université ${ }^{\text {de }}$ BORDEAUX	ANNÉE UNIVERSITAIRE 2018 / 2019 Session 1 D'automne PARCOURS / ÉTAPE : 4TMA903U Code UE : 4TTN901S, 4TTN901S Épreuve : Algebraic number theory Date : 7/01/2019 Heure: 9h30 Durée: 3h Documents : non autorisés Épreuve de Mr Brinon	Collège Sciences et technologies

Documents are not allowed.
The quality of writing will be an important assessment factor.

Exercise 1

Let p be a prime number.
(1) Show that $\mathbf{Z}_{\geqslant 0}$ is dense in \mathbf{Z}_{p}.
(2) Is it true that $\mathbf{Z}_{p} \cap \mathbf{Q}=\mathbf{Z}$?
(3) Show that $\mathbf{Q}_{p}^{\times 2}=\left\{x^{2}\right\}_{x \in \mathbf{Q}_{p}^{\times}}$is open in \mathbf{Q}_{p}^{\times}.
(4) Let $a \in \mathbf{Z}$. Show that the polynomial $X^{2}+X+a$ has a root in \mathbf{Q}_{2} if and only if a is even.
(5) Assume that p is odd. Show that $\mathbf{Q}_{p}^{\times} / \mathbf{Q}_{p}^{\times p} \simeq(\mathbf{Z} / p \mathbf{Z})^{2}$.

Exercise 2

Let $P(X)=X^{3}-17$ and $j \in \overline{\mathbf{Q}}_{3}$ a primitive cubic root of unity.
(1) Show that $j \notin \mathbf{Q}_{3}$ [hint: compute $\left.(j-1)^{2}\right]$.
(2) What are the degrees of the irreducible factors of P in $\mathbf{Q}_{3}[X]$ [hint: compute $\left.P(5)\right]$?
(3) How many extensions to $\mathbf{Q}(\sqrt[3]{17})$ does the 3 -adic absolute value have?

Exercise 3

Let A be a Dedekind ring, $K=\operatorname{Frac}(A)$ and L / K a finite and separable field extension. Denote by B the integral closure of A in L, and \mathscr{P}_{A} the set of nonzero prime ideals of A. An A-order of L is a subring R of L such that $A \subset R$ and R is an A-module of finite type.
(1) Let R be a subring of L such that $A \subset R$. Show that R is an A-order of L if and only if $R \subset B$.
(2) Assume that R is an A-order of L.
(i) Show that for all $\mathfrak{p} \in \mathscr{P}_{A}$, the localization $R_{\mathfrak{p}}$ is an $A_{\mathfrak{p}}$-order of L.
(ii) Show that $R=B$ if and only if $R_{\mathfrak{p}}=B_{\mathfrak{p}}$ for all $\mathfrak{p} \in \mathscr{P}_{A}$.
(iii) Show that nonzero prime ideals of R are maximal.
(3) Let R be an A-order of L and $\theta \in R$ such that $L=K(\theta)$. Denote by $P(X)$ the minimal polynomial of θ over K. Let $\mathfrak{p} \in \mathscr{P}_{A}$ and \bar{P} the image of P in $\kappa(\mathfrak{p})[X]$, where $\kappa(\mathfrak{p})=A / \mathfrak{p}$. Show that if \bar{P} is separable, then $R_{\mathfrak{p}}=B_{\mathfrak{p}}$ and the prime ideals of B above \mathfrak{p} are unramified [hint: recall that $\left.A[\theta]^{*}=\frac{1}{P^{\prime}(\theta)} A[\theta]\right]$.
(4) Let $R \subset R^{\prime}$ be an extension of rings, the conductor of R^{\prime} / R is $\mathfrak{c}_{R^{\prime} / R}=\left\{r \in R ; r R^{\prime} \subset R\right\}$.
(i) Show that $\mathfrak{c}_{R^{\prime} / R}$ is the largest ideal of R^{\prime} that is contained in R.
(ii) Let R be an A-order of L and $S \subset R$ a multiplicative part. Show that $\mathfrak{c}_{S^{-1} B / S^{-1} R}=S^{-1} \mathfrak{c}_{B / R}$ [hint: use the fact that B is finite over R].
(iii) Let R be an A-order of L. Show that $\mathfrak{c}:=\mathfrak{c}_{B / R} \neq\{0\}$ if and only if $\operatorname{Frac}(R)=L$.

