
� 1   |b| (sine |b| ¥ 2), we have b1 � b2u2

with b2 a squarefree integers, u P Z and |b2|   |b|. The indutin hypothesis implies that f 1 represents 0: so

does f .

 Assume n � 4. Write f � paX2
1 � bX2

2 q � pcX2
3 � dX2

4 q. Let v P V . As fv represents 0, lemma 7.4.17

implies the existene of xv P Q�

v whih is represented by both aX2
1 � bX2

2 and cX2
3 � dX2

4 . By orollary

7.4.21 (whih also holds when v � 8), this means that pxv,�abqv � pa, bqv and pxv,�cdqv � pc, dqv. As

±

vPV

pa, bqv �
±

vPV

pc, dqv � 1, theorem 7.4.11 applied to p�ab,�cdq (hene #I � 2) implies the existene of

x P Q�

suh that px,�abqv � pa, bqv and px,�cdqv � pc, dqv for all v P V . This means that the quadrati

forms aX2
1 � bX2

2 � xZ2
and cX2

3 � dX2
4 � xZ2

represent 0 in Qv for all v P V : by the ase n � 3 treated

above, this implies that they represent 0 in Q. In partiular, x P Q�

is represented by aX2
1 � bX2

2 and

cX2
3 � dX2

4 : by lemma 7.4.17 again, this implies that f represents 0.

 Assume n ¥ 5. We use indution on n. Write f � hag with h � a1X
2
1�a2X

2
2 and g � �a3X

2
3�� � ��anX

2
n.

Let S be the subset of V made of 8, 2 and those primes p suh that vppaiq � 0 for some i P t3, . . . , nu:

this is a �nite set. Let v P S. As fv represents 0, there exists av P Q�

v whih is represented by hv and gv
(f lemma 7.4.17): there exists px1,v, . . . , xn,vq P Qn

v zt0u suh that hpx1,v, x2,vq � av � gpx3,v, . . . , xn,vq.

As squares form an open subset of Q�

v (f orollary 7.4.3) and Q�

is dense in Q�

v , there exist x1, x2 P Q
�

suh that a � hpx1, x2q P Q�

satis�es a P avQ
�2
v for all v P S. Let f1 � aZ2

� g: this is a rank n � 1
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quadrati form over Q. As gv represents av hene a, the form f1,v represents 0 for all v P S. If v P V zS, we

have ai P Z�v for all i P t3, . . . , nu, so that discpgq P Z�v . As v � 2, we have εvpf1q � 1 (f theorem 7.4.8).

As the rank of g is ¥ 3, theorem 7.4.20 implies that gv represents 0 (as v � 2, the Hilbert symbols is trivial

on pairs of units, f theorem 7.4.8 again). This show that f1,v represents 0 for all v P V : the indution

hypothesis implies that f1 represents 0 hene g represents a over Q. By lemma 7.4.17, this shows that f

represents 0. �

Remark 7.4.28. The analogue of Hasse-Minkowski theorem fails for forms of higher degree. For instane

the form of degree 4

pX2
1 � � � � �X2

nq
2
� 2pX2

n�1 � � � � �X2nq
2

does not represent 0 in Q, but it does in R and Qp for all prime p when n ¥ 5 (by theorem 7.4.20).

Corollary 7.4.29. f represents a P Q�

if and only if it does in Qv for all v P V .

Proof. This follows from theorem 7.4.27 applied to the form aZ2
� f and lemma 7.4.16. �

Corollary 7.4.30. If f is of rank ¥ 5, then it represents 0 if and only if it does in R.

Proof. This follows from theorems 7.4.27 and 7.4.20. �

Theorem 7.4.31. Two quadrati forms f and g over Q are equivalent if and only if they are over Qv for

all v P V .

Proof. The neessity is trivial. For the onverse, we proeed by indution on the rank n of f and g. There

is nothing to do if n � 0: assume n ¡ 0. There exists a P Q�

whih is represented by f , hene also by g (f

orollary 7.4.29). This implies that f � aX2
` f 1 and g � aX2

` g1 where f 1 and g1 are of rank n� 1. By

Witt simpli�ation theorem we have f 1v � g1v for all v P V : the indution hypothesis implies that f 1 � g1, so

that f � g. �

Proposition 7.4.32. Let d P Q�

{Q�2
, pεvqvPV P t�1uV and ps, tq P Z2

¥0. Then there exists a quadrati

form f of rank n over Q whose invariants are d, pεvqvPV and ps, tq if and only if

(i) εv � 1 for all but �nitely many v P V and

±

vPV

εv � 1;

(ii) εv � 1 if n � 1 or n � 2 and dv � �1 in Q�

v {Q
�2
v ;

(iii) s� t � n;

(iv) d
8

� p�1qt;

(v) ε
8

� p�1q
tpt�1q

2
.

Proof. The neessity is obvious. For the onverse, the ase n � 1 is trivial.

Assume n � 2. If v P V , the non-degeneray of the Hilbert symbol (f theorem 7.4.9) and ondition (ii)

imply the existene of xv P Q�

v suh that pxv,�dvqv � εv. Condition (i) and theorem 7.4.11 then implies

the existene of x P Q�

suh that px,�dqv � εv for all v P V , so we an take f � xX2
1 � xdX2

2 .

Assume n � 3. Let S be the subset of V made of those v suh that p�dv,�1qv � �εv: this is a �nite

set. If v P S, we an �nd cv P Q�

v whose image in Q�

v {Q
�2
v is distint from �dv. As Q

�2
v is open in Q�

v ,

the approximation theorem (f theorem 3.1.15) implies the existene of c P Q�

whose image in Q�

v {Q
�2
v

oinides with that of cv for all v P S. By the ase n � 2 seen above, there exists a form g of rank 2 over Q

suh that discpgq � cd, εvpgq � pc,�dqvεv for all v P V . Then we an take f � cX2
� g.

For n ¥ 4, we use indution on n. If s ¥ 1, the indution hypothesis implies the existene of a quadrati

form g of rank n� 1 over Q, with invariants d, pεvqvPV and ps� 1, tq, and we an take f � X2
` g. If s � 0,

the indution hypothesis implies the existene of a quadrati form h of rank n� 1 over Q, with invariants

�d, pεvp�1,�dqvqvPV and ps, t� 1q, and we an take f � �X2
` h. �

7.4.33. Cubi forms. Let K be a �eld (of harateristi 0 to simplify), n, d P Z
¡0 and Hn,d be the spae

of homogeneous polynomials of degree d in KrX1, . . . , Xns (this is a K-vetor spae of dimension

�

n�d�1
n�1

�

).

An element f P Hn,dzt0u de�nes a projetive hypersurfae Vpfq � Pn�1
pKq. A point P P Vpfq is a singular

point when

(48)

Bf
BXi

p

pP q � 0 for all i P t1, . . . , nu (where pP P An
pKqzt0u is a lift of P P Pn�1

pKq). The

hypersurfae VpF q is non-singular if it has no singular points.

The resultant polynomial of a olletion of elements in KrX1, . . . , Xns is a polynomial in the oe�ients

of these polynomials whih vanishes if and only if they all have a ommon root (f [9, Chapter 13 1.A℄).

The disriminant ∆pfq of f is then the resultant of the polynomials

Bf
BXi

for i P t1, . . . , nu: this is an

(48)

By Euler's formula, we have df �
n
°

i�1

Xi
Bf
BXi

: the vanishing of the partial derivatives at P P P
n�1

pKq implies P P Vpfq.
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homogeneous polynomial of degree npd� 1qn�1
in the

�

n�d�1
n�1

�

oe�ients of f and is non-zero at f if and

only if Vpfq is a non-singular projetive hypersurfae.

Theorem 7.4.34. (Demyanov, Lewis, f [6℄, [14℄). Let p be a prime, K{Qp a �nite extension and

f �
°

1¤i¤j¤k¤n

ai,j,kXiXjXk P KrX1, . . . , Xns

be a ubi form. If n ¥ 10 then f represents 0.

Proof.  Assume �rst that Vpfq is non-singular, i.e. that ∆pfq P K�

: we have δpfq :� vKp∆pfqq P Z,

and δpfq P Z
¥0 when f P OKrX1, . . . , Xns. We say that a form g P Hn,3 is K-equivalent to f if there

exists M P GLnpKq suh that g � f �M . Of ourse, g is non-singular as well, and f is equivalent to an

element in OKrX1, . . . , Xns, moreover, f represents 0 if and only if g does. We say that f is redued if

f P OKrX1, . . . , Xns and δpfq ¤ δpgq for all the forms g that are K-equivalent to f . Of ourse, replaing f

by an appropriate F -equivalent form, we may assume that f is redued.

