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Type of data concerned with Multifractal Analysis
Jet turbulence Eulerian velocity signal (ChavarriaBaudetCiliberto95)
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Pointwise exponent
One associates to such data a pointwise regularity exponent h(x)
which describes how the regularity fluctuates from point to point

Examples :
Let µ be a Probability measure on Rd and x0 ∈ Rd

µ ∈ Mα(x0) if there exist C > 0 such that

|µ(B(x0, r))| ≤ C rα

The local dimension of µ at x0 is hµ(x0) = sup{α : µ ∈ Mα(x0)}

Let f be a locally bounded function Rd → R and x0 ∈ Rd

f ∈ Cα(x0) if there exist C > 0 and a polynomial P such that

|f (x)− P(x − x0)| ≤ C|x − x0|α

The Hölder exponent of f at x0 is hf (x0) = sup{α : f ∈ Cα(x0)}
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Difficulty to use directly the pointwise regularity
exponent for classification

For classical models, such exponents are extremely erratic :

The Hölder exponent
of “most” Lévy processes

The Local dimension
of multiplicative cascades

The function h is
everywhere discontinuous

Goal : Recover some information on h(x) from (time or space)
averaged quantities that are numerically computable on a sample
path of the process, or on real-life data
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A general framework : Admissible exponents

Dyadic cubes : λ =

[
k1

2j ,
k1 + 1

2j

)
× · · · ×

[
kd

2j ,
kd + 1

2j

)
λj (x0) denotes the dyadic cube of scale j that contains x0

Dyadic cubes at scale j : Λj = {λ : |λ| = 2−j}

Definition : A positive sequence (dλ) is a hierarchical sequence if

∃α ∈ R such that if λ′ ⊂ λ then 2−αj′dλ′ ≤ 2−αjdλ

The exponent h defined by : h(x0) = lim inf
j→+∞

(
log
(
dλj (x0)

)
log(2−j )

)
is called an admissible pointwise exponent

Proposition : An admissible exponent h(x) is the liminf of a family
of continuous functions
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Multifractal Analysis

Notation : 3λ denote the cube of same center as λ and three times
wider (it is the union of λ and its 3d − 1 immediate neighbours)

Examples :
If µ is a probability measure, then hµ is admissible : Take dλ = µ(3λ)

If f is a locally bounded function and if ∀x , hf (x) < 1 , then hf is
admissible : Take dλ = sup

x∈3λ
f (x)− inf

x∈3λ
f (x)

Multifractal spectrum :
The isohölder sets are the sets

EH = {x0 : h(x0) = H}

The multifractal associated with the exponent h is

D(H) = dim (EH)

where dim stands for the Hausdorff dimension (dim (∅) = −∞)
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Multifractal formalism

The scaling function associated with a hierarchic sequence (dλ) is
defined by

∀q ∈ R, 2−dj
∑
λ∈Λj

|dλ|q ∼ 2−η(q)j

Stability requirement : Invariant with respect to smooth
deformations
Since η is a concave function, there is no loss of information in rather
considering the Legendre Spectrum

L(H) = inf
q∈R

(d + Hq − η(q))

Theorem : Let (dλ) be an admissible sequence

∀H ∈ R, D(H) ≤ inf
q∈R

(d + Hq − η(q))
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Alternative admissible sequences for the Hölder
exponent

A wavelet basis on R is generated
by a smooth, well localized, oscillating
function ψ such that the
ψ(2jx − k), j , k ∈ Z
form an orthogonal basis of L2(R)

∀f ∈ L2(R),

f (x) =
∑
j∈Z

∑
k∈Z

cj,k ψ(2jx − k)

where
cj,k = 2j

∫
f (x) ψ(2jx − k) dx

Daubechies Wavelet

Credit to : http ://www.kfs.oeaw.ac.at/content/blogcategory/0/502/lang,8859-1/
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Notations for wavelets on R
Dyadic intervals

λ =

[
k
2j ,

k + 1
2j

)
Wavelets

ψλ(x) = ψ(2jx − k)

Wavelet coefficients

cλ = 2j
∫
R

f (x)ψ(2jx − k)dx

Dyadic intervals at scale j

Λj = {λ : |λ| = 2−j}

Wavelet expansion of f

f (x) =
∑

j

∑
λ∈Λj

cλψλ(x)



Wavelets in 2 variables
In 2D, the wavelets used are tensor products :

ψ1(x , y) = ψ(x)ϕ(y)

