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The Setting

Let Ω be a bounded measurable subset of Rn, with a nice
boundary.

Ω is not necessarily a connected set.

We will assume that |Ω| = 1.
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Definitions

For an element x ∈ Rn, we let Ω + x denote the
translate of Ω by x ,

Ω + x = {y ∈ Rn : y − x ∈ Ω}

A set T ⊂ Rn is called a Tiling set for a set Ω, if
{Ω + t : t ∈ T } forms a partition a.e of Rn. Then
Ω is called a prototile, and (Ω, T ) is called a Tiling
pair.

Equivalently, (Ω, T ) is a Tiling pair iff∑
t∈T

χΩ(x + t) = 1 a.e

Shobha Madan Indian Institute of Technology, Kanpur



Definitions

For an element x ∈ Rn, we let Ω + x denote the
translate of Ω by x ,

Ω + x = {y ∈ Rn : y − x ∈ Ω}

A set T ⊂ Rn is called a Tiling set for a set Ω, if
{Ω + t : t ∈ T } forms a partition a.e of Rn. Then
Ω is called a prototile, and (Ω, T ) is called a Tiling
pair.

Equivalently, (Ω, T ) is a Tiling pair iff∑
t∈T

χΩ(x + t) = 1 a.e

Shobha Madan Indian Institute of Technology, Kanpur



Definitions

For an element x ∈ Rn, we let Ω + x denote the
translate of Ω by x ,

Ω + x = {y ∈ Rn : y − x ∈ Ω}

A set T ⊂ Rn is called a Tiling set for a set Ω, if
{Ω + t : t ∈ T } forms a partition a.e of Rn. Then
Ω is called a prototile, and (Ω, T ) is called a Tiling
pair.

Equivalently, (Ω, T ) is a Tiling pair iff∑
t∈T

χΩ(x + t) = 1 a.e

Shobha Madan Indian Institute of Technology, Kanpur



Definitions contd.

A set Λ ⊂ Rn is called a spectrum for Ω if the set of
exponentials

EΛ = {eλ(x) = e2πiλ.xχΩ(x);λ ∈ Λ}

is an orthonormal basis for L2(Ω). If a spectrum
exists for a set Ω, then Ω is called a Spectral set.

Equivalently, Λ is a spectrum for Ω iff∑
λ∈Λ

|χ̂Ω|2(ξ − λ) = 1 a.e.

(Ω,Λ) is then called a Spectral pair.
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The conditions for Tiling and Spectra, namely∑
t∈T

χΩ(x + t) = 1 a.e

∑
λ∈Λ

|χ̂Ω|2(ξ − λ) = 1 a.e

can both be viewed as tiling by non-negative functions,
respectively χΩ and |χ̂Ω|2.

A crucial difference is that while the first has support of
finite measure, the latter cannot have support with finite
measure (by Benedicks’ Uncertainty Principle).
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Facts

Both T and Λ (when they exist), are discrete sets, in
fact, they are uniformly separated.
With |Ω| = 1, both Λ and T have upper asymptotic
density 1, where the upper asymptotic density of a
set S is defined as:

ρ(S) = lim sup
R→∞

card([−R,R]d ∩ S)

(2R)d

Neither the Spectrum, nor the Tiling set are unique.
If Λ is a spectrum, and λ0 ∈ Λ, then it is easy to see
that the set Λ− λ0 is also a spectrum for the same
set. Henceforth, we will assume that 0 ∈ Λ. From this
and orthogonality, it follows that

0 ∈ Λ ⊂ Λ− Λ ⊂ {ξ : χ̂Ω(ξ) = 0} ∪ {0}
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Fuglede’s Conjecture

A set Ω ⊂ Rn is a spectral set if and only if Ω tiles
Rn by translations.
(Fuglede, B. J. Funct. Anal, 1974)

As stated above, the conjecture is far too general.
First, there is no assumption on the structure of the
set Ω (diameter, connectedness etc). Further, neither
the Tiling set not the Spectrum need be unique, so
what relation can be expected between a T and a Λ?
Fuglede’s conjecture arose from his investigation into
the problem of existence of commuting self-adjoint
extensions of the operators −i(∂/∂xj), j = 1, ...,n
defined on C∞0 (Ω) to a dense subspace of L2(Ω).
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Fuglede himself proved the following Theorem:

Theorem

Let L be a full rank lattice in Rn and let L∗ be its dual
lattice. Then (Ω,L) is a Spectral pair iff (Ω,L∗) is a Tiling
pair.

