Harmonic Analysis, Probability \& Applications: Conference in honor of Aline Bonami, June 10-13, 2014, Université d'Orléans, France.

Spectral decay of the sinc kernel operator and approximations by Prolate Spheroidal Wave Functions.

Abderrazek Karoui
University of Carthage, Faculty of Sciences of Bizerte, Tunisia In collaboration with Aline Bonami)

$$
\text { June 12, } 2014
$$

Outline

(1) PSWFs and Properties

- Historical origins of the PSWFs
- Some Properties of the PSWFs
- A General Framework of the PSWFs (the DOS)
(2) Spectral behaviour and decay rate of the eigenvalues $\lambda_{n}(c)$
- Some classical results
- Uniform estimate of the PSWFs by WKB method
- New sharp decay rate of the eigenvalues $\lambda_{n}(c)$.
(3) Some applications of the PSWFs
- Approximation of almost bandlimited and and almost timelimited functions
- PSWFs based spectral approximation in Sobolev spaces.
- Exact reconstruction of band-limited functions with missing data

The origins of the PSWFs go back to the 1880's [Niven (1880)]. The Spheroidal coordinates are given by

$$
\begin{array}{ll}
x=a \sqrt{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)} \cos \phi, \quad y=a \sqrt{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)} \sin \phi, \\
z=a \xi \eta, \quad \xi>1 \quad \eta \in[-1,1], \quad \phi \in[0,2 \pi] .
\end{array}
$$

The origins of the PSWFs go back to the 1880's [Niven (1880)]. The Spheroidal coordinates are given by

$$
\begin{array}{ll}
x=a \sqrt{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)} \cos \phi, \quad y=a \sqrt{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)} \sin \phi \\
z=a \xi \eta, \quad \xi>1 \quad \eta \in[-1,1], \quad \phi \in[0,2 \pi]
\end{array}
$$

The Helmotz Wave equation $\Delta \Phi+k^{2} \Phi=0$ in spheroidal coordinates with a solution of the form

$$
\Phi(\xi, \eta, \phi)=R_{m n}(c, \xi) S_{m n}(c, \eta) \underset{\sin }{\cos } m \phi, \quad c=\frac{1}{2} a k
$$

The origins of the PSWFs go back to the 1880's [Niven (1880)]. The Spheroidal coordinates are given by

$$
\begin{aligned}
& x=a \sqrt{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)} \cos \phi, \quad y=a \sqrt{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)} \sin \phi, \\
& z=a \xi \eta, \quad \xi>1 \quad \eta \in[-1,1], \quad \phi \in[0,2 \pi]
\end{aligned}
$$

The Helmotz Wave equation $\Delta \Phi+k^{2} \Phi=0$ in spheroidal coordinates with a solution of the form

$$
\begin{gathered}
\Phi(\xi, \eta, \phi)=R_{m n}(c, \xi) S_{m n}(c, \eta)_{\sin }^{\cos } m \phi, \quad c=\frac{1}{2} a k \\
\frac{d}{d \eta}\left[\left(1-\eta^{2}\right) \frac{d}{d \eta} S_{m n}(c, \eta)\right]+\left(\chi_{m n}-c^{2} \eta^{2}-\frac{m^{2}}{1-\eta^{2}}\right) S_{m n}(c, \eta)=0
\end{gathered}
$$

In the special case $m=0$, the last ODE becomes

The origins of the PSWFs go back to the 1880's [Niven (1880)]. The Spheroidal coordinates are given by

$$
\begin{aligned}
& x=a \sqrt{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)} \cos \phi, \quad y=a \sqrt{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)} \sin \phi, \\
& z=a \xi \eta, \quad \xi>1 \quad \eta \in[-1,1], \quad \phi \in[0,2 \pi]
\end{aligned}
$$

The Helmotz Wave equation $\Delta \Phi+k^{2} \Phi=0$ in spheroidal coordinates with a solution of the form

$$
\begin{gathered}
\Phi(\xi, \eta, \phi)=R_{m n}(c, \xi) S_{m n}(c, \eta)_{\sin }^{\cos } m \phi, \quad c=\frac{1}{2} a k \\
\frac{d}{d \eta}\left[\left(1-\eta^{2}\right) \frac{d}{d \eta} S_{m n}(c, \eta)\right]+\left(\chi_{m n}-c^{2} \eta^{2}-\frac{m^{2}}{1-\eta^{2}}\right) S_{m n}(c, \eta)=0
\end{gathered}
$$

In the special case $m=0$, the last ODE becomes

$$
\left(1-x^{2}\right) \frac{d^{2} \psi_{n, c}(x)}{d x^{2}}-2 x \frac{d \psi_{n, c}(x)}{d x}+\left(\chi_{n}(c)-c^{2} x^{2}\right) \psi_{n, c}(x)=0 .
$$

D. Slepian and H. Pollack uncertainty principle

In 1960's, a breakthrough in the area of the PSWFs has been made by Slepian, Pollack and landau. They have shown that if $\tau, \omega \in R_{+}^{*}$ and

$$
B_{\omega}=\left\{f \in L^{2}(R) ; \operatorname{Supp}^{t} \widehat{f} \subseteq[-\omega, \omega]\right\}
$$

and if a practical measure of a signal concentration in B_{ω} is given by:

$$
\alpha^{2}(\tau)=\frac{\|f\|_{2, \tau}^{2}}{\|f\|_{2}^{2}} \quad\|f\|_{2, \tau}^{2}=\int_{-\tau}^{\tau}|f(t)|^{2} d t
$$

D. Slepian and H. Pollack uncertainty principle

In 1960's, a breakthrough in the area of the PSWFs has been made by Slepian, Pollack and landau. They have shown that if $\tau, \omega \in R_{+}^{*}$ and

$$
B_{\omega}=\left\{f \in L^{2}(R) ; \operatorname{Supp}^{t} \widehat{f} \subseteq[-\omega, \omega]\right\}
$$

and if a practical measure of a signal concentration in B_{ω} is given by:

$$
\begin{gathered}
\alpha^{2}(\tau)=\frac{\|f\|_{2, \tau}^{2}}{\|f\|_{2}^{2}} \quad\|f\|_{2, \tau}^{2}=\int_{-\tau}^{\tau}|f(t)|^{2} d t \\
\alpha^{2}(\tau) \text { is maximum } \Longleftrightarrow \int_{-\omega}^{\omega} \frac{\sin 2 \pi \tau(x-y)}{\pi(x-y)} \widehat{f}(y) d y=\alpha^{2}(\tau) \widehat{f}(x),|x| \leq \omega .
\end{gathered}
$$

$$
\mathcal{Q}_{c}(\psi)(x)=\int_{-1}^{1} \frac{\sin c(x-y)}{\pi(x-y)} \psi(y) d y=\lambda \psi(x) \forall x \in R
$$

D. Slepian has incedently discovered that

$$
\mathcal{Q}_{c}(\psi)(x)=\int_{-1}^{1} \frac{\sin c(x-y)}{\pi(x-y)} \psi(y) d y=\lambda \psi(x) \forall x \in R
$$

D. Slepian has incedently discovered that

$$
\mathcal{Q}_{c} L_{c}=L_{c} \mathcal{Q}_{c}
$$

where

$$
L_{c}(y)=\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-c^{2} x^{2} y
$$

$$
\mathcal{Q}_{c}(\psi)(x)=\int_{-1}^{1} \frac{\sin c(x-y)}{\pi(x-y)} \psi(y) d y=\lambda \psi(x) \forall x \in R .
$$

