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Motivation: processes conditioned to non-colliding

Consider a system of p Brownian particles (B1, . . . ,Bp), i.e.
independent BM on R

For each starting point (B1(0), . . . ,Bp(0)) ∈ Rp, the first
collision time

TB = inf{t > 0 : Bi (t) = Bj(t) for some i 6= j}

is finite with probability 1.

We condition (B1, . . . ,Bp) to non-colliding
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Conditioning to non-colliding

Consider Vandermonde determinant

V (x1, . . . , xp) = Πi<j(xj − xi ),

V = 0 iff some xi = xj collide (i 6= j),
V > 0 when x1 < . . . < xp,
V is ∆-harmonic

Denote by (λ1, . . . , λp) the process (B1, . . . ,Bp) starting
from

B1(0) < . . . < Bp(0),

conditioned using the Doob h-transform with h = V
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Dyson Brownian Motion (1962)

The system (λ1, . . . , λp) starts from λ1(0) < . . . λp(0).

The first collision time

TΛ = inf{t > 0 : λi (t) = λj(t) for some i6= j}

is infinite with prob. 1.

The particles remain ordered

λ1(t) < . . . < λp(t)

i.e. the particles belong to the positive Weyl chamber

The system (λ1, . . . , λp) satisfies

dλi (t) = dBi +
∑
j 6=i

1

λi − λj
dt

The repulsive drift terms 1
λi−λj prevent collisions, to which

the martingale parts tend

Piotr Graczyk Particle systems as solutions of SDEs systems



Dyson Brownian Motion (1962)

The system (λ1, . . . , λp) starts from λ1(0) < . . . λp(0).

The first collision time

TΛ = inf{t > 0 : λi (t) = λj(t) for some i6= j}

is infinite with prob. 1.

The particles remain ordered

λ1(t) < . . . < λp(t)

i.e. the particles belong to the positive Weyl chamber

The system (λ1, . . . , λp) satisfies

dλi (t) = dBi +
∑
j 6=i

1

λi − λj
dt

The repulsive drift terms 1
λi−λj prevent collisions, to which

the martingale parts tend

Piotr Graczyk Particle systems as solutions of SDEs systems



β-Dyson Brownian Motion

β-Dyson BM is described for β > 0 by

dλi = dBi +
β

2

∑
j 6=i

1

λi − λj
dt.

p-dim. BM conditioned not to collide is a Dyson BM with
β = 2.

A β-Dyson BM is non-colliding iff β ≥ 1 (Rogers,Shi, 1993)

For β < 1 the repulsion force β
λi−λj is too little w.r. to the

colliding martingales dBi .
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Non-colliding squared Bessel particles
( Koenig, O’Connell, 2001)

Let (X1, . . . ,Xp) be a system of independent BESQ
processes on R+ with dimension α > 0

dXi = 2
√
XidBi + αdt, i = 1, . . . , p, α > 0.

starting from Xi (0) > 0.

In such a system collisions happen with probability 1. The
function

V (x1, . . . , xp) = Πi<j(xj − xi )

is harmonic for the generator of (X1, . . . ,Xp)

By h-Doob transform (h = V ) we obtain a non-colliding
squared Bessel particle system
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Non-colliding squared Bessel particles

Process (λ1, . . . , λp) satisfies the following system of SDEs:

dλi = 2
√
λidBi +

α + 2(p − 1) + 2
∑
j 6=i

λi + λj
λi − λj

 dt,

where λ1(0) < . . . < λp(0).

It is a special case of a β-BESQ particle system:

dλi = 2
√
λidBi + β

α +
∑
j 6=i

λi + λj
λi − λj

 dt.
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Further motivation - Eigenvalues of matrix processes

Let Xt be a Brownian Motion on the space of symmetric
matrices Symp (stochastic Gaussian Orthogonal Ensemble)

The process Xt satisfies a matrix SDE

dXt =
1

2
dWt +

1

2
dW T

t

where Wt is a p × p Brownian square matrix
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Proposition

