Interpolating sequences and Carleson measures in the Hardy-Sobolev spaces of the ball in \mathbb{C}^{n}.

E. Amar

En l'honneur de Aline Bonami, Orléans, Juin 2014.

En l'honneur de Aline Bonami, Orl $2 \not 225$

We shall work with the Hardy-Sobolev spaces H_{s}^{p}.

We shall work with the Hardy-Sobolev spaces H_{s}^{p}. For $1 \leq p<\infty$ and $s \in \mathbb{R}, H_{s}^{p}$ is the space of holomorphic functions in the unit ball \mathbb{B} in \mathbb{C}^{n} such that the following expression is finite

$$
\|f\|_{s, p}^{p}:=\sup _{r<1} \int_{\partial \mathbb{B}}\left|(I+R)^{s} f(r z)\right|^{p} d \sigma(z),
$$

We shall work with the Hardy-Sobolev spaces H_{s}^{p}. For $1 \leq p<\infty$ and $s \in \mathbb{R}, H_{s}^{p}$ is the space of holomorphic functions in the unit ball \mathbb{B} in \mathbb{C}^{n} such that the following expression is finite

$$
\|f\|_{s, p}^{p}:=\sup _{r<1} \int_{\partial \mathbb{B}}\left|(I+R)^{s} f(r z)\right|^{p} d \sigma(z),
$$

where I is the identity,

We shall work with the Hardy-Sobolev spaces H_{s}^{p}. For $1 \leq p<\infty$ and $s \in \mathbb{R}, H_{s}^{p}$ is the space of holomorphic functions in the unit ball \mathbb{B} in \mathbb{C}^{n} such that the following expression is finite

$$
\|f\|_{s, p}^{p}:=\sup _{r<1} \int_{\partial \mathbb{B}}\left|(I+R)^{s} f(r z)\right|^{p} d \sigma(z),
$$

where I is the identity, $d \sigma$ is the Lebesgue measure on $\partial \mathbb{B}$

We shall work with the Hardy-Sobolev spaces H_{s}^{p}. For $1 \leq p<\infty$ and $s \in \mathbb{R}, H_{s}^{p}$ is the space of holomorphic functions in the unit ball \mathbb{B} in \mathbb{C}^{n} such that the following expression is finite

$$
\|f\|_{s, p}^{p}:=\sup _{r<1} \int_{\partial \mathbb{B}}\left|(I+R)^{s} f(r z)\right|^{p} d \sigma(z),
$$

where I is the identity, $d \sigma$ is the Lebesgue measure on $\partial \mathbb{B}$ and R is the radial derivative

$$
R f(z)=\sum_{j=1}^{n} z_{j} \frac{\partial f}{\partial z_{j}}(z) .
$$

We shall work with the Hardy-Sobolev spaces H_{s}^{p}. For $1 \leq p<\infty$ and $s \in \mathbb{R}, H_{s}^{p}$ is the space of holomorphic functions in the unit ball \mathbb{B} in \mathbb{C}^{n} such that the following expression is finite

$$
\|f\|_{s, p}^{p}:=\sup _{r<1} \int_{\partial \mathbb{B}}\left|(I+R)^{s} f(r z)\right|^{p} d \sigma(z),
$$

where I is the identity, $d \sigma$ is the Lebesgue measure on $\partial \mathbb{B}$ and R is the radial derivative

$$
R f(z)=\sum_{j=1}^{n} z_{j} \frac{\partial f}{\partial z_{j}}(z) .
$$

For $s \in \mathbb{N}$, this norm is equivalent to

$$
\|f\|_{s, p}^{p}=\max _{0 \leq j \leq s} \int_{\partial \mathbb{B}}\left|R^{j} f(z)\right|^{p} d \sigma(z)
$$

We shall work with the Hardy-Sobolev spaces H_{s}^{p}. For $1 \leq p<\infty$ and $s \in \mathbb{R}, H_{s}^{p}$ is the space of holomorphic functions in the unit ball \mathbb{B} in \mathbb{C}^{n} such that the following expression is finite

$$
\|f\|_{s, p}^{p}:=\sup _{r<1} \int_{\partial \mathbb{B}}\left|(I+R)^{s} f(r z)\right|^{p} d \sigma(z),
$$

where I is the identity, $d \sigma$ is the Lebesgue measure on $\partial \mathbb{B}$ and R is the radial derivative

$$
R f(z)=\sum_{j=1}^{n} z_{j} \frac{\partial f}{\partial z_{j}}(z)
$$

For $s \in \mathbb{N}$, this norm is equivalent to

$$
\|f\|_{s, p}^{p}=\max _{0 \leq j \leq s} \int_{\partial \mathbb{B}}\left|R^{j} f(z)\right|^{p} d \sigma(z)
$$

This means that $R^{j} f \in H^{p}(\mathbb{B}), j=0, \ldots, s$.

We shall work with the Hardy-Sobolev spaces H_{s}^{p}. For $1 \leq p<\infty$ and $s \in \mathbb{R}, H_{s}^{p}$ is the space of holomorphic functions in the unit ball \mathbb{B} in \mathbb{C}^{n} such that the following expression is finite

$$
\|f\|_{s, p}^{p}:=\sup _{r<1} \int_{\partial \mathbb{B}}\left|(I+R)^{s} f(r z)\right|^{p} d \sigma(z),
$$

where I is the identity, $d \sigma$ is the Lebesgue measure on $\partial \mathbb{B}$ and R is the radial derivative

$$
R f(z)=\sum_{j=1}^{n} z_{j} \frac{\partial f}{\partial z_{j}}(z)
$$

For $s \in \mathbb{N}$, this norm is equivalent to

$$
\|f\|_{s, p}^{p}=\max _{0 \leq j \leq s} \int_{\partial \mathbb{B}}\left|R^{j} f(z)\right|^{p} d \sigma(z)
$$

This means that $R^{j} f \in H^{p}(\mathbb{B}), j=0, \ldots, s$.
For $s=0$ these spaces are the classical Hardy spaces $H^{p}(\mathbb{B})$ of the unit ball \mathbb{B}.

We shall work with the Hardy-Sobolev spaces H_{s}^{p}. For $1 \leq p<\infty$ and $s \in \mathbb{R}, H_{s}^{p}$ is the space of holomorphic functions in the unit ball \mathbb{B} in \mathbb{C}^{n} such that the following expression is finite

$$
\|f\|_{s, p}^{p}:=\sup _{r<1} \int_{\partial \mathbb{B}}\left|(I+R)^{s} f(r z)\right|^{p} d \sigma(z),
$$

where I is the identity, $d \sigma$ is the Lebesgue measure on $\partial \mathbb{B}$ and R is the radial derivative

$$
R f(z)=\sum_{j=1}^{n} z_{j} \frac{\partial f}{\partial z_{j}}(z)
$$

For $s \in \mathbb{N}$, this norm is equivalent to

$$
\|f\|_{s, p}^{p}=\max _{0 \leq j \leq s} \int_{\partial \mathbb{B}}\left|R^{j} f(z)\right|^{p} d \sigma(z)
$$

This means that $R^{j} f \in H^{p}(\mathbb{B}), j=0, \ldots, s$.
For $s=0$ these spaces are the classical Hardy spaces $H^{p}(\mathbb{B})$ of the unit ball \mathbb{B}.

En l'honneur de Aline Bonami, Orl $3 \not 255$

Let p^{\prime} the conjugate exponent for p; the Hilbert space H_{s}^{2} is equipped with reproducing kernels :
$\forall a \in \mathbb{B}, k_{a}(z)=\frac{1}{(1-\bar{a} \cdot z)^{n-2 s}}$,

Let p^{\prime} the conjugate exponent for p; the Hilbert space H_{s}^{2} is equipped with reproducing kernels :
$\forall a \in \mathbb{B}, k_{a}(z)=\frac{1}{(1-\bar{a} \cdot z)^{n-2 s}},\left\|k_{a}\right\|_{s, p}:=\left\|k_{a}\right\|_{H_{s}^{p}} \simeq\left(1-|a|^{2}\right)^{s-n / p^{\prime}}$

Let p^{\prime} the conjugate exponent for p; the Hilbert space H_{s}^{2} is equipped with reproducing kernels :
$\forall a \in \mathbb{B}, k_{a}(z)=\frac{1}{(1-\bar{a} \cdot z)^{n-2 s}},\left\|k_{a}\right\|_{s, p}:=\left\|k_{a}\right\|_{H_{s}^{p}} \simeq\left(1-|a|^{2}\right)^{s-n / p^{\prime}}$
i.e. $\forall a \in \mathbb{B}, \forall f \in H_{s}^{p}, f(a)=\left\langle f, k_{a}\right\rangle$,

Let p^{\prime} the conjugate exponent for p; the Hilbert space H_{s}^{2} is equipped with reproducing kernels :
$\forall a \in \mathbb{B}, k_{a}(z)=\frac{1}{(1-\bar{a} \cdot z)^{n-2 s}},\left\|k_{a}\right\|_{s, p}:=\left\|k_{a}\right\|_{H_{s}^{p}} \simeq\left(1-|a|^{2}\right)^{s-n / p^{\prime}}$
i.e. $\forall a \in \mathbb{B}, \forall f \in H_{s}^{p}, f(a)=\left\langle f, k_{a}\right\rangle$, where $\langle\cdot, \cdot\rangle$ is the scalar product of the Hilbert space H_{s}^{2}.

Let p^{\prime} the conjugate exponent for p; the Hilbert space H_{s}^{2} is equipped with reproducing kernels :
$\forall a \in \mathbb{B}, k_{a}(z)=\frac{1}{(1-\bar{a} \cdot z)^{n-2 s}},\left\|k_{a}\right\|_{s, p}:=\left\|k_{a}\right\|_{H_{s}^{p}} \simeq\left(1-|a|^{2}\right)^{s-n / p^{\prime}}$
i.e. $\forall a \in \mathbb{B}, \forall f \in H_{s}^{p}, f(a)=\left\langle f, k_{a}\right\rangle$, where $\langle\cdot, \cdot\rangle$ is the scalar product of the Hilbert space H_{s}^{2}. In the case $s=n / 2$ there is a \log for k_{a}.

En l'honneur de Aline Bonami, Orl $4 \not \subset 25$

Definition

The measure μ in \mathbb{B} is Carleson for $H_{s}^{p}, \mu \in C_{s, p}$, if we have the embedding

$$
\forall f \in H_{s}^{p}, \int_{\mathbb{B}}|f|^{p} d \mu \leq C\|f\|_{s, p}^{p} .
$$

Definition

The measure μ in \mathbb{B} is Carleson for $H_{s}^{p}, \mu \in C_{s, p}$, if we have the embedding

$$
\forall f \in H_{s}^{p}, \int_{\mathbb{B}}|f|^{p} d \mu \leq C\|f\|_{s, p}^{p} .
$$

We have the table concerning the Carleson measures :

Definition

The measure μ in \mathbb{B} is Carleson for $H_{s}^{p}, \mu \in C_{s, p}$, if we have the embedding

$$
\forall f \in H_{s}^{p}, \int_{\mathbb{B}}|f|^{p} d \mu \leq C\|f\|_{s, p}^{p} .
$$

We have the table concerning the Carleson measures :

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})=H_{0}^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B})$

Definition

The measure μ in \mathbb{B} is Carleson for $H_{s}^{p}, \mu \in C_{s, p}$, if we have the embedding

$$
\forall f \in H_{s}^{p}, \int_{\mathbb{B}}|f|^{p} d \mu \leq C\|f\|_{s, p}^{p} .
$$

We have the table concerning the Carleson measures :

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})=H_{0}^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B})$
Characterized geometrically by L. Carleson		

[^0]
Definition

The measure μ in \mathbb{B} is Carleson for $H_{s}^{p}, \mu \in C_{s, p}$, if we have the embedding

$$
\forall f \in H_{s}^{p}, \int_{\mathbb{B}}|f|^{p} d \mu \leq C\|f\|_{s, p}^{p} .
$$

We have the table concerning the Carleson measures :

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})=H_{0}^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B})$
Characterized geometrically by L. Carleson	Characterized geometrically	
	by L. Hörmander	

[^1]
Definition

The measure μ in \mathbb{B} is Carleson for $H_{s}^{p}, \mu \in C_{s, p}$, if we have the embedding

$$
\forall f \in H_{s}^{p}, \int_{\mathbb{B}}|f|^{p} d \mu \leq C\|f\|_{s, p}^{p} .
$$

We have the table concerning the Carleson measures :

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})=H_{0}^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B})$
		 Characterized geometrically by L. Carleson
	Characterized geometrically by L. Hörmander	
	J. Ortega; characterized	
for $n-1 \leq p s \leq n$.		

