Interpolating sequences and Carleson measures in the Hardy-Sobolev spaces of the ball in \mathbb{C}^n .

E. Amar

En l'honneur de Aline Bonami, Orléans, Juin 2014.

We shall work with the Hardy-Sobolev spaces H_s^p .

$$\|f\|_{s,p}^{p} := \sup_{r<1} \int_{\partial \mathbb{B}} \left| (I+R)^{s} f(rz) \right|^{p} d\sigma(z),$$

$$\|f\|_{s,p}^p := \sup_{r<1} \int_{\partial \mathbb{B}} \left| (I+R)^s f(rz) \right|^p d\sigma(z),$$

where I is the identity,

$$\|f\|_{s,p}^p := \sup_{r<1} \int_{\partial \mathbb{B}} \left| (I+R)^s f(rz) \right|^p d\sigma(z),$$

where I is the identity, $d\sigma$ is the Lebesgue measure on $\partial \mathbb{B}$

$$\|f\|_{s,p}^p := \sup_{r<1} \int_{\partial \mathbb{B}} \left| (I+R)^s f(rz) \right|^p d\sigma(z),$$

where I is the identity, $d\sigma$ is the Lebesgue measure on $\partial \mathbb{B}$ and R is the radial derivative

$$Rf(z) = \sum_{j=1}^{n} z_j \frac{\partial f}{\partial z_j}(z)$$

$$\|f\|_{s,p}^p := \sup_{r<1} \int_{\partial \mathbb{B}} \left| (I+R)^s f(rz) \right|^p d\sigma(z),$$

where I is the identity, $d\sigma$ is the Lebesgue measure on $\partial \mathbb{B}$ and R is the radial derivative

$$Rf(z) = \sum_{j=1}^{n} z_j \frac{\partial f}{\partial z_j}(z)$$

For $s \in \mathbb{N}$, this norm is equivalent to

$$\|f\|_{s,p}^{p} = \max_{0 \le j \le s} \int_{\partial \mathbb{B}} \left| R^{j} f(z) \right|^{p} d\sigma(z).$$

$$\|f\|_{s,p}^p := \sup_{r<1} \int_{\partial \mathbb{B}} \left| (I+R)^s f(rz) \right|^p d\sigma(z),$$

where I is the identity, $d\sigma$ is the Lebesgue measure on $\partial \mathbb{B}$ and R is the radial derivative

$$Rf(z) = \sum_{j=1}^{n} z_j \frac{\partial f}{\partial z_j}(z)$$

For $s \in \mathbb{N}$, this norm is equivalent to

$$\|f\|_{s,p}^{p} = \max_{0 \le j \le s} \int_{\partial \mathbb{B}} \left| R^{j} f(z) \right|^{p} d\sigma(z).$$

This means that $R^j f \in H^p(\mathbb{B}), \ j = 0, ..., s$.

$$\|f\|_{s,p}^p := \sup_{r<1} \int_{\partial \mathbb{B}} \left| (I+R)^s f(rz) \right|^p d\sigma(z),$$

where I is the identity, $d\sigma$ is the Lebesgue measure on $\partial \mathbb{B}$ and R is the radial derivative

$$Rf(z) = \sum_{j=1}^{n} z_j \frac{\partial f}{\partial z_j}(z).$$

For $s \in \mathbb{N}$, this norm is equivalent to

$$\|f\|_{s,p}^{p} = \max_{0 \le j \le s} \int_{\partial \mathbb{B}} \left| R^{j} f(z) \right|^{p} d\sigma(z).$$

This means that $R^j f \in H^p(\mathbb{B}), \ j = 0, ..., s$.

For s = 0 these spaces are the classical Hardy spaces $H^p(\mathbb{B})$ of the unit ball \mathbb{B} .

$$\|f\|_{s,p}^p := \sup_{r<1} \int_{\partial \mathbb{B}} \left| (I+R)^s f(rz) \right|^p d\sigma(z),$$

where I is the identity, $d\sigma$ is the Lebesgue measure on $\partial \mathbb{B}$ and R is the radial derivative

$$Rf(z) = \sum_{j=1}^{n} z_j \frac{\partial f}{\partial z_j}(z).$$

For $s \in \mathbb{N}$, this norm is equivalent to

$$\|f\|_{s,p}^{p} = \max_{0 \le j \le s} \int_{\partial \mathbb{B}} \left| R^{j} f(z) \right|^{p} d\sigma(z).$$

This means that $R^j f \in H^p(\mathbb{B}), \ j = 0, ..., s$.

For s = 0 these spaces are the classical Hardy spaces $H^p(\mathbb{B})$ of the unit ball \mathbb{B} .

 $\forall a \in \mathbb{B}, \ k_a(z) = \frac{1}{(1 - \bar{a} \cdot z)^{n-2s}},$

$$\forall a \in \mathbb{B}, \ k_a(z) = \frac{1}{(1 - \bar{a} \cdot z)^{n-2s}}, \ \|k_a\|_{s,p} := \|k_a\|_{H^p_s} \simeq (1 - |a|^2)^{s-n/p'}$$

$$\forall a \in \mathbb{B}, \ k_a(z) = \frac{1}{(1 - \bar{a} \cdot z)^{n-2s}}, \ \|k_a\|_{s,p} := \|k_a\|_{H^p_s} \simeq (1 - |a|^2)^{s-n/p'}$$

i.e. $\forall a \in \mathbb{B}, \ \forall f \in H^p_s, \ f(a) = \langle f, k_a \rangle,$

$$\forall a \in \mathbb{B}, \ k_a(z) = \frac{1}{(1 - \bar{a} \cdot z)^{n-2s}}, \ \|k_a\|_{s,p} := \|k_a\|_{H^p_s} \simeq (1 - |a|^2)^{s-n/p'}$$

i.e. $\forall a \in \mathbb{B}, \forall f \in H_s^p, f(a) = \langle f, k_a \rangle$, where $\langle \cdot, \cdot \rangle$ is the scalar product of the Hilbert space H_s^2 .

$$\forall a \in \mathbb{B}, \ k_a(z) = \frac{1}{(1 - \bar{a} \cdot z)^{n-2s}}, \ \|k_a\|_{s,p} := \|k_a\|_{H^p_s} \simeq (1 - |a|^2)^{s-n/p'}$$

i.e. $\forall a \in \mathbb{B}, \forall f \in H_s^p, f(a) = \langle f, k_a \rangle$, where $\langle \cdot, \cdot \rangle$ is the scalar product of the Hilbert space H_s^2 . In the case s = n/2 there is a log for k_a .

The measure μ in \mathbb{B} is Carleson for H_s^p , $\mu \in C_{s,p}$, if we have the embedding $\forall f \in H_s^p$, $\int_{\mathbb{B}} |f|^p d\mu \leq C ||f||_{s,p}^p$.

The measure μ in \mathbb{B} is Carleson for H_s^p , $\mu \in C_{s,p}$, if we have the embedding $\forall f \in H_s^p$, $\int_{\mathbb{B}} |f|^p d\mu \leq C ||f||_{s,p}^p$.

We have the table concerning the Carleson measures :

The measure μ in \mathbb{B} is Carleson for H_s^p , $\mu \in C_{s,p}$, if we have the embedding $\forall f \in H_s^p$, $\int_{\mathbb{B}} |f|^p d\mu \leq C ||f||_{s,p}^p$.

We have the table concerning the Carleson measures :

$H^p(\mathbb{D})$	$H^p(\mathbb{B}) = H^p_0(\mathbb{B})$	$H^p_s(\mathbb{B})$

The measure μ in \mathbb{B} is Carleson for H_s^p , $\mu \in C_{s,p}$, if we have the embedding $\forall f \in H_s^p$, $\int_{\mathbb{B}} |f|^p d\mu \leq C ||f||_{s,p}^p$.

We have the table concerning the Carleson measures :

$H^p(\mathbb{D})$	$H^p(\mathbb{B}) = H^p_0(\mathbb{B})$	$H^p_s(\mathbb{B})$
Characterized geometrically by L. Carleson ¹		

¹Amer. J. Math. (1958)

The measure μ in \mathbb{B} is Carleson for H_s^p , $\mu \in C_{s,p}$, if we have the embedding $\forall f \in H_s^p$, $\int_{\mathbb{B}} |f|^p d\mu \leq C ||f||_{s,p}^p$.

We have the table concerning the Carleson measures :

$H^p(\mathbb{D})$	$H^p(\mathbb{B}) = H^p_0(\mathbb{B})$	$H^p_s(\mathbb{B})$
Characterized geometrically by L. Carleson ¹	Characterized geometrically by L. Hörmander ²	

¹Amer. J. Math. (1958) ²Math. Scand. (1967)

25

The measure μ in \mathbb{B} is Carleson for H_s^p , $\mu \in C_{s,p}$, if we have the embedding $\forall f \in H_s^p$, $\int_{\mathbb{B}} |f|^p d\mu \leq C ||f||_{s,p}^p$.

We have the table concerning the Carleson measures :

$H^p(\mathbb{D})$	$H^p(\mathbb{B}) = H^p_0(\mathbb{B})$	$H^p_s(\mathbb{B})$
Characterized	Characterized	Studied by C. Cascante &
geometrically	geometrically	J. Ortega ; characterized
by L. Carleson ¹	by L. Hörmander ²	for $n-1 \le ps \le n$.

¹Amer. J. Math. (1958) ²Math. Scand. (1967)

The measure μ in \mathbb{B} is Carleson for H_s^p , $\mu \in C_{s,p}$, if we have the embedding $\forall f \in H_s^p$, $\int_{\mathbb{B}} |f|^p d\mu \leq C ||f||_{s,p}^p$.