Let Xt be a stochastic matrix process on Symp and Λt its
ordered eigenvalues, λ1(t) ≤ . . . ≤ λp(t).
Suppose that Xt satisfies the SDE

dXt = h(Xt)dWtg(Xt) + g(Xt)dW
T
t h(Xt) + b(Xt)dt

where the functions g , h, b : R→ R act spectrally on Symp.
If λ1(0) ≤ . . . ≤ λp(0), then the process Λt is a semimartingale,
satisfying for t < T=first collision time the SDEs system:

dλi = 2g(λi )h(λi )dBi +

b(λi ) +
∑
j 6=i

G (λi , λj)

λi − λj

 dt,

where G (x , y) = g2(x)h2(y) + g2(y)h2(x).
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Back to Brownian Motion on Symp

dXt = 1
2dWt + 1

2dW
T
t

If X0 has no multiple eigenvalues:

λ1(0) < . . . < λp(0),

then the eigenvalue process Λt satisfies

dλi = dBi +
1

2

∑
j 6=i

1

λi − λj
dt, i = 1, . . . , p,

If Xt is a BM on Hermp(Stochastic UGE)
(Wt is a complex matrix BM, dXt = 1

2dWt + 1
2dW

∗
t )

we obtain

dλi = dBi +
∑
j 6=i

1

λi − λj
dt, i = 1, . . . , p,

In both cases Λt is a Dyson Brownian Motion
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Squared Bessel Matrix processes on Sym+
p

dXt =
√
XtdWt + dW T

t

√
Xt + αIdt, α ≥ p − 1.

When α ∈ N, the process Xt = NtN
T
t with Nt= Brownian

Motion on p × α matrices

Process Xt is also called Wishart (Laguerre) process
(Bru(1991), Koenig, O’Connell(2001), Matsumoto, Yor,
Donati-Martin(2004) )

If X0 has no multiple eigenvalues,

dλi = 2
√
λidBi +

α +
∑
j 6=i

λi + λj
λi − λj

 dt
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Open problems we solve

Consider a system of SDEs on the cone
C+ = {(x1, . . . , xp) ∈ Rp : x1 ≤ x2 ≤ . . . ≤ xp}

dλi = σi (λi )dBi +

bi (λi ) +
∑
j 6=i

Hij(λi , λj)

λi − λj

 dt

i = 1, . . . , p

We prove, when starting from λ1(0) ≤ . . . ≤ λp(0)

and under natural conditions on the coefficients σi ,Hij , bi

strong existence and pathwise unicity

non-colliding of solutions of this system

by methods of classical Itô calculus
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Motivation for different Hij

Important example when different Hij appear:

Brownian particles with nearest neighbour repulsion
σi = 1, bi = 0,
Hij = γ when |i − j | = 1 and zero otherwise
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What was known on the existence of pathwise unique
strong non-colliding solutions

WORLD CENTER OF THIS KNOWLEDGE: ORLEANS!

E. Cépa and D. Lépingle(1997):
for Dyson Brownian Motions with linear drift

A. Bonami, F. Bouchut, E. Cépa and D. Lépingle(1999):
for Dyson Brownian Motions with a Hilbert transform drift
term

B. Schapira(2007), N. Demni(2009):
for radial Dunkl and Heckman-Opdam SDEs, with more
general singularities

D. Lépingle(2010):
for Squared Bessel particle systems with α > p and some
other SDEs systems

using the techniques of Multivalued SDEs
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for Dyson Brownian Motions with a Hilbert transform drift
term

B. Schapira(2007), N. Demni(2009):
for radial Dunkl and Heckman-Opdam SDEs, with more
general singularities
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Main difficulty: singularities in SDEs

Recall the SDE for a Bessel process of dimension α > 0
(index µ = α/2− 1)

dXt = dBt +
α− 1

2Xt
dt.

The singular drift α−1
2Xt

is problematic, when Xt = 0.

Multiplying by the indicator 1{Xt 6=0} practised in the
literature

dXt = dBt +
α− 1

2Xt
1{Xt 6=0}dt

does not help!
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1-dimensional Squared Bessel processes

dXt = 2
√

XtdBt + αdt

No more singularity in the drift part

A non-Lipschitz function
√
x in the martingale part

The equation is solved by the Yamada-Watanabe theorem,
allowing 1/2-Hölder coefficients in the martingale part
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SDEs for non-colliding Squared Bessel processes

In equations for non-colliding BESQ particles

dλi = 2
√
λidBi + β

α +
∑
j 6=i

λi + λj
λi − λj

 dt

both problems appear

non-Lipschitz functions
√
x in martingale parts

( Yamada-Watanabe th. is 1-dimensional!)

