Wavelet techniques for *p*-exponent multifractal analysis

Stéphane Jaffard

Université Paris Est

based on joint works with

Patrice Abry, Roberto Leonarduzzi, Clothilde Melot, Stéphane Roux, María Eugenia Torres, Herwig Wendt

> Harmonic Analysis, Probability and Applications Orléans University, June 10-13, 2014

Type of data concerned with Multifractal Analysis

Fully developed turbulence

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Everywhere irregular data

Type of data concerned with Multifractal Analysis

Fully developed turbulence

Everywhere irregular data

Data that share the same statistical properties should be classified as identical

Pointwise exponent

One associates to such data a pointwise regularity exponent h(x) which describes how the regularity fluctuates from point to point

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Pointwise exponent

One associates to such data a pointwise regularity exponent h(x) which describes how the regularity fluctuates from point to point

Examples :

Let μ be a Probability measure on \mathbb{R}^d and $x_0 \in \mathbb{R}^d$ $\mu \in M^{\alpha}(x_0)$ if there exist C > 0 such that

 $|\mu(B(x_0,r))| \leq C r^{lpha}$

(日) (日) (日) (日) (日) (日) (日)

The local dimension of μ at x_0 is $h_{\mu}(x_0) = \sup\{\alpha : \mu \in M^{\alpha}(x_0)\}$

Pointwise exponent

One associates to such data a pointwise regularity exponent h(x) which describes how the regularity fluctuates from point to point

Examples :

Let μ be a Probability measure on \mathbb{R}^d and $x_0 \in \mathbb{R}^d$ $\mu \in M^{\alpha}(x_0)$ if there exist C > 0 such that

 $|\mu(B(x_0,r))| \leq C r^{lpha}$

The local dimension of μ at x_0 is $h_{\mu}(x_0) = \sup\{\alpha : \mu \in M^{\alpha}(x_0)\}$

Let *f* be a locally bounded function $\mathbb{R}^d \to \mathbb{R}$ and $x_0 \in \mathbb{R}^d$ $f \in C^{\alpha}(x_0)$ if there exist C > 0 and a polynomial *P* such that

$$|f(x) - P(x - x_0)| \leq C|x - x_0|^{\alpha}$$

The Hölder exponent of f at x_0 is $h_f(x_0) = \sup\{\alpha : f \in C^{\alpha}(x_0)\}$

・ロト・日本・モート ヨー うへの

Difficulty to use directly the pointwise regularity exponent for classification

For classical models, such exponents are extremely erratic :

The Hölder exponent of "most" Lévy processes

The Local dimension of multiplicative cascades

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Difficulty to use directly the pointwise regularity exponent for classification

For classical models, such exponents are extremely erratic :

The Hölder exponent of "most" Lévy processes

The Local dimension of multiplicative cascades

The function *h* is everywhere discontinuous

・ロト ・四ト ・ヨト ・ヨト

Difficulty to use directly the pointwise regularity exponent for classification

For classical models, such exponents are extremely erratic :

The Hölder exponent of "most" Lévy processes

The Local dimension of multiplicative cascades

The function *h* is everywhere discontinuous

Goal : Recover some information on h(x) from (time or space) averaged quantities that are numerically computable on a sample path of the process, or on real-life data

A general framework : Admissible exponents

Dyadic cubes :
$$\lambda = \left[\frac{k_1}{2^j}, \frac{k_1+1}{2^j}\right) \times \cdots \times \left[\frac{k_d}{2^j}, \frac{k_d+1}{2^j}\right)$$

 $\lambda_j(x_0)$ denotes the dyadic cube of scale *j* that contains x_0

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Dyadic cubes at scale $j : \Lambda_j = \{\lambda : |\lambda| = 2^{-j}\}$

A general framework : Admissible exponents

Dyadic cubes :
$$\lambda = \left[\frac{k_1}{2^j}, \frac{k_1+1}{2^j}\right) \times \cdots \times \left[\frac{k_d}{2^j}, \frac{k_d+1}{2^j}\right)$$

 $\lambda_i(x_0)$ denotes the dyadic cube of scale *j* that contains x_0

Dyadic cubes at scale j: $\Lambda_i = \{\lambda : |\lambda| = 2^{-j}\}$

Definition : A positive sequence (d_{λ}) is a hierarchical sequence if

$$\exists \alpha \in \mathbb{R}$$
 such that if $\lambda' \subset \lambda$ then $2^{-\alpha j'} d_{\lambda'} \leq 2^{-\alpha j} d_{\lambda}$