Let r P Z
¥0 be minimal suh that f � f1pL1, . . . , Lrq mod πOKrX1, . . . , Xns (where π denotes a uni-

formizer of K), where f1 P OKrY1, . . . , Yrs and L1, . . . , Lr P OKrX1, . . . , Xns are linearly independent

linear forms. We have of ourse r ¤ n. Also, L1, . . . , Lr are the �rst omponents of an unimodular

map M P GLnpOKq, so that g :� f �M�1
is redued as well: replaing f by g, we may assume that

Li � Xi, i.e. that fpX1, . . . , Xnq � f1pX1, . . . , Xrq mod πOKrX1, . . . , Xns. This implies that the form

f 1 � π�1fpπX1, . . . , πXr, Xr�1, . . . , Xnq has oe�ients in OK . Moreover, as ∆ is homogeneous of degree

n2n�1
in the variables of f , we have

∆pf 1q � π�n2
n�1

∆pfpπX1, . . . , πXr, Xr�1, . . . , Xnqq

and ∆pfpπX1, . . . , πXr, Xr�1, . . . , Xnqq � π3r2n�1

∆pfq.

The last equality follows from the fat that multiplying the variables X1, . . . , Xr by π has the e�et of

multiplying

�

r�2
3

�

oe�ients by π3
(namely those XiXjXk suh that 1 ¤ i ¤ j ¤ k ¤ r),

�

r�1
2

�

pn � rq

oe�ients by π2
(those XiXjXk suh that 1 ¤ i ¤ j ¤ r   k ¤ n) and r

�

n�r�1
2

�

oe�ients by π (those

XiXjXk suh that 1 ¤ i ¤ r   j ¤ k ¤ n), so that the mean saling on the

�

n�2
3

�

oe�ients of f is

1

p

n�2

3 q

�

3
�

r�2
3

�

� 2
�

r�1
2

�

pn� rq � r
�

n�r�1
2

�

	

�

3r
n

so that the e�et on ∆pfq is multipliation by π
3r
n
n2n�1

� π3r2n�1

sine ∆ is homogeneous of degree n2n�1
.

Put together, this implies that ∆pf 1q � πp3r�nq2
n�1

∆pfq, so that

δpf 1q � δpfq � p3r � nq2n�1.

As f is redued, we have δpfq ¤ δpf 1q, so that 3r ¥ n: if n ¥ 10, we have r ¥ 4. By Chevalley-Warning

theorem (f theorem 7.1.2), the redution of f1 modulo π represents 0 (beause it has 4 variables and degree

3 over the �nite �eld κK): there exists pb1, . . . , brq P Or
KzπO

r
K suh that f1pb1, . . . , brq P πOK . We may of

ourse assume b1 � 1. Replaing f by the unimodularly equivalent

fpX1, X2 � b2X1, . . . , Xr � brXr, Xr�1, . . . , Xnq P OKrX1, . . . , Xns

(this is still redued), we may assume that pb1, . . . , brq � p1, 0, . . . , 0q. Then

fp1, 0, . . . , 0q � f1pb1, . . . , brq mod πOK

so that fp1, 0, . . . , 0q P πOK . This shows that the oe�ient of X3
1 in f belongs to πOK . We thus have

f � X2
1L�X1Q� C mod πOKrX1, . . . , Xns

where L,Q,C P OKrX2, . . . , Xrs are homogeneous of degres 1, 2 and 3 respetively. By minimality of r, we

annot have pL,Qq � p0, 0q mod πOKrX2, . . . , Xrs (otherwise we ould replae f1 by C).

First ase. If L R πOKrX2, . . . , Xrs, there exists i P t2, . . . , ru suh that

BL
BXi

P O�

K . As Q and C are

homogeneous of degree ¥ 2, we have BQ
BXi

p1, 0, . . . , 0q � BC
BXi

p1, 0, . . . , 0q � 0, so that

Bf
BXi

p1, 0, . . . , 0q � BL
BXi

P O�

K .

Seond ase. If L P πOKrX2, . . . , Xrs, there exists d � pd2, . . . , drq P Or�1
K suh that Qpdq R πOK ,

i.e. Qpdq P O�

K . Put x � p�Cpdq, d2Qpqq, . . . , drQpdq, 0, . . . , 0q P On
K . We have x R πOn

K sine

pd2Qpqq, . . . , drQpdq � Qpdqdq R πOr�1
K . We have

fpxq � Cpdq2 LpQpdqdq
loooomoooon

QpdqLpdq

�CpdqQpQpdqdq
loooomoooon

�Qpdq3

�CpQpdqdq
loooomoooon

�Qpdq3Cpdq

mod πOK
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sine L (resp. Q, resp. C) is homogeneous of degree 1 (resp. 2, resp. 3). As Lpdq P πOK , this shows that

fpxq P πOK . On the other hand, we have

Bf
BX1

� 2X1L�Q mod πOK rX1, . . . , Xns, so that

Bf
BX1

pxq � �2CpdqQpDqLpdq �Qpdq3 mod πOK

whih implies that

Bf
BX1

pxq P O�

K sine Lpdq P πOK and Qpdq P O�

K .

In any ase we an apply Newton's lemma to �nd a nonzero solution of f � 0, whih onludes the proof

when Vpfq is non-singular.

 Proof of the general ase. As ∆ is a nonzero homogeneous form of degree n2n�1
in the

�

n�2
2

�

variables of

f , it annot vanish on any neighborhood of a point in Hn,2: we an �nd a sequene of non-singular forms

pfkqkPZ
¥0

that onverges oe�ientwise to f . By the non-singular ase proved above, for eah k P Z
¥0, we

an �nd xk P K
n
zt0u suh that fkpxkq � 0. As fk is homogeneous, we an multiply xk by an appropriate

power of π and assume that

xk P K :�
n
�

i�1

tx P Or
K ; xi P O�

Ku.

As K is ompat as a �nite union of ompat sets, the sequene pxkqkPZ
¥0

has an aumulation point: we

may assume it onverges to some a P K (so in partiular a � 0. By ontinuity of f , we have fpaq � 0 and

f represents 0. �

Remark 7.4.35. (1) The bound 10 is optimal. In fat, if p is a prime, K{Qp a �nite extension and n P Z
¡0,

it is easy to onstrut a homogeneous polynomial in n2
variables and of degree n that does not represent 0,

as follows (f [3, p.58℄). Let q � #κK . After the hoie of a Fq-basis of Fqn , the norm NFqn {Fq
: Fqn Ñ Fq

provides an homogeneous polynomial FqrX1, . . . , Xns of degree n whih does not represent 0 (we have

NFqn {Fq
pxq � 0 ñ x � 0). We may lift it oe�ient-wise to get a degree n homogeneous polynomial

g P OKrX1, . . . , Xns suh for all for all x P On
K , we have gpxq P πOK ñ x P πOK . Put

fpX1, . . . , Xn2
q �

n�1
°

i�0

πigpXin�1, . . . .Xin�n�1q P OKrX1, . . . , Xn2
s

If f represents 0, there exists a primitive vetor x � px1, . . . , xn2
q P On2

K zπO
n2

K suh that fpxq � 0. This

implies that gpx1, . . . , xnq P πOK , so that x1, . . . , xn P πOK , hene gpx1, . . . , xnq P π
nOK . This implies

that πgpxn�1, . . . , x2nq P π
2OK , so that xn�1, . . . , x2n P πOK . A straightforward indution thus shows that

xi P πOK for all i P t1, . . . , n2
u, whih is a ontradition.

(2) Heath-Brown has shown (f [11℄) that a non-singular ubi form in n ¥ 10 variables with rational

oe�ients represents 0 in Q.

7.5. Exerises.

Exerise 7.5.1. Let V be a Fq-sheme of �nite type. Show that Dwork's theorem is equivalent to the

existene of algebrai omplex numbers α1, . . . , αr, β1, . . . , βs suh that #V pFqkq �
r
°

i�1

αki �
s
°

j�1

βkj for all

k P Z
¡0.

Exerise 7.5.2. Assume V is suh that ZV pT q �
1�aT�qT 2

p1�T qp1�qT q
(this holds when V is an ellipti urve). Show

that #V pFqq determines #V pFqkq for all k P Z
¡0.

Exerise 7.5.3. Find the Zeta funtions of the following shemes V over Fq:

(1) the 3-dimensional hypersurfae de�ned by XY � ZT � 0;

(2) the projetive urve in P2
Fq

with inhomogeneous equation:

(i) XY � 0;

(ii) XY pX � Y � 1q � 0;

(iii) X2
� Y 2

� 1;

(iv) Y 2
� X3

;

(v) Y 2
� X3

�X2
;

(3) V � GLd and V � SLd over Fq for d P Z
¡0.

Exerise 7.5.4. Let V be a geometrially irreduible smooth projetive variety of dimension d over Fq.

