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Notation

1. Warning

These notes are intended for the course given in the second year of the masters program
�Analysis, PDEs, Probability� at Université de Bordeaux. They are intended for students in that
programonly and the pre-requisites are basic Lebesgue integration, Lp spaces, Fourier analysis
and minimal distribution theory (that I am trying to avoid for this course). The �rst 3 chapters
(Fourier transform, Lp spaces and convolution) cover in a large part material from the �rst year of
the masters program and are only included here for the convenience of the reader. Note also that
taking this into account, the order in which this course has been given may di�er from the order
of the notes.

Further, these notes do not pretend to be original in any way. The path taken is rather
classical by now and follows in part lectures I followed as a student. Also, numerous colleagues
have made their lecture notes available online. While preparing this course I have often consulted
online courses and some material I have read may inconciously have made its way into these notes.
I am unable to give a full list of course notes I have consulted, but the following are those that I
have used the most:

• Giovanni Leoni, Lecture on harmonic analysis at Carnegie Mellon

http://giovannileoni.weebly.com/teaching.html

• Ioannis Parissis, Lecture on harmonic analysis

https://sites.google.com/site/ioannisparissis/teaching?authuser=0

• Terrence Tao, Lecture notes for MATH 247A : Fourier analysis at UCLA

https://www.math.ucla.edu/˜tao/247a.1.06f/

Finally, this is only a short introduction to a vast subject. The following books have been a
good source for this course and also provide a good starting point to go deeper into the subject.
They have all been used at some stage during the preparation of these lecture notes.

• Javier Duoandikoetxea, Fourier Analysis. Translated and revised from the 1995 Spanish
original by David Cruz-Uribe. Graduate Studies in Mathematics, 29. American Mathe-
matical Society, Providence, RI, 2001.
• Loukas Grafakos, Classical Fourier analysis. Graduate Texts in Mathematics, 249. Springer,
New York, NY, 2008.
• Loukas Grafakos, Modern Fourier analysis. Graduate Texts in Mathematics, 250. Springer,
New York, NY, 2008.
• Yitzhak Katznelson, An introduction to harmonic analysis. Dover Publications, Inc.,
New York, NY, 1976.
• Elliott H. Lieb and Michael Loss, Analysis. Second edition. Graduate Studies in Mathe-
matics, 14. American Mathematical Society, Providence, RI, 2001.
• Camil Muscalu and Wilhelm Schlag, Classical and multilinear harmonic analysis. Vol.
I�II. Cambridge Studies in Advanced Mathematics, 137�8. Cambridge University Press,
Cambridge, 2013.
• Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces.
Princeton University Press, Princeton, NJ, 1971.
• Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory
integrals. Princeton University Press, Princeton, NJ, 1993.
• Thomas H. Wol�, Lectures on harmonic analysis. American Mathematical Society, Prov-
idence, RI, 2003.

iii

http://giovannileoni.weebly.com/teaching.html
https://sites.google.com/site/ioannisparissis/teaching?authuser=0
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iv NOTATION

2. Main notations

2.1. Special functions. The Γ function is

Γ(x) =

∫ +∞

0

txe−t
dt

t
.

The β function is

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt =
Γ(x)Γ(y)

Γ(x+ y)

The Bessel function is

Jν(t) =

(
t

2

)ν
1

Γ
(
ν + 1

2

)
Γ
(

1
2

) ∫ 1

−1

eist(1− s2)ν
dt√

1− s2

=

+∞∑
n=0

1

Γ(ν + n+ 1)

(−1)n

n!

(
t

2

)ν+2n

.

The Newton potential is given by

Γ(t) =


1

2π
log |t| when d = 2

1

d(2− d)ωd
|t|2−d when d ≥ 3

and the fundamental solution of the laplacian in Rd is also denoted by Γ(x, y) = Γ(x− y):

Γ(x, y) =


1

2π
log |x− y| when d = 2

1

d(2− d)ωd
|x− y|2−d when d ≥ 3

.

Multiindex notation. For α = (α1, . . . , αd) ∈ Nd, x = (x1, . . . , xd) ∈ Rd and f : Rd → C
su�ciently smooth,

� |α| = α1 + · · ·+ αd, the lenght of α;

� α! = α1! · · ·αd! and
(
α
β

)
=

(
α1

β1

)
· · ·
(
αd
βd

)
=

α!

β!(α− β)!
� xα = xα1

1 · · ·x
αd
d and

∂αf =
∂α1

∂xα1
1

· · · ∂
αd

∂xαdd
.

Measures, norms, sets. Throughout this notes, (Ω,B, µ) is a σ-�nite measure space. Usually
Ω is an open domain in Rd in which case B is the σ-algebra of Borel sets and µ is the Lebesgue
measure dx.

We will denote by | · | di�erent things that depend on the context:

� If x = (x1, . . . , xd) ∈ Rd is a vector, |x| =
√
x2

1 + · · ·+ x2
d is the Euclidean norm of x. The

associated scalar product in denoted 〈x, y〉.
� If F is a �nite set, |F | is the nulber of elements of F .
� If E ⊂ Rd is a Borel set, |E| is its Lebesgue measure.
� When z ∈ C, |z| is its modulus.
At occasion, we may prefer to use an other norm on Rd, most often ‖x‖∞ = maxi=1,...,d |xi|.

The open ball centered at c and of radius r associated to | · | (or any other norm) are denoted
B(c, r) = {x ∈ Rd : |x − c| < r}. Wehn we use the ‖ · ‖∞ norm, we will rather write this ball
Q(c, r) = {x ∈ Rd : ‖x− c‖∞ < r} and call it the cube Q centered at c of length `(Q) = 2r. For
a ball B = B(c, r) or a cube Q = Q(c, t) we will write 3B = B(c, 3r) and 3Q = Q(c, 3r) (and more
generally aB, aQ).

We write Sd−1 = {x ∈ Rd : |x| = 1} is the unit sphere of Rd and σd−1 is the surface measure
on Sd−1.

Rd+1
+ = {(x1, . . . , xd, t)

∫
Rd × R∗+}.



2. MAIN NOTATIONS v

A dyadic interval is an interval of the form Ij,k = [2−kj, 2−k(j + 1)[ and a dyadic cube is a

set of the form Qj,k =
∏d
`=1[2−kj`, 2

−k(j` + 1)[. Every dyadic cube can be divided into 2d disjoint
dyadic cubes

Qj+ε,k+1 =

d∏
`=1

[2−k−1(2j` + ε`), 2
−k−1(2j` + ε` + 1)[

where (ε`)`=1,...,f ∈ {0, 1}d called the daughters of Qj,k. Note that j` =

[
2j` + ε`

2

]
. It follows

that, in the opposite direction, to each dyadic cube Qj,k corresponds a unique dyadic cube Qj̃,k−1

such that Qj,k is a daughter of Qj̃,k−1 and j̃` =

[
j`
2

]
.

Function spaces. Various function spaces will be used throughout. All functions considered
here (unless speci�ed otherwise) are complex valued.

When Ω ⊂ Rd is an open (or closed) set (with distance induced by the euclidean norm)
� C(Ω) is the set of continuous functions on Rd, C0(Ω) is the subset of C(Ω) of functions with

compact support.
� C0(Rd) is the set of continuos functions that go to 0 at in�nity and Cb(Rd) is the set of

bounded continuous functions.
� For k an integer, Ck(Ω) �resp. Ckc (Rd)� is the subset of C(Ω) �resp. Cc(Rd)� of functions

that are Ck-smooth.
� Ck0 (Rd)�resp. Ckb (Rd)�is the subset of C0(Ω) �resp. Ccb(Rd)� of functions f that are

Ck-smooth and such that each derivative ∂αf ∈ C0(Rd) �resp. ∂αf ∈ Cb(Rd).
� S(Rd) is the Schwarz class of functions f ∈ C∞(Rd) such that, for every α, β ∈ Nd,

sup
x∈Rd

(1 + |xβ |)|∂αf(x)| < +∞.

For (Ω,B, µ), a measure space and 1 ≤ p ≤ +∞
� L0(Ω) = L0(Ω,B, µ) be the set of complex valued measurable functions on Ω.
� Lp(Ω) is the subset of L0(Ω) consisting of functions f such that

• when 1 ≤ p < +∞, ‖f‖p =

(∫
Ω

|f(x)|p dx
)1/p

< +∞;

• when p = +∞, ‖f‖∞ = ess-sup |f | < +∞.

� For 1 ≤ p < +∞, the weak-Lp space Lpw(Ω) is the set of measurable functions such that
there exists a constant C for which, for every λ > 0,

|{x ∈ Ω : |f(x)| > λ}| ≤ Cp

λp
.

The in�mum over all possible C's is denoted by ‖f‖Lpw .
� For f ∈ L1

loc(Rd) and Q a cube, we write

fQ =
1

|Q|

∫
Q

f(x) dx

for its mean over Q. The BMO-norm of f is the quantity

‖f‖BMO = sup
Q

1

|Q|

∫
Q

|f(x)− fQ|dx

and the BMO space is the space of functions, modulo constants such that ‖f‖BMO < +∞.

2.2. Transforms. The Fourier transform is normalized as

F [f ](ξ) = f̂(ξ) =

∫
Rd
f(x)e−2iπ〈x,ξ〉 dx

and the inverse Fourier transform is given by

F−1[f ](ξ) =

∫
Rd
f(x)e2iπ〈x,ξ〉 dx.
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� The Poisson kernel of the upper half spacs Rd+1
+ is de�ned by

Pd(x, t) = cd
t

(t2 + |x|2)(d+1)/2
x ∈ Rd, t > 0

where cd =
Γ( d+1

2 )

π
d+1

2

. The Poisson integral of a function f on Rd is given by

u(x, t) =

∫
Rd
f(y)Pd(x− y, t) dx.

� the Conjugate Poisson Integral of f on R2
+ is de�ned by

Q[f ](x, t) = Qt ∗ f(x) =
1

π

∫
R

x− y
(x− y)2 + t2

f(y) dy.

� the Cauchy Transform of f on C \ R is de�ned by

C[f ](z) =
1

2iπ

∫
R

f(y)

x− y + it
dy.

The Hilbert transform is denoted by H and de�ned on L2(R) by Hf = F−1[−i sign(·)f̂ ].
Alternatively, we may de�ne it as

Hf(x) = lim
ε→0

1

π

∫
|y|>ε

f(x− y)

y
dy.

The principal value distribution associated to 1/x is de�ned on C∞c (R) by〈
vp

1

x
, ϕ

〉
= lim
ε→0

∫
|x|>ε

ϕ(x)

x
dx.

The centered Hardy-Littlewood Maximal Function by

M [f ](x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(u)| du.

The uncentered Hardy-Littlewood Maximal Function

M[f ](x) = sup
r>0

sup
y∈B(x,r)

1

|B(y, r)|

∫
B(y,r)

|f(u)|du.

When balls are replaced by cubes, we denote the associated centered Hardy-Littlewood Maxi-
mal Function by

M�[f ](x) = sup
r>0

1

|Q(x, r)|

∫
B(x,r)

|f(u)| du;

while the uncentered Hardy-Littlewood Maximal Function is given by

M�[f ](x) = sup
r>0

sup
y∈Q(x,r)

1

|Q(y, r)|

∫
B(y,r)

|f(u)| du.

The Dyadic Maximal function

Md[f ](x) = sup
x∈Q∈D

1

|Q|

∫
Q

|f(u)| du;

where the supremum is taken over all dyadic cubes Q ∈ D that contain x.
The Sharp Maximal function is given by

M ]f(x) = sup
Q3x

1

|Q|

∫
Q

|f(x)− fQ|dx

where the supremum is taken over all cubes containing x.



Background

A major task in the investigation of Partial Di�erential Equations is to show that such a PDE
admits a solution, to be able to construct it and to understand how it depends on the various
parameters/data that enter it. There are a number of stategies that can be followed to accomplish
this that can be informally summerized as follows:

� Write down an explicit formula for the solution in terms of the given data. Such a forumla
usually takes the form of a (linear) operator T sending data to the solution. This may be seen as
the most natural version but is unfortunately only available in very special cases. Further, such
a formula may be rather complicated, so that it may still be di�cult to describe the qualitative
behavior of a solution from the formula.

Fortunately, other powerful methods have been described. Let us focus on two of them:

� Approximate the original PDE by a sequence of simpler ones and show that the solution of
those approximate problems converge to a solution of the original one. PDEs are posed in spaces
of functions, and those spaces are of in�nite dimension. The crux of this strategy usually lies
in carefully choosing �nite dimensional approximating problems that can be solved explicitly (or
numerically) and that still share important crucial features with the original problem.

� Deform the original problem and let the deformation go to 0. The idea is that if one can
connect the given problem continuously with a simpler problem that one is able to solve, then
one should be able to solve the original problem. Of course, the continuation of solutions requires
careful analysis.

As a central object in this course, we will consider the following PDEs on an open connected
bounded domain Ω ⊂ Rd with smooth boundary ∂Ω. The reader may restrict his attention to the
unit euclidean ball B(0, 1) with boundary Sd−1 or the upper half-space

Rd+1
+ = {(x1, . . . , xd, t)

∫
Rd × R∗+}.

� the Laplace Equation ∆u = 0 where

∆u =

d∑
j=1

∂2

∂x2
j

- the Poisson Equation ∆u = f .
To ∆ we associate the fundamental solution

Γ(x, y) =


1

2π
log |x− y| when d = 2

1

d(2− d)ωd
|x− y|2−d when d ≥ 3

where ωd is the volume of the unit ball B(0, 1) in Rd. We then have the following:

Theorem 0.1 (Green Representation Formula). Let Ω be a smooth domain in Rd. Let u ∈
C2(Ω). Then, for every y ∈ Ω,

(2.1) u(y) =

∫
∂Ω

u(ζ)
∂

∂nζ
Γ(ζ, y)− Γ(ζ, y)

∂

∂n
u(ζ) dσ(ζ) +

∫
Ω

Γ(x, y)∆u(x) dx

where
∂

∂n
is the exterior normal derivative on ∂Ω and dσ the surface measure on ∂Ω.

1



2 BACKGROUND

From this, one sees that a (regular) solution of the Poisson Equation is fully determined by its

boundary data u restricted to ∂Ω and
∂u

∂n
. One may also ask if the converse is true, i.e. whether

arbitrary boundary data determines u. This fact is not true and actually, only one of u and
∂u

∂n
can be imposed on Ω.

To do so, one introduces a Green function for Ω which is a function G de�ned for x 6= y ∈ Ω
such that

• G(x, y) = 0 for x ∈ ∂Ω;
• for every y ∈ Ω, the function h(x) = G(x, y)− Γ(x, y) is harmonic ∆h = 0 in Ω.

Alternatively, we may de�ne the Green function as follows

Definition 0.2. Let Ω be a C1 domain in Rd and assume that for every y ∈ Ω there exists a
function Φy ∈ C2(Ω) ∩ C(Ω̄) such that

(i) ∆Φy(x) = 0 for all x ∈ Ω,
(ii) Φy(x) = Γ(x, y) for every x ∈ ∂Ω.

Then G(x, y) = Γ(x, y)− Φy(x) is the Green function of Ω.

We assume that such a function exists (which is true here) and apply the Second Green Formula:

(2.2)

∫
Ω

u(x)∆v(x)− v(x)∆u(x) dx =

∫
∂Ω

(
u(ζ)

∂v

∂n
(ζ)− v(ζ)

∂u

∂n
(ζ)

)
dσ(ζ)

(the minus sign comes from the convention that we di�erentiate with respect to the outer normal)
to v = −h∫

Ω

Γ(x, y)∆u(x)dx =

∫
Ω

G(x, y)∆u(x) dx

+

∫
∂Ω

(
u(ζ)

∂G

∂n
(ζ, y)− u(ζ)

∂Γ

∂n
(ζ, y) + Γ(ζ, y)

∂u

∂n
(ζ)

)
dσ(ζ)

Adding the result to (2.1), we obtain

Theorem 0.3 (Poisson Representation Formula). Let Ω be a smooth domain in Rd and G be
a Green function for Ω. Let u ∈ C2(Ω). Then, for every y ∈ Ω,

(2.3) u(y) =

∫
∂Ω

u(ζ)
∂

∂nζ
G(ζ, y) dσ(ζ) +

∫
Ω

Γ(x, y)∆u(x) dx.

In particular, this shows that a solution u ∈ C2(Ω) of the Poisson Equation ∆u = f in Ω, is
uniquely determined by its boundary data u = ϕ on ∂Ω via

(2.4) u(y) =

∫
∂Ω

ϕ(x)
∂

∂nx
Γ(x, y) dσ(x) +

∫
Ω

Γ(x, y)f(x) dx.

This raises several questions:
� Does this formula make sense and is it really valid: can one extend it to more general f and

ϕ, does it provide a solution of ∆u = f and is u = ϕ on ∂Ω in some sense ?
� Can ϕ or f be recovered from u, what conditions should be imposed on u for this to be the

case.
� Can one give weaker meanings to ∆u = f (solution in the sense of distriutions) and to u = ϕ

on ∂Ω (u(x)→ ϕ(ζ) when x→ ζ).
� How do changes in f or ϕ a�ect u ? Does u depend continuously on such changes ?...

All those questions can be rephrased in terms of properties of the operators

ϕ→
∫
∂Ω

u(x)
∂

∂nx
Γ(x, y)dσ(x)

and

f →
∫

Ω

Γ(x, y)f(x) dx

in particular of continuity of those operators.
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The aim of these notes is to provide some of the tools that may allow to do this. Those tools,
like often in mathematics, can be usefull in many other �elds, ranging from number theory to
medical imaging, but those aspects will not be developped here.

Before going to the main topic, let us look how the computations work on Rd+1
+ . An alternative

approach to the determination of the Poisson kernel is through the Green Kernel and its normal
derivative, as was explained in the derivation of Formula (2.3) in the introductory section.

What we �rst need to do is to determine a (the) Green function for Rd+1
+ . For sake of simplicity,

we will only do this for d ≥ 2 so that the fundamental solution of the Laplace operator on Rd+1 is
then given by

Γ(x, y) = − 1

(d− 1)ωd

1

|x− y|d−1

where ωd = σd(Sd) is the surface measure of the unit sphere Sd in Rd+1. We can write Γ(x, y) =

N(y − x) where N(u) = − 1

(d− 1)ωd

1

|u|d−1
is the Newton potential.

Fix x ∈ Rd+1
+ and let Ψx(u) = N(u − x) is almost the function Φx we are looking for since

Ψx(u) = N(u− x) for u ∈ ∂Rd+1
+ and ∆Ψx(u) = 0 in

Rd+1
− = {(x1, . . . , xd, t) : (x1, . . . , xd) ∈ Rd, t < 0}.

To correct this, let us introduce the following notation: to x = (x1, . . . , xd, t) ∈ Rd+1
+ associate x̄ =

(x1, . . . , xd,−t) ∈ Rd+1
− its re�ection trough ∂Rd+1

+ = ∂Rd+1
− . De�ne Φx(u) = N(u− x̄) = Γ(u, x̄)

and notice that ∆Φx(u) = 0 (since Γ is a fundamental solution of ∆ and x̄ /∈ Rd+1
+ ) and that

|x−u| − |x̄−u| when u = (u1, . . . , ud, 0) ∈ ∂Rd+1
+ so that Φx(u) = N(u− x̄) = N(u−x) = Γ(x, u)

for those u′s. We have thus proven the following:

Lemma 0.4. The Green function for Rd+1
+ is given by

G(x, y) = N(y − x)−N(y − x̄) = Γ(x, y)− Γ(x̄, y) =
1

(d− 1)ωd

(
1

|x̄− y|d−1
− 1

|x− y|d−1

)
where for x = (x1, . . . , xd, t) ∈ Rd+1

+ , x̄ = (x1, . . . , xd,−t) ∈ Rd+1
− is its re�ection trough ∂Rd+1

+ =

∂Rd+1
− .

Let us introduce some notation. We will write x = (x1, . . . , xd, t) = (x′, t) ∈ Rd+1
+ so that

x̄ = (x′,−t) and in the same way y = (y1, . . . , yd, s) = (y, s) ∈ Rd+1
+ . Now, in view of Formula

(2.3), if ∆u = 0 in Rd+1
+ and u(x1, . . . , xd, 0) = f(x1, . . . , xd) then

u(y′, s) =

∫
Rd
f(x′)

∂

∂t
G
(
(x′, 0), (y′, s)

)
dx′.

The function
∂

∂t
G
(
(x′, 0), (y′, s)

)
is called the Poisson kernel of Rd+1

+ . It is given by (note that the

exterior normal derivative is −∂t)

P
(
(x′, 0), (y′, s)

)
= − ∂

∂t
G
(
(x′, t), (y′, s)

)∣∣∣∣
t=0

= − 1

(d− 1)ωd

∂

∂t

(
1

|x̄− y|d−1
− 1

|x− y|d−1

)∣∣∣∣
t=0

= − 1

(d− 1)ωd

∂

∂t

 1(
|x′ − y′|2 + (t+ s)2

) d−1
2

− 1(
|x′ − y′|2 + (t− s)2

) d−1
2

∣∣∣∣∣∣
t=0

=
1

ωd

 t+ s(
|x′ − y′|2 + (t+ s)2

) d−1
2

− t− s(
|x′ − y′|2 + (t− s)2

) d+1
2

∣∣∣∣∣∣
t=0

=
2

ωd

s(
|x′ − y′|2 + s2

) d+1
2

The case d = 1 is similar but the Newton potential is now given by N(u) = − 1

2π
ln |u|.



4 BACKGROUND

Definition 0.5. The Poisson kernel of the upper half spacs Rd+1
+ is de�ned by

Pd(x, t) = cd
t

(t2 + |x|2)(d+1)/2
x ∈ Rd, t > 0

where cd =
Γ( d+1

2 )

π
d+1

2

.

Under good regularity properties of u, we then have that ∆u = 0 on Rd+1
+ implies

u(x, t) =

∫
Rd
f(y)Pd(x− y, t) dx.



CHAPTER 1

Some complements on complex analysis

The aim of this section is to provide some complements to the �rst year course on complex
analysis.

1. The maximum principle

Theorem 1.1 (Maximum Principle). Let Ω be a bounded open connected domain and f be a
continuous function on Ω that is holomorphic on Ω. If |f | reaches its maximum at some point
z0 ∈ Ω then f is constant. Therefore

sup
Ω

|f | = sup
∂Ω
|f |.

There is a trivial proof that uses only the power series:

Trivial proof. First note that Ω and ∂Ω are compact sets, so that there is a z0 ∈ Ω such
that supΩ |f | = |f(z0)|. We want to show that z0 /∈ Ω unless f is constant

Now let ζ ∈ Ω and let f be non constant. As f is holomorphic, there is a smallest m ≥ 1

such that a :=
f (m)(ζ)

m!
6= 0. Now if |z| is small enough, ζ + z ∈ Ω and we can write the Taylor

expension as f(ζ + z) = f(ζ) + azm + o(zm).
First notice that if f(ζ) = 0 then |f(ζ+z)| = |a||z|m+o(|z|m) > 0 for |z| small enough so that

f has no local maximum at ζ. Otherwise, |f(ζ + z)|2 = |f(ζ)|2 + 2<(f(ζ)azm) + o(|z|m). Write

f(ζ)a = ρe−iϕ and z = reiθ then

|f(ζ + reiθ)|2 = |f(ζ)|2 + 2ρrm cos(mθ − ϕ) + o(rm) > |f(ζ)|2

if −π/2 < mθ − ϕ < π/2 and r > 0 is small enough. So f has no local maximum at ζ. �

The following proof applies to every sub-harmonic function:

Proof. We will use that u = log |f | =
1

2
log |f |2 is sub-harmonic i.e. for every x ∈ Ω and

every r > 0 such that B(x, r) ⊂ Ω

u(x) ≤ 1

|B(x, r)|

∫
B(x,r)

u(y) dy

Now assume that there exists x0 ∈ Ω such that

u(x0) = M := sup
Ω
u(y)

and let F = {x ∈ Ω : u(x) = M}. As u is continuous on Ω̄, then F is relatively closed in Ω (i.e.
F = F ∩ Ω with F closed in C, e.g. F = {x ∈ Ω : u(x) = M}).

On the other hand, if x ∈ F and r is small enough for the mean value property to hold, we
have

1

|B(x, r)|

∫
B(x,r)

(
u(y)− u(x)

)
dy =

1

|B(x, r)|

∫
B(x,r)

u(y) dy − u(x) ≥ 0.

But u reaches its maximum at x ∈ F so u(y)− u(x) ≤ 0 thus u(y) = u(x) = M on B(x, r). Thus
B(x, r) ⊂ F which is therefore also open. As x0 ∈ F , F is open, closed and non-empty in Ω which
is connected, thus F = Ω and u = M on Ω. �

5
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This result is no longer true if Ω is not bounded. For instance, consider

Ω =
{
z ∈ C : −π

2
< Im(z) <

π

2

}
and f(z) = ee

z

. Then for x real, f(x± iπ2 ) = eie
x

is bounded but of course f(x) = ee
x

is not. The
key here is that this functions growth very fast. When growth is moderate, Phragmèn-Lindelöf
principles show that some form of the maximum principle still holds.

2. The Phragmèn-Lindelöf principle

Theorem 1.2 (Phragmèn-Lindelöf). Let Ω =
{
z ∈ C : −π

2
< Im(z) <

π

2

}
and f be a con-

tinous function on Ω that is holomorphic over Ω. Assume that there are constansts α < 1 and
A <∞ such that, for every z = x+ iy ∈ Ω,

|f(x+ iy)| < exp
(
A exp(αx)

)
and that, for every x ∈ R

|f(x± iπ
2

)| ≤ 1.

Proof. The proof consists in introducing a barrier function which will allow us to apply the
maximum modulus principle. To do so, choose β such that α < β < 1. Then, for ε > 0, de�ne

hε(z) = exp
(
−ε(eβz + e−βz)

)
.

The �rst observation is that, if z = x+ iy with |y| ≤ π

2
, then

<(eβz + e−βz) = (eβx + e−βx) cosβy ≥ cos
(
β
π

2

)
(eβx + e−βx)

and that δ := cos
(
β π2
)
> 0. It follows that

|hε(z)| ≤ exp
(
−εδ(eβx + e−βx)

)
< 1.

But then |fhε| ≤ 1 on ∂Ω while

|f(z)hε(z)| ≤ exp
(
Aeα|x| − εδ(eβx + e−βx)

)
< 1.

Since β > α, Aeα|x| − εδ(eβx + e−βx)→ −∞ when x→ ±∞ so that there is an x0 such that, for
|x| ≥ x0, |f(z)hε(z)| ≤ 1.

On the other hand, applying the maximum modulus principle to fhε on the rectangle {−x0 ≤
x ≤ x0,−π2 ≤ y ≤

π
2 } we get that |f(z)hε(z)| ≤ 1 on this rectangle as well. In summary, |fhε| ≤ 1

on Ω, regardless of which ε > 0 we have chosen.
Now �x z ∈ Ω and notice that hε(z) → 1 when ε → 0 so that |f(z)| = lim |f(z)hε(z)| ≤ 1 as

claimed. �

We will now elaborate on this idea. Consider a bounded region Ω with smooth boundary ∂Ω.
Consider an holomorphic function f , u = |f |. Assume that u is continuous on ∂Ω so that there is
a bound M of u on ∂Ω, |u(z)| ≤M . Then the maximum principle states that u is bounded by M
on all of Ω.

Assume now that ∂Ω splits into two parts ∂Ω = Γ− ∪ Γ+ and that there are M−LM+ such
that |u| ≤ M− on Γ− and |u| ≤ M+ on Γ+. The maximum principle states that |u| ≤ M+ on all
of Ω but one should expect that |u(z)| is much smaller (near to M−) when z approaches Γ−.

Example 1.3. This idea can be made more precise when Ω = D = D(0, 1) the unit disc and
that Γ− = {eiθ : 0 < θ < θ0} is an arc. In this case, we can use the Poisson integral: let

P (z, θ) =
1

2π

1− |z|2

|z − eiθ|2
be the Poisson kernel of the disc then

u(z) =

∫ 2π

0

u(eiθ)P (z, θ) dθ.
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The only property we need is that µz(θ) := P (z, θ) dθ is a probability measure so that

|u(z)| ≤

∣∣∣∣∣
∫ θ0

0

u(eiθ)P (z, θ) dθ

∣∣∣∣∣+

∣∣∣∣∫ 2π

θ0

u(eiθ)P (z, θ)dθ

∣∣∣∣
≤

∫ θ0

0

|u(eiθ)|P (z, θ) dθ +

∫ 2π

θ0

|u(eiθ)|P (z, θ)dθ

≤ M−µz([0, θ0]) +M+µz([θ0, 2π]).

As µz([0, θ0]) + µz([θ0, 2π]) = 1 this bound is smaller than M+ and further µz([θ0, 2π])→ 0 when
z → eiθ with 0 < θ < θ0. This is precisely the expected behavior.

This example is a bit speci�c in the sense that we have an explicit expression of the Poisson
kernel. The role of this kernel is the following

� Suppose we can �nd a function h : Ω→ R that is harmonic on Ω and equal to 0 on Γ− and
1 on Γ+. We also require that h is continuous on Ω \ ∂Γ− (in the previous example ∂Γ− = {0, θ0},

in general, we will assume that ∂Γ− is �nite). In the disc example, h(z) =

∫ 2π

θ0

P (z, θ) dθ.

� We then consider v(z) = M−+ (M+−M−)h(z). This function is harmonic on Ω, continuous
on Ω \ ∂Γ− and u(z) ≤ v(z) on ∂Ω \ ∂Γ−.

� From the maximum principle, u(z) ≤ v(z) on Ω.
The argument works even if u is only sub-harmonic, in particular if u = log |f | with f holo-

morphic (which is harmonic if f is not zero).

Example 1.4. A second example which is important for us is the case of an annulus Ω = {z ∈
C : R− < |z| < R+}. Then log |z| is harmonic on Ω, continuous on Ω. In particular

h(z) =
log |z| − logR−
logR+ − logR−

satis�es h(z) = 0 for z ∈ Γ− := {R−eiθ : 0 ≤ θ ≤ 2π} and h(z) = 1 for z ∈ Γ+ := {R+e
iθ : 0 ≤

θ ≤ 2π}.
The above principle shows that if u : Ω → R is (sub)-harmonic on Ω, continuous on Ω, with

u ≤M− on Γ− and u ≤M+ on Γ+ then, if z ∈ Ω, we may wrire log |z| ≤ λ logR−+ (1−λ) logR+

with 0 < λ < 1 and then

u(z) ≤ M− + (M+ −M−)h(z) = M− + (M+ −M−)
λ logR− + (1− λ) logR+ − logR−

logR+ − logR−
= λM− + (1− λ)M+.

When applied to u(z) = log |f | with f holomorphic on Ω, continuous on Ω, we obtain the following:

Theorem 1.5 (Hadamard's three circle theorem). Let f be an holomorphic function on

Ω{z ∈ C : R− < |z| < R+},

continuous on Ω. For r ∈ [R−, R+], let M(r) = sup|z|=r |f(z)|, then M(r) is log-convex that is if

r1 < r < r2, we write log r = λ log r1 + (1− λ) log r2 then

M(r) ≤ λM(r1) + (1− λ)M(r2).

Example 1.6. We will also use a modi�cation of Hadamard's three circle theorem:

Theorem 1.7 (Hadamard's Three Line Theorem). Consider the strip Σ = {z
∫
C : 0 < <(z) <

1} and let F be an holomorphic function on Σ that is continuous and bounded on Σ̄ with

|F (it)| ≤M0 and |F (1 + it)| ≤M1 t ∈ R.

Then for every 0 < θ < 1 and t ∈ R,

|F (θ + it)| ≤M1−θ
0 Mθ

1 .

Proof. We introduce two auxilary functions on Σ̄

G(z) =
F (z)

M1−z
0 Mz

1

and Gn(z) = G(z)e(z2−1)/n.
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We will write z = x+ iy with 0 ≤ x ≤ 1. First |M1−z
0 Mz

1 | = M1−x
0 Mx

1 is bounded below in Σ̄ so
G is bounded by some M in Σ̄. Further

|Gn(z)| = |G(z)|e(x2−1−y2)/n ≤Me−y
2/n

It follows that there is a yn such that |Gn(z)| ≤ 1 when |y| ≥ yn. On the other hand, for

x = 0, |Gn(iy)| = |G(iy)|e−(1+y2)/n ≤ |F (iy)|
M1

e−1/n ≤ 1 and |Gn(1 + iy)| = |G(1 + iy)|e−y2/n ≤
|F (1 + iy)|

M1
≤ 1. By the Maximum Principle, we also have |Gn| ≤ 1 on {x+ iy : 0 ≤ x ≤ 1, |y| ≤

yn} so that |Gn| ≤ 1 on Σ̄.

But then for �xed z = x+iy, |G(z)| = |Gn(z)||e−(z2−1)/n| ≤ e(1−x2+y2)/n and, letting n→ +∞,
|G(z)| ≤ 1. In other words, |F (z)| ≤ |M1−z

0 Mz
1 | = M1−x

0 Mx
1 as claimed. �

Example 1.8. We now consider Ω to be the half-disc Ω = {z ∈ C : |z| < R, Im z > 0}. The
boundary is composed of two pieces, the segment Γ− = [−R,R] and Γ+ = {Reiθ : 0 ≤ θ ≤ π}.

Recall that arg z = Im log z for z ∈ C \ (−∞, 0] is a harmonic function. We consider the
function hR(z) = 2

π

(
arg(z + R) + π − arg(z − R)

)
which is then harmonic on Ω and continuous

on Ω. This function has a geometric interpretation consider the triangle T with vertices R, z and
−R, then arg(z +R) is the angle at −R and π − arg(z −R) is the angle at R. In particular, both
are 0 if z ∈ Γ− = [−R,R] so that hR(z) = 0 for those z's. On the other hand, if z ∈ Γ+, the angle
at z in T is π/2 so that the sum of the two other angles is π − π/2 = π/2 so that hR(z) = 1 for
those z's. A further consequence, is that if we �x z and let R → +∞ then the sinuses of the two
angles are O(R−1) so that hR(z) = O(R−1) when R→ +∞.

We are now in position to prove the following:

Theorem 1.9 (Phragmène-Lindelöf for a half-plane). Let f be holomorphic on the half plane

H = {z ∈ C : Im(z) > 0}, continuous on H and bounded on the real line |f(x)| ≤ M for x ∈ R.
De�ne M(R) = sup{|f(z)| : |z| = R, Im z ≥ 0} and assume that lim

R→+∞

1

R
logM(R) = 0 then

|f | ≤M on H.

Remark 1.10. Up to rotating and translating f , the half plane H can be replaced by any
half-plane

{z ∈ C : Im(eiθz) > α}.

Proof. First, up to replacing f by f/M , we may assume that M = 1. Then, for z ∈ H, take
R > |z|, so that

log |f(z)| ≤ log 1 + (logM(R)− log 1)hR(z) = hR(z) logM(R).

Finally, as hR(z) = O(R−1) and R−1 logM(R)→ 0, it is enough to let R→ +∞ to get log |f(z)| ≤
0 in H, that is |f(z)| ≤ 1 as claimed. �

We can now prove the following:

Corollary 1.11 (Phragmène-Lindelöf for a sector). Let α > 1, θ0 ∈ [0, 2π] and Sθ0,α =

{reiθ : r > 0, |θ − θ0| < π
2α} be a sector of opening

π

α
.

Let f be a function on Sθ0,α that is holomorphic on Sθ0,α, continuous on Sθ0,α and such

that |f(z)| ≤ Ce|z|
β

for some C > 0 and 0 < β < α. If |f(z)| ≤ M(1 + |z|)N on ∂Sθ0,α then
|f(z)| ≤ κNαM(1 + |z|)N on Sθ0,α, where κα is a constant that depends continuously on α.

For future use, note that for α ≥ 2, that is a sector of opening ≤ π/2, we can take κα = 21/4.

Proof. Up to replacing f by f(e−iθ0z), we may assume that θ0 = 0. We write Sα = S0,α.
Further, note that there is a constant κα such that

1 ≤ 1 + |z|
|1 + z|

≤ κα
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for every z ∈ Sα. A precise value of κα is not needed and we may just notice that if |θ| < π/2α,
and z = reiθ,

(1 + |z|)2 = 1 + r2 + 2r ≤ 1

cos π
2α

(1 + r2 + 2r cos θ) =
1

cos π
2α

|1 + z|2

that is κα =
(
cos π

2α

)1/2
.

As 1 + z does not vanish on Sα, we may then consider

g(z) =
f(z)

M(1 + z)N

and notice that g is holomorphic on Sα, bounded by 1 on ∂Sα and still satis�es |g(z)| ≤ Ce|z|
β

on Sα. Once we show the case N = 0 we conclude that |g| ≤ 1 on Sα. But then |f(z)| =
M |1 + z|N |g(z)| ≤Mκ−Nα (1 + |z|)N on Sα so that the general case follows.

So, from now on, we only consider the case N = 0 and, up to replacing f by f/M , we assume
that |f | ≤ 1 on ∂Sα.

We then consider the function z → z1/α = e
1
α log z which is holomorphic on H = {<z > 0} and

continuous on H. Further, it is a bijective mapping H (resp. H) to Sα (resp. Sα).
It follows that h(z) = f(z1/α) is holomorphic on H and continuous H. Further |h| ≤ 1 on

∂H. Finally, |h(z)| ≤ Ce|z|β/α so that, 1
r sup|z|=r log |h(z)| ≤ 1

r logC + r1−β/α → 0 when r → +∞.

Applying the half-plane Phragmén-Lindelöf principle to h, we get that |h| ≤ 1 and then that
|f | ≤ 1. �





CHAPTER 2

Lp spaces, weak Lp spaces and interpolation

1. Lp spaces

We assume that content of this section is known to students following this course.

1.1. De�nition. Let 1 ≤ p < +∞ a real number, (Ω,B, µ) a σ-�nite measure space. We
de�ne

Lp(Ω, µ) =

{
f : Ω→ C, f µ−measurable,

∫
Ω

|f(x)|p dµ(x) < +∞
}

and endow it with the �norm�

‖f‖p =

(∫
Ω

|f(x)|p dµ(x)

) 1
p

.

For p = +∞,we de�ne

L∞(Ω, µ) = {f : Ω→ C, f µ−mesurable, il existe K > 0 telle que |f(x)| ≤ K, µ− p.p.}

and endow it with the �norm�

‖f‖∞ = inf{K |f(x)| ≤ K µ− a.e.}.

We almost have a normed vector space in the sense that

(i) For f ∈ Lp(Ω, µ), we have ‖f‖p ≥ 0 and ‖f‖p = 0 if and only if f = 0 µ-almost
everywhere.

(ii) For f ∈ Lp(Ω, µ) and λ ∈ C, we have λf ∈ Lp(Ω, µ) and ‖λf‖p = |λ‖f‖p.
(iii) For f, g ∈ Lp(Ω, µ), f + g ∈ Lp(Ω, µ) et ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Remark 2.1. It is important to keep in mind that the case p = 2, L2(Ω, µ) is a Hilbert space
and that the norm is associated to the scalar product given by

〈f, g〉L2(Ω,µ) =

∫
Ω

f(x)g(x) dµ(x).

Sketch of proof. For (i), one uses the fact that a non-negative function with 0 integral
vanishes a.e. while (ii) is obvious.

On the other hand (iii) is trivial when p = 1 and p = +∞ while the case p = 2 follows from
Cauchy-Schwarz. The general case will be treated below and is more subtle. However, let us show
that Lp(Ω, µ) spces are vector spaces:

|f + g|p ≤ (|f |+ |g|)p = 2p
(
|f |+ |g|

2

)p
≤ 2p−1(|f |p + |g|p)

since x 7→ xp is a convex function. In particular, if f, g ∈ Lp(Ω, µ) then f + g ∈ Lp(Ω, µ). �

In order to obtain a normed vector space, we will identify two functions f, g if f = g a.e. or,
in more rigorous terms, quotient the Lp spae by the equivalence relation f ∼ g if f − g = 0 a.e.

1.2. Hölder et Minkowski. The �rst inequality we will prove extends Cauchy-Schwarz and
plays a key role in analysis.

11
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Theorem 2.2 (Hölder's Inequality). Let (Ω,B, µ) be a measure space. Let 1 ≤ p, p′ ≤ +∞
be such that

1

p
+

1

p′
= 1 (with the convention that p′ = +∞ when p = 1 and vice versa). Let

f ∈ Lp(Ω, µ) and g ∈ Lp′(Ω, µ), then fg ∈ L1(Ω, µ) with∣∣∣∣∫
Ω

f(x)g(x) dµ(x)

∣∣∣∣ ≤ ∫
Ω

|f(x)g(x)| dµ(x) ≤
(∫

Ω

|f(x)|p dµ(x)

) 1
p
(∫

Ω

|g(x)|p
′
dµ(x)

) 1
p′

.

Moreover,
� equality holds in the �rst inequality if and only if there is a θ ∈ R such that f(x)g(x) =

eiθ|f(x)g(x)|.
� if f 6= 0 equality holds in the second inequality if and only if there is a real λ ≥ 0 such that

(i) for 1 < p < +∞, |g(x)| = λ|f(x)|p−1 µ-a.e.;
(ii) for p = 1, |g(x)| ≤ λ µ-a.e. and |g(x)| = λ for µ-almost every x such that f(x) 6= 0;
(iii) for p = +∞, |f(x)| ≤ λ µ-a.e. and |f(x)| = λ for µ-almost every x such that g(x) 6= 0.

Proof. The �rst inequality is the triangular inequality for integrals and is left to the reader.
For the second one, the cases f = 0 and g = 0 are obvious and excluded. The cases p = 1 (thus
p′ = +∞) and p = +∞ (thus p′ = 1) are straightforward. We thus assume that 1 < p < ∞ (so
that que 1 < p′ <∞) and f, g 6= 0. We can then introduce

u =

(
|f |
‖f‖p

)p
and v =

(
|g|
‖g‖p′

)p′
.

As log is concave, we get that, for 0 < α < 1, uαv1−α ≤ αu+ (1− α)v. In particular, for α = 1/p,
we have

|f |
‖f‖p

|g|
‖g‖p′

≤ 1

p

|f |p

‖f‖pp
+

1

p′
|g|p′

‖g‖p
′

p′

.

Integrating with respect to µ, the result follows.
The equality case uses strict concavity and is left to the reader. �

Hölder's inequality is thus a convexity inequality. Another important convexity inequality is
the following:

Theorem 2.3 (Jensen's Inequality). Let (Ω,B, µ) be a �nite measure space. Let J : R → R
be a convex function. For f ∈ L1(Ω, µ), write

〈f〉 =
1

µ(Ω)

∫
Ω

f(x) dµ(x)

for its mean over Ω. Then

(i) [J ◦ f ]−, the negative part of J ◦ f is in L1(Ω, µ), thus

∫
Ω

J ◦ f(x) dµ(x) is well de�ned

(possibly = +∞);
(ii) J(〈f〉) ≤ 〈J ◦ f〉, that is

J

(
1

µ(Ω)

∫
Ω

f(x) dµ(x)

)
≤ 1

µ(Ω)

∫
Ω

J
(
f(x)

)
dµ(x).

Proof. As J is convex and, for sake of simplicity, we assume that J is C1, for a, t ∈ R,
J(t) ≥ J(a) + J ′(a)(t− a).

Taking t = f(x) and a = 〈f〉, this implies

(1.5) J
(
f(x)

)
+
− J

(
f(x)

)
− = J

(
f(x)

)
≥ J(〈f〉) + J ′(〈f〉)f(x)− J ′(〈f〉)〈f〉.

In particular, if x is such that J
(
f(x)

)
− 6= 0 then J

(
f(x)

)
+

= 0, and

0 ≤ J
(
f(x)

)
− ≤ −J ′(〈f〉)f(x) + J ′(〈f〉)〈f〉 − J(〈f〉)
≤ |J ′(〈f〉)||f(x)|+ |J ′(〈f〉)〈f〉 − J(〈f〉)|.

As f ∈ L1, |J ′(〈f〉)||f(x)| ∈ L1 et µ being �nite, constants are integrable, thus |J ′(〈f〉)〈f〉 −
J(〈f〉)| ∈ L1.
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Next, integrate (1.5) to get

1

µ(Ω)

∫
Ω

J
(
f(x)

)
dµ(x) ≥ 1

µ(Ω)

∫
Ω

J(〈f〉) dµ(x) +
J ′(〈f〉)
µ(Ω)

∫
Ω

f(x)− 〈f〉 dµ(x).

But
1

µ(Ω)

∫
Ω

f(x)− 〈f〉 dµ(x) = 0.

Jensen's Inequality follows. �

The smoothness requirement for J can be removed since an inequality of the form J(t) ≥
J(a) + c(t− a) is still valid.

Note that Hölder's Inequality can be deduced from Jensen's Inequality:

Second proof of Hölder. Up to replacing f , g by |f |, |g|, assume that f, g ≥ 0. Again,
the cases p = 1 et p = +∞ are obvious so that we restrict attention to 1 < p < +∞.

Let Ω′ = {x ∈ Ω : g(x) > 0}. Then∫
Ω

fp(x) dµ(x) =

∫
Ω′
fp(x)dµ(x) +

∫
Ω\Ω′

fp(x) dµ(x) ≥
∫

Ω′
fp(x) dµ(x)

while ∫
Ω

f(x)g(x) dµ(x) =

∫
Ω′
f(x)g(x) dµ(x) et

∫
Ω

g(x)p
′
dµ(x) =

∫
Ω′
g(x)p

′
dµ(x).

It is thus enough to prove Hölder for Ω′ replacing Ω, that is to assume that g does not vanish over
Ω.

We can now de�ne a new measure dν(x) = g(x)p
′
dµ(x) and introduce the function F (x) =

f(x)g(x)−p
′/p. Note that

ν(Ω) =

∫
Ω

1 dν(x) =

∫
Ω

g(x)p
′
dµ(x)

so that ν is �nite. Moreover

1

ν(Ω)

∫
Ω

F (x) dν(x) =
1∫

Ω

g(x)p
′
dµ(x)

∫
Ω

f(x)g(x)−p
′/pg(x)p

′
dν(x)

=

∫
Ω

f(x)g(x) dµ(x)∫
Ω

g(x)p
′
dµ(x)

since −p
′

p
+ p′ = p′

(
1− 1

p

)
= 1. Finally, Jensen's Inequality with J(t) = |t|p implies

∫
Ω

f(x)g(x) dµ(x)∫
Ω

g(x)p
′
dµ(x)


p

≤

∫
Ω

f(x)pg(x)−p
′
g(x)p

′
dµ(x)∫

Ω

g(x)p
′
dµ(x)

as expected. �

Theorem 2.4 (Minkowski's Inequality). Let (Ω,B, µ) and (Γ, B̃, γ) be two measure spaces and
1 ≤ p < +∞. Then for every f γ ⊗ µ-measurable,

(1.6)

(∫
Γ

∣∣∣∣∫
Ω

f(x, y) dµ(y)

∣∣∣∣p dγ(x)

) 1
p

≤
∫

Ω

(∫
Γ

|f(x, y)|p dγ(x)

) 1
p

dµ(y).

Equality holds if and only if f is of the form f(x, y) = α(x)β(y).

In other words ∥∥∥∥x→ ∫
Ω

|f(x, y)| dµ(y)

∥∥∥∥
p

≤
∫

Ω

‖x→ f(x, y)‖p dµ(y).



14 2. Lp SPACES, WEAK Lp SPACES AND INTERPOLATION

This extends the easy triangular inequality∣∣∣∣∫
Ω

f(t) dµ(t)

∣∣∣∣ ≤ ∫
Ω

|f(t)| dµ(t)

which corresponds to the particular case where Γ has a single element.

Proof. We may assume that f ≥ 0 with f > 0 on a set of positive mesure and that the right
hand side of (1.6) is �nite.

Let fn = fχEn with En = Fn ∩ {(x, y) ∈ Γ × Ω : |f(x, y)| ≤ n} where Fn is an increasing
family of sets of �nite measure in Γ × Ω that cover Γ × Ω:

⋃
Fn = Γ × Ω. For fn, the left hand

side of (1.6) is (∫
Γ

(∫
Ω

|fn(x, y)| dµ(y)

)p
dγ(x)

) 1
p

which is �nite.
Further, monotone convergence shows that this quantity converges to(∫

Γ

(∫
Ω

|f(x, y)| dµ(y)

)p
dγ(x)

) 1
p

.

We may thus also assume that this is �nite. In particular, we may de�ne

H(x) =

∫
Ω

|f(x, y)| dµ(y)

which is then �nite a.e.
From Fubini (Tonneli),∫

Γ

H(x)p dγ(x) =

∫
Γ

(∫
Ω

f(x, y) dµ(y)

)
H(x)p−1 dγ(x)

=

∫
Ω

∫
Γ

f(x, y)H(x)p−1 dγ(x) dµ(y).

From, Hölder (1/p+ 1/p′ = 1) we get∫
Γ

f(x, y)H(x)p−1 dγ(x) ≤
(∫

Γ

f(x, y)p dγ(x)

)1/p(∫
Γ

H(x)(p−1)p′ dγ(x)

)1/p′

=

(∫
Γ

f(x, y)p dγ(x)

)1/p(∫
Γ

H(x)p dγ(x)

)1−1/p

.

