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Everywhere irregular data
Data that share the same statistical properties
should be classified as identical
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Pointwise exponent

One associates to such data a pointwise regularity exponent h(x)
which describes how the regularity fluctuates from point to point

Examples :

Let 1 be a Probability measure on R? and xo € R?
u € M*(xo) if there exist C > 0 such that

I(B(x0, )| < C r*

The local dimension of p at Xo is h,(x0) = sup{a: € M*(xo)}

Let f be a locally bounded function RY — R and xo € R?
f € C*(xp) if there exist C > 0 and a polynomial P such that

[F(x) = P(x = X0)| < Clx = xo|*

The Holder exponent of f at xp is he(xo) = sup{ar: e C*(xo)}
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For classical models, such exponents are extremely erratic :
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Difficulty to use directly the pointwise regularity
exponent for classification

For classical models, such exponents are extremely erratic :

5[ Levy motion - =143

The Holder exponent
of “most” Lévy processes

The Local dimension
of multiplicative cascades

The function h is
everywhere discontinuous

Goal : Recover some information on h(x) from (time or space)
averaged quantities that are numerically computable on a sample
path of the process, or on real-life data
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A general framework : Admissible exponents

Dyadic cubes : A = {/ﬁ k1+1) %o [kd kd+1)

27 2 27 2
\i(Xo) denotes the dyadic cube of scale j that contains xo
Dyadic cubes at scale j : A; = {\: |\ =27/}

Definition : A positive sequence (dy) is a hierarchical sequence if

Joa € R suchthatif ) c A then 2-%'qdy, <27 %d,

. ) L log (d)\j(Xo))
The exponent h defined by : h(x) = llimgof (Iog(2—/)

is called an admissible pointwise exponent

Proposition : An admissible exponent h(x) is the liminf of a family
of continuous functions
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wider (it is the union of X and its 39 — 1 immediate neighbours)
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Multifractal Analysis

Notation : 3\ denote the cube of same center as A\ and three times
wider (it is the union of X and its 39 — 1 immediate neighbours)

Examples :
If 1 is a probability measure, then h,, is admissible : Take d\ = p(3))
If f is a locally bounded function and if Vx, h¢(x) < 1, then hf is

admissible : Take d\ = sup f(x) — inf f(x)
X€3X Xe3X

Multifractal spectrum :
The isoholder sets are the sets

En={x: h(x)=H}

The multifractal associated with the exponent A is

D(H) = dim (Ey)
where dim stands for the Hausdorff dimension (dim (@) = —oc)
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Multifractal formalism

The scaling function associated with a hierarchic sequence (d,) is
defined by

Vg € R, o—d Z |d\|9 ~ 27

AEN;

Stability requirement : Invariant with respect to smooth
deformations

Since n is a concave function, there is no loss of information in rather
considering the Legendre Spectrum

L(H) = inf (d + Hq —n(q))

Theorem : Let (dy) be an admissible sequence

VH € R, D(H) < inf (d + Hg —n(q))

geR
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Alternative admissible sequences for the Holder
exponent

A wavelet basis on R is generated [ - {
by a smooth, well localized, oscillating I

-
function ¢ such that the r E d
WEix—K), jkeZ I

form an orthogonal basis of L2(R) Vi

vf € [2(R),

)= G t(@x — k)
JEZ keZ
where 00

Gk=2 / f(x) (2x — k) dx .

Daubechies Wavelet ..
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Notations for wavelets on R

Dyadic intervals
k k+1
A= [E’ T)

DA(X) = $(@x — k)

Wavelets

Wavelet coefficients
=2 /R f(X)(2x — k)dx
Dyadic intervals at scale j
N={r: A=271}
Wavelet expansion of f

)= cax)

J AEN



Wavelets in 2 variables

In 2D, the wavelets used are tensor products :

(X, y) = Y(X)e(y)
VR, ) = p(X)(y)

3, y) = Y(X)(y)

Notations

. ) [k (k+1) I (I+1)
Dyadic squares : )\_[21.7 o }x[zj, 5

Wavelet coefficients

C) :22///f(x,y) Y (2fx—k,2/y—/) dx dy



Wavelet leaders

Let f be a locally bounded function ; the wavelet leaders of f are

d\ = sup [cy]

A C3X
dy =supy, 15, 1) e, K)
R
2l . . . ® . . . .
o+l e ° ° ° ° ° ° . . . ° . ° . . .

