Affine-invariant harmonic analysis

James Wright

University of Edinburgh

June, 2014

Two model problems

Let σ be a probability measure on \mathbb{R}^d .

Problem A: Convolution $f \rightarrow f * \sigma$

Problem B: Restriction $f \rightarrow \widehat{f} d\sigma$

Two model problems: Problem A

Problem A: Convolution $f \rightarrow f * \sigma$

• Preserves $L^p(\mathbb{R}^d)$ spaces

Question: For which σ does $f \to f * \sigma$ map L^p to L^q for some q > p?

• If $\widehat{\sigma} \in L^r$ for some $r < \infty$, then σ is L^p improving.

Two model problems: Problem A cont'd

 $S \subset \mathbb{R}^d$ a *k*-dimensional submanifold

$$\sigma = \psi dS$$

• σ is L^p improving if and only if $\widehat{\sigma} \in L^r$ for some $r < \infty$ if and only if $|\widehat{\sigma}(\xi)| \le C|\xi|^{-\delta}$ for some $\delta > 0$ if and only if some curvature of S does not vanish (to infinite order).

Nondegenerate surfaces – convolution case

$$||f * \sigma||_{q} \leq C ||f||_{p} \tag{\dagger}$$

Proposition

Let S be a smooth hypersurface (the case k = d - 1) in \mathbb{R}^d , σ a compactly supported measure on S, and $b \in S$.

If (\dagger) holds for some σ non-vanishing at $b \in S$, then (1/p, 1/q) lies in the closed triangle with vertices (0,0),(1,1), and (d/(d+1),1/(d+1)).

There exists a smooth measure σ , non-vanishing at $b \in S$, such that (†) holds for p = (d+1)/d and q = 1/(d+1) if and only if the gaussian curvature at $b \in S$ is nonzero.

Two Model Problems: Problem B

Problem B: Fourier restriction $\|\widehat{f}\|_{L^q(d\sigma)} \leq C\|f\|_{L^p(\mathbb{R}^d)}$.

• Trivial for p = 1 since $\|\widehat{f}\|_{L^q(d\sigma)} \leq \|\widehat{f}\|_{\infty} \leq \|f\|_1$.

Question: For which σ is there a p > 1 such that the inequality holds for some q?

• If $\widehat{\sigma} \in L^r$ for some $r < \infty$, then the Fourier restriction phenomenon holds for σ .

Proof: $\|\widehat{f}\|_{L^2(d\sigma)}^2 = \int f(x)\overline{f*\widehat{\sigma}(x)}dx \le \|f\|_p\|f*\widehat{\sigma}\|_{p'} \le C\|f\|_p^2$ for some p > 1 by Hölder and Young's inequalities.

• However $\widehat{\sigma} \in L^r$ for some $r < \infty$ is also necessary!

Dual formulation: $\|\widehat{b} \, d\sigma\|_{L^{p'}(\mathbb{R}^d)} \le C \|b\|_{L^{q'}(d\sigma)}$. Taking $b \equiv 1$ shows that necessarily $\widehat{\sigma} \in L^{p'}(\mathbb{R}^d)$.

Nondegenerate surfaces – fourier restriction case

$$\|\widehat{f}\|_{L^{q}(d\sigma)} \leq C \|f\|_{L^{p}(\mathbb{R}^{d})} \tag{\ddagger}$$

Proposition

Let S be a smooth curve (the case k = 1) in \mathbb{R}^d , σ a compactly supported measure on S, and $b \in S$.

If (\ddagger) holds for some σ non-vanishing at $b \in S$, then $q \leq [2/d(d+1)]p'$.

There exists a smooth measure σ , non-vanishing at $b \in S$ such that (\ddagger) holds for some p > 1 and q = [2/d(d+1)]p' if and only if all d-1 curvatures of S are nonzero at b.

Hausdorff measure

If S is a smooth k-dimensional submanifold with surface measure σ , then $\sigma = c H^k|_S$ where H^k is k-dim'l Hausdorff measure.

ullet Recall lpha - Hausdorff measure $H^{lpha}(E)=\lim_{\delta o 0}H^{lpha}_{\delta}(E)$ where

$$H^{\alpha}_{\delta} = \inf\{\sum_{j} |C_{j}|^{\alpha/d} : E \subset \cup_{j} C_{j}, \operatorname{diam}(C_{j}) < \delta\}$$

where each $C_j = x_j + r_j C$ is a cube.

• Recall $\dim_h(E) = \inf\{\alpha > 0 : H^{\alpha}(E) < \infty\}.$

Affine measure

We define α - Affine measure $A^{\alpha}(E) = \lim_{\delta \to 0} A^{\alpha}_{\delta}(E)$ where

$$A^{\alpha}_{\delta} = \inf\{\sum_{j} |R_{j}|^{\alpha/d} : E \subset \cup_{j} R_{j}, \operatorname{diam}(R_{j}) < \delta\}$$

where each $R_j = L_j(C)$ is a *rectangle* – affine image of the unit cube.