D. Slepian has incedently discovered that

$$
\mathcal{Q}_{c} L_{c}=L_{c} \mathcal{Q}_{c}
$$

where

$$
\begin{gathered}
L_{c}(y)=\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-c^{2} x^{2} y \\
F_{c}: L^{2}[-1,1] \rightarrow[-1,1], f \rightarrow \int_{-1}^{1} e^{i c x y} f(y) d y
\end{gathered}
$$

$$
\mathcal{Q}_{c}(\psi)(x)=\int_{-1}^{1} \frac{\sin c(x-y)}{\pi(x-y)} \psi(y) d y=\lambda \psi(x) \forall x \in R
$$

D. Slepian has incedently discovered that

$$
\mathcal{Q}_{c} L_{c}=L_{c} \mathcal{Q}_{c}
$$

where

$$
\begin{gathered}
L_{c}(y)=\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-c^{2} x^{2} y \\
F_{c}: L^{2}[-1,1] \rightarrow[-1,1], f \rightarrow \int_{-1}^{1} e^{i c x y} f(y) d y \\
F_{c}^{*}\left(F_{c} f\right)(x)=\frac{2 \pi}{c} \mathcal{Q}_{c}(f)(x)
\end{gathered}
$$

Properties of the PSWFs and their eigenvalues

$$
\rho\left(\mathcal{Q}_{c}\right)=\left\{\lambda_{n}(c), n \in N ; 1>\lambda_{0}(c)>\lambda_{1}(c)>\cdots \lambda_{n}(c)>\cdots\right\} .
$$

Properties of the PSWFs and their eigenvalues

$$
\begin{gathered}
\rho\left(\mathcal{Q}_{c}\right)=\left\{\lambda_{n}(c), n \in N_{;} 1>\lambda_{0}(c)>\lambda_{1}(c)>\cdots \lambda_{n}(c)>\cdots\right\} . \\
\lambda_{n}(c)=\frac{c}{2 \pi}\left|\mu_{n}(c)\right|^{2}, \quad \mu_{n}(c) \in \rho\left(F_{c}\right), \forall n \in N .
\end{gathered}
$$

Properties of the PSWFs and their eigenvalues

$$
\begin{gathered}
\rho\left(\mathcal{Q}_{c}\right)=\left\{\lambda_{n}(c), n \in N ; 1>\lambda_{0}(c)>\lambda_{1}(c)>\cdots \lambda_{n}(c)>\cdots\right\} . \\
\lambda_{n}(c)=\frac{c}{2 \pi}\left|\mu_{n}(c)\right|^{2}, \quad \mu_{n}(c) \in \rho\left(F_{c}\right), \quad \forall n \in N .
\end{gathered}
$$

If $\psi_{n, c}$ denotes the eigenfunction associated with $\lambda_{n}(c)$, then $\left\{\psi_{n, c}, n \in \mathbf{N}\right\}$ is an orthogonal basis of $L^{2}[-1,1]$, an orthonormal basis of B_{c}. Thus an orthonormal system of $L^{2}(\mathbf{R})$.

Properties of the PSWFs and their eigenvalues

$$
\begin{gathered}
\rho\left(\mathcal{Q}_{c}\right)=\left\{\lambda_{n}(c), n \in N ; 1>\lambda_{0}(c)>\lambda_{1}(c)>\cdots \lambda_{n}(c)>\cdots\right\} . \\
\lambda_{n}(c)=\frac{c}{2 \pi}\left|\mu_{n}(c)\right|^{2}, \quad \mu_{n}(c) \in \rho\left(F_{c}\right), \quad \forall n \in N .
\end{gathered}
$$

If $\psi_{n, c}$ denotes the eigenfunction associated with $\lambda_{n}(c)$, then $\left\{\psi_{n, c}, n \in \mathbf{N}\right\}$ is an orthogonal basis of $L^{2}[-1,1]$, an orthonormal basis of B_{c}. Thus an orthonormal system of $L^{2}(\mathbf{R})$.

$$
\int_{-1}^{1} \psi_{n, c} \psi_{m, c}=\lambda_{n}(c) \delta_{n, m}, \quad \int_{R} \psi_{n, c} \psi_{m, c}=\delta_{n-m}
$$

Properties of the PSWFs and their eigenvalues

$$
\begin{gathered}
\rho\left(\mathcal{Q}_{c}\right)=\left\{\lambda_{n}(c), n \in N ; 1>\lambda_{0}(c)>\lambda_{1}(c)>\cdots \lambda_{n}(c)>\cdots\right\} . \\
\lambda_{n}(c)=\frac{c}{2 \pi}\left|\mu_{n}(c)\right|^{2}, \quad \mu_{n}(c) \in \rho\left(F_{c}\right), \quad \forall n \in N .
\end{gathered}
$$

If $\psi_{n, c}$ denotes the eigenfunction associated with $\lambda_{n}(c)$, then $\left\{\psi_{n, c}, n \in \mathbf{N}\right\}$ is an orthogonal basis of $L^{2}[-1,1]$, an orthonormal basis of B_{c}. Thus an orthonormal system of $L^{2}(\mathbf{R})$.

$$
\begin{gathered}
\int_{-1}^{1} \psi_{n, c} \psi_{m, c}=\lambda_{n}(c) \delta_{n, m}, \quad \int_{R} \psi_{n, c} \psi_{m, c}=\delta_{n-m} . \\
\widehat{\psi}_{n, c}(\xi)=(-i)^{n} \sqrt{\frac{2 \pi}{c \lambda_{n}}} \psi_{n, c}\left(\frac{\xi}{c}\right) 1_{[-c, c]}(\xi) .
\end{gathered}
$$

The General Framework of the PSWFs

The PSWFs are special case of a doubly orthogonal sequence (DOS) associated with a RKHS. These DOS have been first studied in [Bergman (1922)], see also [Shapiro (1986)].

The General Framework of the PSWFs

The PSWFs are special case of a doubly orthogonal sequence (DOS) associated with a RKHS. These DOS have been first studied in [Bergman (1922)], see also [Shapiro (1986)].

Let \mathcal{H} be a separable Hilbert space and let V be a RKHS in \mathcal{H}. Let $\mathcal{P}=P_{V}: \mathcal{H} \rightarrow V$ and let \mathcal{T} be the restriction operator on a measurable function A, that is $\mathcal{T}(f)=f_{\chi_{A}}, f \in V$.

The General Framework of the PSWFs

The PSWFs are special case of a doubly orthogonal sequence (DOS) associated with a RKHS. These DOS have been first studied in [Bergman (1922)], see also [Shapiro (1986)].

Let \mathcal{H} be a separable Hilbert space and let V be a RKHS in \mathcal{H}. Let $\mathcal{P}=P_{V}: \mathcal{H} \rightarrow V$ and let \mathcal{T} be the restriction operator on a measurable function A, that is $\mathcal{T}(f)=f \chi_{A}, f \in V$.

Theorem (Seip (1991))

Let $\left(f_{k}\right)_{k \in \mathbf{N}}$ be an orthonormal basis of V. Then $\left(f_{k}\right)_{k \in \mathbf{N}}$ is furthermore orthogonal for the induced scalar product $<\cdot, \cdot>_{A}$ if and only if f_{k} are singular function of $\mathcal{P} \mathcal{T}$.

