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Notation

1. Warning

These notes are intended for the course given in the second year of the masters program
“Analysis, PDEs, Probability” at Université de Bordeaux. They are intended for students in that
programonly and the pre-requisites are basic Lebesgue integration, LP spaces, Fourier analysis
and minimal distribution theory (that I am trying to avoid for this course). The first 3 chapters
(Fourier transform, LP spaces and convolution) cover in a large part material from the first year of
the masters program and are only included here for the convenience of the reader. Note also that
taking this into account, the order in which this course has been given may differ from the order
of the notes.

Further, these notes do not pretend to be original in any way. The path taken is rather
classical by now and follows in part lectures I followed as a student. Also, numerous colleagues
have made their lecture notes available online. While preparing this course I have often consulted
online courses and some material I have read may inconciously have made its way into these notes.
I am unable to give a full list of course notes I have consulted, but the following are those that I
have used the most:

e Giovanni Leoni, Lecture on harmonic analysis at Carnegie Mellon

http://giovannileoni.weebly.com/teaching.html
e loannis Parissis, Lecture on harmonic analysis

https://sites.google.com/site/ioannisparissis/teaching?authuser=0
e Terrence Tao, Lecture notes for MATH 247A : Fourier analysis at UCLA

https://www.math.ucla.edu/ tao/247a.1.06f/

Finally, this is only a short introduction to a vast subject. The following books have been a
good source for this course and also provide a good starting point to go deeper into the subject.
They have all been used at some stage during the preparation of these lecture notes.

e Javier Duoandikoetxea, Fourier Analysis. Translated and revised from the 1995 Spanish
original by David Cruz-Uribe. Graduate Studies in Mathematics, 29. American Mathe-
matical Society, Providence, RI, 2001.

e Loukas Grafakos, Classical Fourier analysis. Graduate Texts in Mathematics, 249. Springer,
New York, NY, 2008.

e Loukas Grafakos, Modern Fourier analysis. Graduate Texts in Mathematics, 250. Springer,
New York, NY, 2008.

e Yitzhak Katznelson, An introduction to harmonic analysis. Dover Publications, Inc.,
New York, NY, 1976.

e Elliott H. Lieb and Michael Loss, Analysis. Second edition. Graduate Studies in Mathe-
matics, 14. American Mathematical Society, Providence, RI, 2001.

e Camil Muscalu and Wilhelm Schlag, Classical and multilinear harmonic analysis. Vol.
[-I1. Cambridge Studies in Advanced Mathematics, 137-8. Cambridge University Press,
Cambridge, 2013.

e Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces.
Princeton University Press, Princeton, NJ, 1971.

e Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory
integrals. Princeton University Press, Princeton, NJ, 1993.

e Thomas H. Wolff, Lectures on harmonic analysis. American Mathematical Society, Prov-
idence, RI, 2003.

iii
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iv NOTATION

2. Main notations

2.1. Special functions. The I" function is

+oo
I'(z) = / tre @
0 t

The § function is
1
B(z,v) :/ "1 =) dt = =
0

The Bessel function is
t\" 1 Lo dt
Jy t _ v / ezst 1— 82 v__ v
®) (2) rornr@y )¢ ) e

- i@ I'(v +1n +1) (_nl!)n (;)””" '

n=0

The Newton potential is given by

1

— log |¢| when d =2

r=9* 1
— |t hend > 3
A2 —djg I Whend =
and the fundamental solution of the laplacian in R? is also denoted by I'(x,y) = I'(x — y):

1

—log |z — y| when d = 2

Cley) =2 1 oy whend >3
a2 = d)o r—y when d >
Multiindex notation. For o = (aq,...,aq) € N, o = (21,...,24) € R?and f : R? — C

sufficiently smooth,
—la] = a1 + -+ + ag, the lenght of «;

a!
—al=aq! - g and <g> = (gi)(;j) :m

—a® =" xy? and
(e %1 g
9o f — % . %,
] xy

Measures, norms, sets. Throughout this notes, (2, B, 1) is a o-finite measure space. Usually
) is an open domain in R? in which case B is the o-algebra of Borel sets and y is the Lebesgue
measure dz.

We will denote by | - | different things that depend on the context:

~Ifz = (z1,...,2q4) € R?is a vector, |z| = /2% + -+ + 22 is the Euclidean norm of z. The
associated scalar product in denoted (z,y).

—If F is a finite set, |F'| is the nulber of elements of F.

—If E C R? is a Borel set, |E| is its Lebesgue measure.

— When z € C, |z| is its modulus.

At occasion, we may prefer to use an other norm on R?, most often ||z = max;—1 4 |zi.
The open ball centered at ¢ and of radius r associated to | - | (or any other norm) are denoted
B(e,r) = {z € RY . |z —¢| < r}. Wehn we use the || - | norm, we will rather write this ball
Q(e,r) ={x € R? : ||z — ¢||oc <7} and call it the cube @ centered at c of length ¢(Q) = 2r. For
a ball B = B(c,r) or a cube Q = Q(c,t) we will write 3B = B(c, 3r) and 3Q = Q(c, 3r) (and more
generally aB, a@).

We write S¢1 = {x € R? : |z| = 1} is the unit sphere of R? and o4_; is the surface measure
on S41,

R+ = {(ml,...,md,t)/Rd x R% }.



2. MAIN NOTATIONS v

A dyadic interval is an interval of the form I;, = [27%j,27%(j + 1)[ and a dyadic cube is a
set of the form Q;, = H?:1[2*kjg, 27%(j, +1)[. Every dyadic cube can be divided into 2¢ disjoint

dyadic cubes
d

Qirentr = [[27F71 (2 +0), 27 (20 + 0 + 1)
=1

w . It follows

where (g¢)¢=1,...5 € {0, 1}¢ called the daughters of Qj.x. Note that j, =

that, in the opposite direction, to each dyadic cube @, corresponds a unique dyadic cube Q3’k71

such that Q; 1 is a daughter of Q;}kil and j, = [];]

Function spaces. Various function spaces will be used throughout. All functions considered
here (unless specified otherwise) are complezx valued.

When 2 C R? is an open (or closed) set (with distance induced by the euclidean norm)

— C(9) is the set of continuous functions on R?, Cy(€2) is the subset of C(2) of functions with
compact support.

~ Co(R?) is the set of continuos functions that go to 0 at infinity and C,(R?) is the set of
bounded continuous functions.

— For k an integer, Ck(Q2) —resp. C¥(RY)— is the subset of C(Q2) —resp. C.(R?)— of functions
that are C*-smooth.

— Ck(R¥)—resp. CF(RY)—is the subset of Co(§2) —resp. Cf(R?)— of functions f that are
CF-smooth and such that each derivative 9% f € Cy(R?%) —tesp. 9*f € Cy(R?).

~ S(RY) is the Schwarz class of functions f € C*°(R%) such that, for every a, 8 € N¢,

sup (1+ |xﬂ|)|8af(x)| < +00.
rcRd

For (Q, B, 1), a measure space and 1 < p < 400
— L£9() = £9(Q, B, 1) be the set of complex valued measurable functions on €.
— LP(R) is the subset of £°(Q) consisting of functions f such that
1/p
e when 1 < p < +oo, ||fl|l, = /|f(9c)|pdx> < +o0;

Q
e when p = +00, ||f|lcc = ess-sup|f] < +o0.

— For 1 < p < +o0, the weak-L? space L2 () is the set of measurable functions such that
there exists a constant C' for which, for every A > 0,
cP
freQ: [f@)] > A < 5

The infimum over all possible C’s is denoted by || f]|.» .
~For f € L} .(R?) and Q a cube, we write

loc
1
fa =g [, S
for its mean over (). The BM O-norm of f is the quantity
£ st = sup & [ 15(a) = ol do
Q 1@l Jg
and the BMO space is the space of functions, modulo constants such that || f| pamo < +oo.

2.2. Transforms. The Fourier transform is normalized as

FIAE) = f(6) = / Ha)e=2me8) 4y

Rd

and the inverse Fourier transform is given by

f—l[f}(g) = /Rd f(x)e2i7r(x,5> dz.



vi NOTATION

— The Poisson kernel of the upper half spacs Riﬂ is defined by
t
d(t2 + \z|2)(d+1)/2

Py(x,t) = ¢ reRYt>0

r(4t . . . -
where ¢q = ( T ) The Poisson integral of a function f on R? is given by

T 2

u(z,t) = /]Rd f(@)Pi(z — y,t) dz.

— the Conjugate Poisson Integral of f on Ri is defined by

QU0 = Qe 1) = = [ =l rway

y)?+
— the Cauchy Transform of f on C\ R is defined by
_ 1 f(y)
CNGE =g | oy va W

The Hilbert transform is denoted by H and defined on L?(R) by Hf = F~1[—isign()
Alternatively, we may define it as

i>

Hf(z) = lim 1 fe=y) dy.

e—0 T ‘y|>€ y

The principal value distribution associated to 1/z is defined on C°(R) by

1
<Up,<p> = lim/ @dx.
xz e—0 |z|>e z

The centered Hardy-Littlewood Maximal Function by

1
M[f](z) = sup ——=
>0 |B(gj7 T)| B(z,r)
The uncentered Hardy-Littlewood Maximal Function
MIf)(z) = sup sup / w)] du.
IB W) Sy,

r>0yeB(z,r)

|f (w)] du.

When balls are replaced by cubes, we denote the associated centered Hardy-Littlewood Maxi-
mal Function by
M fl(x) =sup —— / )| du;
[F1(x) T>0|er‘ - u)
while the uncentered Hardy-Littlewood Maximal Function is given by

MP[f)(@) = sup sup

|f (w)] du.
r>0 yeQ(x,r) |Q(y7 )| B(y,r)

The Dyadic Maximal function
1
M) = sup o [ )] dus
z€QED |Q‘ Q

where the supremum is taken over all dyadic cubes @ € D that contain x.
The Sharp Maximal function is given by

M f(z) = d
fle Z§2|Q|/'f ~folde

where the supremum is taken over all cubes containing x.



Background

A major task in the investigation of Partial Differential Equations is to show that such a PDE
admits a solution, to be able to construct it and to understand how it depends on the various
parameters/data that enter it. There are a number of stategies that can be followed to accomplish
this that can be informally summerized as follows:

— Write down an explicit formula for the solution in terms of the given data. Such a forumla
usually takes the form of a (linear) operator T sending data to the solution. This may be seen as
the most natural version but is unfortunately only available in very special cases. Further, such
a formula may be rather complicated, so that it may still be difficult to describe the qualitative
behavior of a solution from the formula.

Fortunately, other powerful methods have been described. Let us focus on two of them:

— Approximate the original PDE by a sequence of simpler ones and show that the solution of
those approximate problems converge to a solution of the original one. PDEs are posed in spaces
of functions, and those spaces are of infinite dimension. The crux of this strategy usually lies
in carefully choosing finite dimensional approximating problems that can be solved explicitly (or
numerically) and that still share important crucial features with the original problem.

— Deform the original problem and let the deformation go to 0. The idea is that if one can
connect the given problem continuously with a simpler problem that one is able to solve, then
one should be able to solve the original problem. Of course, the continuation of solutions requires
careful analysis.

As a central object in this course, we will consider the following PDEs on an open connected
bounded domain 2 C R? with smooth boundary 9. The reader may restrict his attention to the
unit euclidean ball B(0,1) with boundary S?~! or the upper half-space

Riljrl = {($17...,$d7t)/Rd X Ri}

— the Laplace Equation Au = 0 where

d 82
Du=> 5
j=1

SN

- the Poisson Equation Au = f.
To A we associate the fundamental solution

1
— log |z — y| when d =2
2

[(z,y) = 1

——— |z —y/*>*? whend>3
d(2—d)wd|x Y| when d >

where w, is the volume of the unit ball B(0,1) in R%. We then have the following:

_TuEOREM 0.1 (Green Representation Formula). Let 2 be a smooth domain in Re. Let u €
C%(Q). Then, for every y € 2,

(2.1) uly) = /8 Qu@i

(G = TG0 Q) do(O) + [ T du(e) do

Q

0 . ) .
where — s the exterior normal derivative on 02 and do the surface measure on 0f).

on

1



2 BACKGROUND

From this, one sees that a (regular) solution of the Poisson Equation is fully determined by its

ou
I One may also ask if the converse is true, i.e. whether

n
ou

arbitrary boundary data determines u. This fact is not true and actually, only one of u and n
n

boundary data wu restricted to 02 and

can be imposed on €. B
To do so, one introduces a Green function for 2 which is a function G defined for z # y € )
such that

e G(x,y) =0 for x € 9Q;
o for every y € Q, the function h(x) = G(z,y) — I'(z,y) is harmonic Ah =0 in .

Alternatively, we may define the Green function as follows

DEFINITION 0.2. Let  be a C' domain in R? and assume that for every y € € there exists a
function @, € C*(Q2) NC(Q) such that

(i) A®y(x)=0forall z € Q,
(ii) @,(x) =T(x,y) for every x € IQ.
Then G(z,y) =T'(z,y) — ®,(z) is the Green function of Q.

