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Abstract

In this paper, we give a new proof of a result of R. Jones showing almost everywhere convergence

of spherical means of actions of Rd on Lp(X)-spaces are convergent for d ≥ 3 and p >
d

d− 1
.

This is done by adapting the proof of the spherical maximal theorem by Rubio de Francia so
as to obtain directly the ergodic theorem.
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1. Introduction

The aim of this paper is to give a new proof of a spherical ergodic theorem originally
du to R. Jones. In order to give a precise statement, let us first give some notation.
Througout this paper, d will be an integer with d ≥ 3. For r > 0, we denote by B(0, r)
and S(0, r) respectively the (Euclidean) ball and sphere of Rd centered at 0 and of radius
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r. The Lebesgue measure on Rd is simply denoted dx and the uniform probability measure
on S(0, r) is denoted by σr. We will simply write Sd−1 = S(0, 1) and σ = σ1. We will
write |E| for the Lebesgue measure of a subset E ⊂ Rd.

For ϕ ∈ S(Rd), the Schwartz class on Rd, and x ∈ Rd, we will write

βr · ϕ(x) :=
1

|B(0, r)|

∫
B(0,r)

ϕ(x+ y) dy

for the ball-averages, while the sphere averages are denoted by

σr · ϕ(x) := σr ∗ ϕ(x) =
∫

S(0,r)

ϕ(x+ y) dσr(y) =
∫

Sd−1
ϕ(x+ rζ) dσ(ζ).

We will further denote by ϕ∗σ the corresponding maximal function:

ϕ∗σ(x) = sup
r>0

|σr · ϕ(x)|.

The following theorem was proved by E.M. Stein [10] in the case d ≥ 3 and by J.
Bourgain [1] for d = 2.

Theorem 1.1 (Spherical Maximal Theorem)

Let d ≥ 2 and p >
d

d− 1
. Then there exists a constant C = C(p, d) such that, for every

ϕ ∈ S(Rd),
‖ϕ∗σ‖Lp(Rd) ≤ C‖ϕ‖Lp(Rd). (1.1)

Remark : — Note that, as S(0, r) is of measure 0, one can not define σr · ϕ(x), and a
fortiori ϕ∗σ for an arbitrary Lp-function. Nevertheless, the validity a priori of Inequality

(1.1) allows to extend the definition of ϕ∗σ from S(Rd) to Lp, provided p >
d

d− 1
.

— As is well known, the hypothesis on d and p in Theorem 1.1 are sharp. For d = 1, any
non-negative function ϕ will provide a counter-example, whereas for d ≥ 2, a smoothed
version of the characteristic function of a ball will do.

In order to state the Ergodic Theorem, let us introduce some further notation. Through-
out the remaining of this paper, (X,B, µ) will be a probability space and we will assume
that Rd has a measure-preserving action on X. The action of y ∈ Rd on x ∈ X is denoted
by y · x. The σ-sub-algebra of B of Rd-invariant sets will be denoted by I.

For f ∈ L1(X,m), the conditional expectation with respect to this σ-algebra is denoted
E(f |I). We will further write

βr · f(x) =
1

|B(0, r)|

∫
B(0,r)

f(y · x) dy

and σr · f(x) =
∫

Sd−1
f
(
(rζ) · x

)
dσ(ζ).

By some sophisticated arguments based on refinements of the proof of the spherical
maximal theorem, the following ergodic theorem was then proved by R. Jones [5] in the
case d ≥ 3 and M. Lacey [6] for d = 2:

Theorem 1.2 (Spherical Ergodic Theorem)

Let d ≥ 2 and p ≥ d

d− 1
. Let (X,B, µ) be a probability space and assume that Rd has
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a measure-preserving action on X. Then, for f ∈ Lp(X,m), σr · f converges almost
everywhere to E(f |I) as r → +∞.

Our aim here is to give a new proof of Jones’ Theorem, i.e. the above theorem in the
case d ≥ 3. The main point here is that one may slightly modify Rubio de Francia’s proof
of the Spherical Maximal Theorem to obtain simultaneously a proof of the Spherical
Ergodic Theorem. This proof is slightly simpler then Stein’s original proof. Its main
advantage is that it allows for a simpler proof of the Ergodic Theorem that we will
present here.