We have the table concerning the Carleson measures :

Characterized geometrically by L. Carleson1Characterized geometrically by L. Hörmander2Studied by C. Cascante & J. Ortega ; characterized for $n-1 \leq ps \leq n$. For $p=2$, any s characterized by A. Volberg & B. Wick3	$H^p(\mathbb{D})$	$H^p(\mathbb{B}) = H^p_0(\mathbb{B})$	$H^p_s(\mathbb{B})$
	Characterized geometrically by L. Carleson ¹	Characterized geometrically by L. Hörmander ²	Studied by C. Cascante & J. Ortega ; characterized for $n-1 \le ps \le n$. For $p=2$, any s characterized by A. Volberg & B. Wick ³

The measure μ in \mathbb{B} is Carleson for H_s^p , $\mu \in C_{s,p}$, if we have the embedding $\forall f \in H_s^p$, $\int_{\mathbb{B}} |f|^p d\mu \leq C ||f||_{s,p}^p$.

We have the table concerning the Carleson measures :

$H^p(\mathbb{D})$	$H^p(\mathbb{B}) = H^p_0(\mathbb{B})$	$H^p_s(\mathbb{B})$
Characterized geometrically by L. Carleson ¹	Characterized geometrically by L. Hörmander ²	Studied by C. Cascante & J. Ortega ; characterized for $n - 1 \le ps \le n$. For $p = 2$, any s characterized by A. Volberg & B. Wick ³
Same for all p		

The measure μ in \mathbb{B} is Carleson for H_s^p , $\mu \in C_{s,p}$, if we have the embedding $\forall f \in H_s^p$, $\int_{\mathbb{B}} |f|^p d\mu \leq C ||f||_{s,p}^p$.

We have the table concerning the Carleson measures :

$H^p(\mathbb{D})$	$H^p(\mathbb{B}) = H^p_0(\mathbb{B})$	$H^p_s(\mathbb{B})$
Characterized geometrically by L. Carleson ¹	Characterized geometrically by L. Hörmander ²	Studied by C. Cascante & J. Ortega ; characterized for $n-1 \le ps \le n$. For $p=2$, any s characterized by A. Volberg & B. Wick ³
Same for all p	Same for all p	

The measure μ in \mathbb{B} is Carleson for H_s^p , $\mu \in C_{s,p}$, if we have the embedding $\forall f \in H_s^p$, $\int_{\mathbb{B}} |f|^p d\mu \leq C ||f||_{s,p}^p$.

We have the table concerning the Carleson measures :

$H^p(\mathbb{D})$	$H^p(\mathbb{B}) = H^p_0(\mathbb{B})$	$H^p_s(\mathbb{B})$
Characterized geometrically by L. Carleson ¹	Characterized geometrically by L. Hörmander ²	Studied by C. Cascante & J. Ortega ; characterized for $n - 1 \le ps \le n$. For $p = 2$, any s characterized by A. Volberg & B. Wick ³
Same for all p	Same for all p	Depending on p by use of Carleson measures α .

The sequence S of points in \mathbb{B} is interpolating in $H_s^p(\mathbb{B})$, IS, if there is a C > 0 such that $\forall \lambda \in \ell^p(S), \ \exists f \in H_s^p(\mathbb{B}) :: \forall a \in S, \ f(a) = \lambda_a \|k_a\|_{s,p'}, \ \|f\|_{H_s^p} \leq C \|\lambda\|_p.$

The sequence S of points in \mathbb{B} is interpolating in $H_s^p(\mathbb{B})$, IS, if there is a C > 0 such that $\forall \lambda \in \ell^p(S), \ \exists f \in H_s^p(\mathbb{B}) :: \forall a \in S, \ f(a) = \lambda_a \|k_a\|_{s,p'}, \ \|f\|_{H^p} \leq C \|\lambda\|_p.$

Definition

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in $H_s^p(\mathbb{B})$, **DB**, if there is a bounded sequence $\{\rho_a\}_{a \in S} \subset H_s^p$ such that

 $\forall a, b \in S, \ \rho_a(b) = \delta_{ab} \|k_a\|_{s, p'}.$

The sequence S of points in \mathbb{B} is interpolating in $H_s^p(\mathbb{B})$, IS, if there is a C > 0 such that $\forall \lambda \in \ell^p(S), \ \exists f \in H_s^p(\mathbb{B}) :: \forall a \in S, \ f(a) = \lambda_a \|k_a\|_{s,p'}, \ \|f\|_{H_s^p} \leq C \|\lambda\|_p.$

Definition

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in $H_s^p(\mathbb{B})$, **DB**, if there is a bounded sequence $\{\rho_a\}_{a \in S} \subset H_s^p$ such that

 $\forall a, b \in S, \ \rho_a(b) = \delta_{ab} \|k_a\|_{s, p'}.$

Clearly if S is I.S. for H_s^p then it is dual bounded in H_s^p .

The sequence S of points in \mathbb{B} is interpolating in $H_s^p(\mathbb{B})$, IS, if there is a C > 0 such that $\forall \lambda \in \ell^p(S), \ \exists f \in H_s^p(\mathbb{B}) :: \forall a \in S, \ f(a) = \lambda_a \|k_a\|_{s,p'}, \ \|f\|_{H_s^p} \leq C \|\lambda\|_p.$

Definition

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in $H^p_s(\mathbb{B})$, **DB**, if there is a bounded sequence $\{\rho_a\}_{a \in S} \subset H^p_s$ such that

 $\forall a, b \in S, \ \rho_a(b) = \delta_{ab} \|k_a\|_{s, p'}.$

Clearly if S is I.S. for H_s^p then it is dual bounded in H_s^p .

Definition

Let S be an interpolating sequence in H_s^p

The sequence S of points in \mathbb{B} is interpolating in $H_s^p(\mathbb{B})$, IS, if there is a C > 0 such that $\forall \lambda \in \ell^p(S), \ \exists f \in H_s^p(\mathbb{B}) :: \forall a \in S, \ f(a) = \lambda_a \|k_a\|_{s,p'}, \ \|f\|_{H_s^p} \leq C \|\lambda\|_p.$

Definition

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in $H_s^p(\mathbb{B})$, **DB**, if there is a bounded sequence $\{\rho_a\}_{a \in S} \subset H_s^p$ such that

 $\forall a, b \in S, \ \rho_a(b) = \delta_{ab} \|k_a\|_{s, p'}.$

Clearly if S is I.S. for H_s^p then it is dual bounded in H_s^p .

Definition

Let S be an interpolating sequence in H_s^p we say that S has a **bounded** linear extension operator, BLEO, if there is a a bounded linear operator $E : \ell^p(S) \to H_s^p$ and a C > 0 such that

The sequence S of points in \mathbb{B} is interpolating in $H_s^p(\mathbb{B})$, IS, if there is a C > 0 such that $\forall \lambda \in \ell^p(S), \ \exists f \in H_s^p(\mathbb{B}) :: \forall a \in S, \ f(a) = \lambda_a \|k_a\|_{s,p'}, \ \|f\|_{H_s^p} \leq C \|\lambda\|_p.$

Definition

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in $H_s^p(\mathbb{B})$, **DB**, if there is a bounded sequence $\{\rho_a\}_{a \in S} \subset H_s^p$ such that

 $\forall a, b \in S, \ \rho_a(b) = \delta_{ab} \|k_a\|_{s, p'}.$

Clearly if S is I.S. for H_s^p then it is dual bounded in H_s^p .

Definition

Let S be an interpolating sequence in H_s^p we say that S has a **bounded** linear extension operator, BLEO, if there is a a bounded linear operator $E : \ell^p(S) \to H_s^p$ and a C > 0 such that

 $\forall \lambda \in \ell^p(S), \ E(\lambda) \in H^p_s, \ \|E(\lambda)\|_{H^p_s} \le \ C\|\lambda\|_p \ : \ \forall a \in S, \ E(\lambda)(a) = \lambda_a \|k_a\|_{s,p'}.$
$H^p(\mathbb{D})$	$\overline{H}^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by		
L. Carleson for $p = \infty$		
and by Shapiro &		
Shields ⁴ for any p		

 $^4\mathrm{Amer.}$ J. Math. (1961)

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by		
L. Carleson for $p = \infty$	IC no share staring d	
and by Shapiro &	15 no characterized	
Shields ⁴ for any p		

 $^4\mathrm{Amer.}$ J. Math. (1961)

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by		IS characterized
L. Carleson for $p = \infty$		by Arcozzi Rochberg
and by Shapiro &	15 ho characterized	& Sawyer ⁵ for $p = 2$
Shields ⁴ for any p		$n-1 < 2s \le n$

$H^p(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by		IS characterized
L. Carleson for $p = \infty$		by Arcozzi Rochberg
and by Shapiro &	15 no characterized	& Sawyer ⁵ for $p = 2$
Shields ⁴ for any p		$n-1 < 2s \le n$
Same for all p		

$H^p(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by		IS characterized
L. Carleson for $p = \infty$	IS no characterized	by Arcozzi Rochberg
and by Shapiro &		& Sawyer ⁵ for $p = 2$
Shields ⁴ for any p		$n-1 < 2s \le n$
Same for all p	Depending on p	

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by		IS characterized
L. Carleson for $p = \infty$	IS no characterized	by Arcozzi Rochberg
and by Shapiro &		& Sawyer ⁵ for $p = 2$
Shields ⁴ for any p		$n-1 < 2s \le n$
Same for all p	Depending on p	Depending on p

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by		IS characterized
L. Carleson for $p = \infty$	IC	by Arcozzi Rochberg
and by Shapiro &	15 no characterized	& Sawyer ⁵ for $p = 2$
Shields ⁴ for any p		$n-1 < 2s \le n$
Same for all p	Depending on p	Depending on <i>p</i>
IS \Rightarrow BLEO for all p		
P. Beurling ⁶ for $p = \infty$		

⁴Amer. J. Math. (1961) ⁵Mem. Amer. Math. Soc. (2006) ⁶Preprint Uppsala (1962)

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by		IS characterized
L. Carleson for $p = \infty$	IC no share starized	by Arcozzi Rochberg
and by Shapiro &	15 no characterized	& Sawyer ⁵ for $p = 2$
Shields ⁴ for any p		$n-1 < 2s \le n$
Same for all p	Depending on p	Depending on <i>p</i>
$\text{IS} \Rightarrow \text{BLEO for all } p$		
P . Beurling ⁶ for $p = \infty$		
E . A. for $p < \infty$		

⁴Amer. J. Math. (1961) ⁵Mem. Amer. Math. Soc. (2006) ⁶Preprint Uppsala (1962)