We assume that such a function exists (which is true here) and apply the Second Green Formula:

(2.2) u(z)Av(z) —v(r)Au(r) dz = U(C)@(C) - U(C)@(O do(¢)
Q 90 on on

(the minus sign comes from the convention that we differentiate with respect to the outer normal)
tov=—h

/I‘(a@y)Au(x) dx:/G(Ly)Au(ac) dz
Q Q

oG ) 9
<[ (moan(c,y) ~u(Q5 (v + F((,y);L(Q) 4(C)
Adding the result to (2.1), we obtain

TueoREM 0.3 (Poisson Representation Formula). Let Q be a smooth domain in R and G be
a Green function for Q. Let u € C*(Q). Then, for every y € €,

(2.3) u(y) = /8 ) u(<>£<G<<,y> do(C) + /Q I(z, y) Au(z) do.

In particular, this shows that a solution u € C?(€2) of the Poisson Equation Au = f in €, is
uniquely determined by its boundary data u = ¢ on 02 via

(2.4 uty) = [ e@) e do@) + [ Twn)i(de.

Q

This raises several questions:

— Does this formula make sense and is it really valid: can one extend it to more general f and
, does it provide a solution of Au = f and is u = ¢ on J€) in some sense 7

— Can ¢ or f be recovered from u, what conditions should be imposed on w for this to be the
case.

— Can one give weaker meanings to Au = f (solution in the sense of distriutions) and to u = ¢
on 09 (u(z) = ¢(¢) when z — ().

— How do changes in f or ¢ affect «? Does u depend continuously on such changes?...

All those questions can be rephrased in terms of properties of the operators

o [ ul@) T, y) do(x)
o0 Ny

and
fo /Q P(z,y)f(z) dz

in particular of continuity of those operators.



BACKGROUND 3

The aim of these notes is to provide some of the tools that may allow to do this. Those tools,
like often in mathematics, can be usefull in many other fields, ranging from number theory to
medical imaging, but those aspects will not be developped here.

Before going to the main topic, let us look how the computations work on Rfrl. An alternative
approach to the determination of the Poisson kernel is through the Green Kernel and its normal
derivative, as was explained in the derivation of Formula (2.3) in the introductory section.

What we first need to do is to determine a (the) Green function for Riﬂ. For sake of simplicity,
we will only do this for d > 2 so that the fundamental solution of the Laplace operator on R¥*1 is
then given by

1 1

(d—1Nwg [z —y|*!

F(‘Tvy) = -

where wy = 04(S?) is the surface measure of the unit sphere S¢ in R4+, We can write I'(z,y) =

N(y — ) where N(u) = — is the Newton potential.

1
(d— T)wa Jult T
Fix z € R and let W, (u) = N(u — ) is almost the function ®, we are looking for since
U, (u) = N(u—x) for u € ORI and AW, (u) =0 in

R = {(21,...,2q,t) : (21,...,24) € Rt <O},

To correct this, let us introduce the following notation: to © = (z1,...,zq4,t) € ]Ri“ associate T =
(z1,..., 24, —t) € R its reflection trough 8Ri+1 = OR™, Define @, (u) = N(u— &) = I'(u, %)
and notice that A®,(u) = 0 (since I' is a fundamental solution of A and z ¢ ]Ri“) and that
|z —u| — |Z — u| when u = (uy,...,uq,0) € IRE™ so that &, (u) = N(u—7z) = N(u—1z) =T'(z,u)
for those u's. We have thus proven the following:

LemMMA 0.4. The Green function for ]Ri+1 is given by

1 1 1
Gz,y) =Nly—z)— N(y—z) =T(x,y) - T'(Z,y) = —

(02) = Ny = 2) = Ny = 2) =) = To) = (=i (5 opems — ot
where for x = (x1,...,24,t) € Rf‘l, = (x1,...,24,—t) € R is its reflection trough 8]Ri+1 =
aRd+1'

Let us introduce some notation. We will write x = (x1,...,24,t) = (2/,t) € R‘fl so that
T = («/,—t) and in the same way y = (y1,...,94,5) = (y,8) € Rf‘l. Now, in view of Formula

(2.3),if Au=01in ]RiJrl and u(xy,...,24,0) = f(x1,...,24) then
0
u(y',s) = f(x’)EG((x’, 0),(y',s)) da’.
R4

The function %G((m’, 0), (v, s)) is called the Poisson kernel of R%H. Tt is given by (note that the

exterior normal derivative is —0;)

0 1 0 1 1
P((2",0),(v,s) = — =G((«',t),(,s = - < — )
(( ) (y )) 675 (( ) (y )) =0 (d _ l)wd 8t ‘x _ y‘d_l ‘.T _ y|d_1 =0
B 1 0 1 1
= (d— It a1 a1
(d—1)wq Ot (12 = y/|> + (t+5)2) 2 (o' g2+ (t—52) 7 )|,
_ 1 t+s t—s
o -1 FESY
d (|x’—y’|2+(t+8)2) 2 (|m’—y’|2—|—(t—$)2) 2 o
s

d+1
2

wd (|m’ _ y’|2 + 82)

1
The case d = 1 is similar but the Newton potential is now given by N(u) = ~5- In |ul.
™
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DEFINITION 0.5. The Poisson kernel of the upper half spacs Rf‘l is defined by

t

d
@+ o) zeRYt>0

Py(z,t) = cq

EESE
where cq = F(dil)

T 2

Under good regularity properties of u, we then have that Au = 0 on ]Rff“l implies

u(z,t) = y f(y)Pa(z —y,t) da.



CHAPTER 1

Some complements on complex analysis

The aim of this section is to provide some complements to the first year course on complex
analysis.

1. The maximum principle

THEOREM 1.1 (Maximum Principle). Let Q be a bounded open connected domain and f be a
continuous function on ) that is holomorphic on Q. If |f| reaches its mazimum at some point
zo € § then f is constant. Therefore

sup | f| = sup [f].
Q o0

There is a trivial proof that uses only the power series:

TRIVIAL PROOF. First note that Q and 9 are compact sets, so that there is a zp € Q such
that supg | f| = | f(20)|. We want to show that zo ¢ Q unless f is constant
Now let ( € Q and let f be non constant. As f is holomorphic, there is a smallest m > 1

(m)
such that a := / SC) # 0. Now if |z| is small enough, ¢ + z €  and we can write the Taylor

expension as f(¢ —&—mz) = f(¢) + az™ + o(z™).

First notice that if f(¢) = 0 then |f({+2)| = |a||z|™ + o(|z]™) > 0 for |z| small enough so that
f has no local maximum at ¢. Otherwise, |f({ + 2)[2 = |f(C)]* + 2R(f({)az™) + o(|z|™). Write
f(Oa = pe=™ and z = re? then

[F(¢+re) 2 = |F(Q)I? + 20r™ cos(mb — ) + o(r™) > |F(C)?

if —m/2 <mb — ¢ <7/2 and r > 0 is small enough. So f has no local maximum at (. O

The following proof applies to every sub-harmonic function:

1
Proor. We will use that v = log|f| = ilog |f|? is sub-harmonic i.e. for every x € § and
every r > 0 such that B(z,r) C Q

1
o) < B /B<z,r> uly) dy

Now assume that there exists ¢ € € such that

u(xzo) = M := SUp u(y)
and let F = {z € Q : u(z) = M}. As u is continuous on ), then F is relatively closed in Q (i.e.
F=FNQwith F closedin C, e.g. F={zx€Q: u(x)=M}).
On the other hand, if z € F' and r is small enough for the mean value property to hold, we

have
1 1

|B(l‘77“)| B(z,r) _|B(l‘,7")| B(x,r)

But w reaches its maximum at z € F so u(y) — u(z) < 0 thus u(y) = u(x) = M on B(x,r). Thus
B(z,r) C F which is therefore also open. As xzy € F, F is open, closed and non-empty in §2 which
is connected, thus FF = and v = M on Q. O

(u(y) — u(z)) dy u(y) dy — u(z) > 0.



6 1. SOME COMPLEMENTS ON COMPLEX ANALYSIS

This result is no longer true if  is not bounded. For instance, consider

Q:{zG(C:—g<Im(z)<g}

and f(z) = e® . Then for z real, f(z £i%) = €' is bounded but of course f(z) = e®" is not. The
key here is that this functions growth very fast. When growth is moderate, Phragmén-Lindelof
principles show that some form of the maximum principle still holds.

2. The Phragmén-Lindel6f principle

THEOREM 1.2 (Phragmeén-Lindelof). Let Q = {z cC: ,g <Im(z) < g} and f be a con-

tinous function on Q that is holomorphic over Q. Assume that there are constansts o < 1 and
A < oo such that, for every z = x + iy € €,

|f(z + iy)| < exp(Aexp(az))
and that, for every x € R
flatiz) <1

PRrROOF. The proof consists in introducing a barrier function which will allow us to apply the
maximum modulus principle. To do so, choose 8 such that & < 8 < 1. Then, for € > 0, define

he(2) = exp(—e(e?* + 7).
The first observation is that, if z =  + iy with |y| < g, then
%(eﬂz + e*ﬁz) = (eﬂm + e*m’) cos By > cos (ﬂg) (eﬁm + eiﬁx)
and that § := cos (/J’g) > 0. It follows that
|he(2)] < exp(—ed(e?” +e7F7)) < 1.
But then |fh.| <1 on 99 while
[f(2)he(2)] < e5<p(Ae°“"’3| — (P + e_ﬁz)) < 1.

Since 3 > a, Ae®l®l — £5(ef* + e7P*) - —0o0 when 2 — o0 so that there is an x( such that, for
|z = @o, |f(2)he(2)] < 1.

On the other hand, applying the maximum modulus principle to fh. on the rectangle {—zg
v <wg,—5 <y < T} we get that |f(2)he(2)| <1 on this rectangle as well. In summary, |fh.| <
on §), regardless of which € > 0 we have chosen.

Now fix z € Q and notice that h.(z) — 1 when ¢ — 0 so that |f(z)| = lim |f(2)h:(2)] <1 as
claimed. O

<
1

We will now elaborate on this idea. Consider a bounded region 2 with smooth boundary 0f2.
Consider an holomorphic function f, u = |f|. Assume that u is continuous on 9 so that there is
a bound M of w on 99, |u(z)| < M. Then the maximum principle states that « is bounded by M
on all of Q.

Assume now that 9Q splits into two parts 9Q = I'_ UT'; and that there are M_LM, such
that |u| < M_ on I'_ and |u| < M4 on I'y. The maximum principle states that |u| < M, on all
of © but one should expect that |u(z)| is much smaller (near to M_) when z approaches I'_.

EXAMPLE 1.3. This idea can be made more precise when Q2 =D = D(0,1) the unit disc and
that T_ = {e? : 0 < 6 < 6y} is an arc. In this case, we can use the Poisson integral: let

2
P(z,0) 1|2

= ii be the Poisson kernel of the disc then
27 |z — €2

u(z) = /0 " u(e)P(2,0) db.



2. THE PHRAGMEN-LINDELOF PRINCIPLE 7

The only property we need is that p,(0) := P(z,0)d6 is a probability measure so that

6o 2T
u(z)| < /0 w(e®) P, 0) do| + /9 w(e®) Pz, 0)do
6o 2
Ueia z u@ie z
< A I()W(ﬂwﬂ+éo()W(ﬁM9
< M*/JZ([OVQO])+M+MZ([90’27T])'

As 11,([0,60]) + p2([00, 27]) = 1 this bound is smaller than M, and further p,([6p,27]) — 0 when
z — e with 0 < § < y. This is precisely the expected behavior.

This example is a bit specific in the sense that we have an explicit expression of the Poisson
kernel. The role of this kernel is the following

— Suppose we can find a function h : © — R that is harmonic on Q and equal to 0 on I'_ and
1 on I'y. We also require that h is continuous on 2\ 9T'_ (in the previous example 0T'_ = {0, 6y},

27

in general, we will assume that OT'_ is finite). In the disc example, h(z) = / P(z,0)do.
0o
— We then consider v(z) = M_ + (M — M_)h(z). This function is harmonic on 2, continuous

on Q\ OT_ and u(z) < wv(z) on 0N\ Ir'_.

— From the maximum principle, u(z) < v(z) on .

The argument works even if u is only sub-harmonic, in particular if u = log|f| with f holo-
morphic (which is harmonic if f is not zero).

EXAMPLE 1.4. A second example which is important for us is the case of an annulus Q = {z €
C : R_ < |z| < Ry}. Then log|z| is harmonic on 2, continuous on Q. In particular

_ log|z| —log R_
M=) = log Ry —logR_
satisfies h(z) =0 for z € T_ :={R _¢e" : 0<O<2r}and h(z) =1for z € T} = {Rye? : 0<

0 < 2m}.