Show that the Riemann hypothesis for ZV pT q implies that #V pFqnq � qdn � Opqpd�1{2qn
q. Conversely,

assuming that d � 1, ZV pT q �
P pT q

p1�T qp1�qT q
and the funtional equation, show that the Riemann hypothesis

for ZV pT q follows from this estimate.
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Exerise 7.5.5. Let P pX,Y, Zq � 3X3
� 4Y 3

� 5Z3
.

(1) Show that the equation P px, y, zq � 0 has a non zero solution in F3
p for all prime p.

(2) Dedue that the equation P px, y, zq � 0 has a non zero solution in Z3
p for all prime p.

Exerise 7.5.6. Let P pX,Y, Zq � X4
� 2Y 2

� 17Z4
.

(1) Show that the equation P px, y, zq � 0 has a non-zero solution in Z3
p for all prime p.

(2) Show that the equation P px, y, zq � 0 has no non-zero solution in Q3

Exerise 7.5.7. Let p be an odd prime andK{Qp a �nite extension. Assume f �
n
°

1�1

aiX
2
i P KrX1, . . . , Xns

is a quadrati form of rank n.

(1) Show that if ai P O
�

K for at least three indies i P t1, . . . , nu, then f represents 0.

(2) Show that if n ¥ 5, then f represents 0.

Exerise 7.5.8. Does the quadrati form x2 � y2 � z2 � 7t2 represent 0 over Q?

Exerise 7.5.9. Let p be a prime, f � a1x
2
1 � � � � � anx

2
n and g � b1x

2
1 � � � � � bmx

2
m be two diagonal

non-singular quadrati forms with oe�ients in Qp. Show that εppf ` gq � εppfqεppgqpdiscpfq, discpgqqp.

Exerise 7.5.10. Determine all the elements of Q7 represented by the quadrati form 3x2 � 7y2.

Exerise 7.5.11. Let f � 5X2
� 7Y 2

.

(1) Does the form f represent 0 in Q?

(2) Show that the form f represents a nonzero rational integer a in Q if and only if pa, 35qp � p5,�7qp for

all odd prime p.

(3) Assuming a P Z zt0u is squarefree, haraterize by onditions on Legendre symbols those a that an be

represented by f in Q, distinguishing the following four ases:

(i) gcdpa, 35q � 1;

(ii) 5 | a and 7 ∤ a;
(iii) 7 | a and 5 ∤ a;
(iv) 35 | a.
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8. The Kroneker-Weber Theorem

8.1. The statements. What follows is taken from [25, Chapter 14℄. In what follows, if n P Z
¡0, ζn will

denote a (any) primitive n-th root of unity. If F ia a �eld whose harateristi does not divide n, the

extension F pζnq{F is Galois (�eld of deomposition of Xn
� 1). If σ P GalpF pζnq{F q, there exists a unique

χpσq P pZ {nZq� suh that σpζnq � ζ
χpσq
n , and σ is entirely determined by χpσq, so that the map

χ : GalpF pζnq{F q Ñ pZ {nZq�

σ ÞÑ χpσq

is an injetive group homomorphism. In partiular, the extension F pζnq{F is abelian.

Class �eld theory is devoted in lassifying abelian extensions of a given �eld. A lassial onsequene of

global lass �eld theory is the follow result:

Theorem 8.1.1. (Kroneker-Weber). Let K{Q be a �nite abelian extension. Then there exists n P Z
¡0

suh that K � Qpζnq.

Instead of using lass �eld theory, we will dedue it from its loal ounterpart:

Theorem 8.1.2. Let p be a prime number and K{Qp a �nite abelian extension. Then there exists n P Z
¡0

suh that K � Qppζnq.

8.2. Preliminaries.

8.2.1. Abelian extensions.

Proposition 8.2.2. Any subextension of an abelian extension is abelian. Any omposite of �nitely many

abelian extensions is an abelian extension.

Proof. Let K be a �eld.

 Let L{K be an abelian extension. If M is a subextension of L{K, the group GalpL{Mq is a subgroup of

the abelian group GalpL{Kq: it is abelian as well, and normal in GalpL{Kq, so that M{K is Galois, with

group GalpM{Kq � GalpL{Kq{GalpL{Mq, whih is abelian. This shows that L{M and M{K are abelian.

 Let L{K be an algebrai extension and L1, L2 subextensions of L{K suh that L1{K and L2{K are

abelian. Then L2 is the �eld of deomposition of some separable polynomial P pXq P KrXs over K, so that

L1L2 is the �eld of deomposition of P over L1. This implies that the extension L1L2{L1 is separable (even

Galois): as L1{K is separable, this shows that L1L2{K is separable. On the other hand, if σ : L1L2 Ñ L

is a morphism of K-algebras (where L is an algebrai losure of L), we have σpL1q � L1 and σpL2q � L2

(sine L1 and L2 are Galois over K), hene σpL1L2q � L1L2, i.e. L1L2{K is normal, thus Galois. The

restritions to L1 and L2 indue a group homomorphism

GalpL1L2{Kq Ñ GalpL1{Kq � GalpL2{Kq

whih is injetive sine if σ P GalpL1L2{Kq indues the identity on L1 and L2, then σ � IdL1L2
. This implies

that GalpL1L2{Kq identi�es with a subgroup of the abelian group GalpL1{Kq � GalpL2{Kq: it is abelian as

well. By indution, this extends to the omposite of �nitely many abelian extensions. �

Proposition 8.2.3. Let L{K be an abelian extension of number �elds, p � OK a nonzero prime ideal and

P � OL a prime ideal lying above p. Then

tσ P GalpL{Kq ; σpPq � Pu

tσ P GalpL{Kq ; p�x P OLqσpxq P x�Pu

are subgroup of GalpL{Kq that do not depend of P: we denote them DPpL{Kq and IppL{Kq respetively,

and all them the deomposition and the inertia group of L{K at p respetively.

Proof. The set tσ P GalpL{Kq ; σpPq � Pu is the stabilizer of P for the ation of GalpL{Kq on the set of

prime ideals dividing p: this is a subgroup of GalpL{Kq. As the ation is transitive, those stabilizers are all

onjugate, hene equal sine GalpL{Kq is abelian. This shows the statements for DppL{Kq. The analogue

for IppL{Kq follow. �
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8.2.4. Cylotomi extensions of Q.

Proposition 8.2.5. The minimal polynomial of ζn over Q is the ylotomi polynomial

ΦnpXq �
±

kPpZ {nZq�
pX � ζknq.

Proof. We have Xn
� 1 �

±

d|n

ΦdpXq: a straightforward indution (starting with Φ1pXq � X � 1) implies

that ΦnpXq P ZrXs for all n P Z
¡0. We have to prove that ΦnpXq is irreduible over Q, i.e. over Z (its

ontent is 1). Assume we an write ΦnpXq � P pXqQpXq with P,Q P QrXs moni and P irreduible. Write

P �

1
a
rP and Q �

1
b
rQ with a, b P Z

¡0 and

rP, rQ P ZrXs with ontent 1: we have

rP rQ � abΦn. Taking

ontents we have ab � 1, i.e. a � b � 1, so that P,Q P ZrXs. Replaing ζn by another primitive n-th root

of unity, we may assume that P pζnq � 0, and P is the minimal polynomial of ζn over Q.

Let p be a prime not dividing n. As ζpn is a primitive n-th root of unity, we have Φnpζ
p
nq � 0. Assume that

P pζpnq � 0, so that Qpζpnq � 0. As P is the minimal polynomial of ζn over Q, we have P pXq | QpXp
q: write

QpXp
q � P pXqUpXq. We have UpXq P ZrXs sine P is moni. Modulo p, this gives QpXqp � P pXqU pXq

in FprXs. If α P Fp is a root of P , we have Qpαq � 0. This implies that X � α | gcdpP pXq, QpXqq, so

that pX � αq2 | P pXqQpXq � ΦnpXq, whene pX � αq2 | Xn
� 1 in FprXs. This ontradits the fat that

the polynomial Xn
� 1 is separable in FprXs (sine p ∤ n). We thus have P pζpnq � 0. A straightforward

indution implies that for any k P Z
¡0 prime to n, we have P pζknq � 0, so that ΦnpXq | P pXq, i.e. Φn � P

is irreduible over Q. �

Remark 8.2.6. If p is a prime integer and e P Z
¡0, we have

ΦpepXq � ΦppX
pe�1

q � Xpp�1qpe�1

�Xpp�2qpe�1

� � � � �Xpe�1

� 1 � Xpe
�1

Xpe�1
�1
,

and one an show diretly the irreduibility of Φpe over Z using the Eisenstein riterion.

Proposition 8.2.7. If p is a prime number and e P Z
¡0. The ring of integers of Qpζpeq is Zrζpes and

�

�dQpζpe q

�

�

� pp
e�1

ppe�e�1q
�

peϕpp
e
q

p
ϕppeq
p�1

.