[^2]
Definition

The measure μ in \mathbb{B} is Carleson for $H_{s}^{p}, \mu \in C_{s, p}$, if we have the embedding

$$
\forall f \in H_{s}^{p}, \int_{\mathbb{B}}|f|^{p} d \mu \leq C\|f\|_{s, p}^{p} .
$$

We have the table concerning the Carleson measures :

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})=H_{0}^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B})$
Characterized	Characterized	J. Ortega; characterized
geometrically	geometrically	for $n-1 \leq p s \leq n$.
by L. Carleson ${ }^{1}$	by L. Hörmander ${ }^{2}$	For $p=2$, any s
		characterized by
		A. Volberg \& B. Wick ${ }^{3}$

[^3]
Definition

The measure μ in \mathbb{B} is Carleson for $H_{s}^{p}, \mu \in C_{s, p}$, if we have the embedding

$$
\forall f \in H_{s}^{p}, \int_{\mathbb{B}}|f|^{p} d \mu \leq C\|f\|_{s, p}^{p} .
$$

We have the table concerning the Carleson measures :
$\left.\begin{array}{|c|c|c|}\hline H^{p}(\mathbb{D}) & H^{p}(\mathbb{B})=H_{0}^{p}(\mathbb{B}) & H_{s}^{p}(\mathbb{B}) \\ \hline & & \text { Studied by C. Cascante \& } \\ \text { Characterized } & \text { Characterized } & \text { J. Ortega; characterized } \\ \text { geometrically } \\ \text { by L. Carleson }{ }^{1} & \begin{array}{c}\text { geometrically } \\ \text { by L. Hörmander }\end{array} \\ & & \begin{array}{c}\text { For } p=2 \leq \text { any } s \\ \text { characterized by }\end{array} \\ & \text { A. Volberg \& B. Wick }{ }^{3}\end{array}\right]$

[^4]
Definition

The measure μ in \mathbb{B} is Carleson for $H_{s}^{p}, \mu \in C_{s, p}$, if we have the embedding

$$
\forall f \in H_{s}^{p}, \int_{\mathbb{B}}|f|^{p} d \mu \leq C\|f\|_{s, p}^{p} .
$$

We have the table concerning the Carleson measures :

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})=H_{0}^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B})$
Characterized geometrically by L. Carleson ${ }^{1}$	Characterized geometrically by L. Hörmander ${ }^{2}$	 J. Ortega ; characterized for $n-1 \leq p s \leq n$. For $p=2$, any s characterized by A. Volberg \& B. Wick ${ }^{3}$
Same for all p	Same for all p	

[^5]
Definition

The measure μ in \mathbb{B} is Carleson for $H_{s}^{p}, \mu \in C_{s, p}$, if we have the embedding

$$
\forall f \in H_{s}^{p}, \int_{\mathbb{B}}|f|^{p} d \mu \leq C\|f\|_{s, p}^{p}
$$

We have the table concerning the Carleson measures :

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})=H_{0}^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B})$
Characterized geometrically by L. Carleson ${ }^{1}$	$\begin{gathered} \text { Characterized } \\ \text { geometrically } \\ \text { by L. Hörmander }{ }^{2} \end{gathered}$	 J. Ortega ; characterized for $n-1 \leq p s \leq n$. For $p=2$, any s characterized by A. Volberg \& B. Wick ${ }^{3}$
Same for all p	Same for all p	Depending on p by use of Carleson measures α.

[^6]En l'honneur de Aline Bonami, Orl $5 \not 25$

Definition

The sequence S of points in \mathbb{B} is interpolating in $H_{s}^{p}(\mathbb{B})$, $\mathbf{I S}$, if there is a $C>0$ such that

$$
\forall \lambda \in \ell^{p}(S), \exists f \in H_{s}^{p}(\mathbb{B}):: \forall a \in S, f(a)=\lambda_{a}\left\|k_{a}\right\|_{s, p^{\prime}},\|f\|_{H_{s}^{p}} \leq C\|\lambda\|_{p}
$$

Definition

The sequence S of points in \mathbb{B} is interpolating in $H_{s}^{p}(\mathbb{B})$, $\mathbf{I S}$, if there is a $C>0$ such that

$$
\forall \lambda \in \ell^{p}(S), \exists f \in H_{s}^{p}(\mathbb{B}):: \forall a \in S, f(a)=\lambda_{a}\left\|k_{a}\right\|_{s, p^{\prime}},\|f\|_{H_{s}^{p}} \leq C\|\lambda\|_{p}
$$

Definition

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in $H_{s}^{p}(\mathbb{B}), \mathbf{D B}$, if there is a bounded sequence $\left\{\rho_{a}\right\}_{a \in S} \subset H_{s}^{p}$ such that

$$
\forall a, b \in S, \rho_{a}(b)=\delta_{a b}\left\|k_{a}\right\|_{s, p^{\prime}}
$$

Definition

The sequence S of points in \mathbb{B} is interpolating in $H_{s}^{p}(\mathbb{B})$, $\mathbf{I S}$, if there is a $C>0$ such that

$$
\forall \lambda \in \ell^{p}(S), \exists f \in H_{s}^{p}(\mathbb{B}):: \forall a \in S, f(a)=\lambda_{a}\left\|k_{a}\right\|_{s, p^{\prime}},\|f\|_{H_{s}^{p}} \leq C\|\lambda\|_{p}
$$

Definition

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in $H_{s}^{p}(\mathbb{B}), \mathbf{D B}$, if there is a bounded sequence $\left\{\rho_{a}\right\}_{a \in S} \subset H_{s}^{p}$ such that

$$
\forall a, b \in S, \rho_{a}(b)=\delta_{a b}\left\|k_{a}\right\|_{s, p^{\prime}}
$$

Clearly if S is I.S. for H_{s}^{p} then it is dual bounded in H_{s}^{p}.

Definition

The sequence S of points in \mathbb{B} is interpolating in $H_{s}^{p}(\mathbb{B})$, $\mathbf{I S}$, if there is a $C>0$ such that

$$
\forall \lambda \in \ell^{p}(S), \exists f \in H_{s}^{p}(\mathbb{B}):: \forall a \in S, \quad f(a)=\lambda_{a}\left\|k_{a}\right\|_{s, p^{\prime}},\|f\|_{H_{s}^{p}} \leq C\|\lambda\|_{p}
$$

Definition

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in $H_{s}^{p}(\mathbb{B}), \mathbf{D B}$, if there is a bounded sequence $\left\{\rho_{a}\right\}_{a \in S} \subset H_{s}^{p}$ such that

$$
\forall a, b \in S, \rho_{a}(b)=\delta_{a b}\left\|k_{a}\right\|_{s, p^{\prime}}
$$

Clearly if S is I.S. for H_{s}^{p} then it is dual bounded in H_{s}^{p}.

Definition

Let S be an interpolating sequence in H_{s}^{p}

Definition

The sequence S of points in \mathbb{B} is interpolating in $H_{s}^{p}(\mathbb{B})$, $\mathbf{I S}$, if there is a $C>0$ such that

$$
\forall \lambda \in \ell^{p}(S), \exists f \in H_{s}^{p}(\mathbb{B}):: \forall a \in S, f(a)=\lambda_{a}\left\|k_{a}\right\|_{s, p^{\prime}},\|f\|_{H_{s}^{p}} \leq C\|\lambda\|_{p}
$$

Definition

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in $H_{s}^{p}(\mathbb{B}), \mathbf{D B}$, if there is a bounded sequence $\left\{\rho_{a}\right\}_{a \in S} \subset H_{s}^{p}$ such that

$$
\forall a, b \in S, \rho_{a}(b)=\delta_{a b}\left\|k_{a}\right\|_{s, p^{\prime}}
$$

Clearly if S is I.S. for H_{s}^{p} then it is dual bounded in H_{s}^{p}.

Definition

Let S be an interpolating sequence in H_{s}^{p} we say that S has a bounded linear extension operator, BLEO, if there is a a bounded linear operator $E: \ell^{p}(S) \rightarrow H_{s}^{p}$ and $a C>0$ such that

Definition

The sequence S of points in \mathbb{B} is interpolating in $H_{s}^{p}(\mathbb{B})$, IS, if there is a $C>0$ such that

$$
\forall \lambda \in \ell^{p}(S), \exists f \in H_{s}^{p}(\mathbb{B}):: \forall a \in S, f(a)=\lambda_{a}\left\|k_{a}\right\|_{s, p^{\prime}},\|f\|_{H_{s}^{p}} \leq C\|\lambda\|_{p}
$$

Definition

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in $H_{s}^{p}(\mathbb{B}), \mathbf{D B}$, if there is a bounded sequence $\left\{\rho_{a}\right\}_{a \in S} \subset H_{s}^{p}$ such that

$$
\forall a, b \in S, \rho_{a}(b)=\delta_{a b}\left\|k_{a}\right\|_{s, p^{\prime}}
$$

Clearly if S is I.S. for H_{s}^{p} then it is dual bounded in H_{s}^{p}.

Definition

Let S be an interpolating sequence in H_{s}^{p} we say that S has a bounded linear extension operator, BLEO, if there is a a bounded linear operator $E: \ell^{p}(S) \rightarrow H_{s}^{p}$ and $a C>0$ such that
$\forall \lambda \in \ell^{p}(S), E(\lambda) \in H_{s}^{p},\|E(\lambda)\|_{H_{s}^{p}} \leq C\|\lambda\|_{p}: \forall a \in S, E(\lambda)(a)=\lambda_{a}\left\|k_{a}\right\|_{s, p^{\prime}}$.

En l'honneur de Aline Bonami, Or $6 \not 225$

We have the table

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B}), s>0$

We have the table

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B}), s>0$
IS characterized by		
L. Carleson for $p=\infty$		
and by Shapiro \&		
Shields 4 for any p		

${ }^{4}$ Amer. J. Math. (1961)

We have the table

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B}), s>0$
IS characterized by		
L. Carleson for $p=\infty$	IS no characterized	
and by Shapiro \&		
Shields 4 for any p		

${ }^{4}$ Amer. J. Math. (1961)

We have the table

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B}), s>0$
IS characterized by		IS characterized
L. Carleson for $p=\infty$	IS no characterized	by Arcozzi Rochberg
and by Shapiro \&		\& Sawyer ${ }^{5}$ for $p=2$
Shields 4 for any p		$n-1<2 s \leq n$

${ }^{4}$ Amer. J. Math. (1961)
${ }^{5}$ Mem. Amer. Math. Soc. (2006)

We have the table

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B}), s>0$
IS characterized by		IS characterized
L. Carleson for $p=\infty$	IS no characterized	by Arcozzi Rochberg
and by Shapiro \&		\& Sawyer ${ }^{5}$ for $p=2$
Shields ${ }^{4}$ for any p		$n-1<2 s \leq n$
Same for all p		

${ }^{4}$ Amer. J. Math. (1961)
${ }^{5}$ Mem. Amer. Math. Soc. (2006)

We have the table

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B}), s>0$
IS characterized by		IS characterized
L. Carleson for $p=\infty$	IS no characterized	by Arcozzi Rochberg
and by Shapiro \&		\& Sawyer ${ }^{5}$ for $p=2$
Shields ${ }^{4}$ for any p		$n-1<2 s \leq n$
Same for all p	Depending on p	

${ }^{4}$ Amer. J. Math. (1961)
${ }^{5}$ Mem. Amer. Math. Soc. (2006)

We have the table

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B}), s>0$
IS characterized by		IS characterized
L. Carleson for $p=\infty$	IS no characterized	by Arcozzi Rochberg
and by Shapiro \&		\& Sawyer ${ }^{5}$ for $p=2$
Shields ${ }^{4}$ for any p		$n-1<2 s \leq n$
Same for all p	Depending on p	Depending on p

${ }^{4}$ Amer. J. Math. (1961)
${ }^{5}$ Mem. Amer. Math. Soc. (2006)

We have the table

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B}), s>0$
IS characterized by		IS characterized
L. Carleson for $p=\infty$	IS no characterized	by Arcozzi Rochberg
and by Shapiro \&		\& Sawyer ${ }^{5}$ for $p=2$
Shields ${ }^{4}$ for any p		$n-1<2 s \leq n$
Same for all p	Depending on p	Depending on p

IS \Rightarrow BLEO for all p
P. Beurling ${ }^{6}$ for $p=\infty$
${ }^{4}$ Amer. J. Math. (1961)
${ }^{5}$ Mem. Amer. Math. Soc. (2006)
${ }^{6}$ Preprint Uppsala (1962)

We have the table

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B}), s>0$
IS characterized by		IS characterized
L. Carleson for $p=\infty$	IS no characterized	by Arcozzi Rochberg
and by Shapiro \& Sawyer ${ }^{5}$ for $p=2$		
Shields 4 for any p		$n-1<2 s \leq n$
Same for all p	Depending on p	Depending on p
IS \Rightarrow BLEO for all p		
P Beurling ${ }^{6}$ for $p=\infty$		
E A. for $p<\infty$		

${ }^{4}$ Amer. J. Math. (1961)
${ }^{5}$ Mem. Amer. Math. Soc. (2006)
${ }^{6}$ Preprint Uppsala (1962)

We have the table

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B}), s>0$
IS characterized by L. Carleson for $p=\infty$ and by Shapiro \& Shields ${ }^{4}$ for any p	IS no characterized	IS characterized by Arcozzi Rochberg $\&$ Sawyer 5 for $p=2$ $n-1<2 s \leq n$
Same for all p	Depending on p	Depending on p
IS \Rightarrow BLEO for all p P. Beurling ${ }^{6}$ for $p=\infty$ E. A. for $p<\infty$	IS $H^{\infty} \Rightarrow$ BLEO A. Bernard ${ }^{7}$	

[^7]We have the table

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B}), s>0$
IS characterized by		IS characterized
L. Carleson for $p=\infty$	IS no characterized	by Arcozzi Rochberg and by Shapiro \& Sawyer for $p=2$
Shields ${ }^{4}$ for any p		$n-1<2 s \leq n$
Same for all p		Depending on p
IS BLEO for all p	Depending on p	
P. Beurling ${ }^{6}$ for $p=\infty$	IS $H^{\infty} \Rightarrow$ BLEO	
E. A. for $p<\infty$	A. Bernard	
	IS $H^{p} \Rightarrow$??	

