Particle systems as solutions of SDEs systems

Piotr Graczyk

LAREMA Université d'Angers

12 June 2014

Conference in honor of Aline Bonami Harmonic Analysis, Probability and Applications Orléans, June 2014

Articles

P. Graczyk, J. Malecki

Multidimensional Yamada-Watanabe theorem and its applications to particle systems J. Math. Phys. 54(2013)

- P. Graczyk, J. Malecki Strong solutions of non-colliding particle systems, preprint (2014)
- P. Graczyk, J. Malecki Generalized Squared Bessel particle systems and Wallach set, preprint (2014).

Motivation: processes conditioned to non-colliding

• Consider a system of p Brownian particles (B_1, \ldots, B_p) , i.e. independent BM on \mathbb{R}

Motivation: processes conditioned to non-colliding

- Consider a system of p Brownian particles (B_1, \ldots, B_p) , i.e. independent BM on \mathbb{R}
- For each starting point $(B_1(0), \ldots, B_p(0)) \in \mathbb{R}^p$, the first collision time

$$T_B = \inf\{t > 0 : B_i(t) = B_j(t) \text{ for some } i \neq j\}$$

is finite with probability 1.

Motivation: processes conditioned to non-colliding

- Consider a system of p Brownian particles (B_1, \ldots, B_p) , i.e. independent BM on \mathbb{R}
- For each starting point $(B_1(0), \ldots, B_p(0)) \in \mathbb{R}^p$, the first collision time

$$T_B = \inf\{t > 0 : B_i(t) = B_j(t) \text{ for some } i \neq j\}$$

is finite with probability 1.

• We condition (B_1, \ldots, B_p) to non-colliding

Conditioning to non-colliding

• Consider Vandermonde determinant

$$V(x_1,\ldots,x_p)=\prod_{i< j}(x_j-x_i),$$

• V = 0 iff some $x_i = x_j$ collide $(i \neq j)$,

•
$$V > 0$$
 when $x_1 < \ldots < x_p$,

• V is Δ -harmonic

Conditioning to non-colliding

• Consider Vandermonde determinant

$$V(x_1,\ldots,x_p)=\prod_{i< j}(x_j-x_i),$$

- V = 0 iff some $x_i = x_j$ collide $(i \neq j)$,
- V > 0 when $x_1 < ... < x_p$,
- V is Δ -harmonic
- Denote by $(\lambda_1, \ldots, \lambda_p)$ the process (B_1, \ldots, B_p) starting from

$$B_1(0) < \ldots < B_p(0),$$

conditioned using the Doob *h*-transform with h = V

Dyson Brownian Motion (1962)

- The system $(\lambda_1, \ldots, \lambda_p)$ starts from $\lambda_1(0) < \ldots \lambda_p(0)$.
- The first collision time

$$T_{\Lambda} = \inf\{t > 0 : \lambda_i(t) = \lambda_j(t) \text{ for some } i \neq j\}$$

is infinite with prob. 1.

• The particles remain ordered

$$\lambda_1(t) < \ldots < \lambda_p(t)$$

i.e. the particles belong to the positive Weyl chamber

Dyson Brownian Motion (1962)

- The system $(\lambda_1, \ldots, \lambda_p)$ starts from $\lambda_1(0) < \ldots \lambda_p(0)$.
- The first collision time

$$T_{\Lambda} = \inf\{t > 0 : \lambda_i(t) = \lambda_j(t) \text{ for some } i \neq j\}$$

is infinite with prob. 1.

• The particles remain ordered

$$\lambda_1(t) < \ldots < \lambda_p(t)$$

i.e. the particles belong to the positive Weyl chamber • The system $(\lambda_1, \ldots, \lambda_p)$ satisfies

$$d\lambda_i(t) = dB_i + \sum_{j \neq i} \frac{1}{\lambda_i - \lambda_j} dt$$

• The repulsive drift terms $\frac{1}{\lambda_i - \lambda_j}$ prevent collisions, to which the martingale parts tend

β -Dyson Brownian Motion

 β -Dyson BM is described for $\beta > 0$ by

$$d\lambda_i = dB_i + \frac{\beta}{2} \sum_{j \neq i} \frac{1}{\lambda_i - \lambda_j} dt.$$

• *p*-dim. BM conditioned not to collide is a Dyson BM with $\beta = 2$.

β -Dyson Brownian Motion

 β -Dyson BM is described for $\beta > 0$ by

$$d\lambda_i = dB_i + rac{\beta}{2} \sum_{j \neq i} rac{1}{\lambda_i - \lambda_j} dt.$$

- *p*-dim. BM conditioned not to collide is a Dyson BM with $\beta = 2$.
- A β -Dyson BM is non-colliding iff $\beta \geq 1$ (Rogers, Shi, 1993)
- For $\beta < 1$ the repulsion force $\frac{\beta}{\lambda_i \lambda_j}$ is too little w.r. to the colliding martingales dB_i .

Non-colliding squared Bessel particles (Koenig, O'Connell, 2001)

Let (X₁,..., X_p) be a system of independent BESQ processes on R⁺ with dimension α > 0

$$dX_i = 2\sqrt{X_i}dB_i + \alpha dt, \quad i = 1, \dots, p, \quad \alpha > 0.$$

starting from $X_i(0) > 0$.

Non-colliding squared Bessel particles (Koenig, O'Connell, 2001)

Let (X₁,..., X_p) be a system of independent BESQ processes on R⁺ with dimension α > 0

$$dX_i = 2\sqrt{X_i}dB_i + \alpha dt, \quad i = 1, \dots, p, \quad \alpha > 0.$$

starting from $X_i(0) > 0$.

• In such a system collisions happen with probability 1. The function

$$V(x_1,\ldots,x_p) = \prod_{i < j} (x_j - x_i)$$

is harmonic for the generator of (X_1, \ldots, X_p)

• By *h*-Doob transform (h = V) we obtain a non-colliding squared Bessel particle system

Non-colliding squared Bessel particles

Non-colliding squared Bessel particles

• Process $(\lambda_1, \ldots, \lambda_p)$ satisfies the following system of SDEs:

$$d\lambda_i = 2\sqrt{\lambda_i}dB_i + \left(\alpha + 2(p-1) + 2\sum_{j\neq i}\frac{\lambda_i + \lambda_j}{\lambda_i - \lambda_j}\right)dt,$$

where $\lambda_1(0) < \ldots < \lambda_p(0)$.

Non-colliding squared Bessel particles

• Process $(\lambda_1, \ldots, \lambda_p)$ satisfies the following system of SDEs:

$$d\lambda_i = 2\sqrt{\lambda_i}dB_i + \left(\alpha + 2(p-1) + 2\sum_{j\neq i}\frac{\lambda_i + \lambda_j}{\lambda_i - \lambda_j}\right)dt,$$

where $\lambda_1(0) < \ldots < \lambda_p(0)$.

• It is a special case of a β -BESQ particle system:

$$d\lambda_i = 2\sqrt{\lambda_i}dB_i + \beta\left(\alpha + \sum_{j\neq i}\frac{\lambda_i + \lambda_j}{\lambda_i - \lambda_j}\right)dt.$$

• Let X_t be a Brownian Motion on the space of symmetric matrices Sym_p (stochastic Gaussian Orthogonal Ensemble)

- Let X_t be a Brownian Motion on the space of symmetric matrices Sym_p (stochastic Gaussian Orthogonal Ensemble)
- The process X_t satisfies a matrix SDE

$$dX_t = \frac{1}{2}dW_t + \frac{1}{2}dW_t^T$$

where W_t is a $p \times p$ Brownian square matrix

Proposition

Let X_t be a stochastic matrix process on Sym_p and Λ_t its ordered eigenvalues, $\lambda_1(t) \leq \ldots \leq \lambda_p(t)$. Suppose that X_t satisfies the SDE

 $dX_t = h(X_t)dW_tg(X_t) + g(X_t)dW_t^Th(X_t) + b(X_t)dt$

where the functions $g, h, b : \mathbb{R} \to \mathbb{R}$ act spectrally on Sym_p . If $\lambda_1(0) \leq \ldots \leq \lambda_p(0)$, then the process Λ_t is a semimartingale, satisfying for t < T=first collision time the SDEs system:

$$d\lambda_i = 2g(\lambda_i)h(\lambda_i)dB_i + \left(b(\lambda_i) + \sum_{j \neq i} \frac{G(\lambda_i, \lambda_j)}{\lambda_i - \lambda_j}\right)dt,$$

where $G(x, y) = g^2(x)h^2(y) + g^2(y)h^2(x)$.

