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Filtering

Is the problem of estimating the hidden state of a system as a set of observations
becomes available in time.

Applications

Ballistics

Robotics (localization)

Visual Tracking hands/cars/people

Econometrics

Navigation

Many more...
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Difficulties

Difficulties

Noise on measurements and model uncertainty

Full/partial occlusions

Targets entering/leaving the scene

False positives/false negatives

Efficiency

Multiple models and switching dynamics, multiple targets

Targets overlapping

Many more..
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Single Target tracking

The state vector contains all
available information to describe
the investigated system.

Observations are generally of
lower dimension than the state
vector

System evolution xt = ft|t−1(xt−1, vt )

Observation function yt = ht (xt ,wt )

Objective: pt (xt |y1:t )

Fig: [Vo 2009]
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The Bayes filter

The estimation of pt (xt |y1:t ) is can be recursevely obtained using the
Chapman-Kolgomorov equation and the Bayes rule.
The Bayes filter is a recursion that consists of two steps: prediction and
update.

Prediction

pt|t−1(xt |y1:t−1) =

∫
ft|t−1(xt |x)pt−1(x |y1:t−1)dx (1)

Update

pt (xt |y1:t ) =
pt|t−1(xt |y1:t−1)p(yt |xt )

p(yt |y1:t−1)
(2)
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Multi target filter problem

Objective

Estimate an unknown, time varying number of targets and their states from noisy
observations avaiable at discrete intervals of time.

The number of target changes over
time

Detection uncertainty

Clutter

Association uncertainty
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PHD filter

The first approaches treated multi-target tracking as two separate problems:

1 Associate the new measurement to a list of current tracks, (the state vector is
augmented with association variables)

2 Estimate the state of the targets based on this association. (Generally using
Kalman filter, EKF or UKF)

Mahler proposed a different approach based on Point Processes. In this framework the
association problem generally doesn’t generate a combinatorial explosion.

The Model

The set of targets at time t , the set of measurements and the clutter process are
modeled as point processes.
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Notations

Given a state space X , F(X ) the set of all finite subsets of the state space X .
The set of targets at time t : Xt = {Xt,1, . . . ,Xt,Kt } ∈ F(X ) is defined as:

Xt =
(
∪x∈Xt−1 St|t−1(x)

)
∪ (∪x∈Xt−1 Dt|t−1(x)) ∪ Nt

Where:

St|t−1(x) is the random set of targets which survived at time t from the set
x ∈ Xt−1

Dt|t−1(x) is the random set of targets which have been generated from x ∈ Xt−1

Nt is the random set of targets appeared at time t .

The set of measures: Yt = {Y1, . . . ,YNt } at time t is given by the following observation
model:

Yt = Γt ∪ (∪x∈Xt Gt (x))

where Gt (x) is the random set of measures generated from the target x ∈ Xt and Γt
the set of spourious measurements at time t .
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Notations

A random set X ∈ F(X ) can equivalently be represented by the random measure NX
defined by

NX (S) =
∑
x∈X

1S(x) = |X ∩ S|

where 1S(x) = 1 if x ∈ S, 0 otherwise, and |A| is the number of elements in the set A.
The first moment, or intensity measure of X ∈ F(X ) is defined by

V (S) = E [N(S)]

The intensity V (S) over a region S gives the number of elements of X which are in S.
The density ν : X → [0,+∞[ of the intensity measure V with respect to the Lebesgues
measure is called intensity function, “Probability Hypothesis Density" or PHD.∫

S
ν(x)dx = E [N(S)] = E [|X ∩ S|]

The maxima of ν correspond to the points in X where there is the highest local
concentration of the random number of targets. The total mass of V (X ) gives the total
average number of targets.
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Intensity function

[Vo 2008]
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PHD Filter

Structure

Mahler: "The PHD filter is a multitarget statistical analog of the computationally fastest
approximate single-target filtering approach (constant-gain Kalman filter) This filter
propagates a first-order statistical moment in the place of the multitarget posterior
distribution".

Each object evolves and generates observation independently of one another

The measurements and clutter RFS are Poisson RFS

The birth RFS is a Poisson RFS

The PHD (or intensity function) vt is not a probability density and the PHD
propagation equation is not a standard Bayesian recursion

The predicted and the posterior multi-object RFS are approximated by Poisson RFS

Structure

The PHD filter propagates the probability hypothesis density function, that is the first
moment of the target posterior in two steps, a prediction step and an update step:

vk|k (x) = (Ψt ◦ Φt|t−1)vk−1|k−1(x) (3)
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Basic properties of Poisson point processes

Definition

Superposition: The sum of independent Poisson processes with intensities λ1
and λ2 is a Poisson process with intensity λ = λ1 + λ2.

