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LLL Introduction I

Recall:

A lattice is a finitely generated abelian group L together with a map
q : L→ R such that for all x , y ∈ L and all r ∈ R we have

I x 6= 0 =⇒ q(x) 6= 0

I q(x + y) + q(x − y) = 2q(x) + 2q(y)

I ∀r ∈ R, {x ∈ L : q(x) 6 r} is finite

Giving (L, q) is equivalent to giving a discrete subgroup of a Euclidean
space. (〈x , y〉 = 1

4q(x + y) + 1
4q(x − y))

The rank of a lattice is its rank as an abelian group. We denote by d(L)
the discriminant of L (the volume spanned by a basis of L).



LLL Introduction II

I In many applications of lattice theory one is interested in finding
“short” vectors in a given lattice.

I This stems from the fact that in many cases, by constructing an
appropriate lattice, one can read off solutions of the given problem
from these short vectors.

I In this direction the main theoretical result is Minkowski’s theorem:

Each lattice L of positive rank n contains a non-zero element x with

q(x) 6
4

π
Γ(1 + n/2)2/nd(L)2/n 6 n · d(L)2/n.



LLL Introduction III

I Every lattice has a basis consisting of optimally short vectors (take
the smallest ball containing a basis).

I LLL is a family of polynomial time algorithms that from an arbitrary
basis constructs a c-reduced basis which is “nearly” optimal by
successively applying “rank 2” reductions at each step.

I The parameter c is a real number > 4/3 encoding more or less the
quality of this basis (how smaller the c the better the quality).



Lattices of rank 2

Let L be a lattice of rank 2 and {b1, b2} a basis of L. We say L is
reduced if

q(b1) = min
x∈L−{0}

q(x) q(b2) = min
x∈L−Zb1

q(x).

If one defines

a = q(b1) b = 2〈b1, b2〉 c = q(b2)

then {b1, b2} is reduced if and only if

|b| 6 a 6 c .



Reduced basis

If b1 = (1, 0) then {b1, b2} is reduced if b2 lies in the shaded region.



Lattice basis reduction in rank 2

The following procedure is due to Gauss. Given a basis {b1, b2} of L it
computes a reduced basis.

1. m← b〈b1, b2〉/q(b1)e (nearest integer)

2. b2 ← b2 −mb1 (we now have 2|〈b1, b2〉| 6 q(b1))

3. if q(b2) < q(b1) swap b1, b2 and iterate else output {b1, b2}

That this procedure is correct follows from the inequalities |b| 6 a 6 c
mentioned before. It terminates since the norm of b1 decreases through
the process.



Reduction in general rank

The idea now is to apply one step of the above procedure to a rank 2
sublattice of our lattice L of rank n at each step.

First, given a basis {b1, . . . , bn} of L let {b∗1 , . . . , b∗n} be the associated
Gram-Schmidt basis and define

Lj =

j∑
i=1

Zbi and `j = d(Lj/Lj−1) (= ||b∗j ||).

Let c > 1. A basis {b1, . . . , bn} is c-reduced if for all 0 < j < n and all
i < j we have

I 2|〈b∗i , bj〉| 6 q(b∗i ) (size-reducedness)

I `2j 6 c`2j+1



What is size-reducedness?

b1 = b∗1

b2b∗2

b∗3b3

|〈b∗i , bj〉| 6
1

2
q(b∗i ).



Reduction in general rank

We can now summarize a possible approach as follows:

1. size-reduce {b1, . . . , bn}
2. if {j : c`2j+1 < `2j } 6= ∅ choose j in this set, swap bj , bj+1 and

iterate, else output b1, . . . , bn

I Size-reducedness is easily accomplished by a direct generalization of
the rank 2 case.

I It is not clear that this yields a polynomial time algorithm (in fact
this is an open problem for c = 4/3).

I The classical LLL described in [1] takes the minimum j in step 2.
This allows us to size-reduce as needed.

I The output of this procedure is clearly a c-reduced basis.



What about c?

As expected a lattice basis which is “nearly” orthogonal is also “nearly”
optimal (in size).