 $dX_t = \frac{1}{2}dW_t + \frac{1}{2}dW_t^T$

$$dX_t = \frac{1}{2}dW_t + \frac{1}{2}dW_t^T$$

• If X_0 has no multiple eigenvalues:

$$\lambda_1(0) < \ldots < \lambda_p(0),$$

then the eigenvalue process Λ_t satisfies

$$d\lambda_i = dB_i + \frac{1}{2}\sum_{j\neq i}\frac{1}{\lambda_i - \lambda_j}dt, \quad i = 1, \dots, p,$$

$$dX_t = \frac{1}{2}dW_t + \frac{1}{2}dW_t^{\mathsf{T}}$$

• If X_0 has no multiple eigenvalues:

$$\lambda_1(0) < \ldots < \lambda_p(0),$$

then the eigenvalue process Λ_t satisfies

$$d\lambda_i = dB_i + \frac{1}{2}\sum_{j\neq i}\frac{1}{\lambda_i - \lambda_j}dt, \quad i = 1, \dots, p,$$

• If X_t is a BM on $Herm_p$ (Stochastic UGE) (W_t is a complex matrix BM, $dX_t = \frac{1}{2}dW_t + \frac{1}{2}dW_t^*$) we obtain

$$d\lambda_i = dB_i + \sum_{j \neq i} \frac{1}{\lambda_i - \lambda_j} dt, \quad i = 1, \dots, p,$$

$$dX_t = \frac{1}{2}dW_t + \frac{1}{2}dW_t^{\mathsf{T}}$$

• If X_0 has no multiple eigenvalues:

$$\lambda_1(0) < \ldots < \lambda_p(0),$$

then the eigenvalue process Λ_t satisfies

$$d\lambda_i = dB_i + \frac{1}{2}\sum_{j\neq i}\frac{1}{\lambda_i - \lambda_j}dt, \quad i = 1, \dots, p,$$

• If X_t is a BM on $Herm_p$ (Stochastic UGE) (W_t is a complex matrix BM, $dX_t = \frac{1}{2}dW_t + \frac{1}{2}dW_t^*$) we obtain

$$d\lambda_i = dB_i + \sum_{j \neq i} \frac{1}{\lambda_i - \lambda_j} dt, \quad i = 1, \dots, p,$$

 \bullet In both cases Λ_t is a Dyson Brownian Motion

$$dX_t = \sqrt{X_t} dW_t + dW_t^T \sqrt{X_t} + \alpha I dt, \quad \alpha \ge p - 1.$$

$$dX_t = \sqrt{X_t} dW_t + dW_t^T \sqrt{X_t} + \alpha I dt, \quad \alpha \ge p - 1.$$

• When $\alpha \in \mathbb{N}$, the process $X_t = N_t N_t^T$ with N_t = Brownian Motion on $p \times \alpha$ matrices

$$dX_t = \sqrt{X_t} dW_t + dW_t^T \sqrt{X_t} + \alpha I dt, \quad \alpha \ge p - 1.$$

- When $\alpha \in \mathbb{N}$, the process $X_t = N_t N_t^T$ with N_t = Brownian Motion on $p \times \alpha$ matrices
- Process X_t is also called Wishart (Laguerre) process (Bru(1991), Koenig, O'Connell(2001), Matsumoto, Yor, Donati-Martin(2004))

$$dX_t = \sqrt{X_t} dW_t + dW_t^T \sqrt{X_t} + \alpha I dt, \quad \alpha \ge p - 1.$$

- When $\alpha \in \mathbb{N}$, the process $X_t = N_t N_t^T$ with N_t = Brownian Motion on $p \times \alpha$ matrices
- Process X_t is also called Wishart (Laguerre) process (Bru(1991), Koenig, O'Connell(2001), Matsumoto, Yor, Donati-Martin(2004))
- If X_0 has no multiple eigenvalues,

$$d\lambda_i = 2\sqrt{\lambda_i}dB_i + \left(\alpha + \sum_{j\neq i}\frac{\lambda_i + \lambda_j}{\lambda_i - \lambda_j}\right)dt$$

Consider a system of SDEs on the cone $\overline{C_{+}} = \{(x_{1}, \dots, x_{p}) \in \mathbb{R}^{p} : x_{1} \leq x_{2} \leq \dots \leq x_{p}\}$ $d\lambda_{i} = \sigma_{i}(\lambda_{i})dB_{i} + \left(b_{i}(\lambda_{i}) + \sum_{j \neq i} \frac{H_{ij}(\lambda_{i}, \lambda_{j})}{\lambda_{i} - \lambda_{j}}\right)dt$ $i = 1, \dots, p$

We prove, when starting from $\lambda_1(0) \leq \ldots \leq \lambda_p(0)$

Consider a system of SDEs on the cone $\overline{C_{+}} = \{(x_{1}, \dots, x_{p}) \in \mathbb{R}^{p} : x_{1} \leq x_{2} \leq \dots \leq x_{p}\}$ $d\lambda_{i} = \sigma_{i}(\lambda_{i})dB_{i} + \left(b_{i}(\lambda_{i}) + \sum_{j \neq i} \frac{H_{ij}(\lambda_{i}, \lambda_{j})}{\lambda_{i} - \lambda_{j}}\right)dt$ $i = 1, \dots, p$

We prove, when starting from $\lambda_1(0) \leq \ldots \leq \lambda_p(0)$ and under natural conditions on the coefficients σ_i, H_{ij}, b_i

Consider a system of SDEs on the cone $\overline{C_{+}} = \{(x_{1}, \dots, x_{p}) \in \mathbb{R}^{p} : x_{1} \leq x_{2} \leq \dots \leq x_{p}\}$ $d\lambda_{i} = \sigma_{i}(\lambda_{i})dB_{i} + \left(b_{i}(\lambda_{i}) + \sum_{j \neq i} \frac{H_{ij}(\lambda_{i}, \lambda_{j})}{\lambda_{i} - \lambda_{j}}\right)dt$ $i = 1, \dots, p$

We prove, when starting from $\lambda_1(0) \leq \ldots \leq \lambda_p(0)$ and under natural conditions on the coefficients σ_i, H_{ii}, b_i

• strong existence and pathwise unicity

Consider a system of SDEs on the cone $\overline{C_{+}} = \{(x_{1}, \dots, x_{p}) \in \mathbb{R}^{p} : x_{1} \leq x_{2} \leq \dots \leq x_{p}\}$ $d\lambda_{i} = \sigma_{i}(\lambda_{i})dB_{i} + \left(b_{i}(\lambda_{i}) + \sum_{j \neq i} \frac{H_{ij}(\lambda_{i}, \lambda_{j})}{\lambda_{i} - \lambda_{j}}\right)dt$ $i = 1, \dots, p$

We prove, when starting from $\lambda_1(0) \leq \ldots \leq \lambda_p(0)$ and under natural conditions on the coefficients σ_i, H_{ij}, b_i

- strong existence and pathwise unicity
- non-colliding of solutions of this system

Consider a system of SDEs on the cone $\overline{C_{+}} = \{(x_{1}, \dots, x_{p}) \in \mathbb{R}^{p} : x_{1} \leq x_{2} \leq \dots \leq x_{p}\}$ $d\lambda_{i} = \sigma_{i}(\lambda_{i})dB_{i} + \left(b_{i}(\lambda_{i}) + \sum_{j \neq i} \frac{H_{ij}(\lambda_{i}, \lambda_{j})}{\lambda_{i} - \lambda_{j}}\right)dt$ $i = 1, \dots, p$

We prove, when starting from $\lambda_1(0) \leq \ldots \leq \lambda_p(0)$ and under natural conditions on the coefficients σ_i, H_{ij}, b_i

- strong existence and pathwise unicity
- non-colliding of solutions of this system
- by methods of classical Itô calculus

Motivation for different H_{ij}

• Important example when different H_{ij} appear:

• Important example when different H_{ij} appear:

Brownian particles with nearest neighbour repulsion $\sigma_i = 1, b_i = 0,$ $H_{ij} = \gamma$ when |i - j| = 1 and zero otherwise

What was known on the existence of pathwise unique strong non-colliding solutions

WORLD CENTER OF THIS KNOWLEDGE: ORLEANS!
WORLD CENTER OF THIS KNOWLEDGE: ORLEANS!

