Comprendre la dynamique et la diversité du phytoplancton

Frédéric Barraquand，Coralie Picoche

Institut de Mathématiques de Bordeaux

8 Octobre 2019
frederic．barraquand＠u－bordeaux．fr
uníversité ＂BORDEAUX

Questions scientifiques

1 - Qu'est-ce qui génère les efflorescences ou "blooms"?

- Croissance exponentielle de la biomasse sur des surfaces importantes (ha à km^{2} et plus)
- Des raisons toujours débattues
- Importance pour l'écologie : pompe à carbone, eutrophisation, toxines et intoxications (alimentaires) induites...

Phaeocystis globosa blooming in Boulogne (IFREMER)

Chlorophyll a in the North Atlantic

2 - Qu'est-ce qui maintient la diversité du plancton?

The paradox of the plankton
[...] how it is possible for a number of species to coexist in a relatively isotropic or unstructured environment all competing for the same sorts of materials.

- Hutchinson, 1961

Questions scientifiques

Blooms : les "marées rouges" - red tides

Bloom de Karenia Brevis, Floride. Credit: NOAA.

Deux protagonistes et leur histoire

Lawrence Basil Slobodkin

Tout juste sorti de thèse, écologue intéressé par la modélisation du vivant, autour de 1950.

Karenia Brevis

Entre 20 et $40 \mu \mathrm{~m}$, 2 flagelles. Credit: FWC Fish and Wildlife Research Institute.

Le phytoplancton et ses maths

Préambule : la diffusion comme modèle de mouvement

b)

a) flux laminaire; b) flux turbulent

Approximation diffusive - mouvement aléatoire des particules

$$
\begin{equation*}
\frac{\partial p}{\partial t}=D \frac{\partial^{2} p}{\partial x^{2}} \tag{1}
\end{equation*}
$$

pour une densité d'organismes $p(x, t)$ dans l'eau. Approxime :

- La turbulence du fluide
- Le comportement actif des organismes
- Réorientation après chocs (mouvement Brownien original)

Observations et conjectures

Figure 9.2. A water mass within which phytoplankton grow and diffusion takes place: α : growth rate; D : diffusivity; L : size of water mass.

Tiré de Okubo and Levin - Diffusion and Ecological Problems: Modern Perspectives (2001)

- \exists Taille minimale des "red tides"
- Probablement associées aux masses d'eau de faible salinité $(\mathrm{NB}$ masses d'eau $=\mathrm{f}($ température, salinité $) \rightarrow$ densité $)$

The size of water masses containing plankton blooms

Kierstad and Slobodkin, Journal of Marine Research, 1953. Adapté de Okubo \& Levin 2001.

$$
\begin{equation*}
\frac{\partial S}{\partial t}=D \frac{\partial^{2} S}{\partial x^{2}}+r S \tag{2}
\end{equation*}
$$

avec

- $S(x, t)=0$ pour $x<0$ et $x>L$
- $S(x, 0)=f(x)>0$ sauf aux bornes
qui a pour solution

$$
\begin{equation*}
S(x, t)=A_{n} \sum_{n=1}^{\infty} \sin \left(\frac{n \pi x}{L}\right) \exp \left(\left(r-D n^{2} \pi^{2} / L^{2}\right) t\right) \tag{3}
\end{equation*}
$$

avec $A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x$.

The size of water masses containing plankton blooms

De ce modèle on déduit

$$
\begin{equation*}
L_{c}=\pi \sqrt{\frac{D}{r}} \tag{4}
\end{equation*}
$$

et en 2 dimensions

$$
\begin{equation*}
R_{c}=2.4048 \sqrt{\frac{D}{r}} \tag{5}
\end{equation*}
$$

- L_{c} Longeur et R_{c} rayon critique
- D diffusivité horizontale
- r taux de croissance per capita

En réalité, c'est plus compliqué...

- Distribution verticale
- Démographie complexe des espèces toxiques
- Prédateurs, parasites, etc.