This result is essentially Fourier Analysis for the n-torus in
Rn, upto affine transformations. (Poisson Summation
Formula).
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Important Recent Results

For d ≥ 3, the conjecture is not true in the generality
in which it is stated, in either direction.
For d = 5, Terence Tao gave a counterexample in
2004. For d = 3,4, Matolsci and Kolountzakis (2006)
were able to use Tao’s idea to give counterexamples
and showed that both implications of Fuglede’s fail.

The countereamples are not convex sets; in fact Tao’s
counterexample is a disjoint union of unit cubes.
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The case of convex sets in dimension 2

The case where Ω is a convex planar set received a lot of
attention recently.

Theorem(Venkov; McMullen,1980) A convex body K
which tiles Rn by translations is a symmetric polytope.
It is known that whenever a convex polytope tiles Rn,
there exists a lattice tiling. Thus "Tiling implies
Spectral" holds for convex sets in any dimension.
Theorem (Kolountzakis, 2000) A convex planar set
which is spectral has to be symmetric.
Theorem (Iosevich, Katz and Tao, 2001) A convex
planar spectral set cannot have a point of curvature.
Theorem (Iosevich, Katz and Tao, 2003) Fuglede’s
Conjecture is true for convex planar sets.
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The Structure of Tiling sets in dimension 1

In one dimension, the conjecture is trivial if the set is
an interval.

The conjecture is known to hold in particular cases,
with additional hypotheses.
If Ω is assumed to be a finite union of intervals, then
the only case for which it is known to hold is when Ω
is a union of two intervals, Laba (2001).

If Ω is a union of three intervals, it is known that Tiling
implies Spectral; and Spectral implies Tiling holds
with "one additional hypothesis" (BCKM 2010, BM
2013)

Shobha Madan Indian Institute of Technology, Kanpur



The Structure of Tiling sets in dimension 1

In one dimension, the conjecture is trivial if the set is
an interval.

The conjecture is known to hold in particular cases,
with additional hypotheses.
If Ω is assumed to be a finite union of intervals, then
the only case for which it is known to hold is when Ω
is a union of two intervals, Laba (2001).

If Ω is a union of three intervals, it is known that Tiling
implies Spectral; and Spectral implies Tiling holds
with "one additional hypothesis" (BCKM 2010, BM
2013)

Shobha Madan Indian Institute of Technology, Kanpur



The Structure of Tiling sets in dimension 1

In one dimension, the conjecture is trivial if the set is
an interval.

The conjecture is known to hold in particular cases,
with additional hypotheses.
If Ω is assumed to be a finite union of intervals, then
the only case for which it is known to hold is when Ω
is a union of two intervals, Laba (2001).

If Ω is a union of three intervals, it is known that Tiling
implies Spectral; and Spectral implies Tiling holds
with "one additional hypothesis" (BCKM 2010, BM
2013)

Shobha Madan Indian Institute of Technology, Kanpur



The Structure of Tiling sets in dimension 1

In one dimension, the conjecture is trivial if the set is
an interval.

The conjecture is known to hold in particular cases,
with additional hypotheses.
If Ω is assumed to be a finite union of intervals, then
the only case for which it is known to hold is when Ω
is a union of two intervals, Laba (2001).

If Ω is a union of three intervals, it is known that Tiling
implies Spectral; and Spectral implies Tiling holds
with "one additional hypothesis" (BCKM 2010, BM
2013)

Shobha Madan Indian Institute of Technology, Kanpur



Structure of Tiling sets in one dimension

Lagarias and Wang [1996] gave a complete
characterization of the structure of a tiling set in one
dimension for any compact set Ω.

Theorem (Periodicity)

Suppose that Ω tiles R by translation. Then every tiling T
by translations of Ω is a periodic tiling with an integer
period.