• E. Cépa and D. Lépingle(1997): for Dyson Brownian Motions with linear drift

- E. Cépa and D. Lépingle(1997): for Dyson Brownian Motions with linear drift
- A. Bonami, F. Bouchut, E. Cépa and D. Lépingle(1999): for Dyson Brownian Motions with a Hilbert transform drift term

- E. Cépa and D. Lépingle(1997): for Dyson Brownian Motions with linear drift
- A. Bonami, F. Bouchut, E. Cépa and D. Lépingle(1999): for Dyson Brownian Motions with a Hilbert transform drift term
- B. Schapira(2007), N. Demni(2009): for radial Dunkl and Heckman-Opdam SDEs, with more general singularities

- E. Cépa and D. Lépingle(1997): for Dyson Brownian Motions with linear drift
- A. Bonami, F. Bouchut, E. Cépa and D. Lépingle(1999): for Dyson Brownian Motions with a Hilbert transform drift term
- B. Schapira(2007), N. Demni(2009): for radial Dunkl and Heckman-Opdam SDEs, with more general singularities
- D. Lépingle(2010): for Squared Bessel particle systems with α > p and some other SDEs systems

- E. Cépa and D. Lépingle(1997): for Dyson Brownian Motions with linear drift
- A. Bonami, F. Bouchut, E. Cépa and D. Lépingle(1999): for Dyson Brownian Motions with a Hilbert transform drift term
- B. Schapira(2007), N. Demni(2009): for radial Dunkl and Heckman-Opdam SDEs, with more general singularities
- D. Lépingle(2010): for Squared Bessel particle systems with α > p and some other SDEs systems
- using the techniques of Multivalued SDEs

• Recall the SDE for a Bessel process of dimension $\alpha > 0$ (index $\mu = \alpha/2 - 1$)

$$dX_t = dB_t + \frac{\alpha - 1}{2X_t} dt.$$

 Recall the SDE for a Bessel process of dimension α > 0 (index μ = α/2 - 1)

$$dX_t = dB_t + \frac{\alpha - 1}{2X_t} dt.$$

• The singular drift $\frac{\alpha-1}{2X_t}$ is problematic, when $X_t = 0$.

 Recall the SDE for a Bessel process of dimension α > 0 (index μ = α/2 - 1)

$$dX_t = dB_t + \frac{\alpha - 1}{2X_t} dt.$$

- The singular drift $\frac{\alpha-1}{2X_t}$ is problematic, when $X_t = 0$.
- \bullet Multiplying by the indicator $1_{\{X_t \neq 0\}}$ practised in the literature

$$dX_t = dB_t + \frac{\alpha - 1}{2X_t} \mathbb{1}_{\{X_t \neq 0\}} dt$$

does not help!

$$dX_t = dB_t + \frac{\alpha - 1}{2X_t} \mathbb{1}_{\{X_t \neq 0\}} dt$$

$$dX_t = dB_t + \frac{\alpha - 1}{2X_t} \mathbb{1}_{\{X_t \neq 0\}} dt$$

• When $X_0 = 0$ uniqueness of solutions does not hold

$$dX_t = dB_t + \frac{\alpha - 1}{2X_t} \mathbb{1}_{\{X_t \neq 0\}} dt$$

- When $X_0 = 0$ uniqueness of solutions does not hold
- By Tanaka formula, pathwise uniqueness holds if we consider only non-negative $X_t \ge 0$

$$dX_t = 2\sqrt{X_t}dB_t + \alpha dt$$

• No more singularity in the drift part

$$dX_t = 2\sqrt{X_t}dB_t + \alpha dt$$

- No more singularity in the drift part
- A non-Lipschitz function \sqrt{x} in the martingale part

$$dX_t = 2\sqrt{X_t}dB_t + \alpha dt$$

- No more singularity in the drift part
- A non-Lipschitz function \sqrt{x} in the martingale part
- The equation is solved by the Yamada-Watanabe theorem, allowing 1/2-Hölder coefficients in the martingale part

SDEs for non-colliding Squared Bessel processes

In equations for non-colliding BESQ particles

$$d\lambda_i = 2\sqrt{\lambda_i}dB_i + \beta\left(lpha + \sum_{j \neq i} rac{\lambda_i + \lambda_j}{\lambda_i - \lambda_j}
ight)dt$$

both problems appear

In equations for non-colliding BESQ particles

$$d\lambda_i = 2\sqrt{\lambda_i} dB_i + \beta \left(\alpha + \sum_{j \neq i} \frac{\lambda_i + \lambda_j}{\lambda_i - \lambda_j}\right) dt$$

both problems appear

- non-Lipschitz functions \sqrt{x} in martingale parts (Yamada-Watanabe th. is 1-dimensional!)
- The drift part contains singularities $(\lambda_i \lambda_j)^{-1}$ (physicists want to start from $(0, \ldots, 0)!$)

Solve the system of SDEs

$$d\lambda_i = \sigma_i(\lambda_i) dB_i + \left(b_i(\lambda_i) + \sum_{j \neq i} \frac{H_{ij}(\lambda_i, \lambda_j)}{\lambda_i - \lambda_j} \right) dt$$
$$i = 1, \dots, p$$

on the cone

$$\overline{\mathcal{C}_+} = \{ (x_1, \ldots, x_p) \in \mathbb{R}^p : x_1 \le x_2 \le \ldots \le x_p \}$$

• the functions σ_i, b_i, H_{ij} are continuous

 \bullet the functions H_{ij} are non-negative and

$$H_{ij}(x,y) = H_{ji}(y,x), \quad x,y \in \mathbb{R}.$$

• the functions σ_i, b_i, H_{ij} are continuous

• the functions H_{ij} are non-negative and

$$H_{ij}(x,y) = H_{ji}(y,x), \quad x,y \in \mathbb{R}.$$

i.e. the particles push away one another with the same forces

$$\frac{H_{ij}(x,y)}{y-x}$$

Assumptions on coefficients Regularity conditions

(C1) there exists a function $\rho : \mathbb{R}^+ \to \mathbb{R}^+$ such that $\int_{0^+} \rho^{-1}(x) dx = \infty$ and that

$$|\sigma_i(x) - \sigma_i(y)|^2 \leq
ho(|x-y|), \quad x,y \in \mathbb{R}, \ i=1,\ldots,p$$

(C1) there exists a function $\rho : \mathbb{R}^+ \to \mathbb{R}^+$ such that $\int_{0^+} \rho^{-1}(x) dx = \infty$ and that $|\sigma_i(x) - \sigma_i(y)|^2 \le \rho(|x - y|), \quad x, y \in \mathbb{R}, \ i = 1, \dots, p$ (the functions σ_i are at least $\frac{1}{2}$ -Hölder) (C1) there exists a function ρ : ℝ⁺ → ℝ⁺ such that ∫_{0⁺} ρ⁻¹(x)dx = ∞ and that |σ_i(x) - σ_i(y)|² ≤ ρ(|x - y|), x, y ∈ ℝ, i = 1,..., p (the functions σ_i are at least ½-Hölder)
the functions b_i are Lipschitz continuous

(C2) There exists c > 0 such that

$$egin{array}{rll} \sigma_i^2(x)+b_i(x)x&\leq&c(1+|x|^2),\quad x\in\mathbb{R},\ H_{ij}(x,y)&\leq&c(1+|xy|),\quad x,y\in\mathbb{R} \end{array}$$

(C2) There exists c > 0 such that

$$egin{array}{rll} \sigma_i^2(x)+b_i(x)x&\leq&c(1+|x|^2),\quad x\in\mathbb{R},\ H_{ij}(x,y)&\leq&c(1+|xy|),\quad x,y\in\mathbb{R} \end{array}$$

(these are standard conditions which give finiteness of the solutions for every $t \ge 0$; the sublinear growth of b_i can be replaced by non-positivity of $b_i(x)x$ for large x)

Assumptions on coefficients A physical condition

(A1) For every $i \neq j$ and w < x < y < z

$$\frac{H_{ij}(w,z)}{z-w} \leq \frac{H_{ij}(x,y)}{y-x}$$

(A1) For every $i \neq j$ and w < x < y < z

$$\frac{H_{ij}(w,z)}{z-w} \leq \frac{H_{ij}(x,y)}{y-x}$$

(Exterior particles interact less than the interior ones)

(A1) For every $i \neq j$ and w < x < y < z

$$\frac{H_{ij}(w,z)}{z-w} \leq \frac{H_{ij}(x,y)}{y-x}$$

(Exterior particles interact less than the interior ones)

This is a crucial condition to prove the pathwise uniqueness of solutions by Tanaka formula

Assumptions on coefficients Conditions for non-collisions

(A2) There exists $c_1 \ge 0$ such that for every $i \ne j$

$$\sigma_i^2(x) + \sigma_j^2(y) \le c_1(x-y)^2 + 4H_{ij}(x,y)$$

Assumptions on coefficients Conditions for non-collisions

(A2) There exists $c_1 \ge 0$ such that for every $i \ne j$

$$\sigma_i^2(x) + \sigma_j^2(y) \le c_1(x-y)^2 + 4H_{ij}(x,y)$$

(drift part is appropriately bigger than the martingale part, to prevent collisions)

(A2) There exists $c_1 \ge 0$ such that for every $i \ne j$

$$\sigma_i^2(x) + \sigma_j^2(y) \le c_1(x-y)^2 + 4H_{ij}(x,y)$$

(drift part is appropriately bigger than the martingale part, to prevent collisions)

(A3) There exists $c_2 \geq 0$ such that for every x < y < z and i < j < k

$$egin{array}{rcl} H_{ij}(x,y)(y-x) &+ & H_{jk}(y,z)(z-y) \leq \ & c_2(z-y)(z-x)(y-x) + H_{ik}(x,z)(z-x) \end{array}$$