Proof. Put ζ � ζpe and K � Qpζpeq for short.

 We ertainly have Zrζs � OK . We have Φpep1q � Φpp1q � p, so that

±

kPpZ {pe Zq�
p1 � ζkq � p. If

k P pZ {peZq�, we have 1�ζk

1�ζ
P Zrζs. As ζk is also a primitive pe-th root of unity, we also have

1�ζ
1�ζk

P Zrζs,

so that

1�ζk

1�ζ
P Zrζs�. What preedes thus imply that p � up1� ζqpp�1qpe�1

with u P Zrζs�. If π � 1� ζ

was invertible in A, so would be p � uπϕpp
r
q

, implying that p would be invertible in Z (sine Z is integrally

losed), whih is not: π is not invertible in OK .

We have NK{Qp1�ζq �
±

1¤k pr

gcdpk,pq�1

p1�ζq � Φpep1q � p. If m P t1, . . . , e�1u, the element ζp
m

is a primitive

pe�m-th root of unity, so that NQpζp
m
q{Q

�

1� ζp
m�

� p by what preedes. This implies

NK{Q
�

1� ζp
m�

� NK{Qpζp
m
q

�

NQpζp
m
q{Q

�

1� ζp
m�

	

� prK:Qpζp
m
qs

As rK : Qs � ϕppeq � pe�1
pp � 1q and

�

Q
�

ζp
m�

: Q
�

� pe�m�1
pp � 1q, we have

�

K : Q
�

ζp
m��

� pm, so

that

NK{Q
�

1� ζp
m�

� pp
m

We have Φ1

pepXq �
°

1¤k pe

gcdpk,pq�1

±

1¤j pe

gcdpj,pq�1
j�k

�

X � ζj
�

, so Φ1

pepζq �
±

1 k pe

gcdpk,pq�1

pζ � ζkq � ζϕpp
e
q�1

±

1 k pe

gcdpk,pq�1

p1� ζk�1
q

and

NK{Q
�

Φ1

pepζq
�

� NK{Qpζq
ϕppeq�1

¹

1 k pe

gcdpk,pq�1

NK{Q
�

1� ζk�1
�

As ζ P O�

K , we have NK{Qpζq P t�1u. As NK{Q
�

1 � ζk�1
�

� pp
vppk�1q

by what preedes, we have thus

NK{Q
�

Φ1

pepζq
�

� �pc, where c �
°

1 k pe

gcdpk,pq�1

pvppk�1q
. An integer k P t2, . . . , pe � 1u satis�es vppk � 1q ¥ r

if and only if k � 1 � prx with x P t1, . . . , pe�r � 1u if r P t1, . . . , e � 1u and x P t1, . . . , pe � 2u if

r � 0: there are pe�r � 1 (resp. pe � 2) suh integers. This implies that there are pe � pe�1
� 1 (resp.

pe�r � pe�r�1
) integers k P t2, . . . , pe � 1u suh that vppk � 1q � 0 (resp. suh that vppk � 1q � r). Among
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those k suh that vppk � 1q � 0, there are pe�1
� 1 that are divisible by p. This implies that we have

c � pe � pe�1
� 1� ppe�1

� 1q �
e�1
°

r�1

prppe�r � pe�r�1
q � eppe � pe�1

q � pe�1
i.e. c � pe�1

ppe� e� 1q.

We have

(49)

D
�

1, ζ, � � � , ζϕpp
e
q�1

�

� p�1q
ϕppeqpϕppeq�1q

2 NK{Q
�

Φ1

pepζq
�

� �pc

If px1, . . . , xϕpprqq is a Z-basis of OK , we have

D
�

1, ζ, � � � , ζϕpp
e
q�1

�

� rOK : Zrζss2 Dpx1, . . . , xϕppeqq

and rOK : Zrζss2|pc, so that #pOK{Zrζsq � rOK : Zrζss is a power of p (f orollary 2.6.5).

 We have pOK � πϕpp
r
qOK , so pZ � ZXπOK . As pZ is maximal in Z and 1 R πOK (beause π is not

invertible in OK), we have in fat ZXπOK � pZ. As the extension Z � OK is integral and pZ is maximal

in Z, the ideal πOK is maximal in OK . As pOK � πϕpp
r
qOK , there is a �ltration

pOK � πϕpp
e
qOK � πϕpp

e
q�1OK � � � � � πOK � OK

where the OK{πOK-vetor spae π
mOK{π

m�1OK has dimension 1 for all m P t0, . . . , ϕpprq � 1u. We thus

have #pOK{pOKq �

�

#pOK{πOKq

�ϕpprq
. As #pOK{pOKq � pϕpp

e
q

(sine OK is a free Z-module of rank

ϕppeq), whene #pOK{πOKq � p: the natural map Z {pZÑ OK{πOK is an isomorphism.

 This implies that OK � Z�πOK , i.e. OK � Zrζs � πOK . If k P Z
¡0 and OK � Zrζs � πkOK , we thus

have OK � Zrζs�πkpZrζs�πOK

�

� OK � Zrζs�πk�1OK : by indution, we dedue OK � Zrζs�πkOK for

all k P Z
¡0. In partiular, we have OK � Zrζs � πϕpp

e
qcOK , i.e. OK � Zrζs � pcOK . As #pOK{Zrζsq | p

c
,

we have pcOK � Zrζs, so that OK Zrζs.

 As rOK : Zrζss � 1, we dedue that |dK | � pc � pp
e�1

ppe�e�1q
. �

Lemma 8.2.8. Let K and L be number �elds suh that rKL : Qs � rK : QsrL : Qs and gcdpdK , dLq � 1.

Then OKL � OKOL and dLK � d
rL:Qs

K d
rK:Qs

L .

Proof. We have of ourse OKOL � OKL. Let px1, . . . , xnq (resp. py1, . . . , ymq) be a basis of OK (resp. OL)

over Z. Then K �

n
À

i�1

Qxi and L �
m
À

j�1

Q yj, so KL �
°

1¤i¤n
1¤j¤m

Q xiyj . As rKL : Qs � rK : QsrL : Qs � nm

by hypothesis, this implies that pxiyjq 1¤i¤n
1¤j¤m

is a basis of KL over Q. Now let α P OKL: we an write

α �
°

1¤i¤n
1¤j¤m

λi,jxiyj with pλi,jq 1¤i¤n
1¤j¤m

P Qnm
. Let δ P Z

¡0 be the lm of the denominators of the λi,j : we

have δα �
°

1¤i¤n
1¤j¤m

ai,jxiyj where ai,j � δλi,j P Z and δ is prime to gcd 1¤i¤n
1¤j¤m

pai,jq. For i P t1, . . . , nu, put

αi �
m
°

j�1

ai,jyj P OL: we have δα �
n
°

i�1

αixi.

Let σ : K Ñ C be a �eld homomorphism. Let θ be a primitive element for L, so that L � Qpθq, and

KL � Kpθq. By hypothesis, we have rKpθq : Ks � rKL : Ks �
rKL:Qs

rK:Qs
� rL : Qs � rQpθq : Qs. This means

that the degree of θ over K is equal to that over Q, so that the minimal polynomial of θ over K is equal

to that over Q (without the degree assumption, we only know that the former divides the latter). By the

isomorphism extension theorem, there exists a unique �eld homomorphism pσ : KLÑ C that extends σ and

suh that pσpθq � θ, implying pσ
|L � IdL. We thus have δpσpαq �

n
°

i�1

αiσpxiq. The olletion of those equalities

for all σ P I :� HomQ -algpK,Cq provides a Cramer linear system δY � XM where X � pα1, . . . , αnq P O
n
L,

Y � ppσpαqqσPI P On
KL and M � pσpxiqq1¤i¤n

σPI
P MnpOKq. Multiplying on the right by the transpose

�M P MnpOKq of the adjugate matrix of M , we get δY �M � detpMqX . As px1, . . . , xnq is a basis of OK over

Z, there exists a olumn vetor V P Zn suh that XV � 1, so that δY �MV � detpMq. As dK � detpMq

2
(f

proposition 1.10.22), this shows that δ detpMqY �MV � dK , hene δ | dK . Symmetrially, we have δ | dL: as

gcdpdK , dLq � 1, we have δ � 1, and α �
°

1¤i¤n
1¤j¤m

ai,jxiyj P OKOL, showing the equality OKL � OKOL.

(49)

This is the formula Dp1, x, x2, . . . , xn�1
q � p�1q

npn�1q

2 NF pxq{F pP
1

x,F
pxqq for x separable of degree n over F .
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 Keeping the preeding notation, pxiyjq 1¤i¤n
1¤j¤m

is a basis of OKL over Z. By proposition 1.10.24, we have

dKL � Dpxiyjq 1¤i¤n
1¤j¤m

� Dpx1, . . . , xnq
rL:Ks NK{QpDpy1, . . . , ymqq

� d
rKL:Ks
K NK{QpdLq � d

rL:Qs
K d

rK:Qs

L

sine rKL : Ks � rL : Qs by hypothesis, and NK{QpdLq � d
rK:Qs

L beause dL P Q. �

Remark 8.2.9. A reformulation of the seond statement is

lnpdKLq

rKL:Qs
�

lnpdKq

rK:Qs
�

lnpdLq

rL:Qs
.