For the special case $\mathcal{H}=L^{2}(\mathbf{R}), A=[-1,1], V=B_{c}$, the Paley-Wiener space of c-band-limited functions. Then, V is a RKHS with kernel

$$
K_{c}(t, s)=\frac{\sin (c(t-s))}{\pi(t-s)} .
$$

For the special case $\mathcal{H}=L^{2}(\mathbf{R}), A=[-1,1], V=B_{c}$, the Paley-Wiener space of c-band-limited functions. Then, V is a RKHS with kernel

$$
K_{c}(t, s)=\frac{\sin (c(t-s))}{\pi(t-s)}
$$

The composition product of the projection and the restriction operators is given by

$$
\mathcal{P} \mathcal{T} f(x)=\int_{-1}^{1} \frac{\sin (c(x-y))}{\pi(x-y)} f(y) d y
$$

For the special case $\mathcal{H}=L^{2}(\mathbf{R}), A=[-1,1], V=B_{c}$, the Paley-Wiener space of c-band-limited functions. Then, V is a RKHS with kernel

$$
K_{c}(t, s)=\frac{\sin (c(t-s))}{\pi(t-s)}
$$

The composition product of the projection and the restriction operators is given by

$$
\mathcal{P} \mathcal{T} f(x)=\int_{-1}^{1} \frac{\sin (c(x-y))}{\pi(x-y)} f(y) d y
$$

Remark

If $L f(x)=\frac{d}{d x}\left[P(x) f^{\prime}(x)\right]+\gamma(x) f(x), x \in[-1,1]$, with $P(\pm 1)=0$, then $F_{c} L=L F_{c}$ if and only if $P(x)=1-x^{2}$ and $\gamma(x)=-c^{2} x^{2}$.

Some motivations of this decay rate study

Many Applications of the PSWFs heavily rely on the decay rate of the $\lambda_{n}(c)$. For example

- Quality of approximation by the PSWFs of bandlimited or almost-bandlimited functions.

Some motivations of this decay rate study

Many Applications of the PSWFs heavily rely on the decay rate of the $\lambda_{n}(c)$. For example

- Quality of approximation by the PSWFs of bandlimited or almost-bandlimited functions.
- Sampling with PSWFs, (Walter, Shen (2003), Hogan, Izu, Lakey (2010), Moumni, Zayed (2014)).

Some motivations of this decay rate study

Many Applications of the PSWFs heavily rely on the decay rate of the $\lambda_{n}(c)$. For example

- Quality of approximation by the PSWFs of bandlimited or almost-bandlimited functions.
- Sampling with PSWFs, (Walter, Shen (2003), Hogan, Izu, Lakey (2010), Moumni, Zayed (2014)).
- Behaviour of the eigenvalues of infinite order random matrices from the GUE, [Mehta, (1974)].

Some motivations of this decay rate study

Many Applications of the PSWFs heavily rely on the decay rate of the $\lambda_{n}(c)$. For example

- Quality of approximation by the PSWFs of bandlimited or almost-bandlimited functions.
- Sampling with PSWFs, (Walter, Shen (2003), Hogan, Izu, Lakey (2010), Moumni, Zayed (2014)).
- Behaviour of the eigenvalues of infinite order random matrices from the GUE, [Mehta, (1974)].
- Compressed sensing algorithm based on PSWFs [Gosse (2013)].

Some motivations of this decay rate study

Many Applications of the PSWFs heavily rely on the decay rate of the $\lambda_{n}(c)$. For example

- Quality of approximation by the PSWFs of bandlimited or almost-bandlimited functions.
- Sampling with PSWFs, (Walter, Shen (2003), Hogan, Izu, Lakey (2010), Moumni, Zayed (2014)).
- Behaviour of the eigenvalues of infinite order random matrices from the GUE, [Mehta, (1974)].
- Compressed sensing algorithm based on PSWFs [Gosse (2013)].
- Performance of MIMO Systems in wireless network and under a Line-of-Sight Environment, [Desgroseilliers, Lévèque, Preissmann (2013)].

Behavior of the $\lambda_{n}(c)$

Theorem (Landau, Widom (1980))

$\forall c>0, \forall 0<\alpha<1, N(\alpha)=\#\left\{\lambda_{i}(c) ; \lambda_{i}(c)>\alpha\right\}$ is given by

$$
N(\alpha)=\frac{2 c}{\pi}+\left[\frac{1}{\pi^{2}} \log \left(\frac{1-\alpha}{\alpha}\right)\right] \log (c)+o(\log (c))
$$

Behavior of the $\lambda_{n}(c)$

Theorem (Landau, Widom (1980))

$\forall c>0, \forall 0<\alpha<1, N(\alpha)=\#\left\{\lambda_{i}(c) ; \lambda_{i}(c)>\alpha\right\}$ is given by

$$
N(\alpha)=\frac{2 c}{\pi}+\left[\frac{1}{\pi^{2}} \log \left(\frac{1-\alpha}{\alpha}\right)\right] \log (c)+o(\log (c))
$$

Figure: Graph of the $\lambda_{n}(c)$ for different values of c and n

D. Slepian decay rate of the $\lambda_{n}(c)$

From the Slepian's equality [Slepian (1964)], $\lambda_{n}(c)=\lambda_{n}^{\prime} \times \lambda_{n}^{\prime \prime}$, with

$$
\begin{align*}
\lambda_{n}^{\prime} & =\frac{c^{2 n+1}(n!)^{4}}{2((2 n)!)^{2}(\Gamma(n+3 / 2))^{2}} \tag{1}\\
\lambda_{n}^{\prime \prime} & =\exp \left(2 \int_{0}^{c} \frac{\left(\psi_{n, \tau}(1)\right)^{2}-(n+1 / 2)}{\tau} d \tau\right) \tag{2}
\end{align*}
$$

one gets for $q=c^{2} / \chi_{n} \leq \alpha<1$, and a constant M_{α}

$$
\lambda_{n}^{\prime} \leq \frac{K c}{n}\left(\frac{e c}{4 n}\right)^{2 n}, \quad \lambda_{n}^{\prime \prime} \leq e^{2 M_{\alpha}\left(1+c^{2} / n\right)}
$$

D. Slepian decay rate of the $\lambda_{n}(c)$

From the Slepian's equality [Slepian (1964)], $\lambda_{n}(c)=\lambda_{n}^{\prime} \times \lambda_{n}^{\prime \prime}$, with

$$
\begin{align*}
\lambda_{n}^{\prime} & =\frac{c^{2 n+1}(n!)^{4}}{2((2 n)!)^{2}(\Gamma(n+3 / 2))^{2}} \tag{1}\\
\lambda_{n}^{\prime \prime} & =\exp \left(2 \int_{0}^{c} \frac{\left(\psi_{n, \tau}(1)\right)^{2}-(n+1 / 2)}{\tau} d \tau\right) \tag{2}
\end{align*}
$$

one gets for $q=c^{2} / \chi_{n} \leq \alpha<1$, and a constant M_{α}

$$
\begin{gathered}
\lambda_{n}^{\prime} \leq \frac{K c}{n}\left(\frac{e c}{4 n}\right)^{2 n}, \quad \lambda_{n}^{\prime \prime} \leq e^{2 M_{\alpha}\left(1+c^{2} / n\right)}, \\
K \sim \frac{8 e^{-\gamma-1}}{3 \sqrt{\pi}} e^{7 \pi^{2} / 72}, \quad \gamma \quad \text { is the Euler constant. }
\end{gathered}
$$

H. Widom decay rate of the $\lambda_{n}(c)$ [Widom (1964)]

If $q_{n}=\frac{c^{2}}{\chi_{n}}<1$, then

$$
\lambda_{n}(c)=e^{-2 \sqrt{\chi_{n}} \log \left(\frac{4 \sqrt{\chi_{n}}}{e c}\right)+O\left(\frac{c^{2}}{n} \log (n / c)\right)}\left(1+O\left(n^{-1} \log n\right)\right) .
$$