(A2) There exists $c_1 \ge 0$ such that for every $i \ne j$

$$\sigma_i^2(x) + \sigma_j^2(y) \le c_1(x-y)^2 + 4H_{ij}(x,y)$$

(drift part is appropriately bigger than the martingale part, to prevent collisions)

(A3) There exists $c_2 \ge 0$ such that for every x < y < z and i < j < k

$$egin{array}{rcl} H_{ij}(x,y)(y-x) &+& H_{jk}(y,z)(z-y) \leq \ && c_2(z-y)(z-x)(y-x) + H_{ik}(x,z)(z-x) \end{array}$$

(repulsion by exterior particles does not make collide interior particles)

Assumptions on coefficients Conditions for non-collisions

(A4)
$$\sigma_k^2(x) + \sigma_l^2(x) + H_{kl}(x,x) \neq 0$$

Assumptions on coefficients Conditions for non-collisions

(A4)
$$\sigma_k^2(x) + \sigma_l^2(x) + H_{kl}(x, x) \neq 0$$

or, otherwise, such points x are isolated and

$$\sum_{i=k}^{l} \left(b_i(x) + \sum_{j=1}^{p-2} \frac{H_{ij}(x, y_j)}{x - y_j} \mathbb{1}_{\mathbb{R} \setminus \{x\}}(y_j) \right) \neq 0,$$

for every $y_1, \ldots, y_{p-2} \in \mathbb{R}$.
Assumptions on coefficients Conditions for non-collisions

(A4)
$$\sigma_k^2(x) + \sigma_l^2(x) + H_{kl}(x, x) \neq 0$$

or, otherwise, such points x are isolated and

$$\sum_{i=k}^{l} \left(b_i(x) + \sum_{j=1}^{p-2} \frac{H_{ij}(x, y_j)}{x - y_j} \mathbb{1}_{\mathbb{R} \setminus \{x\}}(y_j) \right) \neq 0,$$

for every $y_1, \ldots, y_{p-2} \in \mathbb{R}$.

(in each collision point x there is a force making the particles leave from it).

Assumptions on coefficients Conditions for non-collisions

(A4)
$$\sigma_k^2(x) + \sigma_l^2(x) + H_{kl}(x, x) \neq 0$$

or, otherwise, such points x are isolated and

$$\sum_{i=k}^{l} \left(b_i(x) + \sum_{j=1}^{p-2} \frac{H_{ij}(x,y_j)}{x-y_j} \mathbb{1}_{\mathbb{R}\setminus\{x\}}(y_j) \right) \neq 0,$$

for every $y_1, \ldots, y_{p-2} \in \mathbb{R}$. (in each collision point x there is a force making the particles leave from it).

(A5) If i < j then $b_i(x) \le b_j(x)$ for all $x \in \mathbb{R}$.

Assumptions on coefficients Conditions for non-collisions

(A4)
$$\sigma_k^2(x) + \sigma_l^2(x) + H_{kl}(x, x) \neq 0$$

or, otherwise, such points x are isolated and

$$\sum_{i=k}^{l} \left(b_i(x) + \sum_{j=1}^{p-2} \frac{H_{ij}(x, y_j)}{x - y_j} \mathbb{1}_{\mathbb{R} \setminus \{x\}}(y_j) \right) \neq 0,$$

for every $y_1, \ldots, y_{p-2} \in \mathbb{R}$. (in each collision point x there is a force making the particles leave from it).

(A5) If i < j then $b_i(x) \le b_j(x)$ for all $x \in \mathbb{R}$.

(if $b_i(x) > b_j(x)$ then the particle x_i could catch up with the particle x_i thanks to the bigger drift force.)

If the conditions (C1), (C2) and (A1)-(A5) hold, then there exists a unique strong non-exploding solution $[\Lambda(t)]_{t\geq 0}$. The first collision time

$$\mathcal{T} = \inf\{t > 0 : \lambda_i(t) = \lambda_j(t) \text{ for some } i \neq j, i, j = 1, \dots, p\}$$

is infinite almost surely.

If the conditions (C1), (C2) and (A1)-(A5) hold, then there exists a unique strong non-exploding solution $[\Lambda(t)]_{t\geq 0}$. The first collision time

 $T = \inf\{t > 0 : \lambda_i(t) = \lambda_j(t) \text{ for some } i \neq j, i, j = 1, \dots, p\}$

is infinite almost surely.

If the conditions (C1), (C2) and (A1)-(A5) hold, then there exists a unique strong non-exploding solution $[\Lambda(t)]_{t\geq 0}$. The first collision time

 $T = \inf\{t > 0 : \lambda_i(t) = \lambda_j(t) \text{ for some } i \neq j, i, j = 1, \dots, p\}$

is infinite almost surely.

Applications:

• General Brownian NC(non-colliding) particle systems (e.g. neighbor interaction)

If the conditions (C1), (C2) and (A1)-(A5) hold, then there exists a unique strong non-exploding solution $[\Lambda(t)]_{t\geq 0}$. The first collision time

 $T = \inf\{t > 0 : \lambda_i(t) = \lambda_j(t) \text{ for some } i \neq j, i, j = 1, \dots, p\}$

is infinite almost surely.

- General Brownian NC(non-colliding) particle systems (e.g. neighbor interaction)
- BESQ NC-particle systems for $\alpha \ge p-1$

If the conditions (C1), (C2) and (A1)-(A5) hold, then there exists a unique strong non-exploding solution $[\Lambda(t)]_{t\geq 0}$. The first collision time

 $\mathcal{T} = \inf\{t > 0 : \lambda_i(t) = \lambda_j(t) \text{ for some } i \neq j, i, j = 1, \dots, p\}$

is infinite almost surely.

- General Brownian NC(non-colliding) particle systems (e.g. neighbor interaction)
- BESQ NC-particle systems for $\alpha \ge p-1$
- Generalized BESQ NC-particle systems (for $\alpha < \pmb{p}-1$)

If the conditions (C1), (C2) and (A1)-(A5) hold, then there exists a unique strong non-exploding solution $[\Lambda(t)]_{t\geq 0}$. The first collision time

 $\mathcal{T} = \inf\{t > 0 : \lambda_i(t) = \lambda_j(t) \text{ for some } i \neq j, i, j = 1, \dots, p\}$

is infinite almost surely.

- General Brownian NC(non-colliding) particle systems (e.g. neighbor interaction)
- BESQ NC-particle systems for $\alpha \ge p-1$
- Generalized BESQ NC-particle systems (for $\alpha)$
- General trigonometric and hyperbolic particle systems

Step 1 Assuming (A2)-(A5) we show that there exists a weak solution $\Lambda(t)$, having no collisions after the start

- Step 1 Assuming (A2)-(A5) we show that there exists a weak solution $\Lambda(t)$, having no collisions after the start
 - Tools for existence: SDEs for basic symmetric polynomials e_1, \ldots, e_p , via Itô formula

Solving them; defining $\Lambda_t = \Lambda(e_t)$

- Step 1 Assuming (A2)-(A5) we show that there exists a weak solution $\Lambda(t)$, having no collisions after the start
 - Tools for existence: SDEs for basic symmetric polynomials e_1, \ldots, e_p , via Itô formula Solving them; defining $\Lambda_t = \Lambda(e_t)$ Proving non-collisions of Λ_t

- Step 1 Assuming (A2)-(A5) we show that there exists a weak solution $\Lambda(t)$, having no collisions after the start
 - Tools for existence: SDEs for basic symmetric polynomials e_1, \ldots, e_p , via Itô formula Solving them; defining $\Lambda_t = \Lambda(e_t)$ Proving non-collisions of Λ_t Limit passage $\Lambda_s \to \Lambda_0$

- Step 1 Assuming (A2)-(A5) we show that there exists a weak solution $\Lambda(t)$, having no collisions after the start
 - Tools for existence: SDEs for basic symmetric polynomials e_1, \ldots, e_p , via Itô formula Solving them; defining $\Lambda_t = \Lambda(e_t)$ Proving non-collisions of Λ_t Limit passage $\Lambda_s \to \Lambda_0$
 - Tools for non-collisions: symmetric polynomials in $(\lambda_i \lambda_j)^2$

- Step 1 Assuming (A2)-(A5) we show that there exists a weak solution $\Lambda(t)$, having no collisions after the start
 - Tools for existence: SDEs for basic symmetric polynomials e_1, \ldots, e_p , via Itô formula Solving them; defining $\Lambda_t = \Lambda(e_t)$ Proving non-collisions of Λ_t Limit passage $\Lambda_s \to \Lambda_0$
 - Tools for non-collisions: symmetric polynomials in $(\lambda_i \lambda_j)^2$ McKean argument (non-explosion of $U = \ln V$, V =Vandermond determinant)