A second ingredient is a lemma already used by Jones that allows to compare spherical
averages to ball averages for which Wiener’s Ergodic Theorem provides the result. As we
will appeal to it, let us recall it now:

Theorem 1.3 (Wiener’s Ergodic Theorem)
Let (X,B, µ) be a probability space and assume that Rd has a measure-preserving action
on X. Let p ≥ 1 be a real number. Then there exists a constant C > 0 such that, for
every f ∈ Lp(X,m),

(i) ‖supr>0 |βr · f |‖p ≤ ‖f‖p and
(ii) βr · f → E(f |I) almost everywhere as r → +∞.

In order to keep this paper both sufficiently self-contained and concise, we have decided
to reproduce here only those elements of the proof of [8] that are specific to spherical
averages.

The remaining of this article is organized as follows. In the next section, we complete
this introduction by some further notations and preliminary results. The last section is
then devoted to providing the proof of Theorem 1.2.

2. Preliminaries

2.1. Further notations

In the remaining of the paper, C will be a constant that depends only on the dimension
d. As is usual, the exact value of C is irrelevant and may change from line to line. Results
in this section may all be found e.g. in [3].

The Fourier Transform is defined for ϕ ∈ S(Rd) by

ϕ̂(ξ) = Fϕ(ξ) =
∫

Rd

ϕ(x)e2iπ〈x,ξ〉 dx

and this definition is then extended to L2 and to bounded measures in the usual way.
The Inverse Fourier Transform is denote by F−1ϕ = ϕ̌.

We will use the following fact: for ρ ≥ 0, and θ ∈ Sd−1, σ̂(ρθ) = 2πρ1−d/2Jd/2−1(2πρ)
where Jν is the Bessel function of order ν. The following estimates are then classical

σ̂(ρθ) = O
(
(1 + ρ)−

d−1
2
)

(2.1)

and

ρ
∂

∂ρ
σ̂(ρθ) = O

(
(1 + ρ)−

d−1
2 +1

)
. (2.2)
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The Hardy-Littlewood Maximal Function is defined by

ϕ∗β(x) = sup
r>0

βr · ϕ(x).

Recall that ϕ∗β is of weak type (1, 1) and of strong type (p, p), p > 1.

2.2. The transference principle

Let us recall that results about actions of Rd on Rd by translations can be transferred
to actions of Rd on a probability space (X,B, µ). The following fact and its proof is a
particular case of [5, Theorem 2.2] that fits to our needs.

More precisely, let (X,B, µ) be a measure space and assume that Rd acts on X i.e that

there is a map
Rd ×X → X

(t, x) 7→ t · x
that satisfies s · (t · x) = (s + t) · x. Assume that this

map is (jointly) measurable and measure preserving, that is, for every t ∈ Rd and every
A ∈ B, t ·A := {t · a : a ∈ A} ∈ B and µ(t ·A) = µ(A).

Next, to a function f on X and x ∈ X, we naturally associate a function ϕx on Rd via
the formula ϕx(t) = f(t · x). Note that, if f ∈ Lp(X) then, for R > 0 and a ∈ Rd,∫

X

∫
B(a,R)

|ϕx(t)|p dtdµ(x) =
∫

B(a,R)

∫
X

|f(t · x)|p dµ(x) dt = |B(a,R)|‖f‖p
p.

In particular, ϕx is locally in Lp(Rd) for almost every x.
Now let {ki}i∈I be a family of L1(Rd)-functions for which there is an R0 such that

B(0, R0) contains the support of each ki, i ∈ I. Consider the operator T on Lp(Rd)
defined by

Tϕ(t) = sup
i∈I

|ki ∗ f(t)|.

Note that T is sub-linear, commutes with translations, and is semi-local, that is, if ϕ is
supported in B(0, R), then Tϕ is supported in B(0, R+R0).