H. Widom decay rate of the $\lambda_{n}(c)$ [Widom (1964)]

If $q_{n}=\frac{c^{2}}{\chi_{n}}<1$, then

$$
\lambda_{n}(c)=e^{-2 \sqrt{\chi_{n}} \log \left(\frac{4 \sqrt{x_{n}}}{e c}\right)+O\left(\frac{c^{2}}{n} \log (n / c)\right)}\left(1+O\left(n^{-1} \log n\right)\right) .
$$

Here $n(n+1) \leq \chi_{n} \leq n(n+1)+c^{2}$ (Application of the min-max principle)

H. Widom decay rate of the $\lambda_{n}(c)$ [Widom (1964)]

If $q_{n}=\frac{c^{2}}{\chi_{n}}<1$, then

$$
\lambda_{n}(c)=e^{-2 \sqrt{\chi_{n}} \log \left(\frac{4 \sqrt{\chi_{n}}}{e c}\right)+O\left(\frac{c^{2}}{n} \log (n / c)\right)}\left(1+O\left(n^{-1} \log n\right)\right) .
$$

Here $n(n+1) \leq \chi_{n} \leq n(n+1)+c^{2}$ (Application of the min-max principle)

The above estimate of the $\lambda_{n}(c)$ is a consequence of an involved asymptotic behaviour of the function $f(x)=x e^{-c x} \psi_{n, c}(x)$ with $\psi_{n, c}(1)=1$, combined with the equality

$$
\lim _{x \rightarrow+\infty} x e^{-c x} \psi_{n, c}(x)=\frac{1}{c \mu_{n}(c)}
$$

Uniform estimates of the PSWFs.

This uniform estimate of the PSWFs is done under the condition that $q:=q_{n}=c^{2} / \chi_{n}(c)<1$.

Uniform estimates of the PSWFs.

This uniform estimate of the PSWFs is done under the condition that $q:=q_{n}=c^{2} / \chi_{n}(c)<1$.

Theorem (Osipov, (2013))

Suppose that $n \geq 2$ is a non-negative integer.

- If $n<(2 c / \pi)-1$, then $\chi_{n}>c^{2}$.

Uniform estimates of the PSWFs.

This uniform estimate of the PSWFs is done under the condition that $q:=q_{n}=c^{2} / \chi_{n}(c)<1$.

Theorem (Osipov, (2013))

Suppose that $n \geq 2$ is a non-negative integer.

- If $n<(2 c / \pi)-1$, then $\chi_{n}>c^{2}$.
- If $n>(2 c / \pi)+1$, then $\chi_{n}<c^{2}$.

Uniform estimates of the PSWFs.

This uniform estimate of the PSWFs is done under the condition that $q:=q_{n}=c^{2} / \chi_{n}(c)<1$.

Theorem (Osipov, (2013))

Suppose that $n \geq 2$ is a non-negative integer.

- If $n<(2 c / \pi)-1$, then $\chi_{n}>c^{2}$.
- If $n>(2 c / \pi)+1$, then $\chi_{n}<c^{2}$.
- If $(2 c / \pi)-1<n<(2 c / \pi)$, then either inequality is possible.

Uniform estimate of the PSWFs by WKB method

Recall that $\frac{\mathrm{d}}{\mathrm{d} x}\left[\left(1-x^{2}\right) \psi^{\prime}(x)\right]+\chi_{n}\left(1-q x^{2}\right) \psi(x)=0, \quad x \in[-1,1]$.

Uniform estimate of the PSWFs by WKB method

Recall that $\frac{\mathrm{d}}{\mathrm{d} x}\left[\left(1-x^{2}\right) \psi^{\prime}(x)\right]+\chi_{n}\left(1-q x^{2}\right) \psi(x)=0, \quad x \in[-1,1]$.
Let $s=S(x):=S_{q}(x)=\int_{x}^{1} \sqrt{\frac{1-q t^{2}}{1-t^{2}}} d t, \quad x \in[0,1)$.

Uniform estimate of the PSWFs by WKB method

Recall that $\frac{\mathrm{d}}{\mathrm{d} x}\left[\left(1-x^{2}\right) \psi^{\prime}(x)\right]+\chi_{n}\left(1-q x^{2}\right) \psi(x)=0, \quad x \in[-1,1]$.
Let $s=S(x):=S_{q}(x)=\int_{x}^{1} \sqrt{\frac{1-q t^{2}}{1-t^{2}}} d t, \quad x \in[0,1)$.
Let $\psi(x)=\varphi(x) U(S(x)), \quad \varphi(x)=\left(1-x^{2}\right)^{-1 / 4}\left(1-q x^{2}\right)^{-1 / 4}$.

Uniform estimate of the PSWFs by WKB method

Recall that $\frac{\mathrm{d}}{\mathrm{d} x}\left[\left(1-x^{2}\right) \psi^{\prime}(x)\right]+\chi_{n}\left(1-q x^{2}\right) \psi(x)=0, \quad x \in[-1,1]$.
Let $s=S(x):=S_{q}(x)=\int_{x}^{1} \sqrt{\frac{1-q t^{2}}{1-t^{2}}} d t, \quad x \in[0,1)$.
Let $\psi(x)=\varphi(x) U(S(x)), \quad \varphi(x)=\left(1-x^{2}\right)^{-1 / 4}\left(1-q x^{2}\right)^{-1 / 4}$.

Lemma (Bonami, K. (2014))

For $q<1$, there exists a function $F(\cdot)$ that is continuous on $[0, S(0)]$, satisfying $|F(S(x))| \leq \frac{3+2 q}{4} \frac{1}{\left(1-q x^{2}\right)^{2}}, \quad x \in[0,1]$ and such that U is a solution of the equation

$$
\begin{equation*}
U^{\prime \prime}(s)+\left(\chi_{n}+\frac{1}{4 s^{2}}\right) U(s)=F(s) U(s), \quad s \in[0, S(0)] . \tag{3}
\end{equation*}
$$

Main Estimation Theorem

$$
\text { Let } \mathbf{K}(\eta)=\int_{0}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-\eta^{2} t^{2}\right)}}, \quad \mathbf{E}(k)=\int_{0}^{1} \sqrt{\frac{1-k^{2} t^{2}}{1-t^{2}}} d t, 0 \leq k \leq 1 .
$$

Main Estimation Theorem

Let $\mathbf{K}(\eta)=\int_{0}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-\eta^{2} t^{2}\right)}}, \quad \mathbf{E}(k)=\int_{0}^{1} \sqrt{\frac{1-k^{2} t^{2}}{1-t^{2}}} d t, 0 \leq k \leq 1$.

Theorem (Bonami, K. (2014))

There exists a constant C_{1} such that, when n, c are such that $(1-q) \sqrt{\chi_{n}(c)}>3.5 E(\sqrt{q})$, we have, for $0 \leq x \leq 1$

$$
\begin{equation*}
\psi_{n, c}(x)=\sqrt{\frac{\pi}{2 \mathbf{K}(\sqrt{q})}} \frac{\chi_{n}(c)^{1 / 4} \sqrt{S_{q}(x)} J_{0}\left(\sqrt{\chi_{n}(c)} S_{q}(x)\right)}{\left(1-x^{2}\right)^{1 / 4}\left(1-q x^{2}\right)^{1 / 4}}+\widetilde{R}_{n, c}(x) \tag{4}
\end{equation*}
$$

Main Estimation Theorem

Let $\mathbf{K}(\eta)=\int_{0}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-\eta^{2} t^{2}\right)}}, \quad \mathbf{E}(k)=\int_{0}^{1} \sqrt{\frac{1-k^{2} t^{2}}{1-t^{2}}} d t, 0 \leq k \leq 1$.