- Step 1 Assuming (A2)-(A5) we show that there exists a weak solution $\Lambda(t)$, having no collisions after the start
 - Tools for existence: SDEs for basic symmetric polynomials e_1, \ldots, e_p , via Itô formula Solving them; defining $\Lambda_t = \Lambda(e_t)$ Proving non-collisions of Λ_t Limit passage $\Lambda_s \to \Lambda_0$
 - Tools for non-collisions: symmetric polynomials in $(\lambda_i \lambda_j)^2$ McKean argument (non-explosion of $U = \ln V$, V =Vandermond determinant)
- Step 2 Assuming conditions (C1) and (A1) we show the pathwise uniqueness of the solutions

- Step 1 Assuming (A2)-(A5) we show that there exists a weak solution $\Lambda(t)$, having no collisions after the start
 - Tools for existence: SDEs for basic symmetric polynomials e_1, \ldots, e_p , via Itô formula Solving them; defining $\Lambda_t = \Lambda(e_t)$ Proving non-collisions of Λ_t Limit passage $\Lambda_s \to \Lambda_0$
 - Tools for non-collisions: symmetric polynomials in $(\lambda_i \lambda_j)^2$ McKean argument (non-explosion of $U = \ln V$, V =Vandermond determinant)
- Step 2 Assuming conditions (C1) and (A1) we show the pathwise uniqueness of the solutions
 - Tool: Tanaka formula

- Step 1 Assuming (A2)-(A5) we show that there exists a weak solution $\Lambda(t)$, having no collisions after the start
 - Tools for existence: SDEs for basic symmetric polynomials e_1, \ldots, e_p , via Itô formula Solving them; defining $\Lambda_t = \Lambda(e_t)$ Proving non-collisions of Λ_t Limit passage $\Lambda_s \to \Lambda_0$
 - Tools for non-collisions: symmetric polynomials in $(\lambda_i \lambda_j)^2$ McKean argument (non-explosion of $U = \ln V$, V =Vandermond determinant)
- Step 2 Assuming conditions (C1) and (A1) we show the pathwise uniqueness of the solutions
 - Tool: Tanaka formula
 - We get much more:

Yamada-Watanabe theorem in dimension \boldsymbol{p}

- Step 1 Assuming (A2)-(A5) we show that there exists a weak solution $\Lambda(t)$, having no collisions after the start
 - Tools for existence: SDEs for basic symmetric polynomials e_1, \ldots, e_p , via Itô formula Solving them; defining $\Lambda_t = \Lambda(e_t)$ Proving non-collisions of Λ_t Limit passage $\Lambda_s \to \Lambda_0$
 - Tools for non-collisions: symmetric polynomials in $(\lambda_i \lambda_j)^2$ McKean argument (non-explosion of $U = \ln V$, V =Vandermond determinant)
- Step 2 Assuming conditions (C1) and (A1) we show the pathwise uniqueness of the solutions
 - Tool: Tanaka formula
 - We get much more:

Yamada-Watanabe theorem in dimension \boldsymbol{p}

End the existence of a unique strong solution follows

Consider $e_1 = \lambda_1 + \ldots + \lambda_p$.

Consider $e_1 = \lambda_1 + \ldots + \lambda_p$. It is easy to see that

$$de_1 = (\sum_i \sigma_i(\lambda_i)^2)^{\frac{1}{2}} dW_t + \sum_i b_i(\lambda_i) dt$$

for a 1-dimensional BM W_t .

Consider $e_1 = \lambda_1 + \ldots + \lambda_p$. It is easy to see that

$$de_1 = (\sum_i \sigma_i(\lambda_i)^2)^{\frac{1}{2}} dW_t + \sum_i b_i(\lambda_i) dt$$

for a 1-dimensional BM W_t .

• The symmetry of $H_{ij}(x, y)$ implies that the singularities $\frac{1}{\lambda_i - \lambda_j}$ cancel!

Consider $e_1 = \lambda_1 + \ldots + \lambda_p$. It is easy to see that

$$de_1 = (\sum_i \sigma_i(\lambda_i)^2)^{\frac{1}{2}} dW_t + \sum_i b_i(\lambda_i) dt$$

for a 1-dimensional BM W_t .

- The symmetry of $H_{ij}(x, y)$ implies that the singularities $\frac{1}{\lambda_i \lambda_j}$ cancel!
- Analogous phenomenon occurs for other basic symmetric polynomials of $(\lambda_1, \ldots, \lambda_p)$

$$e_2 = \sum_{j>i} \lambda_j \lambda_i,$$

...
$$e_p = \lambda_1 \cdot \ldots \cdot \lambda_p$$

If we restrict the arguments to the open set

$$C_+ = \{(x_1, \ldots, x_p) \in \mathbb{R}^p : x_1 < x_2 < \ldots < x_p\}$$

then the smooth function

$$e = (e_1, \ldots, e_p) : C_+ \to \mathbb{R}^p$$

is one-to-one

If we restrict the arguments to the open set

$$C_+ = \{(x_1, \ldots, x_p) \in \mathbb{R}^p : x_1 < x_2 < \ldots < x_p\}$$

then the smooth function

$$e = (e_1, \ldots, e_p) : C_+ \to \mathbb{R}^p$$

is one-to-one

($(-1)^k e_k(X)$ is the coefficient of x^{p-k} in $P(x) = \prod_{i=1}^p (x - x_i)$)

If we restrict the arguments to the open set

$$C_+ = \{(x_1, \ldots, x_p) \in \mathbb{R}^p : x_1 < x_2 < \ldots < x_p\}$$

then the smooth function

$$e = (e_1, \ldots, e_p) : C_+ \to \mathbb{R}^p$$

is one-to-one

($(-1)^k e_k(X)$ is the coefficient of x^{p-k} in $P(x) = \prod_{i=1}^p (x - x_i)$) Thus e is a diffeomorphism between C_+ and $e(C_+)$ which is open

If we restrict the arguments to the open set

$$C_+ = \{(x_1, \ldots, x_p) \in \mathbb{R}^p : x_1 < x_2 < \ldots < x_p\}$$

then the smooth function

$$e = (e_1, \ldots, e_p) : C_+ \to \mathbb{R}^p$$

is one-to-one

($(-1)^k e_k(X)$ is the coefficient of x^{p-k} in $P(x) = \prod_{i=1}^p (x - x_i)$) Thus e is a diffeomorphism between C_+ and $e(C_+)$ which is open

Denote the inverse diffeomorphism by

$$f = (f_1, \ldots, f_p) : e(C_+) \to C_+$$

If we restrict the arguments to the open set

$$C_+ = \{(x_1, \ldots, x_p) \in \mathbb{R}^p : x_1 < x_2 < \ldots < x_p\}$$

then the smooth function

$$e = (e_1, \ldots, e_p) : C_+ \to \mathbb{R}^p$$

is one-to-one

($(-1)^k e_k(X)$ is the coefficient of x^{p-k} in $P(x) = \prod_{i=1}^p (x - x_i)$) Thus e is a diffeomorphism between C_+ and $e(C_+)$ which is open

Denote the inverse diffeomorphism by

$$f = (f_1, \ldots, f_p) : e(C_+) \to C_+$$

By the continuity of roots of a polynomial as functions of its coefficients, f extends to a continuous function

$$f:\overline{e(C_+)}\xrightarrow{1-1}\overline{C_+}$$

Using Itô formula and the diffeomorphism f, we compute SDEs for $y_n=e_n(\Lambda_t)$

Using Itô formula and the diffeomorphism f, we compute SDEs for $y_n = e_n(\Lambda_t)$

 $dy_n = a_n(y_1,\ldots,y_p)dU_n + q_n(y_1,\ldots,y_p)dt, \quad n = 1,\ldots,p,$

Using Itô formula and the diffeomorphism f, we compute SDEs for $y_n = e_n(\Lambda_t)$

$$dy_n = a_n(y_1,\ldots,y_p)dU_n + q_n(y_1,\ldots,y_p)dt, \quad n = 1,\ldots,p,$$

where $(\bar{i} \text{ means that the } i\text{-th variable is omitted})$

$$a_{n}(y) = \left(\sum_{i=1}^{p} \sigma_{i}^{2}(f_{i}(y))(e_{n-1}^{\bar{i}}(f(y)))^{2}\right)^{1/2}, y \in \overline{C_{+}},$$

$$q_{n}(y) = \sum_{i=1}^{p} b_{i}(f_{i}(y))e_{n-1}^{\bar{i}}(f(y)) - \sum_{i < j} e_{n-2}^{\bar{i},\bar{j}}(f(y))H_{ij}(f_{i}(y), f_{j}(y))$$