Finally, assume that there is a constant C > 0 such that, for every ϕ ∈ Lp(Rd),
‖Tϕ‖p ≤ CT ‖ϕ‖. Then T induces an operator T̄ on Lp(X,µ) via the formula Tf(x) =
Tϕx(0) that satisfies ‖Tf‖Lp(X,µ) ≤ CT ‖f‖Lp(X,µ).

Proof. As the ki’s are in L1(Rd) with compact support,

ki ∗ ϕx(0) =
∫

Rd

ki(t)ϕx(−t) dt =
∫

B(0,R0)

ki(−t)f(t · x) dt

is well-defined provided x has been chosen so that ϕx ∈ Lp
loc(Rd). It follows that Tf(x)

is well-defined almost everywhere.
Further, note that
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Tf(t · x) = sup
i∈I

∣∣∣∣∫
Rd

ki(−s)f
(
s · (t · x)

)
ds
∣∣∣∣

= sup
i∈I

∣∣∣∣∣
∫

B(0,R0)

ki(−s)f
(
(s+ t) · x)

)
ds

∣∣∣∣∣
= sup

i∈I

∣∣∣∣∣
∫

B(t,R0)

ki(t− s)f(s · x) ds

∣∣∣∣∣.
It follows that, if t ∈ B(0, R), then

Tf(t · x) = sup
i∈I

∣∣∣∣∣
∫

B(t,R0)

ki(t− s)ϕx(s)χB(0,R+R0)(s) ds

∣∣∣∣∣
= T [ϕxχB(0,R+R0)](t).

But then, using the fact that the action of Rd on X is measure preserving,

‖Tf‖p
p =

∫
X

|Tf(x)|p dµ(x) =
1

|B(0, R)|

∫
B(0,R)

∫
X

|Tf(t · x)|p dµ(x) dt

=
1

|B(0, R)|

∫
X

∫
B(0,R)

|Tf(t · x)|p dtdµ(x)

=
1

|B(0, R)|

∫
X

∫
B(0,R)

|T [χB(0,R+R0)ϕx](t)|p dtdµ(x)

=
1

|B(0, R)|

∫
X

∫
Rd

|T [χB(0,R+R0)ϕx](t)|p dtdµ(x).

Finally, as T is bounded on Lp(Rd),

‖Tf‖p
p ≤C

1
|B(0, R)|

∫
X

∫
Rd

|χB(0,R+R0)ϕx(t)|p dtdµ(x)

=C
1

|B(0, R)|

∫
X

∫
B(0,R+R0)

|f(t · x)|p dtdµ(x)

=C
|B(0, R+R0)|
|B(0, R)|

∫
X

|f(x)|p dµ(x)

using again the fact that the action is measure preserving.
The result follows by letting R go to infinity. 2

We have only presented a version of the transference principle that fits our needs.
The operators under consideration need only to be semi-local and translation invariant.
Further, Rd may be replaced by more general groups, the key property here being its
ameanability, see e.g. [2] for developments on this theme.

2.3. A comparison of spherical averages to ball-averages

We will need the following Lemma:
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Lemma 2.1 Let (X,B, µ) be a probability space and assume that Rd has a measure-
preserving action on X. Let p ≥ 1 be a real number.

Let k ∈ S(Rd) and assume k is radial and compactly supported. For r > 0, let us define
the operator Kr on Lp(X) by

Krϕ(x) =
∫

Rd

ϕ
(
(ry) · x

)
k(y) dy

where (ry) · x denotes the action of ry ∈ Rd on x ∈ X.
Then, for every ϕ ∈ Lp(X), Krϕ converges almost everywhere to∫

k(y) dy E(ϕ|I) (2.3)

as r → +∞.