The analogue of this theorem is false in higher
dimensions, e.g. the unit square Q in R2 gives
infinitely many nonperiodic tilings of R2 (which are
translation inequivalent).
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Proof Outline

There are essentially three steps in the proof of the
theorem:

Step 1: Any tiling has the local finiteness property, i.e.
for every closed interval J, there are only finitely
many ways to tile J.
Step 2: If Ω ⊂ [−N,N], and a patch P covers [−N,N],
and if this patch can be extended to a tiling of R, then
this extension is unique.
Step 3: The pigeonhole principle is used to prove the
periodicity.
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Tilings

Theorem (Rationality)

Suppose that a bounded region Ω tiles R by translation,
using a d-periodic tiling set T given by

T = ∪d
1 (rj + dZ )

Then all differences rj − rk are rational.
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Outline of the proof

The proof of this theorem uses Fourier Analysis, and
Szemeredi’s theorem (or the Skolem-Mahler-Lech
Theorem) on the zeros of exponential polynomials.

Let f ∈ L1(R). The integer zero set of f is given by

Z(f ) = {n ∈ Z; f̂ (n) = 0}

Lemma: If f is a compactly supported non-negative
function, such that 0 < |supp(f )| < 1, then the

ρ(Z(f )) < 1
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By periodicity we can write the tiling set as

T =
d⋃
1

(rj + dZ)

Let {R = rj : 1 ≤ j ≤ J}.
Partition R by an equivalence relation
rj ≡ rk ⇐⇒ rj − rk ∈ Q, and write

R = ∪K
1R∗k
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Consider the distribution δR. Its Fourier transform is
the exponential polynomial f (λ) =

∑
exp 2πiλrj , and

for each eqivalence class R∗k , we let

fk (λ) =
∑

rj∈R∗
k

exp 2πiλrj

We then show that

Z(f ) = X ∪ Y ,

where X is the common integer zero set of the fk ’s
which is a union of complete arithmetic progressions,
and Y is a set of density zero.
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The final step in the proof is to show that there is only
one equivalence class by showing that

if Ωk = ∪rj∈R∗
k
(Ω + rj), then ρ(Z(χΩk )) ≥ 1,

and so by the lemma |Ωk | = 1.
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Theorem (LW (Structure))
A d-periodic tiling T as above is also a Tiling set for a set
Ω1 which is a union of d equal intervals (each of length
1/d), with endpoints lying in Z/d.

In fact for

T =
d⋃
1

(aj/N + dZ),

with A = {aj : j = 1,2, ...d}, the set Ω1 is of the form

Ω1 = ∪K
1 (bj/N + Z/d)

where the set B = {bj : j = 1,2, ...,K} is any
complementing subset for A (mod dN)
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The Structure of Spectra in one dimension

Results on the structure of Spectra are very recent.
First

Theorem (BM, 2011)

Let Ω = ∪n
j=1Ij , |Ω| = 1. If (Ω,Λ) is a spectral pair, then Λ is

a d-periodic set with d ∈ N. Hence Λ has the form
Λ = ∪d

j=1 {λj + dZ} .

In 2012, Iosevich and Kolountzakis extended the above
periodicity result to general compact sets Ω.
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Outline of proof

The proof of this theorem for the spectrum has the
same kind of strategy as in the corresponding result
for tiling: Local finiteness, unique extension, and
pigeonhole principle.

The essence lies in finding a setting in which to use
these ideas
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An Embedding of the spectrum

We embed the spectrum in a vector space as follows:
Consider the 2n-dimensional vector space

Cn × Cn = {v = (v1, v2) : v1, v2 ∈ Cn}.

Define a conjugate linear form � on Cn × Cn by

v� w := 〈v1,w1〉 − 〈v2,w2〉,

where 〈·, ·〉 denotes the usual inner product on Cn.

This conjugate linear form is degenerate; in fact,
v� v = 0, if v ∈ Tn × Tn.

Shobha Madan Indian Institute of Technology, Kanpur



An Embedding of the spectrum

We embed the spectrum in a vector space as follows:
Consider the 2n-dimensional vector space

Cn × Cn = {v = (v1, v2) : v1, v2 ∈ Cn}.