[^8]We have the table

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B}), s>0$
IS characterized by L. Carleson for $p=\infty$ and by Shapiro \& Shields ${ }^{4}$ for any p	IS no characterized	IS characterized by Arcozzi Rochberg $\&$ Sawyer 5 for $p=2$ $n-1<2 s \leq n$
Same for all p	Depending on p	Depending on p
$\begin{gathered} \text { IS } \Rightarrow \text { BLEO for all } p \\ \mathrm{P} . \text { Beurling }{ }^{6} \text { for } p=\infty \\ \mathrm{E} . \text { A. for } p<\infty \end{gathered}$	IS $H^{\infty} \Rightarrow$ BLEO A. Bernard ${ }^{7}$ IS $H^{p} \Rightarrow$??	$? ? p \neq 1,2$

${ }^{4}$ Amer. J. Math. (1961)
${ }^{5}$ Mem. Amer. Math. Soc. (2006)
${ }^{6}$ Preprint Uppsala (1962)
${ }^{7}$ CRAS (1971)

We have the table
$\left.\begin{array}{|c|c|c|}\hline H^{p}(\mathbb{D}) & H^{p}(\mathbb{B}) & H_{s}^{p}(\mathbb{B}), s>0 \\ \hline \begin{array}{c}\text { IS characterized by } \\ \text { L. Carleson for } p=\infty \\ \text { and by Shapiro \& } \\ \text { Shields }{ }^{4} \text { for any } p\end{array} & \text { IS no characterized } & \begin{array}{c}\text { IS characterized } \\ \text { by Arcozzi Rochberg } \\ \text { \& Sawyer }\end{array} \\ \hline \text { fame for all } p \\ \text { Sam }\end{array}\right)$

[^9]We have the table

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B}), s>0$		
IS characterized by		IS characterized		
L. Carleson for $p=\infty$				
Shields ${ }^{4}$ for any p			\quad IS no characterized	by Arcozi Rochberg
:---:				
Sawyer for $p=2$				
Same for all p	\quad	$n-1<2 s \leq n$		
:---:				

${ }^{4}$ Amer. J. Math. (1961)
${ }^{5}$ Mem. Amer. Math. Soc. (2006)
${ }^{6}$ Preprint Uppsala (1962)
${ }^{7}$ CRAS (1971)

We have the table

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B}), s>0$
IS characterized by L. Carleson for $p=\infty$ and by Shapiro \& Shields ${ }^{4}$ for any p	IS no characterized	IS characterized by Arcozzi Rochberg $\&$ Sawyer 5 for $p=2$ $n-1<2 s \leq n$
Same for all p	Depending on p	Depending on p
IS \Rightarrow BLEO for all p P . Beurling ${ }^{6}$ for $p=\infty$ E. A. for $p<\infty$	IS $H^{\infty} \Rightarrow$ BLEO A. Bernard ${ }^{7}$ IS $H^{p} \Rightarrow$??	$? ? p \neq 1,2$
DB $H^{p} \Rightarrow$ IS $H^{q}, \forall q \leq \infty$ by Shapiro \& Shieds	$\begin{gathered} \text { DB } H^{p} \Rightarrow \text { IS } H^{q}, \forall q<p \\ \text { with } \operatorname{BLEO}(q=p ?) \\ \text { by E. A } \end{gathered}$	Next Theorem

[^10]En l'honneur de Aline Bonami, Orl $7 \not 25$

Definition

The sequence S is Carleson, CS, in $H_{s}^{p}(\mathbb{B})$, if the associated measure

$$
\nu_{S}:=\sum_{a \in S}\left\|k_{s, a}\right\|_{s, p^{\prime}}^{-p} \delta_{a}
$$

is Carleson for $H_{s}^{p}(\mathbb{B})$.

Definition

The sequence S is Carleson, CS, in $H_{s}^{p}(\mathbb{B})$, if the associated measure

$$
\nu_{S}:=\sum_{a \in S}\left\|k_{s, a}\right\|_{s, p^{\prime}}^{-p} \delta_{a}
$$

is Carleson for $H_{s}^{p}(\mathbb{B})$.

Theorem

Let S be a sequence of points in \mathbb{B} such that

Definition

The sequence S is Carleson, CS, in $H_{s}^{p}(\mathbb{B})$, if the associated measure

$$
\nu_{S}:=\sum_{a \in S}\left\|k_{s, a}\right\|_{s, p^{\prime}}^{-p} \delta_{a}
$$

is Carleson for $H_{s}^{p}(\mathbb{B})$.

Theorem

Let S be a sequence of points in \mathbb{B} such that

- there is a sequence $\left\{\rho_{a}\right\}_{a \in S}$ in H_{s}^{p} such that
$\forall a, b \in S, \rho_{a}(b) \simeq \delta_{a b}\left\|\rho_{a}\right\|_{s, p}\left\|k_{a}\right\|_{s, p^{\prime}}$.

Definition

The sequence S is Carleson, CS, in $H_{s}^{p}(\mathbb{B})$, if the associated measure

$$
\nu_{S}:=\sum_{a \in S}\left\|k_{s, a}\right\|_{s, p^{\prime}}^{-p} \delta_{a}
$$

is Carleson for $H_{s}^{p}(\mathbb{B})$.

Theorem

Let S be a sequence of points in \mathbb{B} such that

- there is a sequence $\left\{\rho_{a}\right\}_{a \in S}$ in H_{s}^{p} such that
$\forall a, b \in S, \rho_{a}(b) \simeq \delta_{a b}\left\|\rho_{a}\right\|_{s, p}\left\|k_{a}\right\|_{s, p^{\prime}}$.
- If $0<s<\frac{n}{2} \min \left(\frac{1}{p^{\prime}}, \frac{1}{q^{\prime}}\right)$ with $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$, i.e. $s<\frac{n}{2 p^{\prime}}$ and $\frac{p}{2}<r<p$, we have

Definition

The sequence S is Carleson, CS, in $H_{s}^{p}(\mathbb{B})$, if the associated measure

$$
\nu_{S}:=\sum_{a \in S}\left\|k_{s, a}\right\|_{s, p^{\prime}}^{-p} \delta_{a}
$$

is Carleson for $H_{s}^{p}(\mathbb{B})$.

Theorem

Let S be a sequence of points in \mathbb{B} such that

- there is a sequence $\left\{\rho_{a}\right\}_{a \in S}$ in H_{s}^{p} such that
$\forall a, b \in S, \rho_{a}(b) \simeq \delta_{a b}\left\|\rho_{a}\right\|_{s, p}\left\|k_{a}\right\|_{s, p^{\prime}}$.
- If $0<s<\frac{n}{2} \min \left(\frac{1}{p^{\prime}}, \frac{1}{q^{\prime}}\right)$ with $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$, i.e. $s<\frac{n}{2 p^{\prime}}$ and $\frac{p}{2}<r<p$, we have

$$
\forall j \leq s, \quad\left\|R^{j}\left(\rho_{a}\right)\right\|_{p} \lesssim\left\|R^{j}\left(k_{a}\right)\right\|_{p} \Rightarrow\left\|\rho_{a}\right\|_{s, p} \lesssim\left\|k_{a}\right\|_{s, p}
$$

Definition

The sequence S is Carleson, CS, in $H_{s}^{p}(\mathbb{B})$, if the associated measure

$$
\nu_{S}:=\sum_{a \in S}\left\|k_{s, a}\right\|_{s, p^{\prime}}^{-p} \delta_{a}
$$

is Carleson for $H_{s}^{p}(\mathbb{B})$.

Theorem

Let S be a sequence of points in \mathbb{B} such that

- there is a sequence $\left\{\rho_{a}\right\}_{a \in S}$ in H_{s}^{p} such that
$\forall a, b \in S, \rho_{a}(b) \simeq \delta_{a b}\left\|\rho_{a}\right\|_{s, p}\left\|k_{a}\right\|_{s, p^{\prime}}$.
- If $0<s<\frac{n}{2} \min \left(\frac{1}{p^{\prime}}, \frac{1}{q^{\prime}}\right)$ with $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$, i.e. $s<\frac{n}{2 p^{\prime}}$ and $\frac{p}{2}<r<p$, we have

$$
\forall j \leq s, \quad\left\|R^{j}\left(\rho_{a}\right)\right\|_{p} \lesssim\left\|R^{j}\left(k_{a}\right)\right\|_{p} \Rightarrow\left\|\rho_{a}\right\|_{s, p} \lesssim\left\|k_{a}\right\|_{s, p}
$$

- S is Carleson in $H_{s}^{q}(\mathbb{B})$.

Definition

The sequence S is Carleson, CS, in $H_{s}^{p}(\mathbb{B})$, if the associated measure

$$
\nu_{S}:=\sum_{a \in S}\left\|k_{s, a}\right\|_{s, p^{\prime}}^{-p} \delta_{a}
$$

is Carleson for $H_{s}^{p}(\mathbb{B})$.

Theorem

Let S be a sequence of points in \mathbb{B} such that

- there is a sequence $\left\{\rho_{a}\right\}_{a \in S}$ in H_{s}^{p} such that
$\forall a, b \in S, \rho_{a}(b) \simeq \delta_{a b}\left\|\rho_{a}\right\|_{s, p}\left\|k_{a}\right\|_{s, p^{\prime}}$.
- If $0<s<\frac{n}{2} \min \left(\frac{1}{p^{\prime}}, \frac{1}{q^{\prime}}\right)$ with $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$, i.e. $s<\frac{n}{2 p^{\prime}}$ and $\frac{p}{2}<r<p$, we have

$$
\forall j \leq s,\left\|R^{j}\left(\rho_{a}\right)\right\|_{p} \lesssim\left\|R^{j}\left(k_{a}\right)\right\|_{p} \Rightarrow\left\|\rho_{a}\right\|_{s, p} \lesssim\left\|k_{a}\right\|_{s, p}
$$

- S is Carleson in $H_{s}^{q}(\mathbb{B})$.

Then S is H_{s}^{r} interpolating with the bounded linear extension property, provided that $p \leq 2$.

En l'honneur de Aline Bonami, Orl $8 \neq 25$

The table relative to Carleson sequences is

The table relative to Carleson sequences is

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B}), s>0$

The table relative to Carleson sequences is

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B}), s>0$	
IS $H^{p} \Rightarrow \mathrm{CS}$ by L. Carleson			

The table relative to Carleson sequences is

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B}), s>0$
IS $H^{p} \Rightarrow \mathrm{CS}$ by L. Carleson	IS $H^{p} \Rightarrow \mathrm{CS}$ by P. Thomas	

The table relative to Carleson sequences is

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B}), s>0$
IS $H^{p} \Rightarrow \mathrm{CS}$ by L. Carleson	IS $H^{p} \Rightarrow \mathrm{CS}$ by P. Thomas	IS $H_{s}^{2} \Rightarrow \mathrm{CS} H_{s}^{2}$ for $n-1<2 s \leq n$ by A.R.S

${ }^{8}$ Indagationes Math. (1987)

The table relative to Carleson sequences is

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B}), s>0$	
IS $H^{p} \Rightarrow \mathrm{CS}$ by L. Carleson	IS $H^{p} \Rightarrow \mathrm{CS}$ by P. Thomas	IS $H_{s}^{2} \Rightarrow \mathrm{CS} H_{s}^{2}$ for $n-1<2 s \leq n$ by A.R.S	
DB $H^{p} \Rightarrow$ IS $H^{q} \Rightarrow \mathrm{CS}$ by Shapiro \& Shieds			

The table relative to Carleson sequences is

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B}), s>0$
IS $H^{p} \Rightarrow$ CS by L. Carleson	IS $H^{p} \Rightarrow \mathrm{CS}$ by P. Thomas	IS $H_{s}^{2} \Rightarrow \mathrm{CS} H_{s}^{2}$ for $n-1<2 s \leq n$ by A.R.S
DB $H^{p} \Rightarrow$ IS $H^{q} \Rightarrow \mathrm{CS}$ by Shapiro \& Shieds	DB $H^{p} \Rightarrow \mathrm{CS}$ by E.A.	