Proof. Let us write k(u) = k0(|u|). By changing to polar coordinates, we obtain

Krϕ(x) = d|B(0, 1)|
∫ +∞

0

k0(ρ)ρd−1

∫
Sd−1

ϕ
(
(rρζ) · x

)
dσ(ζ) dρ

(recall that σ has been normalized to σ(Sd−1) = 1). As k0 is smooth and compactly
supported, we may integrate by parts to get that Krϕ(x) is equal to

=−
∫ +∞

0

k′0(ρ)
(
d|B(0, 1)|

∫ ρ

0

td−1

∫
Sd−1

ϕ
(
(rtζ) · x

)
dσ(ζ) dt

)
dρ

=−
∫ +∞

0

k′0(ρ)r
−d

∫
B(0,rρ)

f(y · x) dy dρ

by changing back to usual coordinates. This may thus be rewritten as

Krϕ(x) = −|B(0, 1)|
∫ +∞

0

k′0(ρ)ρ
dβrρ · ϕ(x) dρ.

According to Wiener’s Ergodic Theorem, ‖supr>0 |βr · f |‖p ≤ ‖f‖p, in particular, supr>0 |βr·
f(x)| ≤ c(x) with c(x) finite for almost every x. Thus, as k ∈ S ′, |k′0(ρ)ρdβrρ · ϕ(x)| ≤
c(x)|k′0(ρ)ρd| ∈ L1(0,+∞). Further, for almost every x, βrρ · ϕ(x) → E(ϕ|I) when
r → +∞. As k ∈ S ′, From Lebesgue’s dominated convergence, one then obtains that

Krϕ(x) → −|B(0, 1)|
∫ +∞

0

k′0(ρ)ρ
d dρE(ϕ|I).

A second integration by parts and a new change to cartesian coordinates then gives (2.3).
2

3. Proof of Theorem 1.1 and Theorem 1.2

As announced in the introduction, we will prove both theorems simultaneously. The
proof of the maximal theorem is not new, as it is essentially Rubio de Francia’s proof
with an adaptation that allows to use the transference principal.
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3.1. The Littlewood-Paley decomposition

We will here slightly modify the standard Littlewood-Paley decomposition. Let ψ0 ∈
S(Rd) be the Fourier transform of a C∞-smooth radial compactly supported function.

Assume further that ψ0(0) = 1 and that, for 1 < j <
d

2
,

(
∂

∂r

)j

ψ0(0) = 0

where ∂
∂r is the radial derivation operator.

Such a function can be constructed in the following way: Let ψ be any function that
is the Fourier transform of a C∞-smooth radial compactly supported function and such
that ψ(0) = 1. For ξ ∈ Sd−1 and r ≥ 0, we then define

ψ0(rξ) =

 d∑
j=0

ajr
2j

ψ(rξ)

where the aj ’s are chosen inductively so as to have ψ0(0) = 1 and then the required
number of derivatives to vanish at 0.

Let us now define ψ1(ξ) = ψ0(ξ/2) − ψ0(ξ) and, for j ≥ 2, ψj(ξ) = ψ1(2−j+1ξ). Note
that ψj is still radial, in S(Rd) and is the Fourier transform of a compactly supported
function. Moreover, there exists c, η > 0 such that,

for |ξ| < η, |ψ1(ξ)| ≤ c|ξ|d/2. (3.1)

Finally, for every ξ ∈ Rd,
+∞∑
j=0

ψj(ξ) = 1.

(Note that this sum is actually finite for ξ fixed).
Our aim is to get estimates for the maximal operator

ϕ∗σ = sup
r>0

|F−1[Fϕ(·)Fσ(r·)]|.

For this, we will do a Littlewood-Paley decomposition of this expression. More precisely,
let mj = σ̂ψj and let σj be the inverse Fourier transform of mj , σ̂j = mj . Let σj,r(x) =
r−dσj(x/r). With obvious notations, we then have

ϕ∗σ ≤
∞∑

j=0

ϕ∗σj
. (3.2)

The Spherical Maximal Theorem is then proved if we show that∥∥∥ϕ∗σj

∥∥∥
Lp(Rd)

≤ Cj‖ϕ‖Lp(Rd)

with
∑
Cj <∞. This will be done in three different steps.
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3.2. Comparison of ϕ∗σj
with other maximal functions

Let Pt be the Poisson kernel on Rd, that is

Pt(x) =
cdt

(t2 + |x|2) d+1
2

where cd is chosen so that
∫
Pt(x) dx = 1. To P , we will associate the maximal function

ϕ∗P (x) = sup
t>0

|Pt ∗ ϕ(x)|.