Define a conjugate linear form � on Cn × Cn by

v� w := 〈v1,w1〉 − 〈v2,w2〉,

where 〈·, ·〉 denotes the usual inner product on Cn.

This conjugate linear form is degenerate; in fact,
v� v = 0, if v ∈ Tn × Tn.

Shobha Madan Indian Institute of Technology, Kanpur



An Embedding of the spectrum

We embed the spectrum in a vector space as follows:
Consider the 2n-dimensional vector space

Cn × Cn = {v = (v1, v2) : v1, v2 ∈ Cn}.

Define a conjugate linear form � on Cn × Cn by

v� w := 〈v1,w1〉 − 〈v2,w2〉,

where 〈·, ·〉 denotes the usual inner product on Cn.

This conjugate linear form is degenerate; in fact,
v� v = 0, if v ∈ Tn × Tn.

Shobha Madan Indian Institute of Technology, Kanpur



A subset S ⊆ Cn × Cn is called a set of mutually
null-vectors if ∀ v,w ∈ S, we have v� w = 0.

Any linear subspace V spanned by a set of mutually
null vectors is itself a set of mutually null-vectors and
dim(V ) ≤ n.
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Let Ω = ∪n
j=1 [aj ,aj + rj) be a union of n disjoint intervals

with a1 = 0, rj > 0, and |Ω| =
∑n

1 rj = 1. In what follows Ω
will always denote a set like this. Observe that

χ̂Ω(λ) =
1

e2πiλ

n∑
1

(e2πiλ(aj +rj ) − e2πiλaj )

We define a map ϕΩ from R to Tn × Tn ⊆ Cn × Cn by

x → ϕΩ(x) = (ϕ1(x);ϕ2(x)) ,

where

ϕ1(x) =
(
e2πi(a1+r1)x ,e2πi(a2+r2)x , . . . ,e2πi(an+rn)x)

ϕ2(x) =
(
1,e2πia2x , . . . ,e2πianx) .
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For a set Λ ⊂ R, the mutual orthogonality of the set of
exponentials EΛ = {eλ : λ ∈ Λ} is equivalent to saying
that the set ϕΩ(Λ) = {ϕΩ(λ);λ ∈ Λ} is a set of
mutually null vectors.

Let VΩ(Λ) be the vector space spanned by ϕΩ(Λ).
Then dimVΩ(Λ) ≤ n.
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If (Ω,Λ) is a spectral pair, then the spectrum Λ can be
characterized:

Lemma

Let (Ω,Λ) be a spectral pair and let B ⊆ Λ be such that
ϕΩ(B) := {ϕΩ(y) : y ∈ B} forms a basis of VΩ(Λ). Then
x ∈ Λ if and only if ϕΩ(x)� ϕΩ(y) = 0, ∀ y ∈ B.
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Next, we give two criteria for the periodicity of the
spectrum.

Lemma

Let (Ω,Λ) be a spectral pair. If ∃ λ1, λ2 ∈ Λ such that
ϕΩ(λ1) = ϕΩ(λ2), then d = |λ1 − λ2| ∈ N and Λ is
d-periodic, i.e., Λ = {λ1, . . . , λd}+ dZ.

Lemma

Let dim(V
Ω

(Λ)) = m ≤ n and B = {y1, . . . , ym} ⊆ Λ be
such that ϕ

Ω
(B) is a basis for V

Ω
(Λ). If for some d ∈ R, we

have B + d = {y1 + d , . . . , ym + d} ⊆ Λ then Λ is
d-periodic, i.e., Λ = {λ1, . . . , λd}+ dZ.
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Density

In order to show repeated patterns and conclude
periodicity, we now use Landau’s density theorem.

Define n+(R), n−(R) respectively, as the largest and
smallest number of elements of Λ contained in any
interval of length R, i.e.,

n+(R) = max
x∈R

#{Λ ∩ [x − R, x + R]}

n−(R) = min
x∈R

#{Λ ∩ [x − R, x + R]}
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A uniformly discrete set Λ is called a set of sampling
for L2(Ω), if there exists a constant K such that
∀f ∈ L2(Ω) we have ‖f‖2

2 ≤ K
∑

λ∈Λ |f̂ (λ)|2.

