Lifting Artin-Schreier covers with maximal wild monodromy

P. Chrétien

November 25, 2012

Abstract

Let k be an algebraically closed field of characteristic $p>0$. We consider the problem of lifting p-cyclic covers of \mathbb{P}_{k}^{1} as p-cyclic covers of the projective line over some DVR under the condition that the wild monodromy is maximal. We answer positively the question for covers birational to $w^{p}-w=t R(t)$ for some additive polynomial $R(t)$.

1 Introduction

Let (R, v) be a complete discrete valuation ring of mixed characteristic ($0, p$) with fraction field K containing a primitive p-th root of unity ζ_{p} and algebraically closed residue field k. The stable reduction theorem states that given a smooth, projective, geometrically connected curve C / K of genus $g(C) \geq 2$, there exists a unique minimal Galois extension M / K called the monodromy extension of C / K such that $C_{M}:=C \times M$ has stable reduction over M. The group $G=\operatorname{Gal}(M / K)$ is the monodromy group of C / K.

Let us consider the case where $\phi: C \rightarrow \mathbb{P}_{K}^{1}$ is a p-cyclic cover. Let \mathcal{C} be the stable model of C_{M} / M and $\operatorname{Aut}_{k}\left(\mathcal{C}_{k}\right)^{\#}$ be the subgroup of $\operatorname{Aut}_{k}\left(\mathcal{C}_{k}\right)$ of elements acting trivially on the reduction in \mathcal{C}_{k} of the ramification locus of $\phi \times \operatorname{Id}_{M}: C_{M} \rightarrow \mathbb{P}_{M}^{1}$ (see [Liu02] 10.1.3 for the definition of the reduction map of C_{M}). One derives from the stable reduction theorem the following injection

$$
\begin{equation*}
\operatorname{Gal}(M / K) \hookrightarrow \operatorname{Aut}_{k}\left(\mathcal{C}_{k}\right)^{\#} . \tag{1}
\end{equation*}
$$

When the p-Sylow subgroups of these groups are isomorphic, one says that the wild monodromy is maximal. We are interested in realization of smooth covers as above such that the p-adic valuation of $\left|\operatorname{Aut}_{k}\left(\mathcal{C}_{k}\right)^{\#}\right|$ is large compared to the genus of \mathcal{C}_{k} and having maximal wild monodromy. Moreover,
we will study the ramification filtration and the Swan conductor of their monodromy extension.

Recall that a big action is a pair (X, G) where X / k is a smooth, projective, geometrically connected curve of genus $g(X) \geq 2$ and G is a finite p-group of k-automorphisms of X / k such that $|G|>\frac{2 p}{p-1} g(X)$. According to [LM05] Theorem 1.1 II f), if (X, G) is a big action, then one has that $|G| \leq \frac{4 p}{(p-1)^{2}} g(X)^{2}$ with equality if and only if X / k is birationally given by $w^{p}-w=t R(t)$ where $R(t) \in k[t]$ is an additive polynomial. In this case, G is an extra-special p-group and equals the p-Sylow subgroup $G_{\infty, 1}(X)$ of the subgroup of $\operatorname{Aut}_{k}(X)$ leaving $t=\infty$ fixed.

This motivates the following question, with the above notations, given a big action (C, G) such that $|G|=\frac{4 p}{(p-1)^{2}} g(X)^{2}$, is it possible to find a field K and a a p-cyclic cover C / K of \mathbb{P}_{K}^{1} such that $\mathcal{C}_{k} \simeq X$, that $G \simeq \operatorname{Aut}\left(\mathcal{C}_{k}\right)_{1}^{\#}$ is a p-Sylow subgroup of $\operatorname{Aut}\left(\mathcal{C}_{k}\right)^{\#}$ and the curve C / K has maximal wild monodromy?

Let $n \in \mathbb{N}^{\times}, q=p^{n}, \lambda=\zeta_{p}-1$ and $K=\mathbb{Q}_{p}^{\mathrm{ur}}\left(\lambda^{1 /(1+q)}\right)$. For any additive polynomial $R(t) \in k[t]$ of degree q, let X / k be curve defined by $w^{p}-w=t R(t)$. In section 3, we prove the following
Theorem 1.1. There exists a p-cyclic cover C / K of \mathbb{P}_{K}^{1} such that $\mathcal{C}_{k} \simeq X$, one has $G_{\infty, 1}(X) \simeq \operatorname{Aut}\left(\mathcal{C}_{k}\right)_{1}^{\#}$ and the curve C / K has maximal wild monodromy M / K. The extension M / K is the decomposition field of an explicitly given polynomial and the group $\operatorname{Gal}(M / K) \simeq \operatorname{Aut}_{k}\left(\mathcal{C}_{k}\right)_{1}^{\#}$ is an extra-special p-group of order $p q^{2}$.

The group $G_{\infty, 1}\left(\mathcal{C}_{k}\right)=\operatorname{Aut}_{k}\left(\mathcal{C}_{k}\right)_{1}^{\#}$ is endowed with the ramification filtration $\left(G_{\infty, i}\left(\mathcal{C}_{k}\right)\right)_{i \geq 0}$ which is easily seen to be :

$$
G_{\infty, 0}\left(\mathcal{C}_{k}\right)=G_{\infty, 1}\left(\mathcal{C}_{k}\right) \supsetneq \mathrm{Z}\left(G_{\infty, 0}\left(\mathcal{C}_{k}\right)\right)=G_{\infty, 2}\left(\mathcal{C}_{k}\right)=\cdots=G_{\infty, 1+q}\left(\mathcal{C}_{k}\right) \supsetneq\{1\} .
$$

Moreover, $G:=\operatorname{Gal}(M / K)$ being the Galois group of a finite extension of K, it is endowed with the ramification filtration $\left(G_{i}\right)_{i \geq 0}$. Since $G \simeq G_{\infty, 1}\left(\mathcal{C}_{k}\right)$ it is natural to ask for the behaviour of $\left(G_{i}\right)_{i \geq 0}$ under (1), that is to compare $\left(G_{i}\right)_{i \geq 0}$ and $\left(G_{\infty, i}\left(\mathcal{C}_{k}\right)\right)_{i \geq 0}$. In the general case, the arithmetic is quite tedious due to the expression of the lifting of X / k. Actually we could not obtain a numerical example for the easiest case when $p=3$. Nonetheless, when $p=2$, one computes the conductor exponent $f(\mathrm{Jac}(C) / K)$ of $\mathrm{Jac}(C) / K$ and its Swan conductor $\operatorname{sw}(\operatorname{Jac}(C) / K)$:
Theorem 1.2. Under the hypotheses of Theorem 1.1, if $p=2$ the lower ramification filtration of G is :

$$
G=G_{0}=G_{1} \supsetneq \mathrm{Z}(G)=G_{2}=\cdots=G_{1+q} \supsetneq\{1\} .
$$

Then, $f(\operatorname{Jac}(C) / K)=2 q+1$ and $\operatorname{sw}\left(\operatorname{Jac}(C) / \mathbb{Q}_{2}^{\text {ur }}\right)=1$.

Remarks :

1. In Theorem 1.1, one actually obtains a family of liftings C / K of X / k with the announced properties. It is worth noting that there are finitely many additive polynomials $R_{0}(t) \in k[t]$ such that $w^{p}-w=t R(t)$ is k isomorphic to $w^{p}-w=t R_{0}(t)$ (see [LM05] 8.2), so we have to solve the problem in a somehow generic way. In [CM11], we obtain the analogous of Theorem 1.1 and Theorem 1.2 for $p \geq 2$ in the easier case $R(t)=t^{q}$.
2. For $p=3$, the easiest non-trivial case is such that $[M: K]=243$, that is why we could not even do computations using Magma to guess the behaviour of the ramification filtration of the monodromy extension for $p>2$. Nonetheless, one shows that if $p \geq 3$, the lower ramification filtration of G is

$$
G=G_{0}=G_{1} \supsetneq G_{2}=\cdots=G_{u}=\mathrm{Z}(G) \supsetneq\{1\},
$$

where $u \in 1+q \mathbb{N}$.
3. The value $\operatorname{sw}\left(\operatorname{Jac}(C) / \mathbb{Q}_{2}^{\mathrm{ur}}\right)=1$ is the smallest one among abelian varieties over $\mathbb{Q}_{2}^{u r}$ with non tame monodromy extension. That is, in some sense, a counter part of [BK05] and [LRS93] where an upper bound for the conductor exponent is given and it is shown that this bound is actually achieved.

2 Background

Notations. Let (R, v) be a complete discrete valuation ring (DVR) of mixed characteristic $(0, p)$ with fraction field K and algebraically closed residue field k. We denote by π_{K} a uniformizer of R and assume that K contains a primitive p-th root of unity ζ_{p}. Let $\lambda:=\zeta_{p}-1$. If L / K is an algebraic extension, we will denote by π_{L} (resp. v_{L}, resp. L°) a uniformizer for L (resp. the prolongation of v to L such that $v_{L}\left(\pi_{L}\right)=1$, resp. the ring of integers of L). If there is no possible confusion we note v for the prolongation of v to an algebraic closure $K^{\text {alg }}$ of K.

1. Stable reduction of curves. The first result is due to Deligne and Mumford (see for example [Liu02] for a presentation following Artin and Winters).

Theorem 2.1 (Stable reduction theorem). Let C / K be a smooth, projective, geometrically connected curve over K of genus $g(C) \geq 2$. There exists a unique finite Galois extension M / K minimal for the inclusion relation such that C_{M} / M has stable reduction. The stable model \mathcal{C} of C_{M} / M over M° is unique up to isomorphism. One has a canonical injective morphism :

$$
\begin{equation*}
\operatorname{Gal}(M / K) \stackrel{i}{\hookrightarrow} \operatorname{Aut}_{k}\left(\mathcal{C}_{k}\right) \tag{2}
\end{equation*}
$$

Remarks :

1. Let's explain the action of $\operatorname{Gal}\left(K^{\text {alg }} / K\right)$ on \mathcal{C}_{k} / k. The group $\operatorname{Gal}\left(K^{\text {alg }} / K\right)$ acts on $C_{M}:=C \times M$ on the right. By unicity of the stable model, this action extends to \mathcal{C} :

Since $k=k^{\text {alg }}$ one gets $\sigma \times k=\operatorname{Id}_{k}$, whence the announced action. The last assertion of the theorem characterizes the elements of $\operatorname{Gal}\left(K^{\text {alg }} / M\right)$ as the elements of $\operatorname{Gal}\left(K^{\text {alg }} / K\right)$ that trivially act on \mathcal{C}_{k} / k.
2. If $p>2 g(C)+1$, then C / K has stable reduction over a tamely ramified extension of K. We will study examples of covers with $p \leq 2 g(C)+1$.
3. Our results will cover the elliptic case. Let E / K be an elliptic curve with additive reduction. If its modular invariant is integral, then there exists a smallest extension M of K over which E / K has good reduction. Else E / K obtains split multiplicative reduction over a unique quadratic extension of K (see [Kra90]).