The table relative to Carleson sequences is

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B}), s>0$
IS $H^{p} \Rightarrow$ CS by L. Carleson	IS $H^{p} \Rightarrow \mathrm{CS}$ by P. Thomas	IS $H_{s}^{2} \Rightarrow \mathrm{CS} H_{s}^{2}$ for $n-1<2 s \leq n$ by A.R.S
DB $H^{p} \Rightarrow$ IS $H^{q} \Rightarrow \mathrm{CS}$ by Shapiro \& Shieds	DB $H^{p} \Rightarrow \mathrm{CS}$ by E.A.	$? ? ?$

En l'honneur de Aline Bonami, Orl $12 \not 25$

Definition

The multipliers algebra \mathcal{M}_{s}^{p} of H_{s}^{p} is the algebra of functions m on \mathbb{B} such that

$$
\forall h \in H_{s}^{p}, m h \in H_{s}^{p} .
$$

Definition

The multipliers algebra \mathcal{M}_{s}^{p} of H_{s}^{p} is the algebra of functions m on \mathbb{B} such that

$$
\forall h \in H_{s}^{p}, m h \in H_{s}^{p} .
$$

The norm of a multiplier is its norm as an operator from H_{s}^{p} into H_{s}^{p}.

Definition

The multipliers algebra \mathcal{M}_{s}^{p} of H_{s}^{p} is the algebra of functions m on \mathbb{B} such that

$$
\forall h \in H_{s}^{p}, m h \in H_{s}^{p} .
$$

The norm of a multiplier is its norm as an operator from H_{s}^{p} into H_{s}^{p}.

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B})$

Definition

The multipliers algebra \mathcal{M}_{s}^{p} of H_{s}^{p} is the algebra of functions m on \mathbb{B} such that

$$
\forall h \in H_{s}^{p}, m h \in H_{s}^{p} .
$$

The norm of a multiplier is its norm as an operator from H_{s}^{p} into H_{s}^{p}.

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B})$
$\mathcal{M}_{0}^{p}(\mathbb{D})=H^{\infty}(\mathbb{D}), \forall p$		

Definition

The multipliers algebra \mathcal{M}_{s}^{p} of H_{s}^{p} is the algebra of functions m on \mathbb{B} such that

$$
\forall h \in H_{s}^{p}, m h \in H_{s}^{p} .
$$

The norm of a multiplier is its norm as an operator from H_{s}^{p} into H_{s}^{p}.

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B})$
$\mathcal{M}_{0}^{p}(\mathbb{D})=H^{\infty}(\mathbb{D}), \forall p$	$\mathcal{M}_{0}^{p}(\mathbb{B})=H^{\infty}(\mathbb{B}), \forall p$	

Definition

The multipliers algebra \mathcal{M}_{s}^{p} of H_{s}^{p} is the algebra of functions m on \mathbb{B} such that

$$
\forall h \in H_{s}^{p}, m h \in H_{s}^{p} .
$$

The norm of a multiplier is its norm as an operator from H_{s}^{p} into H_{s}^{p}.

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B})$
		$\mathcal{M}_{s}^{p}=H^{\infty}(\mathbb{B}) \cap C . C$.
$\mathcal{M}_{0}^{p}(\mathbb{D})=H^{\infty}(\mathbb{D}), \forall p$	$\mathcal{M}_{0}^{p}(\mathbb{B})=H^{\infty}(\mathbb{B}), \forall p$	characterized for
		$n-1 \leq p s \leq n$

Definition

The multipliers algebra \mathcal{M}_{s}^{p} of H_{s}^{p} is the algebra of functions m on \mathbb{B} such that

$$
\forall h \in H_{s}^{p}, m h \in H_{s}^{p} .
$$

The norm of a multiplier is its norm as an operator from H_{s}^{p} into H_{s}^{p}.

$H^{p}(\mathbb{D})$	$H^{p}(\mathbb{B})$	$H_{s}^{p}(\mathbb{B})$
		$\mathcal{M}_{s}^{p}=H^{\infty}(\mathbb{B}) \cap C . C$.
$\mathcal{M}_{0}^{p}(\mathbb{D})=H^{\infty}(\mathbb{D}), \forall p$	$\mathcal{M}_{0}^{p}(\mathbb{B})=H^{\infty}(\mathbb{B}), \forall p$	characterized for
		$n-1 \leq p s \leq n$
		and for $p=2$ by V. W.
		Depending on p

En l'honneur de Aline Bonami, Or $19 \not 255$

Definition

The sequence S of points in \mathbb{B} is interpolating, $\mathbf{I S}$, in the multipliers algebra \mathcal{M}_{s}^{p} of $H_{s}^{p}(\mathbb{B})$ if there is a $C>0$ such that

$$
\forall \lambda \in \ell^{\infty}(S), \exists m \in \mathcal{M}_{s}^{p}:: \forall a \in S, m(a)=\lambda_{a} \text { and }\|m\|_{\mathcal{M}_{s}^{p}} \leq C\|\lambda\|_{\infty} .
$$

Definition

The sequence S of points in \mathbb{B} is interpolating, IS, in the multipliers algebra \mathcal{M}_{s}^{p} of $H_{s}^{p}(\mathbb{B})$ if there is a $C>0$ such that

$$
\forall \lambda \in \ell^{\infty}(S), \exists m \in \mathcal{M}_{s}^{p}:: \forall a \in S, m(a)=\lambda_{a} \text { and }\|m\|_{\mathcal{M}_{s}^{p}} \leq C\|\lambda\|_{\infty} .
$$

Definition

Let S be an interpolating sequence in \mathcal{M}_{s}^{p};

Definition

The sequence S of points in \mathbb{B} is interpolating, IS, in the multipliers algebra \mathcal{M}_{s}^{p} of $H_{s}^{p}(\mathbb{B})$ if there is a $C>0$ such that

$$
\forall \lambda \in \ell^{\infty}(S), \exists m \in \mathcal{M}_{s}^{p}:: \forall a \in S, m(a)=\lambda_{a} \text { and }\|m\|_{\mathcal{M}_{s}^{p}} \leq C\|\lambda\|_{\infty} .
$$

Definition

Let S be an interpolating sequence in \mathcal{M}_{s}^{p}; we say that S has a bounded linear extension operator, BLEO, if there is a a bounded linear operator $E: \ell^{\infty}(S) \rightarrow \mathcal{M}_{s}^{p}$ and a $C>0$ such that
$\forall \lambda \in \ell^{\infty}(S), E(\lambda) \in \mathcal{M}_{s}^{p},\|E(\lambda)\|_{\mathcal{M}_{s}^{p}} \leq C\|\lambda\|_{\infty}: \forall a \in S, E(\lambda)(a)=\lambda_{a}$.

En l'honneur de Aline Bonami, Orta 125

En l'honneur de Aline Bonami, Or 1125

$H^{\infty}(\mathbb{D})$	$H^{\infty}(\mathbb{B})$	$\mathcal{M}_{s}^{p}(\mathbb{B})$
IS characterized		
by L. Carleson		

$H^{\infty}(\mathbb{D})$	$H^{\infty}(\mathbb{B})$	$\mathcal{M}_{s}^{p}(\mathbb{B})$
IS characterized by L. Carleson	No characterisation	

$H^{\infty}(\mathbb{D})$	$H^{\infty}(\mathbb{B})$	$\mathcal{M}_{s}^{p}(\mathbb{B})$
IS characterized by L. Carleson	No characterisation	Characterized for $p=2$ and $n-1<2 s \leq n$ by A.R.S. and the Pick property

$H^{\infty}(\mathbb{D})$	$H^{\infty}(\mathbb{B})$	$\mathcal{M}_{s}^{p}(\mathbb{B})$
IS characterized by L. Carleson	No characterisation	Characterized for $p=2$ and $n-1<2 s \leq n$ by A.R.S. and the Pick property
IS \Rightarrow BLEO by P. Beurling		

$H^{\infty}(\mathbb{D})$	$H^{\infty}(\mathbb{B})$	$\mathcal{M}_{s}^{p}(\mathbb{B})$
IS characterized by L. Carleson	No characterisation	Characterized for $p=2$ and $n-1<2 s \leq n$ by A.R.S. and the Pick property
IS \Rightarrow BLEO by P. Beurling	IS \Rightarrow BLEO by A. Bernard	

$H^{\infty}(\mathbb{D})$	$H^{\infty}(\mathbb{B})$	$\mathcal{M}_{s}^{p}(\mathbb{B})$
IS characterized by L. Carleson	No characterisation	Characterized for $p=2$ and $n-1<2 s \leq n$ by A.R.S. and the Pick property
IS \Rightarrow BLEO by P. Beurling	IS \Rightarrow BLEO by A. Bernard	IS \Rightarrow BLEO for $p \geq 2$ by E. A.

$H^{\infty}(\mathbb{D})$	$H^{\infty}(\mathbb{B})$	$\mathcal{M}_{s}^{p}(\mathbb{B})$
IS characterized by L. Carleson	No characterisation	Characterized for $p=2$ and $n-1<2 s \leq n$ by A.R.S. and the Pick property
IS \Rightarrow BLEO by P. Beurling	IS \Rightarrow BLEO by A. Bernard	IS \Rightarrow BLEO for $p \geq 2$ by E. A.

Theorem

If S is interpolating for \mathcal{M}_{s}^{p} and $p \geq 2$, then S has a bounded linear extension operator.

En l'honneur de Aline Bonami, Or $12 \not 25$

Definition

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in the multipliers algebra \mathcal{M}_{s}^{p} of $H_{s}^{p}(\mathbb{B})$ if there is a bounded sequence $\left\{\rho_{a}\right\}_{a \in S} \subset \mathcal{M}_{s}^{p}$ such that

Definition

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in the multipliers algebra \mathcal{M}_{s}^{p} of $H_{s}^{p}(\mathbb{B})$ if there is a bounded sequence $\left\{\rho_{a}\right\}_{a \in S} \subset \mathcal{M}_{s}^{p}$ such that

$$
\forall a, b \in S, \rho_{a}(b)=\delta_{a b} \text { and } \exists C>O: \quad \forall a \in S,\left\|\rho_{a}\right\| \leq C .
$$

Definition

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in the multipliers algebra \mathcal{M}_{s}^{p} of $H_{s}^{p}(\mathbb{B})$ if there is a bounded sequence $\left\{\rho_{a}\right\}_{a \in S} \subset \mathcal{M}_{s}^{p}$ such that

$$
\forall a, b \in S, \rho_{a}(b)=\delta_{a b} \text { and } \exists C>O: \quad \forall a \in S,\left\|\rho_{a}\right\| \leq C .
$$

If S is interpolating in \mathcal{M}_{s}^{p} then it is clearly dual bounded.

Definition

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in the multipliers algebra \mathcal{M}_{s}^{p} of $H_{s}^{p}(\mathbb{B})$ if there is a bounded sequence $\left\{\rho_{a}\right\}_{a \in S} \subset \mathcal{M}_{s}^{p}$ such that

$$
\forall a, b \in S, \rho_{a}(b)=\delta_{a b} \text { and } \exists C>O: \quad \forall a \in S,\left\|\rho_{a}\right\| \leq C .
$$

If S is interpolating in \mathcal{M}_{s}^{p} then it is clearly dual bounded.

Definition

The sequence S of points in \mathbb{B} is δ separated in H_{s}^{p} if
$\forall a, b \in S, a \neq b, \exists f \in H_{s}^{p}:: f(a)=0, f(b)=\left\|k_{a}\right\|_{s, p^{\prime}},\|f\|_{s, p} \leq \delta^{-1}$.