(日) (日) (日) (日) (日) (日) (日)

The exponent *h* defined by : $h(x_0) = \liminf_{j \to +\infty} \left(\frac{\log (d_{\lambda_j(x_0)})}{\log(2^{-j})} \right)$

is called an admissible pointwise exponent

A general framework : Admissible exponents

Dyadic cubes :
$$\lambda = \left[\frac{k_1}{2^j}, \frac{k_1+1}{2^j}\right) \times \cdots \times \left[\frac{k_d}{2^j}, \frac{k_d+1}{2^j}\right)$$

 $\lambda_j(x_0)$ denotes the dyadic cube of scale *j* that contains x_0

Dyadic cubes at scale $j : \Lambda_j = \{\lambda : |\lambda| = 2^{-j}\}$

Definition : A positive sequence (d_{λ}) is a hierarchical sequence if

$$\exists \alpha \in \mathbb{R}$$
 such that if $\lambda' \subset \lambda$ then $2^{-\alpha j'} d_{\lambda'} \leq 2^{-\alpha j} d_{\lambda}$

The exponent *h* defined by : $h(x_0) = \liminf_{j \to +\infty} \left(\frac{\log (d_{\lambda_j(x_0)})}{\log(2^{-j})} \right)$

is called an admissible pointwise exponent

Proposition : An admissible exponent h(x) is the limit of a family of continuous functions

Notation : 3λ denote the cube of same center as λ and three times wider (it is the union of λ and its $3^d - 1$ immediate neighbours)

Examples :

If μ is a probability measure, then h_{μ} is admissible : Take $d_{\lambda} = \mu(3\lambda)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Notation : 3λ denote the cube of same center as λ and three times wider (it is the union of λ and its $3^d - 1$ immediate neighbours)

Examples :

If μ is a probability measure, then h_{μ} is admissible : Take $d_{\lambda} = \mu(3\lambda)$ If *f* is a locally bounded function and if $\forall x$, $h_f(x) < 1$, then h_f is admissible : Take $d_{\lambda} = \sup_{x \in 3\lambda} f(x) - \inf_{x \in 3\lambda} f(x)$

(ロ) (同) (三) (三) (三) (○) (○)

Notation : 3λ denote the cube of same center as λ and three times wider (it is the union of λ and its $3^d - 1$ immediate neighbours)

Examples :

If μ is a probability measure, then h_{μ} is admissible : Take $d_{\lambda} = \mu(3\lambda)$ If *f* is a locally bounded function and if $\forall x$, $h_f(x) < 1$, then h_f is admissible : Take $d_{\lambda} = \sup_{x \in 3\lambda} f(x) - \inf_{x \in 3\lambda} f(x)$

Multifractal spectrum :

The isohölder sets are the sets

$$E_H = \{x_0: h(x_0) = H\}$$

(日) (日) (日) (日) (日) (日) (日)

Notation : 3λ denote the cube of same center as λ and three times wider (it is the union of λ and its $3^d - 1$ immediate neighbours)

Examples :

If μ is a probability measure, then h_{μ} is admissible : Take $d_{\lambda} = \mu(3\lambda)$ If *f* is a locally bounded function and if $\forall x$, $h_f(x) < 1$, then h_f is admissible : Take $d_{\lambda} = \sup_{x \in 3\lambda} f(x) - \inf_{x \in 3\lambda} f(x)$

Multifractal spectrum :

The isohölder sets are the sets

$$E_H = \{x_0 : h(x_0) = H\}$$

The multifractal associated with the exponent *h* is

 $D(H) = \dim (E_H)$

where dim stands for the Hausdorff dimension $(\dim (\emptyset) = \varpi \infty)_{\mathbb{R}}$, $\Xi = \Im \otimes \mathbb{R}$

Multifractal formalism

The scaling function associated with a hierarchic sequence (d_{λ}) is defined by

$$orall q \in \mathbb{R}, \qquad 2^{-dj} \sum_{\lambda \in \Lambda_j} |d_\lambda|^q \sim 2^{-\eta(q)j}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Multifractal formalism