Definition 2.1. The extension M / K is the monodromy extension of C / K. We call $\operatorname{Gal}(M / K)$ the monodromy group of C / K. It has a unique p Sylow subgroup $\operatorname{Gal}(M / K)_{1}$ called the wild monodromy group. The extension $M / M^{\operatorname{Gal}(M / K)_{1}}$ is the wild monodromy extension.

From now on we consider smooth, projective, geometrically integral curves C / K of genus $g(C) \geq 2$ birationally given by $Y^{p}=f(X):=\prod_{i=0}^{t}\left(X-x_{i}\right)^{n_{i}}$ with $\left(p, \sum_{i=0}^{t} n_{i}\right)=1,\left(p, n_{i}\right)=1$ and $\forall 0 \leq i \leq t, x_{i} \in R^{\times}$. Moreover, we assume that $\forall i \neq j, v\left(x_{i}-x_{j}\right)=0$, that is to say, the branch locus
$B=\left\{x_{0}, \ldots, x_{t}, \infty\right\}$ of the cover has equidistant geometry. We denote by Ram the ramification locus of the cover.

Remark : We only ask p-cyclic covers to satisfy Raynaud's theorem 1' [Ray90] condition, that is the branch locus is K-rational with equidistant geometry. This has consequences on the image of (2).

Proposition 2.1. Let $\mathcal{T}=\operatorname{Proj}\left(M^{\circ}\left[X_{0}, X_{1}\right]\right)$ with $X=X_{0} / X_{1}$. The normalization \mathcal{Y} of \mathcal{T} in $K\left(C_{M}\right)$ admits a blowing-up $\tilde{\mathcal{Y}}$ which is a semi-stable model of C_{M} / M. The dual graph of $\tilde{\mathcal{Y}}_{k} / k$ is a tree and the points in Ram specialize in a unique irreducible component $D_{0} \simeq \mathbb{P}_{k}^{1}$ of $\tilde{\mathcal{Y}}_{k} / k$. There exists a contraction morphism $h: \tilde{\mathcal{Y}} \rightarrow \mathcal{C}$, where \mathcal{C} is the stable model of C_{M} / M and

$$
\begin{equation*}
\operatorname{Gal}(M / K) \hookrightarrow \operatorname{Aut}_{k}\left(\mathcal{C}_{k}\right)^{\#}, \tag{3}
\end{equation*}
$$

where $\operatorname{Aut}_{k}\left(\mathcal{C}_{k}\right)^{\#}$ is the subgroup of $\operatorname{Aut}_{k}\left(\mathcal{C}_{k}\right)$ of elements inducing the identity on $h\left(D_{0}\right)$.

Proof. see [CM11].
Remark : The component D_{0} is the so called original component.
Definition 2.2. If (3) is surjective, we say that C has maximal monodromy. If $v_{p}(|\operatorname{Gal}(M / K)|)=v_{p}\left(\left|\operatorname{Aut}_{k}\left(\mathcal{C}_{k}\right)^{\#}\right|\right)$, we say that C has maximal wild monodromy.

Definition 2.3. The valuation on $K(X)$ corresponding to the discrete valuation ring $R[X]_{\left(\pi_{K}\right)}$ is called the Gauss valuation v_{X} with respect to X. We then have

$$
v_{X}\left(\sum_{i=0}^{m} a_{i} X^{i}\right)=\min \left\{v\left(a_{i}\right), 0 \leq i \leq m\right\} .
$$

Note that a change of variables $T=\frac{X-y}{\rho}$ for $y, \rho \in R$ induces a Gauss valuation v_{T}. These valuations are exactly those that come from the local rings at generic points of components in the semi-stables models of \mathbb{P}_{K}^{1}.
2. Extra-special p-groups. The Galois groups and automorphism groups that we will have to consider are p-groups with peculiar group theoretic properties (see for example [Hup67] Kapitel III §13 or [Suz86] for an account on extra-special p-groups). We will denote by $\mathrm{Z}(G)$ (resp. $\mathrm{D}(G), \Phi(G))$ the center (resp. the derived subgroup, the Frattini subgroup) of G. If G is a p-group, one has $\Phi(G)=\mathrm{D}(G) G^{p}$.

Definition 2.4. An extra-special p-group is a non abelian p-group G such that $\mathrm{D}(G)=\mathrm{Z}(G)=\Phi(G)$ has order p.

Proposition 2.2. Let G be an extra-special p-group.

1. Then $|G|=p^{2 n+1}$ for some $n \in \mathbb{N}^{\times}$.
2. One has the exact sequence

$$
0 \rightarrow \mathrm{Z}(G) \rightarrow G \rightarrow(\mathbb{Z} / p \mathbb{Z})^{2 n} \rightarrow 0
$$

3. The group G has an abelian subgroup J such that $\mathrm{Z}(G) \subseteq J$ and $|J / \mathrm{Z}(G)|=p^{n}$.
4. Galois extensions of complete $D V R$ s. Let L / K be a finite Galois extension with group G. Then G is endowed with a lower ramification filtration $\left(G_{i}\right)_{i \geq-1}$ where G_{i} is the i-th lower ramification group defined by $G_{i}:=\left\{\sigma \in G \mid v_{L}\left(\sigma\left(\pi_{L}\right)-\pi_{L}\right) \geq i+1\right\}$. The integers i such that $G_{i} \neq G_{i+1}$ are called lower breaks. For $\sigma \in G-\{1\}$, let $i_{G}(\sigma):=v_{L}\left(\sigma\left(\pi_{L}\right)-\pi_{L}\right)$. The group G is also endowed with a higher ramification filtration $\left(G^{i}\right)_{i \geq-1}$ which can be computed from the G_{i} 's by means of the Herbrand's function $\varphi_{L / K}$. The real numbers t such that $\forall \epsilon>0, G^{t+\epsilon} \neq G^{t}$ are called higher breaks.

Lemma 2.1. Let M / K be a Galois extension such that $\operatorname{Gal}(M / K)$ is an extra-special p-group of order $p^{2 n+1}$. Assume that $\operatorname{Gal}\left(M^{\mathrm{Z}(G)} / K\right)_{2}=\{1\}$, then the break t of $M / M^{\mathrm{Z}(G)}$ is such that $t \in 1+p^{n} \mathbb{N}$.

Proof. According to Proposition 2.2 3., there exists an abelian subgroup J with $\mathrm{Z}(G) \subseteq J \subseteq G$ and $|J / \mathrm{Z}(G)|=p^{n}$. Thus, one has the following diagram

Let t be the lower break of M / L, then t is a lower break of M / F and $\varphi_{M / F}(t)=\varphi_{L / F}\left(\varphi_{M / L}(t)\right)$ is a higher break of M / F. Since $\varphi_{M / L}(t)=t$, one
has $\varphi_{M / F}(t)=\varphi_{L / F}(t)$. Since $\operatorname{Gal}(L / K)_{2}=\{1\}$, one has $\operatorname{Gal}(L / F)_{2}=\{1\}$ and $\varphi_{L / F}(t)=1+\frac{t-1}{p^{n}}$. The Hasse-Arf Theorem applied to the abelian extension M / F implies that $1+\frac{t-1}{p^{n}} \in \mathbb{N}-\{0\}$, thus $t \in 1+p^{n} \mathbb{N}$.
4. Torsion points on abelian varieties. Let A / K be an abelian variety over K with potential good reduction and $\ell \neq p$ be a prime number. We denote by $A[\ell]$ the ℓ-torsion group of $A\left(K^{\text {alg }}\right.$) and by $T_{\ell}(A)=\lim A\left[\ell^{n}\right]$ (resp. $\left.V_{\ell}(A)=T_{\ell}(A) \otimes \mathbb{Q}_{\ell}\right)$ the Tate module (resp. ℓ-adic Tate module) of A.

The following result may be found in [Gur03] (paragraph 3). We recall it for the convenience of the reader.

Lemma 2.2. Let $k=k^{\text {alg }}$ be a field with char $k=p \geq 0$ and C / k be a projective, smooth, integral curve. Let $\ell \neq p$ be a prime number and H be a finite subgroup of $\operatorname{Aut}_{k}(C)$ such that $(|H|, \ell)=1$. Then

$$
2 g(C / H)=\operatorname{dim}_{\mathbb{F}_{\ell}} \operatorname{Jac}(C)[\ell]^{H}
$$

If $\ell \geq 3$, then $L=K(A[\ell])$ is the minimal extension over which A / K has good reduction. It is a Galois extension with group G (see [ST68]). We denote by r_{G} (resp. 1_{G}) the character of the regular (resp. unit) representation of G. We denote by I the inertia group of $K^{\text {alg }} / K$. For further explanations about conductor exponents see [Ser67], [Ogg67] and [ST68].

Definition 2.5. 1. Let

$$
\begin{aligned}
a_{G}(\sigma) & :=-i_{G}(\sigma), \quad \sigma \neq 1, \\
a_{G}(1) & :=\sum_{\sigma \neq 1} i_{G}(\sigma),
\end{aligned}
$$

and $\mathrm{sw}_{G}:=a_{G}-r_{G}+1_{G}$. Then, a_{G} is the character of $a \mathbb{Q}_{\ell}[G]$-module and there exists a projective $\mathbb{Z}_{\ell}[G]$-module Sw_{G} such that $\mathrm{Sw}_{G} \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$ has character sw_{G}.
2. We still denote by $T_{\ell}(A)$ (resp. $A[\ell]$) the $\mathbb{Z}_{\ell}[G]$-module (resp. $\mathbb{F}_{\ell}[G]-$ module) afforded by $G \rightarrow \operatorname{Aut}\left(T_{\ell}(A)\right)$ (resp. $G \rightarrow \operatorname{Aut}(A[\ell])$). Let

$$
\begin{aligned}
\operatorname{sw}(A / K) & :=\operatorname{dim}_{\mathbb{F}_{\ell}} \operatorname{Hom}_{G}\left(\mathrm{Sw}_{G}, A[\ell]\right), \\
\epsilon(A / K) & :=\operatorname{codim}_{\mathbb{Q}_{\ell}} V_{\ell}(A)^{I} .
\end{aligned}
$$

The integer $f(A / K):=\epsilon(A / K)+\operatorname{sw}(A / K)$ is the so called conductor exponent of A / K and $\operatorname{sw}(A / K)$ is the Swan conductor of A / K.