Fischer et al., 2014. Sixty years of Sverdrup: A retrospective of progress in the study of phytoplankton blooms. Oceanography.

Modèle de distribution verticale ($s=$ profondeur)

$$
\begin{align*}
\frac{\partial \omega}{\partial t}(s, t) & =\left(p(I(s, t))-I_{d}\right) \omega(s, t)+\nu \frac{\partial \omega}{\partial s}(s, t)+D \frac{\partial^{2} \omega}{\partial^{2} s}(s, t) \\
I(s, t) & =I_{0} \exp \left\{-\int_{0}^{z_{\max }} k \omega(\sigma, t) d \sigma-K_{b g} z_{\max }\right\} \tag{6}\\
\nu \omega(s, t) & +D \frac{\partial \omega}{\partial s}(s, t)=0 \quad \forall t, s \in\left\{0, z_{\max }\right\}
\end{align*}
$$

- $\omega(s, t)$ plankton abundance
- $p(I(s, t))$ production related to light intensity
- I_{d} mortality and sinking loss
- ν laminar flow (advection)
- D diffusion (turbulence)
- k light interception
- $K_{b g}$ background turbidity

Huisman \& Weissing : compétition pour la lumière

$$
\frac{\partial \omega_{\mathbf{i}}}{\partial t}(s, t)=\left(p_{\mathbf{i}}(I(s, t))-l_{\mathbf{i}, d}\right) \omega_{\mathbf{i}}(s, t)+\frac{d D_{\mathbf{i}}}{d s}(s) \frac{\partial \omega_{\mathbf{i}}}{\partial s}(s, t)+D_{\mathbf{i}}(s) \frac{\partial^{2} \omega_{\mathbf{i}}}{\partial^{2} s}(s, t)
$$

Réponses à la lumière espèce-spécifique

Huisman \& Weissing, 1999. Species and dynamics in Phytoplankton Blooms: Incomplete Mixing and Competition for Light. The American Naturalist.

Huisman \& Weissing : compétition pour la lumière

$$
\frac{\partial \omega_{\mathbf{i}}}{\partial t}(s, t)=\left(p_{\mathbf{i}}(l(s, t))-l_{\mathbf{i}, d}\right) \omega_{\mathbf{i}}(s, t)+\frac{d D_{\mathbf{i}}}{d s}(s) \frac{\partial \omega_{\mathbf{i}}}{\partial s}(s, t)+D_{\mathbf{i}}(s) \frac{\partial^{2} \omega_{\mathbf{i}}}{\partial^{2} s}(s, t)
$$

Effet de l'environnement

Huisman \& Weissing, 1999. Species and dynamics in Phytoplankton Blooms: Incomplete Mixing and Competition for Light. The American Naturalist.

2 - Qu'est-ce qui maintient la diversité du plancton?

Coexistence à petite échelle spatiale, e.g. dans les mêmes 10 mL .

La coexistence dans des modèles de Lotka-Volterra (1926)

$$
\begin{equation*}
\frac{d N_{i}}{d t}=r_{i} N_{i}-\sum_{j=1}^{n} \alpha_{i j} N_{j} N_{i} \tag{7}
\end{equation*}
$$

- $N_{i}>0, N_{j}>0$ si $\alpha_{i i}>\alpha_{i j}$ (et vice versa) pour $n=2$
- $\alpha_{i i} \gg \alpha_{i j}$ pour n grand (Barabas et al. American Naturalist 2016) $\alpha_{i i} \gg \alpha_{i j}$ traduit le fait que les espèces ne rentrent pas beaucoup en compétition parce qu'elles ont des
- Ressources (nutriments, lumières) différentes
- Prédateurs différents
- Habitats différents

Questions scientifiques

Théorie neutre de la biodiversité (2000) - espèces indistinguables (à un même niveau trophique)

The Unified Neutral Theory o

STEPHEN P. HUBBELI

Si les espèces sont indistinguables, $\alpha_{i i}=\alpha_{i j}$ par définition.

Test des mécanismes de coexistence sur données réelles

Chaetoceros spp.