Λ is called a set of interpolation for L2(Ω), if for every
square summable sequence {aλ}λ∈Λ, there exists an
f ∈ L2(Ω) with f̂ (λ) = aλ, λ ∈ Λ.

Clearly if (Ω,Λ) is a spectral pair, then Λ is both a set
of sampling and a set of interpolation for L2(Ω).
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Theorem(Landau)

Let Ω be a union of a finite number of intervals with total
measure 1, and Λ a uniformly discrete set. Then

1 If Λ is a set of sampling for L2(Ω),

n−(R) ≥ R − A log+ R − B

2 If Λ is a set of interpolation for L2(Ω),

n+(R) ≤ R − A log+ R − B

where A and B are constants independent of R
It follows that if (Ω,Λ) is a spectral pair then Λ has uniform
asymptotic density 1.
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Step 1. We first prove that the spectrum Λ can be
modified to a set Λd which is d-periodic and is such that
(Ω,Λd ) is a spectral pair. For this we use Landau’s density
result to extract a “patch” from Λ which has some periodic
structure and a large enough density. Then Λd will be a
suitable periodization of this patch.

Step 2. We refine the above argument to show Λ itself is
periodic.
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A Structure Theorem

For a spectral pair (Ω,Λ), the periodicity of Λ implies that

Λ = ∪d−1
j=0 (λj + dZ)

Then

Theorem
A d-periodic spectrum Λ as above is also a Spectrum for a
set Ω1 which is a union of d equal intervals (each of
length 1/d), with endpoints lying in Z/d.
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Some Remarks on Rationality

1. All known spectra of sets in R are rational; however it
is not known whether this must always be so.

2. From the structure theorem stated above, we see that
to resolve the problem of rationality of a d-periodic
spectrum, it is sufficient to assume that the set Ω is a
union of d equal intervals, with end points lying in
Z/d . Such sets are called clusters.
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3. For clusters, the only result on rationality of the
spectrum known to us is due to Izabella Laba.

Theorem (Laba)

Suppose that Ω = A + [0,1), A ⊂ N where |A| = n is a
spectral set. If A ⊂ [0,M], with M < 5n

2 , then any spectrum
for Ω is rational.

The proof of this theorem uses Galois theory.
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4. It is easy to see that spectrum is either rational or it
has elements which are transcendental.

Infact, we have assumed that

0 ∈ Λ ⊂ Λ− Λ ⊂ Z(χ̂Ω1) ∪ {0}

where Z(χ̂Ω1) = {ξ ∈ R : χ̂Ω1 = 0}. Hence, every
λj , j = 1,2, ...,d − 1 satisfies

1 + e2πia1λj/d + ... + e2πiad−1λj/d = 0

so that e2πiλj/d is an algebraic number.
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We can now use the following theorem from Number
Theory:

Theorem (Gelfond-Schneider)

If α and β are algebraic numbers with α 6= 0,1, and if β is
not a rational number, then any value of αβ = exp(β logα)
is a transcendental number.

Take α = eπi = −1, and β = 2λj/d and apply G-S
theorem above. Since αβ = e2πiλj/d is an algebraic
integer, 2λj is either rational or is not an algebraic number.

Shobha Madan Indian Institute of Technology, Kanpur



5. Further investigation into the problem of rationality of
the spectrum leads us to the study of integer zeros of
exponential polynomials.

Let Λ = Γ + dZ be a periodic spectrum for a set Ω.
Then using Poisson Summation Formula, we see
that, (Ω,Λ) is a spectral pair

⇐⇒ |χ̂Ω|2 ∗ δΛ ≡ 1
⇐⇒ χ̂Ω|2 ∗ δΓ ∗ δdZ ≡ 1

⇐⇒ 1
d

(χΩ ∗ χΩ̃)δ̂ΓδZ/d ≡ δ0

⇐⇒ (Ω− Ω|Z/d ⊂ Z1/d (δ̂Γ)
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The Skolem-Mahler-Lech Theorem says that the
integer zero set of an exponential polynomial is of the
form E ∪ F , where E is a finite union of complete
arithmetic progressions, and F is a finite set.

We can then prove that if (Ω− Ω) ∩ F = ∅, then the
spectrum is rational.
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