Denote by λi (L) the ith-successive minimum of L, that is,

λi (L) = inf{r ∈ R : ∃{x1, . . . , xi} ⊂ L lin. indep. with q(xj) 6 r}.

Theorem
Let c > 4/3 and let {b1, . . . , bn} be a c-reduced basis of L. Then for
1 6 i 6 n we have

c1−nq(bi ) 6 λi (L) 6 c i−1q(bi ).

In particular for the shortest vector (i = 1) we have

q(b1) 6 cn−1λ(L).



Example: computing kernels & images

Let F be the matrix representing f : Zn → Z
m and r = rank(F). Choose

F > max
i,j
|Fij | c > 4/3 N > cn−1(r + 1)r rF 2r .

Consider the lattice (Zn, q) where

q(x) = ||x ||2 + N||f (x)||2.

Then a c-reduced basis of this lattice satisfies the following.

(a). {b1, . . . , bn−r} forms a basis for ker f

(b). {f (bn−r+1), . . . , f (bn)} forms a basis for f (Zn) in Zm.

We only show that q(bi ) < N for 1 6 i 6 n − r . Denote by Fi the
columns of F.



Applications - Linear algebra over Z

Suppose for simplicity that the first r columns of F are linearly
independent.

I For r < h 6 n we have a linear dependency among F1, . . . ,Fr and
Fh.

I This dependency, say x = (xi ), satisfies x ∈ ker f , xh 6= 0 and xi = 0
for i > r , i 6= h.

I Cramer’s rule implies that the xi are (r × r) minors of F hence
|xi | 6 r r/2F r by Hadamard’s inequality. Therefore,

q(x) = ||x ||2 6 (r + 1)r rF 2r .

I The n − r vectors obtained in this way are independent so by
c-reducedness we have

q(bi ) 6 cn−1λi (L) 6 cn−1(r + 1)r rF 2r < N.



Linear algebra over Z

I Solving linear systems

Given F as before and b ∈ Zm we want to solve Fx = b.

We let N � M � 1 be suitable large numbers and consider the lattice
L = Z

n × Z with q given by

q(x , z) = ||x ||2 + M||z ||2 + N||Fx − zb||2.

Given a c-reduced basis {w1, . . . } one has the following.

I Vectors wi = (xi , zi ) with q(wi ) < M form a basis for ker F.

I ∃x : Fx = b ⇐⇒ ∃wj = (xj , zj) with M 6 q(wj) < 4M.

I In this case zj = 1, xj is a solution and all solutions are of the form
xj +

∑
i<j cixi , ci ∈ Z.



The idea of the Layered setting

I As M,N →∞ the reduced basis computed give us the desired
solution.

I These constants are “weights” we give to certain directions of the
lattice of special interest.

I With big enough weights we get solutions. But to give a lower
bound for them is not easy in general.

I Further, being big, they can produce memory overhead.

I We could just as well work with “symbols” that are big enough.

I This is the ideas of the layered setting: We substitute these weights
by symbols or, more precisely, infinities in a structured manner.



Totally ordered vector spaces

First step: generalize our ambient spaces, that is, Euclidean spaces.

Totally ordered vector spaces
Let V be a real vector space of finite dimension and > a total order on
V . We say that V is a totally ordered vector space if the following holds.

I For all u, v ,w ∈ V with u > v we have u + w > v + w .

I For all u ∈ V , u > 0 and all λ ∈ R>0 we have λu > 0.

Example
Let V = R2 with the antilexicographical order.

Theorem: Every total order on V is of the “above form”, i.e., there is a
basis {vi} s.t. vi 7→ ei is an o-isomorphism. We denote Vi = ⊕j6iRvj .



Layered Euclidean spaces

Layered Euclidean spaces
A layered Euclidean space is a triple (E ,V , 〈·, ·〉) where E and V are
finite dimensional real vector spaces, V is totally ordered and
〈·, ·〉 : E × E → V is a bilinear, symmetric map satisfying:

I For all x ∈ E , x 6= 0, we have 〈x , x〉 > 0.

