A layered LLL algorithm

Erwin L. Torreao Dassen Universiteit Leiden, The Netherlands

Bordeaux, December 2, 2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline

- Review what the LLL algorithm is and does.
- Example of its use: computing kernels and images of groups.

- ► The idea of the layered setting.
- Layered Euclidean spaces and layered lattices.
- Our example in the layered setting.

LLL Introduction I

Recall:

A lattice is a finitely generated abelian group L together with a map $q: L \to \mathbb{R}$ such that for all $x, y \in L$ and all $r \in \mathbb{R}$ we have

$$\blacktriangleright x \neq 0 \implies q(x) \neq 0$$

•
$$q(x+y) + q(x-y) = 2q(x) + 2q(y)$$

▶ $\forall r \in \mathbb{R}, \{x \in L : q(x) \leq r\}$ is finite

Giving (L, q) is equivalent to giving a discrete subgroup of a Euclidean space. $(\langle x, y \rangle = \frac{1}{4}q(x+y) + \frac{1}{4}q(x-y))$

The rank of a lattice is its rank as an abelian group. We denote by d(L) the discriminant of L (the volume spanned by a basis of L).

LLL Introduction II

- In many applications of lattice theory one is interested in finding "short" vectors in a given lattice.
- This stems from the fact that in many cases, by constructing an appropriate lattice, one can read off solutions of the given problem from these short vectors.
- In this direction the main theoretical result is Minkowski's theorem:

Each lattice L of positive rank n contains a non-zero element x with

$$q(x) \leqslant \frac{4}{\pi} \Gamma(1+n/2)^{2/n} d(L)^{2/n} \leqslant n \cdot d(L)^{2/n}.$$

LLL Introduction III

- Every lattice has a basis consisting of optimally short vectors (take the smallest ball containing a basis).
- LLL is a family of polynomial time algorithms that from an arbitrary basis constructs a *c-reduced* basis which is "nearly" optimal by successively applying "rank 2" reductions at each step.
- ► The parameter c is a real number > 4/3 encoding more or less the quality of this basis (how smaller the c the better the quality).

Lattices of rank 2

Let L be a lattice of rank 2 and $\{b_1,b_2\}$ a basis of L. We say L is reduced if

$$q(b_1) = \min_{x \in L - \{0\}} q(x)$$
 $q(b_2) = \min_{x \in L - \mathbb{Z} b_1} q(x).$

If one defines

$$a = q(b_1)$$
 $b = 2\langle b_1, b_2 \rangle$ $c = q(b_2)$

then $\{b_1, b_2\}$ is reduced if and only if

$$|b| \leq a \leq c.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Reduced basis

If $b_1 = (1,0)$ then $\{b_1, b_2\}$ is reduced if b_2 lies in the shaded region.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Lattice basis reduction in rank 2

The following procedure is due to Gauss. Given a basis $\{b_1, b_2\}$ of L it computes a reduced basis.

- 1. $m \leftarrow \lfloor \langle b_1, b_2 \rangle / q(b_1) \rceil$ (nearest integer) 2. $b_2 \leftarrow b_2 - mb_1$ (we now have $2|\langle b_1, b_2 \rangle| \leq q(b_1)$)
- 3. if $q(b_2) < q(b_1)$ swap b_1, b_2 and iterate else output $\{b_1, b_2\}$

That this procedure is correct follows from the inequalities $|b| \le a \le c$ mentioned before. It terminates since the norm of b_1 decreases through the process.

Reduction in general rank

The idea now is to apply one step of the above procedure to a rank 2 sublattice of our lattice L of rank n at each step.