Theorem 8.2.10. Let n P Z
¡0. The ring of integers of Qpζnq is Zrζns and

�

�dQpζnq

�

�

�

nϕpnq

±

p|n

p
ϕpnq
p�1

.

Proof. Write n �

r
±

i�1

peii . We proeed by indution on r P N, the ases r � 0 being trivial, and r � 1

being proposition 8.2.7. Assume r ¡ 1, and put m �

r�1
±

i�1

peii , so that n � mperr and gcdpm, per q. Put

K � Qpζmq and L � Qpζperr q. We have KL � Qpζnq (sine ζmζperr is a primitive n-th root of unity beause

gcdpm, per q � 1). This implies that

rKL : Qs � ϕpnq � ϕpmqϕpperr q � rK : QsrL : Qs

(again beause gcdpm, per q � 1). Moreover, the indution hypothesis implies that the prime dividing dK
(resp. dL) are p1, . . . , pr�1 (resp. pr), so that gcdpdK , dLq � 1. This shows that one may apply lemma 8.2.8,

so that OQpζnq � OKOL � ZrζmsZrζperr s � Zrζns and

dQpζnq � d
rL:Qs
K d

rK:Qs

L � �

�

mϕpmq

±

p|m

p
ϕpmq

p�1

�ϕpperr q

p
erϕpp

er
r qϕpmq

r

p
ϕpp

er
r q

pr�1
ϕpmq

r

� �

nϕpnq

±

p|n

p
ϕpnq

p�1

sine ϕpmqϕpperr q � ϕpnq. �

Corollary 8.2.11. The prime that ramify in Qpζnq are preisely those dividing n.

Proof. This follows from orollary 2.6.6. �

8.2.12. Rami�ation of ylotomi extensions of Qp. Let p be a prime and n P Z
¡0. Write n � pen1 with

n1 P Z
¡0 prime to p. Let f P Z

¡0 be the order of p in pZ {n
1 Zq� (so that f is the least positive integer suh

that n1 | pf � 1, and f | ϕpn1q).

Proposition 8.2.13. The absolute rami�ation index of Qppζnq is ϕpp
e
q, and its residual degree is f . In

partiular, we have rQppζnq : Qps | ϕpnq, with equality if and only if p is a generator of pZ {n1 Zq�.

Proof.  As p ∤ n1, the polynomial Xn1
� 1 is separable over FprXs: so is the ylotomi polynomial

Φn1pXq. If α P Fp is a root of Φn1 , the order of α in the multipliative group F
�

p is n1: if i P Z
¡0, we

have αp
i

� α � αp
i
�1

� 1 � n1 | pi � 1 � f | i. This implies that the �eld of deomposition of Φn1 is

Fpf . The roots of Φn1 lift uniquely into roots of Φn1 in Qpf (whih is the unique unrami�ed subextension

of Qp{Qp lifting Fpf {Fp, f theorem 3.8.7). This implies that Qppζn1q � Qpf . As the image of ζn1 in

κQppζn1 q
generates Fpf , we also have

f � rFpf : Fps ¤ rκQppζn1 q
: Fps ¤ rQppζn1q : Qps ¤ rQpf : Qps � f

we have Qppζn1q � Qpf so rQppζn1q : Qps � f and Qppζn1q{Qp is unrami�ed.

 We have ΦpepXq � ΦppX
pe�1

q, so ΦpepX � 1q � ΦpppX � 1qp
e�1

q � ΦppX
pe�1

� 1q mod pZrXs. As

ΦppY � 1q �
pY�1qp�1

Y
� Y p�1 mod pZrY s, we have ΦpepX � 1q � Xpp�1qpe�1

mod pZrXs. Moreover,

we have Φpep1q � Φpp1q � p. This implies that the ΦpepX � 1q P Qpf rXs is an Eisenstein polynomial:

it is irreduible, and rQpf pζpeq : Qpf s � degpΦpepX � 1qq � ϕppeq. This also implies that the extension

Qpf pζpeq{Qpf is totally rami�ed, with uniformizer ζpe � 1 (so that vppζpe � 1q � 1
ϕppeq

�

1
pe�1

pp�1q
).

 We have Qppζn1 , ζpeq � Qppζnq (as gcdpp, n1q � 1, the element ζn1ζpe is a primitive n-th root of unity).

This implies that Qppζnq � Qpf pζpeq, showing that the rami�ation index of Qppζnq{Qp is ϕpp
e
q and that

its residual degree is f . In partiular, we have rQppζnq : Qps � ϕppeqf . As f is the order of p in the group

pZ {n1Zq�, we have f | #pZ {n1 Zq� � ϕpn1q, hene rQppζnq : Qps | ϕpp
e
qϕpn1q � ϕpnq, with equality if and

only if p generates pZ {n1 Zq�. �
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Corollary 8.2.14. Under the assumptions of proposition 8.2.13, the inertia subgroup of Qppζnq{Qp is

isomorphi to pZ {peZq�.

Proof. This follows from the disussion in paragraph 8.1 applied to F � Qpf , using the irreduibility of Φpe

over Qpf . �

Remark 8.2.15. As a speial ase of last proposition, we have Qpf � Qppζpf�1q.

8.2.16. The �eld Qppζpq.

Lemma 8.2.17. Qppζpq � Qp

�

p�pq
1

p�1

�

.

Proof. We have ΦppX � 1q �
pX�1qp�1

X
� Xp�1

�

p�1
°

i�1

�

p
i

�

X i�1
, so pζp � 1qp�1

� �

p�1
°

i�1

�

p
i

�

pζp � 1qi�1
, hene

pζp � 1qp�1
� �p mod ppζp � 1qOQppζpq

, i.e. u :�
pζp�1qp�1

�p
� 1 mod pζp � 1qOQppζpq

. As pζp � 1qOQppζpq

is the maximal ideal of OQppζpq
, we have u P O�

Qppζpq
. Moreover, a straightforward indution implies

that up
i

� 1 mod pipζp � 1qOQppζpq
. This shows that the sequene

�

u�1�p�p2�����pn
�

nPZ
¥0

onverges to

some element u1 P OQppζpq
, suh that u

p�1
1 � u. We have u1 P O�

Qppζpq
, and pζp � 1qp�1

� �pu
p�1
1 ,

i.e. α �

ζp�1

u1
P OQppζpq

is a root of Xp�1
� p. As the latter is an Eisenstein polynomial, the inlusion

Qppαq � Qppζpq is a equality. �

Remark 8.2.18. The extension Qppζpq{Qp is totally tamely rami�ed of degree p�1: we knew a priori that

there exists a uniformizer ̟ of Qp suh that Qppζpq � Qp

�

̟
1

p�1

�

(f theorem 3.8.28).

Let v : Qppζpq
�

Ñ Z be the normalized valuation, so that vpπq � 1 where π � ζp � 1, and

U � tx P OQppζpq
; x � 1 mod πOQppζpq

u

the group of prinipal units. As the residue �eld of Qppζpq is Fp, we have

Qppζpq
�

� πZ
� µp�1 � U.

Lemma 8.2.19. We have Up :� tup ; u P Uu �
 

x P OQppζpq
; x � 1 mod πp�1OQppζpq

(

.

Proof.  Let u P U . As the residue �eld of Qppζpq is Fp, we have OQppζpq
� Z�πOQppζpq

: we an write

u � 1 � nπ mod π2OQppζpq
with n P Z

¥0. As ζnp � p1 � πqn � 1 � nπ mod π2OQppζpq
, we have thus

ζnp u � 1 mod π2OQppζpq
: write ζnp u � 1� π2y with y P OQppζpq

. Raising to the p-th power, we get

up � 1�
p�1
°

i�1

�

p
i

�

π2iyi � π2pyp � 1 mod πp�1OQppζpq

sine

�

p
i

�

P pOQppζpq
� πp�1OQppζpq

for i P t1, . . . , p� 1u (beause vppq � p� 1 � v
�

πp�1
�

), and p� 1 ¤ 2p.

 Conversely, let x P 1 � πp�1OQppζpq
. Write x � 1 � πp�1z with z P OQppζpq

: we have to show that x is

the p-th power of some u P U . We have

�

8

°

n�0

�

1{p
n

�

Xn
	p

� 1�X

in QrrXss. If n P Z
¥0, we have

�

1{p
n

�

�

1
n!

