A layered LLL algorithm

Erwin L. Torreao Dassen
Universiteit Leiden, The Netherlands

Bordeaux, December 2, 2008

Outline

- Review what the LLL algorithm is and does.
- Example of its use: computing kernels and images of groups.
- The idea of the layered setting.
- Layered Euclidean spaces and layered lattices.
- Our example in the layered setting.

LLL Introduction I

Recall:

A lattice is a finitely generated abelian group L together with a map $q: L \rightarrow \mathbb{R}$ such that for all $x, y \in L$ and all $r \in \mathbb{R}$ we have

- $x \neq 0 \Longrightarrow q(x) \neq 0$
- $q(x+y)+q(x-y)=2 q(x)+2 q(y)$
- $\forall r \in \mathbb{R},\{x \in L: q(x) \leqslant r\}$ is finite

Giving (L, q) is equivalent to giving a discrete subgroup of a Euclidean space. $\left(\langle x, y\rangle=\frac{1}{4} q(x+y)+\frac{1}{4} q(x-y)\right)$

The rank of a lattice is its rank as an abelian group. We denote by $d(L)$ the discriminant of L (the volume spanned by a basis of L).

LLL Introduction II

- In many applications of lattice theory one is interested in finding "short" vectors in a given lattice.
- This stems from the fact that in many cases, by constructing an appropriate lattice, one can read off solutions of the given problem from these short vectors.
- In this direction the main theoretical result is Minkowski's theorem:

Each lattice L of positive rank n contains a non-zero element x with

$$
q(x) \leqslant \frac{4}{\pi} \Gamma(1+n / 2)^{2 / n} d(L)^{2 / n} \leqslant n \cdot d(L)^{2 / n}
$$

LLL Introduction III

- Every lattice has a basis consisting of optimally short vectors (take the smallest ball containing a basis).
- LLL is a family of polynomial time algorithms that from an arbitrary basis constructs a c-reduced basis which is "nearly" optimal by successively applying "rank 2" reductions at each step.
- The parameter c is a real number $>4 / 3$ encoding more or less the quality of this basis (how smaller the c the better the quality).

Lattices of rank 2

Let L be a lattice of rank 2 and $\left\{b_{1}, b_{2}\right\}$ a basis of L. We say L is reduced if

$$
q\left(b_{1}\right)=\min _{x \in L-\{0\}} q(x) \quad q\left(b_{2}\right)=\min _{x \in L-\mathbb{Z} b_{1}} q(x) .
$$

If one defines

$$
a=q\left(b_{1}\right) \quad b=2\left\langle b_{1}, b_{2}\right\rangle \quad c=q\left(b_{2}\right)
$$

then $\left\{b_{1}, b_{2}\right\}$ is reduced if and only if

$$
|b| \leqslant a \leqslant c
$$

Reduced basis

If $b_{1}=(1,0)$ then $\left\{b_{1}, b_{2}\right\}$ is reduced if b_{2} lies in the shaded region.

Lattice basis reduction in rank 2

The following procedure is due to Gauss. Given a basis $\left\{b_{1}, b_{2}\right\}$ of L it computes a reduced basis.

1. $m \leftarrow\left\lfloor\left\langle b_{1}, b_{2}\right\rangle / q\left(b_{1}\right)\right\rceil$ (nearest integer)
2. $b_{2} \leftarrow b_{2}-m b_{1}$ (we now have $2\left|\left\langle b_{1}, b_{2}\right\rangle\right| \leqslant q\left(b_{1}\right)$)
3. if $q\left(b_{2}\right)<q\left(b_{1}\right)$ swap b_{1}, b_{2} and iterate else output $\left\{b_{1}, b_{2}\right\}$

That this procedure is correct follows from the inequalities $|b| \leqslant a \leqslant c$ mentioned before. It terminates since the norm of b_{1} decreases through the process.

Reduction in general rank

The idea now is to apply one step of the above procedure to a rank 2 sublattice of our lattice L of rank n at each step.