ψ2(x , y) = ϕ(x)ψ(y)

ψ3(x , y) = ψ(x)ψ(y)

Notations

Dyadic squares : λ =

[
k
2j ,

(k + 1)

2j

]
×
[

l
2j ,

(l + 1)

2j

[
Wavelet coefficients

cλ = 22j
∫ ∫

f (x , y) ψi
(

2jx − k ,2jy − l
)

dx dy



Wavelet leaders

Let f be a locally bounded function ; the wavelet leaders of f are

dλ = sup
λ′⊂3λ

|cλ′ |

dλ = supλ’∈  3 λ |cλ|

λ’∈  3 λ

c(j, k)

2j+2

2j+1

2j

...

...



Computation of 2D wavelet leaders

Proposition : Let f be a uniform Hölder function (f ∈ Cε(Rd ) for an
ε > 0). If one uses the wavelet leaders dλ for hierarchical sequence,
then the associated pointwise exponent is the Hölder exponent



Uniform Hölder regularity
How can one check that the data correspond to a locally bounded
function ?

Hölder spaces : Let α ∈ (0,1) ; f ∈ Cα(Rd ) if f ∈ L∞ and

∃C, ∀x , y : |f (x)− f (y)| ≤ C · |x − y |α

∀α ∈ R, Cα(Rd ) = Bα∞(Rd )

The uniform Hölder exponent of f is

Hmin
f = sup{α : f ∈ Cα(Rd)}

Numerical computation from the wavelet coefficients

Let ωj = sup
λ∈Λj

|cλ| then Hmin
f = lim inf

j→+∞

log(ωj )

log(2−j )

Hmin
f > 0 =⇒ f is continuous

Hmin
f < 0 =⇒ f is not locally bounded
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Is Hmin > 0 fulfilled in applications ?

Internet Traffic
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Heartbeat Intervals
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Pointwise regularity with negative exponents ?
Pointwise Hölder regularity : f ∈ Cα(x0) if

|f (x)− P(x − x0)| ≤ C|x − x0|α

If α < 0, this definition implies that, outside of x0, f is locally bounded

=⇒ it could be used only to define isolated singularities of negative
exponent

Which definition of pointwise regularity would allow for
negative exponents ?
Clue : The definition of pointwise Hölder regularity can be rewritten

f ∈ Cα(x0) ⇐⇒ sup
B(x0,r)

|f (x)− P(x − x0)| ≤ Crα

Definition (Calderón and Zygmund) : Let f ∈ Lp(Rd ) ; f ∈ T p
α(x0) if

there exists a polynomial P such that for r small enough,(
1
rd

∫
B(x0,r)

|f (x)− P(x − x0)|pdx

)1/p

≤ Crα
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The p-exponent
Definition : Let f ∈ Lp(Rd ) ; f ∈ T p

α(x0) if there exists a polynomial P
such that for r small enough,(

1
rd

∫
B(x0,r)

|f (x)− P(x − x0)|pdx

)1/p

≤ Crα

The p-exponent of f at x0 is hp(x0) = sup{α : f ∈ T p
α(x0)}

The p-spectrum of f is dp(H) = dim ({x0 : hp(x0) = H})

Remarks :

I The case p = +∞ corresponds to pointwise Hölder regularity
I The normalization is chosen so that a cusp |x − x0|α has the

same p-exponent for all p : hp(x0) = α (as long as α ≥ −d/p)
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How can one check that the data belong to Lp ?

The wavelet scaling function is informally defined by

∀p > 0 2−dj
∑
λ∈Λj

|cλ|p ∼ 2−ζf (p)j

Besov spaces : Let p > 0 ; f ∈ Bs,∞
p (Rd ) if

∃C,∀j : 2−dj
∑
λ∈Λj

|cλ|p ≤ C · 2−spj

ζf (p) = lim inf
j→+∞

log

2−dj
∑
λ∈Λj

|cλ|p


log(2−j )
= p · sup

{
s : f ∈ Bs,∞

p (Rd )
}
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Wavelet scaling functions of synthetic images

Wavelet scaling function ζf (p) :