The scaling function associated with a hierarchic sequence (d_{λ}) is defined by

$$orall q \in \mathbb{R}, \qquad 2^{-dj} \sum_{\lambda \in \Lambda_j} |d_\lambda|^q \sim 2^{-\eta(q)j}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Stability requirement : Invariant with respect to smooth deformations

Multifractal formalism

The scaling function associated with a hierarchic sequence (d_{λ}) is defined by

$$orall q \in \mathbb{R}, \qquad 2^{-dj} \sum_{\lambda \in \Lambda_j} |d_\lambda|^q \sim 2^{-\eta(q)j}$$

Stability requirement : Invariant with respect to smooth deformations

Since η is a concave function, there is no loss of information in rather considering the Legendre Spectrum

$$L(H) = \inf_{q \in \mathbb{R}} \left(d + Hq - \eta(q) \right)$$

Theorem : Let (d_{λ}) be an admissible sequence

$$\forall H \in \mathbb{R}, \qquad D(H) \leq \inf_{q \in \mathbb{R}} (d + Hq - \eta(q))$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Alternative admissible sequences for the Hölder exponent

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Alternative admissible sequences for the Hölder exponent

A wavelet basis on \mathbb{R} is generated by a smooth, well localized, oscillating function ψ such that the $\psi(2^j x - k), \quad j, k \in \mathbb{Z}$ form an orthogonal basis of $L^2(\mathbb{R})$

$$\forall f \in L^{2}(\mathbb{R}),$$

$$f(x) = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} c_{j,k} \ \psi(2^{j}x - k)$$

where

$$c_{j,k} = 2^j \int f(x) \ \psi(2^j x - k) \ dx$$

Daubechies Wavelet

Notations for wavelets on $\ensuremath{\mathbb{R}}$

Dyadic intervals

$$\lambda = \left[\frac{k}{2^j}, \frac{k+1}{2^j}\right)$$

Wavelets

$$\psi_{\lambda}(\mathbf{x}) = \psi(\mathbf{2}^{j}\mathbf{x} - \mathbf{k})$$

Wavelet coefficients

$$c_{\lambda} = 2^j \int_{\mathbb{R}} f(x) \psi(2^j x - k) dx$$

Dyadic intervals at scale *j*

$$\Lambda_j = \{\lambda : |\lambda| = \mathbf{2}^{-j}\}$$

Wavelet expansion of f

$$f(x) = \sum_{j} \sum_{\lambda \in \Lambda_{j}} c_{\lambda} \psi_{\lambda}(x)$$

Wavelets in 2 variables

In 2D, the wavelets used are tensor products :

$$\psi^{1}(\boldsymbol{x},\boldsymbol{y})=\psi(\boldsymbol{x})\varphi(\boldsymbol{y})$$

$$\psi^2(\mathbf{x},\mathbf{y}) = \varphi(\mathbf{x})\psi(\mathbf{y})$$

$$\psi^{3}(\boldsymbol{x},\boldsymbol{y})=\psi(\boldsymbol{x})\psi(\boldsymbol{y})$$

Notations

Dyadic squares :
$$\lambda = \left[\frac{k}{2^{j}}, \frac{(k+1)}{2^{j}}\right] \times \left[\frac{l}{2^{j}}, \frac{(l+1)}{2^{j}}\right]$$

Wavelet coefficients

$$c_{\lambda} = 2^{2j} \int \int f(x,y) \psi^i \left(2^j x - k, 2^j y - l\right) dx dy$$

Wavelet leaders

Let *f* be a locally bounded function; the wavelet leaders of *f* are

 $d_{\lambda} = \sup_{\lambda' \subset \mathfrak{Z}\lambda} |c_{\lambda'}|$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Computation of 2D wavelet leaders

Proposition: Let *f* be a uniform Hölder function ($f \in C^{\varepsilon}(\mathbb{R}^d)$) for an $\varepsilon > 0$). If one uses the wavelet leaders d_{λ} for hierarchical sequence, then the associated pointwise exponent is the Hölder exponent

How can one check that the data correspond to a locally bounded function ?