Assume henceforth that $\operatorname{Frac}(R)=L$.
(5) Show that $\mathfrak{c} R^{*} \subset \mathfrak{D}_{B / A}^{-1}$ (where $R^{*}=\left\{y \in L ;(\forall x \in R) \operatorname{Tr}_{L / K}(x y) \in A\right\}$), and that this inclusion is an equality when $R=A[\theta]$ for some $\theta \in L$ such that $L=K(\theta)$.
(6) In this question we assume that $A=\mathbf{Z}$.
(i) Let \mathfrak{a} be an ideal of \mathcal{O}_{L} and put $R=\mathbf{Z}+\mathfrak{a}$. Show that R is a \mathbf{Z}-order of L, with conductor $d \mathbf{Z}+\mathfrak{a}$, where $d \in \mathbf{Z}_{>0}$ is such that $\mathbf{Z} \cap \mathfrak{a} \subset d \mathbf{Z}$.
(ii) Assume that $L=\mathbf{Q}(\sqrt{5})$. Show that $R=\mathbf{Z}[\sqrt{5}]$ is a \mathbf{Z}-order of L. What is its conductor?
(7) Let $\mathfrak{q} \in \mathscr{P}_{B}$. Show that $\mathfrak{c} \subset \mathfrak{q}$ if and only if $\mathfrak{c} \subset \mathfrak{q} \cap R$. Deduce that if $\operatorname{Frac}(R)=L$, there are only finitely many prime ideals of R that contain \mathfrak{c}.
(8) (hard) Let \mathfrak{p} be a nonzero prime ideal of R. Show that the following are equivalent:
(a) \mathfrak{p} does not contain \mathfrak{c};
(b) $R=\{x \in L ; x \mathfrak{p} \subset \mathfrak{p}\}$;
(c) \mathfrak{p} is invertible;
(d) $R_{\mathfrak{p}}$ is a DVR.
[hint: to show $(\mathrm{a}) \Rightarrow(\mathrm{b})$, use the fact that $\mathfrak{p}+\mathfrak{c}=R$; to show $(\mathrm{b}) \Rightarrow(\mathrm{c})$, use the fact that if $\alpha \in \mathfrak{p} \backslash\{0\}$, there exists $r \in \mathbf{Z}_{>0}$ such that $\mathfrak{p}^{r} R_{\mathfrak{p}} \subset \alpha R_{\mathfrak{p}}$; to show $(\mathrm{c}) \Rightarrow(\mathrm{d})$, show that nonzero ideals of $R_{\mathfrak{p}}$ are powers of $\mathfrak{p} R_{\mathfrak{p}}$, then that $R_{\mathfrak{p}}$ is integrally closed.]
(9) (hard) Show that under the equivalent conditions of question (8), $\mathfrak{p} B$ is the only maximal ideal of B that contains \mathfrak{p} [hint: take $\mathfrak{q} \in \mathscr{P}_{B}$ such that $\mathfrak{p} \subset \mathfrak{q}$, and show that $R_{\mathfrak{p}}=B_{\mathfrak{q}}$.]

Exercise 4

Unless otherwise stated, ramification subgroups of a finite Galois extension L / K will be considered with the lower numbering. A jump of the extension L / K is an integer i such that $\operatorname{Gal}(L / K)_{i} \neq \operatorname{Gal}(L / K)_{i+1}$.
Let L / K and K / F be nontrivial finite extensions of local fields.
(1) Assume that L / F and K / F are Galois. Let $i_{1}<\cdots<i_{n}$ be the jumps of the ramification filtration of L / K. Assume that the ramification filtration of K / F has a unique jump i_{0}, and that $i_{0}<i_{1}$. Show that