Th]; above principle shows that if u : Q — R is (sub)-harmonic on 2, continuous on ©, with
u< M_onT_ and u < My on Ty then, if z € Q, we may wrire log |z| < Alog R_ + (1 —X)log Ry
with 0 < A < 1 and then
AlogR_+ (1 —=X)log Ry —log R_

logRy —log R_

w(z) < M_+ (My—M_)h(z)=M_+ (My—M_)
= AM_+(1-MM,.

When applied to u(z) = log | f| with f holomorphic on 2, continuous on ), we obtain the following:
THEOREM 1.5 (Hadamard’s three circle theorem). Let f be an holomorphic function on
H{zeC: R_<|z| < Ri},
continuous on Q. Forr € [R_,Ry], let M(r) = sup|,_, |f(2)], then M(r) is log-convex that is if

r1 <1 < r9, we write logr = Alogry + (1 — ) logre then
M(r) < AM () + (1 = NM(r2).

ExXAMPLE 1.6. We will also use a modification of Hadamard’s three circle theorem:

THEOREM 1.7 (Hadamard’s Three Line Theorem). Consider the strip ¥ = {z [ C : 0 < R(z) <
1} and let F be an holomorphic function on X that is continuous and bounded on ¥ with

|F(it)| < My and |F(1+it)| <M teR.
Then for every 0 < 6 <1 andt € R,
|F(6 +it)| < My~ M.

PRrROOF. We introduce two auxilary functions on ¥

F(z)

= yan W Gale) = Gl

G(2)
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We will write z = z + 4y with 0 <z < 1. First |My~*M3| = My~ " M7 is bounded below in 3 so
G is bounded by some M in . Further

|G (2)] = |G(2) | ~1=/m < Nev"/n

It follows that there is a y, such that |G,(z)] < 1 when |y| > y,. On the other hand, for

2 = 0, [Gui)] = |GGig)le—m < EW mim 4 ond 1601 + i) = 1GA + iy)|e—v*/m <

My
F(l1+4
M < 1. By the Maximum Principle, we also have |G, | <lon{z+iy : 0<z <1, |y <
1 _
Yn} so that |G,| <1 on X.
But then for fixed z = z-+iy, |G(2)] = |Gp(2)||e= " ~D/n| < A=2"+v")/n and letting n — +o0,
|G(2)| < 1. In other words, |F(z)| < |My~*M§| = My~ " M7 as claimed. O

EXAMPLE 1.8. We now consider 2 to be the half-disc Q = {z € C : |z| < R, Imz > 0}. The
boundary is composed of two pieces, the segment I'_ = [-R, R] and 'y = {Re?® :0 < 6 < 7}.

Recall that argz = Imlogz for z € C\ (—00,0] is a harmonic function. We consider the
function hp(z) = 2(arg(z + R) + 7 — arg(z — R)) which is then harmonic on  and continuous
on Q. This function has a geometric interpretation consider the triangle 7' with vertices R, z and
—R, then arg(z + R) is the angle at —R and = — arg(z — R) is the angle at R. In particular, both
are 0if z € I'_ = [-R, R] so that hr(z) = 0 for those z’s. On the other hand, if z € Iy, the angle
at z in T is m/2 so that the sum of the two other angles is @ — 7/2 = 7/2 so that hr(z) = 1 for
those z’s. A further consequence, is that if we fix z and let R — +oo then the sinuses of the two
angles are O(R™!) so that hp(z) = O(R™!) when R — +oc.

We are now in position to prove the following:

THEOREM 1.9 (Phragmeéne-Lindel6f for a half-plane). Let f be holomorphic on the half plane
H={z€ C : Im(z) > 0}, continuous on H and bounded on the real line |f(z)| < M for z € R.
1
Define M(R) = sup{|f(2)| : |2| = R, Imz > 0} and assume that th}rl Elog M(R) = 0 then
—+oo
|f| < M on H.

REMARK 1.10. Up to rotating and translating f, the half plane H can be replaced by any
half-plane

{z€C: Im(e?2) > a}.

Proor. First, up to replacing f by f/M, we may assume that M = 1. Then, for z € H, take
R > |z|, so that

log|f(2)| <log1+ (log M(R) —log1)hr(2) = hr(z)log M(R).

Finally, as hg(z) = O(R™!) and R~'log M(R) — 0, it is enough to let R — 400 to get log |f(2)] <
0 in H, that is |f(2z)] <1 as claimed. O

We can now prove the following:

COROLLARY 1.11 (Phragmeéne-Lindeldf for a sector). Let o > 1, 6y € [0,27] and Sgy.0 =
{re : r>0, |6 — 6| < =} be a sector of opening g.

Let f be a function on Sp, . that is holomorphic on Sp, o, continuous on Sy, and such
that |f(z)| < Cel?” for some C > 0 and 0 < B < a. If If(2)] < M1+ |2z])N on 0Sp,.o then

If(2)] < &YM1+ |2))N on Sg, o, where kq is a constant that depends continuously on «.

For future use, note that for o > 2, that is a sector of opening < 7/2, we can take x, = 2/4.

Proor. Up to replacing f by f(e~"2), we may assume that 6y = 0. We write S, = So.a-
Further, note that there is a constant x, such that

1+ |z]

1<
|1+ z|

< Ka
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for every z € S,. A precise value of &, is not needed and we may just notice that if || < 7/2a,
and z = re',

1+ z)>=1+r*+2r < —(1+ 7%+ 2rcosf) = — |1+ 2|2
52a 2a

that is ko = (cos %)1/2.

As 1+ z does not vanish on S,, we may then consider

/)
9=y

and notice that g is holomorphic on S,, bounded by 1 on 95, and still satisfies |g(z)| < Cel*”
on S,. Once we show the case N = 0 we conclude that |g| < 1 on S,. But then |f(2)| =
M1+ 2|Ng(2)] < MrZN(1+ |2))Y on S, so that the general case follows.

So, from now on, we only consider the case N = 0 and, up to replacing f by f/M, we assume
that | f| <1 on 05,.

We then consider the function z — 2/ = e= 1°62 which is holomorphic on H = {Rz > 0} and
continuous on H. Further, it is a bijective mapping H (resp. H) to S, (resp. Su).

It follows that h(z) = f(2'/%) is holomorphic on H and continuous H. Further || < 1 on
OH. Finally, |h(z)| < Cel*1”* 5o that, %supMZT log |h(2)| < L log C'+r1=8/® - 0 when r — +o0.
Applying the half-plane Phragmén-Lindelof principle to h, we get that |h| < 1 and then that
[fl<1 O






CHAPTER 2

LP spaces, weak [P spaces and interpolation

1. LP spaces

We assume that content of this section is known to students following this course.

1.1. Definition. Let 1 < p < 400 a real number, (2,8, 1) a o-finite measure space. We
define

LP(Q, p) = {f :Q — C, f u— measurable, /Q |f(z)]P dp(z) < —l—oo}

i1, = (/] |f<x>|pdu<x>)’l’ |

L=, u)={f : Q@ — C, f u— mesurable, il existe K > 0 telle que |f(z)| < K, p—p.p.}

and endow it with the “norm”

For p = +00,we define

and endow it with the “norm”

£l = f{K |f(2)] < K j—ae}.
We almost have a normed vector space in the sense that

(i) For f € LP(Q,pu), we have |f|l, > 0 and |f[|, = 0 if and only if f = 0 p-almost
everywhere.
(ii) For f € LP(Q, ) and A € C, we have A\f € LP(S2, p) and [[Af][, = [A|l f[l,-
(ili) For f,g € LP(Q, ), f+g € LP(Qp) et ||f +gl, < [IfIl, + llgll,-

REMARK 2.1. It is important to keep in mind that the case p = 2, L?(Q, i) is a Hilbert space
and that the norm is associated to the scalar product given by

(. 9) oo = / f(2)(@) da(z).

SKETCH OF PROOF. For (i), one uses the fact that a non-negative function with 0 integral
vanishes a.e. while (ii) is obvious.

On the other hand (iii) is trivial when p = 1 and p = +oc while the case p = 2 follows from
Cauchy-Schwarz. The general case will be treated below and is more subtle. However, let us show
that LP (£, u) spces are vector spaces:

1+ gl

ol <+l =2 (L5

P
) <2 slam)
since x — 2P is a convex function. In particular, if f,g € LP(Q, u) then f+ g € LP(Q, u). O

In order to obtain a normed vector space, we will identify two functions f, g if f = g a.e. or,
in more rigorous terms, quotient the LP spae by the equivalence relation f ~ g if f — g =0 a.e.

1.2. Holder et Minkowski. The first inequality we will prove extends Cauchy-Schwarz and
plays a key role in analysis.

11
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THEOREM 2.2 (Holder’s Inequality). Let (2,8, 1) be a measure space. Let 1 < p,p’ < 400
1 1

be such that — + — = 1 (with the convention that p' = +o0o when p = 1 and vice versa). Let
p D

feLP(Q,p) and g € LY (Q, 1), then fg € L*(Q, 1) with

[ f@a) )| < [ 1r@gl ) < ([ 17 ) ([l auto)’

Moreover,
~ — equality holds in the first inequality if and only if there is a 6 € R such that f(x)g(x) =
| f(z)g(z)|.
— if f # 0 equality holds in the second inequality if and only if there is a real A > 0 such that
(i) for 1 <p<+oo, |g(z)] = Alf(2)["~" p-a.e.;
(ii) for p=1, |g(x)| < A p-a.e. and |g(x)| = A for u-almost every x such that f(x) # 0;
(iii) for p = +oo, |f(z)| < A p-a.e. and |f(z)| = A for p-almost every x such that g(x) # 0.

1
P

PROOF. The first inequality is the triangular inequality for integrals and is left to the reader.
For the second one, the cases f = 0 and g = 0 are obvious and excluded. The cases p = 1 (thus
p' = 400) and p = 400 (thus p’ = 1) are straightforward. We thus assume that 1 < p < oo (so
that que 1 < p’ < o0) and f, g # 0. We can then introduce

(N (e
‘(nf,,) : ”‘(ngn,,,)

As log is concave, we get that, for 0 < a < 1, u®v!=® < au + (1 — a)v. In particular, for o = 1/p,

we have ,
S lol _1IP 1 lge
1£1, Mgl = P IAlE P (lgl

Integrating with respect to p, the result follows.
The equality case uses strict concavity and is left to the reader. O

Holder’s inequality is thus a convexity inequality. Another important convexity inequality is
the following:

THEOREM 2.3 (Jensen’s Inequality). Let (2, B, ) be a finite measure space. Let J : R — R
be a convex function. For f € L*(, ), write

1
5 L 1@ i
for its mean over Q). Then

(i) [Jo f]_, the negative part of J o f is in L*(Q, i), thus / Jo f(x) du(x) is well defined
Q

(possibly = +00);
(i) J(F)) < (J o f), that is

1 (o [r@ @) < o [ 706) duto)

PROOF. As J is convex and, for sake of simplicity, we assume that J is C', for a,t € R,
J(t) > J(a)+ J'(a)(t — a).
Taking ¢t = f(z) and a = (f), this implies
(1.5) J(f(@), = I(f(2)_ = J(f(2)) = J(H) + T () f @) = T ()
In particular, if o is such that J(f(z))_ # 0 then J(f(z)), =0, and
0<J(f@)_ < =JUMf@)+T NS =T
< TUNDNF @)+ TS = TEL

As f e LY, |J'({f)||f(z)] € L' et u being finite, constants are integrable, thus |J'({f)){f) —
J((fNle L.
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Next, integrate (1.5) to get

L (@) dute) > T [
w70 aue) = o [ I au) + g [ 1w - ) aue)
But )
7 . f@) = (Prana) =o.
Jensen’s Inequality follows. 0

The smoothness requirement for J can be removed since an inequality of the form J(t) >
J(a) + c(t — a) is still valid.
Note that Holder’s Inequality can be deduced from Jensen’s Inequality:

SECOND PROOF OF HOLDER. Up to replacing f, g by |f|, |g|, assume that f,g > 0. Again,
the cases p =1 et p = +o0 are obvious so that we restrict attention to 1 < p < +o0.
Let @' ={x €Q : g(z) > 0}. Then

[ @ = [ r@aw s [ ez | e

while
[ @) duta) = [ g duta) e [ a@r dut) = [ g duta).

It is thus enough to prove Holder for ' replacing €2, that is to assume that g does not vanish over
Q.
We can now define a new measure dv(z) = g(z)? du(z) and introduce the function F(z) =

f(x)g(x)~?"/P. Note that
v@) = [ 1av@) = [ ooy duta)
so that v is finite. Moreover
1 1
F(x)dv(zx) _
v(2) Jo )7 ) /2
[ a@y” duta)
| 7)gta) duta)
Q
| 9@ duta)
Q

1
since — 2 +p =9 (1 - ) = 1. Finally, Jensen’s Inequality with J(t) = |¢|P implies
p p

| r@gte) / F(@)g(x) " g(@)? du()

[ at@r duta) / o) du(z)

as expected. O

f(@)g(a) ™" /Pg(x)” dv(x)

THEOREM 2.4 (Minkowski’s Inequality). Let (€, B, i1) and (T, B,~) be two measure spaces and
1 <p<+oco. Then for every f v® u—measumble

(16) (f [t auto)| e ) < [ ([1reara >> duly).