Therefore ∫
Γ

H(x)p dγ(x) ≤
∫

Ω

(∫
Γ

f(x, y)p dγ(x)

)1/p

dµ(y)

(∫
Γ

H(x)p dγ(x)

)1−1/p

.

As we assumed that

∫
Γ

H(x)p dγ(x) 6= 0,+∞, we can divide both sides by

(∫
Γ

H(x)p dγ(x)

)1−1/p

to get the result. �

Corollary 2.5. Let (Ω,B, µ) be a measure space. Let 1 ≤ p ≤ +∞ and f, g ∈ Lp(Ω, µ).
Then

‖f + g‖p ≤ ‖f‖p + ‖g‖p
with equality if and only if g = λf for some λ ≥ 0.

Proof. Let Γ = {1, 2} endowed with the counting measure. De�ne F on Γ× Ω by F (1, y) =
f(y), F (2, y) = g(y). Minkowski reduces to the desired inequality. �
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1.3. Completness of Lp spaces. The aim of this section is to prove that Lp is a Banach
space. Before this, let us adapt dominated convergence to convergence in Lp:

Lemma 2.6 (Lp-dominated convergence). Let (Ω,B, µ) be a σ-�nite measure space. Let 1 ≤
p < +∞.

Let (fk) be a sequence in Lp(Ω, µ) and f, F be two functions in Lp(Ω, µ). Assume that

(i) for every k, and µ-almost every x ∈ Ω, |fk(x)| ≤ F (x)
(ii) for µ-almost every x ∈ Ω, fk(x) → f(x) when k → +∞. In particular, |f(x)| ≤ F (x)

µ-a.e.

Then fk → f in Lp(Ω, µ) i.e. ‖fk − f‖p → 0.

Proof. We have to prove that∫
Ω

|fk(x)− f(x)|p dµ(x)→ 0.

But Condition (ii) implies that |fk(x)− f(x)|p → 0 µ-a.e.
Condition (ii) implies that

|fk(x)− f(x)|p ≤ (|fk(x)|+ |f(x)|)p ≤
(
2F (x)

)p ∈ L1

since F ∈ Lp. We can thus apply the dominated convergence theorem to obtain the result. �

Theorem 2.7 (Lp is complete). Let (Ω,B, µ) be a σ-�nite measure space. Let 1 ≤ p ≤ +∞.
Then Lp(Ω, µ) is complete (and thus a Banach space).

More precisely, if (fk) is a Cauchy sequence in Lp(Ω, µ), then the exists a sub-sequence (fkj )j
and F in Lp(Ω, µ) such that

(i) for j ≥ 1, |fkj (x)| ≤ F (x) and µ-almost every x ∈ Ω;
(ii) for µ-almost every x ∈ Ω, fkj (x)→ f(x) when j → +∞.

Proof. We will concentrate on the case 1 ≤ p < +∞. The case p = +∞ follows mainly from
the completness of C and is left as an exercice.

As noted in the above lemma, the second part of the theorem implies that every Cauchy
sequence in Lp has a convergent sub-sequence. But a Cauchy sequence with a convergent sub-
sequence is convergent.

The proof of the second part of the theorem is rather classical.
First, there exists i1 such that, if n ≥ i1, ‖fi1 − fn‖p ≤ 1/2 (ε = 1/2 in the de�nition of a

Cauchy sequence). There exists i2 > i1 such that, if n ≥ i2, ‖fi2 − fn‖p ≤ 1/22... This way, we

inductively de�ne ik > ik−1 such that, if n ≥ ik, ‖fik − fn‖p ≤ 1/2k.
Consider the non-decreasing positive sequence de�ned by

Fl(x) = |fi1(x)|+
l∑

k=1

|fik+1
(x)− fik(x)|.

The triangular inequality yields

‖Fl‖p ≤ ‖fi1‖p +

l∑
k=1

∥∥fik+1
− fik

∥∥
p
≤ ‖fi1‖p +

+∞∑
k=1

2−k = 1 + ‖fi1‖p < +∞.

The monotone convergence theorem implies that Fl converges almost everywhere to a function
F ∈ Lp. In particular, F (x) is �nite for µ-almost every x ∈ Ω. For such an x, the series

fi1(x) +

l∑
k=1

(
fik+1

(x)− fik(x)
)

is absolutely convergent, thus convergent. But this is a telescopic sequence:

fi1(x) +

l∑
k=1

(
fik+1

(x)− fik(x)
)

= fil+1
(x).

We have thus shown that fil+1
is convergent and, with the triangular inequality, |fil+1

| ≤ Fl ≤ F
which completes the proof. �
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1.4. The projection Theorem. Projections play an essential role in Hilbert spaces. It turns
out that a version of the projection theorem is still valid in Lp:

Theorem 2.8. Let 1 ≤ p < +∞ and let E be a closed vector space in Lp(Ω, µ). For
f ∈ Lp(Ω, µ), let us write d(f,E) = infg∈E ‖f − g‖p. Then there exists g0 such that d(f,E) =

‖f − g0‖p.

Remark 2.9. Not that, if ‖g‖p > 2‖f‖p then

‖f − g‖p ≥ ‖g‖p − ‖f‖p > ‖f‖p = ‖f − 0‖p ≥ d(f,E)

since 0 ∈ E. Therefore d(f,E) = inf{‖f − g‖p : g ∈ E, ‖g‖p ≤ 2‖f‖p}.
If E is �nite dimensional, the set {g ∈ E, ‖g‖p ≤ 2‖f‖p} being bounded and closed, is compact.

As g → ‖f − g‖p is continuous, the existence of g0 follows.
In in�nite dimensions, this argument is no longer valid.

Proof when p ≥ 2. When p = 2 this follows from the parallelogram identity

‖u− v‖22 + ‖u+ v‖22 = 2‖u‖22 + 2‖v‖22.

Take gn ∈ E a sequence such that ‖f − gn‖2 → d(f,E). Then the parallelogram identity applied

to u = f−gm
2 , v = f−gn

2 gives

‖gn − gm‖22 = 4

(
1

2
‖f − gm‖22 +

1

2
‖f − gn‖22 −

∥∥∥∥gn + gm
2

− f
∥∥∥∥2

2

)
.

As gn+gm
2 ∈ E,

∥∥ gn+gm
2 − f

∥∥
2
≥ d(f,E) thus

‖gn − gm‖22 ≤ 2(‖f − gm‖22 − d(f,E)2 + ‖f − gn‖22 − d(f,E)2)

from which one gets that (gn) is a Cauchy sequence. Thus (gn) is convergent and as E is closed,
the limit g0 ∈ E. By continuity of the norm ‖f − gn‖2 → ‖f − g0‖2 which is then the g0 we were
looking for.

When p > 2, the parallelogram identity is no longer valid. However, it is valid pointwise: if
f, g ∈ Lp(Ω, µ) and x ∈ Ω then

|f(x)− g(x)|2 + |f(x) + g(x)|2 = 2|f(x)|2 + 2|g(x)|2.

As p > 2, r = p/2 > 1. But, for a, b > 0

(1.7) ar + br ≤ (a+ b)r ≤ 2r−1(ar + br).

From this, we get

|f(x)− g(x)|p + |f(x) + g(x)|p =
(
|f(x)− g(x)|2

)r
+
(
|f(x) + g(x)|2

)r
≤

(
|f(x)− g(x)|2 + |f(x) + g(x)|2

)r
= 2r(

∣∣f(x)|2 + |g(x)|2
)r ≤ 22r−1(

∣∣f(x)|2r + |g(x)|2r
)

= 2p−1(
∣∣f(x)|p + |g(x)|p

)
.

Integrating with respect to µ, we get

‖f − g‖pp + ‖f + g‖pp ≤ 2p−1(
∥∥f‖pp + ‖g|pp

)
.

The remaining of the proof is exactly the same: take a sequence gn ∈ E such that ‖gn − f‖p →
d(f,E) and apply the inequality with f replaced by f − gn and g by f − gm. We obtain

‖gn − gm‖pp ≤ 2p−1(
∥∥f − gn‖pp + ‖f − gm‖pp

)
− ‖2f − gn − gm‖pp

≤ 2p−1(
∥∥f − gn‖pp + ‖f − gm‖pp − 2d(f,E)

)
.

We then deduce that gn is a Cauchy sequence, thus converges. As E is closed, the limit is in E
and is the desired value. �
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Proof of (1.7). Let us rewrite the inequality ar + br ≤ (a + b)r in the form 1 + (b/a)r ≤
(1+b/a)r that is, setting t = b/a, 1+tr ≤ (1+t)r for all t > 0. For t ≥ 0 let f(t) = (1+t)r−(1+tr).
Clearly f(0) = 0 and f ′(t) = r((1 + t)r−1 − tr−1) ≥ 0 since r ≥ 1 thus sr−1 is increasing.

The other inequality uses convexity of t→ tr:

(a+ b)r = 2r
(
a+ b

2

)r
≤ 2r

ar + br

2

which is the expected inequality. �

The proof for p < 2 is more involved and requires the use of Hammer's inequality∣∣‖f + g‖p + ‖f − g‖p
∣∣p +

∣∣‖f + g‖p − ‖f − g‖p
∣∣p ≤ 2p

(
‖f‖pp + ‖g‖pp

)
.

As we won't use the projection theorem in that case, we will not develop the proof here.

1.5. Duality. Thanks to Hölder's inequality, it is easy to construct continous linear function-
als on Lp(Ω, µ). Indeed,

Lemma 2.10. Let 1 ≤ p ≤ +∞ and let p′ be such that 1
p + 1

p′ = 1. Let g ∈ Lp′(Ω, µ) and de�ne

Φg(f) =

∫
Ω

f(x)g(x) dµ(x).

Then Φg is a continous linear functional on Lp(Ω, µ). Moreover

‖Φg‖ := sup
‖f‖p≤1

∫
Ω

f(x)g(x) dµ(x) = ‖g‖p′ .

Proof. Hölder's inequality directly shows continuity with ‖Φg‖ ≤ ‖g‖p′ while the equality
follows from the equality case in Hölder's inequality. �

The key result of this section is the following converse of this lemma:

Theorem 2.11. Let 1 ≤ p < +∞ and let p′ be such that 1
p + 1

p′ = 1. Let Φ ∈ (Lp)′ i.e. a

bounded linear functional on Lp(Ω, µ). Then there exists a unique g ∈ Lp′(Ω, µ) such that Φ = Φg,
that is

Φ(f) =

∫
Ω

f(x)g(x) dµ(x)

for every f ∈ Lp(Ω, µ).

Remark 2.12. It is important to notice that the result is false for p = +∞. The dual of
L∞(Ω, µ) is much more di�cult to describe and is out of scope of this course.

Proof of uniqueness. The uniqueness is easy to prove: assume that g1, g2 ∈ Lp
′
are such

that Φg1 = Φg2 then, if g = g1 − g2, for every f ∈ Lp, Φg(f) = 0.

If p > 1, then p′ < +∞, take f(x) =

{
|g(x)|p′−2g(x) if g(x) 6= 0

0 if g(x) = 0
. First |f |p = (|g|p′−1)p =

|g|p′ since p = p′

p′−1 when 1
p + 1

p′ = 1. Thus f ∈ Lp. Next,

0 = Φg(f) =

∫
Ω

f(x)g(x) dµ(x) =

∫
Ω

|g(x)|p
′−2g(x)g(x) dµ(x) = ‖g‖p

′

p′

thus g = 0 as claimed.
If p = 1, a slight modi�cation is needed. Write Ω =

⋃
n≥1 Ωn with µ(Ωn) < +∞ and g(x) =

eiθ(x)|g(x)|. Then fn = e−iθΩn ∈ L1 and

0 = Φg(fn) =

∫
Ω

fn(x)g(x)dµ(x) =

∫
Ωn

|g(x)| dµ(x).

It follows that g = 0 µ-almost everywhere on Ωn i.e. there is an En ⊂ Ωn such that g = 0 on
Ωn \ En. Thus g = 0 on

⋃
n≥1 Ωn \

⋃
n≥1En = Ω \

⋃
n≥1En. As

⋃
n≥1En is a countable union of

sets of mesure 0, it has measure 0 thus g = 0 µ-almost everywhere. �

Recall that L2(Ω, µ) is a Hilbert space so that the theorem follows from the more general
theorem by Riesz. It turns out that the case 1 ≤ p < 2 can be deduced from it.
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Proof in the case 1 ≤ p < 2. First let p′ be the dual index, 1
p+ 1

p′ = 1 and note that p′ > 2.

Let r, s be given by p
2 + 1

s = 1 i.e. s = 2
2−p and r = ps. Note that r, s have been chosen so that

Hölder's inequality implies

(1.8)

∫
Ω

|f(x)|p|g(x)|p dµ(x) ≤
(∫

Ω

|f(x)|2 dµ(x)

)p/2(∫
Ω

|g(x)|ps dµ(x)

)1/s

= ‖f‖p2‖g‖
p
r .

Write Ω =
⋃
n≥2 Ωn with µ(Ωn) < +∞ and the Ωn being disjoint. Let us de�ne w through

w(x) =
∑
n≥1

αn1Ωn

where the αn > 0 are chosen so that

(i) for every n, αn > 0 and αn+1 ≤ αn,
(ii) ‖w‖rr =

∑
n≥1 α

r
nµ(Ωn) < +∞.

It follows from (1.8) that, for every f ∈ L2(Ω, µ), fw ∈ Lp(Ω, µ) with ‖fw‖p ≤ ‖w‖r‖f‖2. In

other words, the operator Tw : L2 → Lp de�ned by Twf = wf is bounded.
Now, let Φ ∈ (Lp)′, that is let Φ be a bounded linear functional on Lp(Ω, µ). It follows

that ΦTw is a bounded linear functional on L2(Ω, µ). According to Riesz's theorem, there exists
G ∈ L2(Ω, µ) such that ΦTw = ΦG: for every f ∈ L2(Ω, µ),

ΦTwf = Φ(fw) =

∫
Ω

f(x)G(x) dµ(x).

Now consider the set S = {ϕ ∈ Lp(Ω, µ) : ϕ/w ∈ L2(Ω, µ)}. Note that S is dense in
Lp(Ω, µ). Indeed, if f ∈ Lp(Ω, µ) and ε > 0, there exists N such that, writing ΦN =

⋃
n≤N Ωn

fN = f1ΦN1|f |≤N , then ‖f − fN‖p ≤ ε (note that fN → f a.e. and that |fN | ≤ f so that fN → f

in Lp). Further, for x ∈ ΦN , there is an n ≤ N such that x ∈ Ωn. Then w(x) = αn ≥ αN since
the αn have been chosen as a decreasing sequence. It follows that

|fN (x)|
w(x)

≤

{
0 if x /∈ ΦN
N
αN

if x ∈ ΦN
.

Thus fN/w is bounded with support of �nite measure and is thus in L2(Ω, µ) i.e. fN ∈ S.
Now, for ϕ ∈ S, we can write ϕ = fw with f = ϕ/w ∈ L2. Therefore

Φ(ϕ) = Φ(fw) =

∫
Ω

f(x)G(x) dµ(x) =

∫
Ω

ϕ(x)
G(x)

w(x)
dµ(x) = Φg(ϕ)

with g := G/w. If we are able to prove that g ∈ Lp′(Ω, µ), then Φg is a continuous linear functional
on Lp as well. Therefore Φ = Φg is an equality between two continuous functionals on Lp on the
dense set S of Lp. This equality is then true on all of Lp, which is what we wanted to prove.

It remains to prove that g ∈ Lp′(Ω, µ). We need to distinguish two cases.
First consider the case 1 < p < 2. Consider ϕN = g|g|p−21|g|≤N1ΦN and observe that

|ϕN | = |g|p−11|g|≤N1ΦN . In particular ϕN is bounded and has support of �nite measure thus

ϕn ∈ Lp(Ω, µ) and on its support w ≥ αN so that |ϕN/w| ≤ |ϕN |/αN ∈ L2(Ω, µ). In other words,
ϕN ∈ S. But then

Φ(ϕN ) = Φg(ϕN ) =

∫
Ω

ϕN (x)g(x) dµ(x) =

∫
Ω

|g(x)|p
′
1|g|≤N (x)1ΦN (x)dµ(x).

On the other hand, Φ is continuous on Lp(Ω, µ) thus, for all ϕ, |Φ(ϕ)| ≤ ‖Φ‖‖ϕ‖p, in particular

|Φ(ϕN )| ≤ ‖Φ‖‖ϕN‖p = ‖Φ‖
(∫

Ω

|g|p(p−1)(x)1|g|≤N (x)1ΦN (x) dµ(x)

)1/p

= ‖Φ‖
(∫

Ω

|g|p
′
(x)1|g|≤N (x)1ΦN (x) dµ(x)

)1/p

.

Combining both identities shows that, for every N ,(∫
Ω

|g|p
′
(x)1|g|≤N (x)1ΦN (x) dµ(x)

)1/p′

≤ C
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Letting N go to in�nity and applying Beppo-Levi's Lemma, we get ‖g‖p′ ≤ C so that g ∈ Lp′(Ω, µ)
as expected.

When p = 1 the argument needs to be modi�ed. We write g = eiθ|g| and consider ϕN =
e−iθ1|g|>‖Φ‖+1/N1ΦN . As previously, ϕN ∈ S. But then

Φ(ϕN ) = Φg(ϕN ) =

∫
Ω

ϕN (x)g(x) dµ(x) =

∫
Ω

|g(x)|1|g|>‖Φ‖+1/N1ΦN dµ(x)

≥ (‖Φ‖+ 1/N)|{|g| > ‖Φ‖+ 1/N} ∩ ΦN |.
On the other hand

|Φ(ϕN )| ≤ ‖Φ‖‖ϕN‖1 = ‖Φ‖
∫

Ω

1|g|>‖Φ‖+1/N1ΦN dµ(x)

= ‖Φ‖| {|g| > ‖Φ‖+ 1/N} ∩ ΦN |.
Combining both, we get that |{|g| > ‖Φ‖+1/N}∩ΦN | = 0. Finally, As {|g| > ‖Φ‖} =

⋃
N≥1{|g| >

‖Φ‖+ 1/N} ∩ ΦN we get that |g| ≤ ‖Φ‖ almost everywhere. �

Proof using the projection theorem when 1 < p <∞. Let Φ be a continuous linear
functional on Lp(Ω, µ). We are looking for g ∈ Lp′(Ω, µ) such that Φ = Φg. We can assume that
Φ is not identically zero (otherwise take g = 0) so that there is an f ∈ Lp(Ω, µ) with L(f) 6= 0.
Up to replacing f by f/L(f) we can assume that L(f) = 1.

Let E = ker Φ = Φ−1(0) and note that E is a closed linear subspace of Lp(Ω, µ). Therefore,
there exists g0 ∈ E such that ‖f − g0‖p = d(f,E). Note that L(f −g0) = L(f)−L(g0) = 1−0 = 0

and that ‖f − g0‖p = ‖(f − g0)− 0‖p = d(f,E). Up to replacing f by f − g0 we can assume that

0 is a projection of f on E: L(f) = 1 and ‖f‖p = d(f,E), that is, for all g ∈ E, ‖f‖p ≤ ‖f − g‖p.
Now �x w ∈ E and consider the function ϕ de�ned on (−1, 1)×Ω by ϕ(t, x) = |f(x)− tg(x)|p

and let Φ be de�ned on R by

Φ(t) =

∫
Ω

ϕ(t, x) dx = ‖f − tg‖pp.

First, observe that
� as tg ∈ E, Φ(t) = ‖f − tg‖pp ≥ ‖f‖

p
p = Φ(0). Thus Φ has a minimum at 0.

� ϕ is continuous in t. Moreover,

ϕ(t, x) =
(
|f(x)− tg(x)|2

)p/2
=
(
|f(x)|2 + t2|g(x)|2 + 2t<f(x)g(x)

)p/2
thus

∂ϕ

∂t
=

p

2

(
|f(x)− tg(x)|2

)p/2−1(
2t|g(x)|2 + 2<f(x)g(x)

)
= p|f(x)− tg(x)|p−2

(
t|g(x)|2 + <f(x)g(x)

)
� for |t| ≤ 1 and x ∈ Ω,

|ϕ(t, x)| = |f(x)− tg(x)|p = 2p
∣∣∣∣f(x)− tg(x)

2

∣∣∣∣p ≤ 2p
(
|f(x)|+ |g(x)|

2

)p
≤ 2p−1(|f(x)|p + |g(x)|p).

Lebesgue's theorem on continuity of integrals then shows that Φ is continuous.
� for |t| ≤ 1 and x ∈ Ω,∣∣∣∣∂ϕ∂t

∣∣∣∣ ≤ p(|f(x)|+ |g(x)|)p−2
(
2|g(x)|2 + |f(x)|2

)
≤ p2p−3(|f(x)|p−2 + |g(x)|p−2)

(
2|g(x)|2 + |f(x)|2

)
≤ p2p−2(|f(x)|p + |g(x)|p + |f(x)|p−2|g(x)|2 + |g(x)|p−2|f(x)|2).

As f, g ∈ Lp, |f(x)|p + |g(x)|p is integrable. Further if q =
p

2
and q′ is given by

1

q
+

1

q′
= 1 then

q′ =
q

q − 1
=

p

p− 2
and Hölders inequality with these exponents gives∫

Ω

|f(x)|p−2|g(x)|2 dµ(x) ≤
(∫

Ω

|f(x)|p dµ(x)

)(p−2)/p(∫
Ω

|g(x)|p dµ(x)

)2/p
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thus |f(x)|p−2|g(x)|2 is also integrable. The same is true for |g(x)|p−2|f(x)|2.
We can thus apply Lebegue's derivation theorem and see that Φ is di�erentiable on (−1, 1)

and

Φ′(t) =

∫
Ω

∂ϕ

∂t
(t, x) dµ(x).

In particular,

Φ′(0) = p

∫
Ω

|f(x)|p−2<f(x)g(x) dµ(x).

As Φ has a minimum at 0, we get Φ′(0) = 0 that is, for every g ∈ Lp, with L(g) = 0,

<
∫

Ω

|f(x)|p−2f(x)g(x) dµ(x) = 0.

Note that, if g ∈ Lp, with L(g) = 0 then ig ∈ Lp and L(ig) = 0 so that

<i
∫

Ω

|f(x)|p−2f(x)g(x) dµ(x) = 0.

Finally, de�ne f̃ by f̃(x) = |f(x)|p−2f(x) and note that |f̃ |p′ = |f |(p−1)p′ = |f |p so that f̃ ∈ Lp′

with
∥∥∥f̃∥∥∥

p′
= ‖f‖p. We have proved that for every g ∈ Lp(Ω, µ) with L(g) = 0,∫

Ω

f̃(x)g(x) dµ(x) = 0.

In otherwords, if L(g) = 0 then Φf̃ (g) = 0.

Now let h ∈ Lp and consider g = h − L(h)f ∈ Lp. Note that L(g) = L(h) − L(h)L(f) = 0
since L(f) = 1 and that Φf̃ (f) = ‖f‖pp. Therefore Φf̃ (g) = 0. But

0 = Φf̃ (g) = Φf̃
(
h− L(h)f

)
= Φf̃ (h)− L(h)Φf̃ (f) = Φf̃ (h)− L(h)‖f‖pp.

As L(f) = 1, f 6= 0 thus ‖f‖pp 6= 0 and we conclude that

L(h) =
1

‖f‖pp
Φf̃ (h) = Φf̃/‖f‖pp

(h)

which is the expected result. �

2. Weak Lp spaces

2.1. The distribution function.

Definition 2.13. Let (Ω,B, µ) be a measure space and f : Ω → C be measurable. The
distribution function of f is the function df :]0,+∞)→ R+ de�ned by

df (λ) = µ
(
{x ∈ Ω : |f(x)| > λ}

)
.

We will say that f vanishes at in�nity if df (λ) < +∞ for every λ > 0.

Let us introduce
Df (λ) = {y ∈ Ω : |f(y)| > λ}.

Lemma 2.14 (Layer cake representation). Let (Ω,B, µ) be a measure space and f : Ω→ C be
measurable.

(2.9) |f(x)| =
∫ +∞

0

1{y∈Ω : |f(y)|>λ} dλ

so that

(2.10)

∫
Ω

|f(x)| dµ(x) =

∫ +∞

0

df (λ) dλ

Proof. For (2.9), it is enough to notice that 1{y∈Ω : |f(y)|>λ}(x) = 1 when λ ∈ [0, |f(x)|[ and
is zero otherwise. Applying Fubini, (2.10) follows. �

Some further important properties of df are summarized in the following proposition:

Proposition 2.15. Let (Ω,B, µ) be a measure space and f, g, fn : Ω→ C be measurable. Then
the following hold:
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(i) λ 7→ df (λ) is decreasing and right-continuous;
(ii) if |f | ≤ |g| then df ≤ dg. In particular if f = g a.e. then df = dg;
(iii) if for a.e. x ∈ Ω, |fn(x)| increases and converges to |f(x)| then dfn → df ;

Proof. Obviously, if λ ≤ λ′ then Df (λ′) ⊂ Df (λ) so that df (λ′) ≤ df (λ). To see that df
is right semi-continuous, let λn be decreasing with λn → λ ≥ 0. Then Df (λn) ⊂ Df (λ) with

Df (λ) =
⋃
n≥1

Df (λn) thus

lim df (λn) = limµ
(
Df (λn)

)
= µ

⋃
n≥1

Df (λn)

 = µ
(
Df (λ)

)
= df (λ).

As df is decreasing, this shows right-continuity.
If |f | ≤ |g| then Df (λ) ⊂ Dg(λ) (up to a negligible set) thus df (λ) ≤ dg(λ).
Finally, Dfn(λ) is an increasing family of sets such that⋃

n≥1

Dfn(λ) = Df (λ)

(up to a set of measure 0) so that we conclude as in the �rst part. �

Exercice 2.16. Let (X,B, µ) be a measure space and f : X → R+ be a simple function, that
is f can be written in the form

f =

k∑
j=1

cj1Ej

with Ej ∈ B two-by-two disjoint and c1 ≤ c2 ≤ · · · ≤ ck. Compute df .

Exercice 2.17. Let (X,B, µ) be a measure space and f : X → C be a measurable function
vanishing at in�nity. Prove that df (s)→ 0 when s→ +∞ and that

lim
t→s−

df (t) = df (s) + µ({x : |f(x)| = s}.

2.2. Weak Lp spaces. Before introducing weak Lp spaces, let us �rst prove the following
lemma that shows how the distribution function behaves for Lp functions:

Lemma 2.18. Let (X,B, µ) be a measure space, f : X → C be a measurable function vanishing
at in�nity and 1 ≤ p < +∞. Then

(i) ‖f‖pp = p

∫ +∞

0

sp−1df (s) ds;

(ii) if f ∈ Lp then df (s) ≤
‖f‖pp
sp

.

Proof. For the �rst identity, apply the Layer-Cake Representation to |f |p to get

|f(x)|p =

∫ +∞

0

1{|f |p>λ} dλ = p

∫ +∞

0

1{|f |p>sp}s
p−1 ds

with the change of variable λ = sp. Now {|f |p > sp} = {|f | > s} = Df (s) so that, integrating over
X with respect to µ and applying Fubini, we get

‖f‖pp =

∫
X

|f(x)|p dµ(x) = p

∫ +∞

0

∫
X

1Df (s) dµ(x)sp−1 ds = p

∫ +∞

0

df (s)sp−1 ds

as claimed.
The second assertion is just Markov's inequality:

df (s) =

∫
X

1{|f |>s}(x) dµ(x) =

∫
X

1{|f |p>sp}(x) dµ(x)

≤
∫
X

|f(x)|p

sp
1{|f |p>sp}(x) dµ(x) ≤ 1

sp

∫
X

|f(x)|p dµ(x)

as claimed. �

We can now introduce the weak Lp spaces Lpw as follows:
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Definition 2.19. Let (X,B, µ) be a measure space, f : X → C be a measurable function
vanishing at in�nity and 1 ≤ p < +∞. We will say that f ∈ Lpw, the weak Lp-space, if there exists
a constant C > 0 such that df (s) ≤ Cp

sp
for all s > 0.

The smallest such C is called the weak-Lp norm i.e.

(2.11) ‖f‖Lpw = inf

{
C > 0 : df (s) ≤ Cp

sp

}
= sup{sdf (s)1/p : s > 0}.

When p = +∞, L∞w = L∞.

Exercice 2.20. (1) Show that if λ ∈ C \ {0}, then dλf (s) = df (s/|λ|). Conclude that
the two expressions in (2.11) are indeed equal.

(2) Let f(x) = 1/xα α > 0. Determine for which p ≥ 1 is f ∈ Lpw(0, 1) and for which p is
f ∈ Lpw(1,+∞).

(3) Let f(x) = |x|−pd on Rd. Show that f ∈ Lpw(Rd) and compute its norm.

As for usual Lp spaces, we will identify two functions if they are equal almost everywhere, that
is we start with the space of functions and then quotient it by the equivalence relation f ∼ g if
f = g a.e. One easily checks that df (s) = dg(s) if f ∼ g so that this operation is legitimate.

Lemma 2.21. For 1 ≤ p < +∞, Lpw ⊂ Lp and ‖f‖Lpw is a quasi-norm.

Proof. The �rst assertion is already given in Lemma 2.18.
First, if ‖f‖Lpw = 0 then, for every s > 0, df (s) = 0, i.e. {|f | > s} is negligible. But then

{f 6= 0} =
⋃
n∈N{|f | > 1/n} is also negligible and f = 0 a.e.

Next, since dλf (s) = df (s/|λ|), a straightforward computation shows that ‖λf‖Lpw = |λ| ‖f‖Lpw .
We conclude by noticing that if |f(x) + g(x)| > s then at least one of |f(x)| or |g(x)| > s/2

(otherwise |f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ s). This implies that

{x : |f(x) + g(x)| > s} ⊂ {x : |f(x)| > s/2} ∪ {x : |g(x)| > s/2}
therefore

df+g(s) ≤ df (s/2) + dg(s/2).

Now (a+b)1/p ≤ a1/p+b1/p when a, b ≥ 0 and p ≥ 1 (factor out a and notice that (1+t)1/p ≤ 1+t1/p

for t > 0 by di�erentiating). We conclude that

sdf+g(s)
1/p ≤ 21/p

(
sp

2
df (s/2)

)1/p

+ 21/p

(
sp

2
dg(s/2)

)1/p

.

Taking proper supprema we get ‖f + g‖Lpw ≤ 21/p
(
‖f‖Lpw + ‖g‖Lpw

)
. �

Remark 2.22. With this de�nition, the weak-Lp spaces are not normed spaces. However,
there exists a norm that we will denote by ‖f‖Lp,∞ which is equivalent to ‖f‖Lpw .

To de�ne this norm, we �rst need to introduce the decreasing rearrangement of f :

f∗(t) = inf{s > 0 : df (s) ≤ t}
which is de�ned on [0,+∞). If the measure µ is non-atomic i.e. µ({x}) = 0 for all x ∈ X we de�ne

f∗∗(u) =
1

u

∫ p

0

f∗(t) dt

and then

‖f‖Lp,∞ = sup
u>0

u1/pf∗∗(u) = sup

{
1

µ(E)1− 1
p

∫
E

|f(x)| dµ(x) : E ∈ B

}
.

In the general case, the �rst identity is still valid if we de�ne f∗∗ by

f∗∗(u) = sup

{
1

µ(E)

∫
E

|f(x)| dµ(x) : E ∈ B : µ(E) ≥ u
}

when u < µ(X) and

f∗∗(u) =
1

u

∫
X

|f(x)| dµ(x)
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when u ≥ µ(X).
The space introduced this way is called the Lorentz space Lp,∞ and more general spaces Lorentz

space Lp,q can be de�ned via

‖f‖Lp,q =

(∫ +∞

0

(
u1/pf∗∗(u)

)q
du

)1/q

when q < +∞. The reader may check that Lp,p = Lp.
We will not require any knowledge on Lorentz space in this course.

We can now introduce convergence in weak-Lp spaces in the usual way: fn → f in Lpw in
‖fn − f‖Lpw → 0. Let us compare this convergence to two other convergences:

Lemma 2.23. Let 1 ≤ p < +∞ and (X,B, µ) be a measure space.

(i) If fn → f in Lp then fn → f in Lpw.
(ii) If fn → f in Lpw then fn → f in measure that is, for every ε > 0, there exists n0 such

that, if n > n0 then

µ({x : |fn(x)− f(x)| ≥ ε}) ≤ ε.

Proof. The �rst assertion follows from Lemma 2.18:

spdfn−f (s) ≤ ‖fn − f‖pp
so that

‖fn − f‖Lpw ≤ ‖fn − f‖
p
p

which shows the desired implication.
For the second one, given ε > 0 there is an N such that for every n ≥ N

‖fn − f‖Lpw :=

(
sup
s>0

spdfn−f (s)

)1/p

≤ ε1/p+1.

Taking s = ε gives

εpµ({x : |fn(x)− f(x)| > ε}) ≤ ε1+p

which gives the result after simpli�cation by ε. �

We will not establish that weak Lp spaces are complete (this requires to use the Lorentz spaces
i.e. the norm and not the quasi-norm). However, we will establish a weak version of completness.
The �rst result is also the key step in establishing completness of Lp spaces.

Theorem 2.24 (Riesz). Let (X,B, µ) be a measure space and fn, f be complex valued measur-
able functions on X. Assume that fn → f in measure, then there exists a subsequence (fnk) such
that fnk → f almost everywhere.

Proof. We choose nk inductively such that nk > nk−1 and such that the set

Ak := {x : |fnk(x)− f(x)| > 2−k}

satis�es µ(Ak) ≤ 2−k. Then

µ

(
+∞⋃
k=m

Ak

)
≤

+∞∑
k=m

µ(Ak) ≤
+∞∑
k=m

2−k = 2−m+1.

In particular

µ

(
+∞⋃
k=1

Ak

)
≤ 1 < +∞.

It follows that

µ

(
+∞⋂
m=1

+∞⋃
k=m

Ak

)
= 0

and this contains the set of all x's such that fnk(x) does not converge to f(x). �

An essentially similar argument allows to prove the following:
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Theorem 2.25 (Riesz). Let (X,B, µ) be a measure space and fn be complex valued measurable
functions on X. Assume that fn is Cauchy in measure, then there exists a subsequence (fnk) and
a function f such that fnk → f almost everywhere.

Proof. This time the nk's are chosen inductively such that nk+1 > nk and

Ak := {x : |fnk(x)− fnk+1
(x)| > 2−k}

satis�es µ(Ak) ≤ 2−k). As previously

µ

(
+∞⋂
m=1

+∞⋃
k=m

Ak

)
= 0.

Now �x m, take x /∈
+∞⋃
k=m

Ak and j > i > i0 > m (i0 large enough) then

|fnj (x)− fni(x)| ≤
j−1∑
k=i

|fnk+1
(x)− fnk(x)| ≤

j−1∑
k=i

2−k ≤ 2−i+1 ≤ 2−i0+1.

It follows that fni(x) is Cauchy for every x ∈

(
+∞⋃
k=m

Ak

)
and thus has a limit ϕm(x).

We now de�ne f(x) = lim fni(x) when x /∈
+∞⋂
m=1

+∞⋃
k=m

Ak and 0 otherwise so that fni → f

a.e. �

Exercice 2.26. Show that convergence in measure, as de�ned above, is equivalent to the fact
that, for every ε > 0, µ({|fn − f | > ε})→ 0.

2.3. First glimpse at interpolation. In this section, we will show that if a function is
in two weak Lp-spaces then it is in all Lp spaces �between� them. This is a �rst step towards
interpolation of operators were we will state that if an operator is bounded from Lp to Lq (weak
or strong) for two di�erent couples of (p, q)'s then it is also bounded for intermediate couples.

Let us start with functions:

Proposition 2.27. Let (X,B, µ) be a measure space and 1 ≤ p0 < p1 < +∞. Let f ∈
Lp0
w ∩ Lp1

w . Then, for every p0 < p < p1, f ∈ Lp with

‖f‖pp ≤
(

p

p− p0
+

p

p1 − p

)
‖f‖

p0
p1−p
p1−p0

L
p0
w

‖f‖
p1

p−p0
p1−p0

L
p1
w

.

Proof. The hypothesis is that if C0 > ‖f‖p0

L
p0
w

and C1 > ‖f‖p1

L
p1
w

then

(2.12) df (s) ≤ C0

sp0
and df (s) ≤ C1

sp1

and we want to estimate that

‖f‖pp = p

∫ +∞

0

sp−1df (s) ds.

The �rst of the two estimates (2.12) is better for s near 0 while the second one is better for s near
+∞. The idea is then simple, cut the integral at some λ > 0, use the best estimate on each piece
and then optimise over λ.

First ∫ λ

0

sp−1df (s) ds ≤ C0

∫ λ

0

sp−p0−1 ds =
C0

p− p0
λp−p0

while ∫ +∞

λ

sp−1df (s)ds ≤ C1

∫ +∞

λ

sp−p1−1 ds =
C1

p1 − p
λp−p1 .

Note that the hypothesis p0 < p < p1 guaranties that both integrals converge. It follows that for
every λ > 0, every C0 > ‖f‖p0

L
p0
w

and every C1 > ‖f‖p1

L
p1
w

‖f‖pp ≤
C0p

p− p0
λp−p0 +

C1p

p1 − p
λp−p1 .
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So we �rst optimise in C0, C1 to get

‖f‖pp ≤ p

(
‖f‖p0

L
p0
w

p− p0
λp−p0 +

‖f‖p1

L
p1
w

p1 − p
λp−p1

)
.

Now the right hand side goes to +∞ when λ → 0 and when λ → +∞ so there is a λ for which
this quantity is minimal. To �nd this λ consider a function of the form

ϕ(t) =
a

α
tα +

b

βtβ

with a, b, α, β > 0. Then ϕ′(t) = atα−1 − bt−β−1 and thus ϕ′(t) = 0 when t = t0 :=

(
b

a

) 1
α+β

and

thus

minϕ(t) = ϕ(t0) =
a

α

(
b

a

) α
α+β

+
b

β

(a
b

) β
α+β

=

(
1

α
+

1

β

)
a

β
α+β b

α
α+β

Now α = p− p0, β = p1 − p, so α+ β = p1 − p0 we get

‖f‖pp ≤ p
(

1

p− p0
+

1

p1 − p

)
‖f‖

p0
p1−p
p1−p0

L
p0
w

‖f‖
p1

p−p0
p1−p0

L
p1
w

as claimed. �

Note that the case p1 = +∞ is simpler as df (s) = 0 when s > ‖f‖∞. We leave this case as an
exercice.

2.4. Real interpolation. Before switching to operators, we will need to introduce some
vocabulary.

Definition 2.28. We say that V is closed under truncation if for every f ∈ V and every
0 ≤ r < s ≤ +∞, the function f1{r≤|f |≤s} still belongs to V .

Let T be a mapping V → L0(Y ). We say that T is sub-linear if, for every f, g ∈ V and every
λ ∈ C,

|T (f + g)| ≤ |T (f)|+ |T (g)| and |T (λf)| = |λ| |T (f)|.
We say that T is of strong (p, q)-type if there exists a constant Cp,q such that for every f ∈

Lp(X) ∩ V , T (f) ∈ Lq(Y ) with

(2.13) ‖T (f)‖Lq(Y ) ≤ Cp,q‖f‖Lp(X).

We say that T is of weak (p, q)-type if there exists a constant Cp,q such that for every f ∈ Lp(X)∩V ,
T (f) ∈ Lqw(Y ) with

(2.14) ‖T (f)‖Lqw(Y ) ≤ Cp,q‖f‖Lp(X)

that is, for every s > 0,

ν({y : |T (f)(y)| > s}) ≤
(
Cp,q‖f‖Lp(X)

)q
sq

.

Of course, strong (p, q)-type implies weak (p, q)-type but the converse is false.
An example of a vector space that is closed under truncation is the set S = S(X,B, ν) of

simple functions i.e. of functions of the form f =

k∑
j=1

cj1Sj where the Sj 's are disjoint and cj ∈ C

(it is easy to check that the truncation of a simple function is still a simple function).

Theorem 2.29 (Marcienkiewiz). Let (X,B, µ), (Y, B̃, ν) be two measure spaces and let 1 ≤
p0, p1, q0, q1 ≤ +∞. Let V be a subspace of Lp0(µ) + Lp1(µ) closed by truncation. Let T : V →
L0(Y, B̃, ν) be a sublinear operator that is of weak type (p0, q0) and (p1, q1) with

� ‖T (f)‖Lq0w ≤ C0‖f‖p0
for all f ∈ Lp0(µ) ∩ V ;

� ‖T (f)‖Lq1w ≤ C1‖f‖p1
for all f ∈ Lp1(µ) ∩ V .

Let 0 < θ < 1 and p, q be de�ned by

1

p
=

θ

p0
+

1− θ
p1

and
1

q
=

θ

q0
+

1− θ
q1

.
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Then T is of strong (p, q) with

‖T (f)‖Lq ≤ C(p0, p1, q0, q1, θ)C
θ
0C

1−θ
1 ‖f‖p

for every f ∈ V ∩ Lp(µ).

Proof. For (much more) simplicity, we will only consider the case q0 = p0 and q1 = p1 so
that q = p. We will assume that p0 < p1 and it will be more convenient to write p− = p0 and
p+ = p1. Also, we only consider the case p+ < +∞. The case q+ = p+ = +∞ is left as an exercice.
We have

ν({y : T (f)(y) > u}) ≤
(
C±‖f‖p±

u

)p±
for all u > 0 and f ∈ V ∩ Lp± .

Let f ∈ V ∩ Lp(µ), �x t > 0 and write f = f− + f+ with f− = f1{|f |≥t} and f+ = f1{|f |<t}.
As V is closed under truncation, f− ∈ V and as V is a vector space, f+ = f − f− ∈ V . As
p ∈ (p−, p+) we have∫

X

|f+(x)|p+ dx =

∫
{|f |<t}

|f(x)|p+ dx ≤ tp+−p
∫
{|f |<t}

|f(x)|p dx ≤ tp+−p‖f‖pp < +∞

while∫
X

|f−(x)|p− dx =
tp−p−

tp−p−

∫
{|f |≥t}

|f(x)|p− dx ≤ 1

tp−p−

∫
{|f |≥t}

|f(x)|p dx ≤
‖f‖pp
tp−p−

< +∞.

Further, by sub-linearity |T (f)| ≤ |T (f−)|+ |T (f+)| so that

{y : |T (f)(y)| > t} ⊂ {y : |T (f−)(y)| > s/2} ∪ {y : |T (f+)(y)| > s/2}

and thus

ν({y : |T (f)(y)| > t}) ≤ ν({y : |T (f−)(y)| > t/2}) + ν({y : |T (f+)(y)| > t/2})

≤
(

2C−
t
‖f2‖p−

)p−
+

(
2C+

t
‖f1‖p+

)p+

= (2C−)p−t−p−‖f1{|f |≥t}‖p−p− + (2C+)p+t−p+‖f1{|f |<t}‖p+
p+
.

We then conclude writing

‖T (f)‖pp = p

∫ +∞

0

tp−1ν({y : |T (f)(y)| > t}) dt

≤ p(2C−)p−
∫ +∞

0

tp−1−p−
∫
X

1{|f |≥t}(x)|f(x)|p− dµ(x) dt

+p(2C+)p+

∫ +∞

0

tp−1−p+

∫
X

1{|f |<t}(x)|f(x)|p+ dµ(x) dt

= p(2C−)p−
∫
X

|f(x)|p−
∫ |f(x)|

0

tp−1−p− dt dµ(x)

+p(2C+)p+

∫
X

|f(x)|p+

∫ +∞

|f(x)|
tp−1−p+ dt dµ(x)

= p

(
(2C−)p−

p− p−
+

(2C+)p+

p− p+

)
intX |f(x)|p dµ(x)

with Fubini and a simple computation. �

It should be noted that the constant p

(
(2C−)p−

p− p−
+

(2C+)p+

p− p+

)
obtained in this computation

explodes when p→ p± so that if T were of strong (p±, p±)-type those constants would most likely
not be very good. The aim of complex interpolation is precisely to cover this case with better
constants.

Exercice 2.30. Prove the following result:
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Lemma 2.31 (Kolmogorov). Let T be an operator of weak type (1, 1) and 0 < ν < 1. Then for
every E ⊂ Rd with 0 < |E| < +∞ and every f ∈ L1(Rd),∫

E

|Tf(x)|ν dx ≤ |E|1−ν‖f‖νL1(Rd)

where C is aconstant that depends on d and ν only.

Hint: Write the integral in the left hand side in terms of level sets {x : |Tf(x)| > λ}.

2.5. Complex interpolation.

Theorem 2.32 (Riesz-Thorin). Let (X,B, µ), (Y, B̃, ν) be two measure spaces and let 1 ≤
p0, p1, q0, q1 ≤ +∞. Let T : S → L0(Y ) be a linear operator and assume that T is of strong
(p0, q0) and (p1, q1) type with

‖T (f)‖Lq0 ≤ C0‖f‖Lp0

for every f ∈ S ∩ Lp0(µ) and
‖T (f)‖Lq1 ≤ C1‖f‖Lp1

for every f ∈ S ∩ Lp1(µ). Let θ ∈ [0, 1] and de�ne p, q via

1

p
=

1− θ
p0

+
θ

p1
and

1

q
=

1− θ
q0

+
θ

q1
.

Then for every f ∈ S ∩ Lp0(µ) and

‖T (f)‖Lq ≤ C1−θ
0 Cθ1‖f‖Lp .

In particular, T extends to a bounded linear mapping from Lp → Lq.

Proof. The cases θ = 0 and θ = 1 are the hypothesis so they do not require a proof and we

can assume that 0 < θ < 1. In particular, q 6= 1 and, if we de�ne q′ to be the dual index
1

q
+

1

q′
= 1

we also have q′ 6= +∞. In particular, S is dense in Lq
′
and

‖T (f)‖Lq = sup

{∣∣∣∣∫
Y

T (f)(y)g(y)dν(y)

∣∣∣∣ : g ∈ S, ‖g‖Lq′ (ν) = 1

}
.

We thus need to prove that, if f, g are simple functions with

‖f‖Lp(µ) = ‖g‖Lq′ (ν) = 1

then ∣∣∣∣∫
Y

T (f)(y)g(y) dν(y)

∣∣∣∣ ≤ C1−θ
0 Cθ1 .

We write

f =

m∑
j=1

cj1Ej and g =

n∑
k=1

dk1Fk

with cj , dj ∈ C \ {0}, Ej ∈ B pairwise disjoint with 0 < µ(Ej) < +∞, Fk ∈ B̃ pairwise disjoint
with 0 < ν(Fk) < +∞ and

m∑
j=1

|cj |pµ(Ej) =

n∑
k=1

|dk|q
′
ν(Fk) = 1.

Note that ∫
Y

T (f)(u)g(u) dν(u) =

n∑
k=1

m∑
j=1

cjdkT (1Ej )(y)1Fk(y) dν(y).

We now write the cj , dk's in polar coordinares cj = |cj |eiθj and dk = |dk|eiϕk . De�ne the
following functions on Σ = {z ∈ C : 0 < <(z) < 1}.

p(z) = (1− z) p
p0

+ z
p

p1
, q(z) = (1− z) q

′

q′0
+ z

q′

q′1
and

fz =

m∑
j=1

|cj |p(z)eiθj1Ej , gz =

n∑
k=1

|dk|q(z)eiϕ(j)1Fk .
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The �rst observation is the following: if z = iy, y ∈ R then ‖fz‖Lp0 = 1 and ‖gz‖Lq′0 = 1. The two
identites are proved in the same way, so let us only prove the �rst one

� if p0 = +∞, then p(iy) = iy
p

p1
is purely imaginary so that

|fz| =
m∑
j=1

1Ej

since the Ej 's are pairwise disjoint and as ν(Ej) > 0, ‖fz‖L∞ = 1.

� if p0 < +∞, then <
(
p(iy)

)
=

p

p0
so that

|fz| =
m∑
j=1

|cj |p/p01Ej thus |fz|p0 =

m∑
j=1

|cj |p1Ej

and therefore ∫
X

|fz(u)|p0 dµ(u) =

m∑
j=1

|cj |pµ(Ej) = 1.

Note that exchanging z by 1− z amounts to exchanging p0 with p1 and q′0 with q′1 so that we
also have ‖fz‖Lp1 = ‖gz‖Lq′1 = 1 when z = 1 + iy.

Next, as the functions fz, gz are simple functions, we may de�ne

F (z) =

∫
Y

T (fz)(u)gz(u) dν(u) =

n∑
k=1

m∑
j=1

|cj |p(z)|dk|q(z)eiθjeiϕ(j)T (1Ej )(u)1Fk(u)dν(u).