En l'honneur de Aline Bonami, Or $13 \not 255$

$H^{\infty}(\mathbb{D})$	$H^{\infty}(\mathbb{B})$	$\mathcal{M}_{s}^{p}(\mathbb{B})$

$H^{\infty}(\mathbb{D})$	$H^{\infty}(\mathbb{B})$	$\mathcal{M}_{s}^{p}(\mathbb{B})$
DB $H^{\infty} \Rightarrow$ IS H^{p}		
$\forall p \leq \infty$ with BLEO		
by Carleson,		
Shapiro \& Shields		

$H^{\infty}(\mathbb{D})$	$H^{\infty}(\mathbb{B})$	$\mathcal{M}_{s}^{p}(\mathbb{B})$
$\mathrm{DB} H^{\infty} \Rightarrow$ IS H^{p}	$\mathrm{DB} H^{\infty} \Rightarrow$ IS H^{p}	
$\forall p \leq \infty$ with BLEO	$\forall p<\infty$ with BLEO	
by Carleson,	by E. A.	
Shapiro \& Shields		

$H^{\infty}(\mathbb{D})$	$H^{\infty}(\mathbb{B})$	$\mathcal{M}_{s}^{p}(\mathbb{B})$
$\mathrm{DB} H^{\infty} \Rightarrow$ IS H^{p}	DB $H^{\infty} \Rightarrow$ IS H^{p}	IS $\mathcal{M}_{s}^{p} \Rightarrow$ IS H_{s}^{p}
$\forall p \leq \infty$ with BLEO	$\forall p<\infty$ with BLEO	for $p \geq 2$ with BLEO
by Carleson,	by E. A.	by E. A.
Shapiro \& Shields		

$H^{\infty}(\mathbb{D})$	$H^{\infty}(\mathbb{B})$	$\mathcal{M}_{s}^{p}(\mathbb{B})$
$\mathrm{DB} H^{\infty} \Rightarrow$ IS H^{p}	$\mathrm{DB} H^{\infty} \Rightarrow$ IS H^{p}	IS $\mathcal{M}_{s}^{p} \Rightarrow$ IS H_{s}^{p}
$\forall p \leq \infty$ with BLEO	$\forall p<\infty$ with BLEO	for $p \geq 2$ with BLEO
by Carleson,		
Shapiro \& Shields		

$H^{\infty}(\mathbb{D})$	$H^{\infty}(\mathbb{B})$	$\mathcal{M}_{s}^{p}(\mathbb{B})$
$\begin{gathered} \text { DB } H^{\infty} \Rightarrow \text { IS } H^{p} \\ \forall p \leq \infty \text { with BLEO } \\ \text { by Carleson, } \\ \text { Shapiro \& Shields } \end{gathered}$	$\begin{gathered} \text { DB } H^{\infty} \Rightarrow \text { IS } H^{p} \\ \forall p<\infty \text { with BLEO } \\ \text { by E. A. } \end{gathered}$	IS $\mathcal{M}_{s}^{p} \Rightarrow$ IS H_{s}^{p} for $p \geq 2$ with BLEO by E. A.
IS $H^{\infty} \Rightarrow$ CS by Carleson	IS $H^{\infty} \Rightarrow$ CS by Varopoulos ${ }^{9}$	

$H^{\infty}(\mathbb{D})$	$H^{\infty}(\mathbb{B})$	$\mathcal{M}_{s}^{p}(\mathbb{B})$
DB $H^{\infty} \Rightarrow$ IS H^{p} $\forall p \leq \infty$ with BLEO by Carleson, Shapiro \& Shields	$\begin{gathered} \text { DB } H^{\infty} \Rightarrow \text { IS } H^{p} \\ \forall p<\infty \text { with BLEO } \\ \text { by E. A. } \end{gathered}$	$\begin{gathered} \text { IS } \mathcal{M}_{s}^{p} \Rightarrow \text { IS } H_{s}^{p} \\ \text { for } p \geq 2 \text { with BLEO } \\ \text { by E. A. } \end{gathered}$
IS $H^{\infty} \Rightarrow \mathrm{CS}$ by Carleson	$\begin{gathered} \text { IS } H^{\infty} \Rightarrow \mathrm{CS} \\ \text { by Varopoulos } \\ \text { DB } H^{\infty} \Rightarrow \mathrm{CS} \\ \text { by E. A. } \end{gathered}$	

$H^{\infty}(\mathbb{D})$	$H^{\infty}(\mathbb{B})$	$\mathcal{M}_{s}^{p}(\mathbb{B})$
$\mathrm{DB} H^{\infty} \Rightarrow$ IS H^{p}	$\mathrm{DB} H^{\infty} \Rightarrow \mathrm{IS} H^{p}$	IS $\mathcal{M}_{s}^{p} \Rightarrow \mathrm{IS} H_{s}^{p}$
$\forall p \leq \infty$ with BLEO	$\forall p<\infty$ with BLEO	for $p \geq 2$ with BLEO
by Carleson,	by E. A.	by E. A.
Shapiro \& Shields	IS $H^{\infty} \Rightarrow \mathrm{CS}$	
by Varopoulos 9	IS $\mathcal{M}_{s}^{p} \Rightarrow \mathrm{CS} H_{s}^{p}$	
IS $H^{\infty} \Rightarrow \mathrm{CS}$	DB $H^{\infty} \Rightarrow \mathrm{CS}$	by E. A.
by Carleson	by E. A.	

En l'honneur de Aline Bonami, Or $14 \not 425$

Theorem

Let S be an interpolating sequence for the multipliers algebra \mathcal{M}_{s}^{p} of $H_{s}^{p}(\mathbb{B})$ then S is also an interpolating sequence for H_{s}^{p} provided that $p \geq 2$.

Theorem

Let S be an interpolating sequence for the multipliers algebra \mathcal{M}_{s}^{p} of $H_{s}^{p}(\mathbb{B})$ then S is also an interpolating sequence for H_{s}^{p} provided that $p \geq 2$.

Theorem

Let S be an interpolating sequence for \mathcal{M}_{s}^{p} then S is Carleson $H_{s}^{p}(\mathbb{B})$.

Theorem

Let S be an interpolating sequence for the multipliers algebra \mathcal{M}_{s}^{p} of $H_{s}^{p}(\mathbb{B})$ then S is also an interpolating sequence for H_{s}^{p} provided that $p \geq 2$.

Theorem

Let S be an interpolating sequence for \mathcal{M}_{s}^{p} then S is Carleson $H_{s}^{p}(\mathbb{B})$.

En l'honneur de Aline Bonami, Or $15 \not 255$

En l'honneur de Aline Bonami, Or $15 \neq 25$

$H^{\infty}(\mathbb{D})$	$H^{\infty}(\mathbb{B})$	$\mathcal{M}_{s}^{p}(\mathbb{B})$

$H^{\infty}(\mathbb{D})$	$H^{\infty}(\mathbb{B})$	$\mathcal{M}_{s}^{p}(\mathbb{B})$
Separated union of IS		
is IS, by L. Carleson		

$H^{\infty}(\mathbb{D})$	$H^{\infty}(\mathbb{B})$	$\mathcal{M}_{s}^{p}(\mathbb{B})$
	Separated union of IS	
Separated union of IS	is IS, by L. Carleson	is IS, by Varopoulos ${ }^{10}$

$H^{\infty}(\mathbb{D})$	$H^{\infty}(\mathbb{B})$	$\mathcal{M}_{s}^{p}(\mathbb{B})$
Separated union of IS is IS, by L. Carleson	Separated union of IS is IS, by Varopoulos ${ }^{10}$	Separated union of IS is IS for $s=1, \forall p$ and for $p=2, \forall s$ by E. A.

$H^{\infty}(\mathbb{D})$	$H^{\infty}(\mathbb{B})$	$\mathcal{M}_{s}^{p}(\mathbb{B})$		
Separated union of IS is IS, by L. Carleson	Separated union of IS is IS, by Varopoulos			Separated union of IS
:---:				
is IS for $s=1, \forall p$				
and for $p=2, \forall s$				
by E. A.				

Theorem

Let S_{1} and S_{2} be two interpolating sequences in \mathcal{M}_{s}^{p} such that $S:=S_{1} \cup S_{2}$ is separated, then S is still an interpolating sequence in \mathcal{M}_{s}^{p},

$H^{\infty}(\mathbb{D})$	$H^{\infty}(\mathbb{B})$	$\mathcal{M}_{s}^{p}(\mathbb{B})$		
Separated union of IS is IS, by L. Carleson	Separated union of IS is IS, by Varopoulos			Separated union of IS
:---:				
is IS for $s=1, \forall p$				
and for $p=2, \forall s$				
by E. A.				

Theorem

Let S_{1} and S_{2} be two interpolating sequences in \mathcal{M}_{s}^{p} such that $S:=S_{1} \cup S_{2}$ is separated, then S is still an interpolating sequence in \mathcal{M}_{s}^{p}, provided that $s=1$.

En l'honneur de Aline Bonami, Or $16 \not 225$

Theorem

Let σ_{1} and σ_{2} be two interpolating sequences in the spectrum of the commutative algebra of operators A, such that $\sigma:=\sigma_{1} \cup \sigma_{2}$ is separated, then σ is an interpolating sequence for A.

Theorem

Let σ_{1} and σ_{2} be two interpolating sequences in the spectrum of the commutative algebra of operators A, such that $\sigma:=\sigma_{1} \cup \sigma_{2}$ is separated, then σ is an interpolating sequence for A.

Corollary

Let S_{1} and S_{2} be two interpolating sequences in \mathcal{M}_{s}^{2} such that $S:=S_{1} \cup S_{2}$ is separated, then S is still an interpolating sequence in \mathcal{M}_{s}^{2}.

En l'honneur de Aline Bonami, Oriz丸25

Thank you!

Typeset by the TeX preprocessor jPreTeX

En l'honneur de Aline Bonami, Or $18 \not 825$

An ounce of probability.

An ounce of probability.

We shall prove :

Theorem

Let S be a dual bounded sequence of points in \mathbb{B} for $H^{p}(\mathbb{B})$.

An ounce of probability.

We shall prove :

Theorem

Let S be a dual bounded sequence of points in \mathbb{B} for $H^{p}(\mathbb{B})$.
Then S is H^{r} interpolating with the bounded linear extension property, provided that $r<p \leq 2$.

An ounce of probability.

We shall prove :

Theorem

Let S be a dual bounded sequence of points in \mathbb{B} for $H^{p}(\mathbb{B})$.
Then S is H^{r} interpolating with the bounded linear extension property, provided that $r<p \leq 2$.

Proof.
we already know that $S \mathrm{DB} \Rightarrow S$ is Carleson, which means

$$
\forall \nu \in \ell^{q}(S),\left\|\sum_{a \in S} \nu_{a} k_{a, q}\right\|_{H^{q}} \lesssim\|\nu\|_{\ell^{q}},
$$

An ounce of probability.

We shall prove :

Theorem

Let S be a dual bounded sequence of points in \mathbb{B} for $H^{p}(\mathbb{B})$.
Then S is H^{r} interpolating with the bounded linear extension property, provided that $r<p \leq 2$.

Proof.
we already know that $S \mathrm{DB} \Rightarrow S$ is Carleson, which means

$$
\forall \nu \in \ell^{q}(S),\left\|\sum_{a \in S} \nu_{a} k_{a, q}\right\|_{H^{q}} \lesssim\|\nu\|_{\ell^{q}},
$$

with the reproducing kernel :

$$
k_{a}:=\frac{1}{(1-\bar{a} \cdot z)^{n}}, k_{a, q}:=\frac{k_{a}}{\left\|k_{a}\right\|_{H^{q}}} .
$$

En l'honneur de Aline Bonami, Or $19 \not 225$

The hypothesis means that there is a sequence $\left\{\rho_{a}\right\}_{a \in S} \subset H^{p}$ such that

$$
\exists C>0, \forall a \in S,\left\|\rho_{a}\right\|_{p} \leq C, \forall b \in S, \rho_{a}(b)=\delta_{a, b}\left\|k_{a}\right\|_{p^{\prime}} .
$$

The hypothesis means that there is a sequence $\left\{\rho_{a}\right\}_{a \in S} \subset H^{p}$ such that

$$
\exists C>0, \forall a \in S,\left\|\rho_{a}\right\|_{p} \leq C, \forall b \in S, \rho_{a}(b)=\delta_{a, b}\left\|k_{a}\right\|_{p^{\prime}}
$$

Let $\lambda \in \ell^{r}(S)$ to have that S is IS H^{r} means that there is an

$$
h \in H^{r}: \forall a \in S, h(a)=\lambda_{a}\left\|k_{a}\right\|_{r^{\prime}} .
$$

The hypothesis means that there is a sequence $\left\{\rho_{a}\right\}_{a \in S} \subset H^{p}$ such that

$$
\exists C>0, \forall a \in S,\left\|\rho_{a}\right\|_{p} \leq C, \forall b \in S, \rho_{a}(b)=\delta_{a, b}\left\|k_{a}\right\|_{p^{\prime}} .
$$

Let $\lambda \in \ell^{r}(S)$ to have that S is IS H^{r} means that there is an

$$
h \in H^{r}: \forall a \in S, h(a)=\lambda_{a}\left\|k_{a}\right\|_{r^{\prime}} .
$$

Choose q such that $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$ which is possible because $r<p$, and set

$$
h(z):=\sum_{a \in S} \lambda_{a} \rho_{a}(z) k_{a, q}(z) .
$$

The hypothesis means that there is a sequence $\left\{\rho_{a}\right\}_{a \in S} \subset H^{p}$ such that

$$
\exists C>0, \forall a \in S,\left\|\rho_{a}\right\|_{p} \leq C, \forall b \in S, \rho_{a}(b)=\delta_{a, b}\left\|k_{a}\right\|_{p^{\prime}} .
$$

Let $\lambda \in \ell^{r}(S)$ to have that S is IS H^{r} means that there is an

$$
h \in H^{r}: \forall a \in S, h(a)=\lambda_{a}\left\|k_{a}\right\|_{r^{\prime}} .
$$

Choose q such that $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$ which is possible because $r<p$, and set

$$
h(z):=\sum_{a \in S} \lambda_{a} \rho_{a}(z) k_{a, q}(z) .
$$

We have $h(b)=\lambda_{b} \rho_{b}(b) k_{b, q}(b) \simeq \lambda_{b}\left\|k_{b}\right\|_{r^{\prime}}$ by a simple computation.