Equality holds if and only if f is of the form f(x,y) = a(x)B(y).

In other words

»’C—>/|ff1?y\dﬂ

/ le > F@ )l duly).
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This extends the easy triangular inequality

‘/f du(t ] [ ol dute

which corresponds to the particular case where I' has a single element.

PrOOF. We may assume that f > 0 with f > 0 on a set of positive mesure and that the right
hand side of (1.6) is finite.

Let f, = fxg, with E, = F, N {(z,y) € T' x Q : |f(x,y)| < n} where F,, is an increasing
family of sets of finite measure in T x  that cover ' x Q: |JF, =T x Q. For f,, the left hand

side of (1.6) is |
</F </ﬂ [l 9)] d#(y)>p dv(z)> Z
which is finite.

Further, monotone convergence shows that this quantity converges to

(/ ( / |f(x,y)|du(y))p dm));,

We may thus also assume that this is finite. In particular, we may define

r) = /Q ()| dpa(y)

which is then finite a.e.
From Fubini (Tonneli),

[HGraw - [ (/Q o) du) ) HpP o (a)
- /Q / f(, y) H (@)~ dy(e) du(y).

From, Holder (1/p+1/p’ = 1) we get

/1“f (. y)He) " dy(e) < (/F f(say)pdv(x))l/p (/F H ()~ D7 dv(w)w
( /F fla,y)? d’y(x))l/p ( /F H(z) d7($)>1_1/ .

[ty ae < [ ([ rerae )/pdmy)(/FH(x)pdv(x))lUp.

As we assumed that / H(z)? dv(x) # 0, +00, we can divide both sides by
r

(/ H(m)pdwx))l_w

to get the result. ]

Therefore

COROLLARY 2.5. Let (2,8, 1) be a measure space. Let 1 < p < +oo and f,g € LP(Q, u).
Then

1+ gll, < If1, + llgll,
with equality if and only if g = \f for some A > 0.

Proor. Let I' = {1,2} endowed with the counting measure. Define F' on I" x Q by F(1,y) =
f(y), F(2,y) = g(y). Minkowski reduces to the desired inequality. |
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1.3. Completness of LP spaces. The aim of this section is to prove that LP is a Banach
space. Before this, let us adapt dominated convergence to convergence in LP:

LEMMA 2.6 (LP-dominated convergence). Let (2, B, u) be a o-finite measure space. Let 1 <
p < +00.
Let (fx) be a sequence in LP(Q, 1) and f, F be two functions in LP(Q, u). Assume that

(i) for every k, and p-almost every x € 2, |fi(z)| < F(zx)
(il) for p-almost every x € Q, fr(x) — f(x) when k — +oo. In particular, |f(z)| < F(z)
p-a.e.
Then fi — f in LP(Q, p) i.e. |[fu — fIl, = 0.

ProOF. We have to prove that

/ fiule) — F@)P duz) — 0.

But Condition (ii) implies that |fx(z) — f(x)|P — 0 p-a.e.
Condition (ii) implies that
[fu(@) = F@)IP < (|fu(@)] +1f(@)))P < (2F(2))" € L'

since F' € LP. We can thus apply the dominated convergence theorem to obtain the result. O

THEOREM 2.7 (LP is complete). Let (2, B, ) be a o-finite measure space. Let 1 < p < 4o00.
Then LP($2, 1) is complete (and thus a Banach space).

More precisely, if (fi) is a Cauchy sequence in LP(S2, ), then the exists a sub-sequence (f,);
and F in LP(Q, n) such that

(i) for j > 1, |fx;(x)| < F(zx) and p-almost every x € §2;
(ii) for u-almost every x € Q, fy,(x) — f(x) when j — +o0.

PRroOOF. We will concentrate on the case 1 < p < +00. The case p = 4oo follows mainly from
the completness of C and is left as an exercice.

As noted in the above lemma, the second part of the theorem implies that every Cauchy
sequence in LP has a convergent sub-sequence. But a Cauchy sequence with a convergent sub-
sequence is convergent.

The proof of the second part of the theorem is rather classical.

First, there exists 41 such that, if n > i1, || fi, — fall, < 1/2 (¢ = 1/2 in the definition of a
Cauchy sequence). There exists i > i1 such that, if n > o, ||fi, — full, < 1/22... This way, we
inductively define i, > i1 such that, if n > ix, [|fi, — fal, < 1/2*.

Consider the non-decreasing positive sequence defined by

Fi(z) = |fi, (= |+Z|fu+1 — fi(@)l.

The triangular inequality yields

! +oo
1E, < I flly + D i = Faull, < Ifall, + Y275 = 1+l fall,, < oo
k=1

k=1
The monotone convergence theorem implies that F} converges almost everywhere to a function
F € LP. In particular, F(z) is finite for py-almost every = € Q. For such an z, the series

l
f'll +Z flk+1 f'lk( ))
k=1
is absolutely convergent, thus convergent. But this is a telescopic sequence:
l
fh +Z flk+1 ka( )) :fiH»l(‘r)'
k=1

We have thus shown that f;, is convergent and, with the triangular inequality, |f;,_ | < F; < F
which completes the proof. O
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1.4. The projection Theorem. Projections play an essential role in Hilbert spaces. It turns
out that a version of the projection theorem is still valid in LP:

THEOREM 2.8. Let 1 < p < +oo and let E be a closed vector space in LP(Q,u). For
f e LP(Q,pn), let us write d(f, E) = infeep || f fg||p. Then there exists go such that d(f,E) =

I1f = goll,,-
REMARK 2.9. Not that, if [|g||, > 2[/f]|, then
1f=gll, = llgll, = 171, > 171, = I1f = Oll, = d(f, E)

since 0 € E. Therefore d(f, E) = inf{[|f —g||, : g € E, l|gl, < 2[If]|,}-

If £ is finite dimensional, the set {g € E\ ||g[|, < 2[/f||,} being bounded and closed, is compact.
Asg—|If - ng is continuous, the existence of gq follows.

In infinite dimensions, this argument is no longer valid.

PROOF WHEN p > 2. When p = 2 this follows from the parallelogram identity
2 2 2 2
[ = wlly + [lu+vlly = 2[lull; + 2[jvll3.

Take g, € E a sequence such that ||f — gn||, — d(f, E). Then the parallelogram identity applied

tou:%,v:%gives
2
)
As $28dm ¢ B || &239m — f|| > d(f, E) thus
l9n = gmll5 < 2(1Lf = gmllz — d(f, BV + IIf = gullz — d(f, E)?)

from which one gets that (g, ) is a Cauchy sequence. Thus (g,,) is convergent and as F is closed,
the limit go € E. By continuity of the norm ||f — gl — [|f — goll, which is then the gy we were
looking for.

When p > 2, the parallelogram identity is no longer valid. However, it is valid pointwise: if
frg € LP(Q,u) and x € Q) then

(@) = g(@)] + | f(x) + g(x)* = 2[f(2)]* + 2|g(x)|*.
Asp>2 r=p/2>1. But, for a,b>0

gn + gm
5 f

2 1 2, 1 2
||gn_gmH2 =4 <2f_gm||2+2||f_gn|2_

(1.7) a” +b" < (a+b)" <27 a4+ b").
From this, we get

[f(x) = g(@)|” + [ f(2) + g(=)[” (1f(@) = g(@)?)" + (If (2) + g(2)[*)"
(1f (@) = g(@)]” + [f(2) + g(2)*)"
2°(|f@)* + lg(@)*)" < 22| @)* + |g(@)]*)
|

2| f(@)P + lg(a)[).

IN

Integrating with respect to u, we get
1f = glly + 1f +ally < 22 (|15 + llglp)-

The remaining of the proof is exactly the same: take a sequence g, € E such that | g, — pr —
d(f, F) and apply the inequality with f replaced by f — g, and g by f — g,. We obtain

||gn _gm”§ < 2p_1(Hf—9n||£+ Hf_gmng) - ||2f_gn _gmng
< 277N([|f = gnlll + 1 — gmllf — 2d(f, ).

We then deduce that g, is a Cauchy sequence, thus converges. As F is closed, the limit is in F
and is the desired value. ]
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PROOF OF (1.7). Let us rewrite the inequality a” + b" < (a + b)" in the form 1+ (b/a)” <
(14b/a)" that is, setting t = b/a, 1+t" < (1+¢)" forallt > 0. Fort > 0let f(t) = (1+¢)"—(1+¢7).
Clearly f(0) =0 and f'(t) = r((1+t)"~! —#"~1) > 0 since r > 1 thus s"~! is increasing.

The other inequality uses convexity of ¢t — t":

b T T b
(a+b)r:2r(a+ ) Szra +

2
which is the expected inequality. O

The proof for p < 2 is more involved and requires the use of Hammer’s inequality

p p
F+all, + 11 =gll,|” + [ILf +gll, = I1f =all,[” < 22(LF15 + lglly)-
As we won’t use the projection theorem in that case, we will not develop the proof here.

1.5. Duality. Thanks to Holder’s inequality, it is easy to construct continous linear function-
als on LP(Q, p). Indeed,

LEMMA 2.10. Let 1 < p < +o0 and let p’ be such that %+ 1% =1. Letge L (Q, 1) and define

By(f) = /Q f(@)g(x) du(z).

Then @ is a continous linear functional on LP (S, ). Moreover

1@,] == sup /Q F(@)g(x) du(z) = gl

I£1,<1

PRrOOF. Hélder’s inequality directly shows continuity with ||®,[| < ||g|,, while the equality
follows from the equality case in Holder’s inequality. O

The key result of this section is the following converse of this lemma:

THEOREM 2.11. Let 1 < p < +oo and let p' be such that % + ﬁ =1. Let ® € (L?) ie. a

bounded linear functional on LP(S), u). Then there exists a unique g € LPI(Q, ) such that & = @,
that is

o(f) = | 1@gle)duta)

for every f € LP(Q, ).

REMARK 2.12. It is important to notice that the result is false for p = 4+o00. The dual of
L>°(Q, p) is much more difficult to describe and is out of scope of this course.

PROOF OF UNIQUENESS. The uniqueness is easy to prove: assume that gi,gs € L¥" are such
that ®,, = ®,4, then, if g = g1 — go, for every f € LP, ,(f) = 0.
_ Jlg@)l" 2g(x) if g(x) #

0 if g(x) =

lg|P" since p = o= when 1 + - =1. Thus f € L”. Next,

0=‘1>g(f)=/ﬂf(w)g($) du(ﬂf)Z/ng(w)lp/_Qﬁg(w) du(@) = ||l

thus g = 0 as claimed.
If p = 1, a slight modification is needed. Write Q = {J, 5, Q, with () < +oc and g(z) =
e@)|g(x)|. Then f, = e ", € L' and

OZ‘I’g(fn):/an(l’)g(w) du(w):/Q |9(2)[ dpu(z).

n

O /
If p > 1, then p’ < +oo, take f(x) 0 First |f|P = (|g|P ~1)P =

It follows that g = 0 p-almost everywhere on €, i.e. there is an E, C 2, such that ¢ = 0 on
Q,\ Ep. Thus g =0o0n U, > @ \U,>1 En = 2\ U,,>1 En. As J,,~, E» is a countable union of
sets of mesure 0, it has measure 0 thus ¢ = 0 p-almost everywhere. O

Recall that L2(€, 1) is a Hilbert space so that the theorem follows from the more general
theorem by Riesz. It turns out that the case 1 < p < 2 can be deduced from it.
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PROOF IN THE CASE 1 < p < 2. First let p’ be the dual index, %Jr][% = 1 and note that p’ > 2.
Let 7, s be given by £ + % = 1i.e. s =52 and r = ps. Note that r, s have been chosen so that

2—p
Holder’s inequality implies

) [ @@ e (/|f )P du(a) ) (/|g )P due ) = A2l

Write 2 = (J,,55 2, with p(€2,) < +00 and the €, being disjoint. Let us define w through

= Z Oln].Qn

n>1
where the «a,, > 0 are chosen so that
(i) for every n, ay, > 0 and a1 < ap,
(i) fJwlly = 3ns1 app(2n) < Foo.
It follows from (1.8) that, for every f € L?(Q,u), fw € LP(Q, u) with [ fwll, < [lwll [[flly- In
other words, the operator T, : L? — LP defined by T, f = wf is bounded.
Now, let ® € (LP)’, that is let ® be a bounded linear functional on LP(Q, ). It follows

that ®T,, is a bounded linear functional on L?*(Q, ). According to Riesz’s theorem, there exists
G € L?(Q, u) such that ®T,, = ®g: for every f € L2(, ),

BT, f = B(fu) = /f 2) dpu(a),

Now consider the set S = {p € LP(Q,pu) : ¢/w € L?*(Q,u)}. Note that S is dense in
LP(Q, ). Indeed, if f € LP(Q, 1) and € > 0, there exists N such that, writing ®x = {J,,«y n
fn = flay1f<n, then || f — fN||p < ¢ (note that fy — f a.e. and that |fy| < f so that fx — f
in LP). Further, for 2 € ®p, there is an n < N such that = € ,,. Then w(z) = a,, > o since
the a,, have been chosen as a decreasing sequence. It follows that

[fn(@)] _ JO ifr¢ oy
w(z) ~ ﬂN ifrecdy

[e3%

Thus fx/w is bounded with support of finite measure and is thus in L?(Q, i) i.e. fx € S.
Now, for ¢ € S, we can write ¢ = fw with f = p/w € L?. Therefore

B(e) = a(fu) = [ f2)6() duto) = [ (@) ) 4y = 2, (0)

w(z)

with ¢ := G/w. If we are able to prove that g € L¥' (€2, 1), then ®,, is a continuous linear functional
on L? as well. Therefore ® = ®, is an equality between two continuous functionals on L? on the
dense set S of LP. This equality is then true on all of LP, which is what we wanted to prove.