1
p

�

1
p
� 1

��

1
p
� 2

�

� � �

�

1
p
� n� 1

�

�

p1�pqp1�2pq���p1�pn�1qpq

n!pn

This implies that vp
��

1{p
n

��

� �n � vppn!q � �n �
n�spnq

p�1
, where spnq denotes the sum of the digits of n

written in base p. In partiular, we have v
��

1{p
n

�

pπp�1zqn
�

¥ pp� 1qn�pp� 1q
�

n�
n�spnq

p�1
q � n� spnq ¥ n.

This implies that the series

u �
8

°

n�0

�

1{p
n

��

πp�1z
�n

onverges in OQppζpq
, and that up � 1� πp�1z � x, as required. �

8.3. Proof of Kroneker-Weber Theorem.
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8.3.1. Redution of theorem 8.1.1 to theorem 8.1.2 for all p. Assume that theorem 8.1.2 holds for every

prime p and let K{Q be an abelian extension. Let Σ be the set of primes p that ramify in K{Q (i.e. suh

that p | dK , f orollary 2.6.6). If p P Σ and p � OK is a prime ideal lying over p, denote by

pKp the

ompletion of K with respet to p. The extension

pKp{Qp is abelian, and its Galois group identi�es the

deomposition subgroup

DppK{Qq � tσ P GalpK{Qq ; σppq � pu ¤ GalpK{Qq

(f propositions 3.5.15 and 8.2.3). By theorem 8.1.2, there exists np P Z
¡0 suh that

pKp � Qppζnp
q. Put

ep � vppnpq and n �
±

pPΣ

pep : it is enough to prove that K � Qpζnq.

Put L � Kpζnq � QpζnqK: the extension L{Q is abelian sine K{Q and Qpζnq{Q are (f proposition

8.2.2). Let P � OL be a prime ideal lying over p, and pLP the ompletion of L with respet to P. We have

the diagram of �elds:

pLP

④④
④

■■
■■

■

pKp

❉❉
❉

Qppζnq

tt
tt

Qp

As

pLP � Qppζnq
pKp, the extension

pLP{Qp is unrami�ed if and only if

pKp and Qppζnq are (f orollaries

3.8.9 and 3.8.11). This implies that the primes p that ramify in L are preisely those in Σ (sine the prime

that ramify in Qpζnq are the elements of Σ by orollary 8.2.11).

For p P Σ, we have pKp � Qppζnp
q, so that

Qppζpep q �
pLP � Qppζnp

, ζnq � Qppζpepn1q

for some n1 P Z
¡0 prime to p. Let Ip � IppL{Qq be the inertia group of L{Q at p. By orollary 8.2.14, we

have

Ip � GalpQppζpep q{Qpq � pZ {pep Zpq
�

Let I ¤ GalpL{Qq be the subgroup generated by all the Ip for p P Σ. As GalpL{Qq hene I is abelian, the

natural map

±

pPΣ

Ip Ñ I is a surjetive group homomorphism, so that

#I ¤
±

pPΣ

#Ip �
±

pPΣ

ϕppepq � ϕpnq � rQpζnq : Qs.

Let F � Qpζnq be the �eld �xed by I. The primes rami�ed in F are rami�ed in L: they belong to Σ. As

we killed the rami�ation at p by taking invariants under Ip for all p P Σ, this implies that F {Q is nowhere

rami�ed, i.e. that |dF | � 1. Minkowski bound

a

|dF | ¥
�

π
4

�d dd

d!
(where d � rF : Qs) implies that F � Q,

so that

rL : Qs � rL : F s � #I ¤ rQpζnq : Qs.

As Qpζnq � L, this implies L � Qpζnq, hene K � Qpζnq.

8.3.2. Proof of theorem 8.1.2. Let K{Qp be an abelian extension. We an write GalpK{Qpq �

r
±

i�1

Gi where

Gi is yli of prime power order. Then K � K1 � � �Kr where Ki is the �eld �xed by

±

1¤j¤r
j�i

Gi. As the

omposite of �nitely many ylotomi extensions is again a ylotomi extension, it is enough to show that

eahKi is inluded in a ylotomi extension ofQp: we are redued to the ase where GalpK{Qpq � Z {qmZ

is yli of prime power order.

Case where p � q. Let T be the maximal unrami�ed subextension of K{Qp. If f � rT : Qps, then

T is the unique unrami�ed subextension of Qp lifting Fpf {Fp, i.e. T � Qpf � Qppζpf�1q, f remark

8.2.15. As rK : Qps � qm and p � q, the degree of the totally rami�ed extension K{T is of the form

e � qr with r P t0, . . . ,mu, whene prime to p: it is tamely rami�ed. By theorem 3.8.28, there exists

a uniformizer π of T � Qpf suh that K � Qpf

�

π
1
e

�

. As π and p are uniformizers of Qpf , there exists

u P Z�
pf

suh that π � �up. As u is a unit and p � q, the extension Qpf

�

u
1
e

�

{Qpf is unrami�ed: so is
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Qpf

�

u
1
e

�

{Qp. By remark 8.2.15 again, we have Qpf

�

u
1
e

�

� QppζM q for some M P Z
¡0 prime to p. Note

that in KpζM q � Qpf

�

π
1
e , u

1
e

�

, we have

�

π
1
e

u
1
e

	e

� �p, so that p�pq
1
e
P KpζM q.

KpζM q
❖❖

❖❖

tt
tt

K

❏❏
❏❏

❏ QppζM q

♦♦
♦♦
♦

Qp

Being the omposite of the abelian extensions K{Qp and QppζM q{Qp, the extension KpζM q{Qp is abelian:

so is its subextension Qp

�

p�pq
1
e

�

{Qp (f proposition 8.2.2). In partiular, it is Galois, hene ontains the

onjugates of p�pq
1
e
over Qp: we have ζe P Qp

�

p�pq
1
e

�

. Moreover, the extension Qp

�

p�pq
1
e

�

{Qp is totally

rami�ed: so is its subextension Qppζeq{Qp. By proposition 8.2.13, this implies that e � qr | p � 1 (reall

that p � q), so that p�pq
1
e
P Qp

�

p�pq
1

p�1

�

� Qppζpq (f lemma 8.2.17), i.e.

π
1
e
� p�pq

1
eu

1
e
P QppζM , ζpq � QppζMpq.

Finally, we have K � QppζMpq, �nishing the proof in that ase.

Case where p � q � 2. The extension Ku :� Qppζppm�1q{Qp is unrami�ed and yli of degree pm

(f remark 8.2.15). On the other hand, the extension Qppζpm�1q{Qp is totally rami�ed, with Galois group

isomorphi to pZ {pm�1Zq�, hene yli (sine p � 2). Let Kr be its sub�eld �xed by the subgroup of order

p � 1: the extension Kr{Qp is totally rami�ed and yli of degree pm. This implies that rKuKrs � p2m

(sine the rami�ation index of KuKr{Qp is at least rKr : Qps � pm and the residual degree at least

rKu : Qps � pm). By proposition 8.2.2, the extension KuKr{Qp is abelian. As the group homomorphism

GalpKuKr{Qpq Ñ GalpKu{Qpq � GalpKr{Qpq

(given by the restritions) is injetive, it is an isomorphism by ardinality, so that

GalpKuKr{Qpq � pZ {pm Zq2.

Assume K � KuKr. As above, the group homomorphism given by the restritions

GalpKKuKr{Qpq Ñ GalpKuKr{Qpq � GalpK{Qpq � pZ {pm Zq3

is injetive: let H be its image. By the invariant fators deomposition (f theorem 1.4.13), we have

H � pZ {pm1 Zq � pZ {pm2 Zq � pZ {pm3 Zq

for unique integers m1 ¥ m2 ¥ m3. As H is killed by pm, we have mi ¤ m for all i P t1, 2, 3u. As the

restrition GalpKKuKr{Qpq Ñ GalpKuKr{Qpq � pZ {pmZq2 is surjetive, we have dimFp
ppm�1Hq ¥ 2, so

thatm1 � m2 � m. We havem1 :� m3 ¡ 0, otherwise we would have rKKuKr : Qps � p2m � rKuKr : Qps,

implying that K � KuKr ontraditing the hypothesis. This implies in partiular that

GalpKKuKr{Qpq � pZ {pmZq2 � pZ {pm
1

Zq

has a quotient isomorphi to pZ {pZq3: there exists a Galois subextension N of KKuKr{Qp suh that

GalpN{Qpq � pZ {pZq3.

This is impossible by lemma 8.3.4 below: we must haveK � KuKr � Qppζpm , ζppm�1q � Qppζpm�1
ppp

m
�1qq,

�nishing the proof in that ase.

Lemma 8.3.3. Let F be a �eld of harateristi di�erent from p, M � Qppζpq and L � M
�

a
1
p

�

with

a PM�

. Let χ : GalpM{F q Ñ Z {pZ be the ylotomi harater. The following are equivalent:

(i) L{F is abelian;

(ii) p�σ P GalpM{F qqσpaq � aχpσq mod M�p
.