Proposition 2.3. Let $\ell \neq p, \ell \geq 3$ be a prime number.

1. The integers $\operatorname{sw}(A / K)$ and $\epsilon(A / K)$ are independent of ℓ.
2. One has

$$
\operatorname{sw}(A / K)=\sum_{i \geq 1} \frac{\left|G_{i}\right|}{\left|G_{0}\right|} \operatorname{dim}_{\mathbb{F}_{\ell}} A[\ell] / A[\ell]^{G_{i}}
$$

Moreover, for ℓ large enough, $\epsilon(A / K)=\operatorname{dim}_{\mathbb{F}_{\ell}} A[\ell] / A[\ell]^{G_{0}}$.
Remark : It follows from the definition that $\operatorname{sw}(A / K)=0$ if and only if $G_{1}=\{1\}$. The Swan conductor is a measure of the wild ramification.
5. Automorphisms of Artin-Schreier covers. See [LM05] for further results on this topic. Let $R(t) \in k[t]$ be a monic additive polynomial and A_{R} / k be the smooth, projective, geometrically irreducible curve birationally given by $w^{p}-w=t R(t)$. There is a so called Artin-Schreier morphism $\pi: A_{R} \rightarrow \mathbb{P}_{k}^{1}$. The automorphism t_{a} of \mathbb{P}_{k}^{1} given by $t \mapsto t+a$ with $a \in k$ has a prolongation \tilde{t}_{a} to A_{R} if there is a commutative diagram

Proposition 2.4. Let $n \geq 1, q:=p^{n}$ and $R(t):=\sum_{k=0}^{n-1} \bar{u}_{k} t^{p^{k}}+t^{q} \in k[t]$. The automorphism of \mathbb{P}_{k}^{1} given by $t \mapsto t+a$ with $a \in k$ has a prolongation to A_{R} / k if and only if one has

$$
a^{q^{2}}+\left(2 \bar{u}_{0} a\right)^{q}+\sum_{k=1}^{n-1}\left(\bar{u}_{k}^{q} a^{q p^{k}}+\left(\bar{u}_{k} a\right)^{q / p^{k}}\right)+a=0
$$

3 Main theorem

We start by fixing notations that will be used throughout this section.
Notations. We denote by \mathfrak{m} the maximal ideal of $\left(K^{\text {alg }}\right)^{\circ}$. Let $n \in \mathbb{N}^{\times}$, $q:=p^{n}, a_{n}:=(-1)^{q}(-p)^{p+p^{2}+\cdots+q}$ and $\forall 0 \leq i \leq n-1, d_{i}:=p^{n-i+1}+\cdots+q$. We denote by $\mathbb{Q}_{p}^{\text {ur }}$ the maximal unramified extension of \mathbb{Q}_{p} and we put
$K:=\mathbb{Q}_{p}^{\mathrm{ur}}\left(\lambda^{1 /(1+q)}\right)$. Let $\underline{\rho}:=\left(\rho_{0}, \ldots, \rho_{n-1}\right)$ where $\forall 0 \leq k \leq n-1, \rho_{k} \in K$, $\rho_{k}=u_{k} \lambda^{p\left(q-p^{k}\right) /(1+q)}$ and $v\left(u_{k}\right)=0$ or $u_{k}=0$. For $c \in R$, let

$$
\begin{aligned}
& \qquad f_{c, \rho}(X):=1+\sum_{k=0}^{n-1} \rho_{k} X^{1+p^{k}}+c X^{q}+X^{1+q} \\
& \text { and } s_{1, \rho}(X):=2 \rho_{0} X+\sum_{k=1}^{n-1} \rho_{k} X^{p^{k}}+X^{q}
\end{aligned}
$$

One defines the modified monodromy polynomial $L_{c, \rho}(X)$ by

$$
s_{1, \rho}(X)^{q}-a_{n} f_{c, \rho}(X)^{q-1}(c+X)-(-1)^{q} \sum_{k=1}^{n-1}\left(\rho_{k} X\right)^{q / p^{k}}(-p)^{d_{k}} f_{c, \rho}(X)^{q\left(p^{k}-1\right) / p^{k}}
$$

Let $C_{c, \rho} / K$ and A_{u} / k be the smooth projective integral curves birationally given respectively by $Y^{p}=f_{c, \rho}(X)$ and $w^{p}-w=\sum_{k=0}^{n-1} \bar{u}_{k} t^{1+p^{k}}+t^{1+q}$.

Theorem 3.1. The curve $C_{c, \rho} / K$ has potential good reduction isomorphic to A_{u} / k.

1. If $v(c) \geq v\left(\lambda^{p /(1+q)}\right)$, then the monodromy extension of $C_{c, \rho} / K$ is trivial.
2. If $v(c)<v\left(\lambda^{p /(1+q)}\right)$, let y be a root of $L_{c, \rho}(X)$ in $K^{\text {alg }}$. Then $C_{c, \rho}$ has good reduction over $K\left(y, f_{c, \rho}(y)^{1 / p}\right)$. If $L_{c, \rho}(X)$ is irreducible over K, then $C_{c, \rho} / K$ has maximal wild monodromy. The monodromy extension of $C_{c, \rho} / K$ is $M=K\left(y, f_{c, \rho}(y)^{1 / p}\right)$ and $G=\operatorname{Gal}(M / K)$ is an extraspecial p-group of order $p q^{2}$.
3. Assume that $c=1$. The polynomial $L_{1, \rho}(X)$ is irreducible over K. The lower ramification filtration of G is

$$
G=G_{0}=G_{1} \supsetneq G_{2}=\cdots=G_{u}=\mathrm{Z}(G) \supsetneq\{1\},
$$

with $u \in 1+q \mathbb{N}$. Moreover, if $p=2$, then $u=1+q$, one has $f\left(\operatorname{Jac}\left(C_{1, \rho}\right) / K\right)=2 q+1$ and $\operatorname{sw}\left(\operatorname{Jac}\left(C_{1, \rho}\right) / \mathbb{Q}_{2}^{\mathrm{ur}}\right)=1$.

Proof. 1. Assume that $v(c) \geq v\left(\lambda^{p /(1+q)}\right)$. Set $\lambda^{p /(1+q)} T=X$ and $\lambda W+1=Y$. Then, the equation defining $C_{c, \rho} / K$ becomes

$$
(\lambda W+1)^{p}=1+\sum_{k=0}^{n-1} \rho_{k} \lambda^{p\left(1+p^{k}\right) /(1+q)} T^{1+p^{k}}+c \lambda^{p q /(1+q)} T^{q}+\lambda^{p} T^{1+q}
$$

After simplification by λ^{p} and reduction modulo π_{K} this equation gives :

$$
\begin{equation*}
w^{p}-w=\sum_{k=0}^{n-1} \bar{u}_{k} t^{1+p^{k}}+a t^{q}+t^{1+q}, a \in k . \tag{4}
\end{equation*}
$$

By Hurwitz formula the genus of the curve defined by (4) is seen to be that of $C_{c, \rho} / K$. Applying [Liu02] 10.3.44, there is a component in the stable reduction birationally given by (4). The stable reduction being a tree, the curve $C_{c, \rho} / K$ has good reduction over K.
2. The proof is divided into eight steps. Let y be a root of $L_{c, \rho}(X)$.

Step I : One has $v(y)=v\left(a_{n} c\right) / q^{2}$.
By expanding $L_{c, \rho}(X)$, one shows that its Newton polygon has a single slope $v\left(a_{n} c\right) / q^{2}$. The polynomial $L_{c, \rho}(X)$ has degree q^{2} and its leading (resp. constant) coefficient has valuation 0 (resp. $v\left(a_{n} c\right)$). One examines monomials from $a_{n} f_{c, \rho}^{q-1}(X)(c+X)$. Since $v(c)<v\left(\lambda^{p /(1+q)}\right)$, one checks that

$$
\forall 1 \leq i \leq q^{2}-1, \frac{v\left(a_{n}\right)}{q^{2}-i} \geq \frac{v\left(a_{n} c\right)}{q^{2}}
$$

Then one examines monomials from $\left(\rho_{i} X\right)^{q / p^{i}} p^{d_{i}} f_{c, \rho}(X)^{q\left(p^{i}-1\right) / p^{i}}$. They have degree at least q / p^{i}, thus one checks that

$$
\forall 1 \leq i \leq n-1, \frac{q / p^{i} v\left(\rho_{i}\right)+d_{i} v(p)}{q^{2}-q / p^{i}} \geq \frac{v\left(a_{n} c\right)}{q^{2}} .
$$

The monomial $X^{q^{2}}$ in $s_{1, \rho}(X)^{q}$ corresponds to the point $(0,0)$ in the Newton polygon of $L_{c, \rho}(X)$, the other monomials of $s_{1, \rho}(X)^{q}$ produce a slope greater than $v\left(\rho_{i}\right) /\left(q-p^{i}\right)$ and one checks that

$$
\forall 0 \leq i \leq n-1, \frac{v\left(\rho_{i}\right)}{q-p^{i}} \geq \frac{v\left(a_{n} c\right)}{q^{2}} .
$$

Note that Step I implies that $v\left(f_{c, \rho}(y)\right)=0$, we will use this remark throughout this proof.