It remains to prove that g € LP (Q, 11). We need to distinguish two cases.

First consider the case 1 < p < 2. Consider oy = §|g|p_21|g|§N1¢N and observe that
lon] = |9/P"'1j5<n1lay. In particular ¢y is bounded and has support of finite measure thus
¢n € LP(Q, 1) and on its support w > ay so that [px/w| < |pn|/an € L2(Q, ). In other words,
pn € S. But then

(I)(SDN):(I)g(SON):/QQDN(LU)g(x)dM(x):/Q|9(95)|pl1\g\§N(x)1<I>N($) dp(z).

On the other hand, ® is continuous on L?(€2, 1) thus, for all ¢, |®(p)| < ||®||||¢llp, in particular

1@ (on)|

IN

1/p
1@lllonlly = 1] ( | 1P D@ en @)1y @) dum)

, 1/p
@ ( [l @tpente)to, o) du(x)) .

Combining both identities shows that, for every N,

</ 917 (2)1 g1 v (2) 10, (2) dﬂ($)>1/p/ <C
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Letting N go to infinity and applying Beppo-Levi’s Lemma, we get ||g||p, < Csothat g € LPI(Q, 1)
as expected.

When p = 1 the argument needs to be modified. We write g = €*|g| and consider oy =
8_i01|g|>”q>”+1/1\[1@1\,. As previously, o € §. But then

(o) = B, (pn) = /Q on(2)g(x) du(z) = /Q 1900 Lo o o1 Lo i)

> (@]l + 1/N)Hlgl > [l + 1/N} N @
On the other hand

[@(en)] < [[l[len

|\®||Al|g|>|\¢|\+1/N1¢N dp()

@[l {lgl > @] + 1/N} N @p].

Combining both, we get that [{|g| > [|®||+1/N}N®x| = 0. Finally, As {[g] > [|®[/} = Uy>,1lg] >
|||+ 1/N} N ®x we get that |g| < ||®| almost everywhere. O

PROOF USING THE PROJECTION THEOREM WHEN 1 < p < co. Let ® be a continuous linear
functional on LP(Q, 1). We are looking for g € L? (Q, ) such that & = ®,. We can assume that
® is not identically zero (otherwise take g = 0) so that there is an f € LP(Q, u) with L(f) # 0.
Up to replacing f by f/L(f) we can assume that L(f) = 1.

Let E = ker® = ®1(0) and note that F is a closed linear subspace of L?(f2, 11). Therefore,
there exists gg € £ such that || f — gol|,, = d(f, E). Note that L(f—go) = L(f) —L(go) =1-0=0
and that [|f — goll,, = [[(f — go) — Oll, = d(f, E). Up to replacing f by f — go we can assume that
0 is a projection of f on E: L(f) =1 and | f[|, = d(f, E), that is, for all g € E, | f[|, < [|f — gll,,-

Now fix w € E and consider the function ¢ defined on (—1,1) x Q by p(t,z) = |f(x) — tg(x)|P
and let ® be defined on R by

B(t) = /Q o(t,2)dz = ||f — tg”.

First, observe that
—astg € B, ®(t) = ||f —tg|} > | fIl;, = ®(0). Thus ® has a minimum at 0.
—  is continuous in ¢t. Moreover,
2 - 2
p(tx) = (|f(@) — tg@)P)"* = (1f (@) + 2]g(x) > + 2RF(@)g(x))"
thus

0 = P(1sa) — tg@)P) (2Hlg(a) P + 2RT o)

= plf(x) —tg(@)[P~2(tlg(x)]* + Rf(2)g(x))
—for |t| <1 and z € Q,

f(x) — tg(x)
() = 1f@) — tga)p = or I
< 227 f (@) + g()P).
Lebesgue’s theorem on continuity of integrals then shows that ® is continuous.

— for |t| <1 and z € Q,

%] < @1+ o @l + 1)
P2 (@) o+ [g(a) ) (2lg(w) P+ £ @)
P2 (@) + o) + 1@ lg(@) P + o) 27 @)

1 1
As f,g € LP, |f(z)P 4 |g(=)|? is integrable. Further if ¢ = = and ¢’ is given by — + — = 1 then
q q

g4 "
g—1 p-—

sl anta) < ( If(x)lpdu(x)>(p2)/p ([ |g<x>|ﬁdu<x>)2/p

T (If(w)l : W))p

A

IN A

—~

VRS

5 and Holders inequality with these exponents gives
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thus | f(z)|P~2|g(x)|? is also integrable. The same is true for |g(z)[P~2|f(x)|?.
We can thus apply Lebegue’s derivation theorem and see that ® is differentiable on (—1,1)

and 5
(t) = /Q %2 t,) du(z).

/|f P2 R (@) g() dpa(z).

As ® has a minimum at 0, we get ®'(0) = 0 that is, for every g € LP, with L(g) = 0,

® [ |f<x>\p-2f<sc>g<x> dp(z) = 0.
Note that, if g € LP, with L(g) = 0 then ig € L? and L(ig) = 0 so that

éRz/u P2 @y () du(z) = 0.

Finally, define f by f(z) = |f(z)|P~2f(z) and note that || = |f|® V¢ = |f|? so that f € L*
with Hf” = [|fl|,- We have proved that for every g € LP(S2, p) with L(g) =
p/

/f (2) = 0.

In otherwords, if L(g) = 0 then ®7(g) =

Now let h € L? and con51der g = h L( )f € LP. Note that L(g) = L(h) — L(h)L(f) =0
since L(f) = 1 and that ®;(f) = || f||;. Therefore ®(g) = 0. But

0=25(g) = 2s(h— L(h)f) = D5(h) — L)@ (f) = D§(h) — LW [}
As L(f) =1, f # 0 thus ||fHZ # 0 and we conclude that
1

——®i(h) =2
1115~
which is the expected result. |

In particular,

L(h) = h)

iz

2. Weak L? spaces
2.1. The distribution function.

DEFINITION 2.13. Let (Q,B, 1) be a measure space and f : @ — C be measurable. The
distribution function of f is the function dy :]0,+o0c) — RT defined by

a0V = plfr €2 : [F@)] > A}).
We will say that f vanishes at infinity if d;(X) < 400 for every A > 0.

Let us introduce
Di(N)={y€Q : [f(y)] > A}.

LEMMA 2.14 (Layer cake representation). Let (2,3, 1) be a measure space and f : @ — C be
measurable.

+oo
(2.9) |f(2)] = /O Liyea: [f(y)[>x) dA
so that
+oo
(2.10) [ i@l = [ a0
PRrOOF. For (2.9), it is enough to notice that 1 cq. |f(y)>r3(z) = 1 when A € [0, |f(2)|[ and
is zero otherwise. Applying Fubini, (2.10) follows. |

Some further important properties of dy are summarized in the following proposition:

PROPOSITION 2.15. Let (2, B, 1) be a measure space and f, g, fn, : & — C be measurable. Then
the following hold:
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(1) A= df(N) is decreasing and right-continuous;
(ii) of |f] < |g| then dy < dg4. In particular if f =g a.e. then dy =dg;
(iii) if for a.e. x € Q, |fn(x)| increases and converges to |f(x)| then dy, — dy;

PRrROOF. Obviously, if A < X then Dy(\') C Dys(X) so that dg(N) < ds(X). To see that d
is right semi-continuous, let A, be decreasing with A,, = A > 0. Then D()\,) C Dy(X\) with

U Df thus

n>1

limdy(A,) =limp(Dp(An)) = p U Dy (A = pu(Dg(N)) = dg(N).

n>1

As dy is decreasing, this shows right-continuity.
If | f] < |g| then Ds(X) C Dg(X) (up to a negligible set) thus d¢(\) < dg(N).
Finally, Dy, ()) is an increasing family of sets such that

U Dy, () =Dy

n>1

(up to a set of measure 0) so that we conclude as in the first part. ]

EXERCICE 2.16. Let (X, B, 1) be a measure space and f : X — RT be a simple function, that
is f can be written in the form

k
f = ZleEj
=1

J
with E; € B two-by-two disjoint and ¢; < ¢z < --- < ¢, Compute dy.

EXERCICE 2.17. Let (X, B, ) be a measure space and f : X — C be a measurable function
vanishing at infinity. Prove that d¢(s) — 0 when s — +o00 and that

Jim dp(t) = dp(s) + p({z : [f(2)] = s}

2.2. Weak LP spaces. Before introducing weak LP spaces, let us first prove the following
lemma that shows how the distribution function behaves for L? functions:

LEMMA 2.18. Let (X, B, i) be a measure space, f : X — C be a measurable function vanishing

at infinity and 1 < p < +oco. Then
“+oo

@Hﬂﬁ=pA 1, (s) ds;

(i) of f € LP then ds(s) < Hf” .

PRroOF. For the first identity, apply the Layer-Cake Representation to |f|P to get

+oo +o0
|f(z)|P = /0 1y pppsaydA = p/o 1{|f|p>sp}5p_1 ds

with the change of variable A = s”. Now {|f|P? > sP} = {|f| > s} = Dy(s) so that, integrating over
X with respect to p and applying Fubini, we get

+oo +o0
1= [ el an@) =p [ [ 1 dut@eas=p [ dits)sas

as claimed.
The second assertion is just Markov’s inequality:

dW)=L/MmM@Mm=/hwwM@M@
/lf |p1{|f|P>sP}( <*/|f )P dp(a

as claimed. 0

IN

We can now introduce the weak LP spaces LE as follows:
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DEFINITION 2.19. Let (X, B, 1) be a measure space, f : X — C be a measurable function
vanishing at infinity and 1 < p < +00. We will say that f € L | the weak LP-space, if there exists
D

C
a constant C' > 0 such that ds(s) < oy for all s > 0.
s

The smallest such C is called the weak-L? norm i.e.

(2.11) £l e, inf{C’ >0 :ds(s) < f:}

= sup{sd;(s)"/? : s> 0}.

When p = +o0, L = L*™.

EXERCICE 2.20. (1) Show that if A € C\ {0}, then dxs(s) = ds(s/|A]). Conclude that
the two expressions in (2.11) are indeed equal.
(2) Let f(x) = 1/2* a > 0. Determine for which p > 1is f € L?(0,1) and for which p is
feLp(1,+00).
(3) Let f(z) = |z|~P* on R?. Show that f € L? (R?) and compute its norm.

As for usual LP spaces, we will identify two functions if they are equal almost everywhere, that
is we start with the space of functions and then quotient it by the equivalence relation f ~ g if
f =g a.e. One easily checks that d(s) = dy(s) if f ~ g so that this operation is legitimate.

LEMMA 2.21. For 1 <p < +oo, L}, C L? and ||f|» is a quasi-norm.

PrOOF. The first assertion is already given in Lemma 2.18.
First, if [|f||;» = O then, for every s > 0, ds(s) = 0, i.e. {|f| > s} is negligible. But then

{f #0} = U, en{lf| > 1/n} is also negligible and f = 0 a.e.
Next, since dyy(s) = dy(s/|A]), a straightforward computation shows that A f[| . = [Al[|f] 1z .

We conclude by noticing that if |f(x) + g(x)| > s then at least one of |f(x)| or |g(z)| > s/2
(otherwise | f(z) + g(x)| < |f(x)| + |g(x)| < s). This implies that

{z :|f(x) +g(x)] > s} C{a : |f(x)] > s/2} U{z : |g(z)| > s/2}
therefore
dig(s) < ds(s/2)+dy(s/2).
Now (a+b)"/? < a'/P4+b'/? when a,b > 0 and p > 1 (factor out a and notice that (1+t)'/? < 14+t/7
for ¢ > 0 by differentiating). We conclude that

sP 1/p sP 1/p
sdri(97 <2 (Sastor) 2 (Gayter)

Taking proper supprema we get | + gll, < 27 (1l + ol ). O

REMARK 2.22. With this definition, the weak-LP spaces are not normed spaces. However,
there exists a norm that we will denote by || f||r.c which is equivalent to || f|| .z .
To define this norm, we first need to introduce the decreasing rearrangement of f:

f(t) =inf{s >0 : d¢(s) <t}
which is defined on [0, +00). If the measure p is non-atomic i.e. pu({z}) = 0 for all x € X we define
ok 1 P *
frw =y [ o
u Jo
and then
1
[£lr= = suput/7 () =sup d —— [ |f(@)|duta) B < By
u>0 /L(E) r JE

In the general case, the first identity is still valid if we define f** by

1

F(u —sup{/ fl)|du(z) : E€B:uFE zu}
(u) U(E)E|()|() (E)

when v < p(X) and

£ =5 [ 17 duta)
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when u > u(X).
The space introduced this way is called the Lorentz space LP>** and more general spaces Lorentz
space LP? can be defined via

+o00 1/q
e = ([ 7))

when ¢ < +00. The reader may check that LPP = LP.
We will not require any knowledge on Lorentz space in this course.