Note that Z {pZ ats on M�

{M�p
, so that aχpσq mod M�p

makes sense.

Proof.  Assume (i). Let σ P GalpM{F q, and �x pσ P GalpL{F q extending σ. If τ P GalpL{Mq, there exists

cτ P Z {pZ suh that τ
�

a
1
p

�

� ζcτp a
1
p
. As GalpL{F q is abelian, we have

pτ � pσq
�

a
1
p

�

� ppσ � τq
�

a
1
p

�

� ζcτχpσqp pσ
�

a
1
p

�
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Let k P Z mapping to χpσq in Z {pZ: we have τ
�

a
k
p

�

� ζkcτp a
k
p
� ζ

cτχpσq
p ζkcτp a

k
p
. Put α �

pσ

�

a
1
p

�

a
k
p

P L�.

What preedes implies that τpαq � α. As this holds for all τ P GalpL{Mq, we have α PM�

: raising to the

p-th power gives σpaq � pσpaq � akαp, whih preisely means that σpaq � aχpσq mod M�p
.

 Assume (ii). As charpF q � p, the extensions L{M and M{F are separable: so is the extension L{F . If

γ P HomK-algpL, F q, we have γ
|M P GalpM{F q. Fix k P Z mapping to χpγ

|M q in Z {pZ. By hypothesis,

there exists α PM�

suh that γ
�

a
1
p

�p
� γ

|M paq � akαp: there exists i P Z {pZ suh that

γ
�

a
1
p

�

� ζipa
k
pα P L.

As L �M
�

a
1
p

�

, this implies that the extension L{F is normal, hene Galois. The result is obvious if L �M

(then GalpL{F q � GalpM{F q is abelian): assume heneforth that L � M . The group GalpL{Mq is then

yli of order p, generated by σ suh that σ
�

a
1
p

�

� ζpa
1
p
. Let γ P GalpL{F q: we have γ

�

a
1
p

�

� ζipa
k
pα with

i P Z {pZ, k P Z whose image in Z {pZ is χpγq and α PM . Then

pγ � σq
�

a
1
p

�

� γ
�

ζpa
1
p

�

� ζχpγq�ip a
k
pα � ζk�ip a

k
pα � ζip

�

ζpa
1
p

�k
α � σ

�

ζipa
k
pα

�

� pσ � γq
�

a
1
p

�

As γ�σ and σ�γ also oinide onM (beauseM{F is abelian) and L �M
�

a
1
p

�

, this shows that γ�σ � σ�γ,

so that GalpL{Mq lies in the enter of GalpL{F q. This implies that the quotient of GalpL{F q by its enter

is a quotient of GalpM{F q, whih yli (sine it identi�es with a subgroup of pZ {pZq�). The lassial

argument in group theory implies that GalpL{F q is abelian. �

Lemma 8.3.4. If p � 2, there is no Galois extension N{Qp suh that GalpN{Qpq � pZ {pZq3.

Proof. Let N{Qp be Galois and suh that GalpN{Qpq � pZ {pZq3. The omposite of the abelian extensions

N{Qp and Qppζpq{Qp is abelian: so is the extension Npζpq{Qppζpq. As rQppζpq : Qps � p � 1 is prime

to rN : Qps � p3, we have rNpζpq : Qps � pp � 1qp3, so that rNpζpq : Qppζpqs � p3: the restrition map

GalpNpζpq{Qppζpqq Ñ GalpN{Qpq, whih is an injetive group homomorphism, is thus an isomorphism, i.e.

GalpNpζpq{Qppζpqq � pZ {pZq3. This implies that the extension Npζpq{Qppζpq is a Kummer extension: it

orresponds to a subgroup ∆ ¤ Qppζpq
�

{Qppζpq
�p

suh that ∆ � pZ {pZq3.

Let a P ∆, and L � Qp

�

ζp, a
1
p

�

� Npζpq. As the extension Npζpq{Qp is abelian, so is L{Qp: by lemma

8.3.3, we have σpaq � aχpσq mod Qppζpq
�p

for all σ P GalpQppζpq{Qpq. Using notations of setion 8.2.16,

we have vpaq � vpσpaqq and v
�

Qppζpq
�p
q � pZ, so the image of vpaq in Z {pZ is equal to χpσqvpaq for all

σ P GalpQppζpq{Qpq. As χpGalpQppζpq{Qpqq � pZ {pZq� � t1u (beause p � 2), this shows that vpaq P pZ,

so that

a P pζp � 1qpZ � µp�1 � U � pζp � 1qZ � µp�1 � U � Qppζpq
�.

As a is de�ned modulo Qppζpq
�p
, we may multiply a by a p-th power and assume that vpaq � 0. Similarly,

as elements of µp�1 are p-th powers of themselves, we may assume that a P U . This implies that we may

assume that

∆ ¤ U{Up.

Let a P ∆zt1u. As the residue �eld of Qppζpq is Fp, we have OQppζpq
� Z�πOQppζpq

: there exists n P Z
¥0

suh that a � 1� nπ mod π2OQppζpq
. As ζnp � p1� πqn � 1� nπ mod π2OQppζpq

, we have

u :� ζnp a � 1 mod π2OQppζpq

(f proof of lemma 8.2.19). Let σ P GalpQppζpq{Qpq and kσ P Z lifting χpσq P pZ {pZq�: as above, we

have σpaq � akσ mod Qppζpq
�p

(beause Qp

�

ζp, a
1
p

�

{Qp is abelian, f lemma 8.3.3). As σpaq, akσ P U ,

we have thus

σpaq

akσ
P U XQ�p

p � Up, whene σpaq � akσ mod Up for all σ P GalpQppζpq{Qpq. As the same

ongruene holds for ζnp , we also have

(�) σpuq � ukσ mod Up

for all σ P GalpQppζpq{Qpq. On the other hand, we an write u � 1� cπq mod πdOQppζpq
with c P Z zpZ

and d � vpu� 1q P Z
¥2 (reall that u � 1). We have

#

σpuq � 1� ckdσπ
d mod πd�1OQppζpq

ukσ � 1� ckσπ
d mod πd�1OQppζpq

so

σpuq

ukσ
� 1 � cpkdσ � kσqπ

d mod πd�1OQppζpq
. By equation (�), we also have

σpuq

ukσ
P Up. By lemma

8.2.19, we have Up �
 

x P OQppζpq
; x � 1 mod πp�1OQppζpq

(

: this implies that d ¥ p � 1 or d ¤ p and

cpkdσ � kσq P πOQppζpq
.
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In the �rst ase, we have u P Up, whene a P ζZp . In the seond ase, we have cpkdσ � kσq P pZ, so that

kdσ � kσ P pZ (sine c R pZ), thus χpσqd � χpσq i.e. χpσqd�1
� 1 in pZ {pZq�. As χpσq an take any value

in pZ {pZq� and the latter is yli of order p� 1, this implies that p� 1 | d� 1. As d ¤ p, this implies that

d � p, so that u belongs to tx P U ; x � 1 mod πpOQppζpq
u. As the latter is the subgroup of U generated

by 1� πp, we see that in any ase, we have

∆ � xζp, 1� πpy � U{Up

As xζp, 1 � πpy has dimension 2 seen as a sub-Fp-vetor spae of U{Up, we annot have ∆ � pZ {pZq3,

giving the ontradition.

Case where p � q � 2. The extension Ku :� Q2pζ22m�1q{Q2 is unrami�ed and yli of degree 2m (f

remark 8.2.15). On the other hand, the extension Kr � Q2pζ2m�2
q{Q2 is totally rami�ed, with Galois

group isomorphi to pZ {2m�2Zq� � pZ {2Zq � pZ {2mZq. This implies that rKuKr : Q2s � 22m�1

(sine the rami�ation index of KuKr{Q2 is at least rKr : Q2s � 2m�1
and the residual degree at least

rKu : Q2s � 2m). By proposition 8.2.2, the extension KuKr{Q2 is abelian. As the group homomorphism

GalpKuKr{Q2q Ñ GalpKu{Q2q � GalpKr{Q2q

(given by the restritions) is injetive, it is an isomorphism by ardinality, so that

GalpKuKr{Q2q � pZ {2Zq � pZ {2mZq2.

Assume K � KuKr. The extension KKuKr{Q2 is abelian (f proposition 8.2.2). The group homomor-

phism

GalpKKuKr{KuKrq Ñ GalpK{Q2q � Z {2mZ

indued by the restrition is injetive, so GalpKKuKr{KuKrq � Z {2m
1

Z for some m1

P t1, . . . ,mu. As

GalpKKuKr{Q2q is abelian, this implies that it has at most four generators, one of whih has order 2, and

ontains pZ {2Zq � pZ {2mZq2 as a strit subgroup. There are two possibilities:

GalpKKuKr{Q2q �

$

'

&

'

%

pZ {2Zq � pZ {2mZq2 � pZ {2m
1

Zq with m1

¥ 1

or

pZ {2mZq2 � pZ {2m
1

Zq with m ¥ m1

¥ 2

.