Hölder spaces : Let $\alpha \in (0, 1)$; $f \in C^{\alpha}(\mathbb{R}^d)$ if $f \in L^{\infty}$ and

 $\exists C, \ \forall x, y: \qquad |f(x) - f(y)| \leq C \cdot |x - y|^{lpha}$

(ロ) (同) (三) (三) (三) (○) (○)

 $\forall \alpha \in \mathbb{R}, \qquad C^{\alpha}(\mathbb{R}^d) = B^{\alpha}_{\infty}(\mathbb{R}^d)$

How can one check that the data correspond to a locally bounded function ?

Hölder spaces : Let $\alpha \in (0, 1)$; $f \in C^{\alpha}(\mathbb{R}^d)$ if $f \in L^{\infty}$ and

$$\exists C, \ \forall x, y: \qquad |f(x) - f(y)| \leq C \cdot |x - y|^{lpha}$$

 $\forall \alpha \in \mathbb{R}, \qquad \quad \mathcal{C}^{\alpha}(\mathbb{R}^d) = \mathcal{B}^{\alpha}_{\infty}(\mathbb{R}^d)$

The uniform Hölder exponent of f is

$$H_{f}^{min} = \sup\{ \alpha : f \in C^{\alpha}(\mathbb{R}^{d}) \}$$

How can one check that the data correspond to a locally bounded function ?

Hölder spaces : Let $\alpha \in (0, 1)$; $f \in C^{\alpha}(\mathbb{R}^d)$ if $f \in L^{\infty}$ and

$$\exists C, \ \forall x, y: \qquad |f(x) - f(y)| \leq C \cdot |x - y|^{lpha}$$

 $\forall \alpha \in \mathbb{R}, \qquad \quad \mathcal{C}^{\alpha}(\mathbb{R}^d) = \mathcal{B}^{\alpha}_{\infty}(\mathbb{R}^d)$

The uniform Hölder exponent of f is

$$H_{f}^{min} = \sup\{ \alpha : f \in C^{\alpha}(\mathbb{R}^{d}) \}$$

Numerical computation from the wavelet coefficients

Let
$$\omega_j = \sup_{\lambda \in \Lambda_j} |c_{\lambda}|$$
 then $H_f^{\min} = \liminf_{j \to +\infty} \frac{\log(\omega_j)}{\log(2^{-j})}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

How can one check that the data correspond to a locally bounded function ?

Hölder spaces : Let $\alpha \in (0, 1)$; $f \in C^{\alpha}(\mathbb{R}^d)$ if $f \in L^{\infty}$ and

$$\exists C, \ \forall x, y: \qquad |f(x) - f(y)| \leq C \cdot |x - y|^{lpha}$$

 $\forall \alpha \in \mathbb{R}, \qquad \quad \mathcal{C}^{\alpha}(\mathbb{R}^d) = \mathcal{B}^{\alpha}_{\infty}(\mathbb{R}^d)$

The uniform Hölder exponent of f is

$$H_{f}^{min} = \sup\{ \alpha : f \in C^{\alpha}(\mathbb{R}^{d}) \}$$

Numerical computation from the wavelet coefficients

Let $\omega_j = \sup_{\lambda \in \Lambda_j} |c_{\lambda}|$ then $H_f^{min} = \liminf_{j \to +\infty} \frac{\log(\omega_j)}{\log(2^{-j})}$ $H_f^{min} > 0 \implies f \text{ is continuous}$ $H_f^{min} < 0 \implies f \text{ is not locally bounded}$ Is $H_{min} > 0$ fulfilled in applications?

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Is $H_{min} > 0$ fulfilled in applications?

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○ ○

Heartbeat Intervals

æ

Pointwise regularity with negative exponents ? Pointwise Hölder regularity : $f \in C^{\alpha}(x_0)$ if $|f(x) - P(x - x_0)| \le C|x - x_0|^{\alpha}$

If $\alpha < 0$, this definition implies that, outside of x_0 , f is locally bounded

Pointwise regularity with negative exponents? Pointwise Hölder regularity : $f \in C^{\alpha}(x_0)$ if $|f(x) - P(x - x_0)| \le C|x - x_0|^{\alpha}$

If $\alpha < 0$, this definition implies that, outside of x_0 , f is locally bounded \implies it could be used only to define isolated singularities of negative exponent

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>
Pointwise regularity with negative exponents? Pointwise Hölder regularity : $f \in C^{\alpha}(x_0)$ if $|f(x) - P(x - x_0)| \le C|x - x_0|^{\alpha}$