Using Itô formula and the diffeomorphism f, we compute SDEs for $y_n = e_n(\Lambda_t)$

$$dy_n = a_n(y_1,\ldots,y_p)dU_n + q_n(y_1,\ldots,y_p)dt, \quad n = 1,\ldots,p,$$

where $(\bar{i} \text{ means that the } i\text{-th variable is omitted})$

$$a_n(y) = \left(\sum_{i=1}^p \sigma_i^2(f_i(y))(e_{n-1}^{\bar{i}}(f(y)))^2\right)^{1/2}, y \in \overline{C_+},$$

$$q_n(y) = \sum_{i=1}^p b_i(f_i(y))e_{n-1}^{\bar{i}}(f(y)) - \sum_{i < j} e_{n-2}^{\bar{i},\bar{j}}(f(y))H_{ij}(f_i(y), f_j(y))$$

and U_n are BMs such that $\langle a_n dU_n, a_m dU_m \rangle = \sum_{i=1}^p \sigma_i^2(f_i(y)) e_{n-1}^{\overline{i}}(f(y)) e_{m-1}^{\overline{j}}(f(y)).$

Example: BESQ particle systems, p = 4
$$de_{1} = 2\sqrt{e_{1}}dU_{1} + 4\alpha dt$$

$$de_{2} = 2\sqrt{e_{1}e_{2} + 3e_{3}}dU_{2} + 3(\alpha - 1)e_{1}dt$$

$$de_{3} = 2\sqrt{e_{3}e_{2} + 6e_{1}e_{4}}dU_{3} + 2(\alpha - 2)e_{2}dt$$

$$de_{4} = 2\sqrt{e_{4}e_{3}}dU_{4} + (\alpha - 3)e_{3}dt$$

$$de_{1} = 2\sqrt{e_{1}}dU_{1} + 4\alpha dt$$

$$de_{2} = 2\sqrt{e_{1}e_{2} + 3e_{3}}dU_{2} + 3(\alpha - 1)e_{1}dt$$

$$de_{3} = 2\sqrt{e_{3}e_{2} + 6e_{1}e_{4}}dU_{3} + 2(\alpha - 2)e_{2}dt$$

$$de_{4} = 2\sqrt{e_{4}e_{3}}dU_{4} + (\alpha - 3)e_{3}dt$$

• Back to the general proof:

$$de_{1} = 2\sqrt{e_{1}}dU_{1} + 4\alpha dt$$

$$de_{2} = 2\sqrt{e_{1}e_{2} + 3e_{3}}dU_{2} + 3(\alpha - 1)e_{1}dt$$

$$de_{3} = 2\sqrt{e_{3}e_{2} + 6e_{1}e_{4}}dU_{3} + 2(\alpha - 2)e_{2}dt$$

$$de_{4} = 2\sqrt{e_{4}e_{3}}dU_{4} + (\alpha - 3)e_{3}dt$$

- Back to the general proof:
- The SDEs for e_n are not sensible to the start from a collision
 (they do not have singularities in the drift term)

(they do not have singularities in the drift term)

$$de_{1} = 2\sqrt{e_{1}}dU_{1} + 4\alpha dt$$

$$de_{2} = 2\sqrt{e_{1}e_{2} + 3e_{3}}dU_{2} + 3(\alpha - 1)e_{1}dt$$

$$de_{3} = 2\sqrt{e_{3}e_{2} + 6e_{1}e_{4}}dU_{3} + 2(\alpha - 2)e_{2}dt$$

$$de_{4} = 2\sqrt{e_{4}e_{3}}dU_{4} + (\alpha - 3)e_{3}dt$$

- Back to the general proof:
- The SDEs for e_n are not sensible to the start from a collision

(they do not have singularities in the drift term)

• We solve them on $\overline{e(C_+)}$

$$de_{1} = 2\sqrt{e_{1}}dU_{1} + 4\alpha dt$$

$$de_{2} = 2\sqrt{e_{1}e_{2} + 3e_{3}}dU_{2} + 3(\alpha - 1)e_{1}dt$$

$$de_{3} = 2\sqrt{e_{3}e_{2} + 6e_{1}e_{4}}dU_{3} + 2(\alpha - 2)e_{2}dt$$

$$de_{4} = 2\sqrt{e_{4}e_{3}}dU_{4} + (\alpha - 3)e_{3}dt$$

- Back to the general proof:
- $\bullet\,$ The SDEs for e_n are not sensible to the start from a collision

(they do not have singularities in the drift term)

- We solve them on $\overline{e(C_+)}$
- We define $\Lambda = f(e_1, \ldots, e_p)$

$$de_{1} = 2\sqrt{e_{1}}dU_{1} + 4\alpha dt$$

$$de_{2} = 2\sqrt{e_{1}e_{2} + 3e_{3}}dU_{2} + 3(\alpha - 1)e_{1}dt$$

$$de_{3} = 2\sqrt{e_{3}e_{2} + 6e_{1}e_{4}}dU_{3} + 2(\alpha - 2)e_{2}dt$$

$$de_{4} = 2\sqrt{e_{4}e_{3}}dU_{4} + (\alpha - 3)e_{3}dt$$

- Back to the general proof:
- $\bullet\,$ The SDEs for e_n are not sensible to the start from a collision

(they do not have singularities in the drift term)

- We solve them on $\overline{e(C_+)}$
- We define $\Lambda = f(e_1, \ldots, e_p)$
- We show that λ_i never collide for t > 0

We compute the SDEs for the semimartingales

$$V_1 = \sum_{j>i} (\lambda_i - \lambda_j)^2$$

...
$$V_N = \prod_{j>i} (\lambda_j - \lambda_i)^2, \quad N = \frac{p(p+1)}{2}$$

We compute the SDEs for the semimartingales

$$V_1 = \sum_{j>i} (\lambda_i - \lambda_j)^2$$

...
$$V_N = \prod_{j>i} (\lambda_j - \lambda_i)^2, \quad N = \frac{p(p+1)}{2}$$

they are symmetric polynomials of $(\lambda_i - \lambda_j)^2$

We compute the SDEs for the semimartingales

$$V_1 = \sum_{j>i} (\lambda_i - \lambda_j)^2$$

...
$$V_N = \prod_{j>i} (\lambda_j - \lambda_i)^2, \quad N = \frac{p(p+1)}{2}$$

they are symmetric polynomials of $(\lambda_i - \lambda_j)^2$

We show that even if $V_N(0) = 0$, if (A4) holds then $\tau_N = \inf\{t > 0 : V_N(t) > 0\} = 0$ almost surely (instant diffraction)

We compute the SDEs for the semimartingales

$$V_1 = \sum_{j>i} (\lambda_i - \lambda_j)^2$$

...
$$V_N = \prod_{j>i} (\lambda_j - \lambda_i)^2, \quad N = \frac{p(p+1)}{2}$$

they are symmetric polynomials of $(\lambda_i - \lambda_j)^2$

We show that even if $V_N(0) = 0$, if (A4) holds then $\tau_N = \inf\{t > 0 : V_N(t) > 0\} = 0$ almost surely (instant diffraction)

The proof is based on:

We compute the SDEs for the semimartingales

$$V_1 = \sum_{j>i} (\lambda_i - \lambda_j)^2$$

...
$$V_N = \prod_{j>i} (\lambda_j - \lambda_i)^2, \quad N = \frac{p(p+1)}{2}$$

they are symmetric polynomials of $(\lambda_i - \lambda_j)^2$

We show that even if $V_N(0) = 0$, if (A4) holds then $\tau_N = \inf\{t > 0 : V_N(t) > 0\} = 0$ almost surely (instant diffraction)

The proof is based on:

- the implication $\tau_n = 0 \Rightarrow \tau_{n-1} = 0$

We compute the SDEs for the semimartingales

$$V_1 = \sum_{j>i} (\lambda_i - \lambda_j)^2$$

...
$$V_N = \prod_{j>i} (\lambda_j - \lambda_i)^2, \quad N = \frac{p(p+1)}{2}$$

they are symmetric polynomials of $(\lambda_i - \lambda_j)^2$

We show that even if $V_N(0) = 0$, if (A4) holds then $\tau_N = \inf\{t > 0 : V_N(t) > 0\} = 0$ almost surely (instant diffraction)

The proof is based on:

- the implication $\tau_n = 0 \Rightarrow \tau_{n-1} = 0$
- the fact that (A4) guarantees the instant exit from a collision in a "degenerate point" x, $\sigma_k^2(x) + \sigma_l^2(x) + H_{kl}(x, x) = 0$.