The following lemma allows to compare ϕ∗σj
and ϕ∗P .

Lemma 3.1 There exists a constant C = Cd such that, for every ϕ ∈ S(Rd) and for
j ≥ 0,

ϕ∗σj
≤ C2jϕ∗P .

Proof. It is enough to prove that

|σj | ≤ C2j 1
(1 + |x|)d+1

.

Note that, σ0 = σ ∗ ψ̌0 and for j ≥ 0, σj = σ ∗ ψ̌j where ψ̌j(x) = 2(j−1)dψ̌1(2−j+1x)
where ψ0 and ψ1 are compactly supported C∞ functions. Thus there exists C such that

ψ̌0 and ψ̌1 are bounded by
C

(1 + |x|)d+1
. The proof of Lemma 3.1 is thus completed once

we have proved the following lemma. 2

Lemma 3.2 There exists a constant C = Cd such that, for j ≥ 0 and x ∈ Rd,∫
Sd−1

2jd

(1 + 2j |x− ξ|)d+1
dσ(ξ) ≤ C

2j

(1 + |x|)d+1
. (3.3)

Proof. For |x| > 2, |x − ξ| ≥ |x|/2 so that the left hand side of (3.3) is bounded by
2−j+d+1|x|−d−1 which allows to conclude.

Let us now assume |x| ≤ 2 and cut the integral into dyadic pieces. The left hand side
of (3.3) is bounded by

2dj

∫
|ξ−x|≤2−j

dσ(ξ) +
+∞∑
k=0

2dj2−(d+1)k

∫
|ξ−x|≤2k−j+1

dσ(ξ).

It remains to notice that σ
(
{ξ : |ξ − x| < r}

)
≤ Crd−1 to conclude. 2

Finally, the Poisson maximal function is bounded by the Hardy-Littlewood maximal
function:
Lemma 3.3 There exists a constant C such that, for every ϕ ∈ S(Rd),

ϕ∗P ≤ Cϕ∗β .

The proof of this fact is classical and can be found in any book on Hardy spaces. Let
us however reproduce it here.
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Proof. From invariance under translations and dilations, it is enough to prove that if
ϕ is non-negative, ∫

Rd

ϕ(x)

(1 + |x|2) d+1
2

dx ≤ Cϕ∗β(0) (3.4)

where C does not depend on ϕ. But this integral is bounded by∫
|x|≤1

ϕ(x) dx+
+∞∑
k=0

2−k(d+1)

∫
2k≤|x|≤2k+1

ϕ(x) dx.

Further
∫
|x|≤1

ϕ(x) dx is bounded by |B(0, 1)|ϕ∗β(0) while the remaining integrals are

bounded by
|B(0, 2k+1)|ϕ∗β(0) = 2(k+1)d|B(0, 1)|ϕ∗β(0).

The estimate (3.4) follows immediately. 2

Further, as is well known, the Hardy-Littlewood maximal function is of weak-type
(1, 1). Grouping all results of this section, we thus get the following:
Proposition 3.4 There exists a constant C such that, for every ϕ ∈ S(Rd), for j ≥ 0,

|{x : ϕ∗σj
(x) ≥ α}| ≤ C2j

‖ϕ‖L1(Rd)

α
.

3.3. The L2-estimate of ϕ∗σj

Let us denote σj,r(x) = r−dσj(x/r), σj,r ·ϕ = σj,r ∗ϕ so that σ̂j,r · ϕ(ξ) = ϕ̂(ξ)mj(rξ).
Let us write

Gj(ϕ)(x) =
(∫ +∞

0

|σj,r · ϕ(x)|2 dr
r

)1/2

for the associated Littlewood-Paley g-functional.

