Université Bordeaux I - 2011 N1MA5011 Liste d'exercices 8

Polynômes cyclotomiques, éléments algébriques.

Exercice 1. Expliciter $\Phi_n(X)$ pour $1 \le n \le 10$.

Exercice 2. Pour tout entier $n \geq 1$ on note $\Phi_n(X) \in \mathbb{Z}[X]$ le *n*-ième polynôme cyclotomique.

- 1 Quelle est la décomposition en facteurs irréductibles unitaires dans $\mathbb{Q}[X]$ de X^n-1 ?
- **2** Montrer que $X^{n-1} + X^{n-2} + \ldots + X + 1$ est irréductible dans $\mathbb{Q}[X]$ si et seulement si n est premier.
- **3** Donner la décomposition en facteurs irréductibles de $X^9 + X^8 + \ldots + X + 1$ dans $\mathbb{Q}[X]$.

Exercice 3. Soient \mathbb{K} et \mathbb{L} des corps tels que $\mathbb{K} \subseteq \mathbb{L}$. Montrer qu'un élément $\alpha \in \mathbb{L}$ est algébrique sur \mathbb{K} si et seulement si $\mathbb{K}[\alpha]$ est un corps.

Exercice 4. Parmi les ensembles suivants, déterminer ceux qui sont des extensions algébriques finies de \mathbb{Q} et déterminer leur degré sur \mathbb{Q} dans ce cas.

$$\mathbb{Q} \oplus i \mathbb{Q} \quad \mathbb{Q} \oplus \sqrt{5} \mathbb{Q} \quad \mathbb{Q} \oplus \sqrt[3]{2} \mathbb{Q} \quad \mathbb{Q}[\sqrt[3]{2}] \quad \mathbb{R} \quad \mathbb{C} \quad \mathbb{Q}(X)$$

Exercice 5. Soit $P(X) = X^{3} + X + 1$.

- 1 Montrer que P(X) est irréductible sur \mathbb{Q} .
- **2** Soit α une racine (dans \mathbb{C}) de P(X). Montrer que l'on peut écrire $\frac{\alpha}{\alpha^2+1}$ sous la forme $g(\alpha)$ avec $g(X) \in \mathbb{Q}[X]$ de degré ≤ 2 . Expliciter g(X).

Exercice 6. Calculer $Irr(\sqrt{X}, \mathbb{C}(X), Y)$.

Exercice 7. Calculer le degré de $\mathbb{Q}[\sqrt{2}, \sqrt[3]{3}, \sqrt[5]{5}]$ sur \mathbb{Q} .

Exercice 8. Soit $\zeta_n \in \mathbb{C}$ une racine primitive n-ième de l'unité. Quel est le degré de ζ_n sur \mathbb{Q} ? Quel est le degré de $\cos(2\pi/n)$ sur \mathbb{Q} ?