Step II : Define S and T by $\lambda^{p /(1+q)} T=(X-y)=S$. Then $f_{c, \rho}(S+y)$ is congruent modulo $\lambda^{p} \mathfrak{m}[T]$ to

$$
f_{c, \rho}(y)+s_{1, \rho}(y) S+\sum_{k=0}^{n-1} \rho_{k} S^{1+p^{k}}+\sum_{k=1}^{n-1} \rho_{k} y S^{p^{k}}+(c+y) S^{q}+S^{1+q} .
$$

Using the following formula for $A \in K^{\text {alg }}$ with $v(A)>0$ and $B \in\left(K^{\text {alg }}\right)^{\circ}[T]$

$$
k \geq 1,(A+B)^{p^{k}} \equiv\left(A^{p^{k-1}}+B^{p^{k-1}}\right)^{p} \bmod p^{2} \mathfrak{m}[T]
$$

one computes $\bmod \lambda^{p} \mathfrak{m}[T]$

$$
\begin{gathered}
f_{c, \rho}(y+S)=1+\sum_{k=0}^{n-1} \rho_{k}(y+S)^{1+p^{k}}+(y+S)^{1+q}+c(y+S)^{q} \\
\equiv 1+\rho_{0}(y+S)^{2}+\sum_{k=1}^{n-1} \rho_{k}(y+S)\left(y^{p^{k-1}}+S^{p^{k-1}}\right)^{p}+(y+S+c)\left(y^{q / p}+S^{q / p}\right)^{p} .
\end{gathered}
$$

Using Step I, one checks that for all $1 \leq k \leq n-1$

$$
\rho_{k}\left(y^{p^{k-1}}+S^{p^{k-1}}\right)^{p} \equiv \rho_{k}\left(y^{p^{k}}+S^{p^{k}}\right) \bmod \lambda^{p} \mathfrak{m}[T]
$$

and $\left(y^{q / p}+S^{q / p}\right)^{p} \equiv y^{q}+S^{q} \bmod \lambda^{p} \mathfrak{m}[T]$. It follows that
$f_{c, \rho}(y+S) \equiv 1+\rho_{0}(y+S)^{2}+\sum_{k=1}^{n-1} \rho_{k}(y+S)\left(y^{p^{k}}+S^{p^{k}}\right)+(y+c+S)\left(y^{q}+S^{q}\right)$.
One easily concludes from this last expression.
Step III : Let $R_{1}:=K[y]^{\circ}$. For all $0 \leq i \leq n$, one defines $A_{i}(S) \in R_{1}[S]$ and $B_{i} \in R_{1}$ by induction :

$$
\begin{gathered}
B_{n}:=-s_{1, \rho}(y), \forall 1 \leq i \leq n-1, B_{i}:=\frac{f_{q, c}(y) B_{i+1}^{p}}{\left(-p f_{c, \rho}(y)\right)^{p}}-y \rho_{n-i} \\
\quad \text { and } B_{0}:=\frac{f_{c, \rho}(y) B_{1}^{p}}{\left(-p f_{c, \rho}(y)\right)^{p}}, \\
A_{0}(S):=0 \text { and } \forall 0 \leq i \leq n-1 \quad S A_{i+1}(S):=S A_{i}(S)-\frac{B_{i+1} S^{q / p^{i+1}}}{p f_{q, c}(y)^{(p-1) / p}} .
\end{gathered}
$$

Then for all $0 \leq i \leq n-1, v\left(B_{i+1}\right)=\left(1+\cdots+p^{i}\right) v(p) / p^{i}+v(c) / p^{i+1}$ and modulo $\lambda^{\frac{p q^{2}}{q+1}} \mathfrak{m}$ one has

$$
\begin{equation*}
B_{n}^{q} \equiv \frac{a_{n}}{(-1)^{q}} f_{c, \rho}(y)^{q-1} B_{0}+\sum_{k=1}^{n-1}\left(\rho_{k} y\right)^{q / p^{k}}(-p)^{d_{k}} f_{c, \rho}(y)^{q\left(p^{k}-1\right) / p^{k}} \tag{5}
\end{equation*}
$$

We prove the claim about $v\left(B_{i+1}\right)$ by induction on i. Using Step I, one checks that $\forall 0 \leq k \leq n-1, v\left(\rho_{k} y^{p^{k}}\right)>v\left(y^{q}\right)$, so $v\left(B_{n}\right)=v\left(y^{q}\right)$. Assume that
we have shown the claim for i, then one checks that $v\left(\left(B_{i+1} / p\right)^{p}\right)<v\left(y \rho_{n-i}\right)$ and one deduces $v\left(B_{i}\right)$ from the definition of B_{i}. According to the expression of $v\left(B_{i}\right)$, one has $\forall 0 \leq i \leq n, A_{i}(S) \in R_{1}[S]$.

Then we prove the second part of Step III. From the definition of the B_{i} 's one obtains that for all $1 \leq i \leq n-1$

$$
\begin{equation*}
B_{n-i+1}^{q / p^{i-1}}=(-p)^{q / p^{i-1}} f_{c, \rho}(y)^{q(p-1) / p^{i}}\left(y \rho_{i}+B_{n-i}(y)\right)^{q / p^{i}} . \tag{6}
\end{equation*}
$$

Using Step I and $v\left(B_{n-1}\right)$ one checks that $\forall 1 \leq k \leq q / p-1$

$$
p^{q}\binom{q / p}{k}\left(y \rho_{1}\right)^{k} B_{n-1}^{q / p-k} \equiv 0 \bmod \lambda^{p q^{2} /(1+q)} \mathfrak{m}
$$

so $p^{q}\left(y \rho_{1}+B_{n-1}\right)^{q / p} \equiv p^{q}\left(\left(y \rho_{1}\right)^{q / p}+B_{n-1}^{q / p}\right) \bmod \lambda^{p q^{2} /(1+q)} \mathfrak{m}$. Thus, applying equation (6) with $i=1$, one gets

$$
\begin{aligned}
B_{n}^{q} & =(-p)^{q} f_{c, \rho}(y)^{q(p-1) / p}\left(y \rho_{1}+B_{n-1}\right)^{q / p} \\
& \equiv(-p)^{q} f_{c, \rho}(y)^{q(p-1) / p}\left(\left(y \rho_{1}\right)^{q / p}+B_{n-1}^{q / p}\right) \bmod \lambda^{p q^{2} /(1+q)} \mathfrak{m} .
\end{aligned}
$$

One checks using Step I and $v\left(B_{n-i}\right)$ that $\forall 1 \leq i \leq n-1$ and $1 \leq k \leq$ $q / p^{i}-1$

$$
p^{q+\cdots+q / p^{i-1}}\binom{q / p^{i}}{k} B_{n-i}^{q / p^{i}-k}\left(y \rho_{i}\right)^{k} \equiv 0 \bmod \lambda^{p q^{2} /(1+q)} \mathfrak{m}
$$

then by induction on i, using equation (6), one shows that modulo $\lambda^{p q^{2} /(1+q)} \mathfrak{m}$

$$
B_{n}^{q} \equiv(-p)^{p+\cdots+q} f_{c, \rho}(y)^{q-1} B_{0}+\sum_{k=1}^{n-1}\left(\rho_{k} y\right)^{q / p^{k}}(-p)^{d_{k}} f_{c, \rho}(y)^{q\left(p^{k}-1\right) / p^{k}}
$$

Step IV : One has modulo $\lambda^{p} \mathfrak{m}[T]$

$$
f_{c, \rho}(S+y) \equiv f_{c, \rho}(y)+s_{1, \rho}(y) S+\sum_{k=0}^{n-1} \rho_{k} S^{1+p^{k}}+\sum_{k=1}^{n-1} y \rho_{k} S^{p^{k}}+B_{0} S^{q}+S^{1+q}
$$

Since $L_{c, \rho}(y)=0$, one has

$$
\begin{equation*}
s_{1, \rho}(y)^{q}=a_{n} f_{c, \rho}(y)^{q-1}(c+y)+(-1)^{q} \sum_{k=1}^{n-1}\left(\rho_{k} y\right)^{q / p^{k}}(-p)^{d_{k}} f_{c, \rho}(y)^{q\left(p^{k}-1\right) / p^{k}} \tag{7}
\end{equation*}
$$

Using $B_{n}:=-s_{1, \rho}(y)$, equations (5) and (7) one gets

$$
a_{n} f_{c, \rho}(y)^{q-1}\left(c+y-B_{0}\right) \equiv 0 \bmod \lambda^{p q^{2} /(q+1)} \mathfrak{m}
$$

which is equivalent to $S^{q}\left(y+c-B_{0}\right) \equiv 0 \bmod \lambda^{p} \mathfrak{m}[T]$. Then, Step IV follows from Step II.

Step V : One has

$$
f_{c, \rho}(S+y) \equiv\left(f_{c, \rho}(y)^{1 / p}+S A_{n}(S)\right)^{p}+\sum_{k=0}^{n-1} \rho_{k} S^{1+p^{k}}+S^{1+q} \bmod \lambda^{p} \mathfrak{m}[T]
$$

Let $R:=\sum_{k=0}^{n-1} \rho_{k} S^{1+p^{k}}+S^{1+q}+s_{1, \rho}(y) S$. Since $B_{n}=-s_{1, \rho}(y)$ one has

$$
\begin{align*}
& \left(f_{c, \rho}(y)^{1 / p}+S A_{n}(S)\right)^{p}+\sum_{k=0}^{n-1} \rho_{k} S^{1+p^{k}}+S^{1+q} \\
= & \left(f_{c, \rho}(y)^{1 / p}+S A_{n}(S)\right)^{p}+B_{n} S+R \\
= & \left(f_{c, \rho}(y)^{1 / p}+S A_{n-1}(S)-\frac{B_{n} S}{p f_{q, c}(y)^{(p-1) / p}}\right)^{p}+B_{n} S+R \\
= & \left(f_{c, \rho}(y)^{1 / p}+S A_{n-1}(S)\right)^{p}+\left(\frac{-B_{n} S}{p f_{q, c}(y)^{(p-1) / p}}\right)^{p}+B_{n} S+R+\Sigma, \tag{8}
\end{align*}
$$

where

$$
\begin{equation*}
\Sigma=\sum_{k=1}^{p-1}\binom{p}{k}\left(f_{c, \rho}(y)^{1 / p}+S A_{n-1}(S)\right)^{p-k}\left(\frac{-B_{n} S}{p f_{q, c}(y)^{(p-1) / p}}\right)^{k} \tag{9}
\end{equation*}
$$

Using the expression of $v\left(B_{n}\right)$ computed in Step III, one checks that the terms with $k \geq 2$ in (9) are zero modulo $\lambda^{p} \mathfrak{m}[T]$. It implies the following relations

$$
\begin{aligned}
\Sigma+B_{n} S & \equiv B_{n} S\left[1-\frac{\left(f_{c, \rho}(y)^{1 / p}+S A_{n-1}(S)\right)^{p-1}}{f_{c, \rho}(y)^{(p-1) / p}}\right] \\
& \equiv \frac{B_{n} S}{f_{c, \rho}(y)^{(p-1) / p}}\left[f_{c, \rho}(y)^{(p-1) / p}-\left(f_{c, \rho}(y)^{1 / p}+S A_{n-1}(S)\right)^{p-1}\right] \\
& \equiv \frac{B_{n} S}{f_{c, \rho}(y)^{(p-1) / p}}\left[-\sum_{k=1}^{p-1}\binom{p-1}{k} f_{c, \rho}(y)^{(p-1-k) / p}\left(S A_{n-1}(S)^{k}\right]\right. \\
& \equiv 0 \bmod \lambda^{p} \mathfrak{m}[T], \text { since for } k \geq 1, B_{n} S^{k+1} \equiv 0 \bmod \lambda^{p} \mathfrak{m}[T] .
\end{aligned}
$$