If $\alpha < 0$, this definition implies that, outside of x_0 , f is locally bounded \implies it could be used only to define isolated singularities of negative exponent

Which definition of pointwise regularity would allow for negative exponents?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Pointwise regularity with negative exponents? Pointwise Hölder regularity : $f \in C^{\alpha}(x_0)$ if $|f(x) - P(x - x_0)| \le C|x - x_0|^{\alpha}$

If $\alpha < 0$, this definition implies that, outside of x_0 , f is locally bounded \implies it could be used only to define isolated singularities of negative exponent

Which definition of pointwise regularity would allow for negative exponents?

Clue : The definition of pointwise Hölder regularity can be rewritten

$$f \in C^{lpha}(x_0) \iff \sup_{B(x_0,r)} |f(x) - P(x-x_0)| \le Cr^{lpha}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Pointwise regularity with negative exponents? Pointwise Hölder regularity : $f \in C^{\alpha}(x_0)$ if $|f(x) - P(x - x_0)| \le C|x - x_0|^{\alpha}$

If $\alpha < 0$, this definition implies that, outside of x_0 , f is locally bounded \implies it could be used only to define isolated singularities of negative exponent

Which definition of pointwise regularity would allow for negative exponents?

Clue : The definition of pointwise Hölder regularity can be rewritten

$$f \in C^{lpha}(x_0) \iff \sup_{B(x_0,r)} |f(x) - P(x-x_0)| \le Cr^{lpha}$$

Definition (Calderón and Zygmund) : Let $f \in L^{p}(\mathbb{R}^{d})$; $f \in T^{p}_{\alpha}(x_{0})$ if there exists a polynomial *P* such that for *r* small enough,

$$\left(\frac{1}{r^d}\int_{B(x_0,r)}|f(x)-P(x-x_0)|^pdx\right)^{1/p}\leq Cr^{\alpha}$$

The *p*-exponent

Definition : Let $f \in L^{p}(\mathbb{R}^{d})$; $f \in T^{p}_{\alpha}(x_{0})$ if there exists a polynomial P such that for r small enough,

$$\left(\frac{1}{r^d}\int_{B(x_0,r)}|f(x)-P(x-x_0)|^pdx\right)^{1/p}\leq Cr^{\alpha}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

The *p*-exponent

Definition : Let $f \in L^{p}(\mathbb{R}^{d})$; $f \in T^{p}_{\alpha}(x_{0})$ if there exists a polynomial P such that for r small enough,

$$\left(\frac{1}{r^d}\int_{B(x_0,r)}|f(x)-P(x-x_0)|^pdx\right)^{1/p}\leq Cr^{\alpha}$$

The *p*-exponent of *f* at x_0 is $h_p(x_0) = \sup\{\alpha : f \in T^p_\alpha(x_0)\}$

The *p*-spectrum of *f* is $d^p(H) = dim (\{x_0 : h_p(x_0) = H\})$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The *p*-exponent

Definition : Let $f \in L^{p}(\mathbb{R}^{d})$; $f \in T^{p}_{\alpha}(x_{0})$ if there exists a polynomial *P* such that for *r* small enough,

$$\left(\frac{1}{r^d}\int_{B(x_0,r)}|f(x)-P(x-x_0)|^pdx\right)^{1/p}\leq Cr^{\alpha}$$

The *p*-exponent of *f* at x_0 is $h_p(x_0) = \sup\{\alpha : f \in T^p_\alpha(x_0)\}$

The *p*-spectrum of *f* is $d^p(H) = dim (\{x_0 : h_p(x_0) = H\})$

Remarks :

- The case $p = +\infty$ corresponds to pointwise Hölder regularity
- The normalization is chosen so that a cusp |x − x₀|^α has the same p-exponent for all p : h_p(x₀) = α (as long as α ≥ −d/p)

How can one check that the data belong to L^p ?

The wavelet scaling function is informally defined by

$$orall p > 0$$
 $2^{-dj} \sum_{\lambda \in \Lambda_j} |c_\lambda|^p \sim 2^{-\zeta_f(p)j}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

How can one check that the data belong to L^p ?