Clearly F is holomorphic on Σ and continuous on Σ̄.
Moreover, using the fact that T has strong type (p0, q0) and Hölder, we get

|F (iy)| =
∣∣∣∣∫
Y

T (fiy)(u)giy(u) dν(u)

∣∣∣∣ ≤ ‖T (fiy)‖Lq0‖gz‖Lq′0 ≤ C0‖fiy‖Lp0 ‖gz‖Lq′0 = C0

and, in a similar way, |F (1 + iy)| ≤ C1. From Hadamard's Three Line Theorem, |F (θ + iy)| ≤
C1−θ

0 Cθ1 .

We will now only consider the case y = 0 i.e. z = θ and notice that p(θ) = (1−θ) p
p0

+θ pp1
= 1

and q(θ) = 1 so that fθ = f , gθ = g. It follows that∣∣∣∣∫
Y

T (f)(y)g(y)dν(y)

∣∣∣∣ = |F (θ)| ≤ C1−θ
0 Cθ1

which is the claimed identity. �

For a stricking application, see the Hausdor�-Young in the section on Fourier analysis.



CHAPTER 3

Convolution

Multi-index notation

Before starting this section, we will introduce the multi-index notation:
A multi-index is a vector with integer coordinates: α = (α1, . . . , αd) ∈ Nd. If β = (β1, . . . , βd) ∈

Nd, we will say that β ≤ α if βj ≤ αj for all j ∈ {1, . . . , d}.
The length of a multi-index α is the sum of its coordinates: |α| = α1 + · · ·+ αd.
We will write α! = α1! · · ·αd!, and the binomial coe�cient for β ≤ α(

α
β

)
=

α!

β!(α− β)!
=

(
α1

β1

)
· · ·
(
αd
βd

)
.

For x = (x1, . . . , xd) ∈ Rd, we write xα = xα1
1 · · ·x

αd
d . For a function f : Rd → C we write

∂αf =
∂α1

∂α1
x1

· · · ∂
αd

∂αdxd
f.

With this notation, some classical one-variable formula are written in the same way for multi-
variate functions:

� Leibnitz formula

∂α(fg) =
∑
β≤α

(
α
β

)
∂βf∂α−βg

� Taylor formula

f(x0 + h) =
∑
|α|≤n

∂αf(x0)
hα

|α|!
+ o(hN ).

1. De�nition and basic examples

Definition 3.1. Let f, g be two functions on Rd, we de�ne the convolution of f and g as being
the function on Rd given by

(1.15) f ∗ g(x) =

∫
Rd
f(y)g(x− y) dy.

Note that in the de�nition, we have said nothing about the existence of f ∗ g. The aim of this
chapter is precisely to give a meaning to f ∗ g. However, there are a few basic examples for which
this is easy:

Example 3.2. Let f = 1[a,b], g = 1[c,d].
First, the change of variable t = x − y shows that f ∗ g = g ∗ f . On may thus assume that

b− a > d− c, that is, the lenght of [a, b] is bigger than the length of [c, d].
It is obvious that, for x �xed, f(y)g(x−y) = 1Ix(y) where Ix is an intersection of two intervals

and is thus an interval. It follows that f ∗ g(x) = |Ix| the length of this interval. Next g(x− y) = 1
is and only if c ≤ x−y ≤ d that is y ∈ [x−d, x− c] so that Ix = [a, b]∩ [x−d, x− c]. The length of
this interval is clearly a piecewise a�ne function since [a, b] is �xed and we �slide� a second interval
[−d,−c] at constant speed, i.e. the second interval is [−d,−c] + x.

It is enough to �nd the nodes and determine the length at those nodes.
There are 5 cases:
� the interval [−d,−c]+x is entirely on the left of [a, b] (up to the end point), that is −c+x ≤ a

i.e. x ≤ a+ c. In this case f ∗ g(x) = |Ix| = 0.
� the interval [−d,−c] + x overlaps [a, b] on the left side: −d + x ≤ a ≤ −c + x i.e. a + c ≤

x ≤ a+ d. In this case Ix = [a,−c+ x] and f ∗ g(x) = |Ix| = x− (a+ c).

29
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� the interval [−d,−c]+x is entirely inside [a, b]: a ≤ −d+x ≤ −c+x ≤ b i.e. a+d ≤ x ≤ b+c.
In this case Ix = [−d,−c] + x and f ∗ g(x) = |Ix| = d− c

� the interval [−d,−c] + x overlaps [a, b] on the right side: −d + x ≤ b ≤ −c + x i.e. b + c ≤
x ≤ b+ d. In this case Ix = [−d+ x, b] and f ∗ g(x) = |Ix| = b+ d− x.

� the interval [−d,−c]+x is entirely on the left of [a, b] (up to the end point), that is b ≤ −d+x
i.e. x ≥ b+ d and in this case again f ∗ g(x) = 0.

We strongly advise the reader to draw the 5 cases and the graph of f ∗ g. Once this is
done, one can note for future use that f ∗ g is continuous and compactly supported with support
[a, b] + [c, d] = {x+ y, x ∈ [a, b], y ∈ [c, d]} = [a+ c, b+ d].

Example 3.3. Assume that f, g are tensors:

f(x1, . . . , xd) = f1(x1) · · · fd(xd) and g(x1, . . . , xd) = g1(x1) · · · gd(xd).
Then if fj ∗ gj are de�ned by (1.15), so if f ∗ g and

f ∗ g(x1, . . . , xd) = f1 ∗ g1(x1) · · · fd ∗ gd(xd).

An example of this are characteristic functions of cubes Q =
∏d
j=1 Ij with Ij intervals, then

1Q(x1, . . . , xd) = 1I1(x1) · · ·1Id(xd). This allows to compute 1Q ∗ 1Q′ when Q,Q
′ are cubes and

shows that this function is continuous.

Lemma 3.4. Let f, g ∈ Cc(Rd), the space of compactly supported continuous functions. Then
f ∗ g ∈ Cc(Rd) and f ∗ g = g ∗ f .

Morevoer, if g ∈ Cnc (Rd), then f ∗ g ∈ Cnc (Rd) and for all α ∈ Nd, with |α| ≤ n, ∂α(f ∗ g) =
f ∗ (∂αg) = (∂αg) ∗ f .

Note that ∂α(f ∗ g) = (∂αg) ∗ f implies that, if g ∈ Cnc (Rd) then f ∗ g is of class Cn+m and
∂α+β(f ∗ g) = (∂αf) ∗ (∂βg) as long as |α| ≤ m, |β| ≤ n.

Proof. We will only prove the result in one variable, the proof for several variables is similar.
Consider F (x, t) = f(t)g(x− t). Then
(1) F is continuous in t so that f ∗ g(x) =

∫
R F (x, t) dt is well de�ned. Further, the change

of varible s = x− t shows that f ∗ g = g ∗ f .
(2) Write I (resp. J) for an interval containing the support of f (resp. of g). As f, g are

continuous with compact support, they are bounded, so we can take C ≥ ‖f‖∞, ‖g‖∞.
But then |F (x, t)| ≤ C21I(t)1J(x− t). It follows that

|f ∗ g(x)| ≤ C2

∫
R

1I(t)1J(x− t) dt = C21I ∗ 1J(x).

The later one having compact support, f ∗ g has compact support. Further its support
is included in I + J = {x+ y, x ∈ I, y ∈ J}.

(3) Fix a bounded interval K ⊂ R and note that if x ∈ K and g(x − t) 6= 0 then t ∈
x − J ⊂ K − J = {k − j, k ∈ K, j ∈ J} (a bounded interval). It follows that |F (x, t)| ≤
C21I(t)1K−J(t) ∈ L1(R). As x → F (x, t) is continuous for all t, Lebesgue's continuity
theorem shows that f ∗ g is continuous on K and K is arbitrary.

The last part follows the same path noting that ∂αxF (x, t) = f(t)∂αg(x− t) and then the same
reasoning shows that this is bounded by an L1 function independent of x ∈ K. It remains to apply
Lebsgue's derivation theorem. �

2. Convolution between Lp and its dual space

Theorem 3.5. Let 1 ≤ p ≤ +∞ and p′ be such that
1

p
+

1

p′
= 1. Let f ∈ Lp(Rd) and

g ∈ Lp′(Rd) then

(2.16) f ∗ g(x) =

∫
Rd
f(t)g(x− t) dt

is well de�ned for every x ∈ Rd. The mapping (f, g)→ f ∗g is bilinear and continuous Lp×Lp′ →
L∞ with ‖f ∗ g‖∞ ≤ ‖f‖p‖g‖p′ .

Moreover, if 1 < p < +∞ f ∗ g ∈ C0(Rd) so that (f, g)→ f ∗ g is a bounded bilinear mapping

Lp × Lp′ → C0.
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Recall that C0(Rd) is the space of continuous functions on Rd that go to 0 at in�nity.

Proof. First, if g ∈ Lp′ then gx : t → g(x− t) is also in Lp
′
. Hölder's inequality then shows

that fgx ∈ L1 thus f ∗ g is well de�ned through (2.16). Further, Hölder shows that ‖f ∗ g‖∞ ≤
‖f‖p‖g‖p′ . As (f ; g)→ f ∗ g is clearly bilinear, it follows that (f, g)→ f ∗ g is a bounded bilinear

mapping Lp × Lp′ → L∞.

The key observation is that C0 is a closed subspace of L∞. Indeed, if (fk) is a sequence of
elements of C0 that converges to some f in the L∞-norm (i.e. uniformly) then

� the limit f is continuous (uniform limits of continuous functions are continuous);
� for ε > 0 there exists n such that ‖f − fn‖∞ ≤ ε. But then, there exists K such that, if

‖x‖ ≥ K, |fn(x)| ≤ ε. Finally, for those x's, |f(x)| ≤ |fn(x)|+ ‖f − fn‖∞ ≤ 2ε, so f(x)→ 0 when
‖x‖ → +∞.

In conclusion f ∈ C0 and C0 is closed in L∞.

Now, Example 3.3 shows that, if f, g are characteristic functions of cubes, f ∗ g is continuous
compactly supported. By bilinearity, if f, g are step functions, that is, �nite linear combinations
of characteristic functions of cubes, then f ∗ g ∈ Cc(Rd) ⊂ C0(Rd).

Finally, let f ∈ Lp(Rd) and g ∈ Lp′(Rd). As p 6= +∞, there exists a sequence (fk) of step
functions such that fk → f in Lp(Rd). As p 6= 1 we also have p′ 6= +∞, so there exists a sequence
(gk) of step functions such that gk → f in Lp(Rd).

But then

‖f ∗ g − fk ∗ gk‖∞ = ‖(f − fk) ∗ g + fk(g − gk)‖∞ ≤ ‖(f − fk) ∗ g‖∞ + ‖fk(g − gk)‖∞
≤ ‖f − fk‖p‖g‖p′ + ‖fk‖p‖g − gk‖p′ → 0

since ‖f − fk‖p, ‖g − gk‖p′ → 0 and ‖fk‖p is bounded since fk is convergent. �

3. Convolution of L1 with itself

We want to make sense of

(3.17) f ∗ g(x) =

∫
Rd
f(y)g(x− y) dy.

This is possible as a Lebesgue integral when

∫
Rd
|f(y)g(x−y)| dy is �nite. But note that, integrating

this quantity in the x variable, we obtain, with Fubini∫
Rd

∫
Rd
|f(y)g(x− y)| dy dx =

∫
Rd

∫
Rd
|f(y)g(x− y)| dx dy

=

∫
Rd
|f(y)|

(∫
Rd
|g(x− y)| dx

)
dy

=

∫
Rd
|f(y)|

(∫
Rd
|g(t)| dt

)
dy = ‖f‖L1(Rd)‖g‖L1(Rd).

It follows that, if f, g ∈ L1(Rd) then∫
Rd

(∫
Rd
|f(y)g(x− y)| dy

)
dx < +∞

but then, for almost every x,

∫
Rd
|f(y)g(x − y)| dy is �nite. It follows that (3.17) is well de�ned

for almost every x. Moreover, the resulting function is in L1(Rd). Let us summarize this:

Proposition 3.6. Let f, g ∈ L1(Rd) then

f ∗ g(x) =

∫
Rd
f(y)g(x− y) dy

is well de�ned for almost every x ∈ Rd. Moreover, the mapping (f, g)→ f ∗ g is a bounded bilinear
mapping L1(Rd)× L1(Rd)→ L1(Rd) and

‖f ∗ g‖1 ≤ ‖|f | ∗ |g|‖1 = ‖f‖1‖g‖1.
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4. Extension principle

In this course, we will use the following general principle :
� X and Y are Banach spaces and D is a dense (vectorial) subspace of X;
� T is a linear mapping D → Y ;
� T is bounded on D, that is, there exists C ≥ 0 such that, for all x ∈ D, ‖Tx‖Y ≤ C‖x‖X .
Then T extends into a bounded linear mapping T̃ : X → Y with same norm: for all x ∈ D,

T̃ x = Tx and for all x ∈ X,
∥∥∥T̃ x∥∥∥

Y
≤ C‖x‖X .

Of course, we then write T̃ = T .

Proof. Let us �rst extend T and then show it is linear bounded:
Let x ∈ X. From the density of D in X, there exists a sequence (xn)n ⊂ D that converges to x

in X. In particular, it is a Cauchy sequence. Let us show that (Txn)n is also a Cauchy sequence.
Indeed, let ε > 0, there exists N ≥ 0 such that, if p, q ≥ N , then ‖xp − xq‖X ≤ ε. But then, as
xp, xq ∈ D and T is linear on D,

‖Txp − Txq‖Y = ‖T (xp − xq)‖Y ≤ C‖xp − xq‖X ≤ Cε

since T is bounded on D. Now, as (Txn)n is Cauchy in Y , a Banach space, (Txn)n has a limit
that we denote by a.

We would of course like to call a = Tx. To do so, we need to show that, if (yn)n is an
other sequence of elements of D that converges to x in X, then Tyn also converges to a. But, as
xn, yn ∈ D and T is linear on D,

‖Txn − Tyn‖Y = ‖T (xn − yn)‖Y ≤ C‖xn − yn‖X → C‖x− x‖ = 0

since the norm is a continuous mapping. We thus write a = T̃ x.

Further, if x ∈ D the sequence xn = x converges to x so that Tx = Txn → T̃ x and T̃ is an
extension of T from D to X. We will thus denote T̃ = T .

Let us now show that T is linear: let x, y ∈ X and λ, µ ∈ K. By density, there exist sequences
(xn), (yn) in D that converge respectively to x and y. But then λxn + µyn → λx+ µy so T (λxn +
µyn) → T (λx + µy). On the other hand, as T is linear on D, T (λxn + µyn) = λTxn + µTyn →
λTx+ µTy, so

T (λx+ µy) = λTx+ µTy.

Finally, if x ∈ X and (xn)n ⊂ D converges to x, then Txn → Tx in Y and ‖Txn‖Y ≤ C‖xn‖X .
As norms are continuous, ‖Tx‖Y ≤ C‖x‖X . So T is a bounded linear mapping �

Let us illustrate this:

Theorem 3.7. Let f ∈ L1(Rd) and 1 ≤ p ≤ +∞. Then the mapping Tf : g → f ∗ g extends

from Cc(Rd)→ L∞ to a mapping Lp(Rd)→ Lp(Rd).
Moreover, this mapping commutes with the translations τa.

Recall that τag(x) = g(x− a).

Proof. Note that we have already seen that f ∗ g is well de�ned when f ∈ L1 and g ∈ L∞.
What we have to prove is that there is a C > 0 such that, for all g ∈ Cc(Rd), ‖f ∗ g‖Lp(Rd) ≤
C‖g‖Lp(Rd).

But this follows from Minkowski's inequality :∥∥∥∥∫
Rd
f(t)g(· − t)dt

∥∥∥∥
p

≤
∫
Rd
|f(t)|‖g(· − t)‖p dt = ‖f‖1‖g‖p.

Finally, when p 6= +∞, g ∈ Cc(Rd)

Tfτag(x) = f ∗ (τag)(x) =

∫
Rd
f(t)g(x− t− a) dt

=

∫
Rd
f(t)g

(
(x− a)− t

)
dt = f ∗ g(x− a) = τaTfg(x).
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Thus Tfτa = τaTf holds on the dense subspace Cc(Rd) of Lp(Rd) and Tf , τa are continuous linear
mappings on Lp so the conclusion follows.

When p = +∞, we can directly take g ∈ L∞ in the above computation. �

The extension principle works exactly the same way for bilinear mappings:
� X1, X2 and Y are Banach spaces and D1 (resp. D2) is a dense (vectorial) subspace of X1

(resp. X2);
� T is a bilinear mapping D1 ×D2 → Y ;
� T is bounded on D1×D2, that is, there exists C ≥ 0 such that, for all x ∈ D, ‖T (x1, x2)‖Y ≤

C‖x1‖X1
‖x2‖X2

.

Then T extends into a bounded bilinear mapping T̃ : X1 × X2 → Y with same norm: for

all (x1, x2) ∈ D1 × D2, T̃ (x1, x2) = T (x1, x2) and for all (x1, x2) ∈ X1 × X2,
∥∥∥T̃ (x1, x2)

∥∥∥
Y
≤

C‖x1‖X1
‖x2‖X2

.

Of course, we then write T̃ = T .

5. Young's inequality

5.1. Young's Inequality in Lp. We would now like to extend the convolution to a bilinear
mapping from Cc(Rd) × Cc(Rd) → Cc(Rd) to Lp(Rd) × Lq(Rd) → Lr(Rd). For this to be possible,
one needs to have a constant C > 0 such that the inequality

(5.18) ‖f ∗ g‖Lr(Rd) ≤ C‖f‖Lp(Rd)‖g‖Lq(Rd).

To start, we will use a simple but common trick to check for which p, q, r this is possible:
Fix f, g ∈ Cc(Rd) \ {0} and f, g ≥ 0 so that f ∗ g ∈ Cc(Rd) \ {0} as well. Take a parameter

λ > 0 and de�ne fλ(x) = f(λx), gλ(x) = g(λx) then, changing variable s = λx

fλ ∗ gλ(x) =

∫
Rd
f(λt)g

(
λ(x− t)

)
dt = λ−d

∫
Rd
f(s)g(λx− s) ds = λ−df ∗ g(λx).

On the other hand

‖fλ‖Lp(Rd) =

(∫
Rd
|f(λt)|p dt

)1/p

=

(
λ−d

∫
Rd
|f(s)|p ds

)1/p

= λ−d/p‖f‖Lp(Rd).

The same way, we have

‖gλ‖Lq(Rd) = λ−d/q‖g‖Lq(Rd) and ‖fλ ∗ gλ‖Lr(Rd) = λ−d(1+1/r)‖f ∗ g‖Lr(Rd).

Thus, if we replace f, g by fλ, gλ in (5.18), then

0 <
‖f ∗ g‖Lr(Rd)

C‖f‖Lp(Rd)‖g‖Lq(Rd)

≤ λd(1+ 1
r−

1
p−

1
q ).

Letting λ → 0, this implies that the power of λ be ≤ 0 while letting λ → +∞, this implies that

the power of λ be ≥ 0. We have thus shown that (5.18) implies
1

p
+

1

q
= 1+

1

r
. In other words, the

conditions on p, q, r in the following theorem are necessary. We will now show that this condition
is also su�cient.

Theorem 3.8 (Young's Inequality). Young's Inequality!Lp spaces Let 1 ≤ p, q, r ≤ +∞ be

three real numbers such that
1

p
+

1

q
= 1 +

1

r
. Then, for all f, g ∈ Cc(Rd),

(5.19) ‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

It follows that the mapping (f, g)→ f ∗ g extends from Cc(Rd)× Cc(Rd)→ Cc(Rd) into a bounded
bilinear mapping Lp(Rd)× Lq(Rd)→ Lr(Rd).

Further f ∗ g = g ∗ f .

Proof. We only have to prove (5.19).

Note that several particular cases have already be proven: when r = +∞, then
1

p
+

1

q
= 1 and

this is (part of) Theorem 3.5.
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When r = 1 then
1

p
+

1

q
= 2. As p, q ≥ 1 this implies p = q = 1 and Young's inequality is

Proposition 3.6. More generally, the case p = 1 was treated in Theorem 3.5 and, by symmetry
f ∗ g = g ∗ f , so is the case q = 1. Note �nally that if p = +∞, then as 1 ≤ q, r ≤ +∞ then
1 + 1/r = 1/q implies q = 1 and r = +∞ which is already covered. The same holds when q = +∞.

We can then assume that 1 < p, q, r < +∞. We de�ne r′ to be the dual index of r,
1

r
+

1

r′
= 1,

that is r′ =
r

r − 1
. Note that 1

p + 1
q = 1 + 1

r implies r > p, q so that 0 <
p

r
,
q

r
, 1− p

r
, 1− q

r
< 1.

We will use the following fact which comes from the duality of Lr-Lr
′
(actually from Hölder's

Inequality) in the following way: if ϕ ∈ Lr then

‖ϕ‖r = sup

{∫
Rd
ϕ(x)ψ(x) dx : ψ ∈ Lr

′
, ‖ψ‖r′ = 1

}
.

But now, if f, g ∈ Cc(Rd), then f ∗ g ∈ Cc(Rd) ⊂ Lr(Rd). Let h ∈ Lr
′
, we want to bound

I(f, g, h) =

∫
Rd
f ∗ g(x)h(x) dx.

Obvously

|I(f, g, h)| ≤
∫
Rd
|f ∗ g(x)||h(x)| dx ≤

∫
Rd

∫
Rd
|f |(t)|g|(x− t)|h|(x) dx dt = I(|f |, |g|, |h|)

with Fubini. We may thus replace f, g, h with |f |, |g|, |h|, that is, we can now assume that f, g, h ≥
0. We have to prove that I(f, g, h) ≤ ‖f‖p‖g‖q‖h‖r′ .

Note that, as f, g, h ≥ 0, we may apply Fubini and get

I(f, g, h) =

∫
Rd

∫
Rd
f(t)g(x− t)h(x)dx dt.

To bound this quantity we will �rst isolate h and apply Hölder's Lr − Lr′ inequality. To do so,
write f(t)g(x− t)h(x) = F1(x, t)F2(x, t) with

F1(x, t) = f(t)p/rg(x− t)q/r and F2(x, t) = f(t)1−p/rg(x− t)1−q/rh(x)

so that

(5.20) I(f, g, h) ≤
(∫

Rd

∫
Rd
F1(x, t)r dx dt

) 1
r
(∫

Rd

∫
Rd
F2(x, t)r

′
dx dt

) 1
r′

.

Note that F1(x, t)r, F2(x, t)r
′ ≥ 0 so that we will be able to change the order of integration.

The �rst of these two integrals is rather simple to bound: using Fubini, we �rst integrate with
respect to x, (∫

Rd

∫
Rd
F1(x, t)r dx dt

) 1
r

=

(∫
Rd

∫
Rd
f(t)pg(x− t)q dx dt

) 1
r

=

(∫
Rd
g(x)q dx

) 1
q
q
r
(∫

Rd
f(t)p dt

) 1
p
p
r

= ‖f‖
p
r
p ‖g‖

q
r
q .(5.21)

The second term is more involved. First(∫
Rd

∫
Rd
F2(x, t)r

′
dx dt

) 1
r′

=

(∫
Rd

∫
Rd
f(t)(1−p/r)r′g(x− t)(1−q/r)r′h(x)r

′
dt dx

) 1
r′

≤
(

sup
x∈Rd

∫
Rd
f(t)(1−p/r)r′g(x− t)(1−q/r)r′ dt

) 1
r′
(∫

Rd
h(x)r

′
dx

) 1
r′

=
∥∥∥f (1−p/r)r′ ∗ g(1−q/r)r′

∥∥∥1/r′

∞
‖h‖r′ .(5.22)
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We next introduce a parameter s to be determined soon and s′ its dual index
1

s
+

1

s′
= 1.

Then from Theorem 3.5 we know that

(5.23)
∥∥∥f (1−p/r)r′ ∗ g(1−q/r)r′

∥∥∥
∞
≤
∥∥∥f (1−p/r)r′

∥∥∥
s

∥∥∥g(1−q/r)r′
∥∥∥
s′
.

As we want an estimate with ‖f‖p this leads to the choice s
(

1− p

r

)
r′ = p. As r′ =

r

r − 1
we

thus have
(

1− p

r

)
r′ =

r − p
r − 1

so that we chose

s =
r − 1

r − p
p.

Remember that r > p > 1 so p < s < +∞. The dual index is then

s′ =
s

s− 1
=

(r − 1)p

r(p− 1)
=
p′

r′

thus (
1− q

r

)
r′s′ =

(
1− q

r

)
p′ =

(
1− q

r

)
p′.

But, multiplying 1 +
1

r
=

1

p
+

1

q
by q and rewriting it gives 1− q

r
= q

(
1− 1

p

)
=

q

p′
. Finally(

1− q

r

)
r′s′ = q.

The choice of s then implies that∥∥∥f (1−p/r)r′
∥∥∥
s

=

(∫
Rd
f(x)(1−p/r)r′s dx

) 1
s

=

(∫
Rd
f(x)p dx

) 1
s

= ‖f‖p/sp

while ∥∥∥g(1−q/r)r′
∥∥∥
s′

=

(∫
Rd
g(x)(1−q/r)r′s′ dx

) 1
s′

=

(∫
Rd
g(x)q dx

) 1
s′

= ‖g‖q/s
′

p .

Injecting this into (5.23), we get∥∥∥f (1−p/r)r′ ∗ g(1−q/r)r′
∥∥∥
∞
≤ ‖f‖p/sp ‖g‖

q/s′

p .

From this, (5.22) reduces to(∫
Rd

∫
Rd
F2(x, t)r

′
dx dt

) 1
r′

≤ ‖f‖p/r
′s

p ‖g‖q/r
′s′

p ‖h‖r′ .

Finally, with (5.21), we get that (5.20) reduces to

I(f, g, h) ≤ ‖f‖
p
r+ p

r′s
p ‖g‖

q
r+ q

r′s′
p ‖h‖r′ .

It remains to notice that

1

r
+

1

r′
1

s
=

1

r
+
r − 1

r

r − p
(r − 1)p

=
p+ r − p

rp
=

1

p

and that
1

r
+

1

r′
1

s′
=

1

q
. In conclusion we have∫

Rd

∫
Rd
f(t)g(x− t)h(x) dx dt ≤ ‖f‖p‖g‖q‖h‖r′

for all h ∈ Lr′ . It follows that, for all f, g ∈ Cc(Rd),

‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

The extension principle then shows that f ∗ g can be de�ned on Lp × Lq. �
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Remark 3.9. If
1

p
+

1

q
= 1 +

1

r
> 1 then f ∗ g is a priori not de�ned by

∫
Rd
f(t)g(x− t) dt.

One needs to approximate f and/or g by a sequence of functions that converges to f and g in
Lp and Lq respectively and for which the above de�nition makes sense.

To do so, write fk = f1|f |≤k so that fk → f in Lp. Further, fk ∈ Ls for every s ≥ p. But
1

p
+

1

q
= 1 +

1

r
can be rewritten as

1

p
− 1

r
= 1 − 1

q
=

1

q′
so that q′ > p. In particular, fk ∈ Lq

′
.

But then fk ∗ g(x) =

∫
Rd
fk(t)g(x− t)dt. As fk ∗ g → f ∗ g in Lr we conclude that

f ∗ g(x) = lim
k→+∞

∫
Rd
f(t)1|f |≤k(t)g(x− t) dt.

5.2. Young's Inequality in weak-Lp.

Theorem 3.10 (Young's Inequality in weak Lp spaces). Young's Inequality!weak Lp spaces

Let 1 < p, q, r < +∞ be such that 1
p +

1

q
= 1 +

1

r
. Let f ∈ Lp(Rd), g ∈ Lqw(Rd) then f ∗ g exists

a.e. and f ∗ g ∈ Lrw(Rd) with

‖f ∗ g‖Lrw ≤ Cp,q,r‖f‖Lp‖g‖Lqw
where Cp,q,r is a constant depending only on p, q, r.

Proof. It is enough to consider f, g ≥ 0.
The proof is based on properly splitting g = g1 + g2 with g1 = g1g≤M and g2 = g1g>M . Then

dg1(α) =

{
0 if α ≥M
dg(α)− dg(M) otherwise

and dg2(α) =

{
dg(α) if α ≥M
dg(M) otherwise

.

As f ∗ g = f ∗ g1 + f ∗ g2 is a sum of two non-negative functions,

{x : f ∗ g(x) > α} ⊂ {x : f ∗ g1(x) > α/2} ∪ {x : f ∗ g2(x) > α/2}

thus

df∗g(α) ≤ df∗g1
(α/2) + df∗g2

(α/2).

It remains to estimate each of df∗g1
, df∗g2

. We will �x α and chose M depending on α.
First, as g1 is the small part of g ∈ Lq it will be in every Ls, s > q:∫

Rd
g1(x)s dx = s

∫ +∞

0

αs−1dg1
(α) dα

= s

∫ M

0

αs−1
(
dg(α)− dg(M)

)
dα

≤ s

∫ M

0

αs−q−1‖g‖rLqw dα−M
sdg(M)

=
s

s− q
Ms−q‖g‖rLqw −M

sdg(M) ≤ s

s− q
Ms−q‖g‖rLqw

Further, as g2 is the large part of g ∈ Lq it will be in every Ls̃, s̃ < q:∫
Rd
g2(x)s̃ dx = s̃

∫ +∞

0

αs̃−1dg2(α) dα

= s̃

∫ M

0

αs̃−1dg(M) dα+ s̃

∫ +∞

M

αs̃−1dg(α)dα

≤ M s̃dg(M) + s̃

∫ +∞

M

αs̃−q−1‖g‖q
Lqw

dα

= M s̃dg(M) +
s̃

q − s̃
M s̃−q‖g‖q

Lqw

≤ q

q − s̃
M s̃−q‖g‖q

Lqw
.
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Since
1

q
=

1

p′
+

1

r
we have 1 < q < p′ so that we can chose s̃ = 1 and s = p′. We then apply

Hölder's inequality (the �trivial� case of Young) to obtain that

|f ∗ g1(x)| ≤ ‖f‖Lp‖g1‖Lp′ ≤
(

p′

p′ − q
Mp′−q‖g‖rLqw

)1/p′

‖f‖Lp .

We can now chose M to be small enough for(
p′

p′ − q
Mp′−q‖g‖rLqw

)1/p′

‖f‖Lp =
α

2

which will imply that df∗g1
(α/2) = 0. In other words, we chose

M = C(p, q)α
p′
p′−q ‖f‖

− p′
p′−q

Lp ‖g‖
− r
p′−q

Lqw

where C(p, q) is a constant depending on p (p′ actually) and q.
Next, the choice s̃ = 1 shows that g2 ∈ L1 and Young's inequality implies that f ∗ g2 ∈ Lp

with

‖f ∗ g2‖Lp ≤ ‖f‖Lp‖g2‖L1 ≤ q

q − s̃
‖f‖LpM s̃−q‖g‖q

Lqw
.

But then

df∗g(α) ≤ df∗g2
(α/2) ≤ (2‖f ∗ g2‖Lp/α)p

≤
(

2
q

q − s̃
‖f‖LpM s̃−q‖g‖q

Lqw

)p
α−p

≤ C(p, q, r)
‖f‖rLp‖g‖rLqw

αr

where C(p, q, r) is a constant depending on p, q, r. �

Exercice 3.11. Prove the result in the case p = 1.

One can actually prove a little better. Fix g ∈ Lqw. Take 1 < p1 < p < p2 < +∞ and de�ne

r1, r2 via
1

pi
+

1

q
= 1 +

1

ri
. We have just shown that, if , the operator Tg : f → f ∗ g is of weak

type (pi, ri). De�ne 0 < θ < 1 via
1

p
=

θ

p1
+

1− θ
p2

and
1

r
=

θ

r1
+

1− θ
r2

then p, r are related by

1

p
+

1

q
=

θ

p1
+

1− θ
p2

+
θ + 1− θ

q
= θ

(
1 +

1

r1

)
+ (1− θ)

(
1 +

1

r2

)
= 1 +

1

r
.

Using Marcinkiewicz interpolation, T extends to a bounded operator Lp → Lr, that is:

Corollary 3.12 (Young's Inequality in weak Lp spaces). Young's Inequality!weak Lp spaces

Let 1 < p, q, r < +∞ be such that 1
p +

1

q
= 1 +

1

r
. Let f ∈ Lp(Rd), g ∈ Lqw(Rd) then f ∗ g exists

a.e. and f ∗ g ∈ Lr(Rd) with

‖f ∗ g‖Lr ≤ Cp,q,r‖f‖Lp‖g‖Lqw
where Cp,q,r is a constant depending only on p, q, r.

Remark 3.13. Young's inequality fails in some of the end points:
� If q = 1 and 1 ≤ p = r ≤ ∞, one can consider f = 1[0,1] and g(x) = |x|−1 then f ∗ g = +∞

on [0, 1].
� If r = +∞ and 1 < q = p′ < +∞, consider f = (|x|1/p log |x|)−11|x|≥2 and g = |x|−1/q then

f ∗ g = +∞ on [−1, 1].

Definition 3.14. Given 0 < α < d and f ∈ S(Rd). The Riesz Potential of f is de�ned by

Iα(f)(x) =

∫
Rd

f(y)

|x− y|α
dy.
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Corollary 3.15 (Hardy-Littlewood-Sobolev Inequalities). Let 0 < α < d, 1 < p < d/α and

r =
pd

d− αp
. Then there exists a constant C = C(d, α, p) such that, for every f ∈ Lp(Rd),

‖Iα(f)‖Lr(Rd) ≤ C‖f‖Lp(Rd).

Equivalently, if 1
p + α

d + 1
r′ = 1 then there exists a constant C = C(p, α, d) such that, for every

f ∈ Lp(Rd) and every h ∈ Lr′(Rd),∫
Rd

∫
Rd
f(x)|x− y|−αh(y) dx dy ≤ C‖f‖Lp‖h‖Lr′ .

Proof. Consider the function g de�ned on Rd by g(x) = |x|−d+α and notice that g ∈
L
d/(d−α)
w (Rd). It remains to apply Young's Inequality with 1 < p < d/α, q = d/(d − α) and

to notice that 1 < q < +∞, while 1 +
1

r
= 1

p +
d− α
d

gives precisely r =
pα

d− αp
and that the

condition 1 < p < d/α is then equivalent to 1 < r, p < +∞.
The second inequality follows the �rst one by duality. �

6. Regularization

6.1. Spaces of smooth functions: C∞c (Rd) and S(Rd). Spaces of smooth functions will
play a key role in the sequel. The �rst space we consider is the following:

C∞c (Rd) = {f ∈ C∞(Rd) : ∃R > 0 s.t. f(x) = 0 if ‖x‖ ≥ R}

the space of smooth functions with compact support.
One may wonder if such functions actually exist so let us start by giving an example:

Example 3.16. Let g be de�ned on R by g(x) =

{
0 if x ≤ 0

e−1/x if x > 0
. Then g is clearly C∞ on

R \ {0}. Moreover, for every k, there exists a polynomial Pk such that g(k)(x) =
Pk(x)

x2k
g(x) when

x 6= 0.
Indeed, the formula is clearly true for k = 0. For k = 1, g′(x) = 0 when x ≤ 0 while

g′(x) = − 1

x2
e−1/x so that the formula is also true for k = 1. Assuming g(k) is of that form up to

some rank k ≥ 1 we get

g(k+1)(x) =
P ′k(x)

x2k
g(x)− 2kPk(x)

x2k+1
g(x)

Pk(x)

x2k
g′(x) =

x2P ′k(x)− (2kx+ 1)Pk(x)

x2k+2
g(x)

and if Pk is a polynomial, so is Pk+1(x) := x2P ′k(x)− (2kx+ 1)Pk(x).

Alternatively, one may also show that g(k)(x) = Qk(1/x)g(x) with Qk a polynomial.
Next, it is clear that g is continuous at 0. Assuming g is of class Ck−1 on R, as g(k)(x) =

Pk(x)

x2k
e−1/x we get that g(k)(x)→ 0 when x→ 0+ and as g(k)(x) = 0 when x < 0 we also get that

g(k)(x)→ 0 when x→ 0−. It follows that g(k) extends by continuity at 0 so that g(k−1) is of class
C1, thus g is of class Ck.

Finally de�ne f through f(x) = g(1− ‖x− a‖2/η2) and note that g is clearly C∞ (taking the
euclidean norm) and that f(x) = 0 when 1− ‖x− a‖2/η2 ≤ 0 that is, when |x− a‖ ≥ η. Thus f
is C∞ supported in the ball B(a, η).

Example 3.17. We still consider g de�ned on R by g(x) =

{
0 if x ≤ 0

e−1/x if x > 0
. Next, we de�ne

h(x) =
g(x)

g(x) + g(1− x)
=


0 for x ≤ 0

e−1/x

e−1/x+e−1/(1−x) for 0 < x < 1

1 for x ≥ 1

.

As g(x) + g(1− x) 6= 0 for all x, clearly h is of class C∞ on R.
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Next, we de�ne B(x) = h(2 + x)h(2 − x) which is clearly C∞. Further, for |x| ≥ 2, one of
2+x, 2−x is ≤ 0 so B(x) = 0. For |x| ≤ 1, both 2+x, 2−x are ≥ 1 so that h(2+x) = h(2−x) = 1
and B(x) = 1. Finally as 0 ≤ g ≤ 1, 0 ≤ B ≤ 1. It follows that:

The function B is a smooth bump function:

� B is C∞ with support [−2, 2] and,

� B(x) = 1 for x ∈ [−1, 1] and 0 ≤ B ≤ 1.

Note that given a < b < c < d there exists a function B ∈ C∞ such that B = 1 on [b, c], B = 0
outside [a, b] and 0 ≤ b ≤ 1. To do so, one choses B(x) = h(α + βx)h(γ − δx) with β, δ ≥ 0,
γ − δd = α+ βa = 0 and α+ βb = γ − δc = 1. The choice is thus

α =
−a
b− a

, β =
1

b− a
, γ =

d

d− c
, δ =

1

d− c
.

Note that one may tensor such functions: B(x1, . . . , xd) =
∏d
i=1Bi(xi). Then, if Q1, Q2 are two

cubes with the closure of Q1 in the interior of Q2 (so that the boundaries don't touch) then there
exists B ∈ C∞ such that B(x) = 1 on Q1, B(x) = 0 outside Q2 and 0 ≤ B ≤ 1.

It should be noted that once we have an element of C∞c , we get many others:

Lemma 3.18. Let ϕ ∈ L1(Rd) and f ∈ C∞c (Rd) then ϕ ∗ f ∈ C∞(Rd) and, if ϕ is compactly
supported then so if ϕ ∗ f ∈ Cc(Rd).

We will de�ne the support of ϕ ∈ L1(Rd) in a precise way later on, here we simply mean that
there is an R > 0 such that ϕ(x) = 0 whenever ‖x‖ ≥ R.

Proof. Indeed, if f ∈ C∞c (Rd) then f is bounded so that ϕ ∗ f(x) =

∫
Rd
ϕ(t)f(x− t) dt. Set

F (x, t) = ϕ(t)f(x−t) and note that, for t �xed, x→ F (x, t) is C∞ (unless |ϕ(t)| = +∞ so this is true
for almost every t). Further for every α ∈ Nd, ∂αxF (x, t) = ϕ(t)∂αf(x− t). But ∂αf is continuous
with compact support so that it is bounded |∂αf(u)| ≤ Cα thus |∂αxF (x, t)| ≤ Cα|ϕ(t)| ∈ L1(Rd).
Lebesgue's derivation theorem then implies that ϕ ∗ f is of class C∞ with ∂α(ϕ ∗ f) = ϕ ∗ ∂αf .

Finally, if ϕ and f are both compactly supported, there is an R such that, if |t| ≥ R and
|u| ≥ R then ϕ(t) = 0 and f(u) = 0. But then, if |x| ≥ 2R and |t| ≤ R, |x − t| ≥ R. It follows
that, when |x| ≥ 2R, F (x, t) = ϕ(t)f(x− t) = 0 for all t ∈ Rd thus

ϕ ∗ f(x) =

∫
Rd
F (x, t) dt = 0

and the proof is complete. �

Although Cc(Rd) is a large class (we will even see that it is dense in every Lp(Rd) space with
p < +∞), this class is too small to contain a function like the Gaussian. We will thus de�ne a
larger class that has almost the same property. To do so, for α, β ∈ Nd and f : Rd → C, let

pα,β(f) = sup
x∈Rd

|xα∂βf(x)|.

Definition 3.19. The Schwarz class is the set

S(Rd) = {f ∈ C∞(Rd) : ∀α, β ∈ Nd, pα,β(f) < +∞}.

The Schwarz class is thus the space of all smooth functions such that all derivatives have
fast decrease at in�nity (i.e. faster than any polynomial). The class is not empty as obviously
C∞c (Rd) ⊂ S(Rd).

Example 3.20. Let f be a Gaussian on Rd, f(x) = e−a‖x‖
2

, a > 0 (the norm is the Euclidean
norm). Then f ∈ S(Rd).

For simplicity, we will show this for d = 1 and a = 1/2 so f(x) = e−x
2/2. Then, for every k,

there exists a polynomial Pk such that f (k)(x) = Pk(x)e−x
2/2. This is clear since P0 = 1 and, by

induction, f (k+1)(x) =
(
P ′k(x)− xPk(x)

)
e−x

2/2 and Pk+1 = P ′k(x)− xPk(x) is a polynomial if Pk

is. Finally, xNPk(x)e−x
2/2 is clearly bounded.
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It should be noted that the choice of pα,β to de�ne S(Rd) is somewhat arbitrary. We may as
well take m,n two integers and de�ne

p̃m,n(f) = sup
x∈Rd

(1 + |x|2)m
∑
|β|≤n

∣∣∣∣∂βf∂xβ
f(x)

∣∣∣∣.
Then if we notice that (1 + |x|2)m is a polynomial of degree 2m

(1 + |x|2)m =
∑
|α|≤2m

cαx
α

and C = max |cα| then

p̃m,n(f) ≤
∑
|α|≤2m

|cα|
∑
|β|≤n

sup
x∈Rd

|xα∂βf(x)| ≤ C
∑
|α|≤2m

∑
|β|≤n

pα,β(f).

On the other hand,

|xα| = |x1|α1 · · · |xd|αd ≤ ‖x‖|α|∞ ≤ |x||α| ≤ (1 + |x|2)|α|.

For the last inequality, one checks separately the cases |x| ≤ 1 and |x| ≥ 1. But then

pα,β(f) ≤ p̃|α|,|β|(f).

It follows that

S(Rd) = {f ∈ C∞(Rd) : ∀m,n ∈ N, p̃m,n(f) < +∞}.
This change of �semi-norm� is sometimes convenient, for instance for the following lemma

Lemma 3.21. For every 1 ≤ p ≤ ∞, S(Rd) ⊂ Lp(Rd).

Proof. The lemma is trivial when p = +∞ since p̃0,0(f) = ‖f‖∞.
For other p's we will use the fact that, integrating in polar coordinates∫
Rd

dx

(1 + |x|2)κ
=

∫
Sd−1

∫ +∞

0

rd−1

(1 + r2)κ
dr dσd−1(θ)

= σd−1(Sd−1)

∫ +∞

0

rd−1

(1 + r2)κ
dr < +∞

if 2κ > d. It follows that, if∫
Rd
|f(x)|p dx =

∫
Rd
|(1 + |x|2)df(x)|p dx

(1 + |x|2)dp
≤ p̃d,0(f)

∫
Rd

dx

(1 + |x|2)dp
< +∞.

�

It is now easy to prove the following that we leave as an exercice

Proposition 3.22. Let α ∈ Nd, λ, µ ∈ C, T ∈ GL(Rd) an invertible linear transformation.
Then

� if f, g ∈ C∞c (Rd) so is λf + µg, f ◦ T , fg, xαf , ∂αf ;
� if f, g ∈ S(Rd) so is λf + µg, f ◦ T , fg, xαf , ∂αf .

Let us now extend Lemma 3.18 which shows that we can add f ∗ g to the above list.

Lemma 3.23. Let 1 ≤ p ≤ ∞, ϕ ∈ Lp(Rd) and f ∈ S(Rd) then ϕ ∗ f ∈ C∞(Rd). Further if,
for every α ∈ Nd, tαϕ ∈ Lp(Rd) then ϕ ∗ f ∈ S(Rd).

The second part of the lemma is satis�ed if ϕ is compactly supported or if ϕ ∈ S(Rd).

Proof. The general scheme of proof is the same as for Lemma 3.18. Note that, as S(Rd) ⊂
Lp
′
(Rd), 1/p+ 1/p′ = 1, we have ϕ ∗ f ∈ L∞(Rd) and

ϕ ∗ f(x) =

∫
Rd
ϕ(t)f(x− t)dt.

For p = 1, there is nothing to change: we again de�ne F (t, x) = ϕ(t)f(x − t) and, for every
α ∈ Nd ∂αxF (t, x) = ϕ(t)∂αf(x − t) so that |∂αxF (t, x)| ≤ pα,0(f)|ϕ(t)| ∈ L1(Rd). By Lebesgue's
Di�erentiation Theorem, ϕ ∗ f is of class C∞ with ∂α(ϕ ∗ f) = ϕ ∗ (∂αf).
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For p > 1, this can not work and we need to use the fact that f has some extra decrease that
can compensate the fact that ϕ /∈ L1. First, note that it is enough to show that ϕ ∗ f is of class
C∞ on the ball B(0, R) with R arbitrary. So assume that |x| ≤ R

∂αxF (t, x) = ϕ(t)∂αf(x− t) =
ϕ(t)

(1 + |t|2)d
(1 + |t|2)d

(1 + |x− t|2)d
(1 + |x− t|2)d∂αf(x− t).

First, as (1 + |t|2)−d ∈ Lp′(Rd) (it is in all Lq(Rd) spaces, q ≥ 1) and ϕ ∈ Lp, Hölder's inequality

shows that Φ(t) :=
|ϕ(t)|

(1 + |t|2)d
∈ L1(Rd).

Next (1 + |x− t|2)d|∂αf(x− t)| ≤ p̃d,|α|(f).
Finally if |t| ≥ 2R, and |x| ≤ R, |x− t| ≥ |t| − |x| ≥ |t| −R ≥ |t|/2 so that

(1 + |t|2)d

(1 + |x− t|2)d
≤
(

1 + |t|2

1 + |t|2/4

)d
≤ 4d

while for |t| ≤ 2R,

(1 + |t|2)d

(1 + |x− t|2)d
≤ (1 + 2R)d.

Assuming R ≥ 2, we get that this bound also holds for |t| ≥ 2R and �nally

|∂αxF (t, x)| ≤ p̃d,|α|(f)(1 + 2R)dΦ(t) ∈ L1(R).

By Lebesgue's Di�erentiation Theorem, ϕ ∗ f is of class C∞ with ∂α(ϕ ∗ f) = ϕ ∗ (∂αf) on B(0, R)
and as R is arbitrary, the same holds on Rd.

It remains to prove that, for all α, β, xα∂β(ϕ ∗ f) = xαϕ ∗ (∂βf) is bounded. As f ∈ S(Rd)
implies that ∂βf ∈ S(Rd), it is enough to consider the case β = 0. But now, de�neMiψ(t) = tiψ(t),
then

xiϕ ∗ f(x) =

∫
Rd
ϕ(t)xif(x− t) dt =

∫
Rd
ϕ(t)(xi − ti)f(x− t) dt+

∫
Rd
tiϕ(t)f(x− t) dt

= ϕ ∗Mif +Miϕ ∗ f

which is bounded since Miϕ ∈ Lp(Rd) and Mif ∈ S(Rd). An induction on the length of α then
shows that, for every α ∈ Nd, xαϕ ∗ f is bounded. �

Remark 3.24. A careful examination of the above proofs shows that, for ϕ ∈ Lp(Rd) and

f ∈ Ck(Rd) such that for every α with |α| ≤ k there is a κ > 0 such that (1 + |t|2)−κ ∈ Lp′ (i.e.
2κp′ > d) and (1 + |t|2)κ∂αf ∈ L∞, we have ϕ ∗ f ∈ Ck.

6.2. Regularization by convolution.

Theorem 3.25 (Approximation of unity). Let 1 ≤ p < +∞ and j ∈ S(Rd) be such that j ≥ 0
and

∫
Rd j(x) dx = 1. For s > 0, denote by js the function de�ned by js(t) = s−dj(t/s).

Then, for every ϕ ∈ Lp(Rd), ϕ ∗ js ∈ C∞(Rd) and ϕ ∗ js → ϕ in Lp when s→ 0.
For p = +∞, L∞ has to be replaced by C0(Rd): for every ϕ ∈ C0(Rd), ϕ ∗ js ∈ C∞(Rd) and

ϕ ∗ js → ϕ uniformly when s→ 0.

Proof. We will only give the proof for 1 ≤ p < +∞. We leave to the reader the case p = +∞.
The only thing that one needs to use is the fact that functions in C0(Rd) are uniformly continuous.

Let us �rst note that js ∈ S(Rd) and that∫
Rd
js(t) dt =

∫
Rd
j(t/s) s−ddt =

∫
Rd
j(r) dr = 1

with a change of variable r = t/s. In particular, ϕ ∗ js ∈ C∞(Rd).
Next, js ∈ Lp

′
(Rd) with 1

p + 1
p′ = 1, so that

ϕ ∗ js(x) =

∫
Rd
js(t)ϕ(x− t) dt.
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But then

ϕ(x)− ϕ ∗ js(x) = f(x)

∫
Rd
js(t) dt−

∫
Rd
js(t)ϕ(x− t)dt

=

∫
Rd
js(t)

(
ϕ(x)− ϕ(x− t)

)
dt.