Theorem (Bonami, K. (2014))

There exists a constant C_{1} such that, when n, c are such that $(1-q) \sqrt{\chi_{n}(c)}>3.5 E(\sqrt{q})$, we have, for $0 \leq x \leq 1$

$$
\begin{equation*}
\psi_{n, c}(x)=\sqrt{\frac{\pi}{2 \mathbf{K}(\sqrt{q})}} \frac{\chi_{n}(c)^{1 / 4} \sqrt{S_{q}(x)} J_{0}\left(\sqrt{\chi_{n}(c)} S_{q}(x)\right)}{\left(1-x^{2}\right)^{1 / 4}\left(1-q x^{2}\right)^{1 / 4}}+\widetilde{R}_{n, c}(x) \tag{4}
\end{equation*}
$$

$\left|\widetilde{R}_{n, c}(x)\right| \leq \frac{C_{1}}{(1-q) \sqrt{\chi_{n}}} \sqrt{\frac{1}{K(\sqrt{q})}} \min \left(\chi_{n}^{1 / 4},\left(1-x^{2}\right)^{-1 / 4}\left(1-q x^{2}\right)^{-1 / 4}\right)$.

Figure: (a) Graphs of the ψ_{n} (black), and its WKB approximant (Red), $c=100$, $n=80$. (b) Graph the corresponding approximation errors.

Useful bounds of the χ_{n}

Lemma (Bonami, K. (2014))

For all $c>0$ and $n \geq 2$ we have

$$
\begin{equation*}
\Phi\left(\frac{2 c}{\pi(n+1)}\right)<\frac{c}{\sqrt{\chi_{n}}}<\Phi\left(\frac{2 c}{\pi n}\right) \tag{6}
\end{equation*}
$$

where Φ is the inverse of the function $k \mapsto \frac{k}{\mathbf{E}(k)}=\Psi(k), 0 \leq k \leq 1$.

Useful bounds of the χ_{n}

Lemma (Bonami, K. (2014))

For all $c>0$ and $n \geq 2$ we have

$$
\begin{equation*}
\Phi\left(\frac{2 c}{\pi(n+1)}\right)<\frac{c}{\sqrt{\chi_{n}}}<\Phi\left(\frac{2 c}{\pi n}\right) \tag{6}
\end{equation*}
$$

where Φ is the inverse of the function $k \mapsto \frac{k}{E(k)}=\Psi(k), 0 \leq k \leq 1$.

$$
\Phi^{\prime}(x) \geq 0, \quad x \leq \Phi(x) \leq \frac{\pi}{2} x, \quad 0 \leq x \leq 1
$$

As a consequence of the previous lemma

$$
\frac{\pi n}{2 \mathbf{E}(\sqrt{q})}<\sqrt{\chi_{n}}<\frac{\pi(n+1)}{2 \mathbf{E}(\sqrt{q})}
$$

For $n \geq 2$ and $q<1$, we have

$$
(1-q) \sqrt{\chi_{n}} \geq \frac{\left(n-\frac{2 c}{\pi}\right)-e^{-1}}{\log n+5}
$$

A further improvement of the previous inequality is given by the following lemma:

Lemma

Let $n \geq 3, q<1$ and $\kappa \geq 4$. Then one of the following conditions,

$$
\begin{align*}
c & \leq n-\kappa \tag{7}\\
\frac{\pi n}{2}-c & >\frac{\kappa}{4}(\ln (n)+9) \tag{8}
\end{align*}
$$

implies the inequality

$$
(1-q) \sqrt{\chi_{n}(c)}>\kappa
$$

Moreover, if we assume already that $c>\frac{n+1}{2}$, then the condition $\frac{\pi n}{2}-c>\frac{\kappa}{4}(\ln (n)+6)$ is sufficient.

Tools for the proof of the decay rate

Note that $\partial_{t} \ln \lambda_{n}(t)=\frac{2\left|\psi_{n, t}(1)\right|^{2}}{t}$

Tools for the proof of the decay rate

Note that $\partial_{t} \ln \lambda_{n}(t)=\frac{2\left|\psi_{n, t}(1)\right|^{2}}{t}$ and $\left\|\psi_{n, c}\right\|_{L^{2}([-1,1])}=1$.

Tools for the proof of the decay rate

Note that $\partial_{t} \ln \lambda_{n}(t)=\frac{2\left|\psi_{n, t}(1)\right|^{2}}{t}$ and $\left\|\psi_{n, c}\right\|_{L^{2}([-1,1])}=1$.
Let $\frac{\pi}{2}(n-1) \leq c_{n}^{*} \leq \frac{\pi}{2}(n+1), \quad \lambda_{n}\left(c_{n}^{*}\right)=\frac{1}{2}$,

Tools for the proof of the decay rate

Note that $\partial_{t} \ln \lambda_{n}(t)=\frac{2\left|\psi_{n, t}(1)\right|^{2}}{t}$ and $\left\|\psi_{n, c}\right\|_{L^{2}([-1,1])}=1$.
Let $\frac{\pi}{2}(n-1) \leq c_{n}^{*} \leq \frac{\pi}{2}(n+1), \quad \lambda_{n}\left(c_{n}^{*}\right)=\frac{1}{2}$, so that
$\lambda_{n}(c)=\frac{1}{2} \exp \left(-2 \int_{c}^{c_{n}^{*}} \frac{\left(\psi_{n, \tau}(1)\right)^{2}}{\tau} d \tau\right)$.
$0 \leq \tau \leq c_{n}^{\kappa}, \quad c_{n}^{\kappa}=\max \left(\frac{\pi n}{2}-\frac{\kappa}{4}(\ln (n)+6), \frac{n+1}{2}\right)$,

Tools for the proof of the decay rate

Note that $\partial_{t} \ln \lambda_{n}(t)=\frac{2\left|\psi_{n, t}(1)\right|^{2}}{t}$ and $\left\|\psi_{n, c}\right\|_{L^{2}([-1,1])}=1$.
Let $\frac{\pi}{2}(n-1) \leq c_{n}^{*} \leq \frac{\pi}{2}(n+1), \quad \lambda_{n}\left(c_{n}^{*}\right)=\frac{1}{2}$, so that
$\lambda_{n}(c)=\frac{1}{2} \exp \left(-2 \int_{c}^{c_{n}^{*}} \frac{\left(\psi_{n, \tau}(1)\right)^{2}}{\tau} d \tau\right)$.
$0 \leq \tau \leq c_{n}^{\kappa}, \quad c_{n}^{\kappa}=\max \left(\frac{\pi n}{2}-\frac{\kappa}{4}(\ln (n)+6), \frac{n+1}{2}\right)$, so that

$$
\frac{\pi \sqrt{\chi_{n}}}{2 \mathbf{K}(\sqrt{q})}\left(1-\delta(k) \varepsilon_{n}\right) \leq \psi_{n, \tau}^{2}(1) \leq \frac{\pi \sqrt{\chi_{n}}}{2 \mathbf{K}(\sqrt{q})}\left(1+\delta(k) \varepsilon_{n}\right)
$$

Let $I(a, b)=\int_{a}^{b} \frac{\left(\psi_{n, \tau},(1)\right)^{2}}{\tau} d \tau, \quad \mathcal{J}(x)=\frac{\pi^{2}}{4} \int_{\Phi\left(\frac{2 x}{\pi}\right)}^{1} \frac{1}{t(\mathbf{E}(t))^{2}} d t$.

Let $I(a, b)=\int_{a}^{b} \frac{\left(\psi_{n, \tau}(1)\right)^{2}}{\tau} d \tau, \quad \mathcal{J}(x)=\frac{\pi^{2}}{4} \int_{\Phi}^{1}\left(\frac{2 x}{\pi}\right) \frac{1}{t(\mathbf{E}(t))^{2}} d t$.
To prove $I\left(c, c_{n}^{*}\right) \approx(n+1 / 2) \mathcal{J}\left(\frac{c}{n+1 / 2}\right)$.