First, given a basis $\left\{b_{1}, \ldots, b_{n}\right\}$ of L let $\left\{b_{1}^{*}, \ldots, b_{n}^{*}\right\}$ be the associated Gram-Schmidt basis and define

$$
L_{j}=\sum_{i=1}^{j} \mathbb{Z} b_{i} \quad \text { and } \quad \ell_{j}=d\left(L_{j} / L_{j-1}\right)\left(=\left\|b_{j}^{*}\right\|\right)
$$

Let $c \geqslant 1$. A basis $\left\{b_{1}, \ldots, b_{n}\right\}$ is c-reduced if for all $0<j<n$ and all $i<j$ we have

- $2\left|\left\langle b_{i}^{*}, b_{j}\right\rangle\right| \leqslant q\left(b_{i}^{*}\right)$ (size-reducedness)
- $\ell_{j}^{2} \leqslant c \ell_{j+1}^{2}$

What is size-reducedness?

$$
\left|\left\langle b_{i}^{*}, b_{j}\right\rangle\right| \leqslant \frac{1}{2} q\left(b_{i}^{*}\right) .
$$

Reduction in general rank

We can now summarize a possible approach as follows:

1. size-reduce $\left\{b_{1}, \ldots, b_{n}\right\}$
2. if $\left\{j: c \ell_{j+1}^{2}<\ell_{j}^{2}\right\} \neq \varnothing$ choose j in this set, swap b_{j}, b_{j+1} and iterate, else output b_{1}, \ldots, b_{n}

- Size-reducedness is easily accomplished by a direct generalization of the rank 2 case.
- It is not clear that this yields a polynomial time algorithm (in fact this is an open problem for $c=4 / 3$).
- The classical LLL described in [1] takes the minimum j in step 2. This allows us to size-reduce as needed.
- The output of this procedure is clearly a c-reduced basis.

What about c ?

As expected a lattice basis which is "nearly" orthogonal is also "nearly" optimal (in size).

Denote by $\lambda_{i}(L)$ the i th-successive minimum of L, that is,

$$
\lambda_{i}(L)=\inf \left\{r \in \mathbb{R}: \exists\left\{x_{1}, \ldots, x_{i}\right\} \subset L \text { lin. indep. with } q\left(x_{j}\right) \leqslant r\right\} .
$$

Theorem
Let $c \geqslant 4 / 3$ and let $\left\{b_{1}, \ldots, b_{n}\right\}$ be a c-reduced basis of L. Then for $1 \leqslant i \leqslant n$ we have

$$
c^{1-n} q\left(b_{i}\right) \leqslant \lambda_{i}(L) \leqslant c^{i-1} q\left(b_{i}\right)
$$

In particular for the shortest vector $(i=1)$ we have

$$
q\left(b_{1}\right) \leqslant c^{n-1} \lambda(L)
$$

Example: computing kernels \& images

Let \mathbf{F} be the matrix representing $f: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{m}$ and $r=\operatorname{rank}(\mathbf{F})$. Choose

$$
F>\max _{i, j}\left|\mathbf{F}_{i j}\right| \quad c \geqslant 4 / 3 \quad N>c^{n-1}(r+1) r^{r} F^{2 r} .
$$

Consider the lattice $\left(\mathbb{Z}^{n}, q\right)$ where

$$
q(x)=\|x\|^{2}+N\|f(x)\|^{2} .
$$

Then a c-reduced basis of this lattice satisfies the following.
(a). $\left\{b_{1}, \ldots, b_{n-r}\right\}$ forms a basis for $\operatorname{ker} f$
(b). $\left\{f\left(b_{n-r+1}\right), \ldots, f\left(b_{n}\right)\right\}$ forms a basis for $f\left(\mathbb{Z}^{n}\right)$ in \mathbb{Z}^{m}.

We only show that $q\left(b_{i}\right)<N$ for $1 \leqslant i \leqslant n-r$. Denote by \mathbf{F}_{i} the columns of \mathbf{F}.

Applications - Linear algebra over \mathbb{Z}

Suppose for simplicity that the first r columns of \mathbf{F} are linearly independent.

- For $r<h \leqslant n$ we have a linear dependency among F_{1}, \ldots, F_{r} and F_{h}.
- This dependency, say $x=\left(x_{i}\right)$, satisfies $x \in \operatorname{ker} f, x_{h} \neq 0$ and $x_{i}=0$ for $i>r, i \neq h$.
- Cramer's rule implies that the x_{i} are $(r \times r)$ minors of \mathbf{F} hence $\left|x_{i}\right| \leqslant r^{r / 2} F^{r}$ by Hadamard's inequality. Therefore,

$$
q(x)=\|x\|^{2} \leqslant(r+1) r^{r} F^{2 r} .
$$

- The $n-r$ vectors obtained in this way are independent so by c-reducedness we have

$$
q\left(b_{i}\right) \leqslant c^{n-1} \lambda_{i}(L) \leqslant c^{n-1}(r+1) r^{r} F^{2 r}<N .
$$

Linear algebra over \mathbb{Z}

- Solving linear systems

Given \mathbf{F} as before and $b \in \mathbb{Z}^{m}$ we want to solve $\mathbf{F} x=b$.
We let $N \gg M \gg 1$ be suitable large numbers and consider the lattice $L=\mathbb{Z}^{n} \times \mathbb{Z}$ with q given by

$$
q(x, z)=\|x\|^{2}+M\|z\|^{2}+N\|\mathbf{F} x-z b\|^{2} .
$$

Given a c-reduced basis $\left\{w_{1}, \ldots\right\}$ one has the following.