$H^p(\mathbb{D})$	$H^p(\mathbb{R})$	$H^p(\mathbb{R}) \ s > 0$
IS characterized by		IS characterized
L. Carleson for $p = \infty$	IC as shows staring d	by Arcozzi Rochberg
and by Shapiro &	IS no characterized	& Sawyer ⁵ for $p = 2$
Shields ⁴ for any p		$n-1 < 2s \le n$
Same for all p	Depending on p	Depending on p
$\text{IS} \Rightarrow \text{BLEO for all } p$	IS $H^{\infty} \Rightarrow$ BLEO	
P . Beurling ⁶ for $p = \infty$	A. $Bernard^7$	
E . A. for $p < \infty$		

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by		IS characterized
L. Carleson for $p = \infty$	IC	by Arcozzi Rochberg
and by Shapiro &	15 no characterized	& Sawyer ⁵ for $p = 2$
Shields ⁴ for any p		$n-1 < 2s \leq n$
Same for all p	Depending on p	Depending on <i>p</i>
$\text{IS} \Rightarrow \text{BLEO for all } p$	IS $H^{\infty} \Rightarrow$ BLEO	
P . Beurling ⁶ for $p = \infty$	A. Bernard ⁷	
E . A. for $p < \infty$	IS $H^p \Rightarrow ??$	

⁴Amer. J. Math. (1961) ⁵Mem. Amer. Math. Soc. (2006) ⁶Preprint Uppsala (1962) ⁷CRAS (1971)

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by		IS characterized
L. Carleson for $p = \infty$	IC no characterized	by Arcozzi Rochberg
and by Shapiro &	15 no characterized	& Sawyer ⁵ for $p = 2$
Shields ⁴ for any p		$n-1 < 2s \le n$
Same for all p	Depending on p	Depending on p
$\text{IS} \Rightarrow \text{BLEO for all } p$	IS $H^{\infty} \Rightarrow$ BLEO	
P . Beurling ⁶ for $p = \infty$	A. Bernard ⁷	?? $p \neq 1, 2$
E . A. for $p < \infty$	IS $H^p \Rightarrow ??$	

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by		IS characterized
L. Carleson for $p = \infty$		by Arcozzi Rochberg
and by Shapiro &	15 no characterized	& Sawyer ⁵ for $p = 2$
Shields ⁴ for any p		$n-1 < 2s \le n$
Same for all p	Depending on p	Depending on p
$\text{IS} \Rightarrow \text{BLEO for all } p$	IS $H^{\infty} \Rightarrow$ BLEO	
P . Beurling ⁶ for $p = \infty$	A. Bernard ⁷	?? $p \neq 1, 2$
E . A. for $p < \infty$	IS $H^p \Rightarrow ??$	
$DB H^p \Rightarrow IS H^q, \forall q \le \infty$ by Shapiro & Shieds		

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by		IS characterized
L. Carleson for $p = \infty$		by Arcozzi Rochberg
and by Shapiro &	15 no characterized	& Sawyer ⁵ for $p = 2$
Shields ⁴ for any p		$n-1 < 2s \le n$
Same for all p	Depending on p	Depending on p
$\text{IS} \Rightarrow \text{BLEO for all } p$	IS $H^{\infty} \Rightarrow$ BLEO	
P . Beurling ⁶ for $p = \infty$	A. Bernard ⁷	?? $p \neq 1, 2$
E . A. for $p < \infty$	IS $H^p \Rightarrow ??$	
DD U^p > IS U^q $\forall a < ac$	DB $H^p \Rightarrow$ IS $H^q, \forall q < p$	
$DD H \Rightarrow IS H, \forall q \leq \infty$	with BLEO $(q = p?)$	
by Shapiro & Shieds	by E. A	

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by		IS characterized
L. Carleson for $p = \infty$		by Arcozzi Rochberg
and by Shapiro &	15 no characterized	& Sawyer ⁵ for $p = 2$
Shields ⁴ for any p		$n-1 < 2s \le n$
Same for all p	Depending on p	Depending on p
IS \Rightarrow BLEO for all p	IS $H^{\infty} \Rightarrow$ BLEO	
P. Beurling ⁶ for $p = \infty$	A. Bernard ⁷	?? $p \neq 1, 2$
E . A. for $p < \infty$	IS $H^p \Rightarrow ??$	
$DD U^{p} \rightarrow IS U^{q} \forall a < aa$	DB $H^p \Rightarrow$ IS $H^q, \forall q < p$	
$DB H^{-} \Rightarrow IS H^{-}, \forall q \leq \infty$	with BLEO $(q = p?)$	Next Theorem
by Shapiro & Shieds	by E. A	

The sequence S is Carleson, CS, in $H_s^p(\mathbb{B})$, if the associated measure $\nu_S := \sum_{a \in S} ||k_{s,a}||_{s,p'}^{-p} \delta_a$ is Carleson for $H_s^p(\mathbb{B})$.

The sequence S is Carleson, CS, in $H_s^p(\mathbb{B})$, if the associated measure $\nu_S := \sum_{a \in S} ||k_{s,a}||_{s,p'}^{-p} \delta_a$ is Carleson for $H_s^p(\mathbb{B})$.

Theorem

Let S be a sequence of points in \mathbb{B} such that

The sequence S is Carleson, CS, in $H_s^p(\mathbb{B})$, if the associated measure $\nu_S := \sum_{a \in S} ||k_{s,a}||_{s,p'}^{-p} \delta_a$ is Carleson for $H_s^p(\mathbb{B})$.

Theorem

Let S be a sequence of points in \mathbb{B} such that • there is a sequence $\{\rho_a\}_{a \in S}$ in H_s^p such that

 $\forall a, b \in S, \ \rho_a(b) \simeq \delta_{ab} \|\rho_a\|_{s,p} \|k_a\|_{s,p'}.$

The sequence S is Carleson, CS, in $H_s^p(\mathbb{B})$, if the associated measure $\nu_S := \sum_{a \in S} ||k_{s,a}||_{s,p'}^{-p} \delta_a$ is Carleson for $H_s^p(\mathbb{B})$.

Theorem

Let S be a sequence of points in \mathbb{B} such that • there is a sequence $\{\rho_a\}_{a \in S}$ in H_s^p such that $\forall a, b \in S, \ \rho_a(b) \simeq \delta_{ab} \|\rho_a\|_{s,p} \|k_a\|_{s,p'}$. • If $0 < s < \frac{n}{2} \min(\frac{1}{p'}, \frac{1}{q'})$ with $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$, i.e. $s < \frac{n}{2p'}$ and $\frac{p}{2} < r < p$, we have

The sequence S is Carleson, CS, in $H_s^p(\mathbb{B})$, if the associated measure $\nu_S := \sum_{a \in S} \|k_{s,a}\|_{s,p'}^{-p} \delta_a$ is Carleson for $H_s^p(\mathbb{B})$.

Theorem

Let S be a sequence of points in \mathbb{B} such that • there is a sequence $\{\rho_a\}_{a \in S}$ in H_s^p such that $\forall a, b \in S, \ \rho_a(b) \simeq \delta_{ab} \|\rho_a\|_{s,p} \|k_a\|_{s,p'}.$ • If $0 < s < \frac{n}{2} \min(\frac{1}{p'}, \frac{1}{q'})$ with $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$, i.e. $s < \frac{n}{2p'}$ and $\frac{p}{2} < r < p$, we have $\forall j \le s, \ \|R^j(\rho_a)\|_p \lesssim \|R^j(k_a)\|_p \Rightarrow \|\rho_a\|_{s,p} \lesssim \|k_a\|_{s,p}.$

The sequence S is Carleson, CS, in $H_s^p(\mathbb{B})$, if the associated measure $\nu_S := \sum_{a \in S} ||k_{s,a}||_{s,p'}^{-p} \delta_a$ is Carleson for $H_s^p(\mathbb{B})$.

Theorem

Let S be a sequence of points in \mathbb{B} such that • there is a sequence $\{\rho_a\}_{a \in S}$ in H_s^p such that $\forall a, b \in S, \ \rho_a(b) \simeq \delta_{ab} \|\rho_a\|_{s,p} \|k_a\|_{s,p'}$. • If $0 < s < \frac{n}{2} \min(\frac{1}{p'}, \frac{1}{q'})$ with $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$, i.e. $s < \frac{n}{2p'}$ and $\frac{p}{2} < r < p$, we have $\forall j \le s, \ \|R^j(\rho_a)\|_p \lesssim \|R^j(k_a)\|_p \Rightarrow \|\rho_a\|_{s,p} \lesssim \|k_a\|_{s,p}$. • S is Carleson in $H_s^q(\mathbb{B})$.

The sequence S is Carleson, CS, in $H_s^p(\mathbb{B})$, if the associated measure $\nu_S := \sum_{a \in S} \|k_{s,a}\|_{s,p'}^{-p} \delta_a$ is Carleson for $H_s^p(\mathbb{B})$.

Theorem

Let S be a sequence of points in \mathbb{B} such that • there is a sequence $\{\rho_a\}_{a \in S}$ in H_s^p such that $\forall a, b \in S, \ \rho_a(b) \simeq \delta_{ab} \|\rho_a\|_{s,p} \|k_a\|_{s,p'}$. • If $0 < s < \frac{n}{2} \min(\frac{1}{p'}, \frac{1}{q'})$ with $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$, i.e. $s < \frac{n}{2p'}$ and $\frac{p}{2} < r < p$, we have $\forall j \le s, \ \|R^j(\rho_a)\|_p \lesssim \|R^j(k_a)\|_p \Rightarrow \|\rho_a\|_{s,p} \lesssim \|k_a\|_{s,p}$. • S is Carleson in $H_s^q(\mathbb{B})$. Then S is H_s^r interpolating with the bounded linear extension property, provided that $p \le 2$.