According to the definition of B_{n-1} (see Step III) one obtains

$$
\begin{equation*}
(8) \equiv\left(f_{c, \rho}(y)^{1 / p}+S A_{n-1}(S)\right)^{p}+R+B_{n-1} S^{p}+y \rho_{1} S^{p} \bmod \lambda^{p} \mathfrak{m}[T] \tag{10}
\end{equation*}
$$

Using the same process, one shows by induction on i that (8) is congruent to

$$
\begin{equation*}
\left(f_{c, \rho}(y)^{1 / p}+S A_{i+1}(S)\right)^{p}+B_{i+1} S^{p^{n-i-1}}+\sum_{k=1}^{n-i-1} y \rho_{k} S^{p^{k}}+R \bmod \lambda^{p} \mathfrak{m}[T] \tag{11}
\end{equation*}
$$

Thus, one applies equation (11) with $i=0$

$$
(8) \equiv\left(f_{c, \rho}(y)^{1 / p}+S A_{1}(S)\right)^{p}+B_{1} S^{q / p}+\sum_{k=1}^{n-1} y \rho_{k} S^{p^{k}}+R \bmod \lambda^{p} \mathfrak{m}[T] .
$$

One defines Σ^{\prime} by $\left(f_{c, \rho}(y)^{1 / p}+S A_{1}(S)\right)^{p}=f_{c, \rho}(y)+\left(S A_{1}(S)\right)^{p}+\Sigma^{\prime}$. From $p f_{c, \rho}(y)^{(p-1) / p} S A_{1}(S)=-B_{1} S^{q / p}$ (see the definition of $S A_{1}(S)$) one gets

$$
\Sigma^{\prime}+B_{1} S^{q / p}=\sum_{k=2}^{p-1}\binom{p}{k} f_{c, \rho}(y)^{(p-k) / p}\left(S A_{1}(S)\right)^{k},
$$

so using the expression of $v\left(B_{1}\right)$ computed in Step III, one checks that $\Sigma^{\prime}+B_{1} S^{q / p} \equiv 0 \bmod \lambda^{p} \mathfrak{m}[T]$. From the definition of $S A_{1}(S)$ and B_{0} one has $\left(S A_{1}(S)\right)^{p}=B_{0} S^{q}$, thus

$$
(8) \equiv f_{c, \rho}(y)+B_{0} S^{q}+\sum_{k=1}^{n-1} y \rho_{k} S^{p^{k}}+R \bmod \lambda^{p} \mathfrak{m}[T] .
$$

Then, Step V follows from Step IV and this last relation.
Step VI : The curve $C_{c, \rho} / K$ has good reduction over $K\left(y, f_{c, \rho}(y)^{1 / p}\right)$.
According to Step V, the change of variables in $K\left(y, f_{c, \rho}(y)^{1 / p}\right)$

$$
X=\lambda^{p /(1+q)} T+y=S+y \text { and } Y=\lambda W+f_{c, \rho}(y)^{1 / p}+S A_{n}(S),
$$

induces in reduction $w^{p}-w=\sum_{k=0}^{n-1} \bar{u}_{k} t^{1+p^{k}}+t^{1+q}$ with genus $g\left(C_{c, \rho}\right)$. So [Liu02] 10.3.44 implies that this change of variables gives the stable model. Note that the ρ_{k} 's were chosen to obtain this equation for the special fiber of the stable model.

Step VII : For any distinct roots y_{i}, y_{j} of $L_{c, \rho}(X), v\left(y_{i}-y_{j}\right)=v\left(\lambda^{p /(1+q)}\right)$. The changes of variables $\lambda^{p /(1+q)} T=X-y_{i}$ and $\lambda^{p /(1+q)} T=X-y_{j}$ induce equivalent Gauss valuations of $K\left(C_{c, \rho}\right)$, else applying [Liu02] 10.3.44 would contradict the uniqueness of the stable model. Thus $v\left(y_{i}-y_{j}\right) \geq v\left(\lambda^{p /(1+q)}\right)$.

One checks that $v\left(f_{c, \rho}^{\prime}(y)\right)>0, \forall 0 \leq k \leq n-1 v\left(\rho_{k}^{q / p^{k}} p^{d_{k}} q / p^{k}\right)>v\left(a_{n}\right)$, $v\left(s_{1, \rho}^{\prime}(y)\right)>0, v\left(s_{1, \rho}(y)\right)=v\left(y^{q}\right)$ and $v\left(q s_{1, \rho}(y)^{q-1} s_{1, \rho}^{\prime}(y)\right)>v\left(a_{n}\right)$, so

$$
v\left(L_{c, \rho}^{\prime}(y)\right)=v\left(a_{n}\right)=\left(q^{2}-1\right) v\left(\lambda^{p /(1+q)}\right) .
$$

Taking into account that $L_{c, \rho}^{\prime}\left(y_{i}\right)=\prod_{j \neq i}\left(y_{i}-y_{j}\right)$ and $\operatorname{deg} L_{c, \rho}(X)=q^{2}$, one obtains $v\left(y_{i}-y_{j}\right)=v\left(\lambda^{p /(1+q)}\right)$.

Step VIII : If $L_{c, \rho}(X)$ is irreducible over K, then $K\left(y, f_{c, \rho}(y)^{1 / p}\right)$ is the monodromy extension M of $C_{c, \rho} / K$ and $G:=\operatorname{Gal}(M / K)$ is an extra-special p-group of order $p q^{2}$.
Let $\left(y_{i}\right)_{i=1, \ldots, q^{2}}$ be the roots of $L_{c, \rho}(X), L:=K\left(y_{1}, \ldots, y_{q^{2}}\right)$ and M / K be the monodromy extension of $C_{c, \rho} / K$. Any $\tau \in \operatorname{Gal}(L / K)-\{1\}$ is such that $\tau\left(y_{i}\right)=y_{j}$ for some $i \neq j$. Thus, the change of variables

$$
X=\lambda^{p /(1+q)} T+y_{i} \text { and } Y=\lambda W+f_{c, \rho}(y)^{1 / p}+S A_{n}(S)
$$

induces the stable model and τ acts on it by :

$$
\tau(T)=\frac{X-y_{j}}{\lambda^{p /(1+q)}}, \quad \text { hence } \quad T-\tau(T)=\frac{y_{j}-y_{i}}{\lambda^{p /(1+q)}} .
$$

According to Step VII, τ acts non-trivially on the stable reduction. It follows that $L \subseteq M$. Indeed if $\operatorname{Gal}\left(K^{\text {als }} / M\right) \nsubseteq \operatorname{Gal}\left(K^{\text {alg }} / L\right)$ it would exist $\sigma \in \operatorname{Gal}\left(K^{\text {alg }} / M\right)$ inducing $\bar{\sigma} \neq \operatorname{Id} \in \operatorname{Gal}(L / K)$, which would contradict the characterization of $\operatorname{Gal}\left(K^{\text {alg }} / M\right)$ (see remark after Theorem 2.1) .

According to [LM05], the p-Sylow subgroup $\operatorname{Aut}_{k}\left(\mathcal{C}_{k}\right)_{1}^{\#}$ of $\operatorname{Aut}_{k}\left(\mathcal{C}_{k}\right)^{\#}$ is an extra-special p-group of order $p q^{2}$. Moreover, one has :

$$
0 \rightarrow \mathrm{Z}\left(\operatorname{Aut}_{k}\left(\mathcal{C}_{k}\right)_{1}^{\#}\right) \rightarrow \operatorname{Aut}_{k}\left(\mathcal{C}_{k}\right)_{1}^{\#} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{2 n} \rightarrow 0
$$

where $(\mathbb{Z} / p \mathbb{Z})^{2 n}$ is identified with the group of translations $t \mapsto t+a$ extending to elements of $\operatorname{Aut}_{k}\left(\mathcal{C}_{k}\right)_{1}^{\text {\# }}$. Therefore we have morphisms

$$
\operatorname{Gal}(M / K) \stackrel{i}{\hookrightarrow} \operatorname{Aut}_{k}\left(\mathcal{C}_{k}\right)_{1}^{\#} \xrightarrow{\varphi} \operatorname{Aut}_{k}\left(\mathcal{C}_{k}\right)_{1}^{\#} / \mathrm{Z}\left(\operatorname{Aut}_{k}\left(\mathcal{C}_{k}\right)_{1}^{\#}\right) .
$$

The composition is seen to be surjective since the image contains the q^{2} translations $t \mapsto t+\overline{\left(y_{i}-y_{1}\right) / \lambda^{p /(1+q)}}$. Consequently, $i(\operatorname{Gal}(M / K))$ is a subgroup of $\operatorname{Aut}_{k}\left(\mathcal{C}_{k}\right)_{1}^{\#}$ of index at most p. So it contains $\Phi\left(\operatorname{Aut}_{k}\left(\mathcal{C}_{k}\right)_{1}^{\#}\right)=$ $\mathrm{Z}\left(\operatorname{Aut}_{k}\left(\mathcal{C}_{k}\right)_{1}^{\#}\right)=\operatorname{Ker} \varphi$. It implies that i is an isomorphism and $[M: K]=p q^{2}$. By Step VI, one has $M \subseteq K\left(y, f_{q, c}(y)^{1 / p}\right)$, hence $M=K\left(y, f_{q, c}(y)^{1 / p}\right)$.

We show that $K\left(y_{1}\right) / K$ is Galois and that $\operatorname{Gal}\left(M / K\left(y_{1}\right)\right)=\mathrm{Z}(G)$. Indeed, $M / K\left(y_{1}\right)$ is p-cyclic and generated by σ defined by :

$$
\sigma\left(y_{1}\right)=y_{1} \text { and } \sigma\left(f_{c, \rho}\left(y_{1}\right)^{1 / p}\right)=\zeta_{p} f_{c, \rho}\left(y_{1}\right)^{1 / p}
$$

According to Step VI, σ acts on the stable model by :

$$
\sigma(S)=S, \quad \sigma(Y)=Y=\lambda \sigma(W)+\zeta_{p} f_{c, \rho}\left(y_{1}\right)^{1 / p}+S A_{n}(S)
$$

Hence

$$
\sigma(W)=W-f_{c, \rho}\left(y_{1}\right)^{1 / p} .
$$

It follows that, in reduction, σ induces a morphism that generates $\mathrm{Z}\left(\operatorname{Aut}_{k}\left(\mathcal{C}_{k}\right)_{1}^{\#}\right)$. It implies that $K\left(y_{1}\right) / K$ is Galois, $\operatorname{Gal}\left(M / K\left(y_{1}\right)\right)=\mathrm{Z}(G)$ and $\operatorname{Gal}\left(K\left(y_{1}\right) / K\right) \simeq$ $(\mathbb{Z} / p \mathbb{Z})^{2 n}$.
3. Let $L_{\rho}(X):=L_{1, \rho}(X), f_{\rho}(X):=f_{1, \rho}(X), s_{\rho}(y):=s_{1, \rho}(y), y$ be a root of $L_{\rho}(X)$ and $b_{n}:=(-1)(-p)^{1+p+\cdots+p^{n-1}}$. Note that $b_{n}^{p}=a_{n}, L=K(y)$ and we do not assume $p=2$ until Step E.