We can now introduce convergence in weak-LP” spaces in the usual way: f, — f in L in
||fn = fllzz, = 0. Let us compare this convergence to two other convergences:

LeEmMMA 2.23. Let 1 < p < 400 and (X, B, 1) be a measure space.
() If fn, = f in LP then f, — f in L.
(ii) If fn. — f in L then f, — f in measure that is, for every € > 0, there exists ng such
that, if n > ng then

e 1fal@) = (@) > 2}) <.
ProoOF. The first assertion follows from Lemma 2.18:
sPdy, —y(s) < || fu — fII}
so that

A

1 fn = Fllz, < Wfn = £15

which shows the desired implication.
For the second one, given € > 0 there is an N such that for every n > N

1/p
= flz o= (sup () <ot

Taking s = ¢ gives
Pu{z = |fulz) = f(2)] > e}) <P
which gives the result after simplification by e. O

We will not establish that weak LP spaces are complete (this requires to use the Lorentz spaces
i.e. the norm and not the quasi-norm). However, we will establish a weak version of completness.
The first result is also the key step in establishing completness of LP spaces.

THEOREM 2.24 (Riesz). Let (X, B, i) be a measure space and f,, f be complezx valued measur-
able functions on X. Assume that f, — f in measure, then there exists a subsequence (fp,) such
that fn, — f almost everywhere.

ProOOF. We choose ny inductively such that nj; > ni_; and such that the set

A=Az ¢ |fu,(x) = f(z)| > 27"}
satisfies y1(Ay) < 27%. Then

+o00 +oo 00
(Ua)<SuarsSaemrmn
k=m k=m k=m
In particular

—+oo
u(UAk> <1< +o0.
k=1

It follows that

+oo +oo
(N U)o
m=1k=m

and this contains the set of all z’s such that f,, () does not converge to f(z). O

An essentially similar argument allows to prove the following:
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THEOREM 2.25 (Riesz). Let (X, B, 1) be a measure space and f, be complex valued measurable
functions on X. Assume that f,, is Cauchy in measure, then there exists a subsequence (fn,) and
a function f such that f,, — f almost everywhere.

ProOF. This time the ny’s are chosen inductively such that ny1 > ng and

Ak = {.%' : |fnk (l‘) - fnk+1(x)| > 2_k}
satisfies p(Ay) < 27%). As previously

DE

m=1k=m
—+oo
Now fix m, take x ¢ U Ay and j > i > ig > m (ip large enough) then
k=m
j—1
| fy () = fni ()] < Z | frpn (@) = fup ()] <278 <271 < gmiotd,
k=i
+oo
It follows that f,, () is Cauchy for every = € < U Ak> and thus has a limit ¢, (z).
k=m
+oo +oo
We now define f(x) = lim f,,(z) when z ¢ ﬂ U Aj and 0 otherwise so that f,, — f
m=1k=
a.e. " ]

EXERCICE 2.26. Show that convergence in measure, as defined above, is equivalent to the fact
that, for every € > 0, u({|fn — f| > €}) — 0.

2.3. First glimpse at interpolation. In this section, we will show that if a function is
in two weak LP-spaces then it is in all LP spaces “between” them. This is a first step towards
interpolation of operators were we will state that if an operator is bounded from L? to L7 (weak
or strong) for two different couples of (p, ¢)’s then it is also bounded for intermediate couples.

Let us start with functions:

PROPOSITION 2.27. Let (X,B,u) be a measure space and 1 < py < p1 < +oo. Let f €
LPo N LPr. Then, for every po < p < p1, f € LP with

p
R e L i

PROOF. The hypothesis is that if Co > || f||}% and Cy > || f[|V%, then

(2.12) ds(s) < &) and dj(s) < G

spbo ' sb1

“+oo
nﬂﬁ:p/‘ s7~1d;(s) ds.
0

The first of the two estimates (2.12) is better for s near 0 while the second one is better for s near
+o00. The idea is then simple, cut the integral at some A > 0, use the best estimate on each piece
and then optimise over A.

and we want to estimate that

First

A A CO

/ st dy(s)ds < Co/ sPPo—lds = 2 \PPo
0 0 P —Dpo

while
+oo +oo Cl
/ sp_ldf(s)dsgCl/ sPPimldg = = \P7P1
A A b1 —D

Note that the hypothesis py < p < p; guaranties that both integrals converge. It follows that for

every X > 0, every Co > || f|[}3 and every C1 > || fI[}

1712 <SP yporo . P ypopi,
P —Do pP1—p
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So we first optimise in Cy, C; to get

||f| 7o (Rl
||f||17 <p 2w’ \p— Po 4 2w yppr |
— Do p1—p

Now the right hand side goes to +00 when A — 0 and when A — +o00 so there is a A for which
this quantity is minimal. To find this A consider a function of the form

o b
o(t) = *t +W

b\ «+8
with a,b,, 8 > 0. Then /() = at®1 — pt=B-1 and thus ¢ (t) =0 when t =ty := () and
a

thus .
. a (NP b sa\ais 1 1 B
min (1) = plto) = © () H2 (8 = (a i 5) s

Now oo =p — po, B =p1 — D, soa+6=p1—po we get
+

1 )
p
T Sp(ppo L >||f|Lp§1 T e

as claimed. 0

Note that the case py = +oo is simpler as d;(s) = 0 when s > || f|lo. We leave this case as an
exercice.

2.4. Real interpolation. Before switching to operators, we will need to introduce some
vocabulary.

DEFINITION 2.28. We say that V is closed under truncation if for every f € V and every
0 <r < s < +oo, the function f1,<|r <5y still belongs to V.

Let T be a mapping V — L°(Y). We say that T is sub-linear if, for every f,g € V and every
AeC,

T(f +9)| < [T +IT(@) and [TOF)| = A [T(f)].

We say that T is of strong (p, q)-type if there exists a constant C, , such that for every f €
LP(X)NV, T(f) € LY(Y) with
(2.13) IT()zaeyy < Cpgll fllzr(x)

We say that 7' is of weak (p, q)-type if there exists a constant C, 4 such that for every f € LP(X)NV,
T(f) € LL(Y) with

(2.14) IT(N)llzg,ry < C
that is, for every s > 0,

Wy s T > o) < ol flerco)”

Of course, strong (p, q)-type implies weak (p, ¢)-type but the converse is false.

An example of a vector space that is closed under truncation is the set S = S(X,B,v) of
k

simple functions i.e. of functions of the form f = Z ¢jls, where the S;’s are disjoint and ¢; € C
j=1

(it is easy to check that the truncation of a simple function is still a simple function).

THEOREM 2.29 (Marcienkiewiz). Let (X,B,p), (Y,B,v) be two measure spaces and let 1 <
P05 P15 40, q1 < +00. Let V be a subspace of LPo(u) + LP(u) closed by truncation. Let T : V —
LO(Y,B,v) be a sublinear operator that is of weak type (po,qo) and (p1,q1) with

7)o < Collfllp for all f € LPo(u) NV

TNy < Cillfllp, for all f € LP(p) N V.

Let 0 < 6 <1 and p,q be defined by

0 1-—46 " 1 06 1-90

1
- = — 4
p Po D1 q q0 q1
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Then T is of strong (p,q) with

IT(f)lze < C(po. p1:q0,q1,0)CECT | £l
for every f € VN LP(u).

PROOF. For (much more) simplicity, we will only consider the case qo = po and ¢; = p; so
that ¢ = p. We will assume that py < p; and it will be more convenient to write p_ = pg and
p+ = p1. Also, we only consider the case p; < +o00. The case ¢g; = py = +o0 is left as an exercice.
We have

v({y : T(f)(y) > u}) < (Cﬂz'j”) :

for all u > 0 and f € V N LP=.
Let feV N Lp(u), fix t > 0 and write f = f_ + fy with f_ = f1{|f\2t} and f = f]-{\f|<t}-
As V is closed under truncation, f— € V and as V is a vector space, fy = f— f- € V. As

p € (p—,py) we have
/ ()P de = / @)+ de < 7+ / F@)Pdz < 24| £12 < +oo
X {|fl<t} {IfI<t}

while

1 115
f=( pdx— / P-dx < / f@)Pde < ——2 < 400
/ Sl - {\flzt}| @) PP {Iflzt}| ) PP

Further, by sub-linearity |T'(f)| < |T(f-)| + |T(f+)| so that
{y : TN >t} cH{y = [T > s/28U{y = [T(f+) ()] > s/2}

and thus

v({y - [T(NHWI>t) < v{y = [T >t/2}) +v{y = [T )] > /2})

() + (i)

C_)P =t | f 12 ll5- + QO fLyp1<ny DT

IN

We then conclude writing

+oo
IO = [ T >
+o00
< pecy [ [ 1 @If@P i)
+oo
400 [T [ 1 @@ ) a

0
[f(x)]
— pc_y- / @) / P10 At dpu(z)

p(2C )P / |f(z) / tP= 1P+ dt dp()
If ()]

I AC e L WA
p(p P4 BT intx ) o

with Fubini and a simple computation. O

20y | (24
p—p- D — P+
explodes when p — pL so that if T were of strong (p+, p+)-type those constants would most likely
not be very good. The aim of complex interpolation is precisely to cover this case with better
constants.

It should be noted that the constant p ( ) obtained in this computation

EXERCICE 2.30. Prove the following result:
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LeEmMMA 2.31 (Kolmogorov). Let T be an operator of weak type (1,1) and 0 < v < 1. Then for
every E C R? with 0 < |E| < +oo and every f € L'(RY),

[Tl do < 1B 151
where C' is aconstant that depends on d and v only.
Hint: Write the integral in the left hand side in terms of level sets {x : |T'f(x)| > A}.
2.5. Complex interpolation.
THEOREM 2.32 (Riesz-Thorin). Let (X,B,p), (Y,B, v) be two measure spaces and let 1 <

P0,P1,G0,q1 < +o0o. Let T : S — LYY) be a linear operator and assume that T is of strong

(osq0) and (p1,q1) type with
1T (f)llzao < Coll f]] Lro
for every f € SNLP(u) and
IT(f)llzar < Cull fllzes
for every f € SNLP(u). Let 6 € [0,1] and define p, q via
1 1-6 0 1 1-6 0
= +— and - = +—.
p Po b1 q do0 a1
Then for every f € SN LP°(u) and

IT(F)llze < Co~"CYN o

In particular, T extends to a bounded linear mapping from LP — L9.

PROOF. The cases # = 0 and 6 = 1 are the hypothesis so they do not require a proof and we
1 1

can assume that 0 < 6 < 1. In particular, g # 1 and, if we define ¢’ to be the dual index — + - =1
q q

we also have ¢ # +oco. In particular, S is dense in L7 and

T =50 {| [ Tt )] = g€ ol =1}

We thus need to prove that, if f, g are simple functions with

1Al Loy = gl Loy =1
then

[ 1wt dv(y)\ <o,

We write
m n
f:ZCj]'Ej and g:de]_Fk
j=1 k=1
with ¢;,d; € C\ {0}, E; € B pairwise disjoint with 0 < u(E;) < 400, F}, € B pairwise disjoint
with 0 < v(Fy) < 400 and

> leiPu(Ey) =" ldi] T v(Fy) = 1.
j=1 k=1

Note that .
| T dw) = 33 (15,0015 0) ().
k=1j=1
We now write the c;,d,’s in polar coordinares c¢; = |c;|e?% and dj = |dj|e??*. Define the
following functions on ¥ = {z € C : 0 < R(z) < 1}.
P, D ¢, d
pz)=1—2)—+2— , qz)=1—-2)—F+2—
(=) = )po b1 (=) = )Q6 @

and

m n
f, = Z |¢; [P e 1p, . g.= Z |dy |93 et D1 .
j=1 k=1



28 2. LP SPACES, WEAK L? SPACES AND INTERPOLATION

The first observation is the following: if z = iy, y € R then ||f.||z»0 =1 and ||g.||,, = 1. The two

identites are proved in the same way, so let us only prove the first one

A
L%

—if pg = 400, then p(iy) = iy£ is purely imaginary so that
Y41

m
|fz| = Z 1Ej
j=1

since the E;’s are pairwise disjoint and as v(E;) > 0, || f.||z~ = 1.
—if pg < 400, then %(p(zy)) = P o that
bo

m m
1ol =D e P/Po1p, thus [fof0 = |1,
j=1

j=1
and therefore

J V0 due) = 3 ey Py = 1.