AnOunceOfProbability

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS $H^p \Rightarrow CS$ by L. Carleson		

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS $H^p \Rightarrow CS$ by L. Carleson	IS $H^p \Rightarrow CS$ by P. Thomas ⁸	

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS $H^p \Rightarrow CS$ by L. Carleson	IS $H^p \Rightarrow CS$ by P. Thomas ⁸	IS $H_s^2 \Rightarrow$ CS H_s^2 for $n - 1 < 2s \le n$ by A.R.S

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS $H^p \Rightarrow CS$ by L. Carleson	IS $H^p \Rightarrow CS$ by P. Thomas ⁸	IS $H_s^2 \Rightarrow$ CS H_s^2 for $n - 1 < 2s \le n$ by A.R.S
$DB \ H^p \Rightarrow IS \ H^q \Rightarrow CS$ by Shapiro & Shieds		

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS $H^p \Rightarrow CS$ by L. Carleson	IS $H^p \Rightarrow CS$ by P. Thomas ⁸	IS $H_s^2 \Rightarrow$ CS H_s^2 for $n - 1 < 2s \le n$ by A.R.S
$DB H^p \Rightarrow IS H^q \Rightarrow CS$	DB $H^p \Rightarrow CS$	
by Shapiro & Shieds	by E.A.	

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS $H^p \Rightarrow CS$ by L. Carleson	IS $H^p \Rightarrow CS$ by P. Thomas ⁸	IS $H_s^2 \Rightarrow$ CS H_s^2 for $n - 1 < 2s \le n$ by A.R.S
$DB \ H^p \Rightarrow IS \ H^q \Rightarrow CS$ by Shapiro & Shieds	$DB \ H^p \Rightarrow CS$ by E.A.	???

The multipliers algebra \mathcal{M}_s^p of H_s^p is the algebra of functions m on \mathbb{B} such that

 $\forall h \in H_s^p, \ mh \in H_s^p.$

The multipliers algebra \mathcal{M}_s^p of H_s^p is the algebra of functions m on \mathbb{B} such that

 $\forall h \in H_s^p, \ mh \in H_s^p.$

The norm of a multiplier is its norm as an operator from H_s^p into H_s^p .

The multipliers algebra \mathcal{M}_s^p of H_s^p is the algebra of functions m on \mathbb{B} such that

 $\forall h \in H^p_s, \ mh \in H^p_s.$

The norm of a multiplier is its norm as an operator from H_s^p into H_s^p .

$H^p(\mathbb{B})$	$H^p_s(\mathbb{B})$
	$H^p(\mathbb{B})$
The multipliers algebra \mathcal{M}_s^p of H_s^p is the algebra of functions m on \mathbb{B} such that

 $\forall h \in H^p_s, \ mh \in H^p_s.$

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B})$
\mathbf{L}		
$\mathcal{M}_0^p(\mathbb{D}) = H^\infty(\mathbb{D}), \ \forall p$		

The multipliers algebra \mathcal{M}_s^p of H_s^p is the algebra of functions m on \mathbb{B} such that

 $\forall h \in H^p_s, \ mh \in H^p_s.$

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B})$
$\mathcal{M}^p_0(\mathbb{D}) = H^\infty(\mathbb{D}), \; \forall p$	$\mathcal{M}^p_0(\mathbb{B}) = H^\infty(\mathbb{B}), \; \forall p$	

The multipliers algebra \mathcal{M}_s^p of H_s^p is the algebra of functions m on \mathbb{B} such that

 $\forall h \in H^p_s, \ mh \in H^p_s.$

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B})$
$\mathcal{M}^p_0(\mathbb{D}) = H^\infty(\mathbb{D}), \; \forall p$	$\mathcal{M}^p_0(\mathbb{B}) = H^\infty(\mathbb{B}), \; \forall p$	$\mathcal{M}_{s}^{p} = H^{\infty}(\mathbb{B}) \cap C.C.$ characterized for $n-1 \leq ps \leq n$

The multipliers algebra \mathcal{M}^p_s of H^p_s is the algebra of functions m on \mathbb{B} such that

 $\forall h \in H^p_s, mh \in H^p_s.$

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B})$
		$\mathcal{M}^p_s = H^\infty(\mathbb{B}) \cap C.C.$ characterized for
$\mathcal{M}^p_0(\mathbb{D}) = H^\infty(\mathbb{D}), \ \forall p$	$\mathcal{M}_0^p(\mathbb{B}) = H^\infty(\mathbb{B}), \ \forall p$	$n-1 \le ps \le n$
		and for $p = 2$ by V. W.
		Depending on p

The sequence S of points in \mathbb{B} is interpolating, IS, in the multipliers algebra \mathcal{M}_s^p of $H_s^p(\mathbb{B})$ if there is a C > 0 such that $\forall \lambda \in \ell^{\infty}(S), \ \exists m \in \mathcal{M}_s^p :: \forall a \in S, \ m(a) = \lambda_a \ and \ \|m\|_{\mathcal{M}_s^p} \leq C \|\lambda\|_{\infty}.$

The sequence S of points in \mathbb{B} is interpolating, IS, in the multipliers algebra \mathcal{M}_s^p of $H_s^p(\mathbb{B})$ if there is a C > 0 such that $\forall \lambda \in \ell^{\infty}(S), \ \exists m \in \mathcal{M}_s^p :: \forall a \in S, \ m(a) = \lambda_a \ and \ \|m\|_{\mathcal{M}_s^p} \leq C \|\lambda\|_{\infty}.$

Definition

Let S be an interpolating sequence in \mathcal{M}_s^p ;

The sequence S of points in \mathbb{B} is interpolating, IS, in the multipliers algebra $\mathcal{M}^p_{\mathfrak{s}}$ of $H^p_{\mathfrak{s}}(\mathbb{B})$ if there is a C > 0 such that $\forall \lambda \in \ell^{\infty}(S), \ \exists m \in \mathcal{M}_{s}^{p} :: \forall a \in S, \ m(a) = \lambda_{a} \ and \ \|m\|_{\mathcal{M}^{p}} \leq C \|\lambda\|_{\infty}.$

Definition

Let S be an interpolating sequence in \mathcal{M}^p_s ; we say that S has a bounded linear extension operator, BLEO, if there is a a bounded linear operator $E : \ell^{\infty}(S) \to \mathcal{M}^{p}_{\circ} \text{ and } a \ C > 0 \text{ such that}$

 $\forall \lambda \in \ell^{\infty}(S), \ E(\lambda) \in \mathcal{M}_{s}^{p}, \ \|E(\lambda)\|_{\mathcal{M}^{p}} \leq C \|\lambda\|_{\infty} : \ \forall a \in S, \ E(\lambda)(a) = \lambda_{a}.$

/ 25

$H^{\infty}(\mathbb{D})$	$H^{\infty}(\mathbb{R})$	$\Lambda \Lambda^{p}(\mathbb{R})$
11 (L)	11 (m)	

$H^{\infty}(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$
IS characterized by L. Carleson		

$H^{\infty}(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$
IS characterized by L. Carleson	No characterisation	

$H^{\infty}(\mathbb{D})$	$H^{\infty}(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$
IS characterized by L. Carleson	No characterisation	Characterized for $p = 2$ and $n - 1 < 2s \le n$ by A.R.S. and the Pick property

$H^{\infty}(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$
		Characterized for $p = 2$
IS characterized	No characterisation	and $n-1 < 2s \le n$
by L. Carleson	10 characterisation	by A.R.S. and the
		Pick property
$IS \Rightarrow BLEO$		
by P. Beurling		

$H^{\infty}(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$
		Characterized for $p = 2$
IS characterized	No characterization	and $n-1 < 2s \le n$
by L. Carleson	NO CHAFACTELISATION	by A.R.S. and the
		Pick property
$IS \Rightarrow BLEO$	$IS \Rightarrow BLEO$	
by P. Beurling	by A. Bernard	

$H^{\infty}(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$
		Characterized for $p = 2$
IS characterized	No characterization	and $n-1 < 2s \le n$
by L. Carleson	No characterisation	by A.R.S. and the
		Pick property
$IS \Rightarrow BLEO$	$IS \Rightarrow BLEO$	IS \Rightarrow BLEO for $p \ge 2$
by P. Beurling	by A. Bernard	by E. A.

$H^{\infty}(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$
		Characterized for $p = 2$
IS characterized	No characterisation	and $n-1 < 2s \le n$
by L. Carleson	No characterisation	by A.R.S. and the
		Pick property
$IS \Rightarrow BLEO$	$IS \Rightarrow BLEO$	IS \Rightarrow BLEO for $p \ge 2$
by P. Beurling	by A. Bernard	by E. A.

If S is interpolating for \mathcal{M}_s^p and $p \geq 2$, then S has a bounded linear extension operator.

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in the multipliers algebra \mathcal{M}_s^p of $H_s^p(\mathbb{B})$ if there is a bounded sequence $\{\rho_a\}_{a\in S} \subset \mathcal{M}_s^p$ such that

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in the multipliers algebra \mathcal{M}_s^p of $H_s^p(\mathbb{B})$ if there is a bounded sequence $\{\rho_a\}_{a\in S} \subset \mathcal{M}_s^p$ such that $\forall a, b \in S, \ \rho_a(b) = \delta_{ab} \text{ and } \exists C > O : \forall a \in S, \|\rho_a\| \leq C.$

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in the multipliers algebra \mathcal{M}_s^p of $H_s^p(\mathbb{B})$ if there is a bounded sequence $\{\rho_a\}_{a\in S} \subset \mathcal{M}_s^p$ such that $\forall a, b \in S, \ \rho_a(b) = \delta_{ab}$ and $\exists C > O : \forall a \in S, \ \|\rho_a\| \leq C$.

If S is interpolating in \mathcal{M}_s^p then it is clearly dual bounded.

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in the multipliers algebra \mathcal{M}_s^p of $H_s^p(\mathbb{B})$ if there is a bounded sequence $\{\rho_a\}_{a\in S} \subset \mathcal{M}_s^p$ such that $\forall a, b \in S, \ \rho_a(b) = \delta_{ab}$ and $\exists C > O : \forall a \in S, \ \|\rho_a\| \leq C$.

If S is interpolating in \mathcal{M}_s^p then it is clearly dual bounded.