Step A : The polynomial $L_{\rho}(X)$ is irreducible over K.
Let $\tilde{s}:=s_{\rho}(y)-y^{q}, \sigma:=\sum_{k=1}^{q}\binom{q}{k} \tilde{s}^{k} y^{q(q-k)}$ and $R_{1}:=\sum_{k=1}^{p-1}\binom{p}{k} y^{k q^{2} / p}\left(-b_{n}\right)^{p-k}$. Since $L_{\rho}(y)=0$ one has

$$
y^{q^{2}}+\sigma=s_{\rho}(y)^{q}=a_{n} f_{\rho}(y)(1+y)+\sum_{k=1}^{n-1}\left(\rho_{k} y\right)^{q / p^{k}}(-p)^{d_{k}}(-1)^{q} f_{\rho}(y)^{q\left(p^{k}-1\right) / p^{k}} .
$$

It implies that $\left(y^{q^{2} / p}-b_{n}\right)^{p}$ equals
$a_{n}\left[f_{\rho}(y)(1+y)+(-1)^{p}\right]+\sum_{k=1}^{n-1}\left(\rho_{k} y\right)^{q / p^{k}}(-p)^{d_{k}}(-1)^{q} f_{\rho}(y)^{q\left(p^{k}-1\right) / p^{k}}+R_{1}-\sigma$.
We are going to remove monomials with valuation greater than $v\left(a_{n} y\right)$ in the above expression by taking p-th roots. Note that if $\forall i \geq 1, \rho_{i}=0$, then one could skip most of Step A (see equation (14)). Assume that $\rho_{i} \neq 0$ for some $i \geq 1$, let $j:=\max \left\{1 \leq i \leq n-1, \rho_{i} \neq 0\right\}$ and $l:=\min \left\{1 \leq i \leq n-1, \rho_{i} \neq 0\right\}$. The following relations are straight forward computations using Step I :

$$
\begin{align*}
& v\left(f_{\rho}(y)(1+y)+(-1)^{p}\right)=v(y), \quad v(\tilde{s})=v\left(\rho_{j} y y^{p^{j}}\right), \quad v(\sigma)=q v(\tilde{s}), \tag{12}\\
& v\left(\sum_{k=1}^{n-1}\left(\rho_{k} y\right)^{q / p^{k}}(-p)^{d_{k}}(-1)^{q} f_{\rho}(y)^{q\left(p^{k}-1\right) / p^{k}}\right)=v\left(\left(\rho_{l} y\right)^{p^{n-l}} p^{d_{l}}\right) .
\end{align*}
$$

Then one checks that

$$
\begin{equation*}
v\left(R_{1}\right)>v\left(a_{n} y\right)>v\left(\left(\rho_{l} y\right)^{p^{n-l}} p^{d_{l}}\right)>v(\sigma) . \tag{13}
\end{equation*}
$$

It implies that $v\left(\left(y^{q^{2} / p}-b_{n}\right)^{p}\right)=q v(\tilde{s})$, so one considers $\left(y^{q^{2} / p}-b_{n}+\tilde{s}^{q / p}\right)^{p}$. By expanding this last expression, using (12), (13) and taking into account

$$
v\left(\sum_{k=1}^{q-1}\binom{q}{k} \tilde{s}^{k} y^{q(q-k)}\right)>v\left(a_{n} y\right), \quad v\left(\sum_{k=1}^{p}\binom{p}{k}\left(y^{q^{2} / p}-b_{n}\right)^{k} \tilde{s}^{(p-k) q / p}\right)>v\left(a_{n} y\right),
$$

one obtains that $p v\left(y^{q^{2} / p}-b_{n}+\tilde{s}^{q / p}\right)=v\left(\left(\rho_{l} y\right)^{p^{n-l}} p^{d_{l}}\right)$, leading us to consider

$$
\left(y^{q^{2} / p}-b_{n}+\tilde{s}^{q / p}+\left(\rho_{l} y\right)^{q / p^{l+1}}(-p)^{d_{l} / p} f_{\rho}(y)^{q\left(p^{l}-1\right) / p^{l+1}}\right)^{p} .
$$

By expanding this expression and using (12) and (13) one easily checks that it has valuation $v\left(\left(\rho_{l_{1}} y\right)^{p^{n-l_{1}}} p^{d_{l_{1}}}\right)$ where $l_{1}:=\min \left\{l+1 \leq i \leq n-1, \rho_{i} \neq 0\right\}$. By induction one shows that

$$
\begin{equation*}
t:=y^{q^{2} / p}-b_{n}+\tilde{s}^{q / p}+\sum_{k=1}^{n-1}\left(\rho_{k} y\right)^{q / p^{k+1}}(-p)^{d_{k} / p} f_{\rho}(y)^{q\left(p^{k}-1\right) / p^{k+1}}, \tag{14}
\end{equation*}
$$

satisfies $p v(t)=v\left(a_{n} y\right)$. Then $v_{L}\left(p^{q^{2}} t^{-(p-1)(q+1)}\right)=v_{L}(p) / q^{2}=\left[L: \mathbb{Q}_{p}^{\mathrm{ur}}\right] / q^{2}$, so q^{2} divides $[L: K]$. It implies that $L_{\rho}(X)$ is irreducible over K.

Step B : Reduction step.

The last non-trivial group $G_{i_{0}}$ of the lower ramification filtration $\left(G_{i}\right)_{i \geq 0}$ of $G:=\operatorname{Gal}(M / K)$ is a subgroup of $\mathrm{Z}(G)$ ([Ser79] IV $\S 2$ Corollary 2 of Proposition 9) and as $\mathrm{Z}(G) \simeq \mathbb{Z} / p \mathbb{Z}$, it follows that $G_{i_{0}}=\mathrm{Z}(G)$.

According to Step VIII the group $H:=\operatorname{Gal}(M / L)$ is $\mathrm{Z}(G)$. Consequently, the filtration $\left(G_{i}\right)_{i \geq 0}$ can be deduced from that of M / L and L / K (see [Ser79] IV §2 Proposition 2 and Corollary of Proposition 3).

Step C : Let $\sigma \in \operatorname{Gal}(L / K)-\{1\}$, then $v(\sigma(t)-t)=q^{2} v\left(\pi_{K}\right)$.
Let $y^{\prime}:=\sigma(y)$, one deduces the following easy lemma from Step VII.
Lemma 3.1. For any $n \geq 0, v\left(y^{n}-y^{\prime n}\right) \geq n v(y)$.
Recall the definition $\tilde{s}:=2 \rho_{0} y+\sum_{k=1}^{n-1} \rho_{k} y^{p^{k}}$. First one shows that modulo $\left(y-y^{\prime}\right)^{q^{2} / p} \mathfrak{m}$ one has

$$
\begin{equation*}
\sigma(\tilde{s})^{q / p}-\tilde{s}^{q / p} \equiv\left(2 \rho_{0}\right)^{q / p}\left(y^{\prime q / p}-y^{q / p}\right)+\sum_{k=1}^{n-1} \rho_{k}^{q / p}\left(y^{\prime q p^{k} / p}-y^{q p^{k} / p}\right) \tag{15}
\end{equation*}
$$

Indeed, let $\left(m_{i}\right)_{i=0, \ldots, n-1} \in \mathbb{N}^{n}$ such that $m_{0}+m_{1}+\cdots+m_{n-1}=q / p$ and $t:=m_{0}+m_{1} p+\cdots+m_{n-1} p^{n-1}$, then using lemma 3.1 one checks that

$$
v\left(p \rho_{0}^{m_{0}} \rho_{1}^{m_{1}} \ldots \rho_{n-1}^{m_{n-1}}\left(y^{t}-y^{\prime t}\right)\right)>\frac{q^{2}}{p} v\left(y-y^{\prime}\right) .
$$

This inequality implies (15).
Let $1 \leq k \leq n-1$ and write $f_{\rho}(y)^{\left(p^{k}-1\right) q / p^{k+1}}=1+\sum_{i \in I_{k}} \alpha_{i, k} y^{i}$, for some
set I_{k}. Then

$$
\begin{aligned}
& y^{\prime q / p^{k+1}} f_{\rho}\left(y^{\prime}\right)^{\left(p^{k}-1\right) q / p^{k+1}}-y^{q / p^{k+1}} f_{\rho}(y)^{\left(p^{k}-1\right) q / p^{k+1}} \\
= & y^{\prime q / p^{k+1}}-y^{q / p^{k+1}}+\sum_{i \in I_{k}} \alpha_{i, k}\left(y^{\prime i}-y^{i}\right) .
\end{aligned}
$$

Let $i \in I_{k}$. Consider the case when $v\left(\alpha_{i, k}\right) \geq v\left(\rho_{h}\right)$ for some $0 \leq h \leq$ $n-1$, then using Step VII, one checks that $\forall 1 \leq k \leq n-1, v\left(\alpha_{i, k}\right) \geq$ $v\left(\rho_{h}\right)>q v\left(y^{\prime}-y\right) / p^{k+1}$. If this case does not occur, then according to the expression of $f_{\rho}(y)$ one has $i \geq q / p^{k+1}+q$ and using lemma 3.1 one checks that $v\left(y^{\prime i}-y^{i}\right)>q v\left(y^{\prime}-y\right) / p^{k+1}$. In any case $v\left(\alpha_{i, k}\left(y^{\prime i}-y^{i}\right)\right)>q v\left(y^{\prime}-y\right) / p^{k+1}$ and one checks that

$$
\begin{equation*}
v\left(p^{d_{k} / p} \rho_{k}^{q / p^{k+1}} \alpha_{i, k}\left(y^{\prime i}-y^{i}\right)\right)>q^{2} v\left(y^{\prime}-y\right) / p . \tag{16}
\end{equation*}
$$