- 1987 à maintenant
- Deux sites tous les 15 jours

Ifremer

- >300 taxa (\approx espèces)
- Variables
"environnementales"

Simplification du système phytoplancton

- >300 taxa $\rightarrow 12$ groupes au niveau genre
- Généralement la même taille
- Compétiteurs possible

Hypothèses des modèles Lotka-Volterra

$$
\begin{equation*}
\frac{d N_{i}}{d t}=r_{i} N_{i}-\sum_{j=1}^{n} \alpha_{i j} N_{j} N_{i} \tag{8}
\end{equation*}
$$

Effet linéaire des densités sur les taux de croissance par individu

$$
\begin{equation*}
\frac{1}{N_{i}} \frac{d N_{i}}{d t}=r_{i}-\sum_{j=1}^{n} \alpha_{i j} N_{j} \tag{9}
\end{equation*}
$$

Modèles alternatifs

Effet nonlinéaire $g(N)$

$$
\begin{equation*}
\frac{1}{N_{i}} \frac{d N_{i}}{d t}=r_{i}-\sum_{j=1}^{n} \alpha_{i j} g\left(N_{j}\right) \tag{10}
\end{equation*}
$$

Log

$$
\begin{equation*}
\frac{1}{N_{i}} \frac{d N_{i}}{d t}=r_{i}-\sum_{j=1}^{n} \alpha_{i j} \ln \left(N_{j}\right) \tag{11}
\end{equation*}
$$

Astuce

$$
\begin{equation*}
\frac{d \ln \left(N_{i}\right)}{d t}=r_{i}-\sum_{j=1}^{n} \alpha_{i j} \ln \left(N_{j}\right) \tag{12}
\end{equation*}
$$

et finalement avec $x=\ln (N)$

$$
\begin{equation*}
\frac{d x_{i}}{d t}=r_{i}-\sum_{j=1}^{n} \alpha_{i j} x_{j} \tag{13}
\end{equation*}
$$

Modèles autorégressifs multivariés (statistiques)

$$
\begin{equation*}
\mathbf{x}_{t}=\left(x_{i, t}\right)_{i=1, \ldots, 12}, \mathbf{x}_{t+1}=\mathbf{x}_{t}+\mathbf{A} \mathbf{x}_{t}+\mathbf{C} \mathbf{u}_{t}+\mathbf{e}_{t}, \mathbf{e}_{t} \sim \mathcal{N}_{12}(\mathbf{0}, \boldsymbol{\Sigma}) \tag{14}
\end{equation*}
$$

A à gauche, \mathbf{C} à droite; \mathbf{u}_{t} environnement (lumière, vent, ...).

Modèles autorégressifs multivariés (statistiques)

$$
\begin{equation*}
\mathbf{x}_{t}=\left(x_{i, t}\right)_{i=1, \ldots, 12}, \mathbf{x}_{t+1}=\mathbf{x}_{t}+\mathbf{A} \mathbf{x}_{t}+\mathbf{C} \mathbf{u}_{t}+\mathbf{e}_{t}, \mathbf{e}_{t} \sim \mathcal{N}_{12}(\mathbf{0}, \boldsymbol{\Sigma}) \tag{14}
\end{equation*}
$$

A à gauche, \mathbf{C} à droite; \mathbf{u}_{t} environnement (lumière, vent, ...).

Séries temporelles (rouge : données, noir : prédictions)

Causes possibles de la coexistence

Théorie classique (\approx Lotka-Volterra) largement confirmée (sur ce jeu de données, Barraquand et al. Oikos 2018); théorie neutre largement infirmée.
Raisons pour laquelle la compétition intra-espèce est supérieure:

- Ressources (nutriments, lumière) différentes
- Prédateurs (zooplancton, virus). NB env. visqueux.
- Habitats \rightarrow Ségrégation spatiale (dans un milieu turbulent à l'échelle du mm au cm ?)

Questions scientifiques

Structuration spatiale à fine échelle liée à la reproduction?

Pas de mouvement du fluide

Avec mouvement turbulent