$$
\operatorname{Gal}(L / F)_{i}= \begin{cases}\operatorname{Gal}(L / F) & \text { if } i \leqslant i_{0} \\ \operatorname{Gal}(L / K)_{i} & \text { if } i>i_{0}\end{cases}
$$

and deduce that the jumps of the ramification filtration of L / F are $i_{0}, i_{1}, \ldots, i_{n}$ [hint: Herbrand's theorem]. Assume from now on that F has mixed characteristics $(0, p)$, that $K=F(\zeta)$ where ζ is a primitive p-th root of unity, and that $L=K(\alpha)$, where $a:=\alpha^{p} \in K$ and $\alpha \notin K$.
(2) Show that the extension K / F is cyclic of degree dividing $p-1$, and that $v_{K}(\zeta-1)=\frac{e_{K}}{p-1} \in \mathbf{Z}_{>0}$ (where e_{K} is the absolute ramification index of K).
(3) Explain why K / F has at most two jumps, and exactly one when it is totally ramified.

We henceforth assume that K / F is totally ramified. Denote by v_{K} (resp. v_{L}) the normalized valuation on K (resp. on L).
(4) Show that L / K is a cyclic extension of degree p. When $a \in F$, show that L / F is Galois and describe the structure of $\operatorname{Gal}(L / F)$.
(5) Assume that $p \nmid v_{K}(a)$. Show that L / K is totally ramified, and that $v_{L}\left(\mathfrak{D}_{L / K}\right)=p e_{K}+p-1$ [hint: first reduce to the case where $\left.v_{K}(a)=1\right]$. Deduce the jumps of L / K. If $a \in F$, what are the jumps of L / F ? Under which condition on e_{F} are the jumps in the upper numbering integers?
Assume from now on that $p \mid v_{K}(a)$ and put $E=\left\{i \in \mathbf{Z}_{>0} ;\left(\exists x \in K^{\times}\right) a x^{-p} \in U_{K}^{(i)}\right\}$.
(6) (i) Show that $1 \in E$.
(ii) Assume that $a \in U_{K}^{(i)}$ with $i>\frac{p e_{K}}{p-1}$. Show that the polynomial $Q(X)=\frac{(1+(\zeta-1) X)^{p}-a}{(\zeta-1)^{p}}$ belongs to $\mathcal{O}_{K}[X]$, and use Newton's lemma to show that it has a root in \mathcal{O}_{K}, contradicting the hypothesis.
The set E is thus non empty, and included in $\left\{1, \ldots, \frac{p e_{K}}{p-1}\right\}$. Put $c=\max E$: replacing a by $a x^{-p}$ for some appropriate $x \in K^{\times}$, we may assume that $a \in U_{K}^{(c)}$.
(7) Show that there exists $A(X) \in \mathbf{Z}[X]$ such that $(X-1)^{p}=X^{p}-1+p(X-1) A(X)$ and $A(1)=-1$.
(8) Assume that $c=\frac{p e_{K}}{p-1}$ and put $z=\frac{\alpha-1}{\zeta-1} \in L$.
(i) Show that $v_{L}(z)=0$ [hint: use question (7)].
(ii) Compute the minimal polynomial P of z over K, and show that its image \bar{P} in $\kappa_{K}[X]$ is of the form $\bar{P}(X)=X^{p}-X-\lambda$. Explain why \bar{P} is irreducible, and deduce that K / F is unramified.
(iii) If $a \in F$, what are the jumps of L / F in that case?
(9) Assume that $c \leqslant \frac{p e_{K}}{p-1}-1$.
(i) Show that $p \nmid c$ [hint: assume the contrary and deduce a contradiction with the definition of c.]
(ii) Compute $v_{L}(\alpha-1)$ [hint: use question (7)], and deduce that L / K is totally ramified.
(iii) Constuct a uniformizer π_{L} of L, and determine the jump of L / K [hint: consider the action of a generator of $\operatorname{Gal}(L / K)$ on π_{L}.]
(iv) Deduce that $v_{L}\left(\mathfrak{D}_{L / K}\right)=(p-1)\left(\frac{p e_{K}}{p-1}-c+1\right)$. When $a \in F$, what are the jumps of L / F in this case?