)t e|e|e|e|e|e|e|e|e|e|e|e|e(e|e|e/o|e|e|e]e|e|o|o|e|e/ofe|e|o|o|e




Computation of 2D wavelet leaders

Proposition : Let f be a uniform Hélder function (f € C*(RY) for an
e > 0). If one uses the wavelet leaders d, for hierarchical sequence,
then the associated pointwise exponent is the HAlder exponent



Uniform Holder regularity

How can one check that the data correspond to a locally bounded
function ?

Holder spaces : Let a € (0,1); f € C*(RY) if f € L and
3C, vx,y: Ifx) —fWl<C-[x—yl*

Va € R, C*(RY) = B2 (RY)
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Uniform Holder regularity

How can one check that the data correspond to a locally bounded
function ?

Holder spaces : Let a € (0,1); f € C*(RY) if f € L and
3C, vx,y: If(x) = fy) < C-|x—y|*
Va € R, C*(RY) = B2 (RY)
The uniform Hoélder exponent of fis
H"™ = sup{a : f € C*(R%)}

Numerical computation from the wavelet coefficients

n uo . l0g(w))
= H = lim inf -
Let w; fgg}cﬂ then [ ,'Tlgo log(2-7)

HM >0 = fis continuous

H" <0 = fis not locally bounded



Is Hpin > 0 fulfilled in applications ?



Is Hmin > 0 fulfilled in applications ?
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Internet Traffic .
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Hpmin = —0.46




Heartbeat Intervals

R Interval - human - patient

5
Time (min)

LogScale

P

-0.5547:
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Hmin = —0.55
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Pointwise regularity with negative exponents ?

Pointwise Holder regularity : f e C*(x) if
[f(x) — P(x — Xxp)| < C|x — Xxp|¢

If « < 0, this definition implies that, outside of xo, f is locally bounded
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Pointwise regularity with negative exponents ?

Pointwise Holder regularity : f e C*(x) if
[f(x) — P(x — Xxp)| < C|x — Xxp|¢

If « < 0, this definition implies that, outside of xo, f is locally bounded

— it could be used only to define isolated singularities of negative
exponent

Which definition of pointwise regularity would allow for
negative exponents ?

Clue : The definition of pointwise Hélder regularity can be rewritten
fe C¥x) < sup |f(x)— P(x—x)| <Cr®

B(Xo,f)

Definition (Calderén and Zygmund) : Let f € LP(RY); f € TP(xo) if
there exists a polynomial P such that for r small enough,

1 1/p
s / I(x) = P(x — xo)lPdx | < cr
™ JB(x0.r)



The p-exponent

Definition : Let f € LP(RY); f € TP(xo) if there exists a polynomial P
such that for r small enough,

1 1/p
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The p-exponent

Definition : Let f € LP(RY); f € TP(xo) if there exists a polynomial P
such that for r small enough,

1 1/p
7/ Ifx) — P(x — xo)|Pdx | < Cre
r= Je(x.r

The p-exponent of fat xp is hy(Xo) = sup{a: f € TP(x0)}

The p-spectrum of fis dP(H) = dim ({Xo : hp(Xo) = H})



The p-exponent

Definition : Let f € LP(RY); f € TP(xo) if there exists a polynomial P
such that for r small enough,

1/p
%/ I1(x) = P(x — xo)lPdx | < cr
I JB(x.r)

The p-exponent of fat xp is hy(Xo) = sup{a: f € TP(x0)}
The p-spectrum of fis dP(H) = dim ({Xo : hp(Xo) = H})

Remarks :

» The case p = +oc corresponds to pointwise Holder regularity

» The normalization is chosen so that a cusp |x — xp|® has the
same p-exponent for all p : hy(x) = (aslong as a > —d/p)
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How can one check that the data belong to LP ?
The wavelet scaling function is informally defined by

Vp >0 2—d Z leAlP ~ 2—Ci(p)Jf
)\G/\,‘
Besov spaces : Let p > 0; f € By™(RY) if

3C,v 2793 e P<C-27¥

AEN;

log (2“’" > lel

)\E/\,‘

¢(p) = Imnf log(27) ) =p-sup{s: fe B~ (%)}

» If (s(p) > 0, then f € LP
» If (s(p) <O, then f ¢ LP



Wavelet scaling functions of synthetic images

Wavelet scaling function (s(p) :