The drift part contains singularities (λi − λj)−1
(physicists want to start from (0, . . . , 0)! )
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Back to general problem

Solve the system of SDEs

dλi = σi (λi )dBi +

bi (λi ) +
∑
j 6=i

Hij(λi , λj)

λi − λj

 dt

i = 1, . . . , p

on the cone

C+ = {(x1, . . . , xp) ∈ Rp : x1 ≤ x2 ≤ . . . ≤ xp}
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Assumptions on coefficients
General conditions

the functions σi , bi ,Hij are continuous

the functions Hij are non-negative and

Hij(x , y) = Hji (y , x), x , y ∈ R.

i.e. the particles push away one another with the same
forces

Hij(x , y)

y − x
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Assumptions on coefficients
Regularity conditions

(C1) there exists a function ρ : R+ → R+ such that∫
0+ ρ

−1(x)dx =∞ and that

|σi (x)− σi (y)|2 ≤ ρ(|x − y |), x , y ∈ R, i = 1, . . . , p

(the functions σi are at least 1
2 -Hölder)

the functions bi are Lipschitz continuous
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2 -Hölder)

the functions bi are Lipschitz continuous

Piotr Graczyk Particle systems as solutions of SDEs systems



Assumptions on coefficients
Regularity conditions

(C1) there exists a function ρ : R+ → R+ such that∫
0+ ρ

−1(x)dx =∞ and that

|σi (x)− σi (y)|2 ≤ ρ(|x − y |), x , y ∈ R, i = 1, . . . , p

(the functions σi are at least 1
2 -Hölder)
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Assumptions on coefficients
Non-explosion conditions

(C2) There exists c > 0 such that

σ2i (x) + bi (x)x ≤ c(1 + |x |2), x ∈ R,
Hij(x , y) ≤ c(1 + |xy |), x , y ∈ R

(these are standard conditions which give finiteness of the
solutions for every t ≥ 0;
the sublinear growth of bi can be replaced by non-positivity of
bi (x)x for large x)
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Assumptions on coefficients
A physical condition

(A1) For every i 6= j and w < x < y < z

Hij(w , z)

z − w
≤

Hij(x , y)

y − x

(Exterior particles interact less than the interior ones)

This is a crucial condition to prove the pathwise uniqueness of
solutions by Tanaka formula
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Assumptions on coefficients
Conditions for non-collisions

(A2) There exists c1 ≥ 0 such that for every i 6= j

σ2i (x) + σ2j (y) ≤ c1(x − y)2 + 4Hij(x , y)

(drift part is appropriately bigger than the martingale part, to
prevent collisions)

(A3) There exists c2 ≥ 0 such that for every x < y < z and
i < j < k

Hij(x , y)(y − x) + Hjk(y , z)(z − y) ≤
c2(z − y)(z − x)(y − x) + Hik(x , z)(z − x)

(repulsion by exterior particles does not make collide interior
particles)
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Assumptions on coefficients
Conditions for non-collisions

(A4) σ2k(x) + σ2l (x) + Hkl(x , x) 6= 0

or, otherwise, such points x are isolated and

l∑
i=k

bi (x) +

p−2∑
j=1

Hij(x , yj)

x − yj
1R\{x}(yj)

 6= 0,

for every y1, . . . , yp−2 ∈ R.
(in each collision point x there is a force making the
particles leave from it).

(A5) If i < j then bi (x) ≤ bj(x) for all x ∈ R.

(if bi (x) > bj(x) then the particle xi could catch up with the
particle xj thanks to the bigger drift force.)
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Main result

Theorem (PG, J. Malecki, 2014)

If the conditions (C1), (C2) and (A1)-(A5) hold, then there
exists a unique strong non-exploding solution [Λ(t)]t≥0. The
first collision time

T = inf{t > 0 : λi (t) = λj(t) for some i 6= j , i , j = 1, . . . , p}

is infinite almost surely.