Taking into account (14), (15) and (16), one gets $\bmod \left(y^{\prime}-y\right)^{q^{2} / p} \mathfrak{m}$

$$
\begin{align*}
\sigma(t)- & t \equiv y^{\prime q^{2} / p}-y^{q^{2} / p}+\left(2 \rho_{0}\right)^{q / p}\left(y^{\prime q / p}-y^{q / p}\right) \tag{17}\\
& +\sum_{k=1}^{n-1} \rho_{k}^{q / p}\left(y^{\prime q p^{k} / p}-y^{q p^{k} / p}\right)+\sum_{k=1}^{n-1}(-p)^{d_{k} / p} \rho_{k}^{q / p^{k+1}}\left(y^{\prime q / p^{k+1}}-y^{q / p^{k+1}}\right) .
\end{align*}
$$

Using lemma 3.1, it is now straight forward to check the following relations $\bmod \left(y^{\prime}-y\right)^{q^{2} / p} \mathfrak{m}$.

$$
\begin{aligned}
y^{\prime q^{2} / p}-y^{q^{2} / p} & \equiv\left(y^{\prime}-y\right)^{q^{2} / p}, \\
\rho_{k}^{q / p}\left(y^{\prime q p^{k} / p}-y^{q p^{k} / p}\right) & \equiv \rho_{k}^{q / p}\left(y^{\prime}-y\right)^{q p^{k} / p}, \\
(-p)^{d_{k} / p} \rho_{k}^{q / p^{k+1}}\left(y^{\prime q / p^{k+1}}-y^{q / p^{k+1}}\right) & \equiv(-p)^{d_{k} / p} \rho_{k}^{q / p^{k+1}}\left(y^{\prime}-y\right)^{q / p^{k+1}} .
\end{aligned}
$$

Using Step VII, one sees that each of these three elements has valuation $q^{2} v\left(y^{\prime}-y\right) / p$, thus one gets

$$
\begin{align*}
(\sigma(t)-t)^{p} & \equiv\left(y^{\prime}-y\right)^{q^{2}}+\left(2 \rho_{0}\right)^{q}\left(y^{\prime}-y\right)^{q}+\sum_{k=1}^{n-1} \rho_{k}^{q}\left(y^{\prime}-y\right)^{q p^{k}} \tag{18}\\
& +\sum_{k=1}^{n-1}(-p)^{d_{k}} \rho_{k}^{q / p^{k}}\left(y^{\prime}-y\right)^{q / p^{k}} \bmod \left(y^{\prime}-y\right)^{q^{2}} \mathfrak{m} .
\end{align*}
$$

Now recall Step VII, the definitions of the ρ_{k} 's and of λ, then for some $v \in R^{\times}$and $\Sigma \in R$

$$
\rho_{k}=u_{k} \lambda^{p\left(q-p^{k}\right) /(1+q)}, \quad y^{\prime}-y=v \lambda^{p /(1+q)} \text { and }-p=\lambda^{p-1}+p \lambda \Sigma .
$$

Since $q^{2} v\left(y^{\prime}-y\right)=\frac{p q^{2}}{1+q} v(\lambda)$, equation (18) becomes

$$
(\sigma(t)-t)^{p} \equiv \lambda^{\frac{q^{2} p}{1+q}}\left[v^{q^{2}}+\left(2 u_{0} v\right)^{q}+\sum_{k=1}^{n-1}\left(u_{k}^{q} v^{q p^{k}}+\left(u_{k} v\right)^{q / p^{k}}\right)\right] \bmod \lambda^{\frac{q^{2} p}{1+q}} \mathfrak{m}
$$

From the action of σ on the stable reduction (see Step VIII), one has that the automorphism of \mathbb{P}_{k}^{1} given by $t \mapsto t+\bar{v}$ has a prolongation to A_{u} / k, so Proposition 2.4 implies that

$$
\begin{equation*}
\bar{v}^{q^{2}}+\left(2 \bar{u}_{0} \bar{v}\right)^{q}+\sum_{k=1}^{n-1}\left(\bar{u}_{k}^{q} \bar{v}^{q p^{k}}+\left(\bar{u}_{k} \bar{v}\right)^{q / p^{k}}\right)+\bar{v}=0 . \tag{19}
\end{equation*}
$$

Assume that $\bar{v}^{q^{2}}+\left(2 \bar{u}_{0} \bar{v}\right)^{q}+\sum_{k=1}^{n-1}\left(\bar{u}_{k}^{q} \bar{v}^{q p^{k}}+\left(\bar{u}_{k} \bar{v}\right)^{q / p^{k}}\right)=0$, then from (19) one has $\bar{v}=0$, which contradicts $v \in R^{\times}$. It implies that $v(\sigma(t)-t)=$ $q^{2} v(\lambda) /(1+q)=q^{2} v\left(y-y^{\prime}\right) / p=q^{2} v\left(\pi_{K}\right)$.

Step D: The ramification filtration of L / K is:

$$
(G / H)_{0}=(G / H)_{1} \supsetneq(G / H)_{2}=\{1\} .
$$

Since $K / \mathbb{Q}_{p}^{\text {ur }}$ is tamely ramified of degree $(p-1)(q+1)$, one has $K=\mathbb{Q}_{p}^{\text {ur }}\left(\pi_{K}\right)$ with $\pi_{K}^{(p-1)(q+1)}=p$ for some uniformizer π_{K} of K. In particular $z:=\pi_{K}^{q^{2}} / t$, is a uniformizer of L. Let $\sigma \in \operatorname{Gal}(L / K)-\{1\}$, then

$$
\sigma(z)-z=\frac{t-\sigma(t)}{\sigma(t) t} \pi_{K}^{q^{2}}=\frac{t-\sigma(t)}{\pi_{K}^{q^{2}}} \frac{\pi_{K}^{q^{2}}}{t} \frac{\pi_{K}^{q^{2}}}{\sigma(t)} .
$$

Using Step C one obtains $v(\sigma(z)-z)=2 v(z)$, i.e. $(G / H)_{2}=\{1\}$.
Step E : From now on, we assume $p=2$. Let $s:=(q+1)\left(2 q^{2}-1\right)$. There exist $u, h \in L$ and $r \in \pi_{L}^{s} \mathfrak{m}$ such that $v_{L}\left(2 y^{q / 2} h\right)=s$ and

$$
f_{\rho}(y) u^{2}=1+\rho_{n-1} y^{1+q / 2}+2 y^{q / 2} h+r .
$$

To prove the first statement we note that, from the definition of $f_{\rho}(y)$, one has $f_{\rho}(y)=1+T$ with $v(T)=q v(y)$ and $L_{\rho}(y)=0$, thus

$$
\begin{aligned}
& \quad\left(\frac{s_{\rho}^{q / 2}(y)}{b_{n}}\right)^{2}=f_{\rho}(y)^{q-1}(1+y)+\sum_{k=1}^{n-1} \frac{\left(\rho_{k} y\right)^{q / 2^{k}}}{2^{2+\cdots+2^{n-k}} f_{\rho}(y)^{q\left(2^{k}-1\right) / 2^{k}},} \\
& \text { and } f_{\rho}(y)^{q-1}(1+y)=1+y+\sum_{k=1}^{q-1}\binom{q-1}{k} T^{k}(1+y) .
\end{aligned}
$$

Then, we put $\tilde{\Sigma}:=\sum_{k=1}^{q-1}\binom{q-1}{k} T^{k}(1+y)$ and

$$
h:=\frac{s_{\rho}^{q / 2}(y)}{b_{n}}+\sum_{k=1}^{n-1} \frac{\left(\rho_{k} y\right)^{q / 2^{k+1}}}{2^{1+\cdots+2^{n-k-1}}} f_{\rho}(y)^{q\left(2^{k}-1\right) / 2^{k+1}}-1 .
$$

Then one computes

$$
\begin{aligned}
h^{2} & =\left[\frac{s_{\rho}^{q / 2}(y)}{b_{n}}+\sum_{k=1}^{n-1} \frac{\left(\rho_{k} y\right)^{q / 2^{k+1}}}{2^{1+\cdots+2^{n-k-1}}} f_{\rho}(y)^{q\left(2^{k}-1\right) / 2^{k+1}}\right]^{2}+1-2(h+1) \\
& =\left(\frac{s_{\rho}^{q / 2}(y)}{b_{n}}\right)^{2}+\sum_{k=1}^{n-1} \frac{\left(\rho_{k} y\right)^{q / 2^{k}}}{2^{2+\cdots+2^{n-k}}} f_{\rho}(y)^{q\left(2^{k}-1\right) / 2^{k}}+\Sigma_{1}+1-2(h+1) \\
& =2+y+2 \sum_{k=1}^{n-1} \frac{\left(\rho_{k} y\right)^{q / 2^{k}}}{2^{2+\cdots+2^{n-k}}} f_{\rho}(y)^{q\left(2^{k}-1\right) / 2^{k}}+\Sigma_{1}+\tilde{\Sigma}-2(h+1) .
\end{aligned}
$$

In Step III, we proved that $v\left(B_{n}\right)=q v(y)=2 v\left(b_{n}\right) / q$ where $B_{n}=-s_{\rho}(y)$, so $v\left(\frac{s_{\rho}^{q / 2}(y)}{b_{n}}\right)=0$ and one checks using Step I that

$$
\begin{equation*}
v(2)>v(y), \text { and } \forall 1 \leq k \leq n-1, v\left(\frac{\left(\rho_{k} y\right)^{q / 2^{k+1}}}{2^{k+\cdots+2^{n-k-1}}}\right) \geq 0 \tag{20}
\end{equation*}
$$

thus $v(h+1) \geq 0$ and $v(2(h+1)) \geq v(2)>v(y)$. One checks in the same way that $v\left(\Sigma_{1}\right)>v(y)$. One has $v(\tilde{\Sigma}) \geq v(T)>v(y)$, so $v\left(h^{2}\right)=v(y)$ and $v_{L}\left(2 y^{q / 2} h\right)=s$.