End of Step 1: limit passage $s \to 0$

For every t > s > 0, by Itô formula

$$\lambda_{i}(t) - \lambda_{i}(s) = \int_{s}^{t} \sigma_{i}(\lambda_{i}(u)) dB_{i}(u) + \int_{s}^{t} \left(b_{i}(\lambda_{i}(u)) + \sum_{j \neq i} \frac{H_{ij}(\lambda_{i}(u), \lambda_{j}(u))}{\lambda_{i}(u) - \lambda_{j}(u)} \right) du$$

For every t > s > 0, by Itô formula

$$\lambda_{i}(t) - \lambda_{i}(s) = \int_{s}^{t} \sigma_{i}(\lambda_{i}(u)) dB_{i}(u) + \int_{s}^{t} \left(b_{i}(\lambda_{i}(u)) + \sum_{j \neq i} \frac{H_{ij}(\lambda_{i}(u), \lambda_{j}(u))}{\lambda_{i}(u) - \lambda_{j}(u)} \right) du$$

When $s \to 0$, we have $\lambda_i(s) \to \lambda_i(0)$ and

$$\int_{s}^{t} \sigma_{i}(\lambda_{i}(u)) dB_{i}(u) \rightarrow \int_{0}^{t} \sigma_{i}(\lambda_{i}(u)) dB_{i}(u)$$

in L^2 , so almost surely for a subsequence $s_k \to 0$.

Let (Λ, B) and $(\tilde{\Lambda}, B)$ be two solutions with $\Lambda(0) = \tilde{\Lambda}(0)$. Local time of $\lambda_i - \tilde{\lambda}_i$ at 0 is 0. By Tanaka formula

Let (Λ, B) and $(\tilde{\Lambda}, B)$ be two solutions with $\Lambda(0) = \tilde{\Lambda}(0)$. Local time of $\lambda_i - \tilde{\lambda}_i$ at 0 is 0. By Tanaka formula

$$egin{aligned} &\sum_{i=1}^{p} \mathbb{E} |\lambda_i(t) - ilde{\lambda}_i(t)| = \ &\mathbb{E} \int_0^t \sum_{i=1}^p \operatorname{sgn}(\lambda_i - ilde{\lambda}_i) \sum_{j
eq i} \left(rac{H_{ij}(\lambda_i, \lambda_j)}{\lambda_i - \lambda_j} - rac{H_{ij}(ilde{\lambda}_i, ilde{\lambda}_j)}{ ilde{\lambda}_i - ilde{\lambda}_j}
ight) du \ &+ \mathbb{E} \int_0^t \sum_{i=1}^p \operatorname{sgn}(\lambda_i - ilde{\lambda}_i) (b_i(\lambda_i) - b_i(ilde{\lambda}_i)) du. \end{aligned}$$

Let (Λ, B) and $(\tilde{\Lambda}, B)$ be two solutions with $\Lambda(0) = \tilde{\Lambda}(0)$. Local time of $\lambda_i - \tilde{\lambda}_i$ at 0 is 0. By Tanaka formula

$$\begin{split} &\sum_{i=1}^{p} \mathbb{E}|\lambda_{i}(t) - \tilde{\lambda}_{i}(t)| = \\ &\mathbb{E}\int_{0}^{t}\sum_{i=1}^{p} \operatorname{sgn}(\lambda_{i} - \tilde{\lambda}_{i}) \sum_{j \neq i} \left(\frac{H_{ij}(\lambda_{i}, \lambda_{j})}{\lambda_{i} - \lambda_{j}} - \frac{H_{ij}(\tilde{\lambda}_{i}, \tilde{\lambda}_{j})}{\tilde{\lambda}_{i} - \tilde{\lambda}_{j}} \right) du \\ &+ \mathbb{E}\int_{0}^{t}\sum_{i=1}^{p} \operatorname{sgn}(\lambda_{i} - \tilde{\lambda}_{i}) (b_{i}(\lambda_{i}) - b_{i}(\tilde{\lambda}_{i})) du. \end{split}$$

Lipschitz condition on $b_i(x)$ implies that the second term $\leq c_3 \mathbb{E} \int_0^t \sum_{i=1}^p |\lambda_i - \tilde{\lambda}_i| du$.

Let (Λ, B) and $(\tilde{\Lambda}, B)$ be two solutions with $\Lambda(0) = \tilde{\Lambda}(0)$. Local time of $\lambda_i - \tilde{\lambda}_i$ at 0 is 0. By Tanaka formula

$$\begin{split} &\sum_{i=1}^{p} \mathbb{E}|\lambda_{i}(t) - \tilde{\lambda}_{i}(t)| = \\ &\mathbb{E}\int_{0}^{t}\sum_{i=1}^{p} \operatorname{sgn}(\lambda_{i} - \tilde{\lambda}_{i}) \sum_{j \neq i} \left(\frac{H_{ij}(\lambda_{i}, \lambda_{j})}{\lambda_{i} - \lambda_{j}} - \frac{H_{ij}(\tilde{\lambda}_{i}, \tilde{\lambda}_{j})}{\tilde{\lambda}_{i} - \tilde{\lambda}_{j}} \right) du \\ &+ \mathbb{E}\int_{0}^{t}\sum_{i=1}^{p} \operatorname{sgn}(\lambda_{i} - \tilde{\lambda}_{i}) (b_{i}(\lambda_{i}) - b_{i}(\tilde{\lambda}_{i})) du. \end{split}$$

Lipschitz condition on $b_i(x)$ implies that the second term $\leq c_3 \mathbb{E} \int_0^t \sum_{i=1}^p |\lambda_i - \tilde{\lambda}_i| du$. Assumption (A1) ensures that the first term is non-positive!!!

Let (Λ, B) and $(\tilde{\Lambda}, B)$ be two solutions with $\Lambda(0) = \tilde{\Lambda}(0)$. Local time of $\lambda_i - \tilde{\lambda}_i$ at 0 is 0. By Tanaka formula

$$\begin{split} &\sum_{i=1}^{p} \mathbb{E}|\lambda_{i}(t) - \tilde{\lambda}_{i}(t)| = \\ &\mathbb{E}\int_{0}^{t}\sum_{i=1}^{p} \operatorname{sgn}(\lambda_{i} - \tilde{\lambda}_{i}) \sum_{j \neq i} \left(\frac{H_{ij}(\lambda_{i}, \lambda_{j})}{\lambda_{i} - \lambda_{j}} - \frac{H_{ij}(\tilde{\lambda}_{i}, \tilde{\lambda}_{j})}{\tilde{\lambda}_{i} - \tilde{\lambda}_{j}} \right) du \\ &+ \mathbb{E}\int_{0}^{t}\sum_{i=1}^{p} \operatorname{sgn}(\lambda_{i} - \tilde{\lambda}_{i}) (b_{i}(\lambda_{i}) - b_{i}(\tilde{\lambda}_{i})) du. \end{split}$$

Lipschitz condition on $b_i(x)$ implies that the second term $\leq c_3 \mathbb{E} \int_0^t \sum_{i=1}^p |\lambda_i - \tilde{\lambda}_i| du$. Assumption (A1) ensures that the first term is non-positive!!! Gronwall Lemma ends the proof.

We know (Bru, 1991) that for $\alpha \ge p - 1$ the BESQ matrix(Wishart) processes exist on \overline{Sym}_p^+ .

$$dX_t = \sqrt{X_t} dB_t + dB_t^T \sqrt{X_t} + \alpha I dt, \quad \alpha \ge p - 1.$$

We know (Bru, 1991) that for $\alpha \ge p - 1$ the BESQ matrix(Wishart) processes exist on \overline{Sym}_p^+ .

$$dX_t = \sqrt{X_t} dB_t + dB_t^T \sqrt{X_t} + \alpha I dt, \quad \alpha \ge p - 1.$$

By quadratic construction it is straightforward to see that they exist also for $\alpha = 1, 2, \dots, p - 2$.

We know (Bru, 1991) that for $\alpha \ge p - 1$ the BESQ matrix(Wishart) processes exist on \overline{Sym}_p^+ .

$$dX_t = \sqrt{X_t} dB_t + dB_t^T \sqrt{X_t} + \alpha I dt, \quad \alpha \ge p - 1.$$

By quadratic construction it is straightforward to see that they exist also for $\alpha = 1, 2, \dots, p - 2$.

What about $\alpha and different from <math>1, 2, \ldots, p - 2$?

We know (Bru, 1991) that for $\alpha \ge p - 1$ the BESQ matrix(Wishart) processes exist on \overline{Sym}_p^+ .

$$dX_t = \sqrt{X_t} dB_t + dB_t^T \sqrt{X_t} + \alpha I dt, \quad \alpha \ge p - 1.$$

By quadratic construction it is straightforward to see that they exist also for $\alpha = 1, 2, \dots, p - 2$.

What about $\alpha and different from <math>1, 2, \dots, p - 2$?

Another question: admissible starting points for $\alpha = 1, \ldots, p - 2$.

We know (Bru, 1991) that for $\alpha \geq p-1$ the BESQ matrix(Wishart) processes exist on \overline{Sym}_p^+ .

$$dX_t = \sqrt{X_t} dB_t + dB_t^T \sqrt{X_t} + \alpha I dt, \quad \alpha \ge p - 1.$$

By quadratic construction it is straightforward to see that they exist also for $\alpha = 1, 2, \dots, p - 2$.