From Minkowski's inequality we deduce that

‖ϕ− ϕ ∗ js‖p ≤
∫
Rd
js(t)‖ϕ− τtϕ‖p dt.

Now �x ε > 0. As p < +∞, we have seen that ‖ϕ− τtϕ‖p → 0 when t → 0 so that

there exists η > 0 such that, if |t| < η, ‖ϕ− τtϕ‖p ≤ ε. When |t| ≥ η we can simply use that

‖ϕ− τtϕ‖p ≤ 2‖ϕ‖p We then write

‖ϕ− ϕ ∗ js‖p ≤
∫
|t|≤η

js(t)‖ϕ− τtϕ‖p dt+

∫
|t|≥η

js(t)‖ϕ− τtϕ‖p dt

≤ ε

∫
Rd
js(t) dt+ 2‖ϕ‖p

∫
|t|≥η

js(t)dt.

It remains to recall that
∫
Rd js(t)dt = 1 and to notice that∫

|t|≥η
js(t) dt =

∫
|t|≥η

s−dj(t/s) dt =

∫
r≥η/s

j(r) dr → 0

when s → 0. In particular, there is an η′ such that, if s < η′, 2‖ϕ‖p
∫
|t|≥η

js(t) dt ≤ ε and then

‖ϕ− ϕ ∗ js‖p ≤ 2ε. �

Again, the hypothesis can be weakened without changing the proof. To do so, we may assume
that (js)s≥0 is a family of L1(Rd) functions such that

(1) there is a constant C > 0 such that, for all s > 0,∫
Rd
js(x) dx = 1 and

∫
Rd
|js(x)| dx ≤ C.

(2) For every η > 0,
∫
|x|≥η |js(x)| dx→ 0 when s→ 0.

Such a family is called an approximation of the identity (and sometimes a molli�er).

Corollary 3.26. The space C∞c (Rd) is dense in every Lp(Rd) space with 1 ≤ p < +∞ and
thus so is every space containing it like Cc(Rd) and S(Rd).

Proof. Let f ∈ Lp(Rd) and ε > 0. Let j ∈ C∞c (Rd) and js(t) = s−dj(t/s) First, for R large
enough

∥∥f − f1|x|≤R
∥∥ ≤ ε. Next there exists s such that

∥∥f1|x|≤R − (f1|x|≤R) ∗ js
∥∥ ≤ ε. But

then
∥∥f − (f1|x|≤R) ∗ js

∥∥ ≤ 2ε and (f1|x|≤R) ∗ js ∈ C∞c (Rd). �

Remark 3.27. One has to be careful with the density of Cc(Rd) in Lp(Rd). The proof given here
relies on approximation of unity. This in turn relies on the fact that translations are continuous.

We have proven this last fact by �rst proving it for characteristic functions of cubes, from
which we deduced the fact for simple step functions. Then we concluded that translations are
continuous by density of step functions in Lp. Our proof is thus not circular.

It turns out that it is simpler to prove that translations are continuous by �rst proving this
fact for functions in Cc(Rd) and then using the density of this last step. The approximation of
unity theorem then allows to prove that C∞c (Rd) is dense in Lp, but the density of Cc(Rd) then
needs a di�erent proof.



CHAPTER 4

Some Fourier analysis

The aim of this chapter is to recall some facts about Fourier analysis and complex analysis
that are needed in this course.

1. Fourier Transforms

1.1. The L1-theory.

Definition 4.1. For f ∈ L1(Rd) we de�ne the Fourier transform of f , and denote it either

by f̂ or Ff , the function de�ned on R by

F [f ](ξ) = f̂(ξ) =

∫
Rd
f(x)e−2iπ〈x,ξ〉 dx.

Let us start with a fundamental example:

Example 4.2. Let a < b ∈ R and f = 1[a,b]. Then if ξ 6= 0,

f̂(ξ) =

∫ b

a

e−2iπxξ dx =
−1

2iπξ

(
e−2iπbξ − e−2iπaξ

)
=

e2iπ a+b
2 ξ

πξ

e2iπ b−a2 ξ − e−2iπ b−a2 ξ

2i

= e2iπ a+b
2 ξ sinπ(b− a)ξ

πξ
.

When ξ = 0, f̂(ξ) =

∫ b

a

dx = b− a.

It is convenient to introduce the function sinc t =

1 if t = 0
sin t

t
if t 6= 0

. Note that this is an analytic

function.
If we write c = a+b

2 for the center of the interval [a, b] and ` for its length, ` = 2r then

f̂(ξ) = `e2iπcξ sincπ`ξ = 2re2iπcξ sinc 2πrξ.

Let us now notice that, if f is a tensor function f(x1, . . . , xd) =

d∏
j=1

fj(xj), then so is

f̂ : f̂(ξ1, . . . , ξd) =

d∏
j=1

f̂j(ξj). This follows directly from Fubini's Theorem and the fact that

e−2iπ〈x,ξ〉 = e−2iπ
∑d
j=1 xjξj =

d∏
j=1

e−2iπxjξj .

Now, for Q =

d∏
j=1

[aj , bj ] a cube, write `j = bj − aj for its side length, |Q| =

d∏
j=1

`j for its

volume, c =
(
a1+b1

2 , . . . , ad+bd
2

)
for its center of gravity. Let f(x) = 1Q(x) =

d∏
j=1

1[aj ,bj ](xj) then

f̂(ξ) = |Q| e2iπ〈c,ξ〉
d∏
j=1

sincπ`jξj .

43
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Note for future use that f̂ ∈ C0(Rd).

Let us now start detailing properties of the Fourier transform. First, it is well de�ned. Indeed,
let F (x, ξ) = f(x)e−2iπ〈x,ξ〉. Then, for x �xed, ξ → F (x, ξ) is continuous. Moreover, |F (x, ξ)| =

|f(x)| ∈ L1(Rd), it follows that f̂(ξ) =

∫
Rd
F (x, ξ)dx is well de�ned and continuous. Further,

|f̂(ξ)| ≤
∫
Rd
|F (x, ξ)|dx =

∫
Rd
|f(x)| dx = ‖f‖L1(Rd).

As f → f̂ is clearly linear, this shows that this mapping is bounded L1(Rd) → Cb(Rd), the space
of bounded continuous functions on Rd. Actually, a bit more is true:

Theorem 4.3 (Riemann-Lebesgue Lemma). The Fourier transform F is a bounded linear
mapping L1(Rd)→ C0(Rd) with ‖Ff‖∞ ≤ ‖f‖1.

Proof. We have already seen that F is a bounded linear mapping L1(Rd) → Cb(Rd) with
‖Ff‖∞ ≤ ‖f‖1. It remains to prove that Ff ∈ C0(Rd) when f ∈ L1(Rd).

This is indeed the case when f = 1Q, Q a cube, thus also when f is a (�nite) linear combination
of such functions, that is, when f is a step function. But step functions are dense. Thus, if
f ∈ L1(Rd), there exists a sequence fk of step functions, such that ‖fk − f‖L1 → 0 when k →∞.
But then

‖Ff −Ffk‖∞ = ‖F(f − fk)‖∞ ≤ ‖f − fk‖1 → 0.

In other words, Ffk → Ff in Cb(Rd). As Ffk ∈ C0(Rd) which is closed in Cb(Rd) (see the chapter
on convolutions for a proof), we get that Ff ∈ C0(Rd). �

A second proof. There is an alternative proof of the fact that f̂(ξ) → 0 when ξ → ±∞.

First note that −1 = e−iπ = e−2iπ〈ξ/2|ξ|2,ξ〉 thus

2f̂(ξ) =

∫
Rx
f(x)e−2iπ〈x,ξ〉 dx−

∫
Rd
f(txe−2iπ〈ξ/2|ξ|2,ξ〉e−2iπ〈x,ξ〉 dx

=

∫
Rd
f(x)e−2iπ〈x,ξ〉 dt−

∫
Rd
f(x)e−2iπ〈x+ξ/2|ξ|2,ξ〉 dx

=

∫
Rd

[
f(x)− f

(
x− ξ

2|ξ|2

)]
e−2iπ〈x,ξ〉 dx.

In other words, f̂(ξ) =
1

2
F [f − τξ/2|ξ|2f ](ξ). It follows that |f̂(ξ)| ≤

∥∥f − τξ/2|ξ|2f∥∥1
. Now letting

|ξ| → ∞ and using the continuity of a→ τaf from Rd → L1(Rd) shows that |f̂(ξ)| → 0.
Recall that this continuity required the same density argument. �

Let us now list the main properties of the Fourier transform. To do so, we need to introduce
some notation. For a, ω ∈ Rd, λ > 0, T ∈ GLn(Rd) (a d × d invertible matrix) and f a function
on Rd, we de�ne new functions on Rd

τaf(x) = f(x− a), Mωf(x) = e−2iπ〈ω,x〉f(x), δλf(x) = f(λx), ∆T f(x) = f(T−1x).

Note that τa,Mω, δλ,∆T are continuous linear mappings Lp → Lp for every p.

Proposition 4.4. Assume that f ∈ L1(Rd) then
� F [τaf ] = MaF [f ], F [Mωf ] = τ−ωF [f ],
� F [δλf ] = λ−dF [δ1/λf ] and more generally F [∆T f ] = |detT |∆[T−1]tF [f ].

� If ξjf ∈ L1(Rd) then f̂ admits a continuous partial derivative in the ξj direction with

∂f̂

∂ξj
(ξ) = −2iπF [xjf ](ξ).

� If f is C1 with
∂f

∂xj
∈ L1(Rd), then F

[
∂f

∂xj

]
(ξ) = 2iπξjF [f ]ξ).

� If f, g ∈ L1(Rd) then F [f ∗ g] = F [f ]F [g].



1. FOURIER TRANSFORMS 45

Proof. The �rst 4 follow from a simple change of variable
� changing variable y = x− a,

F [τaf ](ξ) =

∫
Rd
f(x− a)e−2iπ〈x,ξ〉 dx =

∫
Rd
f(y)e−2iπ〈y+a,ξ〉 dy

= e−2iπ〈a,ξ〉
∫
Rd
f(y)e−2iπ〈y,ξ〉 dy = e−2iπ〈a,ξ〉f̂(ξ).

� the next one is even easier

F [Mωf ](ξ) =

∫
Rd
f(x)e−2iπ〈ω,ξ〉e−2iπ〈x,ξ〉 dx =

∫
Rd
f(x)e−2iπ〈x+ω,ξ〉 dx = f̂(ξ + ω).

� changing variable y = λx,

F [δλf ](ξ) =

∫
Rd
f(λx)e−2iπ〈x,ξ〉 dx = λ−d

∫
Rd
f(y)e−2iπ〈y/λ,ξ〉 dy

= λ−d
∫
Rd
f(y)e−2iπ〈y,ξ/λ〉 dy = λ−df̂(ξ/λ).

It is a particular case of the following:

� changing variable y = T−1x, x = Ty

F [∆T f ](ξ) =

∫
Rd
f(T−1x)e−2iπ〈x,ξ〉 dx = |detT |

∫
Rd
f(y)e−2iπ〈Ty,ξ〉 dy

= |detT |
∫
Rd
f(y)e−2iπ〈y,T tξ〉 dy = |detT |f̂(T tξ).

�The next two ones are slightly more subtle. First assume that xjf ∈ L1(Rd) and consider again

F (x, ξ) = f(x)e−2iπ〈x,ξ〉. Then, for x �xed, ξ → F (x, ξ) is of class C1, |F (x, ξ)| = |f(x)| ∈ L1(Rd)
and ∣∣∣∣∂F∂ξj (x, ξ)

∣∣∣∣ =
∣∣∣−2iπxjf(x)e−2iπ〈x,ξ〉

∣∣∣ = 2π|xjf | ∈ L1(Rd).

It follows that f̂(ξ) =

∫
Rd
F (x, ξ) dx is di�erentiable with respect to ξj with

∂f̂

∂ξj
(ξ) =

∫
Rd

∂F

∂ξj
(x, ξ) =

∫
Rd
−2iπxjf(x)e−2iπ〈x,ξ〉 dx = F [−2iπxjf ](ξ).

� Now, assume that f ∈ C1, f,
∂f

∂ξj
∈ L1. To simplify notation, we will take j = 1. Note that, from

Fubini's Theorem,∫
Rd
|f(x)| dx =

∫
Rd−1

(∫
R
|f(x1, x2, . . . , xd)| dx1

)
dx2 · · · dxd < +∞

so that

∫
R
|f(x1, x2, . . . , xd)| dx1 < +∞ for almost every (x2, . . . , xd). The same is true with

∂f

∂ξj
replacing f . If two properties hold almost everywhere, they jointly hold almost everywhere. We
may thus take an (x2, . . . , xd) such that∫

R
|f(x1, x2, . . . , xd)| dx1 < +∞ and

∫
R

∣∣∣∣ ∂f∂ξj (x1, x2, . . . , xd)

∣∣∣∣ dx1 < +∞

and almost every (x2, . . . , xd) is like that. The fundamental theorem of calculus then shows that

f(x1, x2, . . . , xd) = f(0, x2, . . . , xd) +

∫ x1

0

∂f

∂ξj
(t, x2, . . . , xd)dt

→ f(0, x2, . . . , xd) +

∫ ±∞
0

∂f

∂ξj
(t, x2, . . . , xd)dt

when x1 → ±∞. Thus f(x1, x2, . . . , xd) has a limit in ±∞. But then

∫
R
|f(x1, x2, . . . , xd)| dx1 <

+∞ implies that this limit is zero.
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Next, write x, ξ ∈ Rd as x = (x1, x̄), ξ = (ξ1, ξ̄) with x̄, ξ̄ ∈ Rd−1. Integrating by parts,∫
R

∂f

∂ξ1
(x1, x̄)e−2iπ〈x,ξ〉dx1 =

∫
R

∂f

∂ξ1
(x1, x̄)e−2iπx1ξ1dx1e

−2iπ〈x̄,ξ̄〉

= e−2iπ〈x̄,ξ̄〉[f(x1, x̄)e−2iπx1ξ1
]+∞
−∞

+2iπξ1

∫
R
f(x1, x̄)e−2iπx1ξ1dx1e

−2iπ〈x̄,ξ̄〉

= 2iπξ1

∫
R
f(x1, x̄)e−2iπ〈x,ξ〉 dx1.

It remains to integrate with respect to the d− 1 remaining variables and to use Fubini.
The last property is a direct consequence of Fubini and the change of variable u = x− y

F [f ∗ g](ξ) =

∫
Rd

∫
Rd
f(y)g(x− y) dy e−2iπ〈x,ξ〉 dx

=

∫
Rd
f(y)

∫
Rd
g(x− y)e−2iπ〈x,ξ〉 dx dy

=

∫
Rd
f(y)

∫
Rd
g(u)e−2iπ〈u+y,ξ〉 dudy

=

∫
Rd
f(y)

∫
Rd
g(u)e−2iπ〈u,ξ〉 du e−2iπ〈y,ξ〉 dy

=

∫
Rd
f(y)ĝ(ξ) e−2iπ〈y,ξ〉 dy = ĥ(ξ)ĝ(ξ)

as claimed. �

We can now give as a second example the case of the Gaussian:

Example 4.5. Let f be the Gaussian de�ned for x ∈ R by f(x) = e−πx
2

, then f̂(ξ) = e−πξ
2

.

Indeed, �rst note that f̂(0) =

∫
R
e−πx

2

dx. But then, using Fubini in the �rst line and changing

to polar coordinates:

f̂(0)2 =

∫
R
e−πx

2

dx

∫
R
e−πy

2

dy =

∫
R2

e−π(x2+y2) dx dy

=

∫ +∞

0

∫ 2π

0

e−πr
2

dθr dr

=

∫ +∞

0

2πre−πr
2

dr = [−e−πr
2

]+∞0 = 1.

As f̂(0) is the integral of a positive function, f̂(0) ≥ 0 thus f̂(0) = 1.
Next, note that f satis�es the di�erential equation f ′ = −2πxf thus F [f ′] = −2πF [xf ]. As

clearly f is C1 with f, xf, f ′ ∈ L1 we can use the above properties: f̂ ′ = −2iπF [xf ] F [f ′] = 2iπξf̂ .

It follows that f̂ satis�es the di�erential equation (f̂)′ = −2πξf̂ which is the same equation as the

one satis�ed by the Gaussian. Thus f̂ = cf . Comparing values at 0, we get f̂ = f .

In higher dimensions, we immediately get that, if γ(x) = e−π|x|
2

then γ̂(ξ) = e−π|ξ|
2

. The
result is more general

Example 4.6. Now, let A be a positive de�nite symetric matrix and de�ne f on Rd through
f(x) = e−π〈Ax,x〉. Then f̂(ξ) = det(A)−1/2e−π〈A

−1x,x〉.
Indeed, as A is a real sumetric matrix, it is diagonalizable in an orthonormal matrix, A = P∆P t

with ∆ a diagonal martrix and P an orthogonal matrix. Write ∆ = diag (λ1, . . . , λd). As A is
positive de�nite, the λj 's are > 0 thus we can write λj = µ2

j . Then de�ne B = Pdiag (µ1, . . . , µd)P
t

and notice that Bt = B and that A = B2 = BtB. It follows that 〈Ax, x〉 = 〈BtBx, x〉 = |Bx|2.
As the µj 's are > 0, B is invertible thus f(x) = γ(Bx). It follows that f ∈ L1(Rd) and that
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f̂(x) = |detB−1|γ(B−1x). But B−1 = Pdiag (1/µ1, . . . , 1/µd)P
t is symetric with (B−1)tB−1 =

(B−1)2 = A−1 thus |detB−1| = det(A)−1/2 and

|B−1x|2 =
〈
B−1x,B−1x

〉
=
〈
(B−1)tB−1x, x

〉
=
〈
A−1x, x

〉
It follows that f̂(ξ) = det(A)−1/2e−π〈A

−1x,x〉.

1.2. The inversion formula and the Fourier transform on S(Rd). We are now going
to show that the Fourier transform can be inverted and that it is (almost) its own inverse. To do
so, let us start with the following simple observation:

Assume that f, g ∈ L1(Rd), then f̂ , ĝ ∈ C0(Rd) so that fĝ and gf̂ are both integrable. But as∫
Rd

∫
Rd
|f(x)g(y)|dy dx = ‖f‖L1‖g‖L1 < +∞,

Fubini's theorem shows that∫
Rd
f(x)ĝ(x) dx =

∫
Rd

∫
Rd
f(x)g(y)e−2iπ〈x,y〉 dy dx

=

∫
Rd
g(y)

∫
Rd
f(x)e−2iπ〈y,x〉 dx dy =

∫
Rd
g(y)f̂(y) dy.(1.24)

Let us now replace g by M−ωg so that ĝ is replaced by τω ĝ. We get

(1.25)

∫
Rd
f(x)ĝ(x− ω) dx =

∫
Rd
g(y)f̂(y)e2iπ〈ω,y〉 dy.

The right hand side looks like a convolution and is indeed g ∗ f̂ when g is even. Let us take as

an example g(y) = e−π|λy|
2

so that ĝ(x) = λ−de−π|x/λ|
2

. Write γλ(x) = λ−de−π|x/λ|
2

. Then (1.25)
reads

(1.26) f ∗ γλ(ω) =

∫
Rd
e−π|λy|

2

f̂(y)e2iπ〈ω,y〉 dy.

Now, since γ ∈ S(Rd), according to Theorem 3.25, f ∗ γλ → f in L1(Rd). In particular, if

f1, f2 ∈ L1(Rd) are such that f̂1 = f̂2 then f1 ∗ γλ(ω) = f2 ∗ γλ(ω). Letting λ → 0 shows that
f1 = f2. In other words, the Fourier transform is one-to-one.

What about the right hand side? Note that e−π|λy|
2

f̂(y)e2iπ〈ω,y〉 → f̂(y)e2iπ〈ω,y〉 when λ→ 0.

Further, as |e−π|λy|2 f̂(y)e2iπ〈ω,y〉| = |e−π|λy|2 f̂(y)| ≤ |f̂(y)|, if f̂ ∈ L1(Rd), we can use dominated
convergence and obtain the following theorem:

Theorem 4.7 (Fourier inversion formula). The Fourier transform is one-to-one L1(Rd) →
C0(Rd). Let f ∈ L1(Rd) be such that f̂ ∈ L1(Rd), then f ∈ C0(Rd) and

f(x) =

∫
Rd
f̂(ξ)e2iπ〈ξ,x〉 dξ.

Proof. We have not fully proven the above theorem, we have only shown that the inversion

formula is valid in L1(Rd). The observation is that the right hand side is F [f̂ ](−x). As f̂ ∈ L1(Rd),
Riemann-Lebesgue's lemma implies that the right hand side is in C0. Now f ∗γλ → f in L1 thus has

a subsequence that converges almost-everywhere, thus f is almost everywhere equal to F [f̂ ](−x) �.e.
is in the same class as a C0 function. Our convention is that we chose f to be this C0 function. �

The Fourier inversion theorem shows that the Fourier transform is almost its own inverse, this
explains the very symetric properties we have already observed in Proposition 4.4.

Remark 4.8. If f = 1[−1,1] then f̂ = sinc 2πt /∈ L1(R). It follows that

∫
R
f̂(ξ)e2iπξx dξ does

not make sense. We will see below that

lim
R,S→+∞

∫ S

−R
f̂(ξ)e2iπξx dξ → 1[−1,1](x)

in L2. Actually,

lim
R→+∞

∫ R

−R
f̂(ξ)e2iπξx dξ → 1[−1,1](x)

is valid pointwise, excepted at the jumps ±1. Note that we now integrate over a symetric interval.
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Remark 4.9. It is important to have in mind that the Fourier transform is not a bijection
L1(Rd)→ C0(Rd) as there are functions in C0(Rd) that are not Fourier transforms of L1 functions.

Now, let f ∈ S(Rd). For every α ∈ Nd, xαf ∈ S(Rd) ⊂ L1(Rd). It follows from Proposition 4.4

that f̂ ∈ C∞(Rd) and ∂αf̂ = (−2iπ)|α|F [xαf ]. Further as xαf ∈ S, for every β ∈ Nd, ∂β(xαf) ∈
S ⊂ L1(Rd). Applying again Proposition 4.4 we obtain that xβ∂αf̂ = (−2iπ)|α|−|β|F [∂β(xαf)].
But then, Riemann-Lebesgue's Lemma implies that F [∂β(xαf)] is in C0, in particular, it is bounded.
We have just shown that, f̂ ∈ C∞(Rd) and that, for every α, β ∈ Nd, xβ∂αf̂ is bounded, that is,

that f̂ ∈ S(Rd).
Finally, as S(Rd) ⊂ L1(Rd), the Fourier inversion theorem applies to every f ∈ S(Rd) and for

such an f , f(x) = F [f̂ ](−x). Writing Zf̂(y) = f̂(−y) and noticing that Zf̂ ∈ S(Rd) and that

F [f̂ ](−x) = F [Zf ](x), we see that every f ∈ S(Rd) is the Fourier transform of a function in the
Schwartz class. We have thus shown the following:

Theorem 4.10. The Fourier transform is a bijection S(Rd) → S(Rd). The inverse map is
given by F−1[f ](ξ) = F [f ](−ξ).

1.3. The L2-theory, Hausdor�-Young. Our aim here is to extend the Fourier transform
to other Lp spaces. Let us recall that if f, g ∈ S(Rd) ⊂ L1(Rd) then∫

Rd
f(x)ĝ(x) dx =

∫
Rd
g(y)f̂(y) dy.

Now let h ∈ S(Rd), then h̄ ∈ S(Rd) and the Fourier inversion Formula reads

h̄(x) =

∫
Rd
ĥ(y)e2iπ〈y,x〉 dy =

∫
Rd
ĥ(y)e−2iπ〈y,x〉 dy = F [ĥ(y)].

We now replace g by ĥ(y) ∈ S(Rd) in the above formula. We thus obtain∫
Rd
f(x)h(x) dx =

∫
Rd
f̂(y)ĥ(y) dy, f, h ∈ S(Rd).

In particular, taking h = f , we get ‖F [f ]‖L2(Rd) = ‖f‖L2(Rd) for every f ∈ S(Rd). As S(Rd)
is dense in L2(Rd), we can apply the Banach extension principle. It follows that F extends to
a continuous linear mapping L2(Rd) → L2(Rd). Further the mapping F−1(f)(x) = F(f)(−x)
also extends from S(Rd) to a continuous linear mapping L2(Rd) → L2(Rd). As F−1

[
F [f ]

]
=

F
[
F−1[f ]

]
= f for all f ∈ S(Rd), by density of S(Rd) in L2(Rd), this identity stays true for

f ∈ L2(Rd). In particular, F is a bijection L2(Rd)→ L2(Rd) and its inverse map is F−1.
Finally, the mappings τa,Mω, δλ,∆T are all continuous on L2(Rd), so the corresponding prop-

erties in Proposition 4.4 stay true in L2(Rd).
In summary

Theorem 4.11. The Fourier transform extends into a continuous linear mapping L2(Rd) →
L2(Rd) and the extended map is a bijection. The mapping is an isometry and satis�es

� Plancherel's identity: for all f ∈ L2(Rd)∫
Rd
|f(x)|2 dx =

∫
Rd
|f̂(ξ)|2 dξ.

� Parseval's identity: for all f, g ∈ L2(Rd)∫
Rd
f(x)g(x) dx =

∫
Rd
f̂(ξ)g(ξ) dξ.

Further, the identities F [τaf ] = MaF [f ], F [Mωf ] = τ−ωF [f ], F [δλf ] = λ−dF [δ1/λf ] and F [∆T f ] =

|detT |∆[T−1]tF [f ] are all valid for f ∈ L2(Rd).

Let us note that the convolution identity f̂ ∗ g = f̂ ĝ does not extend to f, g ∈ L2(Rd) as in

this case f ∗ g ∈ C0(Rd) and f̂ ∗ g has to be understood in the sense of distributions.
It is then a direct consequence of interpolation theory that the Fourier transform also extends

to a bounded linear operator from Lp → Lp
′
with 1 ≤ p ≤ 2,

1

p
+

1

p′
= 1. It should be noted that

this result is false when p > 2, but we will not prove this here.



1. FOURIER TRANSFORMS 49

Theorem 4.12 (Hausdor�-Young Inequality). Let 1 ≤ p ≤ 2 and p′ be the dual index
1

p
+

1

p′
=

1. Then the Fourier transform F extends to a continuous operator from Lp → Lp
′
with

‖F [f ]‖p′ ≤ ‖f‖p.

Proof. It is enough to notice that the result is true for p = 1 (Riemann-Lebesgue) and p = 2

(Parseval) and that if 1 < p < 2, there exists θ ∈ (0, 1) such that
1

p
=

1− θ
1

+
θ

2
and that the dual

index is given by

1

p′
=
θ

2
=

1− θ
∞

+
θ

2

with the convention 1/∞ = 0. �

Example 4.13. Let a > 0 and de�ne f on R as e+
a (t) = 1[0,+∞)e

−at and e−a (t) = 1(−∞,0]e
at.

Note that e±a ∈ L1(R) ∩ L2(R) so that its Fourier transform is given by

ê+
a (ξ) =

∫ +∞

0

e−(a+2iπξ)t dt =
1

a+ 2iπξ

while

ê−a (ξ) =

∫ 0

−∞
e(a−2iπξ)t dt =

1

a− 2iπξ
.

Let c±a be de�ned on R by c±a (x) =
1

a± 2iπx
. Note that c±a ∈ L2 but not in L1 so that it has

an L2-Fourier transform but not an L1-Fourier transform. Never the less c±a = F [e±a ] in L1-sense
thus also in the L2-sense. Thus, the Fourier inversion theorem gives F [c±a ](ξ) = F

[
F [e±a ]

]
(ξ) =

F−1
[
F [e±a ]

]
(−ξ) = e±a (−ξ) = e∓a (ξ). This has to be understood in the L2 sense, in particular,

equalities hold only almost everywhere.
One may notice that e±a is not continuous so that, according to Riemann-Lebesgue, they are

not Fourier transforms of L1 functions. Note however that

̂e−a + e+
a (ξ) = ê−a (ξ) + ê+

a (ξ) =
1

a− 2iπξ
+

1

a+ 2iπξ
=

2a

a2 + (2πξ)2

is an L1-function. Thus Fourier inversion applies and we get the following expressions∫ +∞

−∞
e−a|t|e−2iπtξ dt =

2a

a2 + (2πξ)2∫ +∞

−∞

2a

a2 + (2πξ)2
e2iπtξ dξ = e−a|t|

In particular, taking a = 2π and using parity, we have

(1.27)

∫ +∞

−∞
e−2π|t|e2iπtξ dt =

1

π

1

1 + ξ2
,

1

π

∫ +∞

−∞

1

1 + ξ2
e−2iπtξ dξ = e−2π|t|.

Example 4.14. An example of a function in C0 that is not a Fourier transform of

an L1 function.

Let us de�ne f on R by f(t) =
sgn(t)

1 + |t|
. Note that f ∈ L2(R) but f /∈ L1(R). The Fourier

transform of f can thus not be calculated via
∫
f(t)e−2iπtξ dt but only as an L2 limit. To carry

out this limit, we will need the following identity

1

1 + |t|
=

∫ +∞

0

e−(1+|t|)x dx.
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Using Fubini's Theorem, we see that∫ R

−R

sgn(t)

1 + |t|
e−2iπtξ dt =

∫ R

−R

∫ +∞

0

sgn(t)e−(1+|t|)x dxe−2iπtξ dt

=

∫ +∞

0

∫ R

−R
sgn(t)e−(1+|t|)xe−2iπtξ dtdx

=

∫ +∞

0

e−x
∫ R

−R
sgn(t)e−|t|xe−2iπtξ dtdx(1.28)

To see that one is allowed to apply Fubini's theorem, one writes | sgn(t)e−(1+|t|)xe−2iπtξ| = e−(1+|t|)x ≤
e−x ∈ L1([−R,R]× R, dtdx). But now, if ξ 6= 0, (or x 6= 0)∫ R

−R
e−|t|xe−2iπtξ dt = −

∫ 0

−R
et(x−2iπξ) dt+

∫ R

0

e−t(x+2iπξ) dt

=

[
−e

t(x−2iπξ)

x− 2iπξ

]0

−R
+

[
−e
−t(x+2iπξ)

x+ 2iπξ

]R
0

=
−1 + e−R(x−2iπξ)

x− 2iπξ
+

1− e−R(x+2iπξ)

x+ 2iπξ
=

−4iπξ

x2 + (2πξ)2
+
e−R(x−2iπξ)

x− 2iπξ
− e−R(x+2iπξ)

x+ 2iπξ
.

Inserting this into (1.28) gives∫ R

−R

e−2iπtξ

1 + |t|
dt = 4iπξ

∫ +∞

0

e−x

x2 + (2πξ)2
dx +

∫ +∞

0

(
e−R(x−2iπξ)

x− 2iπξ
− e−R(x+2iπξ)

x+ 2iπξ

)
e−x dx.

But, if x > 0
e−R(x−2iπξ)

x− 2iπξ
− e−R(x+2iπξ)

x+ 2iπξ
→ 0

when R→ +∞ while, if ξ 6= 0,∣∣∣∣(e−R(x−2iπξ)

x− 2iπξ
− e−R(x+2iπξ)

x+ 2iπξ

)
e−x

∣∣∣∣ ≤ (
e−Rx

|x− 2iπξ|
+

e−Rx

|x+ 2iπξ|

)
e−x

≤ e−x

πξ
∈ L1(R).

We may thus apply domintated convergence and obtain that, for ξ 6= 0∫ +∞

0

(
e−R(x−2iπξ)

x− 2iπξ
− e−R(x+2iπξ)

x+ 2iπξ

)
e−x dx→ 0

when R→ +∞ and thus

lim
R→+∞

∫ R

−R

e−2iπtξ

1 + |t|
dt = 4iπξ

∫ +∞

0

e−x

x2 + (2πξ)2
dx.

But, the L2-limit of this integral (seen as a function of ξ) is the Fourier transform of f . It follows
that, for almost every ξ,

f̂(ξ) = 4iπξ

∫ +∞

0

e−x

x2 + (2πξ)2
dx = 2i sgn(ξ)

∫ +∞

0

e−2π|ξ|u

u2 + 1
du

with a change of variable x = 2π|ξ|u.
One may observe that this function is continuous except at 0 where it has a jump discontinuity

and goes to 0 at in�nity. This follows immediately from Lebesgue's theorem: if we write F (ξ, u) =
e−2π|ξ|u

u2 + 1
then

� |F (ξ, u)| =
∣∣∣∣e−2π|ξ|u

u2 + 1

∣∣∣∣ ≤ 1

1 + u2
∈ L1(R+);

� if we �x u, ξ → F (ξ, u) thus ξ →
∫ +∞

0
F (ξ, u) du is continuous over R. In particular∫ +∞

0

F (ξ, u) du =

∫ +∞

0

1

1 + u2
du =

π

2

� if we �x u > 0, F (ξ, u)→ 0 when ξ → ±∞. Thus
∫ +∞

0
F (ξ, u) du→ 0 as well.
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Thus f̂(ξ) = 2i sgn(ξ)
∫ +∞

0
F (ξ, u) du has the properties we just announced with f̂(0+) =

−f̂(0−) = iπ.

One should also note that limR→+∞
∫ R
−R f(t) dt = 0 since f is odd.

Let us now erase the jump discontinuities with the help of the previous example. Let g =

f + iπ(c+1 − c
−
1 ) = sgn(t)

1+|t| + 4π2t
1+(2πt)2 . Note that g(t) ∼ 3 sgn(t)/t in ±∞ so that g ∈ L2(R) but not

in L1(R). By linerity ĝ = f̂ − iπe+
1 + iπe−1 . All three functions f̂ , e

+
1 , e
−
1 are continuous outside 0

and f̂(0±) = ±iπ, e±1 (0∓) = 0, e±1 (0±) = 1. Thus the jump discontinuities cancels.

2. Computation of the Poisson kernel in the upper half space Rd+1
+

In this section, we will consider Ω = Rd+1
+ = {(x, t) : x ∈ Rd, t > 0} and its boundary

∂Ω = Rd (identi�ed with the set of vectors of the form (x, 0), x ∈ Rd). The Laplace operator on
Rd+1

+ is the operator

∆ =

d∑
j=1

∂2

∂x2
j

+
∂2

∂t2
.

Recall that a function f ∈ C2(Rd+1
+ ) is said to be harmonic if ∆f = 0. We will be dealing with the

Dirichlet Problem, u ∈ C2(Rd+1
+ ) ∩ C(Rd+1

+ ){
∆u = 0 in Ω

u(x, 0) = f(x) x ∈ Rd
.

Here we assume to start that u ∈ S(Rd+1
+ ) and that f ∈ S(Rd). Let us denote by û(ξ, t) the Fourier

transform of u in the x variable:

û(ξ, t) =

∫
Rd
u(x, t)e−2iπ〈ξ,x〉 dx.

This is well de�ned due to the hypothesis u ∈ S which also justi�es the following computation:
integration by parts shows that

∂̂2
xju(ξ, t) = (2iπξj)

2û(ξ, t) = −(2πξj)
2û(ξ, t)

while inverting di�erentiation and integration shows that

∂̂2
t u(ξ, t) = ∂2

t û(ξ, t).

We thus want ∂2
t û(ξ, t) + (2π|ξ|)2û(ξ, t) = 0 and û(ξ, 0) = f̂(ξ). Solving this ODE gives

û(ξ, t) = e−2π|ξ|tA(ξ) + e2π|ξ|tB(ξ).

Notice that we are appearently missing a boundary condition for unique determination of û. How-
ever, this is not the case since we assumed that u ∈ S(Rd+1

+ ) so that, for �xed ξ, we require

û(ξ, t)→ 0 when t→ +∞ which requires B(ξ) = 0. Then the condition û(ξ, 0) = f̂(ξ) shows that

A(ξ) = f̂(ξ) and

û(ξ, t) = e−2π|ξ|tf̂(ξ).

It remains to recognize e−2π|ξ|t as a Fourier transform (in x) of a function Pd(x, t) that we want
to determine explicitely.

The �rst observation is that e−2π|ξ|t = ϕ(tξ) with ϕ(s) = e−2π|s| so Pd(x, t) = t−dPd(x/t, 1)
and it is enough to determine P (u) = Pd(u, 1) which has Fourier transform ϕ(s) = e−2π|s|.

In dimension d = 1, this has been done in (1.27) which shows that

P1(x) =
1

π

1

1 + x2
.

Let us prove the analogous fact in any dimension, namely that:

Lemma 4.15. The Poisson kernel on Rd+1
+ is given by

(2.29) Pd(x, t) =
cdt

(t+ |x|2)
d+1

2

where cd =
Γ( d+1

2 )

π
d+1

2

is constant such that
∫
Rd Pd(x) dx = 1.
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Proof of (2.29). We will of course only compute Pd(x, 1) and use scaling. To do so, we will
use the following Subordination Formula that we will prove later:

(2.30) e−2π|ξ| =

∫ +∞

0

e−πξ
2/s e

−πs
√
s

ds.

From this Formula, we can compute the inverse Fourier transform of the function Rd → R
given by ξ 7→ e−2π|ξ|

∫
Rd
e−2π|ξ|e2iπ〈ξ,x〉 dξ =

∫
Rd

∫ +∞

0

e−π|ξ|
2/s e

−πs
√
s

ds e2iπ〈ξ,x〉 dξ

=

∫ +∞

0

∫
Rd
e−π|ξ|

2/sei〈ξ,x〉 dξ
e−πs√
s

ds

=

∫ +∞

0

sd/2e−sπ|x|
2 e−πs√

s
ds

=

∫ +∞

0

s(d+1)/2e−sπ(1+|x|2) ds

s

=
1

π(d+1)/2(1 + |x|2)(d+1)/2

∫ +∞

0

t(d+1)/2e−t
dt

t
=

cd
(1 + |x|2)(d+1)/2

where we have used Fubini in the second line (show its validity as an exercice) and the fact that

e−pi|x|
2

is its own Fourier transform and the scaling property of the Fourier transform on Rd. In
the next to last line, we use the change of variable t = π(1 + |x|2)s. The constant is

cd =
1

π(d+1)/2

∫ +∞

0

t(d+1)/2e−t
dt

t
=

Γ
(
d+1

2

)
π
d+1

2

as claimed.
The constant cd could be computed independently using that∫

Rd
Pd(x) dx = P̂d(0) = e−|0| = 1.

Thus, integrating in polar coordinates

c−1
d =

∫
Rd

dx

(1 + |x|2)(d+1)/2
= σd−1(Sd−1)

∫ +∞

0

rd−1

(1 + r2)(d+1)/2
dr

= σd−1(Sd−1)

∫ π/2

0

(sin θ)d−1 dθ r = tan θ

=
2πd/2

Γ(d/2)

1

2

Γ(d/2)Γ(1/2)

Γ
(
(d+ 1)/2

) =
π
d+1

2

Γ
(
d+1

2

)
using classical computations. �

Proof of the subordination formula (2.30). The proof is based on the computation of
the Fourier transform of e−2π|x| in dimension 1 given in (1.27):

e−2π|t| =
1

π

∫ +∞

−∞

1

1 + ξ2
e−2iπtξ dξ.

An alternative way to prove this formula is to apply the theory of residues to eitz/(1 + z2).
Next, a simple change of variables shows that

1

1 + ξ2
=

π

π(1 + ξ2)
= π

∫ +∞

0

e−π(1+ξ2)s ds
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so that, with Fubini, for ξ > 0,

e−2πξ =

∫ +∞

−∞

∫ +∞

0

e−π(1+ξ2)s dse−2iπtξ dξ

=

∫ +∞

0

∫ +∞

−∞
e−π(1+ξ2)se−2iπtξ dξ ds

=

∫ +∞

0

e−πs
∫ +∞

−∞
e−sπξ

2

e−2iπtξ dξ ds

=

∫ +∞

0

e−πse−πξ
2/s ds√

s

where we use the fact that e−πξ
2

is its own Fourier transform so that

F [e−sπξ
2

](t) = s−1/2e−πξ
2/s.

The result for ξ < 0 is obtained by parity. �

Now that those computations have been done, let us be a bit more formal and extend the
result we are looking for:

Definition 4.16. The Poisson kernel of the upper half spacs Rd+1
+ for is de�ned by

P (x, t) = cd
t

(t2 + |x|2)(d+1)/2
x ∈ Rd, t > 0

where cd =
Γ( d+1

2 )

π
d+1

2

.

3. The Paley-Wiener theorems

We start with the following observation: if we �x x, the function ξ → e−2iπxξ is holomorphic,
we may thus be willing to apply Lebesgue's holomorphy theorem to the Fourier transform

f̂(ξ) =

∫ +∞

−∞
f(x)e−2iπxξ dξ

we need to bound f(x)e−2iπxξ by an L1-function that is independant of ξ in the domain of holo-
morphy. As |f(x)e−2iπxξ| = |f(x)|e2πx Im ξ, this will be easy when f is supported in [−c, c]. It
turns out that it is a bit simpler to work with inverse Fourier transform.

Theorem 4.17 (Paley-Wiener). Let A, c > 0 and f ∈ L2(R). The following are equivalent

(1) f = F a.e. on R with F an holomorphic function over C such that |F (z)| ≤ Ae1πc|z|.

(2) f̂ is supported in [−c, c].

Proof. Assume �rst that f̂ is supported in [−c, c]. Recall from Plancherel that f̂ ∈ L2(R)

so that Cauchy-Schwarz implies that f̂ ∈ L1(R). Further, if x ∈ [−c, c] and |z| < ρ, then

|f̂(ξ)e−2iπξz| ≤ |f̂(x)e2πcρ| It follows that the function F de�ned by

F (z) =

∫ c

−c
f̂(ξ)e−2iπξz dξ

is holomorphic over the disc D(0, ρ) with

|F (z)| ≤
∫ c

−c
|f̂(ξ)|e2πcρ dξ ≤

√
2c‖f̂‖2e2πcρ.

As ρ is arbitrary, we get that F is holomorphic over C and that |F (z)| ≤
√

2c‖f‖2e2πc|z|. On the
other hand, the L2 Fourier inversion theorem shows that f = F a.e. on R.

Let us now show the converse. We will not distinguish between f and F , that is we assume
that f extends to an entire function. For ε > 0 de�ne fε(x) = f(x)e−2πε|x|. Cauchy-Schwarz shows
that fε ∈ L1(R). We are going to show that

(3.31) lim
ε→0

∫ +∞

−∞
fε(x)e−2iπξx dx = 0 ξ ∈ R, |ξ| > c.
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Before we do so, let us see how we conclude from there. First, an easy application of dominated

convergence shows that ‖f − fε‖2 → 0 so that, by L2-continuity of the Fourier transform f̂ε → f̂

in L2. In particular, there is a sequence such that f̂εk(ξ) → f̂(ξ) for almost every ξ ∈ R. But

(3.31) shows that f̂εk(ξ)→ 0 for |ξ| > c so that f̂ = 0 a.e. on R \ [−c, c] and is thus supported in
[−c, c] as claimed.

For θ ∈ R we now de�ne the path Γθ = {teiθ : t ≥ 0} and the half-plane Πθ,η = {z ∈ C :
<(zeiθ) > η}. Let

Φθ(z) =

∫
Γθ

F (w)e−2πwz dw = eiθ
∫ +∞

0

F (teiθ) exp(−2πzteiθ) dt.

But, if η > c and z ∈ Πθ,η then

|F (teiθ) exp(−2πzteiθ)| ≤ A exp(−2π[<(zeiθ)− c]t) ≤ Ae−2π(η−c)t ∈ L1(R)

and z → F (teiθ) exp(−zteiθ) is holomorphic so that Φθ is holomorphic over Πθ,η. As η > c is
arbitrary, Φθ is holomorphic over the half-plane Πθ,c.

However, for θ = 0 and θ = π more is true since

Φ0(z) =

∫ +∞

0

f(t)e−2πzt dt

is holomorphic in the half-plane <(z) > 0 while

Φπ(z) = −
∫ +∞

0

f(−t)e2πzt dt = −
∫ 0

−∞
f(t)e−2πzt, dt

is holomorphic in the half-plane <(z) < 0. This follows from the fact that f ∈ L2(R). Indeed,
z → f(t)e−2πzt is holomorphic and if <(z) > α > 0 then |f(t)e−2πzt| ≤ |f(t)|e−2παt ∈ L1(R) with
Cauchy-Schwarz so that Φ0 is holomorphic in the half plane <(z) > α > 0 and α is arbitrary. The
argument for Φπ is similar.

Now notice that∫ +∞

−∞
fε(x)e−2iπξx dx =

∫ 0

−∞
f(t)e−2π(−ε+iξ)t dt+

∫ +∞

0

f(t)e−2π(ε+iξ)t dt

= −Φπ(−ε+ iξ) + Φ0(ε+ iξ).

We want to show that this quantity goes to 0 as ε→ 0 when |ξ| > c. To do so, we will show that
Φθ and Φϕ agree on Πθ,c∩Πϕ,c, the intersection of their domain of de�nition i.e. they are analytic
continuations of one another. In particular, if ξ < −c,

−Φπ(−ε+ iξ) + Φ0(ε+ iξ) = −Φπ/2(−ε+ iξ) + Φπ/2(ε+ iξ)→ 0 when ε→ 0

by continuity. For ξ > c we conclude with Φ−π/2 instead of Φπ/2.

Now take θ, ϕ with 0 < θ − ϕ < π and put γ =
θ + ϕ

2
. If z = ρe−iγ , then

<(zeiϕ) = ρ cos
β − ϕ

2
= <(zeiθ)

which shows that z ∈ Πϕ,c ∩Πθ,c as soon as ρ > c/η with η = cos
β − ϕ

2
> 0.

Consider the arc Γr = {reiα : ϕ ≤ α ≤ θ} and

ψ(r) =

∫
Γr

f(w)e−2πwz dw = r

∫ θ

ϕ

f(reiα)e−2πreiαzeiα dα.

Note that for ϕ ≤ α ≤ θ
|e−2πreiαz| = e−2πrρ cos(α−γ) ≤ e−2πrρη

thus

|ψ(r)| ≤ r
∫ θ

ϕ

e2π(c−ρη)r dα ≤ (θ − ϕ)re2π(c−ρη)r

so that ψ(r)→ 0 when r → +∞ as soon as ρ > c/η.
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But then, for ρ > c/η, integrating f(w)e−2πzw along the segment {teiϕ : 0 ≤ t ≤ r} then along
Γr and then along the segment {teiθ : r ≥ t ≥ 0} gives

0 =

∫ r

0

f(teiϕ)e−2πteiϕz eiϕ dt+ ψ(r) +

∫ 0

r

f(teiθ)e−2πteiθz eiθ dt.

Letting r → +∞, we obtain 0 = Φϕ(z)− Φθ(z) provided |z| = ρ > c/η.
In other words, Φϕ(z) = Φθ(z) on the half-line {z = ρe−iγ : ρ > c/η} and therefore coincide

on Πϕ,c ∩Πθ,c as claimed and the proof is completed. �





CHAPTER 5

The maximal function

In this chapter, we will introduce the Hardy-Littlewood Maximal Function (in its centered and
uncentered version) and investigate its main properties. Those functions play an important role in
harmonic analysis as they control many operators appearing in harmonic analysis.

1. Maximal functions

Recall that for A ⊂ Rd, we denote by |A| its Lebesgue measure and that B(x, r) is the (open)
ball centered at x and of radius r, B(x, r) = {y ∈ Rd : |x− y| < r}.

Definition 5.1. For f ∈ L1
loc(Rd), we de�ne the

� (centered) Hardy-Littlewood Maximal Function by

M [f ](x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(u)| du;

� (uncentered) Hardy-Littlewood Maximal Function by

M[f ](x) = sup
r>0

sup
y∈B(x,r)

1

|B(y, r)|

∫
B(y,r)

|f(u)|du.

These are respectively the maximum of the averages of |f | over all balls centered at x and over
all balls containing x. Those functions are obviously well-de�ned for f ∈ L1

loc, in particular, they
are well de�ned for f ∈ Lp(Rd).

Here are some properties of M andM:

Proposition 5.2. The maximal functions satify the following properties

(i) M [f ] = M [|f |] andM[f ] =M[|f |].
(ii) If, for some x ∈ Rd, M [f ](x) = 0 (resp. M[f ](x) = 0) then f = 0.
(iii) M andM are sub-linear.
(iv) ‖M [f ]‖∞ ≤ ‖f‖∞ and ‖M[f ]‖∞ ≤ ‖f‖∞.
(v) M [f ] ≤M[f ] ≤ 2dM [f ].