Let $I(a, b)=\int_{a}^{b} \frac{\left(\psi_{n, \tau}(1)\right)^{2}}{\tau} d \tau, \quad \mathcal{J}(x)=\frac{\pi^{2}}{4} \int_{\Phi}^{1}\left(\frac{2 x}{\pi}\right) \frac{1}{t(\mathbf{E}(t))^{2}} d t$.
To prove $I\left(c, c_{n}^{*}\right) \approx(n+1 / 2) \mathcal{J}\left(\frac{c}{n+1 / 2}\right)$.
If $c<c_{n}^{\kappa}$, then $I\left(c, c_{n}^{\kappa}\right) \approx \frac{\pi}{2} \int_{c}^{c_{n}^{\kappa}} \frac{d \tau}{2 \sqrt{q(\tau)} \mathbf{K}(\sqrt{q(\tau)})}$.

Let $I(a, b)=\int_{a}^{b} \frac{\left(\psi_{n, \tau}(1)\right)^{2}}{\tau} d \tau, \quad \mathcal{J}(x)=\frac{\pi^{2}}{4} \int_{\Phi}^{1}\left(\frac{2 x}{\pi}\right) \frac{1}{t(\mathbf{E}(t))^{2}} d t$.
To prove $I\left(c, c_{n}^{*}\right) \approx(n+1 / 2) \mathcal{J}\left(\frac{c}{n+1 / 2}\right)$.
If $c<c_{n}^{\kappa}$, then $I\left(c, c_{n}^{\kappa}\right) \approx \frac{\pi}{2} \int_{c}^{c_{n}^{\kappa}} \frac{d \tau}{2 \sqrt{q(\tau)} \mathbf{K}(\sqrt{q(\tau)})}$.
Use $\sqrt{\boldsymbol{q (\tau)}} \mathbf{K}\left(\sqrt{q(\tau))} \approx \Phi\left(\frac{2 \tau}{\pi(n+1 / 2)}\right) \mathbf{K} \circ \Phi\left(\frac{2 \tau}{\pi(n+1 / 2)}\right)\right.$,
$s=\Phi\left(\frac{2 \tau}{\pi(n+1 / 2)}\right)$

Let $I(a, b)=\int_{a}^{b} \frac{\left(\psi_{n, \tau}(1)\right)^{2}}{\tau} d \tau, \quad \mathcal{J}(x)=\frac{\pi^{2}}{4} \int_{\Phi}^{1}\left(\frac{2 x}{\pi}\right) \frac{1}{t(\mathbf{E}(t))^{2}} d t$.
To prove $I\left(c, c_{n}^{*}\right) \approx(n+1 / 2) \mathcal{J}\left(\frac{c}{n+1 / 2}\right)$.
If $c<c_{n}^{\kappa}$, then $I\left(c, c_{n}^{\kappa}\right) \approx \frac{\pi}{2} \int_{c}^{c_{n}^{\kappa}} \frac{d \tau}{2 \sqrt{q(\tau)} \mathbf{K}(\sqrt{q(\tau)})}$.
Use $\sqrt{\boldsymbol{q (\tau)}} \mathbf{K}\left(\sqrt{q(\tau))} \approx \Phi\left(\frac{2 \tau}{\pi(n+1 / 2)}\right) \mathbf{K} \circ \Phi\left(\frac{2 \tau}{\pi(n+1 / 2)}\right)\right.$,
$s=\Phi\left(\frac{2 \tau}{\pi(n+1 / 2)}\right)$ and $\Psi^{\prime}(x)=\frac{\mathbf{K}(x)}{(\mathbf{E}(x))^{2}}, \quad \Psi=\Phi^{-1}$.

Let $I(a, b)=\int_{a}^{b} \frac{\left(\psi_{n, \tau}(1)\right)^{2}}{\tau} d \tau, \quad \mathcal{J}(x)=\frac{\pi^{2}}{4} \int_{\Phi}^{1}\left(\frac{2 x}{\pi}\right) \frac{1}{t(\mathbf{E}(t))^{2}} d t$.
To prove $I\left(c, c_{n}^{*}\right) \approx(n+1 / 2) \mathcal{J}\left(\frac{c}{n+1 / 2}\right)$.
If $c<c_{n}^{\kappa}$, then $I\left(c, c_{n}^{\kappa}\right) \approx \frac{\pi}{2} \int_{c}^{c_{n}^{\kappa}} \frac{d \tau}{2 \sqrt{q(\tau)} \mathbf{K}(\sqrt{q(\tau)})}$.
Use $\sqrt{\boldsymbol{q (\tau)}} \mathbf{K}\left(\sqrt{q(\tau))} \approx \Phi\left(\frac{2 \tau}{\pi(n+1 / 2)}\right) \mathbf{K} \circ \Phi\left(\frac{2 \tau}{\pi(n+1 / 2)}\right)\right.$,
$s=\Phi\left(\frac{2 \tau}{\pi(n+1 / 2)}\right)$ and $\Psi^{\prime}(x)=\frac{K(x)}{(E(x))^{2}}, \quad \Psi=\Phi^{-1}$.
To get $I\left(c, c_{n}^{\kappa}\right) \approx(n+1 / 2) \mathcal{J}\left(\frac{c}{n+1 / 2}\right)$.

Let $I(a, b)=\int_{a}^{b} \frac{\left(\psi_{n, \tau}(1)\right)^{2}}{\tau} d \tau, \quad \mathcal{J}(x)=\frac{\pi^{2}}{4} \int_{\Phi}^{1}\left(\frac{2 x}{\pi}\right) \frac{1}{t(\mathbf{E}(t))^{2}} d t$.
To prove $I\left(c, c_{n}^{*}\right) \approx(n+1 / 2) \mathcal{J}\left(\frac{c}{n+1 / 2}\right)$.
If $c<c_{n}^{\kappa}$, then $I\left(c, c_{n}^{\kappa}\right) \approx \frac{\pi}{2} \int_{c}^{c_{n}^{\kappa}} \frac{d \tau}{2 \sqrt{q(\tau)} \mathrm{K}(\sqrt{q(\tau)})}$.
Use $\sqrt{q(\tau)} \mathbf{K}\left(\sqrt{q(\tau))} \approx \Phi\left(\frac{2 \tau}{\pi(n+1 / 2)}\right) \mathbf{K} \circ \Phi\left(\frac{2 \tau}{\pi(n+1 / 2)}\right)\right.$,
$s=\Phi\left(\frac{2 \tau}{\pi(n+1 / 2)}\right)$ and $\Psi^{\prime}(x)=\frac{\mathbf{K}(x)}{(\mathbf{E}(x))^{2}}, \quad \Psi=\Phi^{-1}$.
To get $I\left(c, c_{n}^{\kappa}\right) \approx(n+1 / 2) \mathcal{J}\left(\frac{c}{n+1 / 2}\right)$.
It remains to bound $I\left(c, c_{n}^{*}\right)-I\left(c, c_{n}^{\kappa}\right)$ which is possible since c_{n}^{κ} and c_{n}^{*} are sufficiently close.

Main decay results of the $\lambda_{n}(c)$.