Let us further write σ̃j,r(x) = r
d
dr
σj,r(x), σ̃j,r · ϕ = σ̃j,r ∗ ϕ and

gj(ϕ)(x) =
(∫ +∞

0

|σ̃j,r · ϕ(x)|2 dr
r

)1/2

=

(∫ +∞

0

r

∣∣∣∣ d
dr
σj,r · ϕ(x)

∣∣∣∣2 dr

)1/2

.

From Plancherel’s Identity and Fubini’s Theorem, we get that

‖Gj(ϕ)‖2
L2(Rd) =

∫ +∞

0

∫
Rd

|ϕ̂(ξ)mj(rξ)|2 dξ
dr
r

=
∫

Rd

|ϕ̂(ξ)|2
∫ +∞

0

|mj(rξ)|2
dr
r

dξ.

But |mj(u)|2 = |σ̂(u)ψj(u)|2 ≤ C(1 + |u|)−d+1|ψj(u)|2 by (2.1). It follows that
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∫ +∞

0

|mj(rξ)|2
dr
r
≤C

∫ +∞

0

|ψj(rξ)|2

(1 + |rξ|)d−1

dr
r

=C

∫ +∞

0

∣∣∣ψ1

(
s ξ
|ξ|

)∣∣∣2
(1 + s2j−1)d−1

ds
s

with the change of variable s = 2−j+1r|ξ|. But then∫ +∞

0

|mj(rξ)|2
dr
r
≤ C2−j(d−1)

∫ +∞

0

∣∣∣ψ1

(
s ξ
|ξ|

)∣∣∣2
sd

ds

and this last integral is finite by construction of ψ1. As a consequence, we obtain

‖G(ϕ)‖L2(Rd) ≤ C2−j(d−1)/2‖ϕ‖L2(Rd). (3.5)

In a similar way, using (2.2), we obtain

‖g(ϕ)‖L2(Rd) ≤ C2−j(d−3)/2‖ϕ‖L2(Rd). (3.6)

We are now in a position to prove the following:
Proposition 3.5 There exists a constant C such that, for every integer j ≥ 1 and every
ϕ ∈ S(Rd), ∥∥∥ϕ∗σj

∥∥∥
L2(Rd)

≤ C2−(d−2)j/2‖ϕ‖L2(Rd).

Proof. As lim
r→+∞

σj,r(ϕ) = 0, we get

σj,r(ϕ)(x)2 =−2
∫ +∞

r

σj,s(ϕ)(x)s
d
ds
σj,s(ϕ)(x)

ds
s

=−2
∫ +∞

r

σj,s(ϕ)(x)σ̃j,s(ϕ)(x)
ds
s

≤ 2
∫ +∞

0

|σj,s(ϕ)(x)‖σ̃j,s(ϕ)(x)|ds
s
.

From Cauchy-Schwarz, we deduce that

sup
r>0

|σj,r(ϕ)(x)|2 ≤ 2Gj(ϕ)(x)gj(ϕ)(x).

Integrating this inequality over Rd and appealing again to Cauchy-Schwarz, we obtain∥∥∥ϕ∗σj

∥∥∥2

L2(Rd)
≤ 2‖Gj(ϕ)‖L2(Rd)‖gj(ϕ)‖L2(Rd) ≤ Cd2−j(d−2)‖ϕ‖2

L2(Rd),

with (3.5) et (3.6). 2

3.4. The last step

By interpolation between the strong type (2,2) estimate given in Proposition 3.5 and
the weak type (1,1) estimate of Proposition 3.4 gives the existence, for each p with
1 < p ≤ 2, of a constant Cp such that, for every ϕ ∈ S(Rd) and every j ≥ 1∥∥∥ϕ∗σj

∥∥∥
Lp(Rd)

≤ Cp2
d−(d−1)p

p j‖ϕ‖Lp(Rd). (3.7)
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By interpolation between the weak type (1,1) estimate of Proposition 3.4 and the (trivial)
strong type (∞,∞) estimate shows that the same is true for j = 0.

Let us recall that σj is compactly supported. It follows that, for each R > 0, the
transference principle applies to

ϕ∗σj ,R(x) := sup
0<r<R

|σj,r · ϕ|.