Applications:

General Brownian NC(non-colliding) particle systems
(e.g. neighbor interaction)

BESQ NC-particle systems for α ≥ p − 1

Generalized BESQ NC-particle systems (for α < p − 1 )

General trigonometric and hyperbolic particle systems
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Scheme of the proof

Step 1 Assuming (A2)-(A5) we show that there exists a weak
solution Λ(t), having no collisions after the start
Tools for existence: SDEs for basic symmetric polynomials
e1, . . . , ep, via Itô formula
Solving them; defining Λt = Λ(et)
Proving non-collisions of Λt

Limit passage Λs → Λ0

Tools for non-collisions: symmetric polynomials in
(λi − λj)2
McKean argument (non-explosion of U = lnV , V =
Vandermond determinant)

Step 2 Assuming conditions (C1) and (A1) we show the pathwise
uniqueness of the solutions
Tool: Tanaka formula
We get much more:
Yamada-Watanabe theorem in dimension p

End the existence of a unique strong solution follows
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Vandermond determinant)

Step 2 Assuming conditions (C1) and (A1) we show the pathwise
uniqueness of the solutions
Tool: Tanaka formula

We get much more:
Yamada-Watanabe theorem in dimension p

End the existence of a unique strong solution follows
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Idea of the proof of weak existence (Step 1)

Consider e1 = λ1 + . . .+ λp.

It is easy to see that

de1 = (
∑
i

σi (λi )
2)

1
2 dWt +

∑
i

bi (λi )dt

for a 1-dimensional BM Wt .

The symmetry of Hij(x , y) implies that the singularities
1

λi−λj cancel!

Analogous phenomenon occurs for other basic symmetric
polynomials of (λ1, . . . , λp)

e2 =
∑
j>i

λjλi ,

. . .

ep = λ1 · . . . · λp
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Idea of the proof of weak existence (Step 1)

If we restrict the arguments to the open set

C+ = {(x1, . . . , xp) ∈ Rp : x1 < x2 < . . . < xp}
then the smooth function

e = (e1, . . . , ep) : C+ → Rp

is one-to-one
( (−1)kek(X ) is the coefficient of xp−k in P(x) =

∏p
i=1(x − xi ) )

Thus e is a diffeomorphism between C+ and e(C+) which is
open

Denote the inverse diffeomorphism by

f = (f1, . . . , fp) : e(C+)→ C+

By the continuity of roots of a polynomial as functions of its
coefficients, f extends to a continuous function

f : e(C+)
1−1−→ C+
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Idea of the proof of weak existence (Step 1)

Using Itô formula and the diffeomorphism f , we compute SDEs
for yn = en(Λt)

dyn = an(y1, . . . , yp)dUn + qn(y1, . . . , yp)dt, n = 1, . . . , p,

where (i means that the i-th variable is omitted)

an(y) =

(
p∑

i=1

σ2i (fi (y))(e in−1(f (y)))2

)1/2

, y ∈ C+,

qn(y) =

p∑
i=1

bi (fi (y))e in−1(f (y))−
∑
i<j

e i ,jn−2(f (y))Hij(fi (y), fj(y))

and Un are BMs such that

〈andUn, amdUm〉 =
∑p

i=1 σ
2
i (fi (y))e in−1(f (y))e jm−1(f (y)).
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Example: BESQ particle systems, p = 4

de1 = 2
√
e1dU1 + 4αdt

de2 = 2
√
e1e2 + 3e3dU2 + 3(α− 1)e1dt

de3 = 2
√
e3e2 + 6e1e4dU3 + 2(α− 2)e2dt

de4 = 2
√
e4e3dU4 + (α− 3)e3dt

Back to the general proof:

The SDEs for en are not sensible to the start from a
collision
(they do not have singularities in the drift term)

We solve them on e(C+)

We define Λ = f (e1, . . . , ep)

We show that λi never collide for t > 0

Piotr Graczyk Particle systems as solutions of SDEs systems



Example: BESQ particle systems, p = 4

de1 = 2
√
e1dU1 + 4αdt

de2 = 2
√
e1e2 + 3e3dU2 + 3(α− 1)e1dt

de3 = 2
√
e3e2 + 6e1e4dU3 + 2(α− 2)e2dt

de4 = 2
√
e4e3dU4 + (α− 3)e3dt

Back to the general proof:

The SDEs for en are not sensible to the start from a
collision
(they do not have singularities in the drift term)

We solve them on e(C+)

We define Λ = f (e1, . . . , ep)

We show that λi never collide for t > 0

Piotr Graczyk Particle systems as solutions of SDEs systems



Example: BESQ particle systems, p = 4

de1 = 2
√
e1dU1 + 4αdt

de2 = 2
√
e1e2 + 3e3dU2 + 3(α− 1)e1dt

de3 = 2
√
e3e2 + 6e1e4dU3 + 2(α− 2)e2dt

de4 = 2
√
e4e3dU4 + (α− 3)e3dt

Back to the general proof:

The SDEs for en are not sensible to the start from a
collision
(they do not have singularities in the drift term)

We solve them on e(C+)

We define Λ = f (e1, . . . , ep)

We show that λi never collide for t > 0

Piotr Graczyk Particle systems as solutions of SDEs systems



Example: BESQ particle systems, p = 4

de1 = 2
√
e1dU1 + 4αdt

de2 = 2
√
e1e2 + 3e3dU2 + 3(α− 1)e1dt

de3 = 2
√
e3e2 + 6e1e4dU3 + 2(α− 2)e2dt

de4 = 2
√
e4e3dU4 + (α− 3)e3dt

Back to the general proof:

The SDEs for en are not sensible to the start from a
collision
(they do not have singularities in the drift term)

We solve them on e(C+)

We define Λ = f (e1, . . . , ep)

We show that λi never collide for t > 0

Piotr Graczyk Particle systems as solutions of SDEs systems



Example: BESQ particle systems, p = 4

de1 = 2
√
e1dU1 + 4αdt

de2 = 2
√
e1e2 + 3e3dU2 + 3(α− 1)e1dt

de3 = 2
√
e3e2 + 6e1e4dU3 + 2(α− 2)e2dt

de4 = 2
√
e4e3dU4 + (α− 3)e3dt

Back to the general proof:

The SDEs for en are not sensible to the start from a
collision
(they do not have singularities in the drift term)

We solve them on e(C+)

We define Λ = f (e1, . . . , ep)

We show that λi never collide for t > 0

Piotr Graczyk Particle systems as solutions of SDEs systems



Example: BESQ particle systems, p = 4

de1 = 2
√
e1dU1 + 4αdt

de2 = 2
√
e1e2 + 3e3dU2 + 3(α− 1)e1dt

de3 = 2
√
e3e2 + 6e1e4dU3 + 2(α− 2)e2dt

de4 = 2
√
e4e3dU4 + (α− 3)e3dt

Back to the general proof:

The SDEs for en are not sensible to the start from a
collision
(they do not have singularities in the drift term)

We solve them on e(C+)

We define Λ = f (e1, . . . , ep)

We show that λi never collide for t > 0

Piotr Graczyk Particle systems as solutions of SDEs systems



Example: BESQ particle systems, p = 4

de1 = 2
√
e1dU1 + 4αdt

de2 = 2
√
e1e2 + 3e3dU2 + 3(α− 1)e1dt

de3 = 2
√
e3e2 + 6e1e4dU3 + 2(α− 2)e2dt

de4 = 2
√
e4e3dU4 + (α− 3)e3dt

Back to the general proof:

The SDEs for en are not sensible to the start from a
collision
(they do not have singularities in the drift term)

We solve them on e(C+)

We define Λ = f (e1, . . . , ep)

We show that λi never collide for t > 0

Piotr Graczyk Particle systems as solutions of SDEs systems



Idea of the proof of non-collisions (Step 1)

We compute the SDEs for the semimartingales

V1 =
∑
j>i

(λi − λj)2

. . .