What about $\alpha and different from <math>1, 2, \dots, p - 2$?

Another question: admissible starting points for $\alpha = 1, \ldots, p - 2$.

Intuitively, X_0 cannot be of rank superior to α : the process (X_t) evolves in rank α

Theorem

(1) When $\alpha and <math>\alpha$ is not integer, the BESQ matrix process cannot exist on \overline{Sym}_p^+ . (2) When $\alpha \in \{0, 1, 2, \dots, p - 2\}$ is integer, and X_0 is of rank greater than α then the BESQ matrix process cannot exist on \overline{Sym}_p^+ .

Theorem

(1) When $\alpha and <math>\alpha$ is not integer, the BESQ matrix process cannot exist on \overline{Sym}_p^+ . (2) When $\alpha \in \{0, 1, 2, \dots, p - 2\}$ is integer, and X_0 is of rank greater than α then the BESQ matrix process cannot exist on \overline{Sym}_p^+ .

Comments:

-(1) gives a simple stochastic proof of the classical Wallach set

Theorem

(1) When $\alpha and <math>\alpha$ is not integer, the BESQ matrix process cannot exist on \overline{Sym}_p^+ . (2) When $\alpha \in \{0, 1, 2, \dots, p - 2\}$ is integer, and X_0 is of rank greater than α then the BESQ matrix process cannot exist on \overline{Sym}_p^+ .

Comments:

(1) gives a simple stochastic proof of the classical Wallach set
(2) gives a simple stochastic proof of a result of Letac-Massam (based on ideas of J. Faraut), on non-central Wishart laws (unpublished yet)

Suppose a "true" BESQ matrix process exists for $\alpha < 3, \alpha \notin \mathbb{N}$.

Suppose a "true" BESQ matrix process exists for $\alpha < 3, \alpha \notin \mathbb{N}$.

$$de_{1} = 2\sqrt{e_{1}}dU_{1} + 4\alpha dt$$

$$de_{2} = 2\sqrt{e_{1}e_{2} + 3e_{3}}dU_{2} + 3(\alpha - 1)e_{1}dt$$

$$de_{3} = 2\sqrt{e_{3}e_{2} + 6e_{1}e_{4}}dU_{3} + 2(\alpha - 2)e_{2}dt$$

$$de_{4} = 2\sqrt{e_{4}e_{3}}dU_{4} + (\alpha - 3)e_{3}dt$$

Suppose a "true" BESQ matrix process exists for $\alpha < 3, \alpha \notin \mathbb{N}$.

$$de_{1} = 2\sqrt{e_{1}}dU_{1} + 4\alpha dt$$

$$de_{2} = 2\sqrt{e_{1}e_{2} + 3e_{3}}dU_{2} + 3(\alpha - 1)e_{1}dt$$

$$de_{3} = 2\sqrt{e_{3}e_{2} + 6e_{1}e_{4}}dU_{3} + 2(\alpha - 2)e_{2}dt$$

$$de_{4} = 2\sqrt{e_{4}e_{3}}dU_{4} + (\alpha - 3)e_{3}dt$$

Look at e_4 . This is a $BESQ(\alpha - 3)$ process starting from \mathbb{R}^+ , with a time change $e_3(t)$.

If $e_3(t) \neq 0$, then e_4 cannot live on \mathbb{R}^+ as a $BESQ(\alpha - 3)$ process with $\alpha - 3 < 0$. Thus $e_3(t) = 0$ for t near 0.

Suppose a "true" BESQ matrix process exists for $\alpha < 3, \alpha \notin \mathbb{N}$.

$$de_{1} = 2\sqrt{e_{1}}dU_{1} + 4\alpha dt$$

$$de_{2} = 2\sqrt{e_{1}e_{2} + 3e_{3}}dU_{2} + 3(\alpha - 1)e_{1}dt$$

$$de_{3} = 2\sqrt{e_{3}e_{2} + 6e_{1}e_{4}}dU_{3} + 2(\alpha - 2)e_{2}dt$$

$$de_{4} = 2\sqrt{e_{4}e_{3}}dU_{4} + (\alpha - 3)e_{3}dt$$

Look at e_4 . This is a $BESQ(\alpha - 3)$ process starting from \mathbb{R}^+ , with a time change $e_3(t)$.

If $e_3(t) \neq 0$, then e_4 cannot live on \mathbb{R}^+ as a $BESQ(\alpha - 3)$ process with $\alpha - 3 < 0$. Thus $e_3(t) = 0$ for t near 0. Look at the SDE for e_3 . We infer that $e_2 = 0$ for t near 0, otherwise the drift part of e_3 would be equal to its martingale part.

Suppose a "true" BESQ matrix process exists for $\alpha < 3, \alpha \notin \mathbb{N}$.

$$de_{1} = 2\sqrt{e_{1}}dU_{1} + 4\alpha dt$$

$$de_{2} = 2\sqrt{e_{1}e_{2} + 3e_{3}}dU_{2} + 3(\alpha - 1)e_{1}dt$$

$$de_{3} = 2\sqrt{e_{3}e_{2} + 6e_{1}e_{4}}dU_{3} + 2(\alpha - 2)e_{2}dt$$

$$de_{4} = 2\sqrt{e_{4}e_{3}}dU_{4} + (\alpha - 3)e_{3}dt$$

Look at e_4 . This is a $BESQ(\alpha - 3)$ process starting from \mathbb{R}^+ , with a time change $e_3(t)$.

If $e_3(t) \neq 0$, then e_4 cannot live on \mathbb{R}^+ as a $BESQ(\alpha - 3)$ process with $\alpha - 3 < 0$. Thus $e_3(t) = 0$ for t near 0. Look at the SDE for e_3 . We infer that $e_2 = 0$ for t near 0, otherwise the drift part of e_3 would be equal to its martingale part.

We repeat this argument and deduce that $e_1 = 0$ for t near 0.
Proof of (1), Example p = 4

Suppose a "true" BESQ matrix process exists for $\alpha < 3, \alpha \notin \mathbb{N}$.

$$de_{1} = 2\sqrt{e_{1}}dU_{1} + 4\alpha dt$$

$$de_{2} = 2\sqrt{e_{1}e_{2} + 3e_{3}}dU_{2} + 3(\alpha - 1)e_{1}dt$$

$$de_{3} = 2\sqrt{e_{3}e_{2} + 6e_{1}e_{4}}dU_{3} + 2(\alpha - 2)e_{2}dt$$

$$de_{4} = 2\sqrt{e_{4}e_{3}}dU_{4} + (\alpha - 3)e_{3}dt$$

Look at e_4 . This is a $BESQ(\alpha - 3)$ process starting from \mathbb{R}^+ , with a time change $e_3(t)$.

If $e_3(t) \neq 0$, then e_4 cannot live on \mathbb{R}^+ as a $BESQ(\alpha - 3)$ process with $\alpha - 3 < 0$. Thus $e_3(t) = 0$ for t near 0. Look at the SDE for e_3 . We infer that $e_2 = 0$ for t near 0, otherwise the drift part of e_3 would be equal to its martingale part.

We repeat this argument and deduce that $e_1 = 0$ for t near 0. This is however impossible because of the SDE for e_1 . Its drift part $4\alpha dt$ is not 0. Proof of (2), Example $p = 4, \alpha = 1$, $\Lambda_0 = diag(0, 0, \lambda_3 > 0, \lambda_4)$ or $(0, \lambda_2 > 0, \lambda_3, \lambda_4)$ Proof of (2), Example $p = 4, \alpha = 1$, $\Lambda_0 = diag(0, 0, \lambda_3 > 0, \lambda_4)$ or $(0, \lambda_2 > 0, \lambda_3, \lambda_4)$

The argument is identical as in the proof of (1), but stops on the level

 $e_2 = 0$

Proof of (2), Example $p = 4, \alpha = 1$, $\Lambda_0 = diag(0, 0, \lambda_3 > 0, \lambda_4)$ or $(0, \lambda_2 > 0, \lambda_3, \lambda_4)$

The argument is identical as in the proof of (1), but stops on the level

 $e_2 = 0$

(The argument cannot go down to e_1 because the drift $(\alpha - 1)dt$ of e_2 is 0 for $\alpha = 1$.)

Proof of (2), Example $\boldsymbol{p} = 4, \alpha = 1,$ $\Lambda_0 = diag(0, 0, \lambda_3 > 0, \lambda_4)$ or $(0, \lambda_2 > 0, \lambda_3, \lambda_4)$

The argument is identical as in the proof of (1), but stops on the level

 $e_2 = 0$

(The argument cannot go down to e_1 because the drift $(\alpha - 1)dt$ of e_2 is 0 for $\alpha = 1$.) $e_2 = \sum_{1 \le i < j \le 4} \lambda_i \lambda_j = 0$ implies that $\lambda_2 = \lambda_3 = 0$, contradiction with rank $(X_0) = 2$ or 3.