We thus get that there exists a constant C > 0 such that, for every R > 0, every j ≥ 0,
every f ∈ Lp(X,m) (1 < p ≤ 2),∥∥∥ sup

0<r<R
|σj,r · f |

∥∥∥
Lp(X,m)

≤ C2
d−(d−1)p

p j‖f‖Lp(X,m).

As the left hand side does not depend on R, we thus get that∥∥∥sup
r>0

|σj,r · f |
∥∥∥

Lp(X,m)
≤ C2

d−(d−1)p
p j‖f‖Lp(X,m).

Finally, note that if p >
d− 1
d

, then
d− (d− 1)p

p
< 0 so that, interpolating with the

trivial (∞,∞) estimate, we get that, for each p >
d

d− 1
, there exists Qp > 0 such that,

for every j ≥ 0, every f ∈ Lp(X,m),∥∥∥ sup
0<r<R

|σj,r · f |
∥∥∥

Lp(X,m)
≤ Cp2−Qpj‖f‖Lp(X,m). (3.8)

As the right hand side is independent on R, the Monotone Convergence Theorem implies
that we may replace R by +∞ in (3.8).

From this, we get that
J∑

j=0

σj,r · f is uniformly convergent in Lp(X). This allows us to

define σr · f as its limit. Moreover, we obtaint the following bound:∥∥∥∥∥∥ sup
0<r<+∞

∣∣∣∣∣∣σr · f −
J∑

j=0

σj,r · f

∣∣∣∣∣∣
∥∥∥∥∥∥

Lp(X)

=

∥∥∥∥∥∥ sup
0<r<+∞

∣∣∣∣∣∣
+∞∑

j=J+1

σj,r · f

∣∣∣∣∣∣
∥∥∥∥∥∥

Lp(X)

≤C
+∞∑

j=J+1

2−Qpj‖f‖Lp(X,m) (3.9)

and thus goes to 0 as J → +∞. Finally, from Lemma 2.1, we obtain that
J∑

j=0

σj,r · f →
∫

Rd

J∑
j=0

σj,r(|x|) dxE(f |I) = E(f |I)

almost everywhere as r → +∞. Combining this with (3.9), one immediately obtains that
σr · f → E(f |I) as well. This completes the proof of the Spherical Ergodic Theorem
when d ≥ 3. 2

4. Conclusion

In this paper, we have shown how to obtain the Spherical Ergodic Theorem from the
proof of the Maximal Ergodic Theorem. The main feature is that, in order to appeal
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to the transference principle, one needs to use a compactly supported Littlewood-Paley
decomposition that is well localized in frequency instead of a standard decomposition
that has compactly supported Fourier transform.

Several results about maximal functions could thus be transformed into ergodic theo-
rems. Let us mention a few. For instance, the case d = 2 (i.e. Lacey’s Ergodic Theorem)
could be obtained by adapting the proof of the Circular Maximal Theorem of [7]. One
may also obtain Lacunary Ergodic Theorems by following the proofs in [9]. Let us for
instance mention the following result which follows from the proof of their Theorem 1.1:
Corollary 4.1 Let d ≥ 2, α > 0 and p ≥ 1 + [(d − 1)(α + 1)]−1. Let (X,B, µ) be a
probability space and assume that Rd has a measure-preserving action on X. Let {tj} be
a sequence such that tj → +∞ and {tj} ⊂ {2k(1 + l−α) : k ∈ Z+, l ∈ Z}. Then, for
f ∈ Lp(X,m), σtj

· f converges almost everywhere to E(f |I) as j → +∞.
More general results can also be obtained from Theorem I to IV of [9]. We refrain from

introducing the lengthy notation needed to state those results.
We would also like to stress that a key ingredient in the proof is the decay estimate of σ̂.

Such estimates are available for large classes of measures like the surface measure of the
boundary of a smooth convex set with non-vanishing curvature. For maximal theorems
that can be transformed into ergodic theorems with the method exposed in this paper,
we refer e.g. to [?].
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