Thinning: If each point x survives with probability 0 ≤ π(x) ≤ 1 then the
probability of survival of x is a Poisson process with intensity λthin = λ(x)π(x)

A Poisson RFS is completely characterized by its intensity function v .

Property

The Poisson RFSs:

are closed under superposition and independent thinning
the distribution of the cardinality or X is Poisson with mean N =

∫
v(x)dx

given a cardinality of N, the elements of X are i.i.d. with probability v(.)/N

A Poisson RFS is completely characterized by its intensity
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PHD equations

The PHD filter propagates in time the posterior intensity function:

PHD Prediction

νt|t−1(x) =

∫
X

pS,t ft|t−1(x |u)νt−1|t−1(u)du + γt (x) (4)

where ft|t−1(x |u) is the evolution density of a target, pS,t the survival probability at time
t and γt (x) the intensity of new targets.

PHD Update

νt|t (x) = (1− pD,t (x))νt|t−1(x) +
∑
y∈Yt

pD,t (x)ht (y |x)νt|t−1(x)

κt (y) +
∫
X pD,t (u)ht (y |u)νt|t−1(u)du

(5)

where ht (y |x) is the likelihood of an observation, pD,t (x) the detection probability and
κt the clutter intensity. This recursion is based on the assumption that the point
processes Xt|t and Xt|t−1 can be approached by Poisson Point processes.
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Description of the model

Denote by γn and ηn the flow of measure defined by the equation:

γn = γn−1Qn + µn, and ηn(dxn) = γn(dxn)/γn(1) (6)

In this situation γn represents the intensity measure associated with a multi-target type
branching process associated to the integral operators:

Qn(xn−1, dxn) = Bn(xn−1, dxn) + en(xn−1)Pn(xn−1, dxn) (7)

One traditional way to enter the likelihood of a given observation is to multiply at each
time step γn by a likelihood function which depend on the observation RFS.

Ĝn,γn (x) = (1− dn(x)) + dn(x)
∑

y∈Yn

gn,y (x)

kn(x) + γn(dngn,y )
(8)

The resulting evolution equation takes the following form

γn := γnQ̃n+1,γn + µn+1 (9)

With the collection of integral operators defined by:

Q̃n+1,γn (xn, dxn+1) = Ĝn,γn (xn)Qn+1(xn, dxn+1) (10)
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Possible implementations and variants

SMC-PHD

The intensity function is approximated using a set of weighted particles
After the update particles need to be clustered to identify targets position.

GM-PHD

Closed-form solution to the PHD recursion exists for linear Gaussian multi-target
model. Prior intensity is modeled as Gaussian mixture as well as the posterior
intensities.

Cardinalised PHD Filter [Mahler 06,07]

Jointly propagate intensity function and probability generating function of cardinality

More complex PHD update step (higher computational costs)
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Filtre PHD particulaire

Algorithm 1 Filtre PHD particulaire
Initialization : At time t = 0, initialize the particles

• For i = 1, . . . , L0, sample x(i)
0 ∼ q0

• For i = 1, . . . , L0, set w(i)
0 ← N0/L0

where N0 =
∫
ν0(x)dx and q0(x) = ν0(x)/N0

Iterate : For t = 1, 2, . . .
• Exploration/Mutation
• For i = 1, . . . , Lt−1 + Jt , sample

x̃(i)
t ∼

{
qt (·|x(i)

t−1, Yt ) i = 1, . . . , Lt−1
rt (·|Yt ) i = Lt−1 + 1, . . . , Lt−1 + Jt

(11)
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Filtre PHD particulaire

Algorithm 2 Filtre PHD particulaire
• Selection
• For i = 1, . . . , Lt−1 + Jt :

w̃(i)
t|t−1 =



ft|t−1(x̃(i)
t |x

(i)
t−1)

qt (x̃(i)
t |x

(i)
t−1,Yt )

w(i)
t−1 i = 1, . . . , Lt−1

γt (x̃(i)
t )

Jt rt (x̃(i)
t |Yt )

i = Lt−1 + 1, . . . , Lt−1 + Jt

(12)

w̃(i)
t =

1− pD,t (x̃(i)
t ) +

∑
y∈Yt

pD,t (x̃(i)
t )gt (y|x̃(i)

t )

κt (y) + Ct (y)

 w̃(i)
t|t−1 (13)

where Ct (y) =
∑Lt−1+Jt

j=1 pD,t (x̃(i)
t )gt (y|x̃(i)

t )w̃(i)
t|t−1

• Resample the particles according to w̃(i)
t to obtain Lt = ρN̂t particles (xt (i)) wih weights w(i)

t = 1
ρ

where

N̂t =
∑

i w̃(i)
t is the estimated number of targets.
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Target Model