2−2j
∑
λ∈Λj

|cλ|p ∼ 2−ζf (p) j

Disk : ζf (p) = 1 Van Koch snowflake : ζf (p) = 2− log 4
log 3

∼ 0.74
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Figure 2: Functional space assumptions in image processing. Left column: Indicator functions of a
disc (top row) and of the Koch snowflake (2nd row) with superimposed polynomial trend, and of a disc
with F.B.M. texture (3rd row, H = 0.7); natural images (bottom rows). Corresponding Sf (j, p = 1)
(center column) and wavelet scaling functions ηf (p) (right column), estimated from the images in the
left column. For the indicator function of the Koch snowflake and of the disc, the scaling functions
are given by ηf (p) = 2 − log(4)

log(3) ≈ 0.74, and ηf (p) = 1, respectively. Therefore, the latter is in B.V.,
while the Koch snowflake is not because ηf (1) < 1. With an added texture, the latter is not any longer
in B.V., but remains in L2 since ηf (2) > 0. Both natural images are not in B.V., yet the image of
snow (4th row) is found to be in L2, while the image of trees (bottom row) is not in Lp.
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Properties of p-exponents
Gives a mathematical framework to the notion of negative regularity
exponents
The p-exponent satisfies : hp(x0) ≥ − d

p

p-exponents may differ :

Theorem : Let f be an L1 function, and x0 ∈ Rd . Let

p0 = sup{p : f ∈ Lp
loc(Rd ) in a neighborhood of x0}

The function p → hp(x0) is defined on [1,p0) and possesses the
following properties :

1. It takes values in [−d/p,∞]

2. It is a decreasing function of p.
3. The function r → h1/r (x0) is concave.

Furthermore, Conditions 1 to 3 are optimal.
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When do p-exponents coincide ?

Notation : hp,γ(x0) denotes the p-exponent of the fractional integral of
f of order s at x0

Definition : f is a cusp of exponent h at x0 if ∃p, γ > 0 such that
I hp(x0) = h
I hp,γ(x0) = h + γ

Theorem : This notion is independent of p and γ
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Types of pointwise singularities (Yves Meyer)
Typical pointwise singularities :

Cusps : f (x)− f (x0) = |x − x0|H

After one integration :

f (−1)(x)− f (−1)(x0) ∼ 1
H |x − x0|H+1

Oscillating singularity : f (x)− f (x0) = |x − x0|H sin
(

1
|x − x0|β

)
After one integration :

f (−1)(x)− f (−1)(x0) =
|x − x0|H+(1+β)

β
cos

(
1

|x − x0|β
)

+ · · ·

More generally, after a fractional integration of order s,
I If f has a cusp at x0, then hIs f (x0) = hf (x0) + s
I If f has an oscillating singularity at x0, then

hIs f (x0) = hf (x0) + (1 + β)s
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Further classification
Two types of oscillating singularities :

“Full singularities” : |x − x0|H sin
(

1
|x − x0|β

)
(p-exponents coincide)

“Skinny singularities ” |x − x0|H1Eγ
where

Eγ =
⋃[

1
n
,

1
n

+
1
nγ

]
for γ > 1

(p-exponents differ)

Characterization
oscillating singularities : F (x) = |x − x0|Hg

(
1

|x − x0|β
)

+ r(x)

where g is indefinitely oscillating

For “full singularities” g is “large at infinity”

For “skinny singularities ” g is “small at infinity”
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Admissible sequences for the p-exponent

Definition : Let f : Rd → R be locally in Lp ; the p-leaders of f are

dp
λ =

( ∑
λ′⊂3λ

|cλ′ |p2d(j−j′)

)1/p

where j ′ is the scale associated with the subcube λ′ included in 3λ
(i.e. λ′ has width 2−j′ ).

Theorem : (C. Melot)
If ηf (p) > 0, then hp is the admissible exponent associated with the
sequence dp

λ

hp(x0) = lim inf
j→+∞

 log
(

dp
λj (x0)

)
log(2−j )


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p-leaders and negative regularity
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p-Multifractal Formalism

The p-scaling function is defined informally by

∀q ∈ R, 2−dj
∑
λ∈Λj

|dp
λ|q ∼ 2−ηp(q)j

ηp(q) = lim inf
j→+∞

log

2−dj
∑
λ∈Λj

|dp
λ|q


log(2−j )

Stability properties :
I Invariant with respect to deformations
I independent of the wavelet basis

The p-Legendre Spectrum is

Lp(H) = inf
q∈R

(d + Hq − ηp(q))
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Advantages and drawbacks of multifractal analysis
based on the p-exponent

I Allows to deal with larger collections of data

I The estimation is not based on a unique extremal value, but on
an lp average⇒ better statistical properties

I Systematic bias in the estimation of p-leaders
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Thank you for your attention !