Note that exchanging z by 1 — z amounts to exchanging po with p; and ¢ with ¢} so that we
also have [|f:|lr1 = ||lgz([ o4 =1 when 2z =1+ iy.
Next, as the functions f,, g, are simple functions, we may define

F(z) =/ T(f2)(u)ga(u) dvu) =Y > " [e; [P |di| "D e™® # DT (1 g, ) (u) 15, (u) dv(u).
v k=1 j=1

Clearly F is holomorphic on ¥ and continuous on 3.
Moreover, using the fact that T has strong type (po, ¢o) and Holder, we get

W@W=LNMWMMMMM

and, in a similar way, |F(1 + iy)| < Cy. From Hadamard’s Three Line Theorem, |F(0 + iy)| <
o=y,

<NT(Fiy)llzaollg=ll oy < Collfiyllzeollg=l e = Co

We will now only consider the case y = 0 i.e. z = 6 and notice that p(f) = (1 — 19)£ Jr@p% =1
Po
and ¢(6) = 1 so that fo = f, go = g. It follows that
| 1)@t aviy)| = 1F6) < 6t
which is the claimed identity. O

For a stricking application, see the Hausdorff-Young in the section on Fourier analysis.



CHAPTER 3

Convolution

Multi-index notation

Before starting this section, we will introduce the multi-index notation:

A multi-index is a vector with integer coordinates: o = (ay,...,aq) € N4 If B = (B1,...,84) €
N4, we will say that B < a if 8; < a; for all j € {1,...,d}.

The length of a multi-index « is the sum of its coordinates: |a| = a1 + -+ + ag4.

We will write a! = aq!-- - ay!, and the binomial coefficient for 8 < «

(3) = = (1) (5)

For x = (21, ...,2q) € RY, we write 2 = 2{" - - 2§, For a function f:R? — C we write
0% QM
Of = mar e/
Oz1 0z s

With this notation, some classical one-variable formula are written in the same way for multi-
variate functions:
— Leibnitz formula
*(fg) = > <§) 9°f0°~Py
B<a
— Taylor formula

fla+1) = 32 0% fan) o + (k).

la|<n

1. Definition and basic examples

DEFINITION 3.1. Let f, g be two functions on R?, we define the convolution of f and g as being
the function on R given by

(115) Frata) = [ fata =

Note that in the definition, we have said nothing about the existence of f * g. The aim of this
chapter is precisely to give a meaning to f x g. However, there are a few basic examples for which
this is easy:

ExAMPLE 3.2. Let f =14, 9 = 1jc.q-

First, the change of variable ¢ = x — y shows that fx g = g * f. On may thus assume that
b—a > d— c, that is, the lenght of [a, b] is bigger than the length of [c, d].

It is obvious that, for « fixed, f(y)g(x —y) = 11, (y) where I, is an intersection of two intervals
and is thus an interval. It follows that f % g(x) = |I;| the length of this interval. Next g(x —y) =1
isand only if c < x—y < dthatisy € [x —d,z — ] so that I, = [a,b]N[x —d,z —|]. The length of
this interval is clearly a piecewise affine function since [a, 8] is fixed and we “slide” a second interval
[—d, —c| at constant speed, i.e. the second interval is [—d, —c] + x.

It is enough to find the nodes and determine the length at those nodes.

There are 5 cases:

— the interval [—d, —c]+x is entirely on the left of [a, b] (up to the end point), that is —c+z < a
i.e. x < a+ c. In this case f * g(z) = |I,] = 0.

— the interval [—d, —c| + = overlaps [a, b] on the left side: —d+2x < a < —c+x ie a+c<
z < a+d. In this case I, = [a,—c+ z] and f*g(z) = || =2z — (a + ¢).

29
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—the interval [—d, —c]+x is entirely inside [a,b]: a < —d+z < —c+z < bie a+d <z < b+ec
In this case I, = [-d,—c]+z and f*g(z) = |l =d—¢

— the interval [—d, —c|] + = overlaps [a,b] on the right side: —d+ 2 <b < —c+xie b+c<
x < b+d. In this case I, = [-d+ z,b] and f*g(z) = |I| =b+d — .

— the interval [—d, —c]+x is entirely on the left of [a, b] (up to the end point), that is b < —d+=x
i.e. x > b+ d and in this case again f * g(z) = 0.

We strongly advise the reader to draw the 5 cases and the graph of f % g. Once this is
done, one can note for future use that f % g is continuous and compactly supported with support
[a,b] + [c,d] ={z +y,z € [a,b],y € [c,d]} = [a+¢c,b+d].

EXAMPLE 3.3. Assume that f, g are tensors:

f@1,..,xa) = fi(z1) - fa(za) and  g(z1,...,2q) = g1(21) - ga(za)-
Then if f; * g; are defined by (1.15), so if f % g and
frglxr,...;xq) = fixgi(z1) - fa*xga(xq).
An example of this are characteristic functions of cubes Q = H?Zl I; with I; intervals, then

1g(z1,...,2q) = 11, (z1) - 15,(zq). This allows to compute 1¢ * 1o/ when @, Q' are cubes and
shows that this function is continuous.

LEMMA 3.4. Let f,g € C.(RY), the space of compactly supported continuous functions. Then
frxg€CARY) and fxg=gx*f.

Morevoer, if g € C*(RY), then f* g € C*(R?) and for all o € N¢, with |a| < n, 0%(f * g) =
fx(0%g) = (9%g) * f-

Note that 9%(f * g) = (0%g) = f implies that, if g € C?(R?) then f * g is of class C"*™ and
0TB(f xg) = (0°f) * (0°g) as long as |a| <m, |B] < n.

PRroor. We will only prove the result in one variable, the proof for several variables is similar.
Consider F(z,t) = f(t)g(x —t). Then
(1) F is continuous in ¢ so that f x g(x) = [, F(x,t)dt is well defined. Further, the change
of varible s = x — ¢ shows that fxg=g=x* f.
(2) Write I (resp. J) for an interval containing the support of f (resp. of g). As f,g are
continuous with compact support, they are bounded, so we can take C' > || f|| ., |9/l -
But then |F(z,t)| < C?1;(t)1,(z —t). It follows that

If xg(x)] < C? /R 1)1 (z —t)dt = C%11 x 15(z).

The later one having compact support, f * g has compact support. Further its support
isincludedin I +J ={z+y,z € I,y € J}.

(3) Fix a bounded interval K C R and note that if + € K and g(z —t) # 0 then ¢ €
r—JCK—-J={k—j,ke K,je J} (a bounded interval). It follows that |F(z,t)| <
C?1;(t)1x_;(t) € L*(R). As 2 — F(z,t) is continuous for all ¢, Lebesgue’s continuity
theorem shows that f x g is continuous on K and K is arbitrary.

The last part follows the same path noting that 0% F (z,t) = f(t)0%g(x —t) and then the same
reasoning shows that this is bounded by an L' function independent of € K. It remains to apply
Lebsgue’s derivation theorem. |

2. Convolution between L? and its dual space
THEOREM 3.5. Let 1 < p < +oo and p' be such that E +l/ = 1. Let f € L?(RY) and
g € LV (RY) then b
(216) Fro@ = [ rogle—oa

is well defined for every x € R%. The mapping (f,g9) = [=g is bilinear and continuous LP X v —
L2 with || f = gl < I£1, 191l

Moreover, if 1 < p < +oco f xg € Co(R?) so that (f,g) — f * g is a bounded bilinear mapping
LP x LP" — Co.
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Recall that Co(R?) is the space of continuous functions on R that go to 0 at infinity.

PROOF. First, if g € L¥' then g, : t — g(x —t) is also in L¥'. Holder’s inequality then shows
that fg, € L* thus f * g is well defined through (2.16). Further, Holder shows that | f =g, <
£l llgll,- As (f;g) — f * g is clearly bilinear, it follows that (f,g) — f * g is a bounded bilinear
mapping LP X L¥ — L.

The key observation is that Cy is a closed subspace of L*°. Indeed, if (fx) is a sequence of
elements of Cy that converges to some f in the L®-norm (i.e. uniformly) then

— the limit f is continuous (uniform limits of continuous functions are continuous);

— for € > 0 there exists n such that ||f — fn||,, < . But then, there exists K such that, if
lz|| > K, |fu(z)] < e. Finally, for those «’s, |f(x)| < |fu(2)|+ | f — full < 26, 0 f(x) — 0 when
lz|| = +oo.

In conclusion f € Cy and Cy is closed in L*°.

Now, Example 3.3 shows that, if f, g are characteristic functions of cubes, f * ¢ is continuous
compactly supported. By bilinearity, if f, g are step functions, that is, finite linear combinations
of characteristic functions of cubes, then f * g € C.(R%) C Co(R?).

Finally, let f € LP(R%) and g € LP (RY). As p # 400, there exists a sequence (f5) of step
functions such that fi, — f in LP(R9). As p # 1 we also have p’ # +o0, so there exists a sequence
(gr) of step functions such that g, — f in LP(R?).

But then
1f*g—fexgrll = I0f = fo)xg+ fulg = gi)lloe < N(f = fi) * gl + I1fi(9 — 90)ll o
< = fellpllglly + 1 fell,llg — gell,, =0
since || f — fill,: lg — gkll,, — 0 and || fx[[, is bounded since fj, is convergent. O

3. Convolution of L! with itself

We want to make sense of

(317) Fro@) = [ 1wt =) dy

This is possible as a Lebesgue integral when / |f(y)g(z—y)| dy is finite. But note that, integrating
d

R
this quantity in the x variable, we obtain, with Fubini

/R/R [f(W)g(z —y)ldyde = /}Rd/ﬁdﬁ(y)g(x—y)\dxdy
= [l ([ lote - lac) ay

= [ 1) ( / |g<t>|dt) dy = 11/l 2 oy 191l -
R4 R4
It follows that, if f,g € L'(R?) then

/Rd ( - [f()g(z —y)| dy) dz < +00

but then, for almost every =z, / |f(y)g(x — y)| dy is finite. It follows that (3.17) is well defined
Rd
for almost every z. Moreover, the resulting function is in L!(R?). Let us summarize this:

PROPOSITION 3.6. Let f,g € L*(R?) then
frgla)= | fly)glz—y)dy
R,

is well defined for almost every x € R, Moreover, the mapping (f,g) — f*g is a bounded bilinear
mapping L'(R?) x LY(R?) — L'(R?) and

1+ glly < A Tgllly = [1F 1 llglly-
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4. Extension principle

In this course, we will use the following general principle :

— X and Y are Banach spaces and D is a dense (vectorial) subspace of X;

— T is a linear mapping D — Y;

— T is bounded on D, that is, there exists C' > 0 such that, for all z € D, ||Tz|, < Clz| -
Then T extends into a bounded linear mapping T : X — Y with same norm: for all z € D,

Tz =Tz and for all xz € X, ’TmHY < Oz -

Of course, we then write T = T.

PROOF. Let us first extend 7" and then show it is linear bounded:

Let z € X. From the density of D in X, there exists a sequence (z,), C D that converges to x
in X. In particular, it is a Cauchy sequence. Let us show that (T'z,), is also a Cauchy sequence.
Indeed, let € > 0, there exists N > 0 such that, if p,q > N, then ||z, — z4||, < e. But then, as
Zp,Tq € D and T is linear on D,

Tz, — qu”y =T (xp — xq)”y < Cllzp — xq”X < Ce

since T is bounded on D. Now, as (T'z,), is Cauchy in Y, a Banach space, (T'z,,), has a limit
that we denote by a.

We would of course like to call @ = Tx. To do so, we need to show that, if (y,), is an
other sequence of elements of D that converges to x in X, then Ty, also converges to a. But, as
Zn,Yn € D and T is linear on D,

[Tzn = Tynlly = T(@n = yn)lly < Cllzn —yalx = Clle — 2| =0

since the norm is a continuous mapping. We thus write a = Tx.
Further, if € D the sequence z,, = = converges to z so that Tx = T'z,, — Tz and T is an
extension of T" from D to X. We will thus denote T'=T.

Let us now show that T is linear: let x,y € X and A, u € K. By density, there exist sequences
(1), (yn) in D that converge respectively to  and y. But then Az, + py, — A\x + py so T( Az, +
wyn) = T(Ax + py). On the other hand, as T is linear on D, T (Az,, + pyn) = \Tx, + Ty, —
ATz + pT'y, so

T(A\x + py) = ATz + uTy.

Finally, if z € X and (z,,), C D converges to z, then Tz, — Tz in Y and ||Tz, |y < C|lz,] y.

As norms are continuous, ||Tz||y, < C||z|/y. So T is a bounded linear mapping

Let us illustrate this:

THEOREM 3.7. Let f € L'(R?) and 1 < p < +oco. Then the mapping Ty : g — f*g extends
from C.(RY) — L> to a mapping LP(R?) — LP(R?).
Moreover, this mapping commutes with the translations .