To prove the second statement of Step E, we first remark that $\forall i \geq 1$ $f_{\rho}(y)^{i}=1+\sum_{k=1}^{i}\binom{i}{k} T^{k}=1+\sum_{i}$, whence $v\left(\sum_{i}\right) \geq v(T)$. Since, for all $0 \leq k \leq n-1, v\left(\rho_{k} y^{p^{k}}\right)>q v(y)$ one has $\bmod \pi_{L}^{s} \mathfrak{m}$

$$
\begin{equation*}
\frac{s_{\rho}^{q / 2}(y)}{b_{n}} 2 y^{q / 2} \equiv\left[\left(2 \rho_{0} y\right)^{q / 2}+\sum_{k=1}^{n-1}\left(\rho_{k} y^{2^{k}}\right)^{q / 2}+y^{q^{2} / 2}\right] \frac{y^{q / 2}}{2^{2+\cdots+2^{n-1}}} \tag{21}
\end{equation*}
$$

One also checks that $\forall i \geq 1, v_{L}\left(2 y^{q / 2} \Sigma_{i}\right)>s$, then according to (20), $\forall i \geq 1$ and $1 \leq k \leq n-1$

$$
\begin{equation*}
v_{L}\left(\frac{\left(\rho_{k} y\right)^{q / 2^{k+1}}}{2^{1+\cdots+2^{n-k-1}}} 2 y^{q / 2} \Sigma_{i}\right)>s \text { and one checks that } v_{L}\left(\frac{\left(2 \rho_{0}\right)^{q / 2} y^{q}}{2^{2+\cdots+2^{n-1}}}\right)>s \tag{22}
\end{equation*}
$$

Thus, applying relations (21), (22) and the definition of h, one has

$$
\begin{align*}
2 h y^{q / 2} \equiv & {\left[\sum_{k=1}^{n-1}\left(\rho_{k} y^{2^{k}}\right)^{q / 2}+y^{q^{2} / 2}\right] \frac{y^{q / 2}}{2^{2+\cdots+2^{n-1}}} } \\
& +\sum_{k=1}^{n-1} \frac{\left(\rho_{k} y\right)^{q / 2^{k+1}}}{2^{1+\cdots+2^{n-k-1}}} 2 y^{q / 2}-2 y^{q / 2} \bmod \pi_{L}^{s} \mathfrak{m} . \tag{23}
\end{align*}
$$

Finally one puts

$$
u:=1-y^{q / 2}-\sum_{k=0}^{n-2} \frac{y^{2^{k}(1+q)}}{2^{1+\cdots+2^{k}}}+\sum_{i=1}^{n-1} \sum_{k=n-i-1}^{n-2} \frac{\rho_{i}^{2^{k}}}{2^{1+\cdots+2^{k}}} y^{2^{k}\left(1+2^{i}\right)}=1+\tilde{u},
$$

and one checks that $v(\tilde{u})=v\left(y^{q / 2}\right)$. From the equality

$$
f_{\rho}(y) u^{2}-1=\sum_{k=0}^{n-1} \rho_{k} y^{1+2^{k}}+y^{q}+y^{1+q}+(1+T) 2 \tilde{u}+(1+T) \tilde{u}^{2},
$$

taking into account that $v_{L}(2 T \tilde{u})>s, v_{L}\left(T \tilde{u}^{2}\right)>s, \forall 0 \leq k \leq n-2$, $v_{L}\left(\rho_{k} y^{1+2^{k}}\right)>s$ and expanding \tilde{u} and \tilde{u}^{2} one gets modulo $\pi_{L}^{s} \mathfrak{m}$

$$
\begin{align*}
f_{\rho}(y) u^{2}-1 \equiv & \rho_{n-1} y^{1+q / 2}-2 y^{q / 2}+2 y^{q}-\sum_{k=1}^{n-2} \frac{2 y^{2^{k}(1+q)}}{2^{1+\cdots+2^{k}}}+\sum_{k=1}^{n-1} \frac{y^{2^{k}(1+q)}}{2^{2+\cdots+2^{k}}}+ \\
& +\sum_{i=1}^{n-1} \sum_{k=n-i-1}^{n-2} \frac{2 \rho_{i}^{2^{k}} y^{2^{k}\left(1+2^{i}\right)}}{2^{1+\cdots+2^{k}}}+\sum_{i=1}^{n-1} \sum_{k=n-i}^{n-1} \frac{\rho_{i}^{2^{k}} y^{2^{k}\left(1+2^{i}\right)}}{2^{2+\cdots+2^{k}}} \tag{24}
\end{align*}
$$

Arranging the terms of (24), taking into account that $v_{L}\left(2 y^{q}\right)>s$ and for all $2 \leq i \leq n-1$ and $n-i \leq k \leq n-2$

$$
v_{L}\left(\rho_{i}^{2^{k}} y^{2^{k}\left(1+2^{i}\right)} \frac{2}{2^{2+\cdots+2^{k}}}\right)>s
$$

and comparing with (23), one obtains $f_{\rho}(y) u^{2}-1 \equiv \rho_{n-1} y^{1+q / 2}+2 h y^{q / 2} \bmod \pi_{L}^{s} \mathfrak{m}$.
Step F: The ramification filtration of M / L is

$$
H_{0}=H_{1}=\cdots=H_{1+q} \supsetneq\{1\} .
$$

One has to show that $v_{M}\left(\mathcal{D}_{M / L}\right)=q+2$, we will use freely results from [Ser79] IV. If $\rho_{n-1}=0$, then according to Step E, one has

$$
f_{\rho}(y) u^{2}=1+2 y^{q / 2} h+r,
$$

and one concludes using [CM11] Lemma 2.1. Else, if $\rho_{n-1} \neq 0$, one has

$$
\max _{u \in L^{\times}} v_{L}\left(f_{\rho}(y) u^{2}-1\right) \geq v_{L}\left(\rho_{n-1} y^{1+q / 2}\right),
$$

then [LRS93] Lemma 6.3 implies that $v_{M}\left(\mathcal{D}_{M / L}\right) \leq q+3$. Using Step B, Step D and [Ser79] IV §2 Proposition 11, one has that the break in the ramification filtration of M / L is congruent to $1 \bmod 2$, i.e. $v_{M}\left(\mathcal{D}_{M / L}\right) \leq q+2$.

According to Step \mathbf{D} and lemma 2.1, the break t of M / L is in $1+q \mathbb{N}$. If $t=1$ then $G_{2}=\{1\}$ and $G_{1} / G_{2}=G / G_{2} \simeq G$ would be abelian, so $t \geq 1+q$, i.e. $v_{M}\left(\mathcal{D}_{M / L}\right) \geq q+2$.

Step G: Computations of conductors.
For $l \neq 2$ a prime number, the G-modules $\operatorname{Jac}(C)[l]$ and $\operatorname{Jac}\left(\mathcal{C}_{k}\right)[l]$ being isomorphic one has that for $i \geq 0$:

$$
\operatorname{dim}_{\mathbb{F}_{l}} \operatorname{Jac}(C)[l]^{G_{i}}=\operatorname{dim}_{\mathbb{F}_{l}} \operatorname{Jac}\left(\mathcal{C}_{k}\right)[l]^{G_{i}} .
$$

Moreover, for $0 \leq i \leq 1+q$ one has $\operatorname{Jac}\left(\mathcal{C}_{k}\right)[l]^{G_{i}} \subseteq \operatorname{Jac}\left(\mathcal{C}_{k}\right)[l]^{\mathrm{Z}(G)}$, then from $\mathcal{C}_{k} / \mathrm{Z}(G) \simeq \mathbb{P}_{k}^{1}$ and lemma 2.2 it follows that for $0 \leq i \leq 1+q$, $\operatorname{dim}_{\mathbb{F}_{l}} \operatorname{Jac}\left(\mathcal{C}_{k}\right)[l]^{G_{i}}=0$. Since $g(C)=q / 2$ one gets $f(\operatorname{Jac}(C) / K)=2 q+1$ and $\operatorname{sw}\left(\operatorname{Jac}(C) / \mathbb{Q}_{2}^{\mathrm{ur}}\right)=1$.

Example : Magma codes are available on the author webpage. Let $K:=\mathbb{Q}_{2}^{\mathrm{ur}}\left(2^{1 / 5}\right)$ and $f(X):=1+2^{6 / 5} X^{2}+2^{4 / 5} X^{3}+X^{4}+X^{5} \in K[X]$, one checks that the smooth, projective, integral curve birationally given by $Y^{2}=f(X)$ has the announced properties, that is the wild monodromy M / K has degree 32 and one can describe its ramification filtration. The first program checks that Step A and Step D hold for this example. The second program checks Step F and is due to Guardia, J., Montes, J. and Nart, E. (see [GMN11]) and computes $v_{M}\left(\mathcal{D}_{M / \mathbb{Q}_{2}^{u r}}\right)=194$. Using [Ser79] III §4 Proposition 8, one finds that $v_{M}\left(\mathcal{D}_{M / K}\right)=66$, which was the announced result in Theorem 3.13.

Remarks :

1. The above example was the main motivation for Step \mathbf{F} since it shows that one could expect the correct behaviour for the ramification filtration of $\operatorname{Gal}(M / K)$ when $p=2$.
2. The naive method to compute the ramification filtration of M / K in the above example fails. Indeed, in this case Magma needs a huge precision when dealing with 2 -adic expansions to get the correct discriminant.

Acknowledgements : I would like to thank M. Monge for pointing out lemma 2.1.

References

[BK05] A. Brumer and K. Kramer. The conductor of an abelian variety. Compositio mathematica, n 2(92), 2005.
[CM11] P. Chrétien and M. Matignon. Maximal monodromy in unequal characteristic. submitted, 2011.
[GMN11] J. Guardia, J. Montes, and E. Nart. Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields. Journal de théorie des nombres de Bordeaux, 2, 2011.
[Gur03] R. Guralnick. Monodromy groups of coverings of curves. In Galois groups and fundamental groups, volume 41. MSRI Publications, 2003.
[Hup67] B. Huppert. Endliche Gruppen I. Grundlehren der Mathematischen Wissenschaften, (134), 1967.
[Kra90] A. Kraus. Sur le défaut de semi-stabilité des courbes elliptiques à réduction additive. Manuscripta Mathematica, (69), 1990.
[Liu02] Q. Liu. Algebraic Geometry and Arithmetic Curves. Oxford University Press, 2002.
[LM05] C. Lehr and M. Matignon. Automorphism groups for p-cyclic covers of the affine line. Compositio Mathematica, n 5(141), 2005.
[LRS93] P. Lockhart, M.I. Rosen, and J. Silverman. An upper bound for the conductor of an abelian variety. Journal of algebraic geometry, n 2, 1993.
[Ogg67] A.P. Ogg. Elliptic curves and wild ramification. American Journal of Mathematics, 89(1), 1967.
[Ray90] M. Raynaud. p-groupes et réduction semi-stable des courbes. In Birkhäuser, editor, The Grothendieck Festschrift, Vol. III, 1990.
[Ser67] J.-P. Serre. Représentations linéaires des groupes finis. Hermann, Paris, 1967.
[Ser79] J.-P. Serre. Local Fields. Graudate Texts in Mathematics (67), 1979.
[ST68] J.-P. Serre and J. Tate. Good reduction of abelian varieties. Annals of Mathematics, (88), 1968.
[Suz86] M. Suzuki. Group Theory II. Grundlehren der Mathematischen Wissenschaft (248), 1986.