Definition

The sequence S of points in \mathbb{B} is δ separated in H_s^p if

 $\forall a, b \in S, a \neq b, \exists f \in H_s^p ::: f(a) = 0, f(b) = ||k_a||_{s,p'}, ||f||_{s,p} \leq \delta^{-1}.$

$H^\infty(\mathbb{D})$	$H^{\infty}(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$

$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$
DB $H^{\infty} \Rightarrow$ IS H^p		
$\forall p \leq \infty$ with BLEO		
by Carleson,		
Shapiro & Shields		

$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$
DB $H^{\infty} \Rightarrow$ IS H^{p} $\forall p \leq \infty$ with BLEO by Carleson, Shapiro & Shields	DB $H^{\infty} \Rightarrow$ IS H^{p} $\forall p < \infty$ with BLEO by E. A.	

$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$
$DB \ H^{\infty} \Rightarrow IS \ H^{p}$ $\forall p \leq \infty \text{ with BLEO}$ by Carleson, Shapiro & Shields	DB $H^{\infty} \Rightarrow$ IS H^{p} $\forall p < \infty$ with BLEO by E. A.	IS $\mathcal{M}_s^p \Rightarrow$ IS H_s^p for $p \ge 2$ with BLEO by E. A.

$H^{\infty}(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$
$DB \ H^{\infty} \Rightarrow IS \ H^{p}$ $\forall p \leq \infty \text{ with BLEO}$ by Carleson, Shapiro & Shields	DB $H^{\infty} \Rightarrow$ IS H^{p} $\forall p < \infty$ with BLEO by E. A.	IS $\mathcal{M}_s^p \Rightarrow$ IS H_s^p for $p \ge 2$ with BLEO by E. A.
IS $H^{\infty} \Rightarrow CS$ by Carleson		

$H^{\infty}(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$
$DB \ H^{\infty} \Rightarrow IS \ H^{p}$ $\forall p \leq \infty \text{ with BLEO}$ by Carleson, Shapiro & Shields	DB $H^{\infty} \Rightarrow$ IS H^{p} $\forall p < \infty$ with BLEO by E. A.	IS $\mathcal{M}_s^p \Rightarrow$ IS H_s^p for $p \ge 2$ with BLEO by E. A.
IS $H^{\infty} \Rightarrow CS$ by Carleson	IS $H^{\infty} \Rightarrow CS$ by Varopoulos ⁹	

9 CRAS (1972)

$H^{\infty}(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$
$DB \ H^{\infty} \Rightarrow IS \ H^{p}$ $\forall p \leq \infty \text{ with BLEO}$ by Carleson, Shapiro & Shields	DB $H^{\infty} \Rightarrow$ IS H^{p} $\forall p < \infty$ with BLEO by E. A.	IS $\mathcal{M}_s^p \Rightarrow$ IS H_s^p for $p \ge 2$ with BLEO by E. A.
IS $H^{\infty} \Rightarrow CS$ by Carleson	IS $H^{\infty} \Rightarrow CS$ by Varopoulos ⁹ DB $H^{\infty} \Rightarrow CS$ by E. A.	

9 CRAS (1972)

$H^{\infty}(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$
$DB \ H^{\infty} \Rightarrow IS \ H^{p}$ $\forall p \leq \infty \text{ with BLEO}$ by Carleson, Shapiro & Shields	$\begin{array}{l} \text{DB } H^{\infty} \Rightarrow \text{IS } H^{p} \\ \forall p < \infty \text{ with BLEO} \\ \text{by E. A.} \end{array}$	IS $\mathcal{M}_s^p \Rightarrow$ IS H_s^p for $p \ge 2$ with BLEO by E. A.
IS $H^{\infty} \Rightarrow CS$ by Carleson	IS $H^{\infty} \Rightarrow CS$ by Varopoulos ⁹ DB $H^{\infty} \Rightarrow CS$ by E. A.	IS $\mathcal{M}_s^p \Rightarrow \mathrm{CS} H_s^p$ by E. A.

9 CRAS (1972)

E. Amar

Let S be an interpolating sequence for the multipliers algebra \mathcal{M}_s^p of $H_s^p(\mathbb{B})$ then S is also an interpolating sequence for H_s^p provided that $p \geq 2$.

Let S be an interpolating sequence for the multipliers algebra \mathcal{M}_s^p of $H_s^p(\mathbb{B})$ then S is also an interpolating sequence for H_s^p provided that $p \geq 2$.

Theorem

Let S be an interpolating sequence for \mathcal{M}_s^p then S is Carleson $H_s^p(\mathbb{B})$.

Let S be an interpolating sequence for the multipliers algebra \mathcal{M}_s^p of $H_s^p(\mathbb{B})$ then S is also an interpolating sequence for H_s^p provided that $p \geq 2$.

Theorem

Let S be an interpolating sequence for \mathcal{M}_s^p then S is Carleson $H_s^p(\mathbb{B})$.
$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$

$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$
Separated union of IS is IS, by L. Carleson		

$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$
Separated union of IS is IS, by L. Carleson	Separated union of IS is IS, by Varopoulos ¹⁰	

$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$
		Separated union of IS
Separated union of IS	Separated union of IS	is IS for $s = 1, \forall p$
is IS, by L. Carleson	is IS, by Varopoulos ¹⁰	and for $p = 2, \forall s$
		by E. A.

$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$
		Separated union of IS
Separated union of IS	Separated union of IS	is IS for $s = 1, \forall p$
is IS, by L. Carleson	is IS, by Varopoulos ¹⁰	and for $p = 2, \forall s$
		by E. A.

Let S_1 and S_2 be two interpolating sequences in \mathcal{M}_s^p such that $S := S_1 \cup S_2$ is separated, then S is still an interpolating sequence in \mathcal{M}_s^p ,

10 CRAS (1971)

E. Amar

$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$
		Separated union of IS
Separated union of IS	Separated union of IS	is IS for $s = 1, \forall p$
is IS, by L. Carleson	is IS, by Varopoulos ¹⁰	and for $p = 2, \forall s$
		by E. A.

Let S_1 and S_2 be two interpolating sequences in \mathcal{M}_s^p such that $S := S_1 \cup S_2$ is separated, then S is still an interpolating sequence in \mathcal{M}_s^p , provided that s = 1.

Let σ_1 and σ_2 be two interpolating sequences in the spectrum of the commutative algebra of operators A, such that $\sigma := \sigma_1 \cup \sigma_2$ is separated, then σ is an interpolating sequence for A.

Let σ_1 and σ_2 be two interpolating sequences in the spectrum of the commutative algebra of operators A, such that $\sigma := \sigma_1 \cup \sigma_2$ is separated, then σ is an interpolating sequence for A.

Corollary

Let S_1 and S_2 be two interpolating sequences in \mathcal{M}_s^2 such that $S := S_1 \cup S_2$ is separated, then S is still an interpolating sequence in \mathcal{M}_s^2 .

HarmonicAnalysis

Thank you !

Typeset by the $\underline{\text{TeX}}$ preprocessor $\underline{jPreTeX}$

We shall prove :

Theorem

Let S be a dual bounded sequence of points in \mathbb{B} for $H^p(\mathbb{B})$.

We shall prove :

Theorem

Let S be a dual bounded sequence of points in \mathbb{B} for $H^p(\mathbb{B})$. Then S is H^r interpolating with the bounded linear extension property, provided that r .

We shall prove :

Theorem

Let S be a dual bounded sequence of points in \mathbb{B} for $H^p(\mathbb{B})$. Then S is H^r interpolating with the bounded linear extension property, provided that r .

Proof.

we already know that $S \text{ DB} \Rightarrow S$ is Carleson, which means

$$\forall \nu \in \ell^q(S), \ \left\| \sum_{a \in S} \nu_a k_{a,q} \right\|_{H^q} \lesssim \|\nu\|_{\ell^q}$$

We shall prove :

Theorem

Let S be a dual bounded sequence of points in \mathbb{B} for $H^p(\mathbb{B})$. Then S is H^r interpolating with the bounded linear extension property, provided that r .

Proof.

we already know that $S \text{ DB} \Rightarrow S$ is Carleson, which means

$$\forall \nu \in \ell^q(S), \ \left\| \sum_{a \in S} \nu_a k_{a,q} \right\|_{H^q} \lesssim \|\nu\|_{\ell^q}$$

with the reproducing kernel :

$$k_a := \frac{1}{(1 - \bar{a} \cdot z)^n}, \ k_{a,q} := \frac{k_a}{\|k_a\|_{H^q}}.$$

The hypothesis means that there is a sequence $\{\rho_a\}_{a\in S} \subset H^p$ such that $\exists C > 0, \ \forall a \in S, \ \|\rho_a\|_p \leq C, \ \forall b \in S, \ \rho_a(b) = \delta_{a,b} \|k_a\|_{p'}.$

The hypothesis means that there is a sequence $\{\rho_a\}_{a\in S} \subset H^p$ such that $\exists C > 0, \ \forall a \in S, \ \|\rho_a\|_p \leq C, \ \forall b \in S, \ \rho_a(b) = \delta_{a,b} \|k_a\|_{p'}.$ Let $\lambda \in \ell^r(S)$ to have that S is IS H^r means that there is an $h \in H^r: \ \forall a \in S, \ h(a) = \lambda_a \|k_a\|_{r'}.$ The hypothesis means that there is a sequence $\{\rho_a\}_{a \in S} \subset H^p$ such that $\exists C > 0, \ \forall a \in S, \ \|\rho_a\|_p \leq C, \ \forall b \in S, \ \rho_a(b) = \delta_{a,b} \|k_a\|_{p'}.$ Let $\lambda \in \ell^r(S)$ to have that S is IS H^r means that there is an $h \in H^r: \ \forall a \in S, \ h(a) = \lambda_a \|k_a\|_{r'}.$ Choose q such that $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$ which is possible because r < p, and set $h(z) := \sum_{a \in S} \lambda_a \rho_a(z) k_{a,q}(z).$ The hypothesis means that there is a sequence $\{\rho_a\}_{a\in S} \subset H^p$ such that $\exists C > 0, \ \forall a \in S, \ \|\rho_a\|_p \le C, \ \forall b \in S, \ \rho_a(b) = \delta_{a,b} \|k_a\|_{p'}.$ Let $\lambda \in \ell^r(S)$ to have that S is $IS H^r$ means that there is an $h \in H^r$: $\forall a \in S, h(a) = \lambda_a ||k_a||_{r'}$. Choose q such that $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$ which is possible because r < p, and set $h(z) := \sum \lambda_a \rho_a(z) k_{a,q}(z).$

We have $h(b) = \lambda_b \rho_b(b) k_{b,a}(b) \simeq \lambda_b ||k_b||_{r'}$ by a simple computation.