An unknown, varying number of targets move along the line segment
[-100,100]. The state of the targets consist of position and velocity; only the
position is observed. Targets may appear or disappear at any time during and
are subjected to random accelerations.[

xt+1

vt+1

]
=

[
1 ∆t
0 1

] [
xt

vt

]
+ at

[ 1
2 ∆t2

∆t

]
(14)

Where at is sampled from N (0, σ2
w )

The system evolution is partially observed by the following observation
model:

yt =
[

1 0
] [ xt

vt

]
+ σv Vt (15)

Where Vt is sampled from N (0, σ2
v )
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Simulation 1

ρ = 100 Birth particles = 25
Avg. Targets time step= 0.05 PE = 1

PD= 0.9 λk = 0

0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

Figure: Scenario



Introduction Multi target filter problem PHD Filters Simulations Results

Simulation 1

0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100
Observation and clutter

Time

S
ou

rv
ei

lla
nc

e 
Z

on
e

Figure: Filtering result



Introduction Multi target filter problem PHD Filters Simulations Results

Simulation 1

0
10

20
30

40
50

60
70

80
90

100

0

50

100

150

200

250

0

2

4

Figure: Intensity function



Introduction Multi target filter problem PHD Filters Simulations Results

Simulation 1
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Simulation 1

ρ = 100 Birth particles = 25
Avg. Targets time step= 0.05 PE = 1

PD= 1 λk = 2

0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

Figure: Scenario



Introduction Multi target filter problem PHD Filters Simulations Results

Simulation 1

0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100
Observation and clutter

Time

S
ur

ve
ill

an
ce

 Z
on

e

Figure: Filtering result



Introduction Multi target filter problem PHD Filters Simulations Results

Simulation 1
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Simulation 1
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Simulation 1
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What’s going on

Analysis of the conditional distributions of spatial point processes

Techniques developed to complement and simplify more traditional random finite sets
analysis involving unnecessary symmetrisation techniques or related to other
technicalities associated with moment generating functions derivatives. On the
Conditional Distributions of Spatial Point Processes

Particle approximations of branching distribution flows

Design a mean field and interacting particle interpretation of a class of spatial
branching intensity models with spontaneous births. In contrast with tra ditional
Feynman-Kac type particle models, the transitions of these interacting particle systems
depend on the current particle approximation of the total mass process. Analisys of the
stability properties and long time behavior of these distribution flows.

Application and Extension of PHD filter to realistic case scenarios

The Probability Hypothesis Density filter is applied to realistic three-dimensional aerial
and naval scenarios. A comparisons between the sequential Monte Carlo and the
Gaussian Mixture approximation is given using different scenarios and different clutter
levels.
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Description of the model

(En)n ≥ 0 sequence of measurable spaces equipped with some σ-fields (En)n≥0.
M(En), M+(En) and P(En) be the set of all finite signed measures, the subset of
positive measures and the subset of probability measures over En, with n ≥ 0.
µn ∈ M+(En) a collection of measures, Mn a collection of Markov transitions from En to
En+1.
We denote by γn and ηn the flow of measure defined by the equation:

γn = γn−1Qn + µn, and ηn(dxn) = γn(dxn)/γn(1) (16)

and some given initial measure γ0 = µ0 ∈ M+(En)
The pair process (γn(1), ηn) ∈ (R+,P(En)) satisfy the following non linear evolution:

(γn(1), ηn) = Γn(γn−1(1), ηn−1) (17)

Where Γ1
n and Γ2

n are the first and the second component mappings from
(R+ × P(En)) into R+, and from (R+ × P(En)) into P(En).
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Description of the model µn+1(1) = 0

For null spontaneous branching measures µn = 0:

γn(1) = ηn−1(Gn) γn−1(1) := Γ1
n(γn−1(1), ηn−1)

ηn(dx ′) =

∫
ΨGn−1

(ηn−1)(dx) Mn(x , dx ′) := Γ2
n(γn−1(1), ηn−1)(dx ′)

The second component mapping Γ2
n(γn−1(1), ηn−1) := Φn(ηn−1) reduces to a

mapping Φn that doesn’t depend on the total mass process γn−1(1).
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Markov transport formulation µn+1(1) 6= 0

Recall
(γn(1), ηn) = Γn(γn−1(1), ηn−1)

For any n ≥ 0, we have the recursive formula
γn+1(1) = γn(1) ηn(Gn) + µn+1(1)

ηn+1 = ΨGn (ηn)Mn+1,(γn(1),ηn)

(18)

with the collection of Markov transitions Mn+1,(m,η) indexed by the parameters m ∈ R+

and the probability measures η ∈ P(En) given below

Mn+1,(m,η)(x , dy) := αn (m, η) Mn+1(x , dy) + (1− αn (m, η)) µn+1(dy) (19)

with the collection of [0, 1]-parameters αn (m, η) defined below

αn (m, η) =
mη(Gn)

mη(Gn) + µn+1(1)
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