Proof. (i) is obvious and for (ii) if M [f ](x) = 0 then, for every r > 0,

∫
B(x,r)

|f(u)| du = 0

thus f = 0 a.e. on B(x, r). As r is arbitrary, f = 0 a.e. on Rd.
Clearly

1

|B(x, r)|

∫
B(x,r)

|f(u) + g(u)|du ≤ 1

|B(x, r)|

∫
B(x,r)

|f(u)| du+
1

|B(x, r)|

∫
B(x,r)

|g(u)| du

≤ M [f ](x) +M [g](x)

thus taking the suppremum over r > 0 givesM [f+g] ≤M [f ]+M [g]. M [λf ] = |λ|M [f ] is obvious.
The same argument works forM.

(iv) is trivial as is M [f ] ≤ M[f ] (take y = x in the de�nition of M). On the other hand if
y ∈ B(x, r) then B(y, r) ⊂ B(x, 2r) thus

1

|B(y, r)|

∫
B(y,r)

|f(u)| du ≤ 1

|B(y, r)|

∫
B(x,2r)

|f(u)| du =
2d

|B(x, 2r)|

∫
B(x,2r)

|f(u)| du ≤ 2dM [f ](x).

Taking the supremum over all y ∈ B(x, r) and then all r > 0 givesM[f ] ≤ 2dM [f ]. �

The maximal functions have been de�ned with the balls associated to the Euclidean norm. The
properties of M,M don't depend on this choice. To illustrate this, let us consider cubes instead
of balls. Write Q(x, r) = {y ∈ Rd : maxi |xi − yi| < r}.

57
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Definition 5.3. For f ∈ L1
loc(Rd), we de�ne the

� square Maximal Function by

M�[f ](x) = sup
r>0

1

|Q(x, r)|

∫
Q(x,r)

|f(u)| du;

� uncentered square Maximal Function by

M�[f ](x) = sup
r>0

sup
y∈Q(x,r)

1

|Q(y, r)|

∫
B(y,r)

|f(u)| du.

Lemma 5.4. For f ∈ L1
loc(Rd) and x ∈ Rd,

2−d
2/2M [f ](x) ≤M�[f ](x) ≤ 2d

2/2M [f ](x)

and

2−d
2/2M[f ](x) ≤M�[f ](x) ≤ 2d

2/2M[f ](x)

Proof. Recall that Q(x, 2−d/2r) ⊂ B(x, r) ⊂ Q(x, r) thus

1

|Q(x, r)|

∫
Q(x,r)

|f(u)| du ≤ 1

|B(x, r)|

∫
B(x,2d/2r)

|f(u)| du

=
2d

2/2

|B(x, 2d/2r)|

∫
B(x,2d/2r)

|f(u)| du ≤ 2d
2/2M [f ](x)

thus, taking the supremum over r, M�[f ](x) ≤ 2d
2/2M [f ](x). Conversely

1

|B(x, r)|

∫
B(x,r)

|f(u)| du ≤ 1

|Q(x, 2−d/2r)|

∫
Q(x,r)

|f(u)| du

=
2−d

2/2

|Q(x, r)|

∫
Q(x,r)

|f(u)| du ≤ 2−d
2/2M�[f ](x).

The proof for the uncentered case is the same. �

Exercice 5.5. Let f = 1[a,b], show that

M [f ](x) =


b− a

2|x− b|
when x ≤ a

1 when a < x < b
b− a

2|x− a|
when x ≥ b

and M[f ](x) =


b− a
|x− b|

when x ≤ a

1 when a < x < b
b− a
|x− a|

when x ≥ b

.

Remark 5.6. Note that in this example, M [f ],M[f ] /∈ L1(R) though f ∈ L1(R). This is a
general fact:

If in the supremum de�ning M [f ](x) we consider the average over the ball B(x, |x| + R) and
notice that this ball contains B(0, R) then

M [f ] ≥ 1

|B(0, 1)|(|x|+R)d

∫
B(0,R)

|f(u)| du.

Now, if f ∈ L1(Rd) and f 6= 0, we chose R large enough to have

∫
B(0,R)

|f(u)| du > 0 then this

inequality shows that M [f ] /∈ L1(Rd). In particular, the Hardy-Littlewood maximal functions are
not of strong (1, 1)-type.

The main result of this section is the following which is more or less te best possible.

Theorem 5.7 (Hardy-Littlewood). Both M andM are of weak-type (1, 1)

|{x : M[f ](x) > α} ≤ 3d

α

∫
Rd
|f(u)|du

and of strong type (p, p) for every 1 < p ≤ +∞.
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The (trivial) case p = +∞ was stated in the previous proposition and, once we establish that
M,M are of weak-type (1, 1), Marcienkiewicz interpolation allows to conclude that they are of
strong type (p, p). Also, in view of M [f ] ≤ M[f ] ≤ 2dM [f ], it is enough to consider the case of
M.

To do so, we will need a simple covering lemma:

Lemma 5.8 (Covering lemma). Let B1, . . . , Bn be a collection of balls. Then there exists a
sub-collection Bj1 , . . . , Bjm of pairwise disjoint balls such that

m∑
k=1

|Bjk | =

∣∣∣∣∣
m⋃
k=1

Bjk

∣∣∣∣∣ ≥ 3−d

∣∣∣∣∣∣
n⋃
j=1

Bj

∣∣∣∣∣∣.
Proof. Up to reordeing the balls, we can assume that |B1| ≥ |B2| ≥ · · · ≥ |Bn| (in other

words, we re-order the balls by decreasing radius).
We then go along the sequence of balls and keep only those balls that do not intersect any

previous ball. In other words, we set j1 = 1 then j2 = min{k > j1 : Bk ∩ Bj1 = ∅} so that Bj2 is
the �rst ball that does not intersect Bj1 . Next j3 = min{k > j2 : Bk ∩ (Bj1 ∪ Bj2) = ∅} so that
Bj3 is the �rst ball that does not intersect Bj1 nor Bj2 ...

By construction, this family of balls is disjoint. Now take any ball Bj in the orginal collection
of balls. Either this is one of balls in the subcollection, Bj = Bj` or there is an ` such that
j` < j < j`+1 which means that Bj intesects one of Bj1 ∪ · · · ∪ Bj` (otherwise we would have
j`+1 = j), say Bj`0 . But, from the fact that the balls have been ordered with decreasing radius,

the radius of Bj is smaller than the radius of Bj`0 and then Bj ⊂ 3Bj`0 (the ball with same center

as Bj`0 but radius multiplied by 3). This implies that

n⋃
j=1

Bj ⊂
m⋃
k=1

3Bjk But then

∣∣∣∣∣∣
n⋃
j=1

Bj

∣∣∣∣∣∣ ≤
∣∣∣∣∣
m⋃
k=1

3Bjk

∣∣∣∣∣ ≤
m∑
k=1

|3Bjk | = 3d
m∑
k=1

|Bjk |.

�

Proof of the Theorem. Let α > 0 and Eα = {x : M[f ](x) > α} and x ∈ Eα. Then there

exists a ball B(y, r) containing x and such that
1

|B(y, r)|

∫
B(y,r)

|f(u)| du > α. But this implies

that if z ∈ B(y, r),M[f ](z) > α, since the ball B(y, r) is one of the balls in the supremum de�ning
M[f ](z). It follows that B(y, r) ⊂ Eα which is therefore an open set.

Now let K ⊂ Eα be a compact set. By de�nition, for each x ∈ Eα, there exists a ball Bx

containing x and such that

∫
Bx

|f(u)| du > α|Bx|. As {Bx : x ∈ K} is a covering of K, we can

extract a �nite collection of balls B1, . . . , Bn that still covers K. Apply the covering Lemma to this

collection and get a subcollection Bj1 , . . . , Bjm . Then each Bjk satis�es |Bjk | ≤
1

α

∫
Bjk

|f(u)| du.

Further

|K| ≤

∣∣∣∣∣∣
n⋃
j=1

Bj

∣∣∣∣∣∣ ≤ 3d
m∑
k=1

|Bjk | ≤
3d

α

m∑
k=1

∫
Bjk

|f(u)| du

=
3d

α

∫
⋃m
k=1 Bjk

|f(u)| du ≤ 3d

α

∫
Rd
|f(u)|du

where we have used the disjointness of the Bjk 's in the last line. �

2. Control of other maximal functions

We will now consider an other family of maximal functions:

Theorem 5.9. Let k be a decreasing, non-negative, continuous function (except at �nitely
many points) on [0,+∞). Let K(x) = k(|x|) be the radial function associated to k, and assume
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that K ∈ L1(Rd). For ε > 0, de�ne Kε = ε−dK(x/ε) the dilates of K. Let

Mk[f ](x) = sup
ε>0

Kε ∗ |f |(x)

be the maximal function associated to the dilates of K. Then

(2.32) Mk[f ](x) ≤ ‖K‖L1(Rd)M [f ](x).

In particular, f → Mk[f ] is of weak-type (1, 1) and of strong type (p, p) for every 1 < p ≤ +∞.
Further Mk[f ] is �nite almost everywhere when f ∈ Lp(Rd), 1 ≤ p ≤ +∞.

Proof. The second part of the theorem follows from (2.32).
Note that Kε ∗ |f |(x) is well de�ned as the integral of a non-negative quantity when f ∈ L1

loc.
First, let kj = k1[0,j] so that kj is compactly supported and, for each x, kj(x) → k(x)

increasingly. If (2.32) holds for each kj , then it is enough to pass to the limit to obtain (2.32) for
k. We can thus assume that k is compactly supported. Further, it is enough to establish (2.32)
for x = 0 and then apply the inequality with f(t + x) instead of f(t) to obtain the result in full
generality.

For simplicity, we will now assume that k is C1-smooth (using Stieltjes integrals avoids this)
and supported in [0, R]. Up to replacing f by |f | wa may also assume that f ≥ 0. We want to
estimate

Kε ∗ f(0) =

∫
Rd
f(x)Kε(−x) dx =

∫ +∞

0

ε−dk(r/ε)

∫
Sd−1

f(rζ)dσ(ζ) rd−1 dr.

Write F (r) =

∫
Sd−1

f(rζ)dσ(ζ) and note that this is well de�ned for almost every r. De�ne

G(r) =

∫ r

0

F (s)sd−1 ds and note that G(0) = 0 and that, integrating in polar coordinates, (and

using that f = |f |)

G(r) =

∫
B(0,r)

|f(u)| du = |B(0, r)| 1

|B(0, r)|

∫
B(0,r)

|f(u)| du ≤ |B(0, r)|M [f ](0).

In particular, G(r) is �nite.
Then, as k(R) = 0, integrating by parts gives

Kε ∗ f(0) =

∫ εR

0

ε−dk(r/ε)F (r) rd−1 dr =

∫ εR

0

ε−dk(r/ε)G′(r) dr

=

∫ εR

0

−ε−d−1k′(r/ε)G(r)dr

≤
∫ εR

0

−ε−d−1k′(r/ε)|B(0, r)| drM [f ](0)(2.33)

where we have used that k decreases so that −k′ ≥ 0. It remains to notice that, changing variable
s = r/ε and then interating again by parts gives∫ εR

0

−ε−d−1k′(r/ε)|B(0, r)| dr = |B(0, 1)|
∫ εR

0

−ε−d−1k′(r/ε)rd dr

= |B(0, 1)|
∫ R

0

−k′(s)sd ds

= d|B(0, 1)|
∫ R

0

k(s)sd−1 ds = ‖K‖L1(Rd)

where we have used that k is radial and supported in [0, R].
Grouping (2.33) and (2.34) gives (2.32). �

We leave as an exercice to adapt the proof to the case where k is piecewise C1 with only �nitely
many jump discontinuities.

A careful reading will show that the crux of the proof is the following lemma that we state
here with less regularity for the kernel.
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Lemma 5.10. Let h be a non-negative decreasing function and de�ne g on Rd by g(x) = h(|x|)
so that g is radial. Assume that g ∈ L1(Rd). Let v ∈ L1(Rd) be such that |v(x)| ≤ g(x). Then, for
u ∈ Lp(Rd), 1 ≤ p ≤ +∞, ∣∣∣∣∫ u(y)v(x− y) dy

∣∣∣∣ ≤ ‖g‖1M [u](x)

almost everywhere in Rd.

It can be proved along the lnes above but we give a more direct approach which avoids Stiletjes
measures:

Proof. It is of course enough to prove

(2.34)

∫
u(y)g(x− y) dy ≤

∫
Rd
g(y) dyM [u](x).

with u non-negative.
We �rst notice that, if h = 1[0,ρ) then g = 1B(0,ρ) then ‖g‖1 = |B(0, ρ)| = |B(x, ρ)| and this is

the trivial inequality

(2.35)

∫
B(x,ρ)

u(y) dy ≤ |B(x, ρ)| sup
s>0

1

|B(x, s)

∫
B(x,s)

u(y) dy.

Next, if h is a non-negative decreasing step function, then we can write

h(r) =

n∑
j=1

cj1[0,ρj ]

with cj ≥ 0 and ρ1 ≤ ρ2 ≤ · · · ≤ ρn. But then g =

n∑
j=1

cj1B(0,ρj) and in this case (2.34) is

just a linear combination of (2.35). We conclude by noticing that every decreasing function can
be approximated from below by an increasing sequence of simple step functions of this type and
conclude by monotone convergence. �

3. Using maximal functions for almost everywhere convergence

3.1. General principle. Let us explain how maximal functions are used to obtain almost
everywhere convergence.

The general setting is as follows: (X,B, µ) and (Y, B̃, ν) are two measure spaces and 1 ≤ p, q <
+∞.

For each ε > 0 we consider a linear operator Tε : Lp(µ) → L0(Y ) and to this family of
operators we associate the maximal function

T∗[f ](y) = sup
ε>0
|Tε[f ](y)|.

We assume that T∗[f ] is measurable.
Next we assume that there is some dense vector space D ⊂ Lp(µ) and a bounded operator

T : Lp(µ) → Lq(ν) such that, if f ∈ D, T (f) := limε→0 Tε(f) exists and is �nite ν-almost
everywhere. Note that this de�nes a linear operator on D.

With thouse notations we have the following theorem:

Theorem 5.11. Assume that T∗ is of weak-type (p, q) i.e. there exists B > 0 such that, for
every f ∈ Lp(µ),

‖T∗[f ]‖Lqw(ν) ≤ B‖f‖Lp(µ).

Then for every f ∈ Lp(µ),

T [f ](y) = lim
ε→0

Tε[f ](y)

exists for ν-almost every y ∈ Y and de�nes a linear mapping T on Lp(µ) (uniquely extending T
from D to Lp(µ)) such that, for every f ∈ Lp(µ),

(3.36) ‖T [f ]‖Lqw(ν) ≤ B‖f‖Lp(µ).
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Proof. Given f ∈ Lp(µ), we de�ne its oscillation by

Osc[f ](y) = lim sup
ε→0

lim sup
η→0

|Tε[f ](y)− Tη[f ](y)|.

We would like to show that, for every f ∈ Lp(µ) and every δ > 0,

(3.37) ν({y : Osc[f ](y) > δ}) = 0.

Once this is done, we would have that, for almost every y ∈ Y , Tε[f ](y) is a Cauchy-family so that
T [f ](y) = limε→0 Tε[f ](y) exists. This then de�nes an operator T on Lp(µ) that coincides with T
on D. Since then |T [f ]| ≤ T∗[f ], the of bound (3.36) follows.

We will use density of D to approximate Of . Given η > 0, there exists g ∈ D such that
‖f − g‖Lp(µ) ≤ η. Further, if Tε[g](y) converges (which happens for almost every y), Osc[g](y) = 0
i.e. Osc[g] = 0 ν-a.e. Next, as the Tε's are linear,

|Tε[f ](y)− Tθ[f ](y)| ≤ |Tε[f − g](y)− Tθ[f − g](y)|+ |Tε[g](y)− Tθ[g](y)|
thus, taking lim sup's,

Osc[f ](y) ≤ Osc[f − g](y) +Osc[g](y)

and we get that Osc[f ] ≤ Osc[f − g] ν-a.e.
Finally, note that Osc[f − g] ≤ 2T∗[f − g] thus {y : Osc[f ](y) > δ} ⊂ {y : 2T∗[f − g] > δ} and

therefore

ν({y : Osc[f ](y) > δ}) ≤ ν({y : T∗[f − g] > δ/2})

≤
(

2B‖f − g‖Lp(µ)

δ

)q
≤

(
2Bη

δ

)q
.

As η > 0 was arbitrary, we can let η → 0 and obtain that (3.37) as desired. �

3.2. Lebesgue's Di�erentiation Theorem. We will �rst use the (centered) maximal func-
tion. Consider , K(x) = |B(0, 1)|−11(0,1) (which is associated to the radial decreasing function

k(r) = |B(0, 1)|−11|0,1](r) that has only one jump) and note that

Kε(x) := ε−dK(x/ε) =
1

|B(0, ε)|
1B(0,ε)(x).

Let Tε be de�ned by Tε[f ] = Kε ∗ f that is

Tε[f ](y) =
1

|B(0, ε)|

∫
Rd
f(x)1B(0,ε)(y − x) dx =

1

|B(0, ε)|

∫
B(y,ε)

f(x)dx

is the mean of f over the ball centered at y of radius ε. As a consequence T∗ = M is the centered
Hardy-Littlewood Maximal Function. In particular, we already know that T∗ is of weak-type (1, 1)
and of strong-type (p, p).

Next, let D = Cc(Rd) the set of continuous compactly supported functions. This set is dense
in Lp(Rd) for 1 ≤ p < +∞. Further, if f ∈ Cc(Rd) and y ∈ Rd, then for every η > 0, there exists
ε0 > 0 such that if ε < ε0 and x ∈ B(y, ε) then |f(x)− f(y)| ≤ η. It follows that

|Tε[f ](y)− f(y)| =

∣∣∣∣∣ 1

|B(0, ε)|

∫
B(y,ε)

f(x) dx− 1

|B(0, ε)|

∫
B(y,ε)

f(y) dx

∣∣∣∣∣
≤ 1

|B(0, ε)|

∫
B(y,ε)

|f(x)− f(y)| dx ≤ η.

As a consequence, Tε[f ](y) → f(y) when ε → 0 (for all y). This is exactly the setting of the
previous section with T = Id and we have proven the following:

Theorem 5.12 (Lebesgue Di�erentiation). Let 1 ≤ p < +∞ and f ∈ Lp(Rd). Then, for
almost every y ∈ Rd,

(3.38)
1

|B(0, ε)|

∫
B(y,ε)

f(x) dx→ f(y)

when ε→ 0.
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Remark 5.13. A point such that (3.38) holds is called a Lebesgue point of f .

Note that if f = g a.e. then
1

|B(0, ε)|

∫
B(y,ε)

f(x) dx =
1

|B(0, ε)|

∫
B(y,ε)

g(x) dx. In particular,

Lebesgue points do not depend on the particular element of the equivalence class (a.e.) of f one
takes.

Exercice 5.14. Show that the theorem still holds if f ∈ L1
loc(Rd).

Hint: Apply the theorem to f1B(0,n) and show that this determines all Lebesgue points of f in
B(0, n).

3.3. Limits of convolutions.

Proposition 5.15. Let ϕ ∈ L1(Rd), m =

∫
Rd
ϕ(x) dx and, for t > 0, ϕt(x) = t−dϕ(x/t). Let

1 ≤ p < +∞ and f ∈ Lp(Rd). Then
(i) ϕt ∗ h ∈ Lp(Rd) with ‖ϕt ∗ h‖ ≤ ‖ϕ‖1‖h‖p and ϕt ∗ h→ mh in Lp(Rd) when t→ 0.

For p = +∞ the same is true provided (say) f is continuous with compact support.
(ii) Assume further that the least radial majorant of ϕ, Φ(x) := sup|y|≥x |ϕ(y)| is in L1(Rd)

then ϕt ∗ h→ mf a.e. when t→ 0.

Proof. The inequality ‖ϕt ∗ h‖ ≤ ‖ϕ‖1‖h‖p is Young's inequality since ‖ϕt‖1 = ‖ϕ‖1. We
then note that

ϕt ∗ h(x)−mh(x) =

∫
Rd
ϕt(y)

(
h(x− y)− h(x)

)
dy =

∫
Rd
ϕ(y)

(
h(x− ty)− h(x)

)
dy

thus

‖ϕt ∗ h−mh‖p ≤
∫
Rd
|ϕ(y)|‖τtyh− h‖p dy.

As for all y 6= 0, ‖τtyh− h‖p → 0 when t→ 0 and |ϕ(y)|‖τtyh− h‖p ≤ 2‖h‖p|ϕ(y)| ∈ L1(R) we get
the �rst statement from dominated convergence.

The second statement follows from the general principle and the fact that |ϕt ∗ h(x)| ≤
|‖Φ‖1M [f ](x). The details are left to the reader. �

3.4. Harmonic functions on the upper half plane and Poisson integrals. In this
section, we will consider Ω = Rd+1

+ = {(x, t) : x ∈ Rd, t > 0} and its boundary ∂Ω = Rd

(identi�ed with the set of vectors of the form (x, 0), x ∈ Rd). The Laplace operator on Rd+1
+ is the

operator

∆ =

d∑
j=1

∂2

∂x2
j

+
∂2

∂t2
.

A function f ∈ C2(Rd+1
+ ) is said to be harmonic if ∆f = 0. We will be dealing with the Dirichlet

Problem, u ∈ S(ω̄) {
∆u = 0 in Ω

u(x, 0) = f(x) x ∈ Rd
.

Recall the following:

Definition 5.16. The Poisson kernel of the upper half spacs Rd+1
+ for is de�ned by

P (x, t) = cd
t

(t2 + |x|2)(d+1)/2
x ∈ Rd, t > 0

where cd =
Γ( d+1

2 )

π
d+1

2

.

The key properties we need here are the following:
� P (x, t) = t−dPd(x/t) where Pd is de�ned in (2.29);

� Pd ∈ L1(Rd) and
∫
Rd
Pd(x) dx = 1;

� ∆P = 0 where ∆ is the Laplace operator on Rd+1
+ .
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The �rst two properties are obvious or already proven. The last property is a direct computa-
tion (though we have already proven it via the Fourier transform)

∂tP (t, x) = cd
1

(t2 + |x|2)(d+1)/2
− (d+ 1)cd

t2

(t2 + |x|2)(d+3)/2

thus

∂2
t P (t, x) = −cd(d+ 1)

3t

(t2 + |x|2)(d+3)/2
+ cd(d+ 1)(d+ 3)

t3

(t2 + |x|2)(d+5)/2

=
cd(d+ 1)

(t2 + |x|2)(d+5)/2
t(dt2 − 3|x|2)

while

∂xjP (t, x) = −cd(d+ 1)
xjt

(t2 + |x|2)(d+3)/2

thus

∂2
xjP (t, x) = −cd(d+ 1)

t

(t2 + |x|2)(d+3)/2
+ cd(d+ 1)(d+ 3)

tx2
j

(t2 + |x|2)(d+5)/2

and, summing from j = 1 to d,

d∑
j=1

∂2
xjP (t, x) = −cdd(d+ 1)

t

(t2 + |x|2)(d+3)/2
+ cd(d+ 1)(d+ 3)

t|x|2

(t2 + |x|2)(d+5)/2

=
cd(d+ 1)

(t2 + |x|2)(d+5)/2
t(−dt2 + 3|x|2)

and the fact that ∆P = 0 follows.
We can now prove the main result of this section:

Theorem 5.17. Let 1 ≤ p < +∞ and f ∈ Lp(Rd). Let

u(x, t) = P (t, ·) ∗ f(x) =

∫
Rd
P (x− y, t)f(y) dy

be the Poisson extension of f . Then u ∈ C2(Rd+1
+ ) with ∆u = 0 in Rd+1

+ and, for almost every

x ∈ Rd, u(x, t)→ f(x) when t→ 0.

Proof. As P (x, t) = t−dPd(x/t), for t �xed, P (· · · , t) ∈ L1(Rd) so that u is well de�ned.
Further, the family {P (·, t) : t > 0} is an approximation of the identity so that u(· · · , t) → f in
Lp(Rd).

The previous computations show that ∂tP, ∂
2
t P, ∂xjP, ∂

2
xjP ∈ L

2(Rd) so that there is no di�-
culty in applying Lebesgue's theorem to show that ∆u = 0.

Finally, the properties of P show that we are in the framework of Section 3.1 so that u(·, t)→ f
a.e. �

Remark 5.18. Note that this shows that if f ∈ Cc(Rd) then u(· · · , t)→ f uniformly.

4. The Calderón-Zygmund decomposition

In the course on interpolation, we have already used several times a decomposition of a function
f ∈ L1(R) in the form (λ > 0)

f(x) = f1|f |≤λ + f1|f |>λ := g + b.

The �rst piece, g = f1|f |≤λ is the good part of f since g ∈ L1(R) and is also bounded,

‖g‖1 ≤ ‖f‖1 and ‖g‖∞ ≤ λ.
The bad part b = f1|f |>λ satis�es

‖b‖1 ≤ ‖f‖1 and | supp b| ≤ ‖f‖1
λ

with Markov's inequality.
For general measure spaces, this is the best one can hope for. But in Rd one can get a better

decomposition of the function b. To do so, we will use dyadic cubes:
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Definition 5.19. A dyadic cube is a subset of Rd of the form
Q = Qk,m := [2km1, 2

k(m1 + 1)[×[2km2, 2
k(m2 + 1)[× · · · × [2kmd, 2

k(md + 1)[

where k ∈ Z and m = (m1, . . . ,md) ∈ Zd.
We denote by D the set of dyadic cubes and de�ne the dyadic maximal function a

Md[f ](x) = sup
x∈Q∈D

1

|Q|

∫
Q

|f(y)| dy.

One easily checks that |Qk,m| = 2kd and that if Q,Q′ are two diyadic cubes with |Q| ≤ |Q′|
then either Q and Q′ are disjoint or Q ⊂ Q′. The dyadic cubes thus enjoy a tree structure. We
call k the generation of the cube and Dk the set of cubes of generation k and note that this is a
covering of Rd. Every cube Q of generation k can be divided into 2d cubes of generation k + 1
which we call the daughters of Q. In the opposite direction, there is a unique cube Q′ of generation
k + 1 such that Q ⊂ Q′ and Q′ is called the mother of Q.

We leave as an exercice to show that there are constants a, b, c (depending on the dimension
d) such that for every λ > 0,

|{x : Md[f ](x) > aλ}| ≤ |{x : M [f ](x) > λ}| ≤ b|{x : Md[f ](x) > cλ}|.
In particular, Md is of weak-type (1, 1) and of strong type (p, p) for every p > 1.

Theorem 5.20 (Calderón-Zygmund Decomposition). Let f ∈ L1(Rd) and α > 0. Then there
exists functions g and b such that

(1) f = g + b;
(2) ‖g‖1 ≤ ‖f‖1 and ‖g‖∞ ≤ 2dα;

(3) the function b may be written as b =
∑
j

bj where

(a) each bj is supported in a dyadic cube Qj;
(b) if j 6= k, Qj ∩Qk = ∅;

(c)

∫
Qj

bj(x) dx = 0;

(d) ‖bj‖1 ≤ 2d+1α|Qj |;
(e)

∑
j

|Qj | ≤
1

α
‖f‖1.

This decomposition of f is called the Calderón-Zygmund Decomposition of f at scale (or level) α.

Remark 5.21. The function g is called the good function as it is in every Lp space with
‖g‖pp ≤ ‖g‖1‖g‖p−1

∞ ≤ 2d(p−1)αp−1‖f‖1.
The function b is the bad part, it sati�es ‖b‖1 ≤ ‖f‖1 + ‖g‖1 ≤ 2‖f‖1 and contains the

singularities of f but has mean zero. We can't expect any Lp-regularity for this function.

Proof. We �rst chose the smallest k such that 2kd ≥ 1

α
‖f‖1. Now for each cube Q ∈ Dk, we

consider its 2d daugthers. Such a daughter Q̃ will be added to the set of selected cubes S1 if

1

|Q̃|

∫
Q̃

|f(x)| dx > α.

For each Q ∈ Dk−1 \ S1, we repeat the operation and consider its daughters. Such a daughter Q̃
will be added to the set of selected cubes S2 if

1

|Q̃|

∫
Q̃

|f(x)| dx > α...

At each generation k − j, j ≥ 1 we thus construct a set of selected cubes Sj such that if Q̃ ∈ Sj ,
then

1

|Q̃|

∫
Q̃

|f(x)| dx > α.

Next, notice that the set of selected cubes
⋃
`≥1

S` is countable and that two selected cubes are

disjoint since once a cube is selected, none of its daughters can be selected and two cubes of the
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same generation are disjoint. We re-order the set of selected cubes as
⋃
`≥1

S` = {Qj}j which is

precisely the set of disjoint cubes we are looking for. Note that this set may be empty in which
case we set b = 0 and g = f .

Now, for each j, we de�ne

bj =

(
f − 1

|Qj |

∫
Qj

f(y)dy

)
1Qj

which is well de�ned since f ∈ L1(Rd), is supported in Qj and has clearly integral 0 (over Qj
which is its support thus over Rd). We then set b =

∑
bj (note that this sum is well de�ned since∑

bj(x) has at most one non-zero term since the bj 's have disjoint support) and g = f − b.
For each j, let Q̃j be the mother of Qj . As Q̃j was not selected,

1

|Q̃j |

∫
Q̃j

|f(x)|dx ≤ α.

It follows that

1

|Qj |

∫
Qj

|f(x)| dx ≤ 1

|Qj |

∫
Q̃j

|f(x)| dx =
2d

|Q̃j |

∫
Q̃j

|f(x)| dx ≤ 2dα.

But then∫
Qj

|bj(x)| dx ≤
∫
Qj

|f(x)| dx+

∫
Qj

1

|Qj |

∫
Qj

|f(y)|dy ≤ 2

∫
Qj

|f(x)| dx ≤ 2d+1α|Qj |.

On the other hand, as Qj was selected,

|Qj | ≤
1

α

∫
Qj

|f(x)|dx

therefore, using the fact that the Qj 's are disjoint,∑
|Qj | ≤

1

α

∫
⋃
Qj

|f(x)| dx ≤ 1

α
‖f‖1.

It remains to prove the estimate of g. We obviously have

g(x) =

{
f(x) for x ∈ Rd \

⋃
Qj

1
|Qj |

∫
Qj
f(y) dy for x ∈ Qj

.

Note that this is well de�ned as x can only belong to at most one Qj . A direct consequence is that∫
Rd
|g(x)| dx =

∫
Rd\

⋃
Qj

|g(x)| dx+
∑
j

∫
Qj

|g(x)| dx

≤
∫
Rd\

⋃
Qj

|f(x)|dx+
∑
j

∫
Qj

1

|Qj |

∫
Qj

|f(y)| dy dx

=

∫
Rd\

⋃
Qj

|f(x)| dx+
∑
j

∫
Qj

|f(y)| dy = ‖f‖1.

Further, we have already shown that
1

|Qj |

∫
Qj

|f(y)| dy ≤ 2dα so that |g| ≤ 2dα on
⋃
Qj . It

remains to prove the same estimate on Rd \
⋃
Qj .

But, for each j ≥ 1, there is a unique cube in Dk−j to which x belongs and this cube has not

been selected. Call it Q
(j)
x and note that∣∣∣∣∣ 1

|Q(j)
x |

∫
Q

(j)
x

f(y) dy

∣∣∣∣∣ ≤ 1

|Q(j)
x |

∫
Q

(j)
x

|f(y)| dy ≤ α.

Further, the diameter of Q
(j)
x goes to 0 as j → +∞ and each of these cubes contains x. So the

intersection of its closures is reduced to a single point which can only be x. Using Lebesgue's
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Di�erentiation Theorem, we conclude that, for almost every x ∈ Rd \
⋃
Qj ,

f(x) = lim
j→+∞

1

|Q(j)
x |

∫
Q

(j)
x

f(y)dy

thus |f(x)| ≤ α. �

The fact that Lebesgue's Di�erentiation Theorem holds for dyadic cubes is a direct consequence
of the weak-type (1, 1) property of Md.





CHAPTER 6

The Hilbert and Newton transforms

1. The Hilbert transform

1.1. The conjugate Poisson kernel. In this section we will identify C+ := {z ∈ C :
Im(z) > 0} with the upper half-plane R2

+ in the usual way. For f ∈ Lp(R) (1 < p < +∞), real
valued, the Poisson integral U(x + it) = u(x, t) = Pt ∗ f(x) is a real valued harmonic function
on C+ and it is well known from your course on complex analysis that U is the real part of an
holomorphic function, U = <F . We can thus write F = U + iV with V harmonic and further V
is unique up to a constant.

At least when f ∈ S(R), it is easy to explicitely determine V with the help of Fourier analysis.

Indeed, U(x+ it) = Pt ∗ f(x) = F−1[P̂tf̂ ](x), that is

U(x+ it) =

∫
R
e−2πt|ξ|f̂(ξ)e2iπxξ dξ

=

∫ +∞

0

e2πξ(x+it)f̂(ξ)dξ +

∫ 0

−∞
e2πξ(x−it)f̂(ξ) dξ.

Now the �rst integral is holomorphic in z = x+ it while the second one is anti-holomorphic (of the
form G(z̄) with G holomoprhic) so that both are harmonic. One can thus chose

iV (x+ it) =

∫ +∞

0

e2iπξ(x+it)f̂(ξ)dξ −
∫ 0

−∞
e2iπξ(x−it)f̂(ξ) dξ

which is harmonic and such that U + iV is holomorphic. In other words

V (x+ it) =

∫
R
−i sign(ξ)e−2πt|ξ|f̂(ξ)e2iπxξ dξ =

∫
R
−i sign(tξ)e−2πt|ξ|f̂(ξ)e2iπxξ dξ.

Using Fourier inverstion again, V (x + it) = Qt ∗ f(x) with Qt(x) = t−1Q1(x/t) and Q̂1(ξ) =
−i sign(ξ)e−2π|ξ|.

It is not di�cult to compute the inverse Fourier transform of Q̂1 and to obtain

F−1[Q̂1](x) =

∫
R
−i sign(ξ)e−2π|ξ|e2iπxξ dξ

=

(∫ 0

−∞
e2πξ(1+ix) dξ −

∫ +∞

0

e2πξ(−1+ix) dξ

)
= i

(
1

1 + ix
+

1

−1 + ix

)
=

1

π

x

x2 + 1
.

One thus obtains an L2(R)-function that is not in L1(R). However, L2-Fourier inversion shows

that the L2-Fourier transform of Q1 =
1

π

x

x2 + 1
is −i sign(ξ)e−2π|ξ|.

We can now introduce the following:

Definition 6.1. The Poisson kernel on R2
+ is given by

Pt(x) =
1

π

t

x2 + t2

and the conjugate Poisson kernel on R2
+ is given by

Qt(x) =
1

π

x

x2 + t2
.

69
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Observe the following facts:

� Pt(x) = t−1P1(x/t) and Qt = t−1Q1(x/t);

� P1 ∈ L1(R), Q1 /∈ L1(R) but Q1 ∈ Lq(R) for all q > 1;

� P̂t(ξ) = e−2πt|ξ| (L1-Fourier transform) and Q̂t(ξ) = −i sign(ξ)e−2πt|ξ| (L2-Fourier trans-
form).

From Young's inequality, we may thus de�ne Qt ∗ f when f ∈ Lp(R), 1 ≤ p < +∞ and

obtain a function in Lr(R) with
1

r
=

1

p
+

1

q
− 1. Note that the condition

1

r
≥ 0 requires to chose

1

q
≥ 1− 1

p
=

1

p′
that is q ≤ p′.

Next, observe that

Pt + iQt =
1

π

t+ ix

x2 + t2
=

i

π

x− it
|x+ it|2

=
i

π

1

x+ it

so that

Pt ∗ f(x) + iQt ∗ f(x) =
i

π

∫
R

f(y)

x+ it− y
dy

is indeed holomorphic in z = x+ it, provided the integral converges.

Definition 6.2. For f ∈ Lp(R), 1 ≤ p < +∞, we de�ne
� the conjugate Poisson integral of f on R2

+ by

Q[f ](x, t) = Qt ∗ f(x) =
1

π

∫
R

x− y
(x− y)2 + t2

f(y) dy

� the Cauchy-transform of f on C \ R by

C[f ](z) =
1

2iπ

∫
R

f(y)

x− y + it
dy.

The above computations show that

C[f ](x+ it) =


1

2

(
P [f ](x, t) + iQ[f ](x, t)

)
when t > 0

1

2

(
−P [f ](x,−t) + iQ[f ](x,−t)

)
when t < 0

.

We now want to study the convergence of Qt[f ] when t→ 0. We can no longer apply the same
theory as for the Poisson kernel since

lim
t→0

Qt =
1

πx
/∈ Lp(R)

for any p. Actually, it is not even a tempered distribution.

On the other hand limt→0 Q̂t(ξ) = −i sign(ξ) so that, applying Parseval twice, if f ∈ L2(R)

then −i sign(ξ)f̂ ∈ L2(R) and the operator

f → F−1[−i sign(ξ)f̂ ]

is bounded L2(R)→ L2(R).
This is the operator we are going to study now

1.2. The Hilbert transform.

Definition 6.3. The Hilbert transform is the operator L2(R)L2(R) de�ned by

Ĥf(ξ) = −i sign(ξ)f̂(ξ)

that is

Hf(x) = lim
R→+∞

1

2π

∫ R

−R
−i sign(ξ)f̂(ξ)eixξ dξ

where the limit is in the L2(R)-sense.

Proposition 6.4. The Hilbert transform has the following properties:

(i) For f ∈ L2(R), Hf = limt→0Qt ∗ f .
(ii) ‖Hf‖2 = ‖f‖2, H∗ = H−1 = −H and H2 = −I.
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(iii) Qt[f ] = Pt[Hf ] and Qt[f ](x)→ Hf(x) in L2 and a.e. when t→ 0.
(iv) Let τaf(x) = f(x − a) the translations (a ∈ R), δsf(x) = f(sx) the positive dilations

(s > 0) and Rf(x) = f(−x) the re�ection. Then H commutes with the translations
and positive dilations: H[τaf ] = τaH[f ], H[δsf ] = δsH[f ] and anti-commutes with the
re�ection RH[f ] = −H[Rf ].

(v) If a bounded operator T : L2(R) → L2(R) commutes with the translations and posi-
tive dilations and anti-commutes with the re�ection, then it is a multiple of the Hilbert
transform.

Proof. For (i), we have already seen that Qt ∗f is well de�ned and in L2(R) when f ∈ L2(R)
through Hausdor�-Young and that

Q̂t ∗ f(ξ) = −i sign(ξ)e−2πt|ξ|f̂(ξ).

Now | − i sign(ξ)e−2πt|ξ|f̂(ξ)| ≤ |f̂(ξ)| ∈ L2(R) and −i sign(ξ)e−2πt|ξ|f̂(ξ) → −i sign(ξ)f̂(ξ) a.e.

when t → 0 so that dominated convergence immediately shows that Q̂t ∗ f → −i sign(ξ)f̂ = Ĥf
in L2(R) when t→ 0. Using the continuity of the inverse Fourier transform (Parseval) we get that
Qt ∗ f → Hf in L2(R) when t→ 0.

For (ii), the �rst two are just Parseval:

‖Hf‖22 = ‖Ĥf‖22 = ‖ − i sign(ξ)f̂‖22 = ‖f̂‖22 = ‖f‖22
while

〈Hf, g〉 = 〈Ĥf, ĝ〉 =

∫
R
−i sign(ξ)f̂(ξ)ĝ(ξ) dξ

∫
R
f̂(ξ)i sign(ξ)ĝ(ξ) dξ

= 〈f̂ ,−Ĥg〉 = 〈f,−Hg〉
that is H∗ = −H

On the other hand, Hf = g if and only if Ĥf = ĝ that is −i sign(ξ)f̂(ξ) = ĝ(ξ) or, equivalently

f̂(ξ) = i sign(ξ)ĝ(ξ) = −Ĥg that is f = −Hg. Thus H−1 = −H as well. As H can be de�ned as

a Fourier multiplier Ĥ[f ] = −i sign(ξ)f̂ , we get

Ĥ2[f ] = −i sign(ξ)Ĥ[f ] =
(
−i sign(ξ)

)2
f̂ = −f̂

thus H2 = −I.
For (iii), we �rst notice that if f ∈ L2(R) then Qt[f ] = Pt[Hf ] coincide since both have

as Fourier transform −i sign(ξ)e−2πt|ξ|f(ξ). Then, as Hf ∈ L2(R), we have already shown that
Pt[Hf ]→ Hf in L2 and a.e. when t→ 0 so the result follows for Qt[f ].

The last two are left as an exercice. One should �rst show that if a bounded operator T :

L2(R)→ L2(R) commutes with the translations then there existsm ∈ L∞ such that T f̂ = mf̂ . �

We will now give a more direct de�nition of the Hilbert transform. One would of course like to

de�ne Hf =
1

πx
∗ f but this is not possible since

1

πx
/∈ L1(R) and even the more general Sobolev

inequality does not apply.
To overcome this issue, let us introduce

Definition 6.5. The principal value distribution associated to 1/x〈
vp

1

x
, ϕ

〉
= lim
ε→0

∫
|x|>ε

ϕ(x)

x
dx, ϕ ∈ S(R).

The �rst step is to notice that, as 1/x is odd, this is well de�ned. Indeed, let χ be an even
function supported in [−2, 2] and such that χ(x) = 1 on [−1, 1]. Then∫

|x|>ε

χ(x)

x
dx =

∫ −ε
−2

χ(x)

x
dx+

∫ 2

ε

χ(x)

x
dx = 0

after changing variable x→ −x in the �rst integral. It follows that∫
|x|>ε

ϕ(x)

x
dx =

∫
ε<|x|<2

ϕ(x)− ϕ(0)χ(x)

x
dx+

∫
|x|>2

ϕ(x)

x
dx.

It remains to notice that
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� the second integral is absolutely convergent when ϕ ∈ S(R) since x−1ϕ(x) = O(x−2) in this
case.

� as ϕ is smooth,
ϕ(x)− ϕ(0)χ(x)

x
extends into a continuous function over [−2, 2] so that∫ 2

−2

ϕ(x)− ϕ(0)χ(x)

x
dx is absolutely convergent thus∫
ε<|x|<2

ϕ(x)− ϕ(0)χ(x)

x
dx→

∫ 2

−2

ϕ(x)− ϕ(0)χ(x)

x
dx

when ε→ 0.

It is not di�cult to slightly modify this argument to show that pv
1

x
is a distribution of order

1 with ∣∣∣∣〈pv
1

x
, ϕ

〉∣∣∣∣ ≤ sup
x∈R
|xf(x)|+ 4 sup

x∈R
|f ′(x)|.

Next, we can �x f ∈ S(R), x ∈ R and apply this to ϕ(y) = f(x− y). This shows that

pv
1

x
∗ f(x) := lim

ε→0

∫
|y|>ε

f(x− y)

y
dy

is well de�ned pointwise. Our aim is to show that this coincides with the Hilbert transform:

Proposition 6.6. For f ∈ L2(R), the limit

lim
ε→0

∫
|y|>ε

f(x− y)

y
dy

exists both in L2(R) and almost everywhere and is equal to πHf . In other words, the Hilbert
transform can also be de�ned as

Hf(x) = lim
ε→0

1

π

∫
|y|>ε

f(x− y)

y
dy

where the limit exists in L2(R) and almost everywhere.

Proof. Let us introduce ht(x) =
1

πx
1|x|>t and note that ht(x) = t−1h1(x/t). De�ne Ht[f ] =

ht ∗ f and observe that as ht ∈ L2(R),

Ht[f ](x) =

∫
|y|>t

1

y
f(x− y) dy =

∫
R
ht(y)f(x− y) dy

is well de�ned for every x ∈ R when f ∈ L2(R).
We now consider Ψt[f ] = Qt[f ]−Ht[f ] = ϕt ∗ f with

ϕt(x) = Qt(x)− ht(x) =
1

t

(
Q1(x/t)− h1(x/t)

)
=

1

t
ϕ1(x/t)

where

ϕ1(u) =
1

π

(
x

x2 + 1
− 1

x
1|x|>1

)
=


1

π

x

x2 + 1
when |x| < 1

1

π

−1

x(1 + x2)
when |x| ≥ 1

.

One can then note that ϕ1 is odd and has thus mean m = 0. Further, its radial majorant is easily
computed

Φ(x) = sup
|y|≥x

|ϕ(y)| =


1

2π
if |x| ≤ 1

|ϕ(x)| if |x| ≥ 1

since |ϕ| is continuous and increases from 0 to 1/2π on [0, 1] while it is decreasing after 1. In
particular, Φ ∈ L1(R). Applying Proposition 5.15, we get that Ψt[f ]→ 0 in L2(R) and a.e. when
t → 0. But we already know that Qt[f ] → Hf both in L2 and a.e. so that the same holds for
Ht[f ]. �

To conclude this section, we will show two further applications of the Hilbert transform, the
�rst one connects the transform to complex analysis:
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Theorem 6.7 (Plemelj Formula). Let f ∈ C1(R) be such that f(x) = O(x−1) when x→ ±∞,
then

1

2iπ
lim
ε→0

∫
R

f(y)

y − (x± iε)
dy =

±f(x) + iHf(x)

2
.

Note that the conditions on f are just to make everything de�ned pointwise. Boundedness
considerations and a density argument allow to extend this formula in various settings.

Proof. First, a change of variable allows to only consider the case x = 0. Also, we only
consider the + sign in front of ε. We thus want to prove that

1

2iπ
lim
ε→0

∫
R

f(y)

y − iε
dy =

f(0) + iHf(x)

2
=
f(0)

2
+ lim
ε→0

i

2π

∫
|y|>ε

f(y)

y
dy

that is (changing variable y = εw in the integrals and multplying by 2iπ)∫
R
f(εw)

(
1

w − i
−

1|w|≥1

w

)
dy − iπf(0)→ 0.

Now let ϕ(w) =
1

w − i
−

1|w|≥1

w
and note ϕ is bounded while for |w| > 1, ϕ(w) = i

w(w−i) which

is integrable at in�nity, thus ϕ ∈ L1(R). Further, decomposing ϕ as a sum of an even and an odd
integrable function

ϕ(w) =
1

w − i
−

1|w|≥1

w
==

i

w2 + 1
+

w

w2 + 1
−

1|w|≥1

w

we get ∫
R
ϕ(w) dw = i

∫
R

dw

w2 + 1
= iπ.

It follows that∫
R
f(εw)

(
1

w − i
−

1|w|≥1

w

)
dy − iπf(0) =

∫
R

(
f(εw)− f(0)

)( 1

w − i
−

1|w|≥1

w

)
dy.

As f(εw) − f(0) → 0 and is bounded by 2‖f‖∞ < +∞ the conclusion follows from dominated
convergence. �

Assume now that f further extends to an holomorphic function in the upper-half plane C+

with a decay bound |f(z)| ≤ C

1 + |z|
. Cauchy's Formula then gives

1

2iπ

∫
R

f(y)

y − (x+ iε)
dy = f(x+ iε)→ f(x)

when ε → 0 so that Plemelj's Formula shows that f = f+iH
2 i.e. Hf = −if . In particular,

comparing real and imaginary parts, we get

<f = −H Im f and Im f = H<f.

Let us conclude this section with the link between Hilbert transform and Fourier integrals:

de�ne the modulation operator Maf(x) = e2iπaxf(x). Note that M̂af(ξ) = f̂(ξ − a).
Next observe that if a < b

sign(ξ − a)− sign(ξ − b) =


−1 + 1 = 0 if ξ < a < b

1− 1 = 0 if ξ > b > a

1 + 1 = 2 if a < ξ < b

= 21(a,b)(ξ)

so that∫ b

a

f̂(ξ)e2iπxξ dξ =
1

2

∫
R

sign(ξ − a)f̂(ξ)e2iπxξ dξ − 1

2

∫
R

sign(ξ − b)f̂(ξ)e2iπxξ dξ

=
e2iπax

2

∫
R

sign(ξ)f̂(ξ + a)e2iπixξ dξ − e2iπbx

2

∫
R

sign(ξ)f̂(ξ + b)e2iπixξ dξ

= −e
2iπax

2i

∫
R
−i sign(ξ)M̂−af(ξ)e2iπxξ dξ +

e2iπbx

2i

∫
R
−i sign(ξ)M̂−bf(ξ)e2iπxξ dξ
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so that Fourier inversion gives∫ b

a

f̂(ξ)e2iπξ dξ =
1

2i

(
MbH[M−bf ]−MaH[M−af ]

)
.

Note that if f ∈ S(R), then

lim
R→+∞

∫ R

−R
f̂(ξ)e2iπxξ dξ = f(x)

by Fourier inversion. If we are able to show that H is bounded Lp(R)→ Lp(R) for some p ≥ 1 (we
already know this for p = 2 and we will do so for all 1 < p < +∞) then the family of operators

SR[f ](x) =
1

2π

∫ R

−R
f̂(ξ)eixξ dξ

1

2i

(
MRH[M−Rf ]−M−RH[MRf ]

)
is uniformly bounded. It follows from Banach-Steinhaus that SR[f ]→ f in Lp(R).

A di�cult example of Kolmogorov shows that this is false in L1(R) but it is more easy to show
that H is not bounded on L1(R):

Exercice 6.8. Compute H1(a,b).

Exercice 6.9. Show that if f ∈ S(R) then

xHf(x)→ 1

π

∫
R
f(x) dx

when x→ +∞.
Conclude that H is not a bounded operator L1(R)→ L1(R).