VN = Πj>i (λj − λi )2, N =
p(p + 1)

2

they are symmetric polynomials of (λi − λj)2

We show that even if VN(0) = 0, if (A4) holds then
τN = inf{t > 0 : VN(t) > 0} = 0 almost surely
(instant diffraction)

The proof is based on:
– the implication τn = 0⇒ τn−1 = 0
– the fact that (A4) guarantees the instant exit from a collision
in a ”degenerate point” x , σ2k(x) + σ2l (x) + Hkl(x , x) = 0.
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End of Step 1: limit passage s → 0

For every t > s > 0, by Itô formula

λi (t)− λi (s) =

∫ t

s
σi (λi (u))dBi (u) +

∫ t

s

bi (λi (u)) +
∑
j 6=i

Hij(λi (u), λj(u))

λi (u)− λj(u)

 du

When s → 0, we have λi (s)→ λi (0) and∫ t

s
σi (λi (u))dBi (u)→

∫ t

0
σi (λi (u))dBi (u)

in L2, so almost surely for a subsequence sk → 0.
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σi (λi (u))dBi (u)

in L2, so almost surely for a subsequence sk → 0.
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Step 2: pathwise uniqueness

Let (Λ,B) and (Λ̃,B) be two solutions with Λ(0) = Λ̃(0). Local
time of λi − λ̃i at 0 is 0. By Tanaka formula

p∑
i=1

E|λi (t)− λ̃i (t)| =

E
∫ t

0

p∑
i=1

sgn(λi − λ̃i )
∑
j 6=i

(
Hij(λi , λj)

λi − λj
−

Hij(λ̃i , λ̃j)

λ̃i − λ̃j

)
du

+E
∫ t

0

p∑
i=1

sgn(λi − λ̃i )(bi (λi )− bi (λ̃i ))du.

Lipschitz condition on bi (x) implies that
the second term ≤ c3E

∫ t
0

∑p
i=1 |λi − λ̃i |du.

Assumption (A1) ensures that the first term is non-positive!!!
Gronwall Lemma ends the proof.
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Stochastic Wallach set

We know (Bru, 1991) that for α ≥ p − 1 the BESQ

matrix(Wishart) processes exist on Sym+
p .

dXt =
√

XtdBt + dBT
t

√
Xt + αIdt, α ≥ p − 1.

By quadratic construction it is straightforward to see that they
exist also for α = 1, 2, . . . , p − 2.

What about α < p − 1 and different from 1, 2, . . . , p − 2?

Another question: admissible starting points for
α = 1, . . . , p − 2.

Intuitively, X0 cannot be of rank superior to α: the process (Xt)
evolves in rank α
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Stochastic Wallach set

Theorem

(1) When α < p − 1 and α is not integer, the BESQ matrix

process cannot exist on Sym+
p .

(2) When α ∈ {0, 1, 2, . . . , p − 2} is integer, and X0 is of rank
greater than α then the BESQ matrix process cannot exist on
Sym+

p .
.

Comments:
– (1) gives a simple stochastic proof of the classical Wallach set
– (2) gives a simple stochastic proof of a result of Letac-Massam
(based on ideas of J. Faraut), on non-central Wishart laws
(unpublished yet)
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Proof of (1), Example p = 4

Suppose a ”true” BESQ matrix process exists for α < 3, α /∈ N.

de1 = 2
√
e1dU1 + 4αdt

de2 = 2
√
e1e2 + 3e3dU2 + 3(α− 1)e1dt

de3 = 2
√
e3e2 + 6e1e4dU3 + 2(α− 2)e2dt

de4 = 2
√
e4e3dU4 + (α− 3)e3dt

Look at e4. This is a BESQ(α− 3) process starting from R+,
with a time change e3(t).
If e3(t) 6= 0, then e4 cannot live on R+ as a BESQ(α− 3)
process with α− 3 < 0. Thus e3(t) = 0 for t near 0.
Look at the SDE for e3. We infer that e2 = 0 for t near 0,
otherwise the drift part of e3 would be equal to its martingale
part.
We repeat this argument and deduce that e1 = 0 for t near 0.
This is however impossible because of the SDE for e1. Its drift
part 4αdt is not 0.
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Proof of (2), Example p = 4, α = 1,
Λ0 = diag(0, 0, λ3 > 0, λ4) or (0, λ2 > 0, λ3, λ4)

The argument is identical as in the proof of (1), but stops on
the level

e2 = 0

(The argument cannot go down to e1 because the drift
(α− 1)dt of e2 is 0 for α = 1.)
e2 =

∑
1≤i<j≤4 λiλj = 0 implies that λ2 = λ3 = 0, contradiction

with rank(X0) = 2 or 3.
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