The hypothesis means that there is a sequence $\left\{\rho_{a}\right\}_{a \in S} \subset H^{p}$ such that

$$
\exists C>0, \forall a \in S,\left\|\rho_{a}\right\|_{p} \leq C, \forall b \in S, \rho_{a}(b)=\delta_{a, b}\left\|k_{a}\right\|_{p^{\prime}} .
$$

Let $\lambda \in \ell^{r}(S)$ to have that S is IS H^{r} means that there is an

$$
h \in H^{r}: \forall a \in S, h(a)=\lambda_{a}\left\|k_{a}\right\|_{r^{\prime}} .
$$

Choose q such that $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$ which is possible because $r<p$, and set

$$
h(z):=\sum_{a \in S} \lambda_{a} \rho_{a}(z) k_{a, q}(z) .
$$

We have $h(b)=\lambda_{b} \rho_{b}(b) k_{b, q}(b) \simeq \lambda_{b}\left\|k_{b}\right\|_{r^{\prime}}$ by a simple computation. So it remains to evaluate the norm of h in H^{r}.

En l'honneur de Aline Bonami, O129丸25

Write $\lambda_{a}=\mu_{a} \nu_{a}$, with
$\mu_{a}:=\left|\lambda_{a}\right|^{r / p}, \nu_{a}:=\left|\lambda_{a}\right|^{r / q} \frac{\lambda_{a}}{\left|\lambda_{a}\right|} \Rightarrow\|\mu\|_{\ell^{p}}^{p}=\|\nu\|_{\ell^{q}}^{q}=\|\lambda\|_{\ell^{r}}^{r}$; then $h(z):=\sum_{a \in S} \mu_{a} \rho_{a}(z) \nu_{a} k_{a, q}(z)$

Write $\lambda_{a}=\mu_{a} \nu_{a}$, with

$$
\begin{gathered}
\mu_{a}:=\left|\lambda_{a}\right|^{r / p}, \nu_{a}:=\left|\lambda_{a}\right|^{r / q} \frac{\lambda_{a}}{\left|\lambda_{a}\right|} \Rightarrow\|\mu\|_{\ell^{p}}^{p}=\|\nu\|_{\ell^{q}}^{q}=\|\lambda\|_{\ell^{r}}^{r} \text {; then } \\
h(z):=\sum_{a \in S} \mu_{a} \rho_{a}(z) \nu_{a} k_{a, q}(z)
\end{gathered}
$$

and the idea is to write this sum of products as a product of sums

Write $\lambda_{a}=\mu_{a} \nu_{a}$, with

$$
\begin{gathered}
\mu_{a}:=\left|\lambda_{a}\right|^{r / p}, \nu_{a}:=\left|\lambda_{a}\right|^{r / q} \frac{\lambda_{a}}{\left|\lambda_{a}\right|} \Rightarrow\|\mu\|_{\ell^{p}}^{p}=\|\nu\|_{\ell^{q}}^{q}=\|\lambda\|_{\ell^{r}}^{r} ; \text { then } \\
h(z):=\sum_{a \in S} \mu_{a} \rho_{a}(z) \nu_{a} k_{a, q}(z)
\end{gathered}
$$

and the idea is to write this sum of products as a product of sums by use of a Rademacher sequence $\left\{\epsilon_{a}\right\}_{a \in S}$ of Bernouilli random variables.

Write $\lambda_{a}=\mu_{a} \nu_{a}$, with

$$
\begin{gathered}
\mu_{a}:=\left|\lambda_{a}\right|^{r / p}, \nu_{a}:=\left|\lambda_{a}\right|^{r / q} \frac{\lambda_{a}}{\left|\lambda_{a}\right|} \Rightarrow\|\mu\|_{\ell^{p}}^{p}=\|\nu\|_{\ell^{q}}^{q}=\|\lambda\|_{\ell^{r}}^{r} \text {; then } \\
h(z):=\sum_{a \in S} \mu_{a} \rho_{a}(z) \nu_{a} k_{a, q}(z)
\end{gathered}
$$

and the idea is to write this sum of products as a product of sums by use of a Rademacher sequence $\left\{\epsilon_{a}\right\}_{a \in S}$ of Bernouilli random variables.
$h(z)=\mathbb{E}\left(\left(\sum_{a \in S} \mu_{a} \epsilon_{a} \rho_{a}(z)\right) \times\left(\sum_{a \in S} \nu_{a} \epsilon_{a} k_{a, q}(z)\right)\right)$

Write $\lambda_{a}=\mu_{a} \nu_{a}$, with

$$
\begin{gathered}
\mu_{a}:=\left|\lambda_{a}\right|^{r / p}, \nu_{a}:=\left|\lambda_{a}\right|^{r / q} \frac{\lambda_{a}}{\left|\lambda_{a}\right|} \Rightarrow\|\mu\|_{\ell^{p}}^{p}=\|\nu\|_{\ell^{q}}^{q}=\|\lambda\|_{\ell^{r}}^{r} ; \text { then } \\
h(z):=\sum_{a \in S} \mu_{a} \rho_{a}(z) \nu_{a} k_{a, q}(z)
\end{gathered}
$$

and the idea is to write this sum of products as a product of sums by use of a Rademacher sequence $\left\{\epsilon_{a}\right\}_{a \in S}$ of Bernouilli random variables.
$h(z)=\mathbb{E}\left(\left(\sum_{a \in S} \mu_{a} \epsilon_{a} \rho_{a}(z)\right) \times\left(\sum_{a \in S} \nu_{a} \epsilon_{a} k_{a, q}(z)\right)\right)=: \mathbb{E}(f(\epsilon, z) g(\epsilon, z))$, because $\mathbb{E}\left(\epsilon_{a} \epsilon_{b}\right)=\delta_{a, b}$.

Write $\lambda_{a}=\mu_{a} \nu_{a}$, with

$$
\begin{gathered}
\mu_{a}:=\left|\lambda_{a}\right|^{r / p}, \nu_{a}:=\left|\lambda_{a}\right|^{r / q} \frac{\lambda_{a}}{\left|\lambda_{a}\right|} \Rightarrow\|\mu\|_{\ell^{p}}^{p}=\|\nu\|_{\ell^{q}}^{q}=\|\lambda\|_{\ell^{r}}^{r} \text {; then } \\
h(z):=\sum_{a \in S} \mu_{a} \rho_{a}(z) \nu_{a} k_{a, q}(z)
\end{gathered}
$$

and the idea is to write this sum of products as a product of sums by use of a Rademacher sequence $\left\{\epsilon_{a}\right\}_{a \in S}$ of Bernouilli random variables.
$h(z)=\mathbb{E}\left(\left(\sum_{a \in S} \mu_{a} \epsilon_{a} \rho_{a}(z)\right) \times\left(\sum_{a \in S} \nu_{a} \epsilon_{a} k_{a, q}(z)\right)\right)=: \mathbb{E}(f(\epsilon, z) g(\epsilon, z))$, because $\mathbb{E}\left(\epsilon_{a} \epsilon_{b}\right)=\delta_{a, b}$.
So, by Fubini and Hölder,

$$
\|h\|_{H^{r}}^{r}=\mathbb{E}\left(\int_{\partial \mathbb{B}}|f|^{r}|g|^{r} d \sigma\right)=\int_{\Omega \times \partial \mathbb{B}}|f|^{r}|g|^{r} d P \otimes d \sigma
$$

Write $\lambda_{a}=\mu_{a} \nu_{a}$, with

$$
\begin{gathered}
\mu_{a}:=\left|\lambda_{a}\right|^{r / p}, \nu_{a}:=\left|\lambda_{a}\right|^{r / q} \frac{\lambda_{a}}{\left|\lambda_{a}\right|} \Rightarrow\|\mu\|_{\ell^{p}}^{p}=\|\nu\|_{\ell^{q}}^{q}=\|\lambda\|_{\ell^{r}}^{r} \text {; then } \\
h(z):=\sum_{a \in S} \mu_{a} \rho_{a}(z) \nu_{a} k_{a, q}(z)
\end{gathered}
$$

and the idea is to write this sum of products as a product of sums by use of a Rademacher sequence $\left\{\epsilon_{a}\right\}_{a \in S}$ of Bernouilli random variables.
$h(z)=\mathbb{E}\left(\left(\sum_{a \in S} \mu_{a} \epsilon_{a} \rho_{a}(z)\right) \times\left(\sum_{a \in S} \nu_{a} \epsilon_{a} k_{a, q}(z)\right)\right)=: \mathbb{E}(f(\epsilon, z) g(\epsilon, z))$, because $\mathbb{E}\left(\epsilon_{a} \epsilon_{b}\right)=\delta_{a, b}$.
So, by Fubini and Hölder,

$$
\begin{aligned}
\|h\|_{H^{r}}^{r}=\mathbb{E}\left(\int_{\partial \mathbb{B}}|f|^{r}|g|^{r} d \sigma\right)=\int_{\Omega \times \partial \mathbb{B}}|f|^{r}|g|^{r} d P \otimes d \sigma \leq \\
\leq\left(\int_{\Omega \times \partial \mathbb{B}}|f|^{p} d P \otimes d \sigma\right)^{r / p}\left(\int_{\Omega \times \partial \mathbb{B}}|g|^{q} d P \otimes d \sigma\right)^{r / q}
\end{aligned}
$$

Write $\lambda_{a}=\mu_{a} \nu_{a}$, with

$$
\mu_{a}:=\left|\lambda_{a}\right|^{r / p}, \nu_{a}:=\left|\lambda_{a}\right|^{r / q} \frac{\lambda_{a}}{\left|\lambda_{a}\right|} \Rightarrow\|\mu\|_{\ell^{p}}^{p}=\|\nu\|_{\ell^{q}}^{q}=\|\lambda\|_{\ell^{r}}^{r} ; \text { then }
$$

$$
h(z):=\sum_{a \in S} \mu_{a} \rho_{a}(z) \nu_{a} k_{a, q}(z)
$$

and the idea is to write this sum of products as a product of sums by use of a Rademacher sequence $\left\{\epsilon_{a}\right\}_{a \in S}$ of Bernouilli random variables.
$h(z)=\mathbb{E}\left(\left(\sum_{a \in S} \mu_{a} \epsilon_{a} \rho_{a}(z)\right) \times\left(\sum_{a \in S} \nu_{a} \epsilon_{a} k_{a, q}(z)\right)\right)=: \mathbb{E}(f(\epsilon, z) g(\epsilon, z))$, because $\mathbb{E}\left(\epsilon_{a} \epsilon_{b}\right)=\delta_{a, b}$.
So, by Fubini and Hölder,

$$
\begin{array}{r}
\|h\|_{H^{r}}^{r}=\mathbb{E}\left(\int_{\partial \mathbb{B}}|f|^{r}|g|^{r} d \sigma\right)=\int_{\Omega \times \partial \mathbb{B}}|f|^{r}|g|^{r} d P \otimes d \sigma \leq \\
\leq\left(\int_{\Omega \times \partial \mathbb{B}}|f|^{p} d P \otimes d \sigma\right)^{r / p}\left(\int_{\Omega \times \partial \mathbb{B}}|g|^{q} d P \otimes d \sigma\right)^{r / q}=: I^{r / p} J^{r / q} .
\end{array}
$$

En l'honneur de Aline Bonami, O 21 _ 25

For I we have

$$
I=\int_{\Omega \times \partial \mathbb{B}}|f|^{p} d P \otimes d \sigma=\int_{\partial \mathbb{B}} \mathbb{E}\left(|f|^{p}\right),
$$

For I we have

$$
I=\int_{\Omega \times \partial \mathbb{B}}|f|^{p} d P \otimes d \sigma=\int_{\partial \mathbb{B}} \mathbb{E}\left(|f|^{p}\right),
$$

but, by Khintchine inequalities,

$$
\mathbb{E}\left(|f|^{p}\right)=\mathbb{E}\left(\left|\sum_{a \in S} \mu_{a} \epsilon_{a} \rho_{a}(z)\right|^{p}\right)
$$

For I we have

$$
I=\int_{\Omega \times \partial \mathbb{B}}|f|^{p} d P \otimes d \sigma=\int_{\partial \mathbb{B}} \mathbb{E}\left(|f|^{p}\right),
$$

but, by Khintchine inequalities,

$$
\mathbb{E}\left(|f|^{p}\right)=\mathbb{E}\left(\left|\sum_{a \in S} \mu_{a} \epsilon_{a} \rho_{a}(z)\right|^{p}\right) \simeq\left(\sum_{a \in S}\left|\mu_{a}\right|^{2}\left|\rho_{a}(z)\right|^{2}\right)^{p / 2}
$$