2. Newton potential

We continue with an operator that appeared in the introduction:

Definition 6.10. Let d ≥ 3.
The Newton potential is the function de�ned on Rd \ {0} by

Γ(x) =
cd
|x|d−2

cd =
1

d(2− d)|B(0, 1)|
and the Newton potential of a function f ∈ S(Rd) is given by the convolution with Γ:

Γ[f ](x) =

∫
Rd

Γ(x− y)f(y) dy.

Note that, for x 6= 0 and j, k ∈ {1, . . . , d}
∂Γ

∂xj
(x) = −(d− 2)cd

xj
|x|d

and if k 6= j
∂2Γ

∂xk∂xj
(x) = d(d− 2)cd

xjxk
|x|d+2

while
∂2Γ

∂x2
j

(x) = (d− 2)cd

(
dx2

j

|x|d+2
− 1

|x|d

)

in particular ∆Γ = 0. Note that
∂Γ

∂xj
is integrable so that Lebesgue's Theorem shows that

∂Γ[f ]

∂xj
(x) = −(d− 2)cd

∫
Rd

xj − yj
|x− y|d

f(y) dy.

The argument does not work for the second derivative for which the following formula is only
formal:

∂2Γ[f ]

∂xk∂xj
(x) = d(d− 2)cd

∫
Rd

(xj − yj)(xk − yk)

|x− y|d+2
f(y) dy.

Instead we are now going to prove the following:
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Theorem 6.11. Let f ∈ S(Rd) then, for every x ∈ Rd and every 1 ≤ j, k ≤ d,

∂2Γ[f ]

∂xk∂xj
(x) =

(
2(d− 2)cd

∫
Sd−1

yjyk dσd−1(y)

)
f(x)

+ d(d− 2)cd lim
ε→0

∫
Rd\B(x,ε)

(xj − yj)(xk − yk)

|x− y|d+2
f(y) dy.

In particular, this limit exists for every x.

Proof. Throughout the proof f ∈ S(Rd) and x ∈ Rd are �xed.

It is enough to prove the formula for k = 1. To simplify notation, we write ∂ =
∂

∂x1
and

∂j =
∂

∂xj
Let e = (1, 0, . . . , 0) and notice that, for every t ∈ R and R > 2,

∂jΓ[f ](x+ te)− ∂jΓ[f ](x)

t
=

∫
Rd

∂jΓ(x+ te− y)− ∂jΓ(x− y)

t
f(y) dy

=

∫
Rd\B(x,|t|R)

(
∂jΓ(x− y + te)− ∂jΓ(x− y)

t
− ∂∂jΓ(x− y)

)
f(y) dy

+

∫
Rd\B(x,|t|R)

∂∂jΓ(x−y)f(y) dy+
1

t

∫
B(x,|t|R)

∂jΓ(x+te−y)f(y) dy+
1

t

∫
B(x,|t|R)

∂jΓ(x−y)f(y) dy.

Note that the two �rst integrals are well de�ned when f ∈ S(Rd) since Γ and its partial derivatives
are bounded on the domain of integration.

Denote the 4 terms by T jR,t, j = 1, 2, 3, 4. The remaining of the proof consists in treating
each of these terms in a speci�c claim. We will let t → 0 and R → +∞. In some steps, those
convergences can be independent and in some not. The simplest would be to chose R = t−1/3 but
this can make notation a bit heavy.

Claim 1. We have limt→0 limR→+∞ T 1
R,t = 0.

Applying the mean value theorem twice, there are a θ1, θ2 ∈ [0, 1] such that

∂jΓ(x− y + tey)− ∂jΓ(x− y)

t
− ∂∂jΓ(x− y)

= ∂∂jΓ(x− y + tθ1e)− ∂∂jΓ(x− y) = tθ1∂
2∂jΓ(x− y + tθ1θ2e).

But, on one hand, there is a constant C such that |∂2∂jΓ(u)| ≤ C/|u|d+1, on the other hand if

R ≥ 2 then |tθ1θ2e| ≤ |t| ≤ Rt
2 thus, for y ∈ Rd \B(x, |t|R) i.e. |x− y| ≥ |t|R

|x− y + tθ1θ2e| ≥ |x− y| − |tθ1θ2e| ≥ |x− y|/2

so that

|∂2∂jΓ(x− y + tθ1θ2e)| ≤
2d+1C

|x− y|d+1
.

We have thus shown that

|T 1
R,t| ≤ 2d+1Ct

∫
Rd\B(x,|t|R)

|f(y)|
|x− y|d+1

dy ≤ 2d+1C|t|
∫
Rd
h(|x− y|)|f(y)| dy

where h(r) =

{
r−d−1 if r > |t|R
(|t|R)−d−1 if r ≤ |t|R

. Note that h is decrasing and that g(x) = h(|x|) sati�es

‖g‖1 = σ(Sd−1)

∫ +∞

0

h(r)rd−1 dr = σ(Sd−1)

(
(|t|R)d

d(|t|R)d+1
+

1

|t|R

)
=

κd
|t|R

.

We then apply Lemma 5.10 to get

|T 1
R,t| ≤ 2d+1C|t|‖g‖1M [f ](x) =

2d+1Cκd
R

which goes to zero when t→ 0 and R→ +∞.
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Claim 2. We claim that

(2.39) T 2
R,t → lim

ε→0

∫
Rd\B(x,ε)

∂∂jΓ(x− y)f(y) dy

when t→ 0, R→ +∞ with Rt→ 0 (and the limit in (2.39) exist for every x).

We need the following symmetry observations: Let D = B(0, ρ) \B(0, r) with ρ > r. then

(2.40)

∫
D

∂2Γ

∂xk∂xj
(x) dx = 0.

When k 6= j this comes from the fact that D is symmetric with respect to the transformation

xj → −xj while
∂2Γ

∂xk∂xj
(x) is odd for this transform. When k = j, we use the fact that D is

invariant under permutation of variables thus∫
D

x2
j

|x|d+2
dx =

∫
D

x2
k

|x|d+2
dx

so that

d

∫
D

x2
j

|x|d+2
dx =

d∑
k=1

∫
D

x2
k

|x|d+2
dx =

∫
D

|x|2

|x|d+2
dx.

The formula for
∂2Γ

∂x2
k

sows that ∫
D

∂2Γ

∂x2
k

(x) dx = 0.

We then write, for |t|R < 1,

T 2
R,t =

∫
Rd\B(x,1)

∂∂jΓ(x− y)f(y) dy +

∫
B(x,1)\B(x,R|t|)

∂∂jΓ(x− y)f(y) dy.

The �rst integral is well de�ned. For the second one, we use (2.40) to write∫
B(x,1)\B(x,R|t|)

∂∂jΓ(x− y)f(y) dy =

∫
B(x,1)\B(x,R|t|)

∂∂jΓ(x− y)
(
f(y)− f(x)

)
dy.

Since f ∈ S(Rd), the mean value theorm gives

|f(x)− f(y)| ≤ ‖∇f‖1|x− y|
thus with the estimate |∂2Γ(x− y)| ≤ C|x− y|−d we get that

|∂∂jΓ(x− y)f(y)| ≤ C
‖∇f‖1
|x− y|d−1

which is integrable aover B(x, 1). Thus∫
B(x,1)\B(x,R|t|)

∂∂jΓ(x− y)f(y) dy

has a limit when R→ +∞, t→ 0 with Rt→ 0 and

lim
t→0,R→+∞,Rt→0

T 2
R,t = lim

ε→0

∫
Rd\B(x,ε)

∂∂jΓ(x− y)f(y) dy.

Claim 3. We claim that

lim
t→0

lim
R→+∞

T 3
R,t =

(
(d− 2)cd

∫
Sd−1

yjyk dσd−1(y)

)
f(x).

We write

T 3
R,t =

1

t

∫
B(x,|t|R)

∂jΓ(x+ te− y)
(
f(y)− f(x+ te)

)
dy

+
f(x+ te)

t

∫
B(x,|t|R)

∂jΓ(x+ te− y) dy := T 31
R,t + T 32

R,t.
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Using the mean value theorem and the bound on |∂jΓ(u)| ≤ C|u|−d−1 we get

|T 31
R,t| ≤

1

|t|

∫
B(x,|t|R)

C
‖∇f‖1 |y − (x+ te)|
|x+ te− y|d−1

dy

≤ C‖∇f‖1
|t|

∫
B(x+te,2|t|R)

dy

|x+ te− y|d−2

since B(x, |t|R) ⊂ B(x + te, 2|t|R) as R ≥ 1. One can then change variable u = x + te − y and
integrate in polar coordinates u = rζ to get

|T 31
R,t| ≤

C‖∇f‖1
|t|

σd−1(Sd−1)

∫ 2|t|R

0

rd−1

rd−2
dr

= 2C‖∇f‖1σd−1(Sd−1)R2|t|
which goes to zero when t→ 0, R→ +∞ but R2t→ 0.

For the second term, we notice that

∂jΓ(x+ te− y) :=
∂

∂xj
Γ(x+ te− y) = − ∂

∂yj
Γ(x+ te− y).

Then, integrating by parts (Green's Formula)

1

t

∫
B(x,|t|R)

∂jΓ(x+ te− y) dy = −1

t

∫
B(x,|t|R)

∂

∂yj
Γ(x+ te− y) dy

= −1

t

∫
∂B(x,|t|R)

Γ(x+ te− y)νj dy

= −1

t
(R|t|)d−1

∫
Sd−1

Γ(R|t|ζ + te)ζj dσd−1(ζ)

= −R sign(t)

∫
Sd−1

Γ(ζ +R−1 sign(t)e)ζj dσd−1(ζ)

since Γ is homogeneous of degree −d+ 2. Next we use again a symmetry argument to get∫
Sd−1

Γ(ζ)ζj dσd−1(ζ) = 0

so that∫
B(x,|t|R)

∂jΓ(x+ te− y) dy = −R sign(t)

∫
Sd−1

(
Γ(ζ +R−1 sign(t)e)− Γ(ζ)

)
ζj dσd−1(ζ)

→ −
∫
Sd−1

∂Γ

∂x1
(ζ)ζj dσd−1(ζ)

= cd(d− 2)

∫
Sd−1

ζ1ζj dσd−1(ζ)

when R→ +∞ (with the fact that ∂Γ(ζ) = −cd(d− 2)ζ1 when |ζ| = 1).
The conclusion follows by letting t→ 0
The proof for T 4

R,t is similar and we obtain the same limit. To make all steps work simultane-

ously, it is enough to take R = t−1/3 and to let t→ 0. �





CHAPTER 7

Calderon-Zygmund operators

1. De�nition

In this chapter we are interested in operators that are (at least formally) de�ned by a kernel
K i.e. are of the form

Tf(x) =

∫
Rd
K(x, y)f(y) dy

and we are looking for conditions on K which garantee that T is of strong type (p, p). We are
in particular looking for conditions that go beyond the Schur test and would cover the Hilbert
transform and the Newton potential.

IWe will denote by ∆ = {(x, x) ∈ Rd × Rd : x ∈ Rd}.

Definition 7.1. A function K ∈ C1(Rd × Rd \∆) is called a standard or singular kernel if
there is a constant C0 > 0 and an α with 0 < α ≤ 1 such that the following estimates hold:

(i) For every (x, y) ∈ Rd × Rd \∆, |K(x, y)| ≤ C

|x− y|d
;

(ii) For every x, y, z ∈ Rd with y, z 6= x, and |y − z| ≤ 1

2
|x− y|

|K(x, y)−K(x, z)| ≤ C0
|y − z|α

|x− y|d+α

and for every x, y, z ∈ Rd with x, y 6= z, and |x− y| ≤ 1

2
|x− z|

|K(x, z)−K(y, z)| ≤ C0
|x− y|α

|x− z|d+α
.

Remark 7.2. The second property of a standard kernel is usually called the smoothness prop-
erty of K as it is essentially a Hölder smoothness property. The factor 1/2 appearing there is of
mild interest as long as this factor is < 1.

To check that K is a standard kernel, it is usually more convenient to check that there is a
constant C1 such that

|∇xK(x, y)|, |∇yK(x, y)| ≤ C1

|x− y|d+1
.

Indeed, let x, y, z ∈ Rd with y, z 6= x and |y−z| ≤ 1

2
|x−y| then, by the mean value theorem, there

is a θ ∈ [y, z] such that

K(x, y)−K(x, z) = 〈∇yK(x, θ), y − z〉.
Thus

|K(x, y)−K(x, z)| = |∇yK(x, θ)| |y − z| ≤ C1

|x− θ|d+1
|y − z|.

As θ ∈ [y, z], |y − θ| ≤ |y − z| ≤ 1

2
|x− y|,

|x− θ| ≥ |x− y| − |y − θ| ≥ |x− y| − |y − z| ≥ 1

2
|x− y|.

We conclude that

|K(x, y)−K(x, z)| ≤ 2d+1C1

|x− y|d+1
|y − z|.

The second estimate is similar.

79
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Example 7.3. In dimension d = 1, both K(x, y) =
1

x− y
and K(x, y) =

1

|x− y|
are singular

kernels. If Ω : Sd−1 → R is Hölder continuous then

K(x, y) = Ω

(
x− y
|x− y|

)
1

|x− y|d

is a singular kernel on Rd × Rd.
We leave this fact as an exercice.

These conditions are not su�cient for the operator T associated toK to be of strong (2, 2)-type.

Definition 7.4. A Calderón-Zygmund operator is an operator T of strong type (2, 2) such
that there exists a singular kernel K such that if f ∈ L2(R) is supported in a compact set E then
for every x /∈ E,

Tf(x) =

∫
Rd
K(x, y)f(y)dy.

Example 7.5. Let b be a bounded function on Rd and Tf = bf then T is bounded L2(Rd)→
L2(Rd) and if f ∈ L2(R) is supported in a compact set E then for every x /∈ E

Tf(x) = b(x)f(x) = 0 =

∫
Rd

0f(y) dy

so that T is a Calderón-Zygmund operator with kernel 0. In particular the kernel is not unique.
However, a functional analytic argument allows to show that this is the only source of non-
uniqueness.

In general, Calderón-Zygmund operators are just singular in the sense that K just fails to
be integrable so the di�culty is to analyse the singularity correctly to see that some cancelation
occurs.

Example 7.6. The Hilbert transformH is a Calderón-Zygmund operator with kernelK(x, y) =
1

π

1

x− y
since, we proved that H is of strong type (2, 2) and if f ∈ L2(R) is supported in a compact

set E then for every x /∈ E

Hf(x) = lim
ε→0

∫
|x−y|≥ε

1

π

1

x− y
f(y) dy =

∫
Rd

1

π

1

x− y
f(y) dy.

This follows from the fact that if x /∈ E then for ε small enough, |x− y| ≤ ε implies that f(y) = 0.

Remark 7.7. A Calderón-Zygmund operator needs not be translation invariant, self-adjoint,
dilation invariant,... However, if T is a Calderón-Zygmund operator with kernel K, then τ−aTτa,
δ1/λTδλ and T ∗ are also Calderón-Zygmund operators. We leave as an exercice to determine the
kernel in each case.

As the adjoint will play a role in the sequel, let us detail that case:

Lemma 7.8. Let T be a Calderón-Zygmund operator and K be a standard kernel associated to
it. De�ne its adjoint by ∫

Rd
Tf(x)g(x) dx =

∫
Rd
f(x)T ∗g(x) dx

for every f, g ∈ L2(Rd). Then T ∗ is also a Calderón-Zygmund operator with kernel K∗(x, y) =

K(y, x).

Proof. That T ∗ is a well-de�ned bounded linear operator on L2(Rd) is a standard fact from
any course on Hilbert spaces. The only thing that needs to be shown is that T ∗ is associated to
the kernel K∗ as it is clear that K∗ is also a standard kernel.

Now, let f, g ∈ L2(Rd) have disjoint compact support. Then∫
Rd
f(x)T ∗g(x) dx =

∫
Rd
Tf(x)g(x) dx

=

∫
Rd

∫
Rd
K(x, y)f(y)dyg(x) dx

=

∫
Rd
f(y)

(∫
Rd
K(x, y)g(x) dy

)
dx
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whith Fubini which is justi�ed by the fact that f(y)K(x, y)g(x) ∈ L1(Rd × Rd) since f, g ∈ L1

and K is bounded over supp f × supp g (since those supports are compact and disjoint thus at a
positive distance).

Now �x φ ∈ C∞c (Rd) with
∫
φ = 1 and z /∈ supp g. For ε > 0 take f = ε−dφ

(
(x− z)/ε

)
which

has disjoint support from g when ε is small enough and let ε→ 0 then,

φε∗T ∗g(z) =

∫
Rd
f(x)T ∗g(x) dx =

∫
Rd
f(y)

(∫
Rd
K(x, y)g(x) dy

)
dx = φε∗

(∫
Rd
K(·, y)g(x)dy

)
(z).

Letting ε→ 0, by the approximation of unity theorem, we get

T ∗g(z) =

∫
Rd
K(z, y)g(x) dy

for almost every z. �

Remark 7.9. Some authors prefer de�ning Calderón-Zygmund operators with the help of
distribution theory. Here we consider W ∈ S ′(Rd × Rd) and assume that W coincides with a
standard kernel K on Rd × Rd \∆ where ∆ = {(x, x) : x ∈ Rd} is the diagonal of Rd × Rd. This
means that, if F ∈ S(Rd × Rd) is supported away from ∆ (i.e. dist(suppF,∆) > 0) then

〈W,F 〉S′(Rd×Rd),S(Rd×Rd) =

∫∫
Rd×Rd

K(x, y)F (x, y) dx dy.

Note that this integral is absolutely convergent and that more than one distributionW can coincide
with K.

Next, we consider an operator T : S(Rd) → S ′(Rd). The Schwarz kernel theorem states that
there exists WT ∈ S ′(Rd × Rd) such that

〈Tf, ϕ〉S′(Rd),S′(Rd) = 〈WT , f ⊗ ϕ〉S′(Rd×Rd),S(Rd×Rd)

for every f, ϕ ∈ S(Rd). We then say that T is a Calderón-Zygmund operator if its kernel WT

coincides with a standard kernel of the diagonal and if T extends to a bounded operator L2(Rd)→
L2(Rd).

The last part means that there exists C > 0 such that, for every f ∈ S(Rd), Tf ∈ L2(Rd)
(as a distribution) meaning that there is a g ∈ L2(Rd) with ‖g‖2 ≤ C‖f‖2 such that, for every
ϕ ∈ S(Rd)

〈Tf, ϕ〉S(Rd),S′(Rd) =

∫
Rd
g(x)ϕ(x)dx.

Of course, we identify g = Tf .
Under this de�nition, T is thus always de�ned on S(Rd). Saying that T is of strong type

(p, p), 1 < p < +∞, then means that the g above is also in Lp(Rd) with ‖g‖p ≤ Cp‖f‖p. This in
turn implies that T (uniquely) extends from an operator S(Rd)→ Lp(Rd) to a bounded operator
Lp(Rd)→ Lp(Rd).

We will now turn to boundedness properties of Calderón-Zygmund operators.

2. Boundedness of Calderón-Zygmund operators

We will start with a simple lemma that shows that an operator with singular kernel maps
�uctuating (zero-mean) localized functions into weakly localized functions:

Lemma 7.10. Let K be a singular kernel and denote by C0, α the parameters in De�nition

7.1. Let ϕ ∈ L1(Rd) be supported in a ball B = B(x0, r) with zero mean

∫
B

ϕ(x) dx = 0. For

x /∈ 2B = B(x0, 2r) de�ne

Tϕ(x) =

∫
B

K(x, y)ϕ(y) dy

then

|Tf(x)| ≤ C0r
α

|x− x0|d+α

∫
B

|f(y)| dy

so that

‖Tf‖L1(Rd\2B) ≤ C
C0

α2α
‖f‖1
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where C depends on the dimension, but not on f nor on K.

Proof. Using the fact that f has mean 0, we write

Tf(x) =

∫
B

K(x, y)f(y) dy =

∫
B

(
K(x, y)−K(x, x0)

)
f(y) dy.

But x /∈ 2B and x0, y ∈ B thus |x0 − y| ≤ r ≤
1

2
2r ≤ 1

2
|x− x0| so that

|K(x, y)−K(x, x0)| ≤ C0
|y − x0|α

|x− x0|d+α
≤ C0

rα

|x− x0|d+α
.

We thus get the �rst estimate from the triangle inequality. But then, integrating in polar
coordinates

‖Tf‖L1(Rd\2B) ≤ C0r
α

∫
B

|f(y)| dyσd−1(Sd−1)

∫ +∞

2r

td−1

td+α
dt(2.41)

=
C0

α2α
σd−1(Sd−1)

∫
B

|f(y)|dy(2.42)

as claimed. �

This lemma of course applies to Calderón-Zygmund operators but we did not need L2-boundedness
which will now play a key role:

Theorem 7.11. Let T be a Calderón-Zygmund operator, then T extends into an operator of
weak-type (1, 1).

Proof. We take f ∈ S(Rd) and λ > 0. We want to show that

|{|Tf | > λ}| ≤ ‖f‖1
λ

.

To do so, we will exploit the Calderón-Zygmund decomposition and the previous lemma. The
parameter in the decomposition can be chosen to be α = λ. We thus get a decomposition f = g+b,
b =

∑
i bi with bi supported in Qi with

∫
bj = 0. Further ‖g‖2 ≤ 2dλ‖f‖1, ‖bj‖1 ≤ 2d+1λ|Qj | and∑

|Qj | ≤
‖f‖1
λ

.

First Tf = Tg+
∑
Tbi so that |Tf | ≤ |Tg|+

∑
|Tbi| and if this sum is ≥ λ, then at least one

of the terms is ≥ λ/2 so that

|{|Tf | > λ}| ≤ |{|Tg| > λ/2}|+ |{|
∑

Tbi| > λ/2}|.

For the �rst term, we exploit the fact that g ∈ L2 so that Tg ∈ L2 and Chebichev's inequality:

|{|Tg| > λ/2}| ≤ 4

λ2
‖Tg‖2L2 ≤

4

λ2
‖T‖2L2→L2‖g‖2L2 ≤

C1

λ
‖f‖1.

with C1 = 2d+2‖T‖2L2→L2 .
For the second term, we will start exploiting the previous lemma which states that, if

‖Tbj‖L1(Rd\2Qj) ≤ C‖bj‖1 ≤ C2λ|Qj |
where C2 depends on the dimension and the parameters of the kernel associated to T . In particular

‖
∑

Tbj‖L1(Rd\
⋃

2Qj) ≤
∑
‖Tbj‖L1(Rd\2Qj) ≤ C2λ

∑
|Qj | ≤ C2‖f‖1.

Therefore, using Markov's estimate∣∣∣{x ∈ Rd \
⋃

2Qj :
∣∣∣∑Tbi(x)

∣∣∣ > λ/2
}∣∣∣ ≤ 2

λ

∥∥∥∑Tbj

∥∥∥
L1(Rd\

⋃
2Qj)

≤ 2C2

λ
‖f‖1.

Now comes the big advantage of weak-type estimates of strong type estimates: we do not need to
estimate

∑
Tbi over the remaining set

⋃
2Qj , we only need to estimate the size of this set:∣∣∣⋃ 2Qj

∣∣∣ ≤∑ |2Qj | ≤ 2d
∑
|Qj | ≤

2d

λ
‖f‖1

so that �nally ∣∣∣{|∑Tbi| > λ/2
}∣∣∣ ≤ C3

λ
‖f‖1
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with C3 = 2C2 + 2d.
Putting everything together, we get

|{|Tf | > λ}| ≤ C1

λ
‖f‖1 +

C3

λ
‖f‖1

as expected. �

Corollary 7.12. Let T be a Calderón-Zygmund operator and 1 < p < +∞, then T is of
strong type (p, p).

Proof. Recall that, by de�nition, a Calderón-Zygmund operator is bounded on L2. First, for
1 < p < 2, using the fact that T is of weak-type (1, 1) and of strong type (2, 2), we get that T is
of strong type (p, p) by interpolation.

Next, let 2 < p < +∞. If T is a Calderón-Zygmund operator then so is T ∗. Thus T ∗ is of
strong-type (p′, p′) thus T is of strong type (p, p). �

The case p = +∞ is left-out for the moment and will require the introduction of a new function
space, the space of Bounded Mean Oscillating functions

3. Truncated Calderón-Zygmund operators

3.1. Truncation of Calderón-Zygmund operators. Calderón-Zygmund operators are for-
maly de�ned as

Tf(x) =

∫
Rd
K(x, y)f(y) dy

and we would like to give a reasonable meaning to this de�nition. The example of the Hilbert
transform suggest that we should look at the truncated version

(3.43) Tεf(x) =

∫
|x−y|≥ε

K(x, y)f(y) dy

and to let ε→ 0.
The �rst observation is that Tε makes sense:

Lemma 7.13. Let K be a standard kernel and de�ne Tε via (3.43). Then Tεf is well de�ned
and of strong type (p,∞) for every 1 ≤ p < +∞.

Proof. It is enough to apply Hölder's inequality

|Tε(f)(x)| ≤
∫
Rd\B(x,ε)

|K(x, y)| |f(y)| dy ≤
∫
Rd

C01Rd\B(x,ε)

|x− y|d
|f(y)| dy

≤
∥∥∥∥C01Rd\B(x,ε)

|x− y|d

∥∥∥∥
p′
‖f‖p.

When p = 1, p′ = +∞ and
C01Rd\B(x,ε)

|x− y|d
≤ C0ε

−d so that |Tε(f)(x)| ≤ C0ε
−d‖f‖1.

When 1 < p < +∞, 1 < p′ < +∞ and we integrate in polar coordinates∥∥∥∥C01Rd\B(x,ε)

|x− y|d

∥∥∥∥p′
p′

= σd−1(Sd−1)

∫ +∞

ε

rd−1dr

rdp′
= σd−1(Sd−1)

∫ +∞

ε

dr

r1+d(p′−1)
< +∞

and the conclusion follows. �

The kernel of Tε is

Kε(x, y) = K(x, y)1{(x,y)∈Rd×Rd : |x−y|>ε}

which is no longer a standard kernel as the smoothness condition is no longer satis�ed.
One can overcome this by introducing a smooth cuto� function. Let ϕ ∈ C∞(R) be such that

0 ≤ ϕ ≤ 1, ϕ is radial and ϕ(x) = 0 when |x| ≤ 1 and ϕ(x) = 1 when |x| ≥ 2 and de�ne

Kϕ
ε (x, y) = K(x, y)ϕ

(
x− y
ε

)
.

Then Kϕ
ε is a standard kernel: let x, y, z be such that x 6= y, z and |y − z| ≤ 1

2
|x− y|.
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� As |K(x, y)| ≤ C0

|x− y|d
and 0 ≤ ϕ ≤ 1, |Kϕ

ε (x, y)| ≤ C0

|x− y|d
.

� Next recall that

|K(x, y)−K(x, z)| ≤ C0|y − z|
|x− y|d+α

and write

Kϕ
ε (x, y)−Kϕ

ε (x, z) =
(
K(x, y)−K(x, z)

)
ϕ

(
x− y
ε

)
+K(x, z)

(
ϕ

(
x− y
ε

)
− ϕ

(
x− z
ε

))
.

Again, as 0 ≤ ϕ ≤ 1 we immediately get that∣∣∣∣(K(x, y)−K(x, z)
)
ϕ

(
x− y
ε

)∣∣∣∣ ≤ C0|y − z|α

|x− y|d+α
.

On the other hand, from the Mean Value Theorem, there is a θ ∈ [y, z] such that

ϕ

(
x− y
ε

)
− ϕ

(
x− z
ε

)
=

1

ε

〈
∇ϕ

(
x− θ
ε

)
, y − z

〉
.

But ϕ is constant in B(0, 1) and in Rd \ B(0, 2) so that ∇ϕ
(
x− θ
ε

)
= 0 unless 1 ≤ |x−θ|

ε ≤ 2.

Further θ ∈ [y, z] i.e. θ = ty + (1− t)z for some 0 ≤ t ≤ 1 and |y − z| ≤ 1

2
|x− y| so that

|x− θ| = |x− y + (1− t)(y − z)| ≥ |x− y| − (1− t)|y − z| ≥ 1

2
|x− y|.

We conclude that, if ∇ϕ
(
x− θ
ε

)
6= 0

1 ≤ 2ε

|x− θ|
≤ 22ε

|x− y|
.

It folows that∣∣∣∣ϕ(x− yε
)
− ϕ

(
x− z
ε

)∣∣∣∣ ≤ 22

|x− y|
‖∇ϕ‖∞|y − z| ≤ 21+α‖∇ϕ‖∞|y − z|α

|y − z|α|x− y|1−α

|x− y|

using again that |y − z| ≤ 1

2
|x− y|. In conclusion∣∣∣∣K(x, z)

(
ϕ

(
x− y
ε

)
− ϕ

(
x− z
ε

))∣∣∣∣ ≤ 21+α‖∇ϕ‖∞C0
|y − z|α

|x− y|d+α

as expected.
The second smoothness estimate is obtained the same way.
We can then de�ne

Tϕε f(x) =

∫
Rd
Kϕ
ε (x, y)f(y)dy.

We leave as an exercice to show that Tϕε f(x) is well de�ned when f ∈ Lp(Rd).

Proposition 7.14. Let 1 ≤ p < +∞ and f ∈ Lp(Rd). With the notations above we have

|Tϕε f(x)− Tεf(x)| ≤ CM [f ](x)

where C is a constant depending on the dimension and the parameters of the kernel and on ϕ but
not on ε.

In particular, Tε is of of weak type (1, 1) (resp. strong type (p, p) for 1 < p < +∞) if and only
if Tϕε is.

Proof. Write

Tϕε f(x)− Tεf(x) =

∫
Rd

(
1Rd\B(x,ε)(y)− ϕ

(
x− y
ε

))
K(x, y)f(y) dt.

Note that∣∣∣∣1Rd\B(x,ε)(y)− ϕ
(
x− y
ε

)∣∣∣∣ =

{
0 and if y /∈ B(x, 2ε)

≤ 1 if y ∈ B(x, 2ε) \B(x, ε)
.
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It follows that

|Tϕε f(x)− Tεf(x)| ≤ C0

∫
B(x,2ε)\B(x,ε)

|f(y)|
|x− y|d

≤ C0

εd

∫
B(x,2ε)

|f(y)| dy =
C0|B(0, 2)|
|B(0, 2ε)|

∫
B(x,2ε)

|f(y)| dy

≤ C0|B(0, 2)|M [f ](x)

as claimed. �

We now want to de�ne Tf as limTεf . The �rst observation is that this can not be done
pointwise. This can already be seen from the simple operator Tf(x) = b(x)f(x), b bounded, which
is a Calderón-Zygmund operator with kernel 0 so that Tεf(x) = 0 though Tf 6= 0.

The following lemma clears out the situation for pointwise limite.

Lemma 7.15. The limit limε→0 Tεf(x) exists a.e. for every f ∈ S(Rd) if and only if the limit

lim
ε→0

∫
ε≤|x−y|≤1

K(x, y) dy

exists almost everywhere.

Proof. First, assume that limε→0 Tεf(x) exists a.e. for every f ∈ S(Rd). For f take a
function ∈ S(Rd) that is 1 in B(0, 2) and note that, if |x| ≤ 1 and |x− y| ≤ 1 then |y| ≤ 2 so that

Tεf(x) =

∫
ε≤|x−y|≤1

K(x, y) dy +

∫
|x−y|≥1

K(x, y)f(y)dy.

The second integral is absolutely convergent and does not depend on ε so that

lim
ε→0

∫
ε≤|x−y|≤1

K(x, y) dy = lim
ε→0

Tεf(x)

exists almost everywhere in B(0, 1). We leave as an exercice to adapt the proof to show almost
everywhere convergence in any ball B(x0, 1).

Conversely, suppose that for some x ∈ Rd,

L = lim
ε→0

∫
ε≤|x−y|≤1

K(x, y) dy

exists. For f ∈ S(Rd), write

Tεf(x) =

∫
ε≤|x−y|≤1

K(x, y)f(y)dy +

∫
|x−y|≥1

K(x, y)f(y)dy

=

∫
ε≤|x−y|≤1

K(x, y)
(
f(y)− f(x)

)
dy + f(x)

∫
ε≤|x−y|≤1

K(x, y) dy

+

∫
|x−y|≥1

K(x, y)f(y) dy.

The second term is a limit when ε→ 0 and the third one is an absolutely convergent integral that
does not depend on ε. It remains to show that the �rst one has a limit. But from the mean value
theorem and the growth estimate of K we get∫

|x−y|≤1

|K(x, y)| |f(x)− f(y)| dy ≤
∫
|x−y|≤1

C0

|x− y|
‖∇f‖∞|x− y| dy < +∞

thus the integral

∫
|x−y|≤1

K(x, y)f(y) dy is absolutely convergent and∫
ε≤|x−y|≤1

K(x, y)f(y) dy →
∫
|x−y|≤1

K(x, y)f(y) dy

when ε→ 0. �
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3.2. Maximal truncated Calderón-Zygmund operator.

Definition 7.16. Let K be a standard kernel and de�ne the truncated Calderón-Zygmund
operators associated to K for f ∈ S(Rd) by

Tεf(x) =

∫
|x−y|≥ε

K(x, y)f(y) dy

and the maximal truncated Calderón-Zygmund operator associated to K for f ∈ S(Rd) by
T∗f(x) = sup

ε>0
|Tεf(x)|.

Note that Tε is well de�ned so that T∗ is also (but may take the value +∞) and is a sublinear
operator.

Theorem 7.17. Assume that T is a Calderón-Zygmund operator associated to a kernel K and
let T∗ be the maximal truncated Calderón-Zygmund operator associated to K.

Then T∗ is of weak type (1, 1) and of strong type (p, p) for 1 < p < +∞.

The proof of this theorem requires several steps. The �rst one is Kolmogorov's Lemma 2.31.
The second one shows that T∗ can be controlled by expressions involving maximal functions.

Lemma 7.18. Let T be a Calderón-Zygmund operator associated to a kernel K and 0 < ν ≤ 1.
For every f ∈ Cc(Rd),

|T∗f(x)| ≤ C
[(
M [|Tf |ν ](x)

)1/ν
+Mf(x)

]
with a constant C that depends on K and d only.

Proof. Let x ∈ Rd, ε > 0 and B = B(x, ε/2), 2B = B(x, ε). Write

f = f12B + f(1− 12B) := f1 + f2.

As f is compactly supported, f2 ∈ L2(Rd) and f2 is supported in Rd \B(x, 2ε) so that

Tf2(x) =

∫
Rd\B(x,ε)

K(x, y)f(y)dy = Tεf(x).

Further, if z ∈ B(x, ε/2) then z /∈ supp f2 thus

|Tf2(x)− Tf2(z)| =

∣∣∣∣∣
∫
Rd\2B

K(x, y)f2(y) dy −
∫
Rd\2B

K(z, y)f2(y) dy

∣∣∣∣∣
≤

∫
Rd\2B

|K(x, y)−K(z, y)| |f2(y)|dy

≤
∫
Rd\B(x,ε)

C0
|x− z|α

|x− y|d+α
|f(y)| dy

since |f2| ≤ |f | and |x− z| ≤
ε

2
≤ 1

2 |y − x| when y /∈ B(x, ε). But then

|Tf2(x)− Tf2(z)| ≤ C0

2α
+

+∞∑
k=0

∫
y∈B(x,2k+1ε)\B(x,2kε)

εα

(2kε)(d+α)
|f(y)|dy

≤ C0

2α

+∞∑
k=0

1

2kα(2kε)d

∫
B(x,2k+1ε)\B(x,2kε)

|f(y)| dy.

Now notice that
1

(2(k+1)ε)d

∫
B(x,2k+1ε)\B(x,2kε)

|f(y)| dy ≤ 2d|B(0, 1)| 1

|B(x, 2k+1ε)

∫
B(x,2k+1ε)

|f(y)| dy

≤ 2d|B(0, 1)|M [f ](x)

so that

|Tf2(x)− Tf2(z)| ≤ C02d−α|B(0, 1)|M [f ](x)

+∞∑
k=0

1

2kα
=
C0|B(0, 2)|

2α − 1
M [f ](x) := AM [f ](x).
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We thus get

(3.44) |Tεf(x)| = |Tf2(x)| ≤ AM [f ](x) + |Tf2(z)| ≤ AM [f ](x) + |Tf(z)|+ |Tf1(z)|

whenever z ∈ B = B(x, ε/2).
As the right hand side does not depend on ε, it is enough to bound it by the desired quantity.

To do so, we will now separate two cases.

Case 1. The lemma when ν = 1.

If we had Tεf(x) = 0 there would be nothing to prove so we assume that Tεf(x) 6= 0 and take
0 < λ < |Tεf(x)|. We de�ne

B1 = {z ∈ B : |Tf(z)| > λ/2} , B2 = {z ∈ B : |Tf1(z)| > λ/2}

and

B3 =

{
∅ if M [f ](x) < λ/3A

B if M [f ](x) ≥ λ/3A
.

Note that if z ∈ B then either z ∈ B1, z ∈ B2 or (3.44) implies that M [f ](x) ≥ λ/3A in which
case B3 = B. In any case, we have B = B1 ∪B2 ∪B3.

However, Markov's inequality shows that

|B1| ≤
2

λ

∫
B

|Tf(z)| dz ≤ 2|B|
λ

M [Tf ](x).

On the other hand, T is a Calderón-Zygmun operator, it is of weak-type (1, 1) so that

|B2| ≤
C

λ
‖f1‖1 ≤

2C|B|
λ

M [f ]

since f1 = f on 2B and f1 = 0 on Rd \ 2B. In particular, if B3 = ∅, then

|B| ≤ |B1|+ |B2| ≤
2|B|
λ

M [Tf ](x) +
2C|B|
λ

M [f ]

which implies that

λ ≤ 2M [Tf ](x) + 2CM [f ](x).

A contrario, if B3 6= ∅ then

λ ≤ 3AM [f ] ≤ max(2C, 3A)M [f ](x) + 2M [Tf ](x)

and this inequality holds in all cases so that, taking the supremum over all λ

|Tεf(x)| ≤ max(2C, 3A]M [f ](x) + 2M [Tf ](x)

and it remains to take the supremum over all ε to establish the lemma in this case.

Case 2. The lemma when 0 < ν < 1.

We will use the following inequalities for a, b, c ≥ 0 and 0 < ν < 1
� (a+ b+ c)ν ≤ aν + bν + cν .
To see this, note �rst that (1 + t)ν ≤ 1 + tν since both quantities are equal when t = 0 and the

derivative of (1 + t)ν − (1 + tν) is ν

(
1

(1 + t)1−ν −
1

t1−ν

)
≤ 0 when t ≥ 0. Then, factoring a or b

one get (a+ b)ν ≤ aν + bν and iterating one gets the desired inequality.
� (a+ b+ c)1/ν ≤ κν(a1/ν + b1/ν + c1/ν)
This time t→ t1/ν is convex so that

(a+ b)1/ν = 21/ν

(
a+ b

2

)1/ν

≤ 21/ν a
1/ν + b1/ν

2

and then

(a+ b+ c)1/ν ≤ 21/ν−1
(
a1/ν + (b+ c)1/ν

)
≤ 21/ν−1

(
a1/ν + 21/ν−1b1/ν + 21/ν−1c1/ν

)
which gives the result with κν = 22/ν−2.

Now, from (3.44), we deduce that

|Tεf(x)|ν ≤ AM [f ](x)ν + |Tf(z)|ν + |Tf1(z)|ν



88 7. CALDERON-ZYGMUND OPERATORS

and, averaging over z ∈ B we get

|Tεf(x)|ν ≤ AM [f ](x)ν +
1

|B|

∫
B

|Tf(z)|ν dz +
1

|B|

∫
B

|Tf1(z)|ν dz

thus

|Tεf(x)| ≤ Kν

(
M [f ](x) +

(
1

|B|

∫
B

|Tf(z)|ν dz
)1/ν

+

(
1

|B|

∫
B

|Tf1(z)|ν dz
)1/ν

)
with Kν depending in A and ν. Next(

1

|B|

∫
B

|Tf(z)|ν dz
)1/ν

≤
(
M [|Tf |ν ](x)

)1/ν
.

On the other hand, T begin of weak-type (1, 1) we may apply Kolmogorov's Lemma 2.31 to get(
1

|B|

∫
B

|Tf1(z)|ν dz
)1/ν

≤
(

1

|B|
CT |B|1−ν‖f1‖ν1

)1/ν

= C
1/ν
T

1

|B|

∫
B

|f(z)| dz ≤ C1/ν
T M [f ](x).

Gathering all estimates, we get the lemma in this case as well. �

For Lp-boundedness of T ∗, we only need the case ν = 1 sincenoth f →M [f ] and f →M [|Tf |]
are of strong type (p, p) (as T is). The remaining of the section consists in proving the T∗ is also
of weak-type (1, 1). We �rst need one more lemma.

Lemma 7.19. Let T be a Calderón-Zygmune operator and let 0 < ν < 1. Then for every λ > 0,
and every f ∈ L1(Rd) ∩ L∞(Rd),

|{x :
(
M [|Sf |ν ](x)

)1/ν
> λ}| ≤ C ‖f‖1

λ
where C depends on the norm of S and d only.

To prove this, we will use the following maximal operator:

Definition 7.20. A dyadic interval is an interval of the form Ij,k = [2−kj, 2−k(j + 1)[ and a

dyadic cube is a set of the form Qj,k =
∏d
`=1[2−kj`, 2

−k(j` + 1)[. The set of all dyadic cubes is
denoted by D.

For f ∈ L1
loc(Rd), we de�ne the Dyadic Maximal Function Md as

Md[f ](x) = sup
x∈Q∈D

1

|Q|

∫
Q

|f(u)|du

where the supremum is taken over all dyadic cubes Q ∈ D that contain x.

This maximal function is comparable to M in the sense that

|{x : M [ϕ](x) > cλ}| ≤ c′|{x : Md[ϕ](x) > λ}|
for some constants c, c′ depending only on the dimension. Note that they are not comparable
pointwise as one may have Md[ϕ](x) = 0 (e.g. away from the support of ϕ) while M [ϕ](x) 6= 0.

Proof. It is enough to prove the statement for Md instead of M .
The second property is that there is a constant cd depending on the dimension only such that

for every ϕ ∈ L1(Rd),

|{x : Md[ϕ](x) > λ}| ≤ cd
∫
{x : Md[ϕ](x)>λ}

|ϕ(x)| dx.

We leave as an exercice to prove this statement using the Calderón-Zygmund decomposition.
We apply this estimate to ϕ(x) = |Sf |ν(x) to get

|{x :
(
Md[|Sf |ν ](x)

)1/ν
> λ}| = |{x : Md[|Sf |ν ](x) > λν}|

≤ cd
λν

∫
{x :
(
Md[|Sf |ν ](x)

)1/ν
>λ}
|Sf |ν(x)| dx.

But, for any p > 1 (exercice based on Hölder) Md[ϕ] ≤ M [|ϕ|p]1/p. In particular, if p = q/ν
with q > 1 > ν (

Md[|Sf |ν ](x)
)1/ν ≤ (Md[|Sf |q](x)

)1/q
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thus ∣∣{x :
(
Md[|Sf |ν ](x)

)1/ν
> λ

}∣∣ ≤ ∣∣{x :
(
Md[|Sf |q](x)

)1/q
> λ

}∣∣
≤ cd

λq

∫
{x :
(
Md[|Sf |q ](x)

)1/q
>λ}
|Sf |q(x)dx

≤ cd
λq

∫
Rd
|Sf |q(x) dx ≤ cd

λq
‖f‖q < +∞

since S is of strong type (q, q) and f ∈ L1 ∩ L∞ thus also in Lq.
This set being of �nite measure, we can apply Kolmogorov's Lemma 2.31 to get∣∣{x :

(
Md[|Sf |ν ](x)

)1/ν
> λ

}∣∣ ≤ cd
λν

∫
{x :
(
Md[|Sf |ν ](x)

)1/ν
>λ}
|Sf(x)|ν dx

≤ cd
λν
|{x :

(
Md[|Sf |ν ](x)

)1/ν
> λ}|1−ν‖f‖ν1

which is the desired estimate

|{x :
(
Md[|Sf |ν ](x)

)1/ν
> λ}| ≤

c
1/ν
d

λ
‖f‖1

after simpli�cation. �

The weak (1, 1) boundedness. Let f ∈ C∞c (Rd). From Lemma 7.18 we have

|{x : |T∗f(x)| > λ}| ≤ |{x :
(
M [|Tf |ν ](x)

)1/ν
> λ/2C}|+ |{x : Mf(x) > λ/2C}|.

From the weak (1, 1) boundedness of the maximal function,

|{x : Mf(x) > λ/2C}| ≤ C ′

λ
‖f‖1

and from Lemma 7.19 we get that

|{x :
(
M [|Tf |ν ](x)

)1/ν
> λ/2C}| ≤ C ′

λ
‖f‖1.

Putting everything together, we get the weak (1, 1) bound for f ∈ C∞c (Rd). We then get the general
case by density. �

3.3. Extension to the vector valued setting. For future use, note that one may extend
results from this section (without di�culty) to the Hilbert valued setting. To start with, let
us �x a Hilbert space H. Then a function f : Rd → H is said to be measurable if, for every
h ∈ H, x → 〈f(x), h〉 is measurable which implies that x → ‖f(x)‖ is measurable as well since
‖f(x)‖ = sup|h‖≤1 〈f(x), h〉.

Then, for 1 ≤ p < +∞, Lp(Rd, H) is the space of all measurable functions such that ‖f‖ ∈
Lp(Rd) with

‖f‖Lp(Rd,H) =

(∫
Rd
‖f(x)‖p dx

)1/p

with the usual adaptation wen p = +∞.
It is not hard to check (using Riesz' Representation Theorem) that the dual of Lp(Rd, H) is

Lp
′
(Rd, H) with 1/p + 1/p′ = 1. The Marcinkiewicz interpolation theorem and the Riesz-Thorin

interpolation theorem go through in this setup as well.
Further, if f ∈ L1(Rd, H), we can de�ne is integral as follows: �rst, if h ∈ H, then |〈f(x), h〉| ≤

‖f(x)‖H‖h‖H ∈ L1(Rd) so that we may de�ne

If (h) =

∫
Rd
〈f(x), h〉dx

and check that h → If (h) is linear with |If (h)| ≤ ‖f‖L1(Rd,H)‖h‖H . That is If ∈ H ′ and from
Riesz-representation, this means that there is a unique If ∈ H such that, for every h ∈ H,

If (h) = 〈If , h〉. One denotes If =

∫
Rd
f(x) dx and

〈
∫
Rd
f(x) dx, h〉 =

∫
Rd
〈f(x), h〉dx ∀h ∈ H.
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We can now extend the theory of Calderón-Zygmund operators to the vector valued setting.
Let H1, H2 be two Hilbert spaces. A function K : Rd × Rd → B(H1, H2) is a standard kernel if

(1) It is measurable i.e. for every h ∈ H1, the function Kh : Rd × Rd → H2 is measurable;

(2) If x 6= y then ‖K(x, y)‖H1→H2
≤ C

|x− y|d
;

(3) If |y − z| ≤ 1

2
|x− y| then

‖K(x, y)−K(x, z)‖H1→H2
≤ C|y − z|α

|x− y|d+α

and if |x− y| ≤ 1

2
|x− z| then

‖K(x, z)−K(y, z)‖H1→H2
≤ C|x− y|α

|x− z|d+α

where C,α are constants.
A linear operator T : L2(Rd, H1) → L2(Rd, H2) is then called a Calderón-Zygmund operator

if it is bounded and if there exists a standard kernel K : Rd × Rd → B(H1, H2) such that, if
f ∈ L2(Rd, H1) has compact support and x /∈ supp f , then

Tf(x) =

∫
Rd
K(x, y)f(y) dy.

The following result is proven exactly the same way as in the complex valued case:

Theorem 7.21. If T is a Calderón-Zygmund operator, then T (has an extension that) is of
weak type (1, 1)

|{x ∈ Rd : ‖Tf(x)‖H2 > λ}| ≤ C
‖f‖L1(Rd,H1)

λ
and of strong type (p, p) for 1 < p < +∞: ‖Tf‖Lp(Rd,H2) ≤ C‖f‖Lp(Rd,H1).

4. The space BMO(Rd)

4.1. Singular integral operators on L∞. So far, we have developped a fairly satisfactory
theory of singular operators on Lp ∩ L2 for 1 < p < +∞ (Calderón-Zygmund operators were
assumed to be continuous on L2, we showed that they extend boundedly to Lp ∩L2, 1 < p < +∞
and then extended them to all of Lp). The situation is more delicate for f ∈ L∞. To see why, let
us investigate the formula

Tf(x) =

∫
Rd
K(x, y)f(y) dy.

This formula is problematic for two reasons
� �rst it is singular when x is closed to y since K(x, y) ≈ |x − y|−n is not integrable when

y ≈ x. To deal with this issue, one can try to localize f away from x.
� A second issue is that the integral does not make sense whe y → +∞ neither since K(x, y) ≈

|y|−n in this case. When f ∈ Lp, p < +∞ we dealt with this problem by using the Hölder inequality

which allowed to gain some decrease |y|−np′ at in�nity. To over come this, one may look at two
nearby points x1, x2 and consider (formally)

Tf(x1)− Tf(x2) =

∫
Rd

(
K(x1, y)−K(x2, y)

)
f(y) dy.