First, given a basis $\{b_1, \ldots, b_n\}$ of L let $\{b_1^*, \ldots, b_n^*\}$ be the associated Gram-Schmidt basis and define

$$L_j = \sum_{i=1}^{j} \mathbb{Z}b_i$$
 and $\ell_j = d(L_j/L_{j-1}) \ (= ||b_j^*||).$

Let $c \ge 1$. A basis $\{b_1, \ldots, b_n\}$ is *c*-reduced if for all 0 < j < n and all i < j we have

(日) (日) (日) (日) (日) (日) (日) (日)

▶
$$2|\langle b_i^*, b_j \rangle| \leq q(b_i^*)$$
 (size-reducedness)
▶ $\ell_j^2 \leq c \ell_{j+1}^2$

What is size-reducedness?

$$|\langle b_i^*,b_j
angle|\leqslant rac{1}{2}q(b_i^*).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Reduction in general rank

We can now summarize a possible approach as follows:

- 1. size-reduce $\{b_1, \ldots, b_n\}$
- 2. if $\{j : c\ell_{j+1}^2 < \ell_j^2\} \neq \emptyset$ choose j in this set, swap b_j, b_{j+1} and iterate, else output b_1, \ldots, b_n
- Size-reducedness is easily accomplished by a direct generalization of the rank 2 case.
- It is not clear that this yields a polynomial time algorithm (in fact this is an open problem for c = 4/3).
- ► The classical LLL described in [1] takes the minimum *j* in step 2. This allows us to size-reduce as needed.

▶ The output of this procedure is clearly a *c*-reduced basis.

What about *c*?

As expected a lattice basis which is "nearly" orthogonal is also "nearly" optimal (in size).

Denote by $\lambda_i(L)$ the *i*th-successive minimum of *L*, that is,

$$\lambda_i(L) = \inf\{r \in \mathbb{R} : \exists \{x_1, \ldots, x_i\} \subset L \text{ lin. indep. with } q(x_j) \leqslant r\}.$$

Theorem

Let $c \geqslant 4/3$ and let $\{b_1,\ldots,b_n\}$ be a c-reduced basis of L. Then for $1\leqslant i\leqslant n$ we have

$$c^{1-n}q(b_i)\leqslant \lambda_i(L)\leqslant c^{i-1}q(b_i).$$

In particular for the shortest vector (i = 1) we have

$$q(b_1) \leqslant c^{n-1}\lambda(L).$$

Example: computing kernels & images

Let **F** be the matrix representing $f : \mathbb{Z}^n \to \mathbb{Z}^m$ and $r = \operatorname{rank}(\mathbf{F})$. Choose

$$F > \max_{i,j} |\mathbf{F}_{ij}| \qquad c \geqslant 4/3 \qquad N > c^{n-1}(r+1)r^r F^{2r}.$$

Consider the lattice (\mathbb{Z}^n, q) where

$$q(x) = ||x||^2 + N||f(x)||^2.$$

Then a *c*-reduced basis of this lattice satisfies the following. (a). $\{b_1, \ldots, b_{n-r}\}$ forms a basis for ker *f* (b). $\{f(b_{n-r+1}), \ldots, f(b_n)\}$ forms a basis for $f(\mathbb{Z}^n)$ in \mathbb{Z}^m .

We only show that $q(b_i) < N$ for $1 \le i \le n - r$. Denote by \mathbf{F}_i the columns of \mathbf{F} .

Applications - Linear algebra over $\mathbb Z$

Suppose for simplicity that the first r columns of **F** are linearly independent.

- For $r < h \leq n$ we have a linear dependency among F_1, \ldots, F_r and F_h .
- ▶ This dependency, say $x = (x_i)$, satisfies $x \in \ker f$, $x_h \neq 0$ and $x_i = 0$ for i > r, $i \neq h$.
- Cramer's rule implies that the x_i are $(r \times r)$ minors of **F** hence $|x_i| \leq r^{r/2} F^r$ by Hadamard's inequality. Therefore,

$$q(x) = ||x||^2 \leq (r+1)r^r F^{2r}.$$

The n - r vectors obtained in this way are independent so by c-reducedness we have

$$q(b_i) \leqslant c^{n-1}\lambda_i(L) \leqslant c^{n-1}(r+1)r^r F^{2r} < N.$$

Linear algebra over \mathbb{Z}

Solving linear systems

Given **F** as before and $b \in \mathbb{Z}^m$ we want to solve $\mathbf{F}x = b$.