The hypothesis means that there is a sequence $\{\rho_a\}_{a \in S} \subset H^p$ such that $\exists C > 0, \ \forall a \in S, \ \|\rho_a\|_p \leq C, \ \forall b \in S, \ \rho_a(b) = \delta_{a,b} \|k_a\|_{p'}.$ Let $\lambda \in \ell^r(S)$ to have that S is IS H^r means that there is an $h \in H^r: \ \forall a \in S, \ h(a) = \lambda_a \|k_a\|_{r'}.$ Choose q such that $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$ which is possible because r < p, and set $h(z) := \sum_{a \in S} \lambda_a \rho_a(z) k_{a,q}(z).$

We have $h(b) = \lambda_b \rho_b(b) k_{b,q}(b) \simeq \lambda_b ||k_b||_{r'}$ by a simple computation. So it remains to evaluate the norm of h in H^r .

Write
$$\lambda_a = \mu_a \nu_a$$
, with
 $\mu_a := |\lambda_a|^{r/p}, \ \nu_a := |\lambda_a|^{r/q} \frac{\lambda_a}{|\lambda_a|} \Rightarrow \|\mu\|_{\ell^p}^p = \|\nu\|_{\ell^q}^q = \|\lambda\|_{\ell^r}^r$; then
 $h(z) := \sum_{a \in S} \mu_a \rho_a(z) \nu_a k_{a,q}(z)$

Write
$$\lambda_a = \mu_a \nu_a$$
, with
 $\mu_a := |\lambda_a|^{r/p}$, $\nu_a := |\lambda_a|^{r/q} \frac{\lambda_a}{|\lambda_a|} \Rightarrow \|\mu\|_{\ell^p}^p = \|\nu\|_{\ell^q}^q = \|\lambda\|_{\ell^r}^r$; then
 $h(z) := \sum_{a \in S} \mu_a \rho_a(z) \nu_a k_{a,q}(z)$

and the idea is to write this sum of products as a product of sums

Write
$$\lambda_a = \mu_a \nu_a$$
, with
 $\mu_a := |\lambda_a|^{r/p}, \ \nu_a := |\lambda_a|^{r/q} \frac{\lambda_a}{|\lambda_a|} \Rightarrow \|\mu\|_{\ell^p}^p = \|\nu\|_{\ell^q}^q = \|\lambda\|_{\ell^r}^r$; then
 $h(z) := \sum_{a \in S} \mu_a \rho_a(z) \nu_a k_{a,q}(z)$

Write
$$\lambda_a = \mu_a \nu_a$$
, with
 $\mu_a := |\lambda_a|^{r/p}, \ \nu_a := |\lambda_a|^{r/q} \frac{\lambda_a}{|\lambda_a|} \Rightarrow \|\mu\|_{\ell^p}^p = \|\nu\|_{\ell^q}^q = \|\lambda\|_{\ell^r}^r$; then
 $h(z) := \sum_{a \in S} \mu_a \rho_a(z) \nu_a k_{a,q}(z)$

 $h(z) = \mathbb{E} \big((\sum_{a \in S} \mu_a \epsilon_a \rho_a(z)) \times (\sum_{a \in S} \nu_a \epsilon_a k_{a,q}(z)) \big)$

Write
$$\lambda_a = \mu_a \nu_a$$
, with
 $\mu_a := |\lambda_a|^{r/p}, \ \nu_a := |\lambda_a|^{r/q} \frac{\lambda_a}{|\lambda_a|} \Rightarrow \|\mu\|_{\ell^p}^p = \|\nu\|_{\ell^q}^q = \|\lambda\|_{\ell^r}^r$; then
 $h(z) := \sum_{a \in S} \mu_a \rho_a(z) \nu_a k_{a,q}(z)$

$$\begin{split} h(z) &= \mathbb{E}\big((\sum_{a \in S} \mu_a \epsilon_a \rho_a(z)) \times (\sum_{a \in S} \nu_a \epsilon_a k_{a,q}(z))\big) =: \mathbb{E}(f(\epsilon,z)g(\epsilon,z)), \\ \text{because } \mathbb{E}(\epsilon_a \epsilon_b) &= \delta_{a,b}. \end{split}$$

Write
$$\lambda_a = \mu_a \nu_a$$
, with
 $\mu_a := |\lambda_a|^{r/p}, \ \nu_a := |\lambda_a|^{r/q} \frac{\lambda_a}{|\lambda_a|} \Rightarrow \|\mu\|_{\ell^p}^p = \|\nu\|_{\ell^q}^q = \|\lambda\|_{\ell^r}^r$; then
 $h(z) := \sum_{a \in S} \mu_a \rho_a(z) \nu_a k_{a,q}(z)$

$$\begin{split} h(z) &= \mathbb{E}\big((\sum_{a \in S} \mu_a \epsilon_a \rho_a(z)) \times (\sum_{a \in S} \nu_a \epsilon_a k_{a,q}(z))\big) =: \mathbb{E}(f(\epsilon, z)g(\epsilon, z)),\\ \text{because } \mathbb{E}(\epsilon_a \epsilon_b) &= \delta_{a,b}.\\ \text{So, by Fubini and Hölder,}\\ & \|h\|_{H^r}^r = \mathbb{E}(\int_{\partial \mathbb{B}} |f|^r |g|^r \, d\sigma) = \int_{\Omega \times \partial \mathbb{B}} |f|^r |g|^r \, dP \otimes d\sigma \end{split}$$

Write
$$\lambda_a = \mu_a \nu_a$$
, with
 $\mu_a := |\lambda_a|^{r/p}, \ \nu_a := |\lambda_a|^{r/q} \frac{\lambda_a}{|\lambda_a|} \Rightarrow \|\mu\|_{\ell^p}^p = \|\nu\|_{\ell^q}^q = \|\lambda\|_{\ell^r}^r$; then
 $h(z) := \sum_{a \in S} \mu_a \rho_a(z) \nu_a k_{a,q}(z)$

$$\begin{split} h(z) &= \mathbb{E} \left(\left(\sum_{a \in S} \mu_a \epsilon_a \rho_a(z) \right) \times \left(\sum_{a \in S} \nu_a \epsilon_a k_{a,q}(z) \right) \right) =: \mathbb{E} (f(\epsilon, z) g(\epsilon, z)), \\ \text{because } \mathbb{E} (\epsilon_a \epsilon_b) &= \delta_{a,b}. \\ \text{So, by Fubini and Hölder,} \\ & \|h\|_{H^r}^r = \mathbb{E} (\int_{\partial \mathbb{B}} |f|^r |g|^r \, d\sigma) = \int_{\Omega \times \partial \mathbb{B}} |f|^r |g|^r \, dP \otimes d\sigma \leq \\ & \leq \left(\int_{\Omega \times \partial \mathbb{B}} |f|^p \, dP \otimes d\sigma \right)^{r/p} \left(\int_{\Omega \times \partial \mathbb{B}} |g|^q \, dP \otimes d\sigma \right)^{r/q} \end{split}$$

20/25

/ 25

Write
$$\lambda_a = \mu_a \nu_a$$
, with
 $\mu_a := |\lambda_a|^{r/p}, \ \nu_a := |\lambda_a|^{r/q} \frac{\lambda_a}{|\lambda_a|} \Rightarrow \|\mu\|_{\ell^p}^p = \|\nu\|_{\ell^q}^q = \|\lambda\|_{\ell^r}^r$; then
 $h(z) := \sum_{a \in S} \mu_a \rho_a(z) \nu_a k_{a,q}(z)$

$$\begin{split} h(z) &= \mathbb{E}\big((\sum_{a \in S} \mu_a \epsilon_a \rho_a(z)) \times (\sum_{a \in S} \nu_a \epsilon_a k_{a,q}(z))\big) =: \mathbb{E}(f(\epsilon, z)g(\epsilon, z)),\\ \text{because } \mathbb{E}(\epsilon_a \epsilon_b) &= \delta_{a,b}.\\ \text{So, by Fubini and Hölder,}\\ & \|h\|_{H^r}^r = \mathbb{E}(\int_{\partial \mathbb{B}} |f|^r |g|^r \, d\sigma) = \int_{\Omega \times \partial \mathbb{B}} |f|^r |g|^r \, dP \otimes d\sigma \leq \\ &\leq \left(\int_{\Omega \times \partial \mathbb{B}} |f|^p \, dP \otimes d\sigma\right)^{r/p} \left(\int_{\Omega \times \partial \mathbb{B}} |g|^q \, dP \otimes d\sigma\right)^{r/q} =: I^{r/p} J^{r/q}. \end{split}$$

For
$$I$$
 we have

$$I = \int_{\Omega \times \partial \mathbb{B}} |f|^p \, dP \otimes d\sigma = \int_{\partial \mathbb{B}} \mathbb{E}(|f|^p),$$

For I we have

$$I = \int_{\Omega \times \partial \mathbb{B}} |f|^p \, dP \otimes d\sigma = \int_{\partial \mathbb{B}} \mathbb{E}(|f|^p),$$

but, by Khintchine inequalities,

$$\mathbb{E}(\left|f\right|^{p}) = \mathbb{E}\left(\left|\sum_{a\in S} \mu_{a}\epsilon_{a}\rho_{a}(z)\right|^{p}\right)$$
For \boldsymbol{I} we have