02 Z lea|P ~ 27 ¢ (P

)\E/\/’
: log 4
Disk : ¢¢(p) =1 Van Koch snowflake : (¢(p) = “iog3 ~0.74
disc + polynomial 15 disc + polynomial

o —o——°
)
=
(=
0.5
nr(l)=1.03
L Sale® b
4 8 16 32 64 128256 O 1 2 3 4 5
1
Koch snowflake + polynomi. Koch snowflake + polynomial

\
0.5

nr(1)=0,75

Scale (s)

16 32 64 128 256 O




Properties of p-exponents

Gives a mathematical framework to the notion of negative regularity
exponents
The p-exponent satisfies : hp(xp) > —
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Properties of p-exponents

Gives a mathematical framework to the notion of negative regularity
exponents
The p-exponent satisfies : hp(xp) > —

Tl

p-exponents may differ :

Theorem : Let f be an L function, and x; € RY. Let

po = sup{p: f e LP (RY) in a neighborhood of x;}

loc
The function p — hp(xo) is defined on [1, pp) and possesses the
following properties :
1. It takes values in [-d/p, 0]
2. Itis a decreasing function of p.
3. The function r — hy,(X0) is concave.
Furthermore, Conditions 1 to 3 are optimal.
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When do p-exponents coincide ?

Notation : hp ,(Xo) denotes the p-exponent of the fractional integral of
f of order s at xo

Definition : fisa cusp of exponent h at x, if 3p,y > 0 such that
> hp(xo) = h
> Npy(X0) = h+~

Theorem : This notion is independent of p and ~
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Types of pointwise singularities (Yves Meyer)
Typical pointwise singularities :
Cusps : f(x) — f(x0) = |x — xo|"
After one integration :

FED(x) = 0 (x0) ~ F1x — x|

Oscillating singularity : f(x) — f(xo) = |x — x| sin ()(_1)@'5)

After one integration :

— xo|HH(1+8) 1
A0 () f=D () = X=Xl <) L
( ) ( 0) B |X—X0‘5

More generally, after a fractional integration of order s,
» If f has a cusp at xo, then hzs¢(x0) = hi(X0) + S

» If f has an oscillating singularity at xp, then
hIsf(XO) = hf(Xo) + (1 + [3)3



Further classification
Two types of oscillating singularities :
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Further classification
Two types of oscillating singularities :

: iy . 1 o
“Full singularities” : |x — xo|" sin <x|ﬁ> (p-exponents coincide)
— Xo

|x

“Skinny singularities " |x — Xo|"1g, where

11 1

EAY:U[n ot } for v > 1

(p-exponents differ)

Characterization 1

oscillating singularities : F(x) = |x — xo|"g [ ——= ) + r(x)
X — Xo|”

where g is indefinitely oscillating

For “full singularities” g is “large at infinity”

For “skinny singularities ” g is “small at infinity”



Admissible sequences for the p-exponent

Definition : Let f : R — R be locally in LP ; the p-leaders of f are
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Admissible sequences for the p-exponent

Definition : Let f : R — R be locally in LP ; the p-leaders of f are

1/p
d? = ( Z |y [P29U— ))

AN C3A

where j' is the scale associated with the subcube A’ included in 3\
(i.e. N has width 2-7).

Theorem : (C. Melot)
If ns(p) > 0, then hy is the admissible exponent associated with the
sequence df

hp(Xxo) = liminf (Iolg(dfj)(o))

j=+oo og(2~/)



p-leaders and negative regularity

Cusp

X

a=-0.1

= —0.1

Chirp
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p-Multifractal Formalism

The p-scaling function is defined informally by

Vg € R, o—d Z P19 ~ 2=1p(q)f
AG/\]
log (2—"/ > |d§’|‘*')
e AEN,
p(4) = E'L“J?J log(2—/)

Stability properties :

» Invariant with respect to deformations
» independent of the wavelet basis

The p-Legendre Spectrum is

Lp(H) = inf (d + Hq —10(q))
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Advantages and drawbacks of multifractal analysis
based on the p-exponent



Advantages and drawbacks of multifractal analysis
based on the p-exponent

» Allows to deal with larger collections of data

» The estimation is not based on a unique extremal value, but on
an /P average = better statistical properties

» Systematic bias in the estimation of p-leaders



Thank you for your attention !