Now when K(x1, y)−K(x2, y) ≈ |x1−x2|α|x1−y|−n−α ≈ |y|−n−α when |y| → ∞. This is su�cient
to ensure integrability at in�nity in the integral.

To implement this heuristic, let T be a Calderón-Zygmund operator with kernel K. Fix
f ∈ L∞(Rd), Q a cube with center cQ, Q

∗ = (1 + 2d1/2)Q then we split f into a local and global
part

f = f1Q∗ + f(1− 1Q∗)

and, for x ∈ Q, de�ne T̃ f(x) by

(4.45) T̃ f(x) = T [f1Q∗ ](x) +

∫
Rd\Q∗

(
K(x, y)−K(cQ, y)

)
f(y) dy.
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Several observations are to be made:
� the right-hand side of (4.45) is well de�ned since f1Q∗ is bounded with compact support

thus in L2 and T is bounded on L2. On the other hand |K(x, y)−K(cQ, y)| ≤ |x−cQ|α|x−y|−d−α
when x ∈ Q and y /∈ Q∗ (we enlarge Q to Q∗ to be able to use the smoothness asumption on K
here) thus the intergal in (4.45) converges when f is bounded.

� The operator T̃ is not well de�ned as an x can belong to several cubes. To overcome this,
one may �x a family of cubes Q = {Qx}x∈Rd attached to each x and de�ne

TQf(x) = T [f1Q∗x ](x) +

∫
Rd\Q∗x

K(x, y)−K(cQ, y)
)
f(y) dy.

This would lead to cumbersome checking in the sequel and it is worth noting that two di�erent

families Q, Q̃ would lead to two operators that di�er by a constant only : T Q̃f(x) = TQf(x) + cf .

We will thus rather use (4.45) and consider that T̃ f is de�ned modulo a constant:

Definition 7.22. On the set of functions on Rd, we de�ne the equivalence class f ∼ g if f − g
is a constant function. By (common) abuse of notation, we can consider an equivalence class [f ]
and identify if with any of its elements f in which case we say that f is de�ned modulo constants.
Note that f = 0 modulo constants means that f is a constant function.

� When f ∈ L2(Rd) ∩ L∞(Rd) then T̃ f = Tf . Note that the left-hand side is only de�ned
modulo a constant.

We now introduce the BMO space which will play a key role soon.

Definition 7.23. For f ∈ L1
loc(Rd) and Q a cube, we write

fQ =
1

|Q|

∫
Q

f(x) dx

for its mean over Q. The BMO-norm of f is the quantity

‖f‖BMO = sup
Q

1

|Q|

∫
Q

|f(x)− fQ|dx

where the supremum runs over all cubes in Rd. The space BMO(Rd) is the space of all functions
modulo constants such that ‖f‖BMO < +∞.

It is clear that the space BMO(Rd) is only de�ned modulo constants. First, if g = f + c then
for every Q, gQ = fQ + c so that ‖f‖BMO = ‖g‖BMO. Further, if f is such that ‖f‖BMO = 0

then for every cube Q

∫
Q

|f(x)− fQ|dx = 0 so that f = fQ over Q and f is constant over Q. In

particular, f is constant over each [−n, n]d and letting n→ +∞, we get that f is a constant, that
is f = 0 modulo constants.

We leave the following proposition as an exercice

Proposition 7.24. (1) ‖λf‖BMO = |λ| ‖f‖BMO and ‖f+g‖BMO ≤ ‖f‖BMO+‖g‖BMO;
(2) for f ∈ L1

loc(Rd), let

‖f‖BMOc = sup
Q

inf
β∈C

1

|Q|

∫
Q

|f(x)− β|dx.

Then ‖f‖BMOc ≤ ‖f‖BMO ≤ 2‖f‖BMOc .
This means that, to show that f ∈ BMO and to estimate ‖f‖BMO it is enough to

�nd a number A such that, for each cube Q, a complex number βQ such that∫
Q

|f(x)− βQ|dx ≤ A|Q|.

This then implies that ‖f‖BMO ≤ 2A.
(3) BMO is invariant under translations τaf(x) = f(x − a) and dilations δλf(x) = f(λx)

with

‖τaf‖BMO = ‖δλf‖BMO = ‖f‖BMO.
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(4) for f ∈ L1
loc(Rd), and B a ball, let

fB =
1

|B|

∫
B

f(x) dx

be the mean of f over B. The BMO©-norm of f is the quantities

‖f‖BMO© = sup
B

1

|B|

∫
B

|f(x)− fQ|dx

and

‖f‖BMO©c
= sup

B
inf
a∈C

1

|B|

∫
B

|f(x)− a|dx.

The space BMO©(Rd) is the space of all functions modulo constants such that ‖f‖BMO© <
+∞.

Then ‖f‖BMO©c
≤ ‖f‖BMO© ≤ 2‖f‖BMO©c

. Further BMO©Rd) = BMO(Rd) and

‖f‖BMO© is equivalent to ‖f‖BMO.
(5) L∞(Rd) ⊂ BMO(Rd) with ‖f‖BMO ≤ 2‖f‖∞.
(6) log |x| ∈ BMO(Rd). However 1R+ log x /∈ BMO(R).

Hint: For BMO = BMOO use the sup inf de�nition of the norm and the smallest B containing Q
(or vice versa) and note note that |B| ≈ |Q|.

Theorem 7.25. Let T be a Calderón-Zygmund operator with kernel K. Then T : L∞(Rd)→
BMO(Rd) continuously.

Proof. We need to show that if Q is a cube (with center cQ) there exists βQ such that

1

|Q|

∫
Q

|Tf(x)− βQ| dx ≤ C‖f‖∞

(with C independent of f).
First, for x ∈ Q, we can write

Tf(x) = T [f1Q∗ ](x) +

∫
Rd\Q∗

(
K(x, y)−K(cQ, y)

)
f(y) dy + βQ

where βQ is a constant depending Q (and which representative of T we have chosen).
Next, from Cauchy-Schwarz and the L2-boundedness of T ,

1

|Q|

∫
Q

|T [f1Q∗ ](x)| dx =
1

|Q|

∫
Rd

1Q(x)|T [f1Q∗ ](x)| dx ≤ 1

|Q|
‖T [f1Q∗ ]‖L2(Rd)‖1Q‖L2(Rd)

≤ 1

|Q|
‖T‖L2→L2‖f1Q∗‖2|Q|1/2 ≤ frac1|Q|1/2‖T‖L2→L2 |Q∗|1/2‖f‖∞

≤ (1 + 2d1/2)d/2‖T‖L2→L2‖f‖∞.

On the other hand, as |x− cQ| ≤
1

2
|x− y|,∣∣∣∣∣

∫
Rd\Q∗

(
K(x, y)−K(cQ, y)

)
f(y)dy

∣∣∣∣∣ ≤
∫
Rd\Q∗

∣∣K(x, y)−K(cQ, y)
∣∣ dy‖f‖∞

≤
∫
y :|y−x|≥d1/2`(Q)

|x− cQ|α

|x− y|d+α
dy‖f‖∞

≤ |x− cQ|α
∫ +∞

d1/2`(Q)

rd−1

rd+α
dr‖f‖∞

≤ 1

α
|x− cQ|α

1(
d1/2`(Q)

)α ‖f‖∞ ≤ 1

αdα/2
‖f‖∞

since x ∈ Q. Thus

sup
Q

∣∣∣∣∣
∫
Rd\Q∗

(
K(x, y)−K(cQ, y)

)
f(y)dy

∣∣∣∣∣ ≤ 1

α
‖f‖∞.
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Finally

1

|Q|
|Tf(x)− βQ|dx ≤ 1

|Q|

∫
Q

|T [f1Q∗ ](x)| dx+ sup
Q

∣∣∣∣∣
∫
Rd\Q∗

(
K(x, y)−K(cQ, y)

)
f(y) dy

∣∣∣∣∣
≤

(
(1 + 2d1/2)d/2‖T‖L2→L2 +

1

αdα/2

)
‖f‖∞

as desired. �

4.2. John-Nirenberg Inequality and interpolation. We have seen that log |x| belongs to
BMO(Rd). This is, in a sense, the largest possible singularity. This is not a precise statement in
the pointwise sense but can be shown for level sets. To start, if f ∈ BMO(Rd) with ‖f‖BMO = 1
then, for every cube Q,

1

|Q|

∫
Q

|f(x)− fQ| dx ≤ 1.

Using Bienaymé-Chebiche�,

|{x ∈ Q : |f(x)− fQ| ≥ λ}| ≤
|Q|
λ
.

This says that f can exceed its average fQ by (say) 10 on Q on at most 1/10-th of Q.
It turns out that one can iterate the above fact to give far better estimates in the limit λ→ +∞.

This is because of a basic principle in harmonic analysis: bad behaviour on a proportionnally small
exceptional set (such as 1/10 of any given ball) can often be iterated away if we know that the
exceptional sets are small at every scale: f will then exceed its average by 20 on at most 1/10-th
of 1/10-th of the cube...

The �nal statement is the following:

Theorem 7.26 (John-Nirenberg Inequality). Let f ∈ BMO(Rd). Then for every cube Q and
every λ > 0,

|{x ∈ Q : |f(x)− fQ| ≥ λ}| ≤ 20e−2−dλ/‖f‖BMO |Q|.

Proof. Fix f ∈ BMO(Rd) with ‖f‖BMO = 1. Note that this is not a restriction as we may
replace f by f/‖f‖BMO.

Let ψ(λ) be the best possible constant that one can take in the inequality

∀Q |{x ∈ Q : |f(x)− fQ| ≥ λ}| ≤ ψ(λ)|Q|.

First note that ψ is non-increasing since for λ′ > λ

|{x ∈ Q : |f(x)− fQ| ≥ λ′}| ≤ |{x ∈ Q : |f(x)− fQ| ≥ λ′}| ≤ ψ(λ)|Q|

thus ψ(λ′) ≤ ψ(λ). Further, from Bienaymé-Chebiche� ψ(λ) ≤ 1/λ and of course, we have the
trivial bound ψ(λ) ≤ 1 i.e.

ψ(λ) ≤ min

(
1,

1

λ

)
.

This is of course very bad. To improve this, we will use a variant of the Calderón-Zygmund
decomposition. We start with a dyadic cube Q0 and denote for m ≥ 1 by Dm the set of all dyadic
cubes Q of side length `(Q) = 2−m`(Q0). We will write D0 for the set of dyadic cubes ⊂ Q0. We
will also write F (x) = |f(x)− fQ0

|.
Next we will consider Λ > 1 (to be �xed later) and divide the cubes in D0 into good and bad

cubes where a cube Q is bad if
1

|Q|

∫
Q

F (x) dx > Λ.

As we assumed that ‖f‖BMO = 1, 1
|Q0|

∫
Q0
F (x)dx ≤ 1 < Λ the original cube Q0 is good (not

bad). Further, each bad cube is contained in a maximal bad cube and we set B for the set of
maximal bad cubes.

When Q ∈ B is maximal bad, then

Λ <
1

|Q|

∫
Q

F (x)dx ≤ 2dΛ
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Indeed, if Q̃ is the mother of Q, it is not bad so that

1

2d|Q|

∫
Q

F (x)dx ≤ 1

|Q̃|

∫
Q̃

F (x)dx ≤ Λ.

But then, for Q ∈ B,

|fQ − fQ0
| =

∣∣∣∣ 1

|Q|

∫
Q

f(x)− fQ0
dx

∣∣∣∣ ≤ 1

|Q|

∫
Q

|F (x)|dx ≤ 2dΛ.

Further, as maximal dyadic cubes are disjoint,∑
Q∈B
|Q| ≤

∑
Q∈B

1

Λ

∫
Q

F (x) dx =
1

Λ

∫
⋃
Q∈B

F (x)dx

≤ 1

Λ

∫
Q0

F (x) dx ≤ |Q0|
Λ

since ‖f‖BMO = 1.
On the other hand, from the Dyadic Maximal Theorem, or rather the Lebesgue di�erentiation

theorem that results from it, for almost every x ∈ Q0 \
⋃
Q∈BQ, |f(x)− fQ0 | := F (x) ≤ Λ.

Now, consider λ > 2dΛ, then

∣∣{x ∈ Q0 : |f(x)− fQ0
| > λ

}∣∣ ≤
∣∣∣∣∣∣
x ∈ ⋃

Q∈B
Q : |f(x)− fQ0

| > λ


∣∣∣∣∣∣

≤

∣∣∣∣∣∣
x ∈ ⋃

Q∈B
Q : |f(x)− fQ| > λ− |fQ − fQ0


∣∣∣∣∣∣

≤
∑
Q∈B

∣∣{x ∈ Q : |f(x)− fQ| > λ− 2dΛ
}∣∣

≤ ψ(λ− 2dΛ)
∑
Q∈B
|Q|

≤ ψ(λ− 2dΛ)

Λ
|Q0|.

This means that ψ(λ) ≤ ψ(λ− 2dΛ)

Λ
as soon as λ > 2dΛ. We can now bootstrap the argument.

Let N ≥ 1 be an integer such that 2dΛN ≤ λ ≤ 2dΛ(N + 1). Since ψ is non-increasing,

ψ(λ) ≤ ψ(2dΛN) ≤ ψ(2dΛN − 2dΛ)

Λ
=
ψ
(
2dΛ(N − 1)

)
Λ

=
ψ(2dΛ)

ΛN−1

by a direct induction. As ψ(x) ≤ 1/x we get

ψ(λ) ≤ 1

2dΛN
= 2−de−N ln Λ ≤ 2−de−(2−dλ−1) ln Λ.

We can for instance chose Λ = e then for λ > 2de,

ψ(λ) ≤ e

2d
e−2−dλ ≤ eee−2−dλ.

On the other hand, for λ ≤ 2de, ψ(λ) ≤ 1 ≤ eee−2−dλ. We get the result since ee ≤ 20. �

4.3. BMO and interpolation. The aim of this section is to show that the space BMO can
be used as a substitute of L∞ in harmonic analysis.

Lemma 7.27. Let 1 ≤ p < q < +∞ then there exists a constant C = C(p, q, d) such that if
f ∈ Lp(Rd) ∩BMO(Rd), then f ∈ Lq(Rd) with

‖f‖Lq(Rd) ≤ C‖f‖
q
p

Lp(Rd)
‖f‖1−

q
p

BMO(Rd)
.
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Proof. We may assume that ‖f‖BMO(Rd) 6= 0 otherwise there is nothing to prove (f is con-

stant and in Lp thus 0). Then, using homogeneity f → f/‖f‖BMO, we assume that ‖f‖BMO(Rd) =

1. Finaly, using dilations f → f(λx), we may assume that ‖f‖Lp = 1.
Throughout this proof, Cd is a constant depending on the dimension only and that changes

from line to line.
We apply the Calderón-Zygmund decomposition to |f |p at level 1. This provides us with a

family B of bad cubes. Then, for each Q ∈ B,

(4.46) |fQ| =
∣∣∣∣ 1

|Q|

∫
Q

f(x) dx

∣∣∣∣ ≤ ( 1

|Q|

∫
Q

|f(x)|p dx
)1/p

≤ Cd.

with Hölder. Using the John-Nirenberg Inequality, we get, for each Q ∈ B, and each λ > Cd ≥ |fQ|

|{x ∈ Q |f(x)| > λ}| ≤ |{x ∈ Q |f(x)− fQ| > λ− |fQ|}|

≤ Cde
2−dλQe−2−dλ|Q| ≤ CdeCdα

1/p

e−2−dλ|Q|

with (4.46). Since |f(x)| < Cd on Rd \
⋃
Q∈B

Q, we get, for every λ > Cd,

|{x ∈ Rd |f(x)| > λ}| ≤
∑
Q∈B
|{x ∈ Q |f(x)| > λ}|

≤ Cde
−Cdλ

∑
Q∈B
|Q|

≤ Cde
−Cdλ‖f‖p

Lp(Rd)
= Cde

−Cdλ

where we have used the fact that the bad cubes in the Calderón-Zygmund decomposition are
disjoint and then that their total volume is controled by the L1-norm of |f |p.

On the other hand, we have

|{x ∈ Rd |f(x)| > λ}| ≤
‖f‖p

Lp(Rd

λp
= λ−p.

We conclude writing

‖f‖qq =

∫ +∞

0

λq−1|{x ∈ Rd |f(x)| > λ}| dλ ≤
∫ Cd

0

λq−p−1 dλ+ Cd

∫ +∞

Cd

λq−1e−Cdλ dλ

which gives the result. �

Remark 7.28. Note that if T is a Calderón-Zygmund operator, and 1 < p < q < +∞ then

‖T [f ]‖q ≤ C‖T [f ]‖q/pp ‖T [f ]‖1−q/pBMO ≤ C
′‖f‖q/pp ‖f‖1−q/p∞ .

Definition 7.29. The sharp maximal function is de�ned for f ∈ L1
loc(Rd) by

M ]f(x) = sup
Q3x

1

|Q|

∫
Q

|f(x)− fQ|dx

where the supremum is taken over all cubes containing x. In particular, f ∈ BMO(Rd) if and only
if M ]f ∈ L∞(Rd) with ‖f‖BMO = ‖M ]f‖∞.

Note that, from the triangle inequality, if x ∈ Q
1

|Q|

∫
Q

|f(x)− fQ|dx ≤
2

|Q|

∫
Q

|f(x)|dx ≤ 2M�[f ](x)

whereM� is the uncentered Hardy-Littlewood maximal function associated to cubes (`∞-balls).
It follows that M ]f ≤ 2M�[f ] pointwise.

Recall that the dyadic maximal function was de�ned as

Mdf(x) = sup
x∈Q∈D

1

|Q|

∫
Q

|f(x)|dx

where the supremum is taken over all dyadic cubes containing x. The dyadic maximal function is
bounded by theM�[f ]. A converse bound can not hold (Md[f ] may be zero e.g. in dimension 1
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when f is supported in [0,+∞) whileM�[f ] never is). AsM� is of weak type (1, 1) and of strong
type (p, p) for every p > 1, so is Md.

However, it is possible to reverse the inequality in the Lp-sense:

Theorem 7.30 (Fe�ermann-Stein). Let 1 ≤ p0 ≤ p < +∞ then, for f ∈ L1
loc(Rd) such that

Md[f ] ∈ Lp0(Rd),
‖Md[f ]‖p ≤ C‖M ][f ]‖p

where C depends on d, p only.

The crux of the proof is the following good-λ inequality.

Lemma 7.31. Let f ∈ L1
loc(Rd), λ, γ > 0. Then

(4.47) |{x ∈ Rd : Md[f ](x) > 2λ , M ][f ](x) ≤ γλ}| ≤ 2dγ|{x ∈ Rd : Md[f ](x) > λ}|

Proof. Again Cd will be a constant depending on d only.
Without loss of generality, we can assume that Ωλ := {x ∈ Rd : Md[f ](x) > λ} has �nite

measure. Then, for each x ∈ Ωλ, there is a maximal dyadic cube Qx such that

1

|Qx|

∫
Qx

|f(y)| dy > λ

(otherwise Ωλ would have in�nite measure). Write {Qj}j∈J to be the collection of maximal dyadic
cubes obtained from Ωλ i.e. {Qj}j∈J = {Qx : x ∈ Ωλ}. Further, each x belongs to one Qj and
maximal dyadic cubes are disjoint so that

⋃
j∈J Qj = Ωx is a partition. It is thus su�cient to

prove that

|{x ∈ Qj : Md[f ](x) > 2λ , M ][f ](x) ≤ γλ}| ≤ 2dγ|Qj |

and to sum over j ∈ J to obtain (4.47).
From now on, j is �xed and we can drop the index. Let x ∈ Q be such that Md[f ](x) > 2λ.

Note that

Md[f ](x) = sup
R∈D,x∈R

1

|R|

∫
R

|f(x)| dx

so that the supremum is taken over dyadic cubes that intersect Q (since both contain x) that is
dyadic cubes that are either included in Q or contain Q. In the case Q ⊂ R, Q 6= R, the maximality
of Q implies that

1

|R|

∫
R

|f(y)| dy ≤ λ

and such a cube can be discarded from the maximum since Md[f ](x) > 2λ. That is, if x ∈ Q ie
such that Md[f ](x) > 2λ, then

Md[f ](x) = sup
R∈D,x∈R⊂Q

1

|R|

∫
R

|f(x)| dx.

In particular, we may replace f by f1Q and assume that Md[f1Q](x) > 2λ.
Now let Q′ be the mother of Q (the unique dyadic cube containing Q of twice the size) and

note that the maximality of Q implies that

|fQ′ | =
∣∣∣∣ 1

|Q′|

∫
Q′
f(x) dx

∣∣∣∣ ≤ 1

|Q′|

∫
Q′
|f(x)| dx ≤ λ.

Therefore, for x ∈ Q,

Md[(f − fQ′)1Q] ≥Md[f1Q]− fQ′ > 2λ− λ = λ.

We conclude that

|{x ∈ Q : Md[f ](x) > 2λ}| ≤ |{x ∈ Q : Md[(f − fQ′)1Q] > 2λ}|.
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As the dyadic maximal function is of weak-type (1, 1) (with constant 1) we get

|{x ∈ Q : Md[f ](x) > 2λ}| ≤ 1

λ

∫
Q

|(f(x)− fQ′ | dx

≤ 2d|Q|
λ

1

|Q′|

∫
Q′
|(f(x)− fQ′ |dx

≤ 2d|Q|
λ

M ][f ](ξ)(4.48)

for any ξ ∈ Q′ thus also for any ξ ∈ Q.
Now observe that, either there is no ξ ∈ Q such that M ][f ](ξ) > γλ, in which case

|{x ∈ Qj : Md[f ](x) > 2λ , M ][f ](x) ≤ γλ}| = 0

or such a ξ exists and then, putting it into (4.48), we get

|{x ∈ Qj : Md[f ](x) > 2λ , M ][f ](x) ≤ γλ}| ≤ |{x ∈ Q : Md[f ](x) > 2λ}| ≤ 2d|Q|
λ

γλ = 2dγ|Q|

as claimed. �

We can now conclude:

Proof of Theorem 7.30. We �x p0 ≤ p < +∞ and, for r > 0, we write

I(r) =

∫ r

0

pλp−1|{x ∈ Rd : Md[f ] > λ} dλ.

First note that, as p > p0

I(r) =
p

p0
rp−p0

∫ r

0

p0λ
p0−1|{x ∈ Rd : Md[f ] > λ}dλ ≤ p

p0
rp−p0‖Md[f ]‖p0

Lp0 (Rd)
< +∞.

Next, changing variable λ→ 2λ and using the previous Lemma, we get

I(r) = 2p
∫ r/2

0

pλp−1|{x ∈ Rd : Md[f ] > 2λ} dλ

≤ 2p
∫ r/2

0

pλp−1|{x ∈ Rd : Md[f ] > 2λ, M ][f ] ≤ λγ} dλ

+2p
∫ r/2

0

pλp−1|{x ∈ Rd : M ][f ] > λγ}dλ

≤ 2p2dγ

∫ r/2

0

pλp−1|{x ∈ Rd : Md[f ] > λ} dλ

+2p
∫ r/2

0

pλp−1|{x ∈ Rd : M ][f ] > λγ}dλ

≤ 2p2dγI(r) + 2p
∫ r/2

0

pλp−1|{x ∈ Rd : M ][f ] > λγ} dλ.

We now chose γ = 2−(p+d+1) so that the factor in front of I(r) on the right-hand side is 1/2 and
it can be put to the left-hand side. We get

I(r) ≤ 2p+1

∫ r/2

0

pλp−1|{x ∈ Rd : M ][f ] > 2−(p+d+1)λ}| dλ

= 2p+1+p(p+d+1)

∫ 2−(p+d+2)r

0

pλp−1|{x ∈ Rd : M ][f ] > λ}| dλ

≤ 22p+d+2+(p−1)(p+d+1)‖M ][f ]‖p
Lp(Rd)

.

Letting r → +∞ in the left-hand side, we get the result. �

From the Lebesgue di�erentiation theorem associated to Md, we get |f | ≤ Md[f ] a.e., thus
‖f‖p ≤ ‖Md[f ]‖p. We conclude that
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Corollary 7.32 (Fe�ermann-Stein). Let 1 ≤ p0 ≤ p < +∞ then, for f ∈ L1
loc(Rd) such that

Md[f ] ∈ Lp0(Rd),
‖f‖p ≤ C‖M ][f ]‖p

where C depends on d, p only.

Theorem 7.33. Let 1 ≤ p0 < p < +∞. Let T be a linear operator, bounded from Lp0(Rd) to
Lp0(Rd) with bound Ap0

and from L∞(Rd) to BMO(Rd) with bound A∞. Then T extends to a

bounded linear operator from Lp(Rd) to Lp(Rd) with

(4.49) ‖T (f)‖Lp(Rd) ≤ CA
p0
p
p0 A

1− p0
p

∞ ‖f‖Lp(Rd).

Here C depends on p, p0 and d only.

Proof. First, T (f) is a priori only de�ned on Lp(Rd) ∩ L∞(Rd) but (4.49) then allows to
extend T to all of Lp(Rd).

We consider the sub-linear operator S = M ][Tf ] which is bounded from Lp0 to itself with
bound Cp0,dA0p0 (if p0=1 it sends L1 to the weak L1 space) and from L∞ to itself with bound
CdA∞ since M ] sends BMO into L∞ with a bound depending on the dimension only.

It remains to apply Marcinkiewicz interpolation to conclude. �



CHAPTER 8

Litllewood-Paley and multipliers

1. Fourier-multiplies

Among the most common operators met in mathematics, one �nds operators that take the
form of convolutions Tf = K ∗f . For instance, Calderón-Zygmund operators with standard kernel
in the form K(x, y) = k(x− y) can be considered as being of this form. The previous theory then
applies to give a meaning to the associated operator and shows that is also of strong type (p, p)
for 1 < p < +∞, of weak type (1, 1)... once it is of strong type (2, 2).

For L2-boundedness, we have a strong tool at hand, which is the Fourier transform

f̂(ξ) = F [f ](ξ) =

∫
Rd
f(x)e−2iπ〈x,ξ〉 dx

(�rst de�ned on S(Rd) and then extended to L2(Rd) thanks to Parseval's relation ‖F [f ]‖2 = ‖f‖2.
If k is a nice function then, using the convolution theorem k̂ ∗ f = k̂f̂ we can write

k ∗ f = F−1[k̂f̂ ]

where F−1 is the inverse Fourier transform, given on S(Rd) by

F−1[ϕ](x) =

∫
Rd
ϕ(ξ)e2iπ〈x,ξ〉 dξ.

This leads us to the following de�nition:

Definition 8.1. Let m ∈ L∞(Rd) be a bounded function and 1 ≤ p < +∞. The Fourier
multiplier associated to m is the operator de�ned on L2(Rd) given by

Tm[f ] = F−1[mf̂ ].

If Tm extends to a bounded linear operator on Lp, we say that m is an Lp-Fourier-multiplier and
write m ∈Mp(Rd) and

‖m‖Mp = ‖Tm‖Lp→Lp .

Example 8.2. The Hilbert transform is the Fourier multiplier associated tom(ξ) = −i sign(ξ).

The �rst observation is that Tm is well-de�ned since f ∈ L2 imply f̂ ∈ L2 and, as m ∈ L∞,
mf̂ ∈ L2 thus F−1[mf̂ ] is well de�ned. Further

‖Tm[f ]‖2 = ‖F−1[mf̂ ]‖2 = ‖mf̂‖2 ≤ ‖m‖∞‖f̂‖2 = ‖m‖∞‖f‖2
thus Tm is bounded with ‖m‖M2 = ‖Tm‖L2→L2 ≤ |m‖∞ .

On the other hand, for 0 < ε < ‖m‖∞ let Eε be a set of �nite measure on which |m| ≥ ‖m‖∞−ε
and f = F−1[1Eε ]. Then

‖Tm[f ]‖2 = ‖F−1[m1Eε ]‖2 = ‖m1Eε‖2 ≥ (‖m‖∞ − ε)‖1Eε‖2 = (‖m‖∞ − ε)‖f‖2
which shows that ‖Tm‖L2→L2 ≥ ‖m‖∞ − ε. Letting ε→ 0 we �nally get

Proposition 8.3. If m ∈ L∞, then the Fourier-multiplier Tm associated to f is bounded
L2 → L2 and ‖m‖M2 = ‖m‖∞.

We are now interested in its extension to Lp. The �rst observation is the following:

Proposition 8.4. Let m ∈ L∞(Rd), 1 < p < +∞ and
1

p
+

1

p′
= 1.

(1) The adjoint of Tm is T ∗m = Tm̄.

99
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(2) m ∈Mp(Rd) if and only if m̄ ∈ Lp(Rd) if and only if m ∈Mp′(Rd) with

‖m‖Mp = ‖m̄‖Mp = ‖m‖Mp′

(3) if m ∈Mp(Rd) then m ∈Mq(Rd) for every q ∈ [p, p′] and

‖m‖∞ ≤ ‖m‖Mq ≤ ‖m‖Mp .

Proof. For f, g ∈ S(Rd), we have from Parseval

〈Tmf, g〉 =

∫
Rd
Tmf(x)g(x) dx =

∫
Rd
m(ξ)f̂(ξ)ĝ(ξ) dξ

=

∫
Rd
f̂(ξ)m(ξ)ĝ(ξ) dξ =

∫
Rd
f(x)Tm̄g(x)dx = 〈f, Tm̄g〉.

This shows that T ∗m = Tm̄. Then, using L
p − Lp′ -duality

‖m‖Mp = ‖Tm‖Lp→Lp = sup
f,g∈S(Rd),‖f‖p=‖g‖p′=1

|〈Tmf, g〉|

= sup
f,g∈S(Rd),‖f‖p=‖g‖p′=1

|〈f, Tm̄g〉| = ‖Tm̄‖Lp′→Lp′ = ‖m̄‖Mp′ .

It remains to notice that if we denote by f∗(x) = f(−x) then f̂∗ = f̂ so that

〈Tmf∗, g∗〉 =

∫
Rd
m̄(ξ)f̂(ξ)ĝ(ξ) dξ = Tm̄f, g

thus

‖m‖Mp = ‖Tm‖Lp→Lp = sup
f,g∈S(Rd),‖f‖p=‖g‖p′=1

|〈Tmf, g〉| = sup
f,g∈S(Rd),‖f‖p=‖g‖p′=1

|〈Tmf∗, g∗〉|

= sup
f,g∈S(Rd),‖f‖p=‖g‖p′=1

|〈Tm̄f, g〉| = ‖Tm̄‖Lp→Lp = ‖m̄‖Mp .

For the last part, Let q ∈ [p, p′] and let θ ∈ (0, 1) be such that
1

q
=

θ

p
+

1− θ
p′

. Using

Riesz-Thorin, we get

‖m‖Mq = ‖Tm‖Lq→Lq ≤ ‖Tm‖θLp→Lp‖Tm‖1−θLp′→Lp′ = ‖m‖θMp‖m‖1−θMp′ = ‖m‖Mp .

In particular, when q = 2, we get ‖m‖∞ = ‖Tm‖L2→L2 ≤ ‖m‖Mp . �

Remark 8.5. One could de�ned Fourier multipliers for m ∈ L1
loc via Tmf = F−1[mf̂ ] where

f is such that (say) f̂ is bounded with compact support (this set of functions is dense in Lp,
1 ≤ p < +∞). One can then show along the lines above that Tm is bounded on L2 if and only if
m ∈ L∞.

The proposition also holds in this case so that if m ∈ Mp then m ∈ L∞. There is therefore
no gain in weakening the assumption m ∈ L∞.

We have just seen that Lp multipliers are always bounded, but the opposite is not true. The
di�culty in the theory of multipliers is precisely to get away from the case p = 2.

Let us start with a simple case. One may write Tmf = (F−1m) ∗ f and F−1m ∈ S ′(Rd) (at
least when f ∈ S). If it happens that K = F−1m is an L1-function (or equivalently m̂ ∈ L1), then
we can use Young's Inequality and get

‖Tmf‖p = ‖K ∗ f‖p ≤ ‖K‖1‖f‖p
which shows that m ∈ Mp with ‖m‖Mp ≤ ‖m̂‖1. A simple condition on m that ensures this is
given in the scale of Sobolev spaces:

Definition 8.6. For s ≥ 0, the Sobolev space W s,2(Rd) is the space of L2-functions such that

‖f‖2W 2,s =

∫
Rd
|f̂(ξ)|2(1 + |ξ|2)s dξ < +∞.

Proposition 8.7. If s > d/2 and m ∈W s,2(Rd), then m̂ ∈ L1(Rd) with ‖m̂‖1 ≤ Cs,d‖m‖W 2,s .
In particular, for every 1 < p < +∞, m ∈Mp with ‖m‖Mp ≤ Cs,d‖m‖W 2,s .
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Proof. This follows from Cauchy-Schwarz writing∫
Rd
|m̂(ξ)|dξ =

∫
Rd
|m̂(ξ)|(1 + |ξ|2)s/2(1 + |ξ|2)−s/2 dξ ≤ Cs,d

∫
Rd
|m̂(ξ)|2(1 + |ξ|2)s dξ

with Cs,d =

∫
Rd

(1 + |ξ|2)−s dξ < +∞ when s > d/2. �

2. Littlewood-Paley theory

2.1. Littlewood-Paley decomposition. We here build a smooth Littlewood-Paley decom-
position, that will be �xed in the remaining of this chapter. This is done as follows:

� we �x a function φ ∈ C∞(Rd), radial, 0 ≤ φ ≤ 1, φ(ξ) = 1 when |ξ| ≤ 1 and φ(ξ) = 0 when
|ξ| ≥ 2;

� we de�ne
ψ(ξ) = φ(ξ)− φ(2ξ)

and notice that ψ ∈ C∞, is radial, supported in {ξ ∈ Rd : 1/2 ≤ |ξ| ≤ 2} and 0 ≤ ψ ≤ 1. This
is because φ(ξ) = φ(2ξ) = 1 when 0 ≤ |ξ| ≤ 1/2, 0 ≤ φ(2ξ) ≤ 1 = φ(ξ) when 1/2 ≤ |ξ| ≤ 1,
0 = φ(2ξ) ≤ φ(ξ) ≤ 1 when 1 ≤ |ξ| ≤ 2 and φ(ξ) = φ(2ξ) = 0 when |ξ| ≥ 2. Note that ψ(u) = 1 if
|u| = 1.

� for j ∈ Z, we then de�ne ψj(ξ) = ψ(2−jξ) and notice that ψj is supported in {ξ ∈ Rd :
2j−1 ≤ |ξ| ≤ 2j+1} and forms a partition of unity∑

j∈Z
ψj(ξ) = 1 ξ ∈ Rd \ {0}.

Indeed, note that ψj(ξ) = 0 unless 2j−1 < |ξ| < 2j+1 and ψj(2
ju) = 1 when |u| = 1. In particular,

for |u| = 1, ψj(2
`u) = δj,` thus, if |ξ| = 2` (there is at most one such `)∑

j∈Z
ψj(ξ) =

∑
j∈Z

δj,` = 1.

On the other hand, for ξ 6= 0 with |ξ| 6= 2k, k ∈ Z, there is a unique ` such that 2` < |ξ| < 2`+1

and then ψj(ξ) = 0 unless j = ` or j = `+ 1. Then∑
j∈Z

ψj(ξ) = ψ`(ξ) + ψ`+1(ξ) = φ(2−`ξ)− φ(2−`+1ξ) + φ(2−`−1ξ)− φ(2−`ξ)

= φ(2−`−1ξ)− φ(2−`+1ξ) = 1− 0

since |2−`−1ξ| ≤ 1 and |2−`+1ξ| ≥ 2.
Further, through the same computation

k∑
j=−∞

ψj(ξ) = φ(ξ/2k)

when ξ 6= 0. This is extended by continuity for ξ = 0.

Next we associate some multiplicators to this partition: for f ∈ S(Rd), let
� ∆jf = F−1[ψj f̂ ] and

� Skf =

k∑
j=−∞

∆jf .

Those operators are better de�ned on the Fourier side as

∆̂jf(ξ) = ψj(ξ)f̂(ξ) and Ŝkf(ξ) = φ(ξ/2k)f̂(ξ).

In particular, both operators consist in multiplying f̂ by a smooth compactly supported function
(thus preserving S) and then taking inverse Fourier transform (which also preserves S). Thus
∆j , Sk : S(Rd) → S(Rd). Using Parseval, it is trivial to see that ‖∆jf‖2, ‖Skf‖2 ≤ ‖f‖2 so that
they both extend into bounded linear operators L2(Rd)→ L2(Rd).

We now list their simplest properties:

Proposition 8.8. For f ∈ L2(Rd),
(1) ∆jf = Sjf − Sj−1f ;
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(2) limk→−∞ Skf = 0 and limk→+∞ Skf = f (with limits in the L2 sense);
(3) For every f ∈ L2(Rd), in the L2-sense,∑

j∈Z
∆jf = f.

We leave this simple proposition as an exercice, all statements follow from Parseval and dom-
inated convergence.

The third statement is called the Littlewood-Paley decomposition of f ∈ L2(Rd) and consists
in breaking up f in pieces which are localized on the Fourier side around |ξ| ≈ 2j .

One may further notice that ψj(x) = δ2−jψ(x) where δλf(x) = f(λx) has inverse Fourier

transform given by 2jdδ2j ψ̂ (since the inverse Fourier transform of ψ is also its Fourier transform).
Using the fact that the Fourier transform of a convolution is the product of Fourier transfoms, we
may identify

∆jf = 2jd(δ2j ψ̂) ∗ f
and, in the same way Skf = 2kd(δ2k φ̂) ∗ f . As φ̂, ψ̂ ∈ S(Rd), these operators are thus well de�ned
on every Lp-space thanks of Young's Inequality. One may also show that, taking Fourier transform
in the sense of distributions,

∆̂jf = δ2−jψf̂

which is thus supported in {2j−1 ≤ |ξ| ≤ 2j+1}.
Our aim is to extend the decomposition of f to Lp(Rd).

2.2. Littlewood-Paley decomposition and di�erentiation. Recall that ∂̂αf(ξ) = (2iπξ)αf̂(ξ)
so that

|∇̂f(ξ)|2 = 4π2|ξ|2|f̂(ξ)|2.
In particular, if ∆j is as in the previous section, then ∆̂jf is supported in an annulus {ξ :

2−j−1 ≤ |ξ| ≤ 2j+1} so that

π222j |∆̂jf(ξ)|2 ≤ |∇̂∆jf(ξ)|2 ≤ 16π222j |∆̂jf(ξ)|2.
Parseval then implies that

π2j‖∆jf‖2 ≤ ‖∇∆jf‖2 ≤ 4π2j‖∆jf‖2.
This fact is valid in any Lp-space:

Proposition 8.9. Let 1 < p < +∞. There exists a constant C depending on d, p only such
that, if f ∈ Lp(Rd) and j ∈ Z, then

frac1C2j‖∆jf‖p ≤ ‖∇∆jf‖p ≤ C2j‖∆jf‖p.

Proof. Recall that

∆jf(x) = 2jd(δ2j ψ̂) ∗ f(x) = 2jd
∫
Rd
ψ̂
(
2j(x− y)

)
f(y) dy

As ψ is a C∞ with compact support, ψ ∈ S(Rd) and thus ψ̂ ∈ S(Rd). One easily checks that one
may di�erentiate this integral

∇∆jf(x) = 2j
∫
Rd

2jd∇ψ̂
(
2j(x− y)

)
f(y) dy = 2j

∫
Rd

2jd∇ψ̂(2jy)f(x− y) dy = 2j
(
2jdδ2j∇ψ̂

)
∗ f

It remains to apply Young's Inequality to get

‖∇∆jf‖p ≤ 2j
∥∥∥2jdδ2j∇ψ̂

∥∥∥
1
‖f‖p = 2j‖∇ψ‖1‖f‖p

which gives the upper bound we are looking for (that depends on ψ). Note that this implies that
if f ∈ Lp then ∇∆jf ∈ Lp.

We now turn to the lower bound. This is done essentially by inverting ∇. To do so, we
introduce a second Littlewood-Paley function ρ ∈ C∞ that is radial, 0 ≤ ρ ≤ 1, supported in
{ξ : 1/4 ≤ |ξ| ≤ 4} and such that ρ = 1 on {ξ : 1/2 ≤ |ξ| ≤ 2}.

Recall that, if f ∈ Lp then ∆̂jf (Fourier transform taken in the sense of distributions) is
supported in {ξ : 2j−1 ≤ |ξ| ≤ 2j+1} then

ρ(ξ/2j)∂̂k∆jf(ξ) = 2iπξkρ(ξ/2j)∆̂jf(ξ) = 2iπξk∆̂jf(ξ)
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since ρ(ξ/2k) = 1 on the support of ∆̂jf . Multiplying by ξk and summing, we thus get

d∑
k=1

ρ(ξ/2j)ξk∂̂k∆jf(ξ) = 2iπ|ξ|2ĝ(ξ)

that we re-write

∆̂jf(ξ) =

d∑
k=1

ξkρ(ξ/2j)

2iπ|ξ|2
∂̂k∆jf(ξ).

Inverting the Fourier transform, we have

∆jf = 2−j
d∑
k=1

Kj,k ∗ (∂k∆jf)

with

Kj,k(x) = 2j
∫
Rd
ρ(ξ/2j)

ξk
2iπ|ξ|2

e2iπ〈ξ,x〉 dξ = 2jd
∫
|η|≥1/4

ρ(η)
ηk

2iπ|η|2
e2iπ2j〈η,x〉 dη

with the change of variable η = ξ/2j and the fact that ρ(η) = 0 for |η| ≤ 1/4. As∣∣∣∣ ηk
2iπ|η|2

∣∣∣∣ ≤ 2

π

for |η| ≥ 1/4, we get

|Kj,k(x)| ≤ 2

π
2jd‖ρ‖1.

Further,

e2iπ2j〈η,x〉 = 2−j
1

2iπ2jx`
∂η`e

2iπ2j〈η,x〉

thus, integrating by parts, (using that ρ is compactly supported) we get

Kj,k(x) = = 2jd
1

2iπ2jx`

∫
|η|≥1/4

ρ(η)
ηk

2iπ|η|2
∂η`e

2iπ2j〈η,x〉 dη

= −2jd
1

2iπ2jx`

∫
|η|≥1/4

∂η`

(
ρ(η)

ηk
2iπ|η|2

)
e2iπ2j〈η,x〉 dη.

It is not hard to see that ∂η`
ηk

2iπ|η|2 is bounded over {|η| ≥ 1/4} so that

|Kj,k(x)| ≤ C2jd
‖ρ‖1 + ‖∂`ρ‖1

2j |x`|
.

Now, if 2j‖x‖∞ ≥ 1 then for at least one `, 2j |x`| ≥ 1 so that 2j |x`| ≥
1

2
(1 + 2j |x`|) thus

|Kj,k(x)| ≤ 2jd
2C(‖ρ‖1 +

∑
` ‖∂`ρ‖1)

1 + 2j |x`|
.

On the other hand, if 2j‖x‖∞ ≤ 1, (1 + 2j‖x‖∞)−1 ≥ 1/2 and we will use the bound

|Kj,k(x)| ≤ 2jd‖ρ‖1 ≤ 2jd‖ρ‖1
2‖ρ‖1

1 + 2j |x`|
≤ 2jd‖ρ‖1

2 max(1, C)(‖ρ‖1 +
∑
` ‖∂`ρ‖1

1 + 2j |x`|
.

In all cases, we have a bound of the form

|Kj,k(x)| ≤ C2jd(1 + 2j‖x‖∞)−1

(with C depending on ρ). Now iterating the argument and using multiple integration by parts, we
get a bound of the form

|Kj,k(x)| ≤ CN2jd(1 + 2j‖x‖∞)−N
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for every N , where C depends on N but not on j. In particular, taking N = d+ 1 we obtain that
Kj,k ∈ L1(Rd) and ‖Kj,k‖1 ≤ Cd+1‖(1 + |x|∞)−d−1‖1 a bound that does not depend on j. But
then

‖∆jf‖p = 2−j
d∑
k=1

‖Kj,k ∗ (∂k∆jf)‖p ≤ 2−j
d∑
k=1

‖Kj,k‖1‖∂k∆jf‖p

≤ 2−jdCd+1‖(1 + ‖x‖∞)−d−1‖1‖∇∆jf‖p
as claimed. �

2.3. The main theorem. The general heuristic of the Littlewood-Paley decomposition is
that, the ∆jf having (almost) separated support in the Fourier domain, they behave almost
independently. In particular, one should have∣∣∣∣∣∣

∑
j

∆jf

∣∣∣∣∣∣ '
∑

j

|∆jf |2
1/2

.

This is of course a too strong statement, however, it may hold in the Lp-sense. First, it holds in
the L2-sense: with Parseval∥∥∥∥∥∥
∑
j

∆jf

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥F [
∑
j

∆jf ]

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
j

F [∆jf ]

∥∥∥∥∥∥
2

=

∫
Rd

∣∣∣∣∣∣
∑
j

ψ(ξ/2j)

∣∣∣∣∣∣
2

|f̂(ξ)|2 dξ =

∫
Rd
|f̂(ξ)|2 dξ.

On the other hand∥∥∥∥∥∥∥
∑

j

|∆jf |2
1/2

∥∥∥∥∥∥∥
2

2

=

∫
Rd

∑
j

|∆jf(x)|2 dx

=

∫
Rd

∑
j

|∆̂jf(ξ)|2 dξ =

∫
Rd

∑
j

ψ(ξ/2j)2|f̂(ξ)|2 dξ.

Now, for �xed j, there are at most 2 consecutive j's for which ψ(ξ/2j)2 6= 0. Call them k, k + 1,
then we have

1 =
(
ψ(ξ/2k) + ψ(ξ/2k+1)

)2
= ψ(ξ/2k)2 + ψ(ξ/2k+1)2 + 2ψ(ξ/2k)ψ(ξ/2k+1)

≤ 2
(
ψ(ξ/2k)2 + ψ(ξ/2k+1)2

)
≤ 2

since 0 ≤ ψ ≤ 1. It follows that

1 ≤
∑
j

ψ(ξ/2j)2 ≤ 2

thus ∫
Rd
|f̂(ξ)|2 dξ ≤

∫
Rd

∑
j

ψ(ξ/2j)2|f̂(ξ)|2 dξ ≤ 2

∫
Rd
|f̂(ξ)|2 dξ.

The following result is the central result of this chapter:

Theorem 8.10. De�ned the Littlewood-Paley square function as

S[f ] =

∑
j

|∆jf |2
1/2

.

Then, for every 1 < p < +∞, there exists a constant C depend on p, d only, such that for every
f ∈ Lp(Rd),

1

C
‖f‖p ≤ ‖S(f)‖p ≤ C‖f‖p.

Proof. We de�ne the vector-valued operator ~S[f ] =
(
∆jf)j∈Z so that S[f ] = ‖~S[f ]‖`2(Z).

We want to show that ‖~S[f ]‖
Lp
(
Rd,`2(Z)

) is comparable to ‖f‖Lp(Rd). We have just shown that ~S
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is a bounded linear operator from L2(Rd) to L2
(
Rd, `2(Z)

)
. Further, the operator ~S is associated

to the kernel
~K(x, y) =

{
2jdψ̂

(
2j(x− y)

)}
j∈Z.

The Lp-boundedness will follow immediately from vector-valued Calderón-Zygmund theory once
we show the following:

Lemma 8.11. The kernel ~K is a vector-valued Calderón-Zygmund kernel.

We postpone the proof of the lemma and �rst show that the converse bound also holds. The
�rst observation is that, if ~g = {gj}`2(Z) : Rd → `2(Z) then∫

Rd

〈
~S[f ](x), ~g(x)

〉
`2(Z)

dx =

∫
Rd

∑
j∈Z

∆jf(x)gj(x)dx

=

∫
Rd

∑
j∈Z

ψ(ξ/2j)f̂(ξ)ĝj(ξ) dξ

=

∫
Rd

∑
j∈Z

f̂(ξ)ψ(ξ/2j)ĝj(ξ) dξ

:=

∫
Rd
f(x)S∗~g(x)dx.

By duality, `2-Cauchy-Schwarz and Hölder,

‖S∗~g(x)‖Lp′ = sup
‖f‖p=1

∣∣∣∣∫
Rd
f(x)S∗~g(x) dx

∣∣∣∣ = sup
‖f‖p=1

∣∣∣∣∫
Rd

〈
~S[f ](x), ~g(x)

〉
`2(Z)

dx

∣∣∣∣
≤ sup

‖f‖p=1

∫
Rd

∣∣∣∣〈~S[f ](x), ~g(x)
〉
`2(Z)

∣∣∣∣ dx ≤ sup
‖f‖p=1

∫
Rd
‖~S[f ](x)‖`2‖~g(x)‖`2 dx

≤ sup
‖f‖p=1

(∫
Rd
‖~S[f ](x)‖p`2 dx

)1/p(∫
Rd
‖~g(x)‖p

′

`2 dx

)1/p′

=
∥∥∥~S∥∥∥

Lp(Rd)→Lp(Rd,`2)
‖g‖Lp′ (Rd,`2).