- $\dim_a(E) = \inf\{\alpha > 0 : A^{\alpha}(E) < \infty\}$ is the affine dimension of E.
- E smooth curve in \mathbb{R}^2 : $\dim_a(E)=0$ if E is a line segment and $\dim_a(E)=2/3$ otherwise.

Examples of affine measures

If S a C^2 hypersurface in \mathbb{R}^d , then

$$A^{d(d-1)/(d+1)}(E) \sim \sigma(E), \quad E \subset S$$

where $d\sigma = |K_S|^{1/(d+1)} dS$ and K_S is the Gaussian curvature of S.

If Γ is a $C^{(d)}$ curve in \mathbb{R}^d , then

$$A^{2/(d+1)}(E) \sim \sigma(E), \quad E \subset \Gamma$$

where $d\sigma = |L_{\Gamma}(t)|^{2/d(d+1)}dt$ and $L_{\Gamma}(t) = \det(\Gamma'(t), \dots, \Gamma^{(d)}(t))$.

Affine measure cont'd

Proposition

Let σ be a positive Borel measure on \mathbb{R}^d .

(a) If
$$||f * \sigma||_q \le c||f||_p$$
 holds, then $\sigma \le C(c)A^{d(1/p-1/q)}$.

(b) If
$$\|\widehat{f}\|_{L^q(d\sigma)} \leq c\|f\|_{L^p(\mathbb{R}^d)}$$
, then $\sigma \leq C(c)A^{dq/p'}$.

Proof.

Note that $\sigma \leq cA^{\alpha}$ if and only if $\sigma(R) \leq c|R|^{\alpha/d}$ for all rectangles R. Assume $||f * \sigma||_q \leq c||f||_p$ holds. Let R be a rectangle in \mathbb{R}^d and set

R'=R-R. Then

$$|R|\sigma(R) \leq \int \chi_R * \chi_{R'}(x) d\sigma(x) = \langle \chi_{R'} * \sigma, \chi_R \rangle \leq c|R'|^{1/p}|R|^{1/q'}.$$

Affine-invariant questions

Let *S* by *any* smooth hypersurface and let $d\sigma = |K|^{1/(d+1)}dS$ be affine surface measure.

(I) For
$$p_d=(d+1)/d$$
 and $q_d=d+1$, does
$$\|f*\sigma\|_{L^{q_d}(\mathbb{R}^d)}\leq C\|f\|_{L^{p_d}(\mathbb{R}^d)}\qquad \text{hold?}$$

(II) For
$$q=[(d-1)/(d+1)]p',$$
 does
$$\|\widehat{f}\|_{L^q(S,d\sigma)} \ \le \ \|f\|_{L^p(\mathbb{R}^d)}$$

hold for some 1 < p?

Affine-invariant questions

Let Γ by any smooth curve and let $d\sigma = |L(t)|^{1/(d+1)}dt$ be affine arclength measure.

(III) For
$$p_d=(d+1)/2$$
 and $q_d=d(d+1)/2(d-1)$, does
$$\|f*\sigma\|_{L^{q_d}(\mathbb{R}^d)}\leq C\|f\|_{L^{p_d}(\mathbb{R}^d)}\quad \text{ hold?}$$

(IV) For
$$q=[2/d(d+1)]p'$$
, does
$$\|\widehat{f}\|_{L^q(S,d\sigma)} \ \le \ C\, \|f\|_{L^p(\mathbb{R}^d)}$$

hold for some 1 < p?

Some results – fourier restriction

- (Sjölin, 1972) Let Γ be a smooth convex curve in \mathbb{R}^2 . Let $d\sigma = |K(t)|^{1/3}dt$. Then $\|\widehat{f}\|_{L^q(\Gamma,d\sigma)} \leq C\|f\|_{L^p(\mathbb{R}^2)}$ for q = p'/3 and $1 \leq p < 4/3$.
- (Dendrinos, W Stovall) Let Γ be a polynomial curve in \mathbb{R}^d and let σ be affine arclength measure. Then $\|\widehat{f}\|_{L^q(\Gamma, d\sigma)} \le C\|f\|_{L^p(\mathbb{R}^d)}$ for q = [2/d(d+1)]p' and 1 .

Some results – convolution

- (D. Oberlin, P. Gressman) Let Γ be a smooth convex curve in \mathbb{R}^2 . Let $d\sigma = |K(t)|^{1/3} dt$. Then $||f * \sigma||_{L^3(\mathbb{R}^2)} \le C||f||_{L^{3/2}(\mathbb{R}^2)}$.
- (Dendrinos, Laghi, W Stovall) Let Γ be a polynomial curve in \mathbb{R}^d and let σ be affine arclength measure. Then

$$||f * \sigma||_{L^{q_d}(\mathbb{R}^d)} \leq C||f||_{L^{p_d}(\mathbb{R}^d)}$$

where $p_d = (d+1)/2$ and $q_d = d(d+1)/2(d-1)$.