I For all x , y ∈ E , there is a λ ∈ R such that

〈x , y〉 6 λ〈y , y〉



Layered Euclidean spaces

Example
Let E = R2,V = R2 with the antilexicographical order and define

〈x , y〉 = (x · B1y , x · B2y)

where

B1 =

(
1 0
0 0

)
,B2 =

(
0 0
0 1

)
One computes: 〈e1, e1〉 = (1, 0), 〈e2, e2〉 = (0, 1). So,

∀λ ∈ R : q(λe1) < q(e2)



Layered Euclidean spaces

Layers

I Such a flag induces a filtration {0} = E0 ⊆ · · · ⊆ En = E on E by
subspaces which we call the layers of E :

Ei = {x ∈ E : 〈x , x〉 ∈ Vi}

I An important fact is that (Ei/Ei−1,Vi/Vi−1, 〈·, ·〉) is a Euclidean
space once we identify Vi/Vi−1 ' R.



Layered Euclidean spaces

Next, we look at the Gram-Schmidt process on which the concept of LLL
reducedness depends.

I Perpendicularity: x ⊥ y ⇐⇒ ∀λ ∈ R>0, |〈x , y〉| 6 λ〈y , y〉.
I This amounts to say that 〈x , y〉 is an ”order of magnitude” smaller

than 〈y , y〉.
I Note that, in general, we can have x ⊥ y but y 6⊥ x :



Layered Euclidean spaces

Example
Let E = R2,V = R2 with the antilexicographical order and define

〈x , y〉 = (x · B1y , x · B2y)

where

B1 =

(
1 1
1 1

)
,B2 =

(
0 0
0 1

)
One calculates: 〈e1, e1〉 = 〈e1, e2〉 = (1, 0) and 〈e2, e2〉 = (1, 1) so
e1 ⊥ e2 but e2 6⊥ e1.



Layered Euclidean spaces

Thus, we have two related concepts:

I Perpendicularity: x ⊥ y ⇐⇒ ∀λ ∈ R>0, |〈x , y〉| 6 λ〈y , y〉.
I Orthogonality: x q y ⇐⇒ x ⊥ y and y ⊥ x .

Gram-Schmidt
In the layered setting there is a trade-off: given a basis of E we can:

I Preserve the flag induced by that basis and achieve perpendicularity
among the vectors of the resulting basis.

or:

I Achieve orthogonality if the flag structure is not important.



Layered lattices

Layered lattices
A layered lattice is a triple (L,V , q) where L is a finitely generated
abelian group, V a finite dimensional, totally ordered, real vector space
and q : L→ V is a map satisfying:

I For all x 6= 0, we have q(x) 6= 0.

I For all x , y ∈ L, q(x + y) + q(x − y) = 2q(x) + 2q(y) holds.

I The set q(L) ⊆ V is well-ordered.



Layered lattices

Theorem:

I Every layered lattice can be embedded in a layered Euclidean space.

I Reciprocally, a basis of E compatible with the layer structure of E
induces a layered lattice.

Such a basis we call a layered basis.



Layered lattices

Counterexample
Take as in our first example E = R2,V = R2 with the antilexicographical
order and 〈x , y〉 = (x · B1y , x · B2y) where

B1 =

(
1 0
0 0

)
,B2 =

(
0 0
0 1

)
The vectors b = (1,

√
2) and e2 form a basis for E but their Z-span is not

a layered lattice since for m, n ∈ Z,

q(mb, ne2) = (m2, (n + m
√

2)2)

so q(L) is not well-ordered.



Linear algebra over Z revisited

Recall: we have a matrix F ∈ Mm×n(Z) representing an homomorphism
f : Zn → Z

m of groups. We want to compute the kernel and image of F .
Let V = R

3 and define q : Zn ⊕ Z→ V by

q(x , z) = (||x ||2, ||z ||2, ||Fx − zb||2).

I A reduced basis in the layered setting is just a layered basis which is
reduced in each layer.

I An algorithm that computes an reduced basis in this setting solves
our problem.

I The classical LLL algorithm and its invariants (size, successive
distance, etc...) can be generalized to this setting.

I We already now that the corresponding algorithm is correct and
finishes. We are now attempting to prove it is polynomial time.
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