- Vectors $w_{i}=\left(x_{i}, z_{i}\right)$ with $q\left(w_{i}\right)<M$ form a basis for $\operatorname{ker} \mathbf{F}$.
- $\exists x: \mathbf{F} x=b \Longleftrightarrow \exists w_{j}=\left(x_{j}, z_{j}\right)$ with $M \leqslant q\left(w_{j}\right)<4 M$.
- In this case $z_{j}=1, x_{j}$ is a solution and all solutions are of the form $x_{j}+\sum_{i<j} c_{i} x_{i}, c_{i} \in \mathbb{Z}$.

The idea of the Layered setting

- As $M, N \rightarrow \infty$ the reduced basis computed give us the desired solution.
- These constants are "weights" we give to certain directions of the lattice of special interest.
- With big enough weights we get solutions. But to give a lower bound for them is not easy in general.
- Further, being big, they can produce memory overhead.
- We could just as well work with "symbols" that are big enough.
- This is the ideas of the layered setting: We substitute these weights by symbols or, more precisely, infinities in a structured manner.

Totally ordered vector spaces

First step: generalize our ambient spaces, that is, Euclidean spaces.
Totally ordered vector spaces
Let V be a real vector space of finite dimension and $>$ a total order on
V. We say that V is a totally ordered vector space if the following holds.

- For all $u, v, w \in V$ with $u>v$ we have $u+w>v+w$.
- For all $u \in V, u>0$ and all $\lambda \in \mathbb{R}_{>0}$ we have $\lambda u>0$.

Example

Let $V=\mathbb{R}^{2}$ with the antilexicographical order.
Theorem: Every total order on V is of the "above form", i.e., there is a basis $\left\{v_{i}\right\}$ s.t. $v_{i} \mapsto e_{i}$ is an o-isomorphism. We denote $V_{i}=\oplus_{j \leqslant i} \mathbb{R} v_{j}$.

Layered Euclidean spaces

Layered Euclidean spaces

A layered Euclidean space is a triple $(E, V,\langle\cdot, \cdot\rangle)$ where E and V are finite dimensional real vector spaces, V is totally ordered and $\langle\cdot, \cdot\rangle: E \times E \rightarrow V$ is a bilinear, symmetric map satisfying:

- For all $x \in E, x \neq 0$, we have $\langle x, x\rangle>0$.
- For all $x, y \in E$, there is a $\lambda \in \mathbb{R}$ such that

$$
\langle x, y\rangle \leqslant \lambda\langle y, y\rangle
$$

Layered Euclidean spaces

Example

Let $E=\mathbb{R}^{2}, V=\mathbb{R}^{2}$ with the antilexicographical order and define

$$
\langle x, y\rangle=\left(x \cdot \mathbf{B}_{1} y, x \cdot \mathbf{B}_{2 y} y\right)
$$

where

$$
\mathbf{B}_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \mathbf{B}_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

One computes: $\left\langle e_{1}, e_{1}\right\rangle=(1,0),\left\langle e_{2}, e_{2}\right\rangle=(0,1)$. So,

$$
\forall \lambda \in \mathbb{R}: q\left(\lambda e_{1}\right)<q\left(e_{2}\right)
$$

Layered Euclidean spaces

Layers

- Such a flag induces a filtration $\{0\}=E_{0} \subseteq \cdots \subseteq E_{n}=E$ on E by subspaces which we call the layers of E :

$$
E_{i}=\left\{x \in E:\langle x, x\rangle \in V_{i}\right\}
$$

- An important fact is that $\left(E_{i} / E_{i-1}, V_{i} / V_{i-1},\langle\cdot, \cdot\rangle\right)$ is a Euclidean space once we identify $V_{i} / V_{i-1} \simeq \mathbb{R}$.

Layered Euclidean spaces

Next, we look at the Gram-Schmidt process on which the concept of LLL reducedness depends.