 $I = \int_{\Omega \times \partial \mathbb{B}} |f|^p \, dP \otimes d\sigma = \int_{\partial \mathbb{B}} \mathbb{E}(|f|^p),$

but, by Khintchine inequalities,

$$\mathbb{E}(\left|f\right|^{p}) = \mathbb{E}\left(\left|\sum_{a\in S}\mu_{a}\epsilon_{a}\rho_{a}(z)\right|^{p}\right) \simeq \left(\sum_{a\in S}\left|\mu_{a}\right|^{2}\left|\rho_{a}(z)\right|^{2}\right)^{p/2}$$

$$I = \int_{\Omega \times \partial \mathbb{B}} |f|^p \, dP \otimes d\sigma = \int_{\partial \mathbb{B}} \mathbb{E}(|f|^p),$$
 but, by Khintchine inequalities,

$$\mathbb{E}(\left|f\right|^{p}) = \mathbb{E}\left(\left|\sum_{a\in S} \mu_{a}\epsilon_{a}\rho_{a}(z)\right|^{p}\right) \simeq \left(\sum_{a\in S} \left|\mu_{a}\right|^{2} \left|\rho_{a}(z)\right|^{2}\right)^{p/2}$$

and, for $p \leq 2$,

$$\left(\sum_{a \in S} |\mu_a|^2 |\rho_a(z)|^2\right)^{p/2} \lesssim \sum_{a \in S} |\mu_a|^p |\rho_a(z)|^p$$

 $I = \int_{\Omega \times \partial \mathbb{B}} |f|^p \, dP \otimes d\sigma = \int_{\partial \mathbb{B}} \mathbb{E}(|f|^p),$ but, by Khintchine inequalities,

$$\mathbb{E}(|f|^{p}) = \mathbb{E}\left(\left|\sum_{a\in S} \mu_{a}\epsilon_{a}\rho_{a}(z)\right|^{p}\right) \simeq \left(\sum_{a\in S} |\mu_{a}|^{2} |\rho_{a}(z)|^{2}\right)^{p/2}$$

and, for $p \leq 2$,
$$\left(\sum_{a\in S} |\mu_{a}|^{2} |\rho_{a}(z)|^{2}\right)^{p/2} \lesssim \sum_{a\in S} |\mu_{a}|^{p} |\rho_{a}(z)|^{p} \Rightarrow \mathbb{E}(|f|^{p}) \lesssim \sum_{a\in S} |\mu_{a}|^{p} |\rho_{a}(z)|^{p}$$

 $a \in S$

$$I = \int_{\Omega \times \partial \mathbb{B}} |f|^p \, dP \otimes d\sigma = \int_{\partial \mathbb{B}} \mathbb{E}(|f|^p),$$

but, by Khintchine inequalities,
$$\mathbb{E}(|f|^p) = \mathbb{E}\left(\left|\sum_{a \in S} \mu_a \epsilon_a \rho_a(z)\right|^p\right) \simeq \left(\sum_{a \in S} |\mu_a|^2 |\rho_a(z)|^2\right)^{p/2}$$

and, for $p \le 2,$
$$\left(\sum_{a \in S} |\mu_a|^2 |\rho_a(z)|^2\right)^{p/2} \lesssim \sum_{a \in S} |\mu_a|^p |\rho_a(z)|^p \Rightarrow \mathbb{E}(|f|^p) \lesssim \sum_{a \in S} |\mu_a|^p |\rho_a(z)|^p.$$

 $\begin{array}{c} & & \\ \hline a \in S \\ \text{Integrating on } \partial \mathbb{B} \text{ we get} \end{array}$

$$I \lesssim \int_{\partial \mathbb{B}} \left(\sum_{a \in S} \left| \mu_a \right|^p \left| \rho_a(z) \right|^p \right) d\sigma(z)$$

$$\begin{split} I &= \int_{\Omega \times \partial \mathbb{B}} |f|^p \, dP \otimes d\sigma = \int_{\partial \mathbb{B}} \mathbb{E}(|f|^p), \\ \text{but, by Khintchine inequalities,} \\ &\mathbb{E}(|f|^p) = \mathbb{E}\left(\left|\sum_{a \in S} \mu_a \epsilon_a \rho_a(z)\right|^p\right) \simeq \left(\sum_{a \in S} |\mu_a|^2 \left|\rho_a(z)\right|^2\right)^{p/2} \\ \text{and, for } p &\leq 2, \\ &\left(\sum_{a \in S} |\mu_a|^2 \left|\rho_a(z)\right|^2\right)^{p/2} \lesssim \sum_{a \in S} |\mu_a|^p \left|\rho_a(z)\right|^p \Rightarrow \mathbb{E}(|f|^p) \lesssim \sum_{a \in S} |\mu_a|^p \left|\rho_a(z)\right|^p \\ \text{Integrating on } \partial \mathbb{B} \text{ we get} \\ &I \lesssim \int_{\partial \mathbb{B}} \left(\sum_{a \in S} |\mu_a|^p \left|\rho_a(z)\right|^p\right) d\sigma(z) \leq \sup_{a \in S} \|\rho_a\|_{H^p}^p \|\mu\|_{\ell^p}^p \end{split}$$

.

$$\begin{split} I &= \int_{\Omega \times \partial \mathbb{B}} |f|^p \, dP \otimes d\sigma = \int_{\partial \mathbb{B}} \mathbb{E}(|f|^p), \\ \text{but, by Khintchine inequalities,} \\ &\mathbb{E}(|f|^p) = \mathbb{E}\left(\left|\sum_{a \in S} \mu_a \epsilon_a \rho_a(z)\right|^p\right) \simeq \left(\sum_{a \in S} |\mu_a|^2 \left|\rho_a(z)\right|^2\right)^{p/2} \\ \text{and, for } p &\leq 2, \\ &\left(\sum_{a \in S} |\mu_a|^2 \left|\rho_a(z)\right|^2\right)^{p/2} \lesssim \sum_{a \in S} |\mu_a|^p \left|\rho_a(z)\right|^p \Rightarrow \mathbb{E}(|f|^p) \lesssim \sum_{a \in S} |\mu_a|^p \left|\rho_a(z)\right|^p. \\ \text{Integrating on } \partial \mathbb{B} \text{ we get} \\ &I \lesssim \int_{\partial \mathbb{B}} \left(\sum_{a \in S} |\mu_a|^p \left|\rho_a(z)\right|^p\right) d\sigma(z) \leq \sup_{a \in S} \|\rho_a\|_{H^p}^p \|\mu\|_{\ell^p}^p \lesssim C^p \|\mu\|_{\ell^p}^p. \end{split}$$

For J we have $J = \mathbb{E} \left(\int_{\partial \mathbb{R}} |g(z)|^q \, d\sigma \right) = \mathbb{E} (\|g\|_{H^q}^q).$

For J we have $J = \mathbb{E}\left(\int_{\partial \mathbb{B}} |g(z)|^q \, d\sigma\right) = \mathbb{E}(\|g\|_{H^q}^q).$ But we know that S is a Carleson sequence, so $\|g\|_{H^q}^q = \left\|\sum_{a \in S} \nu_a \epsilon_a k_{a,q}(z)\right)\right\|_{H^q}^q \lesssim \|\nu\epsilon\|_{\ell^q}^q$

For
$$J$$
 we have

$$J = \mathbb{E}\left(\int_{\partial \mathbb{B}} |g(z)|^q \, d\sigma\right) = \mathbb{E}(\|g\|_{H^q}^q).$$
But we know that S is a Carleson sequence, so

$$\|g\|_{H^q}^q = \left\|\sum_{a \in S} \nu_a \epsilon_a k_{a,q}(z)\right)\right\|_{H^q}^q \lesssim \|\nu\epsilon\|_{\ell^q}^q \le \|\nu\|_{\ell^q}^q,$$
because $|\epsilon_a| \le 1.$

E. Amar

For
$$J$$
 we have

$$J = \mathbb{E}\left(\int_{\partial \mathbb{B}} |g(z)|^q \, d\sigma\right) = \mathbb{E}(\|g\|_{H^q}^q).$$
But we know that S is a Carleson sequence, so

$$\|g\|_{H^q}^q = \left\|\sum_{a \in S} \nu_a \epsilon_a k_{a,q}(z)\right)\right\|_{H^q}^q \lesssim \|\nu\epsilon\|_{\ell^q}^q \le \|\nu\|_{\ell^q}^q,$$
because $|\epsilon_a| \le 1$. So
 $J \lesssim \|\nu\|_{\ell^q}^q,$

For J we have

$$J = \mathbb{E}\left(\int_{\partial \mathbb{B}} |g(z)|^q \, d\sigma\right) = \mathbb{E}(\|g\|_{H^q}^q).$$
But we know that S is a Carleson sequence, so

$$\|g\|_{H^q}^q = \left\|\sum_{a \in S} \nu_a \epsilon_a k_{a,q}(z)\right)\right\|_{H^q}^q \lesssim \|\nu\epsilon\|_{\ell^q}^q \le \|\nu\|_{\ell^q}^q,$$
because $|\epsilon_a| \le 1$. So
 $J \lesssim \|\nu\|_{\ell^q}^q,$
and
 $\|h\|_{H^r} \le I^{1/p} J^{1/q} \lesssim (\|\mu\|_{\ell^p}^p)^{1/p} (\|\nu\|_{\ell^q}^q)^{1/q} \le \|\lambda\|_{\ell^r}.$

Return

We shall develop here a strong feature introduced by Drury.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant C(S) in \mathcal{M}_{s}^{p} .