The wavelet scaling function is informally defined by

$$orall p > 0$$
 $2^{-dj} \sum_{\lambda \in \Lambda_j} |c_\lambda|^p \sim 2^{-\zeta_f(p)j}$

Besov spaces : Let p>0 ; $f\in B^{s,\infty}_{\rho}(\mathbb{R}^d)$ if

$$\exists m{\mathcal{C}}, orall j: \qquad 2^{-dj} \sum_{\lambda \in \Lambda_i} |m{c}_\lambda|^p \leq m{\mathcal{C}} \cdot 2^{-spj}$$

How can one check that the data belong to L^p ?

The wavelet scaling function is informally defined by

$$orall p > 0$$
 $2^{-dj} \sum_{\lambda \in \Lambda_j} |c_\lambda|^p \sim 2^{-\zeta_f(p)j}$

Besov spaces : Let p > 0 ; $f \in B^{s,\infty}_p(\mathbb{R}^d)$ if

$$\exists m{\mathcal{C}}, orall j: \qquad 2^{-dj} \sum_{\lambda \in \Lambda_j} |m{c}_\lambda|^p \leq m{C} \cdot 2^{-spj}$$

$$\zeta_{f}(p) = \liminf_{j \to +\infty} \frac{\log\left(2^{-dj} \sum_{\lambda \in \Lambda_{j}} |c_{\lambda}|^{p}\right)}{\log(2^{-j})} = p \cdot \sup\left\{s: f \in B_{p}^{s,\infty}(\mathbb{R}^{d})\right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

How can one check that the data belong to L^{p} ?

The wavelet scaling function is informally defined by

$$orall p > 0$$
 $2^{-dj} \sum_{\lambda \in \Lambda_j} |c_\lambda|^p \sim 2^{-\zeta_f(p)j}$

Besov spaces : Let p > 0 ; $f \in B^{s,\infty}_{\rho}(\mathbb{R}^d)$ if

$$\exists m{C}, orall j: \qquad 2^{-dj} \sum_{\lambda \in \Lambda_j} |m{c}_\lambda|^p \leq m{C} \cdot 2^{-spj}$$

$$\zeta_{f}(p) = \liminf_{j \to +\infty} \frac{\log\left(2^{-dj} \sum_{\lambda \in \Lambda_{j}} |c_{\lambda}|^{p}\right)}{\log(2^{-j})} = p \cdot \sup\left\{s: f \in B_{p}^{s,\infty}(\mathbb{R}^{d})\right\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- If $\zeta_f(p) > 0$, then $f \in L^p$
- If $\zeta_f(p) < 0$, then $f \notin L^p$

Wavelet scaling functions of synthetic images

Wavelet scaling function $\zeta_f(p)$:

$$2^{-2j}\sum_{\lambda\in\Lambda_j}|c_\lambda|^p\sim 2^{-\zeta_f(p)\,j}$$

Disk : $\zeta_f(p) = 1$

Properties of *p*-exponents

Gives a mathematical framework to the notion of negative regularity exponents

The *p*-exponent satisfies : $h_p(x_0) \ge -\frac{d}{p}$

Properties of *p*-exponents

Gives a mathematical framework to the notion of negative regularity exponents

The *p*-exponent satisfies : $h_p(x_0) \ge -\frac{d}{p}$

p-exponents may differ :

Theorem : Let *f* be an L^1 function, and $x_0 \in \mathbb{R}^d$. Let

 $p_0 = \sup\{p : f \in L^p_{loc}(\mathbb{R}^d) \text{ in a neighborhood of } x_0\}$

The function $p \rightarrow h_p(x_0)$ is defined on $[1, p_0)$ and possesses the following properties :

- 1. It takes values in $\left[-d/p,\infty\right]$
- 2. It is a decreasing function of *p*.
- 3. The function $r \to h_{1/r}(x_0)$ is concave.

Furthermore, Conditions 1 to 3 are optimal.

When do *p*-exponents coincide?

Notation : $h_{p,\gamma}(x_0)$ denotes the *p*-exponent of the fractional integral of *f* of order *s* at x_0

When do *p*-exponents coincide?

Notation : $h_{p,\gamma}(x_0)$ denotes the *p*-exponent of the fractional integral of *f* of order *s* at x_0

Definition : *f* is a cusp of exponent *h* at x_0 if $\exists p, \gamma > 0$ such that

$$\blacktriangleright h_p(x_0) = h$$

 $\blacktriangleright h_{p,\gamma}(x_0) = h + \gamma$

When do *p*-exponents coincide?