- Perpendicularity: $x \perp y \Longleftrightarrow \forall \lambda \in \mathbb{R}_{>0},|\langle x, y\rangle| \leqslant \lambda\langle y, y\rangle$.
- This amounts to say that $\langle x, y\rangle$ is an "order of magnitude" smaller than $\langle y, y\rangle$.
- Note that, in general, we can have $x \perp y$ but $y \not \perp x$:

Layered Euclidean spaces

Example

Let $E=\mathbb{R}^{2}, V=\mathbb{R}^{2}$ with the antilexicographical order and define

$$
\langle x, y\rangle=\left(x \cdot \mathbf{B}_{1} y, x \cdot \mathbf{B}_{2 y} y\right)
$$

where

$$
\mathbf{B}_{1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), \mathbf{B}_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

One calculates: $\left\langle e_{1}, e_{1}\right\rangle=\left\langle e_{1}, e_{2}\right\rangle=(1,0)$ and $\left\langle e_{2}, e_{2}\right\rangle=(1,1)$ so $e_{1} \perp e_{2}$ but $e_{2} \not \perp e_{1}$.

Layered Euclidean spaces

Thus, we have two related concepts:

- Perpendicularity: $x \perp y \Longleftrightarrow \forall \lambda \in \mathbb{R}_{>0},|\langle x, y\rangle| \leqslant \lambda\langle y, y\rangle$.
- Orthogonality: $x \amalg y \Longleftrightarrow x \perp y$ and $y \perp x$.

Gram-Schmidt
In the layered setting there is a trade-off: given a basis of E we can:

- Preserve the flag induced by that basis and achieve perpendicularity among the vectors of the resulting basis.
or:
- Achieve orthogonality if the flag structure is not important.

Layered lattices

Layered lattices

A layered lattice is a triple (L, V, q) where L is a finitely generated abelian group, V a finite dimensional, totally ordered, real vector space and $q: L \rightarrow V$ is a map satisfying:

- For all $x \neq 0$, we have $q(x) \neq 0$.
- For all $x, y \in L, q(x+y)+q(x-y)=2 q(x)+2 q(y)$ holds.
- The set $q(L) \subseteq V$ is well-ordered.

Layered lattices

Theorem:

- Every layered lattice can be embedded in a layered Euclidean space.
- Reciprocally, a basis of E compatible with the layer structure of E induces a layered lattice.
Such a basis we call a layered basis.

Layered lattices

Counterexample

Take as in our first example $E=\mathbb{R}^{2}, V=\mathbb{R}^{2}$ with the antilexicographical order and $\langle x, y\rangle=\left(x \cdot \mathbf{B}_{1} y, x \cdot \mathbf{B}_{2} y\right)$ where

$$
\mathbf{B}_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \mathbf{B}_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

The vectors $b=(1, \sqrt{2})$ and e_{2} form a basis for E but their \mathbb{Z}-span is not a layered lattice since for $m, n \in \mathbb{Z}$,

$$
q\left(m b, n e_{2}\right)=\left(m^{2},(n+m \sqrt{2})^{2}\right)
$$

so $q(L)$ is not well-ordered.

Linear algebra over \mathbb{Z} revisited

Recall: we have a matrix $\mathbf{F} \in M_{m \times n}(\mathbb{Z})$ representing an homomorphism $f: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{m}$ of groups. We want to compute the kernel and image of F.
Let $V=\mathbb{R}^{3}$ and define $q: \mathbb{Z}^{n} \oplus \mathbb{Z} \rightarrow V$ by

$$
q(x, z)=\left(\|x\|^{2},\|z\|^{2},\|\mathbf{F} x-z b\|^{2}\right) .
$$

- A reduced basis in the layered setting is just a layered basis which is reduced in each layer.
- An algorithm that computes an reduced basis in this setting solves our problem.
- The classical LLL algorithm and its invariants (size, successive distance, etc...) can be generalized to this setting.
- We already now that the corresponding algorithm is correct and finishes. We are now attempting to prove it is polynomial time.

Bibliography

[1] H. W. Lenstra Jr.
Lattices.
In Surveys in algorithmic number theory, Mathematical Science Research Institute Publications. Cambridge University Press, to appear.
[2] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász.
Factoring polynomials with rational coefficients.
Math. Ann., (261):515-534, 1982.
围 [3] H. Cohen.
A Course in Computational Algebraic Number Theory, volume 138 of Graduate Texts in Mathematics. Springer, 1993.