We let $N \gg M \gg 1$ be suitable large numbers and consider the lattice $L = \mathbb{Z}^n \times \mathbb{Z}$ with q given by

$$q(x,z) = ||x||^2 + M||z||^2 + N||\mathbf{F}x - zb||^2.$$

Given a *c*-reduced basis $\{w_1, \ldots\}$ one has the following.

- Vectors $w_i = (x_i, z_i)$ with $q(w_i) < M$ form a basis for ker **F**.
- ► $\exists x : \mathbf{F}x = b \iff \exists w_j = (x_j, z_j) \text{ with } M \leq q(w_j) < 4M.$
- ▶ In this case $z_j = 1$, x_j is a solution and all solutions are of the form $x_j + \sum_{i < j} c_i x_i$, $c_i \in \mathbb{Z}$.

The idea of the Layered setting

- As M, N → ∞ the reduced basis computed give us the desired solution.
- These constants are "weights" we give to certain directions of the lattice of special interest.
- With big enough weights we get solutions. But to give a lower bound for them is not easy in general.
- Further, being big, they can produce memory overhead.
- ▶ We could just as well work with "symbols" that are big enough.
- This is the ideas of the layered setting: We substitute these weights by symbols or, more precisely, infinities in a structured manner.

Totally ordered vector spaces

First step: generalize our ambient spaces, that is, Euclidean spaces.

Totally ordered vector spaces

Let V be a real vector space of finite dimension and > a total order on V. We say that V is a totally ordered vector space if the following holds.

- For all $u, v, w \in V$ with u > v we have u + w > v + w.
- For all $u \in V$, u > 0 and all $\lambda \in \mathbb{R}_{>0}$ we have $\lambda u > 0$.

Example

Let $V = \mathbb{R}^2$ with the antilexicographical order.

Theorem: Every total order on V is of the "above form", i.e., there is a basis $\{v_i\}$ s.t. $v_i \mapsto e_i$ is an o-isomorphism. We denote $V_i = \bigoplus_{j \leq i} \mathbb{R} v_j$.

Layered Euclidean spaces

A layered Euclidean space is a triple $(E, V, \langle \cdot, \cdot \rangle)$ where E and V are finite dimensional real vector spaces, V is totally ordered and $\langle \cdot, \cdot \rangle : E \times E \to V$ is a bilinear, symmetric map satisfying:

- For all $x \in E, x \neq 0$, we have $\langle x, x \rangle > 0$.
- ▶ For all $x, y \in E$, there is a $\lambda \in \mathbb{R}$ such that

 $\langle x, y \rangle \leqslant \lambda \langle y, y \rangle$

Example

Let $E = \mathbb{R}^2, V = \mathbb{R}^2$ with the antilexicographical order and define

$$\langle x, y \rangle = (x \cdot \mathbf{B}_1 y, x \cdot \mathbf{B}_2 y)$$

where

$$\mathbf{B}_1 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \mathbf{B}_2 = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right)$$

One computes: $\langle e_1, e_1
angle =$ (1,0), $\langle e_2, e_2
angle =$ (0,1). So,

 $\forall \lambda \in \mathbb{R} : q(\lambda e_1) < q(e_2)$

Layers

Such a flag induces a filtration {0} = E₀ ⊆ ··· ⊆ E_n = E on E by subspaces which we call the layers of E:

$$E_i = \{x \in E : \langle x, x \rangle \in V_i\}$$

An important fact is that (E_i/E_{i-1}, V_i/V_{i-1}, ⟨·, ·⟩) is a Euclidean space once we identify V_i/V_{i-1} ≃ ℝ.

Next, we look at the Gram-Schmidt process on which the concept of LLL reducedness depends.

- ▶ Perpendicularity: $x \perp y \iff \forall \lambda \in \mathbb{R}_{>0}, \ |\langle x, y \rangle| \leqslant \lambda \langle y, y \rangle.$
- ► This amounts to say that (x, y) is an "order of magnitude" smaller than (y, y).