It thus has a quotient has a quotient isomorphi to either pZ {2Zq4 or pZ {4Zq3: there exists a Galois

subextension N of KKuKr{Q2 suh that

GalpN{Q2q �

$

'

&

'

%

pZ {2Zq4

or

pZ {4Zq3
.

It remains to hek that those two ases are impossible.

 The �rst ase orresponds, by Kummer theory, to four linearly independent elements in Q�

2 {Q
�2
2 (i.e. to

four independent quadrati extensions of Q2). As

Q�

2 � 2Z � t�1u � U1

where U1 � tu P Z2 ; u � 1 mod 4Z2u, and U
2
1 � tx P Z2 ; x � 1 mod 8Z2u, the F2-vetor spae

Q�

2 {Q
�2
2 � pZ {2Zq � t�1u � U1{U

2
1

has dimension 3,ontraditing GalpN{Q2q � pZ {2Zq4.

 Assume from now on that GalpN{Q2q � pZ {4Zq3. Assume i :�
?

�1 R N : then Npiq{Q2 is abelian,

and the natural map GalpNpiq{Q2q Ñ GalpN{Q2q � GalpQ2piq{Q2q � pZ {4Zq3 � pZ {2Zq is a group iso-

morphism, implying the existene of a sub�eld N 1

of Npiq suh that GalpN 1

{Q2q � pZ {2Zq4, whih is not

possible by what preedes. This shows that i P N . Let f : Z3
Ñ GalpN{Q2q be a surjetive group homo-

morphism induing an isomorphism

rf : pZ {4Zq3
�

ÑGalpN{Q2q. The omposite with the surjetive group

homomorphism g : GalpN{Q2q Ñ GalpQ2piq{Q2q � Z {2Z provides a surjetive group homomorphism

g � f : Z3
Ñ Z {2Z. By the adapted basis theorem (f theorem 1.4.11), there exists a Z-basis pe1, e2, e3q of

Z3
suh that Kerpg�fq � Z e1`Z e2`2Z e3. This implies that replaing f by its omposite with the hange

of basis map, we may assume that pe1, e2, e3q is the anonial basis, so that Kerpg� rfq � pZ {4Zq2`p2Z {4Zq.

Let L denote the sub�eld of N orresponding to the subgroup pZ {4Zq�t0u � pZ {4Zq2 ` p2Z {4Zq. By

onstrution, we have Q2piq � L and GalpL{Q2q � Z {4Z. Let σ be a generator of GalpL{Q2q, so that σ2

generates GalpQ2piq{Q2q and σpiq � �i. We an write L � Q2pi, αq with α
2
P Q2piq. As L{Q2 is Galois,

we also have L � Q2pi, σpαqq and σpαq
2
� σpα2

q P Q2piq. This implies that σ2
pαq2 � σ2

pα2
q � α2

, so that

σ2
pαq � �α. We annot have σ2

pαq � α, otherwise α P Q2piq whih is not: we have σ2
pαq � �α, whene
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σ3
pαq � �σpαq. This implies that σ2

�σpαq

α

�

�

σpαq

α
, i.e.

σpαq

α
P Q2piq: write σpαq � pa� ibqα with a, b P Q2.

Applying σ gives �α � σ2
pαq � pa� ibqσpαq: multiplying these equalities and dividing by ασpαq gives

a2 � b2 � �1.

Suh an equality is impossible in Q2 (multiplying by the square of a ommon denominator gives a non

trivial equality x2 � y2 � z2 � 0 is Z2, whih is already impossible modulo 8), giving a ontradition.

What preedes shows that the assumption K � KuKr is absurd: we have K � KuKr � Q2pζ2m�2
p22

m
�1qq,

�nishing the proof. �
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9. Appendix

9.1. Zorn's lemma. The axiom of hoie (that we assume) is equivalent to the following:

Theorem 9.1.1. A partially ordered set in whih every hain

(50)

has an upper bound ontains at least one

maximal element.

Remark 9.1.2. Considering opposite orders, we also have the dual statement: a partially ordered set in

whih every hain has an lower bound ontains at least one minimal element.

9.2. Galois theory. Let Ω{K a �eld extension, and L1, L2 sub-extensions. We have the following situation:

Ω

L1L2

L1

sssss
L2

❑❑❑❑❑

L1 X L2

sssss

❑❑❑❑❑

K

Proposition 9.2.1. Assume L1{K is �nite and Galois. The extensions L1L2{L2 and L1{L1 X L2 are �nite

and Galois, and the restrition map

ρ : GalpL1L2{L2q Ñ GalpL1{L1 X L2q

is a group isomorphism. In partiular, we have rL1L2 : L2s � rL1 : L1XL2s. If moreover L2{K is �nite, we

have rL1L2 : Ks �
rL1:KsrL2:Ks

rL1XL2:Ks
.

Proof. As L1{K is �nite and Galois, it is the splitting �eld, in Ω of a separable polynomial P P KrXs:

the �eld L1L2 is the splitting �eld, in Ω, of P seen as an element of L2rXs. As P is separable, the

extension L1L2{L2 is Galois. Of ourse, L1{L1 X L2 is Galois beause L1{K is. We thus have the group

homomorphisme ρ.

If σ P Kerpρq, then σ indues the identity on L1 and L2, hene on L1L2: we have σ � IdL1L2
, whih shows

the injetivity of ρ. Put H � Impρq. If x P L1 is �xed H , it is �xed by GalpL1L2{L2q: it belongs to L2, hene

to L1XL2. This shows that L
H
1 � L1XL2: Galois orrespondane implies that H � GalpL1{L1XL2q, and

ρ is surjetive.

We have thus #GalpL1L2{L2q � #GalpL1{L1 X L2q, hene rL1L2 : L2s � rL1 : L1 X L2s.

If L2{K is �nite, we have

rL1L2 : Ks � rL1L2 : L2srL2 : Ks � rL1 : L1 X L2srL2 : Ks �
rL1:KsrL2:Ks

rL1XL2:Ks
  �8.

�

Proposition 9.2.2. Assume L1{K and L2{K are �nite and Galois. Then L1L2{K and L1XL2{K are �nite

and Galois, and the natural map (given by restritions)

ψ : GalpL1L2{Kq Ñ GalpL1{Kq � GalpL2{Kq

is injetive, with image tpσ1, σ2q P GalpL1{Kq � GalpL2{Kq ; σ1|L1XL2
� σ2|L1XL2

u.

Proof. If x P L1 X L2, the onjuguates of x over K all belong to L1 (beause L1{K is normal). Similarly,

they all belong to L2: they lie in L1 X L2, and the extension L1 X L2{K is normal. Being a sub-extension

of the separable extension L1{K, it is separable, whih shows that L1 X L2{K is Galois.

The �elds L1 and L2 are splitting �elds, in Ω, od separable polynomials P1 and P2: the �eld L1L2 is thus

the splitting �elds, in Ω, of the separable polynomial lcmpP1, P2q, whih shows that L1L2{K is Galois.

If σ P Kerpψq, then σ indues the identity on L1 and L2, hene on L1L2, so that σ � IdL1L2
, whih shows

the injetivity of ψ. Of ourse we have

Impψq ¤ H :� tpσ1, σ2q P GalpL1{Kq � GalpL2{Kq ; σ1|L1XL2
� σ2|L1XL2

u.

We know that

GalpL2{Kq{GalpL2{L1 X L2q
�

ÑGalpL1 X L2{Kq.

(50)

I.e. a totally ordered subset.
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If σ1 P GalpL1{Kq, the restrition σ1|L1XL2
P GalpL1 X L2{Kq thus admits rL2 : L1 X L2s extensions to L2.

this implies that

#H ¤ #GalpL1{KqrL2 : L1 X L2s � rL1 : KsrL2 : L1 X L2s �
rL1 : KsrL2 : Ks

rL1 X L2 : Ks
.

By proposition 9.2.1, we dedue #H ¤ rL1L2 : Ks � #GalpL1L2{Kq. As ψ is injetive, this is an equality,

whih shows that Impψq � H . �

Corollary 9.2.3. If L1{K and L2{K are �nite and abelian, so is L1L2{K.

Proof. The group GalpL1{Kq � GalpL2{Kq is abelian: so is its sub-group

H :� tpσ1, σ2q P GalpL1{Kq � GalpL2{Kq ; σ1|L1XL2
� σ2|L1XL2

u.

As ψ indues an isomorphism GalpL1L2{Kq
�

ÑH , the extension L1L2{K is abelian. �
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