Now we repeat the Littlewood-Paley decomposition but starting with

ψ̃(ξ) = ϕ(ξ/4)− ϕ(4ξ)

that is, we set ̂̃∆jf(ξ) = ψ̃(ξ/2j)f̂(ξ).

We still have that
∑
ψ̃(ξ/2k) is bounded from above and below while the previous arguments still

show that there is a constant C such that∥∥∥∥∥∥∥
∑
j∈Z
|∆̃jf |2

1/2
∥∥∥∥∥∥∥
p

≤ C‖f‖p

and ∥∥∥∥∥∥
∑
j∈Z

∆̃jgj

∥∥∥∥∥∥
p

≤ C‖~g‖Lp(Rd,`2)

thus ∥∥∥∥∥∥
∑
j∈Z

∆̃j∆jf

∥∥∥∥∥∥
p

≤ C
∥∥∥~S[f ]

∥∥∥
Lp(Rd,`2)

≤ C ′‖f‖p.

The support properties of ψ̃ and the fact that this function is 1 on {1/2 ≤ |ξ| ≤ 2} imply that

∆̃j∆jf = ∆jf . we thus get

‖f‖p =

∥∥∥∥∥∥
∑
j∈Z

∆jf

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∑
j∈Z

∆̃j∆jf

∥∥∥∥∥∥
p

≤ C
∥∥∥~S[f ]

∥∥∥
Lp(Rd,`2)

≤ C ′‖f‖p
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which is what we want to prove.
It remains to prove the lemma.

Proof of Lemma 8.11. As ψ thus ψ̂ ∈ S(Rd), there is a C > 0 such that

|ψ̂(ξ)| ≤ C min(1, |ξ|−d−1),

the �rst bound being better when |ξ| ≤ 1 while the second one is better for |ξ| ≥ 1. Now �x x 6= y

and let J ∈ Z be such that
1

2
≤ 2J |x−y| ≤ 2 (such a J exists) and note that, if j ≤ J , 2j |x−y| ≤ 2

while for j > J , 2j |x− y| ≥ 2. We write

∣∣∣2jdψ̂(2j(x− y)
)∣∣∣ ≤

C2jd if j ≤ J
C2jd

(2j |x− y|)d+1
if j ≥ J + 1

.

Then ∑
j∈Z

∣∣∣2jdψ̂(2j(x− y)
)∣∣∣2 =

∑
−∞<j≤J

∣∣∣2jdψ̂(2j(x− y)
)∣∣∣2 +

∑
j≥J+1

∣∣∣2jdψ̂(2j(x− y)
)∣∣∣2

≤ C
∑

−∞≤j≤J

22jd +
C

|x− y|2d+4

∑
j≥J+1

1

24j

= C
22Jd

1− 2−2d
+

C

|x− y|2d+4

2−4(J+1)

1− 2−4

≤ C

1− 2−2d

(
2

|x− y|

)d
+

C

24 − 1

1

|x− y|2d+4
(2|x− y|)4

which is the desired bound

‖ ~K(x, y)‖`2(Z) ≤
C ′

|x− y|d
.

For the smoothness bound, we note that

∇y ~K(x, y) = −∇x ~K(x, y) =
{

2j(d+1)∇ψ̂
(
2j(x− y)

)
}j∈Z.

We leave as an exercice to adapt the previous proof to obtain the estimate

‖∇x ~K(x, y)‖`2(Z) ≤
C ′′

|x− y|d+1
.

From there, the proof of the smoothness estimate follows as in the scalar case. �

This concludes the proof of the theorem. �

3. The Hörmander-Mikhlin Theorem

We have already seen that a function m ∈W 2,s(Rd) with s > d/2 de�nes a multiplier for every
1 < p < +∞. The �avour of this result is that, some smoothness together with controllable local
singularities and some global decay will give a multiplier.

We present now two re�nements, usually called Hörmander multiplier theorems. The �rst one
starts with a function m ∈ L∞ which will garantee that the associated multiplier is of strong
type (2, 2). The function will further be assumed to be smooth away from the origin and with
derivatives that decay at least as fast as their order:

Theorem 8.12 (First Hörmander-Mikhlin Theorem). Let m be a bounded function, that is C∞
on Rd \ {0} and such that, for every α ∈ Nd, there exists a constant Cm,α with

|∂αm(ξ)| ≤ Cm,α
|ξ||α|

for all ξ ∈ Rd \ {0}.

Then k = F−1[m] agrees with a C∞ function on Rd \ {0} and, for every α ∈ Nd, there exists a
constant Dd,α with

|∂αk(x)| ≤ Dd,α

|x|d+|α| for all x ∈ Rd \ {0}.
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In particular K(x, y) = k(x− y) is a Calderón-Zygmund kernel and Tm is of strong type (p, p) for
every 1 < p < +∞.

Here k = F−1[m] has to be taken in the sense of distributions.

Example 8.13. The Hilbert transform is a particular case of this theorem with m(ξ) =
i sign(ξ).

Proof. We will use the Littlewood-Paley decomposition to write, for ξ 6= 0,

m(ξ) =
∑
j∈Z

ψ(ξ/2j)m(ξ) :=
∑
j∈Z

mj(ξ).

Each mj is C∞ and supported in the annulus Aj = {ξ : 2j−1 ≤ |ξ| ≤ 2j+1}. We may thus de�ne

kj(x) =

∫
Rd
mj(ξ)e

2iπ〈x,ξ〉 dξ

the inverse Fourier transform of mj . Let us now see how the hypothesis on m transfers into
estimates on kj . First, we notice that

∂αkj(x) =

∫
Rd

(2iπξ)αmj(ξ)e
2iπ〈x,ξ〉 dξ

from which we immediately deduce that

|∂αkj(x)| ≤
∫
Aj

(2π)α|ξα||mj(ξ)|dξ ≤ (2π)α‖m‖∞|Aj |(2j+1)|α| ≤ Bd,α2j(d+|α|)

where we use that |ξα| ≤ |ξ||α| ≤ (2j+1)|α| when ξ ∈ Aj and that |Aj | ≤ |B(0, 2j+1)| ≤
2d|B(0, 1)|2jd.

Further,

〈x,∇ξ〉e2iπ〈x,ξ〉 :=

d∑
`=1

x`
∂

∂ξ`
e2iπ〈x,ξ〉 = 2iπ|x|2e2iπ〈x,ξ〉

that is
〈x,∇ξ〉
2iπ|x|2

e2iπ〈x,ξ〉 = e2iπ〈x,ξ〉

when x 6= 0. Thus, for every M > 0, and x 6= 0,

∂αkj(x) =

∫
Rd

(2iπξ)αmj(ξ)

(
〈x,∇ξ〉
2iπ|x|2

)M
e2iπ〈x,ξ〉 dξ

=

d∑
`=1

x`
2iπ|x|2

∫
Aj

(2iπξ)αmj(ξ)
∂

∂ξ`

(
〈x,∇ξ〉
2iπ|x|2

)M−1

e2iπ〈x,ξ〉 dξ

= −
d∑
`=1

x`
2iπ|x|2

∫
Aj

∂

∂ξ`
[(2iπξ)αmj(ξ)]

(
〈x,∇ξ〉
2iπ|x|2

)M−1

e2iπ〈x,ξ〉 dξ(3.50)

after an integration by parts. Now note that, if we denote (e`)`=1,...,d is the standard basis of Rd
then

∂

∂ξ`
[(2iπξ)αψ(ξ/2j)m(ξ)] = α`(2iπξ)

α−e`ψ(ξ/2j)m(ξ)

+ (2iπξ)α2−j
∂

∂ξ`
ψ(ξ/2j)m(ξ) + (2iπξ)αψ(ξ/2j)

∂

∂ξ`
m(ξ).

Now, this is either 0 or ξ ∈ Aj thus 2j−1|ξ| ≤ 2j+1 in which case

(i) |(2iπξ)α−e`ψ(ξ/2j)m(ξ)| ≤ (4π)j(|α|−1‖m‖∞2j(|α|−1),

(ii)

∣∣∣∣(2iπξ)α2−j
∂

∂ξ`
ψ(ξ/2j)m(ξ)

∣∣∣∣ ≤ (4π)j(|α|‖∇ψ‖∞‖m‖∞2j(|α|−1),

(iii)

∣∣∣∣(2iπξ)αψ(ξ/2j)
∂

∂ξ`
m(ξ)

∣∣∣∣ ≤ (4π)j(|α|+1Cm,α2j(|α|−1).
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All in one, we get ∣∣∣∣ ∂∂ξ` [(2iπξ)αψ(ξ/2j)m(ξ)]

∣∣∣∣ ≤ κ12j(|α|−1)

for some constant κ1. It then follows from (3.50) with M = 1 that

|∂αkj(x)| ≤
d∑
`=1

|x`|
2π|x|2

κα,12j(|α|−1)|Aj | ≤
κ̃α,1
|x|

2j(d+|α|−1).

One may then
� pursue integration by parts in (3.50)
� use Leibnitz formula to estimate ∂β [(2iπξ)αψ(ξ/2j)m(ξ)]
and we �nally get that, for every α,M , there is a constant κ̃α,M such that

|∂αkj(x)| ≤ κ̃α,M
|x|M

2j(d+|α|−M).

Summarising all estimates, for each M,α, we get a constant σM,α such that

|∂αkj(x)| ≤ σM,α min(2j(d+|α|), |x|−M2j(d+|α|−M)).

Next we estimate ∑
j∈Z :2j≤1/|x|

|∂αkj(x)| ≤ σ0,α

∑
j∈Z :2j≤1/|x|

2j(d+|α|) ≤ σ̃0,α|x|−(d+|α|)

while, for M > d+ |α|,∑
j∈Z :2j≥1/|x|

|∂αkj(x)| ≤ σM,α|x|−M
∑

j∈Z :2j≤1/|x|

2j(d+|α|−M)

≤ σ̃M,α|x|−M |x|−(d+|α|−M) ≤ σ̃α|x|−(d+|α|).

In particular, for each α, the series
∑
j∈Z ∂

αkj is normally convergent over every compact set

E ⊂ Rd \ {0}. It follows that
∑
j∈Z kj converges over Rd \ {0} to some function k̃ ∈ C∞(Rd \ {0})

and we have also proven the claimed bound

|∂αk̃(x)| ≤ Bα
|x|d+|α| .

It remains to show that k = k̃ on Rd \ {0}, that is

〈k, ϕ〉 = 〈k̃, ϕ〉 for every ϕ ∈ C∞c (Rd) with suppϕ ⊂ Rd \ {0}.

But, by de�nition of the Fourier transform,

〈k, ϕ〉 = 〈k̂, ϕ̂〉 = 〈m, ϕ̂〉 =

∫
Rd
m(ξ)ϕ̂(ξ) dξ

since ϕ̂ ∈ S(Rd) and m ∈ L∞ ⊂ L1
loc.

On the other hand, as ϕ is compactly supported away from 0,
∑
kj converges uniformly to k̃

over the support of ϕ thus

〈k̃, ϕ〉 =

∫
Rd

∑
j∈Z

kj(x)

ϕ(x)dx =
∑
j∈Z

∫
Rd
kj(x)ϕ(x)dx

=
∑
j∈Z
〈kj , ϕ〉 =

∑
j∈Z
〈k̂j , ϕ̂〉 =

∑
j∈Z

∫
Rd
k̂j(ξ)ϕ̂(ξ) dξ

=
∑
j∈Z

∫
Rd
ψ(ξ/2j)m(ξ)ϕ̂(ξ) dξ =

∫
Rd

∑
j∈Z

ψ(ξ/2j)

m(ξ)ϕ̂(ξ) dξ
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since
∑
j∈Z

ψ(ξ/2j) converges a.e. (to 1) and partial sums are bounded by 1 so that Lebesgue's

Dominated Convergence shows that one may invert summation over j and integration. Finally we
get

〈k̃, ϕ〉 =

∫
Rd
m(ξ)ϕ̂(ξ) dξ = 〈k, ϕ〉

as expected.
We now conclude by noting that Tm is a Calderón-Zygmund operator associated to K(x, y) =

k̃(x− y):
� K is a standard kernel since, when x 6= y

|K(x, y)| = |k̃(x− y)| ≤ B0

|x− y|d
|∇xK(x, y)| = |∇yK(x, y)| = |∇k̃(x− y)| ≤ B1

|x− y|d+1
.

� Tm is bounded on L2 since m ∈ L∞;
� if f ∈ L2(Rd) has compact support and x /∈ supp f then, for every y ∈ supp f , x− y /∈ f so

that

Tmf(x) = k ∗ f(x) =

∫
Rd
k̃(x− y)f(y) dy

and Tm is the operator with kernel K.
It follows from general Calderón-Zygmund theory that Tm is of strong-type (p, p). �

The result is not optimal and one does not need as many derivatives.

Example 8.14. A typical example of an m that satis�es the hypothesis is mβ(ξ) =
ξβ

|ξ|2
when

β is a multi-index of length 2. This kernel is usefull for the following reason: for f ∈ S(Rd), we
have

∂̂βf(ξ) = (2iπξ)β f̂(ξ) =
(2iπξ)β

(2iπ|ξ|)2
(2iπ|ξ|)2f̂(ξ) = mβ(ξ)∆̂f(ξ)

that is ∂βf = Tmβ [∆f ]. As mβ satis�es the conditions of the theorem, Tmβ is of strong type (p, p)
for any 1 < p <∞. As a consequence ∥∥∂βf∥∥

p
≤ Cp‖∆f‖p

i.e. all derivatives of order 2 are controlled by the Laplace operator.

We now give a sharper result.

Theorem 8.15 (Hörmander-Mikhlin Multiplier Theorem). Let n be the smallest integer > d/2
(i.e. d = 2(n− 1) when d is even and d = 2n− 1 when d is odd). Let m be a bounded function on
Rd, of class Cn on Rd \ {0} and such that, for every α ∈ Nd with |α| ≤ n, there is a constant Cα
such that

|∂αm(ξ)| ≤ Cα
|ξ||α|

.

Let K = F−1[m]. Then K agrees with a locally integrable function K̃ on Rd \ {0}. Further, there
exists C such that, for every y ∈ Rd \ {0},∫

|x|>2|y|
|K(x− y)−K(x)|dx ≤ C.

Further, m ∈Mp for every 1 < p < +∞.

Proof. We will not take care of constants in this proof and write C for a constant that
depends on the dimension d only and that may change from one occurence to the following.

As in the previous proof, we only have to control the pieces Kj . For this, let β be a multiindex.
Then ∫

Rd
|(−2iπx)βKj(x)|2 dx =

∫
Rd
|∂βmj(ξ)|2 dξ.
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Thus, as long as ` ≤ n, there is a constant C (that depends on ` only but not on j and in the end
will depend on d only) such that∫
Rd

(|x|`)2|Kj(x)|2 dx =

∫
Rd

(x2
1 + · · ·+ x2

d)
`|Kj(x)|2 dx ≤ C`

∫
Rd

∑
|β|=2`

|∂βmj(ξ)|2 dξ ≤ C`2jd2−2j`

where the factor 2jd comes from the fact that we integrate over an annulus 2j−1 ≤ |ξ| ≤ 2j+1

which has measure ≤ C2jd while the second factor comes from the fact that annulus, the integrant
is ≤ (2−j`)2.

In particular, for R > 0, Cauchy-Schwarz gives∫
|x|≤R

|Kj(x)| dx . Rd/2
(∫

Rd
|Kj(x)|2 dx

)1/2

≤ C2jd/2Rd/2

and∫
|x|≥R

|Kj(x)| dx =

∫
|x|≥R

|x|−n|x|n|Kj(x)| dx ≤

(∫
|x|≥R

|x|−2n dx

)1/2(∫
Rd
|x|2n|Kj(x)|2 dx

)1/2

≤ CRd/2−k2jd/2−jn(3.51)

since d/2− n < 0. In particular, chosing R = 2−j gives∫
Rd
|Kj(x)| dx . 2jd/2(2−j)d/2 + (2−j)d/2−n2jd/2−jn ≤ C.

Using the Leibnitz rule, one can extend this computation to the derivatives of Kj . First one
proves ∫

Rd
|(−2iπx)β∂αKj(x)|2 dx =

∫
Rd
|∂β [2iπξ)αmj ](ξ)|2 dξ . 2jd2−2j`22j|α|.

Then, the same cut-o� and Cauchy-Schwarz shows that∫
Rd
|∂αKj(x)|dx . 2j|α|.

Next, let h ∈ Rd \ {0} and write h = |h|h′, then∫
Rd
|Kj(x+ h)−Kj(x)| dx =

∫
Rd

∣∣∣∣∣
∫ |h|

0

〈h′,∇Kj(x+ th′)〉 dt

∣∣∣∣∣ dx
≤

∫ |h|
0

∫
Rd
|∇Kj(x+ th′)|dx dt ≤ C2j |h|

by the previous estimate for |α| = 1.
As a �rst consequence∑

2j.|y|−1

∫
|x|≥2|y|

|Kj(x+ y)−Kj(x)| dx .
∑

2j.|y|−1

2j |y| . 1.

On the other hand, writing |Kj(x+y)−Kj(x)| ≤ |Kj(x+y)|+ |Kj(x)| and noting that |x+y| ≥ |y|
when |x| ≥ 2|y|, we get∑

2j&|y|−1

∫
|x|≥2|y|

|Kj(x+ y)−Kj(x)| dx ≤ 2
∑

2j≥C−1|y|−1

∫
|x|≥|y|

|Kj(x)| dx

≤ C
∑

2j≥C−1|y|−1

2dj/22−kj |y| d2−k ≤ C

with (3.51).
As in the previous proof, we conclude that K coincides on Rd \ {0} with the locally integrable

function
∑
Kj . and that ∫

|x|≥2|y|
|K(x+ y)−K(x)| dx ≤ C
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for y 6= 0 and that, if f ∈ L2(Rd) has compact support and 0 /∈ supp f then

Tmf(x) =

∫
Rd
K(x− y)f(y) dy.

Further, as m ∈ L∞, Tm is bounded on L2. We are going to show that Tm is also of weak-type
(1, 1) thus, by interpolation, it is of strong type (p, p) for 1 < p ≤ 2 and, by duality, it is of strong
type (p, p) for 2 ≤ p < +∞.

We now take a general f ∈ L1 and λ > 0. Take its Calderón-Zygmund decomposition at level
λ, f = g +

∑
Q bQ with g a good piece and bQ bad pieces. We have

|{|Tf | > λ}| ≤ |{|Tg| > λ/2}|+ |{|
∑
Q

TbQ| > λ/2}|.

The good part is easy to deal with since Tm is of strong type (2, 2) so that ‖Tmg‖2 ≤ C‖g‖2 ≤
Cλ1/2‖f‖1/21 . From Bienaymé-Tchebichev, we get

|{|Tg| > λ/2}| ≤ C ‖g‖
2
2

λ2
≤ Cλ‖f‖1

λ2
= C
‖f‖1
λ

which has the desired form.
The bad pieces are delt with as follows: bQ is supported in a cube Q with center cQ and we

denote Q∗ = (1 + 2d1/2)Q. We then write

|{|
∑

TbQ| > λ/2}| ≤
∣∣∣⋃Q∗

∣∣∣+ |{x /∈
⋃
Q∗ : |

∑
Q

TbQ(x)| > λ/2}|.

But ∣∣∣⋃Q∗
∣∣∣ ≤∑ |Q∗| ≤ C

∑
|Q| ≤ C ‖f‖1

λ
.

As

∫
bQ(y) dy = 0 we have∫

Rd\Q∗

∣∣∣∣∫
Q

K(x− y)bQ(y) dy

∣∣∣∣ dx =

∫
Rd\Q∗

∣∣∣∣∫
Q

(
K(x− y)−K(x− cQ)

)
bQ(y) dy

∣∣∣∣ dx
≤

∫
Rd\Q∗

∫
Q

∣∣K(x− y)−K(x− cQ)
∣∣ |bQ(y)| dy dx

≤
∫
Q

(∫
Rd\Q∗

∣∣K(x− y)−K(x− cQ)
∣∣ dx) |bQ(y)| dy.

Now if y ∈ Q and x /∈ Q∗ then |x− cQ| ≥ 2|y − cQ| thus∫
Rd\Q∗

∣∣K(x− y)−K(x− cQ)
∣∣ dx =

∫
Rd\Q∗

∣∣K(x− cq − (y − cQ)
)
−K(x− cQ)

∣∣ dx ≤ C
so that ∫

Rd\Q∗

∣∣∣∣∫
Q

K(x− y)bQ(y)dy

∣∣∣∣ dx ≤ C‖bQ‖1 ≤ C‖Q‖.
It follows that ∫

Rd\
⋃
Q∗
|
∑
Q

TbQ(x)| dx =
∑
Q

∫
Rd\Q∗

∣∣∣∣∫
Q

K(x− y)bQ(y) dy

∣∣∣∣ dx
≤ Cλ

∑
Q

‖Q‖ ≤ Cλ‖f‖1
λ

= C‖f‖1

and Bienaymé-Tchebichev shows that the last term is bounded by

|{x /∈
⋃
Q∗ : |

∑
TbQ(x)| > λ/2}| ≤ 2

‖
∑
TbQ(x)‖L1(Rd\

⋃
Q∗)

λ
≤ C ‖f‖1

λ
which has also the requested form. �





APPENDIX A

Integrating over the sphere and the Bessel function

1. The Γ and β functions

Recall that the Γ function is de�ned for x > 0

Γ(x) =

∫ +∞

0

txe−t
dt

t
.

Obviously, Γ is well de�ned and holomorphic over {z ∈ C : <(z) > 0} and its derivatives are given
by

Γ(k)(x) =

∫ +∞

0

ln(t)ktxe−t
dt

t
.

This shows that Γ is log-convex over R+.
A further result is that, �rst for 0 < <(z) < 1, Γ satis�es the functional equation

(1.52) Γ(z)Γ(1− z) =
π

sinπz
which allows to de�ne Γ as a meromorphic function over C with poles at the non-positive integers

with resudie Res (Γ,−n) =
(−1)n

n!
with no zeroes.

Γ also satis�es the duplication formula

(1.53) Γ(z)Γ

(
z +

1

2

)
= 21−2z

√
πΓ(2z).

A direct computation shows that Γ(1) = Γ(2) = 1, any of the functional equation shows that
Γ(1/2) =

√
π while integration by parts shows that Γ(x + 1) = xΓ(x) so that Γ(n + 1) = n! and

Γ

(
n+

1

2

)
=

(2n)!

22nn!

√
π.

Γ satis�es the asymptotic (Stirling) formula

Γ(x) =
√

2πxx−
1
2

(
1 +

1

12x
+O(x−2)

)
.

The β function is closely related to the Γ function. Recall that it is de�ned by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt

for x, y > 0. Using Fubini we can write

Γ(x)Γ(y) =

∫ +∞

0

∫ +∞

0

tx−1e−tsy−1e−s dt ds

and changing variable u = s+ t, v =
s

s+ t
(that is s = uv, t = u(1− v)) we conclude that

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

which allows to extend it analytically.
Further, simplie changes of variables give various expressions

� s = 1− t shows that B(y, x) = B(x, y);

� t = sin2 θ shows that B(x, y) =

∫ π
2

0

sin2x−1 θ cos2y−1 θ dθ;

� t =
1

1 + s
shows that B(x, y) =

∫ +∞

0

sy−1

(1 + s)x+y
ds.
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The link with the Γ function also shows that

� B(x+ 1, y) =
x

x+ y
B(x, y) and B(x, y + 1) =

y

x+ y
B(x, y);

� B(x, y)B(x+ y, 1− y) =
π

x sinπy
� B(x, x) = 21−2xB

(
1
2 , 2x

)
.

2. Spherical coordinates

Spherical coodinates extend the 2-dimensional polar coordinates to higher dimensions. First
note that if x ∈ Rd, x 6= 0, then x = r(ζ1, . . . , ζd) with r = |x| = (x2

1 + · · · + x2
d)

1/2 and
(ζ2

1 + · · ·+ ζ2
d−1) + ζ2

d = 1

We can then �nd θd−1 ∈ [0, π] such that ζd = cos θd−1 while ζ
2
1 + · · ·+ ζ2

d−1 = sin2 θd−1. Either

this last quantity is 0 or we divide it by sin2 θd−1 so that(
(ζ1/ sin θd−1)2 + · · ·+ (ζd−2/ sin θd−1)2) + (ζd−1/ sin θd−1)2 = 1.

It follows that there is a θd−2 ∈ [0, π] such that ζd−1/ sin θd−1 = cos θd−2 and
(
(ζ1/ sin θd−1)2+· · ·+

(ζd−2/ sin θd−1)2) = sin2 θd−2 i.e. ζd−1 = cos θd−2 sin θd−1 and ζ
2
1 +· · ·+ζ2

d−2 = (sin θd−2 sin θd−1)2.

We keep on like this till we obtain ζ2
1 + ζ2

2 = (sin θ2 · · · sin θd−1)2 so that there is θ1 ∈ (−π, π) for
which ζ1 = sin θ1 sin θ2 · · · sin θd−1 and ζ2 = cos θ1 sin θ2 · · · sin θd−1. In summary

x1 = r sin θ1 sin θ2 · · · sin θd−1

x2 = r cos θ1 sin θ2 · · · sin θd−1

... =
...

xd−1 = r cos θd−2 sin θd−1

xd = r cos θd−1

with r ≥ 0, θ1 ∈ (−π, π], and θj ∈ [0, π] for j = 2, . . . , d − 1. This leads to a C1 bijection
Π : (r, θ1, . . . , θd−1)→ (x1, . . . , xd) from ]0,+∞)× (−π, π]× [0, π]2 onto Rd \ {0}. If we �x r > 0,
the image of {r} × (−π, π]× [0, π]2 under Π is the sphere rSd−1 = {x ∈ Rd : |x| = r}.

For d = 2 we have just constructed polar coordinates while for d = 3x = r sin θ sinϕ
y = r sin θ cosϕ
z = r cos θ

r ≥ 0, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π.

For instance, for d = 3, the Jacobian matrix of this change of variable issin θ sinϕ r cos θ sinϕ r sin θ cosϕ
sin θ cosϕ r cos θ cosϕ −r sin θ sinϕ

cos θ −r sin θ 0


and its determinant is

J = cos θ

[
r cos θ sinϕ r sin θ cosϕ
r cos θ cosϕ −r sin θ sinϕ

]
+ r sin θ

[
sin θ sinϕ r sin θ cosϕ
sin θ cosϕ −r sin θ sinϕ

]
= r2 cos2 θ sin θ

(
− sin2 ϕ− cos2 ϕ

)
+ r sin3 θ

(
− sin2 ϕ− cos2 ϕ

)
= −r sin θ(cos2 θ + sin2 θ) = −r sin θ.

In particular, if we write f in spherical coordinates f̃(r, θ, ϕ) = f(r sin θ sinϕ, r sin θ cosϕ, r cos θ)
then ∫

Rd
f(x) dx =

∫ +∞

0

∫ 2π

0

∫ π

0

f(r sin θ sinϕ, r sin θ cosϕ, r cos θ)r sin θ dϕdθ dr.

We can then de�ne for Ψ : S2 → C,∫
S2

Ψ(ζ) dσ2(ζ) =

∫ 2π

0

∫ π

0

Ψ(sin θ sinϕ, sin θ cosϕ, cos θ) sin θ dϕdθ.

For arbitrary dimension d, a similar computation shows that

(2.54)

∫
Sd−1

Ψ(ζ) dσd−1(ζ) =

∫ 2π

0

∫ π

0

· · ·
∫ π

0

Ψ(Θ)

d−1∏
j=2

sinj−1 θj dθd−1 · · · dθ2 dθ1
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with

Θ = (sin θ1 sin θ2 · · · sin θd−1, cos θ1 sin θ2 · · · sin θd−1, . . . , cos θd−1)

and then ∫
Rd
f(x) dx =

∫ +∞

0

∫
Sd−1

f(rζ) dσd−1(ζ) rd−1 dr.

In particular, if f is radial, f(x) = f0(|x|) then∫
Rd
f(x) dx = σd−1(Sd−1)

∫ +∞

0

f0(r)rd−1 dr.

We can now compute the volume of the euclidean ball |Bd(ρ)| and the surface area of the
sphere in Rd. Indeed, if f = 1Bd(ρ) so that f(x) = f0(|x|) with f0 = 1[0,ρ] we have

|Bd(ρ)| =

∫
Rd

1Bd(ρ)(x) dx = σd−1(Sd−1)

∫ +∞

0

1[0,ρ](r)r
d−1 dr

= σd−1(Sd−1)

∫ ρ

0

rd−1 dr =
σd−1(Sd−1)

d
ρd.

This already shows that |Bd(ρ)| = |Bd(1)|ρd and that σd−1(Sd−1) = d|B(0, 1)|.
On the other hand, if x ∈ Bd(ρ) then each coordinate of x is ≤ ρ. Thus

Bd(ρ) = {(x1, . . . , xd−1, xd) : (x2
1 + · · ·+ x2

d−1) + x2
d = ρ2}

= {(x1, . . . , xd−1, xd) : (x2
1 + · · ·+ x2

d−1) =
√
ρ2 − x2

d

2

}

= {(x̄, xd) : xd ∈ [−ρ, ρ], x̄ ∈ Bd−1(
√
ρ2 − x2

d)}.

Using Fubini (we only integrate non-negative quantities), we �nd

|Bd(ρ)| =

∫
Rd

1B(ρ)(x) dx =

∫ ρ

−ρ

∫
Rd−1

1
Bd−1(

√
ρ2−x2

d)
(x̄) dx̄dxd

=

∫ ρ

−ρ
|Bd−1(

√
ρ2 − x2

d)|dxd

= |Bd−1(1)|
∫ ρ

−ρ
(ρ2 − x2

d)
(d−1)/2 dxd.

This gives an induction formula

|Bd(1)| = |Bd−1(1)|
∫ 1

−1

(1− t2)(d−1)/2 dt = 2|Bd−1(1)|
∫ 1

0

(1− t2)(d−1)/2 dt

= |Bd−1(1)|
∫ 1

0

(1− x)(d−1)/2x−1/2 ds = B

(
d+ 1

2
,

1

2

)
|Bd−1(1)|

which the change of variable x = t2 and B the β function.
It follows that

|Bd(1)| = B(d/2 + 1, 1/2)|Bd−1(1)| =
Γ
(
d+1

2

)
Γ
(

1
2

)
Γ
(
d
2 + 1

) |Bd−1(1)| =
√
π

Γ
(
d+1

2

)
Γ
(
d
2 + 1

) |Bd−1(1)|.

Iterating this formula, we get

|Bd(1)| = π
Γ
(
d+1

2

)
Γ
(
d
2 + 1

) Γ
(
d
2

)
Γ
(
d+1

2

) |Bd−2(1)| = 2π

d
|Bd−2(1)|.

But, when d = 1 of course |B1(1)| = |[−1, 1]| = 2 while for d = 2, the area of a disc af radius 1
|B2(1)| = π (by de�nition of π). An immediate induction then gives

|Bd(1)| = πd/2

Γ
(
d
2 + 1

) =


πp

p! si d = 2p

2(4π)pp!
(2p+1)! si d = 2p+ 1



116 A. INTEGRATING OVER THE SPHERE AND THE BESSEL FUNCTION

(the �rst fomula follows from the second one) while

σd−1(Sd−1) = d|Bd(1)| = dπd/2

Γ
(
d
2 + 1

) =
2π

d
2

Γ
(
d
2

) .
This formula could also be obtained by an induction, starting with σ1(S1) = 2π and the fact

that (2.54) shows that

σd−1(Sd−1) =

∫ 2π

0

∫ π

0

· · ·
∫ π

0

d−1∏
j=2

sinj−1 θj dθd−1 · · · dθ2 dθ1 = σd−2(Sd−2)

∫ π

0

sind−2 θd−1 dθd−1.

A key property of the surface measure of Sd−1 is that it is rotation invariant, that is, if
R ∈ SO(d) (a d × d unitary matrix with determinant 1) then, for any continuous function ϕ on
Sd−1, ∫

Sd−1

ϕ(Rζ) dσd−1(ζ) =

∫
Sd−1

ϕ(ζ) dσd−1(ζ).

This property follows immediately from the same property for the Lebesgue measure on Rd.
As a consequence, we can derive a formula for the integral of a function that depends only

on the scalar product with a �xed direction ϕ(ζ) = ϕ0(〈ζ, x〉). To do so, write x = |x|Red where
ed = (0, . . . , 0, 1) and R ∈ SO(d), then∫

Sd−1

ϕ(ζ)dσd−1(ζ) =

∫
Sd−1

ϕ0(|x|〈ζ,Red〉) dσd−1(ζ)

=

∫
Sd−1

ϕ0(|x|〈R∗ζ, ed〉) dσd−1(ζ)

=

∫
Sd−1

ϕ0(|x|〈ζ, ed〉) dσd−1(ζ)

= σd−2(Sd−2)

∫ π

0

ϕ0(|x| cos θd−1) sind−2 θd−1 dθd−1

with (2.54). Changing variable t = cos θd−1 gives∫
Sd−1

ϕ0(〈ζ, x〉) dσd−1(ζ) = σd−2(Sd−2)

∫ 1

−1

ϕ0(|x|t)(1− t2)
d
2−1 dt√

t2 − 1

=
2π

d−1
2

Γ
(
d−1

2

) ∫ 1

−1

ϕ0(|x|t)(1− t2)
d
2−1 dt√

t2 − 1
.(2.55)

3. The Bessel function

The Bessel function is de�ned for Re ν > − 1
2 via the Poisson representation formula as

Jν(t) =

(
t

2

)ν
1

Γ
(
ν + 1

2

)
Γ
(

1
2

) ∫ 1

−1

eist(1− s2)ν
dt√

1− s2
.

Alternatively, Jν can be de�ned via the power series

Jν(t) =

+∞∑
n=0

1

Γ(ν + n+ 1)

(−1)n

n!

(
t

2

)ν+2n

.

This function is of class C∞ and satis�es

d

dt
[t−νJν ] = −t−νJν+1(t) and

d

dt
[tνJν ] = tνJν−1(t)

the �rst one being valid for Re ν > − 1
2 and the second only for Re ν > 1

2 . One may further verify
that

d

dt
Jν(t) =

1

2

(
Jν−1(t)− Jν+1(t)

)
.

and that Jν satis�es a Sturm-Liouville di�erential equation

t2
d2

dt2
Jν + t

d

dt
Jν + (t2 − ν2)Jν = 0.
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A further property is that Jν has a �transmutation� property

(3.56)

∫ 1

0

Jµ(st)sµ+1(1− s2)ν ds =
2νΓ(ν + 1)

tν+1
Jµ+ν+1(t).

We leave this formula as an exercice based on the series representation of the Bessel function and
the properties of the Γ function.

The most important facts for us are that Jν have the asymptotic behavior

Jν(t) ∼ tν

2νΓ(ν + 1)
,when t→ 0

and

Jν(t) ∼
√

2

π

cos
(
t− ν π2 −

π
4

)
t1/2

,when t→ +∞.

4. The Fourier transform of the surface measure of the sphere

The importance of the Bessel function in Fourier analysis comes from the fact that it appears
in the expression of the Fourier transform of the surface measure of the sphere.

Lemma A.1. For d ≥ 2, the Fourier transform of σd−1 is given by

σ̂d−1(ξ) = 2π
J d−2

2
(2π|ξ|)

|ξ| d−2
2

.

Proof. By de�nition

σ̂d−1(ξ) =

∫
Sd−1

e−2iπ〈x,ξ〉 dσd−1(x) =
2π

d−1
2

Γ
(
d−1

2

) ∫ 1

−1

e−2iπt|ξ|(1− t2)
d
2−1 dt√

t2 − 1

with (2.55). Using the de�nition of the Bessel function, we then get

σ̂d−1(ξ) =
2π

d−1
2

Γ
(
d−1

2

) 2
d−2

2 Γ
(
d−2

2 + 1
2

)
Γ
(

1
2

)
(2π|ξ|) d−2

2

J d−2
2

(2π|ξ|).

As Γ(1/2) = π1/2, the result follows. �

5. Fourier transform of radial functions

Lemma A.2. Let f ∈ L1(Rd) be a radial function and de�ne f0 by f(x) = f0(|x|). Then the
Fourier transform of f is given by

f̂(ξ) =
(2π)

d
2

(|ξ|) d−2
2

∫ +∞

0

f0(r)J d−2
2

(r|ξ|) r d2−1 dr.

Proof. Observe that f0 ∈ L1(R+, rd−1 dr). It is enough to compute

f̂(ξ) =

∫
Rd
f0(|x|)e−2iπ〈x,ξ〉 dx =

∫ +∞

0

f0(r)

∫
Sd−1

e−2iπr〈ζ,ξ〉 dσ(ζ) rd−1 dr

=

∫ +∞

0

f0(r)

∫
Sd−1

e−2iπ〈ζ,rξ〉 dσ(ζ) rd−1 dr =

∫ +∞

0

f0(r)2π
J d−2

2
(2πr|ξ|)

(r|ξ|) d−2
2

dr

=
2π

|ξ| d−2
2

∫ +∞

0

f0(r)J d−2
2

(r|ξ|) r d2−1 dr

and the asymptotics of the Bessel function in 0 and ∞ show that all integrals are well de�ned. �

Example A.3. If we take f0 = 1[0,1] we get

1̂B(0,1)(ξ) =
2π

|ξ| d−2
2

∫ 1

0

J d
2−1(2πr|ξ|) r d2−1 dr =

1

|ξ| d2
J d

2 +1(2π|ξ|)

with the transmutation property (3.56) with µ =
d

2
− 1 and ν = 0.
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More generally, if we write x+ = max(0, x) and mν(x) = (1− |x|)ν+. Then, for ν > −d,

m̂ν(ξ) =
1

(|ξ|) d−2
2

∫ 1

0

J d
2−1(2πr|ξ|) r d2−1(1− r2)ν dr =

2νΓ(ν + 1)

(2π)ν |ξ| d2 +ν
J d

2 +ν .



APPENDIX B

The Schur test

In this chapter, we will focus on operators Lp(Ω, µ)→ Lq(Ω̃, ν) de�ned through a kernel K:

(0.57) TKf(x) =

∫
Ω

K(x, y)f(y) dµ(y).

More precisely, we assume that TK is de�ned this way on a dense subset of Lp(Ω, µ) and we are
interrested in conditions on K that ensure that TK extends to a bounded operator Lp(Ω, µ) →
Lq(Ω̃, ν).

This is rather easy when p = 1. Indeed, from Minkovski's Inequality, we get∥∥∥∥∫
Ω

K(x, y)f(y)dµ(y)

∥∥∥∥
Lq(Ω̃,ν)

≤
∫

Ω

‖K(x, y)f(y)‖Lqx(Ω̃,ν) dµ(y)

=

∫
Ω

‖K(x, y)‖Lqx(Ω̃,ν)|f(y)| dµ(y)

≤ sup
y∈Ω
‖K(x, y)‖Lqx(Ω̃,ν)

∫
Ω

|f(y)| dµ(y)

This shows the following:

Proposition B.1. Let (Ω, µ), (Ω̃, ν) be two σ-�nite measure spaces and let 1 ≤ q ≤ ∞. Let

K : Ω̃× Ω→ C. Assume that

M :=

sup
y∈Ω

(∫
Ω̃

|K(x, y)|q dν(x)

)1/q

when q < +∞

sup(x,y)∈Ω×Ω̃ |K(x, y)| otherwise

is �nite. Then the linear operator de�ned by

TKf(x) =

∫
Ω

K(x, y)f(y) dµ(y)

is bounded L1(Ω, µ)→ Lq(Ω̃, ν) with ‖TK‖L1(Ω,µ)→Lq(Ω̃,ν) ≤M .

The dual case, i.e. with �nal space L∞, is a simple: take 1 ≤ p ≤ +∞ and p′ be the dual

exponent,
1

p
+

1

p′
= 1. Then Hölder shows that

sup
x∈Ω̃

∣∣∣∣∫
Ω

K(x, y)f(y) dµ(y)

∣∣∣∣ ≤ sup
x∈Ω̃

‖K(x, y)‖
Lp
′
y (Ω,µ)

‖f‖Lp(Ω,µ).

This shows the following:

Proposition B.2. Let (Ω, µ), (Ω̃, ν) be two σ-�nite measure spaces and let 1 ≤ p ≤ ∞ and p′

such that
1

p
+

1

p′
= 1. Let K : Ω̃× Ω→ C. Assume that

M :=

sup
x∈Ω̃

(∫
Ω

|K(x, y)|p
′
dµ(y)

)1/p′

when p > 1

sup(x,y)∈Ω×Ω̃ |K(x, y)| when p = 1

is �nite. Then the linear operator de�ned by

TKf(x) =

∫
Ω

K(x, y)f(y) dµ(y)

is bounded Lp(Ω, µ)→ L∞(Ω̃, ν) with ‖TK‖Lp(Ω,µ)→L∞(Ω̃,ν) ≤M .
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For the case Lp → Lp, we will now prove the following powerful tool:

Theorem B.3 (Schur Test). Let (Ω, µ), (Ω̃, ν) be two σ-�nite measure spaces and let 1 ≤ p ≤
∞. Let K : Ω̃× Ω→ C. Assume that

A := sup
x∈Ω̃

∫
Ω

|K(x, y)|p dµ(y) < +∞

and

B := sup
y∈Ω

∫
Ω̃

|K(x, y)|p dν(x) < +∞

Then the linear operator de�ned by

TKf(x) =

∫
Ω

K(x, y)f(y) dµ(y)

is bounded Lp(Ω, µ)→ Lp(Ω̃, ν) with ‖TK‖Lp(Ω,µ)→Lp(Ω̃,ν) ≤ A1/p′B1/p.

We take the convention X1/∞ = 1.

Proof. Note that when A = 0 or B = 0 then K = 0 a.e. and TK = 0. We thus exclude this
case.

We have already considered the cases p = 1 and p = ∞ so we assume that 1 < p < +∞ and

take for p′ the dual exponent
1

p
+

1

p′
= 1. We want to show that, for every f ∈ Lp(Ω, µ) and every

g ∈ Lp′(Ω̃, ν) ∣∣∣∣∫
Ω̃

TKf(x)g(x) dν(y)

∣∣∣∣ ≤ C‖f‖Lp(µ)‖g‖Lp′ (ν)

where C is a constant to be determined. This would then imply

‖TKf‖Lp(ν) = sup
‖g‖

Lp
′
(Ω̃,ν)

=1

∣∣∣∣∫
Ω̃

TKf(x)g(x) dν(y)

∣∣∣∣
≤ sup
‖g‖

Lp
′
(Ω̃,ν)

=1

C‖f‖Lp(µ)‖g‖Lp′ (ν) = C‖f‖Lp(µ).

Next notice that ∣∣∣∣∫
Ω̃

TKf(x)g(x) dν(y)

∣∣∣∣ ≤ ∫
Ω̃

|TKf(x)| |g(x)|dν(y)

while

|TKf(x)| =
∣∣∣∣∫

Ω

K(x, y)f(y) dµ(y)

∣∣∣∣ ≤ ∫
Ω

|K(x, y)| |f(y)| dµ(y).

But then, from Fubini,∫
Ω̃

|TKf(x)| |g(x)|dν(y) =

∫
Ω

∫
Ω̃

|K(x, y)| |f(x)| |g(y)| dµ(y) dν(x)

(order of integration is not relevant as we integrate non-negative quantities). We thus have to show

(0.58)

∫
Ω

∫
Ω̃

|K(x, y)| |f(x)| |g(y)|dµ(y) dν(x) ≤ C‖f‖Lp(µ)‖g‖Lp′ (ν).

The next step is a reduction to the case A = B = 1. To do so, de�ne a new measure dµ̃ =
1

A
dµ

so that

sup
x∈Ω̃

∫
Ω

|K(x, y)|p dµ̃(y) = 1

while

‖f‖Lp(µ̃) =

(∫
Ω

|f(x)|p 1

A
dµ(x)

)1/p

= A−1/p‖f‖Lp(µ).

If we set dν̃ =
1

B
dν then

sup
y∈Ω

∫
Ω̃

|K(x, y)|p dν̃(x) = 1
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while ‖g‖Lp′ (ν̃) = B−1/p′‖g‖Lp′ (ν). Finally∫
Ω

∫
Ω̃

|K(x, y)| |f(x)| |g(y)| dµ̃(y) dν̃(x) = A−1B−1

∫
Ω

∫
Ω̃

|K(x, y)| |f(x)| |g(y)| dµ(y) dν(x).

Thus, if we show the case A = B = 1, that is,

(0.59)

∫
Ω

∫
Ω̃

|K(x, y)| |f(x)| |g(y)| dµ̃(y) dν̃(x) ≤ ‖f‖Lp(µ̃)‖g‖Lp′ (ν̃)

then

A−1B−1

∫
Ω

∫
Ω̃

|K(x, y)| |f(x)| |g(y)|dµ(y) dν(x) ≤ A−1/p‖f‖Lp(µ)B
−1/p′‖g‖Lp′ (ν)

which is (0.58) with C = A1−1/pB1−1/p′ = A1/p′B1/p.
From now on, we thus assume A = B = 1 and will show (0.59). As a last reduction, notice

that (0.59) is homogeneous in f and g, so may replace f and g by f/‖f‖Lp(µ̃) and g/‖g‖Lp′ (ν̃). We

thus want to show that ∫
Ω

∫
Ω̃

|K(x, y)| |f(x)| |g(y)|dµ(y) dν(x) ≤ 1

when ‖f‖Lp(µ̃) = ‖g‖Lp′ (ν̃) = 1 and

sup
x∈Ω̃

∫
Ω

|K(x, y)|p dµ(y) = sup
y∈Ω

∫
Ω̃

|K(x, y)|p dν(x) = 1.

For this, we will use convexity of the exponential function, for a, b > 0,

e
1
p ln a+ 1

p′ ln b ≤ 1

p
eln a +

1

p′
eln b

i.e. a1/pb1/p
′
≤ 1

p
a+

1

p′
b that is, for u, v > 0

uv ≤ 1

p
up +

1

p′
vp
′
.

Note that this is trivial when u = 0 and when v = 0 so that

|f(x)g(x)| ≤ 1

p
|f(x)|p +

1

p′
|g(x)|p

′
.

It follows that∫
Ω

∫
Ω̃

|K(x, y)| |f(x)| |g(y)| dµ(y) dν(x)

≤ 1

p

∫
Ω

∫
Ω̃

|K(x, y)| |f(x)|p dµ(y) dν(x)

+
1

p′

∫
Ω

∫
Ω̃

|K(x, y)| |g(y)|p
′
dµ(y) dν(x)

=
1

p

∫
Ω̃

(∫
Ω

|K(x, y)|dµ(y)

)
|f(x)|p dν(x)

+
1

p′

∫
Ω

(∫
Ω̃

|K(x, y)| dν(x)

)
|g(y)|p

′
dµ(y)

with Fubini (everything is non-negative). The �rst integral is bounded by∫
Ω̃

(∫
Ω

|K(x, y)| dµ(y)

)
|f(x)|p dν(x)

≤

(
sup
x∈Ω̃

∫
Ω

|K(x, y)| dµ(y)

)∫
Ω̃

|f(x)|p dν(x)

=

∫
Ω̃

|f(x)|p dν(x) = ‖f‖pLp(ν) = 1
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while for the second one∫
Ω

(∫
Ω̃

|K(x, y)| dν(x)

)
|g(y)|p

′
dµ(y)

≤
(

sup
y∈Ω

∫
Ω

∫
Ω̃

|K(x, y)| dν(x)

)∫
Ω

|g(y)|p
′
dµ(y)

=

∫
Ω

|g(y)|p
′
dµ(y) = ‖g‖p

Lp′ (ν)
= 1.

In conclusion ∫
Ω

∫
Ω̃

|K(x, y)| |f(x)| |g(y)| dµ(y) dν(x) ≤ 1

p
+

1

p′
= 1

as claimed. �

Remark B.4. Schur test sometimes gives an optimal bound. For instance, if µ, ν are �nite
measures and K ≥ 0 and if we know∫

Ω

K(x, y) dµ(y) = A and

∫
Ω̃

K(x, y) dν(x) = B

then, integrating the �rst identity with respect to νand the second one with respect to µ, we get
Aν(Ω̃) = Bµ(Ω). This reads TK1Ω = A1Ω̃ while ‖1Ω‖p = µ(Ω)1/p and ‖1Ω̃‖p′ = ν(Ω̃)1/p′ . In

conclusion ‖TK1Ω‖p′ = A1/p′B1/p‖1Ω‖p.
On the opposite, when K oscillates, one can't expect any optimality from Schur's test as no

cancellation is taken into account. A striking example is Ω = Ω̃ = Rd with K(x, y) = e−2iπ〈x,y〉 so

that TKf = f̂ , the Fourier transform of f . From Plancherel we know that ‖TKf‖2 = ‖f‖2 while
A = B = +∞ in Schur's test so that one can not even obtain boundedness.
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