▶ Note that, in general, we can have $x \perp y$ but $y \not\perp x$:

Example

Let $E = \mathbb{R}^2, V = \mathbb{R}^2$ with the antilexicographical order and define

$$\langle x,y\rangle = (x \cdot \mathbf{B}_1 y, x \cdot \mathbf{B}_2 y)$$

where

$$\mathbf{B}_1 = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right), \mathbf{B}_2 = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right)$$

One calculates: $\langle e_1, e_1 \rangle = \langle e_1, e_2 \rangle = (1, 0)$ and $\langle e_2, e_2 \rangle = (1, 1)$ so $e_1 \perp e_2$ but $e_2 \not\perp e_1$.

Thus, we have two related concepts:

- ▶ Perpendicularity: $x \perp y \iff \forall \lambda \in \mathbb{R}_{>0}, |\langle x, y \rangle| \leqslant \lambda \langle y, y \rangle.$
- Orthogonality: $x \amalg y \iff x \perp y$ and $y \perp x$.

Gram-Schmidt

In the layered setting there is a trade-off: given a basis of E we can:

Preserve the flag induced by that basis and achieve perpendicularity among the vectors of the resulting basis.

or:

Achieve orthogonality if the flag structure is not important.

Layered lattices

Layered lattices

A layered lattice is a triple (L, V, q) where L is a finitely generated abelian group, V a finite dimensional, totally ordered, real vector space and $q: L \rightarrow V$ is a map satisfying:

- For all $x \neq 0$, we have $q(x) \neq 0$.
- For all $x, y \in L$, q(x + y) + q(x y) = 2q(x) + 2q(y) holds.

• The set $q(L) \subseteq V$ is well-ordered.

Layered lattices

Theorem:

- Every layered lattice can be embedded in a layered Euclidean space.
- Reciprocally, a basis of E compatible with the layer structure of E induces a layered lattice.

Such a basis we call a layered basis.

Layered lattices

Counterexample

Take as in our first example $E = \mathbb{R}^2$, $V = \mathbb{R}^2$ with the antilexicographical order and $\langle x, y \rangle = (x \cdot \mathbf{B}_1 y, x \cdot \mathbf{B}_2 y)$ where

$$\mathbf{B}_1 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \mathbf{B}_2 = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right)$$

The vectors $b = (1, \sqrt{2})$ and e_2 form a basis for E but their \mathbb{Z} -span is not a layered lattice since for $m, n \in \mathbb{Z}$,

$$q(mb, ne_2) = (m^2, (n + m\sqrt{2})^2)$$

so q(L) is not well-ordered.

Linear algebra over \mathbb{Z} revisited

Recall: we have a matrix $\mathbf{F} \in M_{m \times n}(\mathbb{Z})$ representing an homomorphism $f : \mathbb{Z}^n \to \mathbb{Z}^m$ of groups. We want to compute the kernel and image of F. Let $V = \mathbb{R}^3$ and define $q : \mathbb{Z}^n \oplus \mathbb{Z} \to V$ by

$$q(x,z) = (||x||^2, ||z||^2, ||\mathbf{F}x - zb||^2).$$

- A reduced basis in the layered setting is just a layered basis which is reduced in each layer.
- An algorithm that computes an reduced basis in this setting solves our problem.
- The classical LLL algorithm and its invariants (size, successive distance, etc...) can be generalized to this setting.
- We already now that the corresponding algorithm is correct and finishes. We are now attempting to prove it is polynomial time.

Bibliography

[1] H. W. Lenstra Jr.

Lattices.

In *Surveys in algorithmic number theory*, Mathematical Science Research Institute Publications. Cambridge University Press, to appear.

[2] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász.
 Factoring polynomials with rational coefficients.
 Math. Ann., (261):515–534, 1982.

[3] H. Cohen.

A Course in Computational Algebraic Number Theory, volume 138 of Graduate Texts in Mathematics. Springer, 1993.