Theorem (Bonami, K. (2014))

There exist three non negative constants $\delta_{1}, \delta_{2}, \delta_{3}$ such that, for $n \geq 3$ and $c \leq \frac{\pi n}{2}$, we have

$$
\begin{equation*}
\int_{c}^{c_{n}^{*}} \frac{\left(\psi_{n, \tau}(1)\right)^{2}}{\tau} d \tau=\frac{\pi^{2}\left(n+\frac{1}{2}\right)}{4} \int_{\Phi\left(\frac{2 c}{\pi\left(n+\frac{1}{2}\right)}\right)}^{1} \frac{1}{t(\mathbf{E}(t))^{2}} d t+\mathcal{E} \tag{9}
\end{equation*}
$$

with

$$
\begin{equation*}
|\mathcal{E}| \leq \delta_{1}+\delta_{2} \ln (n)+\delta_{3} \ln ^{+}(1 / c) \tag{10}
\end{equation*}
$$

Theorem (Bonami, K. (2014))

There exist three constants $\delta_{1} \geq 1, \delta_{2}, \delta_{3}, \geq 0$ such that, for $n \geq 3$ and $c \leq \frac{\pi n}{2}$,

$$
\begin{equation*}
\delta_{1}^{-1} n^{-\delta_{2}}\left(\frac{c}{c+1}\right)^{\delta_{3}} \leq \widetilde{\frac{\lambda_{n}(c)}{\lambda_{n}(c)}} \leq \delta_{1} n^{\delta_{2}}\left(\frac{c}{c+1}\right)^{-\delta_{3}} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{\lambda_{n}(c)}=\frac{1}{2} \exp \left(-\frac{\pi^{2}\left(n+\frac{1}{2}\right)}{2} \int_{\Phi\left(\frac{2 c}{\pi\left(n+\frac{1}{2}\right)}\right)}^{1} \frac{1}{t(\mathbf{E}(t))^{2}} d t\right) \tag{12}
\end{equation*}
$$

We have the double inequality,

$$
\frac{1}{2}\left(\frac{e c}{4\left(n+\frac{1}{2}\right)}\right)^{2 n+1} e^{-\frac{\pi^{2}}{4} \frac{c^{2}}{n+\frac{1}{2}}} \leq \widetilde{\lambda_{n}(c)} \leq \frac{1}{2}\left(\frac{e c}{4\left(n+\frac{1}{2}\right)}\right)^{2 n+1} e^{+\frac{\pi^{2}}{4} \frac{c^{2}}{n+\frac{1}{2}}}
$$

We have the double inequality,

$$
\frac{1}{2}\left(\frac{e c}{4\left(n+\frac{1}{2}\right)}\right)^{2 n+1} e^{-\frac{\pi^{2}}{4} \frac{c^{2}}{n+\frac{1}{2}}} \leq \widetilde{\lambda_{n}(c)} \leq \frac{1}{2}\left(\frac{e c}{4\left(n+\frac{1}{2}\right)}\right)^{2 n+1} e^{+\frac{\pi^{2}}{4} \frac{c^{2}}{n+\frac{1}{2}}}
$$

For any $\delta>0$,

$$
\lambda_{n}(c) \leq e^{-\delta n}, \quad \forall n \geq N_{\delta, c} .
$$

We have the double inequality,

$$
\frac{1}{2}\left(\frac{e c}{4\left(n+\frac{1}{2}\right)}\right)^{2 n+1} e^{-\frac{\pi^{2}}{4} \frac{c^{2}}{n+\frac{1}{2}}} \leq \widetilde{\lambda_{n}(c)} \leq \frac{1}{2}\left(\frac{e c}{4\left(n+\frac{1}{2}\right)}\right)^{2 n+1} e^{+\frac{\pi^{2}}{4} \frac{c^{2}}{n+\frac{1}{2}}}
$$

For any $\delta>0$,

$$
\lambda_{n}(c) \leq e^{-\delta n}, \quad \forall n \geq N_{\delta, c} .
$$

For any $1 \leq a<\frac{4}{e}$,

$$
\lambda_{n}(c) \leq e^{-2 n \log \left(\frac{a n}{c}\right)}, \quad \forall n \geq N_{c, a} .
$$

We have the double inequality,

$$
\frac{1}{2}\left(\frac{e c}{4\left(n+\frac{1}{2}\right)}\right)^{2 n+1} e^{-\frac{\pi^{2}}{4} \frac{c^{2}}{n+\frac{1}{2}}} \leq \widetilde{\lambda_{n}(c)} \leq \frac{1}{2}\left(\frac{e c}{4\left(n+\frac{1}{2}\right)}\right)^{2 n+1} e^{+\frac{\pi^{2}}{4} \frac{c^{2}}{n+\frac{1}{2}}}
$$

For any $\delta>0$,

$$
\lambda_{n}(c) \leq e^{-\delta n}, \quad \forall n \geq N_{\delta, c} .
$$

For any $1 \leq a<\frac{4}{e}$,

$$
\lambda_{n}(c) \leq e^{-2 n \log \left(\frac{a n}{c}\right)}, \quad \forall n \geq N_{c, a} .
$$

For any $b>\frac{4}{e}$,

$$
\lambda_{n}(c)>e^{-2 n \log \left(\frac{b n}{c}\right)}, \quad \forall n \geq N_{c, b}
$$

Figure: Graphs of $\ln \left(\widetilde{\lambda_{n}(c)}\right)$ (boxes) and $\ln \left(\lambda_{n}(c)\right)$ (red) with $c=10 \pi$ for (a), $c=20 \pi$ for (b) and $c=30 \pi$ for (c).

Figure: Graphs of $\ln \left(\frac{\lambda_{n}(c)}{\widehat{\lambda_{n}(c)}}\right)$ with $c=10 \pi$ for $(a), c=20 \pi$ for (b) and $c=30 \pi$ for (c).

Approximation of band-limited functions

Lemma

Let $f \in B_{c}$ be an L^{2} normalized function. Then

$$
\begin{equation*}
\int_{-1}^{+1}\left|f-S_{N} f\right|^{2} d t \leq \lambda_{N}(c) \tag{13}
\end{equation*}
$$

Approximation of almost band-limited functions

Let T and Ω de two measurable sets. A function pair (f, \widehat{f}) is said to be ϵ_{T}-concentrated in T and ϵ_{Ω}-concentrated in Ω if

$$
\int_{T^{c}}|f(t)|^{2} d t \leq \epsilon_{T}^{2}, \quad \int_{\Omega^{c}}|\widehat{f}(\omega)|^{2} d \omega \leq \epsilon_{\Omega}^{2}
$$

Next we define the time-limiting operator P_{T} and the band-limiting operator Π_{Ω} by:

$$
P_{T}(f)(x)=\chi_{T}(x) f(x), \quad \Pi_{\Omega}(f)(x)=\frac{1}{2 \pi} \int_{\Omega} e^{i x \omega} \widehat{f}(\omega) d \omega .
$$

Approximation of almost band-limited functions

Proposition

If f is an L^{2} normalized function that is ϵ_{T}-concentrated in $T=[-1,+1]$ and ϵ_{Ω}-band concentrated in $\Omega=[-c,+c]$, then for any positive integer N, we have

$$
\begin{equation*}
\left(\int_{-1}^{+1}\left|f-S_{N} f\right|^{2} d t\right)^{1 / 2} \leq \epsilon_{\Omega}+\sqrt{\lambda_{N}(c)} \tag{14}
\end{equation*}
$$

and, as a consequence,

$$
\begin{equation*}
\left\|f-P_{T} S_{N} f\right\|_{2} \leq \epsilon_{T}+\epsilon_{\Omega}+\sqrt{\lambda_{N}(c)} \tag{15}
\end{equation*}
$$

Approximation by the PSWFs in the Sobolev spaces

Theorem

Let $c \geq 0$ be a positive real number and let $I=[-1,1]$. Assume that $f \in H^{s}(I)$, for some positive real number $s>0$. Then for any integer $N \geq 1$, we have

$$
\begin{equation*}
\left\|f-S_{N} f\right\|_{2} \leq K\left(1+c^{2}\right)^{-s / 2}\|f\|_{H^{s}}+K \sqrt{\lambda_{N}(c)}\|f\|_{2} \tag{16}
\end{equation*}
$$

Here, the constant K depends only on s. Moreover it can be taken equal to 1 when f belongs to the space $H_{0}^{s}(I)$.