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant C(S) in \mathcal{M}_s^p . Set $N = \#S \in \mathbb{N}, \ S := \{a_1, ..., a_N\} \subset \mathbb{B}$ and $\theta := \exp \frac{2i\pi}{N}$.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant C(S) in \mathcal{M}_s^p . Set $N = \#S \in \mathbb{N}, \ S := \{a_1, ..., a_N\} \subset \mathbb{B}$ and $\theta := \exp \frac{2i\pi}{N}$. S interpolating in \mathcal{M}_s^p implies that $\forall j = 1, ..., N, \ \exists \beta(j, \cdot) \in \mathcal{M}_s^p$.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant C(S) in \mathcal{M}_s^p . Set $N = \#S \in \mathbb{N}, \ S := \{a_1, ..., a_N\} \subset \mathbb{B}$ and $\theta := \exp \frac{2i\pi}{N}$. S interpolating in \mathcal{M}_s^p implies that

 $\forall j = 1, ..., N, \ \exists \beta(j, \cdot) \in \mathcal{M}_s^p :: \forall k = 1, ..., N, \ \beta(j, a_k) = \theta^{jk}$

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant C(S) in \mathcal{M}_s^p . Set $N = \#S \in \mathbb{N}, \ S := \{a_1, ..., a_N\} \subset \mathbb{B}$ and $\theta := \exp \frac{2i\pi}{N}$. S interpolating in \mathcal{M}_s^p implies that $\forall j = 1, ..., N, \ \exists \beta(j, \cdot) \in \mathcal{M}_s^p :: \forall k = 1, ..., N, \ \beta(j, a_k) = \theta^{jk}$ and $\forall i = 1, ..., N, \ \Vert \theta(i, \cdot) \Vert_{\mathcal{H}} \leq C(S)$

and $\forall j = 1, ..., N$, $\|\beta(j, \cdot)\|_{\mathcal{M}_s^p} \leq C(S)$.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant C(S) in \mathcal{M}_s^p . Set $N = \#S \in \mathbb{N}, \ S := \{a_1, ..., a_N\} \subset \mathbb{B}$ and $\theta := \exp \frac{2i\pi}{N}$. S interpolating in \mathcal{M}_s^p implies that $\forall j = 1, ..., N, \ \exists \beta(j, \cdot) \in \mathcal{M}_s^p :: \forall k = 1, ..., N, \ \beta(j, a_k) = \theta^{jk}$ and $\forall j = 1, ..., N, \ \|\beta(j, \cdot)\|_{\mathcal{M}_s^p} \leq C(S)$. Let $\gamma(l, \cdot) := \frac{1}{N} \sum_{i=1}^N \theta^{-jl} \beta(j, \cdot) \in \mathcal{M}_s^p$

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant C(S) in \mathcal{M}_s^p . Set $N = \#S \in \mathbb{N}, \ S := \{a_1, ..., a_N\} \subset \mathbb{B}$ and $\theta := \exp \frac{2i\pi}{N}$. S interpolating in \mathcal{M}_s^p implies that $\forall j = 1, ..., N, \ \exists \beta(j, \cdot) \in \mathcal{M}_s^p :: \forall k = 1, ..., N, \ \beta(j, a_k) = \theta^{jk}$ and $\forall j = 1, ..., N, \ \|\beta(j, \cdot)\|_{\mathcal{M}_s^p} \leq C(S)$. Let $\gamma(l, \cdot) := \frac{1}{N} \sum_{j=1}^N \theta^{-jl} \beta(j, \cdot) \in \mathcal{M}_s^p \Rightarrow \ \|\gamma(l, \cdot)\|_{\mathcal{M}_s^p} \leq C(S).$

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant C(S) in \mathcal{M}_s^p . Set $N = \#S \in \mathbb{N}, \ S := \{a_1, ..., a_N\} \subset \mathbb{B}$ and $\theta := \exp \frac{2i\pi}{N}$. S interpolating in \mathcal{M}_s^p implies that $\forall j = 1, ..., N, \ \exists \beta(j, \cdot) \in \mathcal{M}_s^p :: \forall k = 1, ..., N, \ \beta(j, a_k) = \theta^{jk}$ and $\forall j = 1, ..., N, \ \|\beta(j, \cdot)\|_{\mathcal{M}_s^p} \leq C(S)$. Let $\gamma(l, \cdot) := \frac{1}{N} \sum_{j=1}^N \theta^{-jl} \beta(j, \cdot) \in \mathcal{M}_s^p \Rightarrow \|\gamma(l, \cdot)\|_{\mathcal{M}_s^p} \leq C(S)$. This is the Fourier transform, on the group of n^{th} roots of unity, of the function $\beta(j, \cdot)$,

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant C(S) in \mathcal{M}_s^p . Set $N = \#S \in \mathbb{N}, S := \{a_1, ..., a_N\} \subset \mathbb{B}$ and $\theta := \exp \frac{2i\pi}{N}$. S interpolating in \mathcal{M}_s^p implies that $\forall j = 1, ..., N, \exists \beta(j, \cdot) \in \mathcal{M}_s^p :: \forall k = 1, ..., N, \ \beta(j, a_k) = \theta^{jk}$ and $\forall j = 1, ..., N, \ \|\beta(j, \cdot)\|_{\mathcal{M}_s^p} \leq C(S)$. Let $\gamma(l, \cdot) := \frac{1}{N} \sum_{j=1}^N \theta^{-jl} \beta(j, \cdot) \in \mathcal{M}_s^p \Rightarrow \|\gamma(l, \cdot)\|_{\mathcal{M}_s^p} \leq C(S)$. This is the Fourier transform, on the group of n^{th} roots of unity, of the function $\beta(j, \cdot)$, i.e. $\gamma(l, z) = \hat{\beta}(l, z)$, the parameter $z \in \mathbb{B}$ being fixed.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant C(S) in \mathcal{M}_s^p . Set $N = \#S \in \mathbb{N}$, $S := \{a_1, ..., a_N\} \subset \mathbb{B}$ and $\theta := \exp \frac{2i\pi}{N}$. S interpolating in \mathcal{M}_s^p implies that $\forall j = 1, ..., N, \exists \beta(j, \cdot) \in \mathcal{M}_s^p :: \forall k = 1, ..., N, \ \beta(j, a_k) = \theta^{jk}$ and $\forall j = 1, ..., N, \ \|\beta(j, \cdot)\|_{\mathcal{M}_s^p} \leq C(S)$. Let $\gamma(l, \cdot) := \frac{1}{N} \sum_{j=1}^N \theta^{-jl} \beta(j, \cdot) \in \mathcal{M}_s^p \Rightarrow \ \|\gamma(l, \cdot)\|_{\mathcal{M}_s^p} \leq C(S)$. This is the Fourier transform, on the group of n^{th} roots of unity, of the function $\beta(j, \cdot)$, i.e. $\gamma(l, z) = \hat{\beta}(l, z)$, the parameter $z \in \mathbb{B}$ being fixed. We also have, convolution becoming product by Fourier :

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant C(S) in \mathcal{M}_s^p . Set $N = \#S \in \mathbb{N}$, $S := \{a_1, ..., a_N\} \subset \mathbb{B}$ and $\theta := \exp \frac{2i\pi}{N}$. S interpolating in \mathcal{M}_s^p implies that $\forall j = 1, ..., N, \exists \beta(j, \cdot) \in \mathcal{M}_s^p :: \forall k = 1, ..., N, \ \beta(j, a_k) = \theta^{jk}$ and $\forall j = 1, ..., N, \ \|\beta(j, \cdot)\|_{\mathcal{M}_s^p} \leq C(S)$. Let $\gamma(l, \cdot) := \frac{1}{N} \sum_{j=1}^N \theta^{-jl} \beta(j, \cdot) \in \mathcal{M}_s^p \Rightarrow \|\gamma(l, \cdot)\|_{\mathcal{M}_s^p} \leq C(S)$. This is the Fourier transform, on the group of n^{th} roots of unity, of the function $\beta(j, \cdot)$, i.e. $\gamma(l, z) = \hat{\beta}(l, z)$, the parameter $z \in \mathbb{B}$ being fixed. We also have, convolution becoming product by Fourier : $\gamma^k(l, \cdot) = \hat{\beta * \cdot * \beta}(l, \cdot)$.

 $k \ times$

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant C(S) in \mathcal{M}_s^p . Set $N = \#S \in \mathbb{N}, S := \{a_1, ..., a_N\} \subset \mathbb{B}$ and $\theta := \exp \frac{2i\pi}{N}$. S interpolating in \mathcal{M}_s^p implies that $\forall j = 1, ..., N, \exists \beta(j, \cdot) \in \mathcal{M}_s^p :: \forall k = 1, ..., N, \ \beta(j, a_k) = \theta^{jk}$ and $\forall j = 1, ..., N, \ \|\beta(j, \cdot)\|_{\mathcal{M}_s^p} \leq C(S)$. Let $\gamma(l, \cdot) := \frac{1}{N} \sum_{j=1}^N \theta^{-jl} \beta(j, \cdot) \in \mathcal{M}_s^p \Rightarrow \|\gamma(l, \cdot)\|_{\mathcal{M}_s^p} \leq C(S)$. This is the Fourier transform, on the group of n^{th} roots of unity, of the function $\beta(j, \cdot)$, i.e. $\gamma(l, z) = \hat{\beta}(l, z)$, the parameter $z \in \mathbb{B}$ being fixed. We also have, convolution becoming product by Fourier : $\gamma^k(l, \cdot) = \widehat{\beta * \cdot * \beta}(l, \cdot)$.

 $k \ times$

Moreover we have

$$\gamma(l, a_k) = \frac{1}{N} \sum_{j=1}^{N} \theta^{-jl} \beta(j, a_k) = \delta_{lk}.$$

We have by Plancherel on this group

$$\forall z \in \mathbb{B}, \ \sum_{l=1}^{N} \left| \gamma^{k}(l,z) \right|^{2} = \frac{1}{N} \sum_{j=1}^{N} \left| \underbrace{\beta * \cdot * \beta}_{k \text{ times}}(j,z) \right|^{2}.$$

We have by Plancherel on this group

$$\forall z \in \mathbb{B}, \ \sum_{l=1}^{N} \left| \gamma^{k}(l,z) \right|^{2} = \frac{1}{N} \sum_{j=1}^{N} \left| \underbrace{\beta \ast \cdot \ast \beta}_{k \ times}(j,z) \right|^{2}.$$

This allows us to get

We have by Plancherel on this group

$$\forall z \in \mathbb{B}, \ \sum_{l=1}^{N} \left| \gamma^{k}(l,z) \right|^{2} = \frac{1}{N} \sum_{j=1}^{N} \left| \frac{\beta * \cdot * \beta}{k \ times}(j,z) \right|^{2}.$$

This allows us to get

And this is the "miracle lemma" we use to get our results.

Thank you !

Typeset by the TeX preprocessor jPreTeX