Notation : $h_{p,\gamma}(x_0)$ denotes the *p*-exponent of the fractional integral of *f* of order *s* at x_0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition : *f* is a cusp of exponent *h* at x_0 if $\exists p, \gamma > 0$ such that

$$h_p(x_0) = h$$

 $\blacktriangleright h_{p,\gamma}(x_0) = h + \gamma$

Theorem : This notion is independent of p and γ

Typical pointwise singularities :

Cusps : $f(x) - f(x_0) = |x - x_0|^H$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Typical pointwise singularities :

Cusps :
$$f(x) - f(x_0) = |x - x_0|^H$$

After one integration :

$$f^{(-1)}(x) - f^{(-1)}(x_0) \sim \frac{1}{H} |x - x_0|^{H+1}$$

Typical pointwise singularities :

Cusps:
$$f(x) - f(x_0) = |x - x_0|^H$$

After one integration :

$$f^{(-1)}(x) - f^{(-1)}(x_0) \sim \frac{1}{H} |x - x_0|^{H+1}$$

Oscillating singularity : $f(x) - f(x_0) = |x - x_0|^H \sin\left(\frac{1}{|x - x_0|^{\beta}}\right)$ After one integration :

$$f^{(-1)}(x) - f^{(-1)}(x_0) = \frac{|x - x_0|^{H+(1+\beta)}}{\beta} \cos\left(\frac{1}{|x - x_0|^{\beta}}\right) + \cdots$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Typical pointwise singularities :

Cusps:
$$f(x) - f(x_0) = |x - x_0|^H$$

After one integration :

$$f^{(-1)}(x) - f^{(-1)}(x_0) \sim \frac{1}{H} |x - x_0|^{H+1}$$

Oscillating singularity : $f(x) - f(x_0) = |x - x_0|^H \sin\left(\frac{1}{|x - x_0|^{\beta}}\right)$ After one integration :

$$f^{(-1)}(x) - f^{(-1)}(x_0) = \frac{|x - x_0|^{H+(1+\beta)}}{\beta} \cos\left(\frac{1}{|x - x_0|^{\beta}}\right) + \cdots$$

More generally, after a fractional integration of order s,

- If *f* has a cusp at x_0 , then $h_{\mathcal{I}^s f}(x_0) = h_f(x_0) + s$
- ▶ If *f* has an oscillating singularity at x_0 , then $h_{\mathcal{I}^s f}(x_0) = h_f(x_0) + (1 + \beta)s$

Further classification

Two types of oscillating singularities : "Full singularities": $|x - x_0|^H \sin\left(\frac{1}{|x - x_0|^\beta}\right)$ (*p*-exponents coincide)

"Skinny singularities " $|x - x_0|^H \mathbf{1}_{E_{\gamma}}$ where

$$E_{\gamma} = \bigcup \left[rac{1}{n}, rac{1}{n} + rac{1}{n^{\gamma}}
ight] \quad ext{for } \gamma > 1$$

(日) (日) (日) (日) (日) (日) (日)

(p-exponents differ)

Further classification

Two types of oscillating singularities : "Full singularities" : $|x - x_0|^H \sin\left(\frac{1}{|x - x_0|^\beta}\right)$ (*p*-exponents coincide)

"Skinny singularities " $|x - x_0|^H \mathbf{1}_{E_{\gamma}}$ where

$$E_{\gamma} = \bigcup \left[\frac{1}{n}, \frac{1}{n} + \frac{1}{n^{\gamma}} \right] \quad \text{for } \gamma > 1$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(p-exponents differ)

Characterization

oscillating singularities : $F(x) = |x - x_0|^H g\left(\frac{1}{|x - x_0|^\beta}\right) + r(x)$ where *g* is indefinitely oscillating

Further classification

Two types of oscillating singularities : "Full singularities" : $|x - x_0|^H \sin\left(\frac{1}{|x - x_0|^\beta}\right)$ (*p*-exponents coincide)

"Skinny singularities " $|x - x_0|^H \mathbf{1}_{E_{\gamma}}$ where

$$E_{\gamma} = \bigcup \left[\frac{1}{n}, \frac{1}{n} + \frac{1}{n^{\gamma}} \right] \quad \text{for } \gamma > 1$$