Legendre expansion of the PSWFs,

$$
\begin{equation*}
\psi_{n}(x)=\sum_{k \geq 0} \beta_{k}^{n} \overline{P_{k}}(x) \tag{17}
\end{equation*}
$$

Legendre expansion of the PSWFs,

$$
\begin{equation*}
\psi_{n}(x)=\sum_{k \geq 0} \beta_{k}^{n} \overline{P_{k}}(x) \tag{17}
\end{equation*}
$$

Lemma

Let $c>0$, be a fixed positive real number. Then, for all positive integers k, n such that $k(k-1)+1.13 c^{2} \leq \chi_{n}(c)$, we have $\beta_{k}^{n} \geq 0$.

Legendre expansion of the PSWFs,

$$
\begin{equation*}
\psi_{n}(x)=\sum_{k \geq 0} \beta_{k}^{n} \overline{P_{k}}(x) \tag{17}
\end{equation*}
$$

Lemma

Let $c>0$, be a fixed positive real number. Then, for all positive integers k, n such that $k(k-1)+1.13 c^{2} \leq \chi_{n}(c)$, we have $\beta_{k}^{n} \geq 0$.

Proposition

Let $c>0$, be a fixed positive real number. Then, for all positive integers n, k such that $k(k-1)+1.13 c^{2} \leq \chi_{n}(c)$, we have

$$
\begin{equation*}
\left|\beta_{0}^{n}\right| \leq \frac{1}{\sqrt{2}}\left|\mu_{n}(c)\right| \quad \text { and } \quad\left|\beta_{k}^{n}\right| \leq \sqrt{\frac{5}{4 \pi}}\left(\frac{2}{\sqrt{q}}\right)^{k}\left|\mu_{n}(c)\right| . \tag{18}
\end{equation*}
$$

Lemma

Let $c \geq 1$, then there exist constants $M>1.40$ and M^{\prime}, a>0 such that, when $n \geq \max (c M, 3)$ and $f(x)=e^{i k \pi x}$ with $|k| \leq n / M$, we have

$$
\begin{equation*}
\left|\left\langle f, \psi_{n}\right\rangle\right| \leq M^{\prime} e^{-a n} . \tag{19}
\end{equation*}
$$

Lemma

Let $c \geq 1$, then there exist constants $M>1.40$ and M^{\prime}, $a>0$ such that, when $n \geq \max (c M, 3)$ and $f(x)=e^{i k \pi x}$ with $|k| \leq n / M$, we have

$$
\begin{equation*}
\left|\left\langle f, \psi_{n}\right\rangle\right| \leq M^{\prime} e^{-a n} \tag{19}
\end{equation*}
$$

Theorem (Bonami, K. (2014))

Let $c \geq 1$, then there exist constants $M>1.40$ and $M^{\prime}, a>0$ such that, when $N \geq \max (c M, 3)$ and $f \in H_{\text {per }}^{s}, s>0$, we have the inequality

$$
\begin{equation*}
\left\|f-S_{N}(f)\right\|_{L^{2}(I)} \leq M^{\prime}\left(1+(\pi N)^{2}\right)^{-s / 2}\|f\|_{H_{\text {per }}^{s}}+M^{\prime} e^{-a N}\|f\|_{L^{2}} . \tag{20}
\end{equation*}
$$

Corollary

Let $c \geq 1$, and let $s>0$ with $[s]=m \in \mathbb{N}$, and $s \notin \frac{1}{2}+\mathbb{N}$. Let $f \in H^{s}(I)$, then there exist constants $M \geq 1.40$ and $M^{\prime}, M_{s}^{\prime}>0$ such that, when $N \geq \max (c M, 3)$, we have the inequality

$$
\begin{equation*}
\left\|f-S_{N}(f)\right\|_{L^{2}(I)} \leq M_{s}^{\prime}\left(1+N^{2}\right)^{-s / 2}\|f\|_{H^{s}([-1,1])}+M^{\prime} e^{-a N}\|f\|_{L^{2}([-1,1])} \tag{21}
\end{equation*}
$$

Exact reconstruction of band-limited functions with missing data

From [Donoho,Stark (1989)], if $\|f\|_{2}=\|\widehat{f}\|_{2}=1$ and (f, \widehat{f}) is ϵ_{T}-concentrated on T and ϵ_{Ω}-concentrated on Ω, then

$$
|\Omega||T| \geq\left(1-\left(\epsilon_{T}+\epsilon_{\Omega}\right)\right)^{2} .
$$

Hence, if $|\Omega||T|<1$, then the following band-limited reconstruction problem has a unique solution in B_{Ω}.

Find $S \in B_{\Omega}$ such that $r(t)=\chi_{T} c(t)(S(t)+\eta(t)), \eta(\cdot) \in L^{2}$.

The solution S is given by

$$
\begin{aligned}
& S(t)=\operatorname{Qr}(t)=\sum_{n \geq 0}\left(P_{T} P_{\Omega}\right)^{n} r(t), \quad t \in \mathbf{R} \\
& \|S-Q r\| \leq C\|\eta\|, \quad C \leq(1-\sqrt{|T||\Omega|})^{-1}
\end{aligned}
$$

If $T=[-\tau, \tau], \Omega=[-c, c]$, then

$$
P_{\Omega} P_{T}(f)(x)=\int_{-\tau}^{\tau} \frac{\sin 2 \pi c(x-y)}{\pi(x-y)} f(y) d y, \quad x \in \mathbf{R}
$$

Hence

$$
\left\|P_{T} P_{\Omega}\right\| \leq \lambda_{0}(c)<1
$$

Consequently, the band-limited reconstruction problem has a band-limited solution no matter how large are T and Ω.

References

[1] A. Bonami and A. Karoui, Useful bounds and eigenvalues decay of the prolate spheroidal wave functions, C. R. Math. Acad. Sci. Paris. Ser. I, 352 (2014), 229-234.
[2] A. Bonami and A. Karoui, Uniform Estimates of the Prolate Spheroidal Wave Functions, submitted for publication (2014), available at ArXiv:1405.3676.
[3] A. Bonami and A. Karoui, Spectral decay of the Sinc kernel operators and approximation by Prolate Spheroidal Wave Functions, submitted for publication (2014), available at ArXiv:1012.3881v3 .
[4] J. D. Lakey, J. F. Hogan, Duration and Bandwidth Limiting: Prolate Functions, Sampling, and Applications, Applied and Numerical Harmonic Analysis Series, Birkhäser, Boston, 2012.
[5] A. Osipov, Certain inequalities involving prolate spheroidal wave functions and associated quantities, Appl. Comput. Harmon. Anal., 35, (2013), 359-393.
[6] D. Slepian, H. O. Pollak, H. Landau, Prolate spheroidal wave functions, Fourier analysis, and uncertainty-I, -II, -III, -IV, Bell Syst. Tech. J. (1961 1964)
[7] H. Widom, Asymptotic behavior of the eigenvalues of certain integral equations. II. Arc. Rational Mech. Anal., 17 (1964), 215-229.
[8] H. Xiao, V. Rokhlin and N. Yarvin, Prolate spheroidal wave functions, quadrature and interpolation, Inverse Problems, 17, (2001), 805-838.
[9] C. Niven, On the Conduction of Heat in Ellipsoids of Revolution, Phil. Trans. R. Soc. Lond., 171, (1880), 117-151.

Thank You