For I we have

$$
I=\int_{\Omega \times \partial \mathbb{B}}|f|^{p} d P \otimes d \sigma=\int_{\partial \mathbb{B}} \mathbb{E}\left(|f|^{p}\right),
$$

but, by Khintchine inequalities,

$$
\mathbb{E}\left(|f|^{p}\right)=\mathbb{E}\left(\left|\sum_{a \in S} \mu_{a} \epsilon_{a} \rho_{a}(z)\right|^{p}\right) \simeq\left(\sum_{a \in S}\left|\mu_{a}\right|^{2}\left|\rho_{a}(z)\right|^{2}\right)^{p / 2}
$$

and, for $p \leq 2$,

$$
\left(\sum_{a \in S}\left|\mu_{a}\right|^{2}\left|\rho_{a}(z)\right|^{2}\right)^{p / 2} \lesssim \sum_{a \in S}\left|\mu_{a}\right|^{p}\left|\rho_{a}(z)\right|^{p}
$$

For I we have

$$
I=\int_{\Omega \times \partial \mathbb{B}}|f|^{p} d P \otimes d \sigma=\int_{\partial \mathbb{B}} \mathbb{E}\left(|f|^{p}\right),
$$

but, by Khintchine inequalities,

$$
\mathbb{E}\left(|f|^{p}\right)=\mathbb{E}\left(\left|\sum_{a \in S} \mu_{a} \epsilon_{a} \rho_{a}(z)\right|^{p}\right) \simeq\left(\sum_{a \in S}\left|\mu_{a}\right|^{2}\left|\rho_{a}(z)\right|^{2}\right)^{p / 2}
$$

and, for $p \leq 2$,

$$
\left(\sum_{a \in S}\left|\mu_{a}\right|^{2}\left|\rho_{a}(z)\right|^{2}\right)^{p / 2} \lesssim \sum_{a \in S}\left|\mu_{a}\right|^{p}\left|\rho_{a}(z)\right|^{p} \Rightarrow \mathbb{E}\left(|f|^{p}\right) \lesssim \sum_{a \in S}\left|\mu_{a}\right|^{p}\left|\rho_{a}(z)\right|^{p}
$$

For I we have

$$
I=\int_{\Omega \times \partial \mathbb{B}}|f|^{p} d P \otimes d \sigma=\int_{\partial \mathbb{B}} \mathbb{E}\left(|f|^{p}\right),
$$

but, by Khintchine inequalities,

$$
\mathbb{E}\left(|f|^{p}\right)=\mathbb{E}\left(\left|\sum_{a \in S} \mu_{a} \epsilon_{a} \rho_{a}(z)\right|^{p}\right) \simeq\left(\sum_{a \in S}\left|\mu_{a}\right|^{2}\left|\rho_{a}(z)\right|^{2}\right)^{p / 2}
$$

and, for $p \leq 2$,

$$
\left(\sum_{a \in S}\left|\mu_{a}\right|^{2}\left|\rho_{a}(z)\right|^{2}\right)^{p / 2} \lesssim \sum_{a \in S}\left|\mu_{a}\right|^{p}\left|\rho_{a}(z)\right|^{p} \Rightarrow \mathbb{E}\left(|f|^{p}\right) \lesssim \sum_{a \in S}\left|\mu_{a}\right|^{p}\left|\rho_{a}(z)\right|^{p}
$$

Integrating on $\partial \mathbb{B}$ we get

$$
I \lesssim \int_{\partial \mathbb{B}}\left(\sum_{a \in S}\left|\mu_{a}\right|^{p}\left|\rho_{a}(z)\right|^{p}\right) d \sigma(z)
$$

For I we have

$$
I=\int_{\Omega \times \partial \mathbb{B}}|f|^{p} d P \otimes d \sigma=\int_{\partial \mathbb{B}} \mathbb{E}\left(|f|^{p}\right),
$$

but, by Khintchine inequalities,

$$
\mathbb{E}\left(|f|^{p}\right)=\mathbb{E}\left(\left|\sum_{a \in S} \mu_{a} \epsilon_{a} \rho_{a}(z)\right|^{p}\right) \simeq\left(\sum_{a \in S}\left|\mu_{a}\right|^{2}\left|\rho_{a}(z)\right|^{2}\right)^{p / 2}
$$

and, for $p \leq 2$,

$$
\left(\sum_{a \in S}\left|\mu_{a}\right|^{2}\left|\rho_{a}(z)\right|^{2}\right)^{p / 2} \lesssim \sum_{a \in S}\left|\mu_{a}\right|^{p}\left|\rho_{a}(z)\right|^{p} \Rightarrow \mathbb{E}\left(|f|^{p}\right) \lesssim \sum_{a \in S}\left|\mu_{a}\right|^{p}\left|\rho_{a}(z)\right|^{p}
$$

Integrating on $\partial \mathbb{B}$ we get

$$
I \lesssim \int_{\partial \mathbb{B}}\left(\sum_{a \in S}\left|\mu_{a}\right|^{p}\left|\rho_{a}(z)\right|^{p}\right) d \sigma(z) \leq \sup _{a \in S}\left\|\rho_{a}\right\|_{H^{p}}^{p}\|\mu\|_{\ell^{p}}^{p}
$$

For I we have

$$
I=\int_{\Omega \times \partial \mathbb{B}}|f|^{p} d P \otimes d \sigma=\int_{\partial \mathbb{B}} \mathbb{E}\left(|f|^{p}\right),
$$

but, by Khintchine inequalities,

$$
\mathbb{E}\left(|f|^{p}\right)=\mathbb{E}\left(\left|\sum_{a \in S} \mu_{a} \epsilon_{a} \rho_{a}(z)\right|^{p}\right) \simeq\left(\sum_{a \in S}\left|\mu_{a}\right|^{2}\left|\rho_{a}(z)\right|^{2}\right)^{p / 2}
$$

and, for $p \leq 2$,

$$
\left(\sum_{a \in S}\left|\mu_{a}\right|^{2}\left|\rho_{a}(z)\right|^{2}\right)^{p / 2} \lesssim \sum_{a \in S}\left|\mu_{a}\right|^{p}\left|\rho_{a}(z)\right|^{p} \Rightarrow \mathbb{E}\left(|f|^{p}\right) \lesssim \sum_{a \in S}\left|\mu_{a}\right|^{p}\left|\rho_{a}(z)\right|^{p}
$$

Integrating on $\partial \mathbb{B}$ we get

$$
I \lesssim \int_{\partial \mathbb{B}}\left(\sum_{a \in S}\left|\mu_{a}\right|^{p}\left|\rho_{a}(z)\right|^{p}\right) d \sigma(z) \leq \sup _{a \in S}\left\|\rho_{a}\right\|_{H^{p}}^{p}\|\mu\|_{\ell^{p}}^{p} \lesssim C^{p}\|\mu\|_{\ell^{p}}^{p} .
$$

En l'honneur de Aline Bonami, O, $22 \not 225$

For J we have

$$
J=\mathbb{E}\left(\int_{\partial \mathbb{B}}|g(z)|^{q} d \sigma\right)=\mathbb{E}\left(\|g\|_{H^{q}}^{q}\right) .
$$

For J we have

$$
J=\mathbb{E}\left(\int_{\partial \mathbb{B}}|g(z)|^{q} d \sigma\right)=\mathbb{E}\left(\|g\|_{H^{q}}^{q}\right) .
$$

But we know that S is a Carleson sequence, so

$$
\left.\|g\|_{H^{q}}^{q}=\| \sum_{a \in S} \nu_{a} \epsilon_{a} k_{a, q}(z)\right)\left\|_{H^{q}}^{q} \lesssim\right\| \nu \epsilon \|_{\ell^{q}}^{q}
$$

For J we have

$$
J=\mathbb{E}\left(\int_{\partial \mathbb{B}}|g(z)|^{q} d \sigma\right)=\mathbb{E}\left(\|g\|_{H^{q}}^{q}\right) .
$$

But we know that S is a Carleson sequence, so

$$
\left.\|g\|_{H^{q}}^{q}=\| \sum_{a \in S} \nu_{a} \epsilon_{a} k_{a, q}(z)\right)\left\|_{H^{q}}^{q} \lesssim\right\| \nu \epsilon\left\|_{\ell^{q}}^{q} \leq\right\| \nu \|_{\ell^{q}}^{q},
$$

because $\left|\epsilon_{a}\right| \leq 1$.

For J we have

$$
J=\mathbb{E}\left(\int_{\partial \mathbb{B}}|g(z)|^{q} d \sigma\right)=\mathbb{E}\left(\|g\|_{H^{q}}^{q}\right) .
$$

But we know that S is a Carleson sequence, so

$$
\left.\|g\|_{H^{q}}^{q}=\| \sum_{a \in S} \nu_{a} \epsilon_{a} k_{a, q}(z)\right)\left\|_{H^{q}}^{q} \lesssim\right\| \nu \epsilon\left\|_{\ell^{q}}^{q} \leq\right\| \nu \|_{\ell^{q}}^{q},
$$

because $\left|\epsilon_{a}\right| \leq 1$. So

$$
J \lesssim\|\nu\|_{\ell^{q}}^{q},
$$

For J we have

$$
J=\mathbb{E}\left(\int_{\partial \mathbb{B}}|g(z)|^{q} d \sigma\right)=\mathbb{E}\left(\|g\|_{H^{q}}^{q}\right) .
$$

But we know that S is a Carleson sequence, so

$$
\left.\|g\|_{H^{q}}^{q}=\| \sum_{a \in S} \nu_{a} \epsilon_{a} k_{a, q}(z)\right)\left\|_{H^{q}}^{q} \lesssim\right\| \nu \epsilon\left\|_{\ell^{q}}^{q} \leq\right\| \nu \|_{\ell^{q}}^{q},
$$

because $\left|\epsilon_{a}\right| \leq 1$. So

$$
J \lesssim\|\nu\|_{\ell^{q}}^{q},
$$

and

$$
\|h\|_{H^{r}} \leq I^{1 / p} J^{1 / q} \lesssim\left(\|\mu\|_{\ell^{p}}^{p}\right)^{1 / p}\left(\|\nu\|_{\ell^{q}}^{q}\right)^{1 / q} \leq\|\lambda\|_{\ell^{r}} .
$$

En l'honneur de Aline Bonami, O123 225

Harmonic analysis.

Harmonic analysis.

We shall develop here a strong feature introduced by Drury.

Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant $C(S)$ in \mathcal{M}_{s}^{p}.

Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant $C(S)$ in \mathcal{M}_{s}^{p}.
Set $N=\# S \in \mathbb{N}, S:=\left\{a_{1}, \ldots, a_{N}\right\} \subset \mathbb{B}$ and $\theta:=\exp \frac{2 i \pi}{N}$.

Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant $C(S)$ in \mathcal{M}_{s}^{p}.
Set $N=\# S \in \mathbb{N}, S:=\left\{a_{1}, \ldots, a_{N}\right\} \subset \mathbb{B}$ and $\theta:=\exp \frac{2 i \pi}{N}$.
S interpolating in \mathcal{M}_{s}^{p} implies that

$$
\forall j=1, \ldots, N, \exists \beta(j, \cdot) \in \mathcal{M}_{s}^{p}
$$

Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant $C(S)$ in \mathcal{M}_{s}^{p}.
Set $N=\# S \in \mathbb{N}, S:=\left\{a_{1}, \ldots, a_{N}\right\} \subset \mathbb{B}$ and $\theta:=\exp \frac{2 i \pi}{N}$.
S interpolating in \mathcal{M}_{s}^{p} implies that

$$
\forall j=1, \ldots, N, \exists \beta(j, \cdot) \in \mathcal{M}_{s}^{p}:: \forall k=1, \ldots, N, \beta\left(j, a_{k}\right)=\theta^{j k}
$$

Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant $C(S)$ in \mathcal{M}_{s}^{p}.
Set $N=\# S \in \mathbb{N}, S:=\left\{a_{1}, \ldots, a_{N}\right\} \subset \mathbb{B}$ and $\theta:=\exp \frac{2 i \pi}{N}$.
S interpolating in \mathcal{M}_{s}^{p} implies that

$$
\forall j=1, \ldots, N, \exists \beta(j, \cdot) \in \mathcal{M}_{s}^{p}:: \forall k=1, \ldots, N, \beta\left(j, a_{k}\right)=\theta^{j k}
$$

and $\forall j=1, \ldots, N,\|\beta(j, \cdot)\|_{\mathcal{M}_{s}^{p}} \leq C(S)$.

Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant $C(S)$ in \mathcal{M}_{s}^{p}.
Set $N=\# S \in \mathbb{N}, S:=\left\{a_{1}, \ldots, a_{N}\right\} \subset \mathbb{B}$ and $\theta:=\exp \frac{2 i \pi}{N}$.
S interpolating in \mathcal{M}_{s}^{p} implies that

$$
\forall j=1, \ldots, N, \exists \beta(j, \cdot) \in \mathcal{M}_{s}^{p}:: \forall k=1, \ldots, N, \beta\left(j, a_{k}\right)=\theta^{j k}
$$

and $\forall j=1, \ldots, N,\|\beta(j, \cdot)\|_{\mathcal{M}_{s}^{p}} \leq C(S)$.
Let $\gamma(l, \cdot):=\frac{1}{N} \sum_{j=1}^{N} \theta^{-j l} \beta(j, \cdot) \in \mathcal{M}_{s}^{p}$

Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant $C(S)$ in \mathcal{M}_{s}^{p}.
Set $N=\# S \in \mathbb{N}, S:=\left\{a_{1}, \ldots, a_{N}\right\} \subset \mathbb{B}$ and $\theta:=\exp \frac{2 i \pi}{N}$.
S interpolating in \mathcal{M}_{s}^{p} implies that

$$
\forall j=1, \ldots, N, \exists \beta(j, \cdot) \in \mathcal{M}_{s}^{p}:: \forall k=1, \ldots, N, \beta\left(j, a_{k}\right)=\theta^{j k}
$$

and $\forall j=1, \ldots, N,\|\beta(j, \cdot)\|_{\mathcal{M}_{s}^{p}} \leq C(S)$.
Let $\gamma(l, \cdot):=\frac{1}{N} \sum_{j=1}^{N} \theta^{-j l} \beta(j, \cdot) \in \mathcal{M}_{s}^{p} \Rightarrow\|\gamma(l, \cdot)\|_{\mathcal{M}_{s}^{p}} \leq C(S)$.

Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant $C(S)$ in \mathcal{M}_{s}^{p}.
Set $N=\# S \in \mathbb{N}, S:=\left\{a_{1}, \ldots, a_{N}\right\} \subset \mathbb{B}$ and $\theta:=\exp \frac{2 i \pi}{N}$.
S interpolating in \mathcal{M}_{s}^{p} implies that

$$
\forall j=1, \ldots, N, \exists \beta(j, \cdot) \in \mathcal{M}_{s}^{p}:: \forall k=1, \ldots, N, \beta\left(j, a_{k}\right)=\theta^{j k}
$$

and $\forall j=1, \ldots, N,\|\beta(j, \cdot)\|_{\mathcal{M}_{s}^{p}} \leq C(S)$.
Let $\gamma(l, \cdot):=\frac{1}{N} \sum_{j=1}^{N} \theta^{-j l} \beta(j, \cdot) \in \mathcal{M}_{s}^{p} \Rightarrow\|\gamma(l, \cdot)\|_{\mathcal{M}_{s}^{p}} \leq C(S)$.
This is the Fourier transform, on the group of $n^{t h}$ roots of unity, of the function $\beta(j, \cdot)$,

Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant $C(S)$ in \mathcal{M}_{s}^{p}.
Set $N=\# S \in \mathbb{N}, S:=\left\{a_{1}, \ldots, a_{N}\right\} \subset \mathbb{B}$ and $\theta:=\exp \frac{2 i \pi}{N}$.
S interpolating in \mathcal{M}_{s}^{p} implies that

$$
\forall j=1, \ldots, N, \exists \beta(j, \cdot) \in \mathcal{M}_{s}^{p}:: \forall k=1, \ldots, N, \beta\left(j, a_{k}\right)=\theta^{j k}
$$

and $\forall j=1, \ldots, N,\|\beta(j, \cdot)\|_{\mathcal{M}_{s}^{p}} \leq C(S)$.
Let $\gamma(l, \cdot):=\frac{1}{N} \sum_{j=1}^{N} \theta^{-j l} \beta(j, \cdot) \in \mathcal{M}_{s}^{p} \Rightarrow\|\gamma(l, \cdot)\|_{\mathcal{M}_{s}^{p}} \leq C(S)$.
This is the Fourier transform, on the group of $n^{\text {th }}$ roots of unity, of the function $\beta(j, \cdot)$, i.e. $\gamma(l, z)=\hat{\beta}(l, z)$, the parameter $z \in \mathbb{B}$ being fixed.

Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant $C(S)$ in \mathcal{M}_{s}^{p}.
Set $N=\# S \in \mathbb{N}, S:=\left\{a_{1}, \ldots, a_{N}\right\} \subset \mathbb{B}$ and $\theta:=\exp \frac{2 i \pi}{N}$.
S interpolating in \mathcal{M}_{s}^{p} implies that

$$
\forall j=1, \ldots, N, \exists \beta(j, \cdot) \in \mathcal{M}_{s}^{p}:: \forall k=1, \ldots, N, \beta\left(j, a_{k}\right)=\theta^{j k}
$$

and $\forall j=1, \ldots, N,\|\beta(j, \cdot)\|_{\mathcal{M}_{s}^{p}} \leq C(S)$.
Let $\gamma(l, \cdot):=\frac{1}{N} \sum_{j=1}^{N} \theta^{-j l} \beta(j, \cdot) \in \mathcal{M}_{s}^{p} \Rightarrow\|\gamma(l, \cdot)\|_{\mathcal{M}_{s}^{p}} \leq C(S)$.
This is the Fourier transform, on the group of $n^{t h}$ roots of unity, of the function $\beta(j, \cdot)$, i.e. $\gamma(l, z)=\hat{\beta}(l, z)$, the parameter $z \in \mathbb{B}$ being fixed. We also have, convolution becoming product by Fourier :

Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant $C(S)$ in \mathcal{M}_{s}^{p}.
Set $N=\# S \in \mathbb{N}, S:=\left\{a_{1}, \ldots, a_{N}\right\} \subset \mathbb{B}$ and $\theta:=\exp \frac{2 i \pi}{N}$.
S interpolating in \mathcal{M}_{s}^{p} implies that

$$
\forall j=1, \ldots, N, \exists \beta(j, \cdot) \in \mathcal{M}_{s}^{p}:: \forall k=1, \ldots, N, \beta\left(j, a_{k}\right)=\theta^{j k}
$$

and $\forall j=1, \ldots, N,\|\beta(j, \cdot)\|_{\mathcal{M}_{s}^{p}} \leq C(S)$.
Let $\gamma(l, \cdot):=\frac{1}{N} \sum_{j=1}^{N} \theta^{-j l} \beta(j, \cdot) \in \mathcal{M}_{s}^{p} \Rightarrow\|\gamma(l, \cdot)\|_{\mathcal{M}_{s}^{p}} \leq C(S)$.
This is the Fourier transform, on the group of $n^{t h}$ roots of unity, of the function $\beta(j, \cdot)$, i.e. $\gamma(l, z)=\hat{\beta}(l, z)$, the parameter $z \in \mathbb{B}$ being fixed. We also have, convolution becoming product by Fourier : $\gamma^{k}(l, \cdot)=\underbrace{\widehat{\beta * \cdot *} \beta}_{k \text { times }}(l, \cdot)$.

Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant $C(S)$ in \mathcal{M}_{s}^{p}.
Set $N=\# S \in \mathbb{N}, S:=\left\{a_{1}, \ldots, a_{N}\right\} \subset \mathbb{B}$ and $\theta:=\exp \frac{2 i \pi}{N}$.
S interpolating in \mathcal{M}_{s}^{p} implies that

$$
\forall j=1, \ldots, N, \exists \beta(j, \cdot) \in \mathcal{M}_{s}^{p}:: \forall k=1, \ldots, N, \beta\left(j, a_{k}\right)=\theta^{j k}
$$

and $\forall j=1, \ldots, N,\|\beta(j, \cdot)\|_{\mathcal{M}_{s}^{p}} \leq C(S)$.
Let $\gamma(l, \cdot):=\frac{1}{N} \sum_{j=1}^{N} \theta^{-j l} \beta(j, \cdot) \in \mathcal{M}_{s}^{p} \Rightarrow\|\gamma(l, \cdot)\|_{\mathcal{M}_{s}^{p}} \leq C(S)$.
This is the Fourier transform, on the group of $n^{t h}$ roots of unity, of the function $\beta(j, \cdot)$, i.e. $\gamma(l, z)=\hat{\beta}(l, z)$, the parameter $z \in \mathbb{B}$ being fixed. We also have, convolution becoming product by Fourier : $\gamma^{k}(l, \cdot)=\underbrace{\widehat{\beta * \cdot *} \beta}_{k \text { times }}(l, \cdot)$.
Moreover we have

$$
\gamma\left(l, a_{k}\right)=\frac{1}{N} \sum_{j=1}^{N} \theta^{-j l} \beta\left(j, a_{k}\right)=\delta_{l k} .
$$

En l'honneur de Aline Bonami, O. $24 \not \subset 25$

We have by Plancherel on this group

$$
\forall z \in \mathbb{B}, \sum_{l=1}^{N}\left|\gamma^{k}(l, z)\right|^{2}=\frac{1}{N} \sum_{j=1}^{N}|\underbrace{\beta * \cdot * \beta}_{k \text { times }}(j, z)|^{2} .
$$

We have by Plancherel on this group

$$
\forall z \in \mathbb{B}, \sum_{l=1}^{N}\left|\gamma^{k}(l, z)\right|^{2}=\frac{1}{N} \sum_{j=1}^{N}|\underbrace{\beta * \cdot \beta}_{k \text { times }}(j, z)|^{2} .
$$

This allows us to get

Lemma

We have, for $j \leq s, k \in \mathbb{N}$,

$$
\sum_{l=1}^{N}\left|R^{j}\left(\gamma^{k}(l, \cdot) h(\cdot)\right)\right|^{2}=\frac{1}{N} \sum_{k=1}^{N}|R^{j}(\underbrace{\beta * \beta * \cdots * \beta}_{k \text { times }}(l, \cdot) h(\cdot))|^{2} .
$$

We have by Plancherel on this group

$$
\forall z \in \mathbb{B}, \sum_{l=1}^{N}\left|\gamma^{k}(l, z)\right|^{2}=\frac{1}{N} \sum_{j=1}^{N}|\underbrace{\beta * \cdot \beta}_{k \text { times }}(j, z)|^{2} .
$$

This allows us to get

Lemma

$$
\text { We have, for } j \leq s, k \in \mathbb{N} \text {, }
$$

$$
\sum_{l=1}^{N}\left|R^{j}\left(\gamma^{k}(l, \cdot) h(\cdot)\right)\right|^{2}=\frac{1}{N} \sum_{k=1}^{N}|R^{j}(\underbrace{\beta * \beta * \cdots * \beta}_{k \text { times }}(l, \cdot) h(\cdot))|^{2} .
$$

And this is the "miracle lemma" we use to get our results.

En l'honneur de Aline Bonami, O125丸25

Thank you!

Typeset by the TeX preprocessor ${ }^{j} P r e T e X$

En l'honneur de Aline Bonami, O125丸25

[^0]: ${ }^{1}$ Amer. J. Math. (1958)

[^1]: ${ }^{1}$ Amer. J. Math. (1958)
 ${ }^{2}$ Math. Scand. (1967)

[^2]: ${ }^{1}$ Amer. J. Math. (1958)
 ${ }^{2}$ Math. Scand. (1967)

[^3]: ${ }^{1}$ Amer. J. Math. (1958)
 ${ }^{2}$ Math. Scand. (1967)
 ${ }^{3}$ Amer. J. Math. (2012)

[^4]: ${ }^{1}$ Amer. J. Math. (1958)
 ${ }^{2}$ Math. Scand. (1967)
 ${ }^{3}$ Amer. J. Math. (2012)

[^5]: ${ }^{1}$ Amer. J. Math. (1958)
 ${ }^{2}$ Math. Scand. (1967)
 ${ }^{3}$ Amer. J. Math. (2012)

[^6]: ${ }^{1}$ Amer. J. Math. (1958)
 ${ }^{2}$ Math. Scand. (1967)
 ${ }^{3}$ Amer. J. Math. (2012)

[^7]: ${ }^{4}$ Amer. J. Math. (1961)
 ${ }^{5}$ Mem. Amer. Math. Soc. (2006)
 ${ }^{6}$ Preprint Uppsala (1962)
 ${ }^{7}$ CRAS (1971)

[^8]: ${ }^{4}$ Amer. J. Math. (1961)
 ${ }^{5}$ Mem. Amer. Math. Soc. (2006)
 ${ }^{6}$ Preprint Uppsala (1962)
 ${ }^{7}$ CRAS (1971)

[^9]: ${ }^{4}$ Amer. J. Math. (1961)
 ${ }^{5}$ Mem. Amer. Math. Soc. (2006)
 ${ }^{6}$ Preprint Uppsala (1962)
 ${ }^{7}$ CRAS (1971)

[^10]: ${ }^{4}$ Amer. J. Math. (1961)
 ${ }^{5}$ Mem. Amer. Math. Soc. (2006)
 ${ }^{6}$ Preprint Uppsala (1962)
 ${ }^{7}$ CRAS (1971)