(p-exponents differ)

Characterization

oscillating singularities : $F(x) = |x - x_0|^H g\left(\frac{1}{|x - x_0|^\beta}\right) + r(x)$ where *g* is indefinitely oscillating

For "full singularities" *g* is "large at infinity" For "skinny singularities " *g* is "small at infinity"

Admissible sequences for the *p*-exponent

Definition: Let $f : \mathbb{R}^d \to \mathbb{R}$ be locally in L^p ; the *p*-leaders of *f* are

$$d_{\lambda}^{p} = \left(\sum_{\lambda' \subset 3\lambda} |c_{\lambda'}|^{p} 2^{d(j-j')}\right)^{1/p}$$

where *j'* is the scale associated with the subcube λ' included in 3λ (i.e. λ' has width $2^{-j'}$).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Admissible sequences for the *p*-exponent

Definition : Let $f : \mathbb{R}^d \to \mathbb{R}$ be locally in L^p ; the *p*-leaders of *f* are

$$d_{\lambda}^{p} = \left(\sum_{\lambda' \subset 3\lambda} |c_{\lambda'}|^{p} 2^{d(j-j')}\right)^{1/p}$$

where *j'* is the scale associated with the subcube λ' included in 3λ (i.e. λ' has width $2^{-j'}$).

Theorem : (C. Melot)

If $\eta_f(p) > 0$, then h_p is the admissible exponent associated with the sequence d_{λ}^p

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$h_{\rho}(x_0) = \liminf_{j \to +\infty} \left(\frac{\log \left(d_{\lambda_j(x_0)}^{\rho} \right)}{\log(2^{-j})} \right)$$

p-leaders and negative regularity

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへぐ

p-Multifractal Formalism

The *p*-scaling function is defined informally by

$$orall q \in \mathbb{R}, \qquad 2^{-dj} \sum_{\lambda \in \Lambda_j} |d_\lambda^p|^q \sim 2^{-\eta_p(q)j}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

p-Multifractal Formalism

The *p*-scaling function is defined informally by

$$orall q \in \mathbb{R}, \qquad 2^{-dj} \sum_{\lambda \in \Lambda_j} |d_{\lambda}^p|^q \sim 2^{-\eta_p(q)j}$$
 $\eta_p(q) = \liminf_{j \to +\infty} rac{\log\left(2^{-dj} \sum_{\lambda \in \Lambda_j} |d_{\lambda}^p|^q
ight)}{\log(2^{-j})}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

p-Multifractal Formalism

The *p*-scaling function is defined informally by

$$orall q \in \mathbb{R}, \qquad 2^{-dj} \sum_{\lambda \in \Lambda_j} |d_{\lambda}^p|^q \sim 2^{-\eta_p(q)j}$$
 $\eta_p(q) = \liminf_{j \to +\infty} rac{\log\left(2^{-dj} \sum_{\lambda \in \Lambda_j} |d_{\lambda}^p|^q\right)}{\log(2^{-j})}$

Stability properties :

- Invariant with respect to deformations
- independent of the wavelet basis

The *p*-Legendre Spectrum is

$$L_{p}(H) = \inf_{q \in \mathbb{R}} \left(d + Hq - \eta_{p}(q) \right)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ()

- < ロ > < 回 > < 三 > < 三 > < 三 > の < の

- * ロ * * @ * * 注 * 注 * うくの

(*ロト * 課) * 注) * 注) のへの

▲□▶▲□▶▲□▶▲□▶ □ つくの

▲□▶▲圖▶▲≣▶▲≣▶ ■ ののの

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ � � �

ヘロト ヘ戸ト ヘヨト

- イロト イ理ト イヨト イヨト 三ヨー わらび

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト の Q (3)

Advantages and drawbacks of multifractal analysis based on the *p*-exponent

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Advantages and drawbacks of multifractal analysis based on the *p*-exponent

- Allows to deal with larger collections of data
- ► The estimation is not based on a unique extremal value, but on an *l^p* average ⇒ better statistical properties

(ロ) (同) (三) (三) (三) (○) (○)

Systematic bias in the estimation of *p*-leaders

Thank you for your attention !