Recall that 7,9(x) = g(z — a).

PRrROOF. Note that we have already seen that f * g is well defined when f € L' and g € L.
What we have to prove is that there is a C' > 0 such that, for all g € C.(RY), ||f * 9l o ray <

CHgHLP(]Rd)'
But this follows from Minkowski’s inequality :

Rdf(t)g(~—t) dt|| < /Rd FOllgC =Dl dt = £, llgll,-

P
Finally, when p # 400, g € C.(R%)

Tyrag(z) = f * (rag)(z) = /R JWge—t—ayar

= y fWg((x —a) —t)dt = f x g(z — a) = 7, Trg(z).
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Thus Ty7, = 7,1 holds on the dense subspace C.(R?) of LP(R?) and Ty, 7, are continuous linear
mappings on LP so the conclusion follows.
When p = +00, we can directly take g € L in the above computation. |

The extension principle works exactly the same way for bilinear mappings:

— X1,X5 and Y are Banach spaces and Dy (resp. D2) is a dense (vectorial) subspace of X
(vesp. X);

— T is a bilinear mapping D; x Dy — Y

— T'is bounded on D; x Dy, that is, there exists C' > 0 such that, for all x € D, | T'(z1, z2)ly <
Ol x, 2] x,-

Then T extends into a bounded bilinear mapping T : X; x X5 — Y with same norm: for

all (z1,22) € Dy x Do, T(x1,22) = T(x1,22) and for all (z1,22) € X1 x Xo, Hf(xl,xg)H <
Y
Cllzllx, llz2l x, - i
Of course, we then write T'=T.
5. Young’s inequality

5.1. Young’s Inequality in LP. We would now like to extend the convolution to a bilinear
mapping from C.(RY) x C.(R?) — C.(R?) to LP(RY) x LI(R%) — L"(R%). For this to be possible,
one needs to have a constant C' > 0 such that the inequality

(5.18) 1f * g

To start, we will use a simple but common trick to check for which p, ¢, r this is possible:
Fix f,g € C.(R%)\ {0} and f,g > 0 so that f* g € C.(R?)\ {0} as well. Take a parameter
A > 0 and define fy(z) = f(Az), gx(z) = g(Ax) then, changing variable s = Az

f % ga(@) = / SO0g (A = 0) dt =27 [ f(s)glhe — ) ds = X7 x gOx),

On the other hand
1/p . 1/p .
s llswgen = ([ 1r00rae) = (30 [ 1epds) = a1l e,

The same way, we have

Lr(®d) = CHfHLP(]Rd)HgHLQ(Rd)'

||9/\HLq(Rd) = )‘_d/quHLtI(]Rd) and [ fx * g>\||L7‘(Rd) S Vi gHLT(]Rd)'
Thus, if we replace f,g by fx,gx in (5.18), then
< 1S * g”LT(Rd) A(+E-3-1)
ClFN Lo ey 191l Lo ay
Letting A — 0, this implies that the power of A be < 0 while letting A — +o00, this implies that

0

1 1 1
the power of A be > 0. We have thus shown that (5.18) implies — + — = 1+ —. In other words, the
D r

conditions on p, g, r in the following theorem are necessary. We will now show that this condition
is also sufficient.

THEOREM 3.8 (Young’s Inequality). Young’s Inequality!LP spaces Let 1 < p,q,r < +oo be
1 1 1
three real numbers such that — + =~ =1+ ~. Then, for all f,g € C.(R%),
p q r

(5.19) 1 *gll, < £l N9l

It follows that the mapping (f,g) — f * g extends from C.(RY) x C.(R%) — C.(R?) into a bounded
bilinear mapping LP(R?) x LI(R?) — L"(RY).
Further fxg=g=x* f.

PRrROOF. We only have to prove (5.19).
1 1

Note that several particular cases have already be proven: when r = +o00, then — + — =1 and
p q

this is (part of) Theorem 3.5.
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1 1
When r = 1 then — + — = 2. As p,¢g > 1 this implies p = ¢ = 1 and Young’s inequality is

p
Proposition 3.6. More generally, the case p = 1 was treated in Theorem 3.5 and, by symmetry
f*g = gxf,sois the case ¢ = 1. Note finally that if p = 400, then as 1 < ¢, < +0o then
141/r =1/q implies ¢ = 1 and r = +oo which is already covered. The same holds when ¢ = +oc.

1 1
We can then assume that 1 < p,q,r < +00. We define 7’ to be the dual index of r, —+— =1,
T T

T
that is 7/ = — . Note that 2 + 1 =1+ L implies r > p,gsothat 0 < 2, 4 1 -2 19 -1,
1 P 4 " rr T T

We will use the following fact which comes from the duality of L™-L" (actually from Holder’s
Inequality) in the following way: if ¢ € L" then

lell, =su{ [ elapterde v e 2ol =1}.

But now, if f,g € C.(R%), then f % g € C.(R?) C L"(R?). Let h € L™, we want to bound

I(f,g.h / frgla
Obvously

1l < [ Ifca@ln@ldr< [ [ 1Ol =0l deat = 10719l 1)

with Fubini. We may thus replace f, g, h with |f],|g|, ||, that is, we can now assume that f,g,h >
0. We have to prove that 1(£.g.h) < /], gl 1],
Note that, as f, g, h > 0, we may apply Fubini and get

f7g7 /]Rd Rdf fﬁ_t) ( )d.%'dt

To bound this quantity we will first isolate h and apply Hoélder’s L™ — L inequality. To do so,
write f(t)g(x — t)h(x) = Fi(z,t)Fa(x,t) with

Fi(z,t) = f(t)""gle = )" and  Fy(z,t) = f(t)'"/"g(z — )' 9/ h(x)

so that

(5.20) I(f,g,h) </Rd /RdF1 (z,1) dxdt)i (/Rd/Rng(x,t)rlda:dt):l.

Note that Fy(z,t)", Fo(z,t)” > 0 so that we will be able to change the order of integration.
The first of these two integrals is rather simple to bound: using Fubini, we first integrate with

respect to x,
(/ / pg(m—tqudt)
Rd JRd
= (/ g(x)? d:c) ! ( f)r dt> ’
R4 R4

(5.21) = 715 lgllg -

The second term is more involved. First

v % = (A—p/r)r’ _ n\(1—q/7)r’
</Rd/Rsz(x,t) dxdt) </Rd/Rdf(t) gz —1t) h(z)" dtdx)

< (sw f<t><1—f’/”r’g<x—t><1-q/’">r’dt)"( ey d )
R

zeRd JRA

(/ Fi(x,t)" dx dt) '
Rd JRd

s

U=

(522) — Hf(l_P/T)T‘/ g (1—q/r)r’ Hh”
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1 1
We next introduce a parameter s to be determined soon and s’ its dual index — + — = 1.
s s
Then from Theorem 3.5 we know that

(523) Hf (1—p/r)r’ (1 q/r)r’ Hf (1—p/r)r’ g(lfq/r)r'
As we want an estimate with | f[|, this leads to the choice s (1 - ]3) r'=p. Asr’ = ! T ve
r r—
thus have (1 — 22) =" _11? so that we chose
r _
r—1
s= .
r—p
Remember that » > p > 1 so p < s < +00. The dual index is then
s = s _ (T — 1)}7 _ le
s—=1 ripp=1)
thus
(1-3)r = (=3 =(1-7)7
r r
o 1 1 P q 1 q
But, multiplying 1 + — = — 4+ — by ¢ and rewriting it gives 1 — = =¢ (1 — — —. Finally
r P 4q r p p

(1 - Q) r's’ =q.
r

The choice of s then implies that

_ ( f($)(17p/r)rls dZE)
R

1

([ sras) = s
s (/Rd 9@~ da ) = (/Rdg(x)de> "= gl

Injecting this into (5.23), we get

3

H Fa=p/rr’

S

while

o
—

H ga—a/nr’

H Fa=p/nr g(=a/r)r’

< p/s Q/S/'
<Al

From this, (5.22) reduces to

1
7

U/&MNM)qWMW“MW
R4 JR4

Finally, with (5.21), we get that (5.20) reduces to

I(f,9,h) < |Iflly

q q
amca
p r’

It remains to notice that

1 11 1 r—1 r—p pt+r—p 1
r r's r r (r—l)p_ rp p
11 1 .
and that f—i——/—, = —. In conclusion we have
S q

/ f)g(e —t)h(x)dzdt < [|f]l,lgll, [P,
R4 JRd

for all h e L"". Tt follows that, for all f,g € C.(R%),

I1f =gl < 11, lgll,-
The extension principle then shows that f % g can be defined on LP x L9. O
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1 1 1
REMARK 3.9. If — 4+ = =14 = > 1 then f x g is a priori not defined by / f@)g(z —t)dt.
P q r d

R
One needs to approximate f and/or g by a sequence of functions that converges to f and ¢ in
LP and L7 respectively and for which the above definition makes sense.
To do so, write fx = f1jf <k so that fi, — f in LP. Further, fi € L° for every s > p. But
1

1 1 1 1 /
4+ =1 + — can be rewritten as — — — = 1 — — = — so that ¢’ > p. In particular, f;, € L?.
p r q

But then fj * g(z / fe@®)g(z —t)dt. As frxg— f*gin L" we conclude that
frgla Zkgffoo/ FO1p1<k(t)g(x — t) dt.
2. Young’s Inequality in weak-L?.
THEOREM 3.10 (Young’s Inequality in weak LP spaces). Young’s Inequality!weak LP spaces
Let 1 < p,q,r < +00 be such that % + é =1+ % Let f € LP(R?), g € LI (R?) then f * g eists
a.e. and f*g € L7 (R?) with

||f*9||L;U < Cpar

where Cp, 4 » @5 a constant depending only on p,q,r.

Fllzellgllg,

PRrOOF. It is enough to consider f,g > 0.
The proof is based on properly splitting g = g1 + g2 with g1 = gly<am and g2 = g1g> . Then

d. (o) 0 ifa>M and d,, (o) dg(o) ifa>M
o) = Il Q) = .
7 dg(a) —dg(M) otherwise 92 dg(M) otherwise

As fxg= fxg1 + f*ge is a sum of two non-negative functions,

{z: frglx)>a}C{z: fxgi(z)>a/2}U{x : f*ga(x) > a/2}
thus
drg() < dfrg, (0/2) 4 dfsg, (a/2).

It remains to estimate each of dy.q,, df.g,. We will fix a and chose M depending on «.
First, as g1 is the small part of g € LY it will be in every L*, s > q:

/]Rdgl(x)sdx S/+O<> a*td,, (o) da

—dy(M)) da

< s | a7 gl da — Mdg(M)

/M
b

S
= M4 a — M3d, (M) < ——M*79|g||5a
oM gl — My (M) < 2 gl

Further, as g is the large part of g € L9 it will be in every L*, § < ¢:
~ +m ~
/ g2(x)° dx 5/ a*tdy, (o) da
Rd 0
M ~ +oo
= 5/ as_ldg(M)da—i—é/ a* "ty (o) da
0

M

+oo
< M40 +5 [ gl da
;

= M?d,(M)

q 5—
< —L_MTg|)e,.
< gy,
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1 1 1
Since — = — + ~ we have 1 < ¢ < p’ so that we can chose 5 = 1 and s = p’. We then apply
r
Holder’s inequality (the “trivial” case of Young) to obtain that

/

1/p’
p /_
g1 (@) < Il lgall < (p, " q||g||zgu) .

We can now chose M to be small enough for
1/p’
P’ " a
Mp q Tq P — —
(bl ) Wl = 5
which will imply that dy.4, (a/2) = 0. In other words, we chose

p’ T

i o —q e
M =C(p, o= fll " llgl s

where C(p, q) is a constant depending on p (p’ actually) and q.
Next, the choice 5 = 1 shows that go € L' and Young’s inequality implies that f * g5 € LP
with

q 5
1S * galle < [Ifllzrllgallor < ﬁllfHLpMs NgllTs -

But then
dfsg(a) < dpagy(af2) < IS % g2llr /)
p
q 5— _
< 2 p M5 Q(I p
< (2Ll ) o
1 1Ze Nl
< Clpgr)———*
a
where C(p, g, ) is a constant depending on p,q,r. O

EXERCICE 3.11. Prove the result in the case p = 1.

One can actually prove a little better. Fix g € L9. Take 1 < p; < p < pa < +oo and define

1
r1,72 via — + — = 1+ —. We have just shown that, if , the operator T, : f — f * g is of weak
pi q T
1 0 1-46 1 6 1-90
type (p;,r;). Define 0 < 6 < 1via — = — + and - = — + then p, r are related by
P D1 P2 r 1 ]
1 1 06 1—-6 6+1-6 1 1 1
—t-=—+ + 0<1+)+(19)<1+)1+.
p qg D1 b2 q 71 T2 r

Using Marcinkiewicz interpolation, T extends to a bounded operator LP — L”, that is:

COROLLARY 3.12 (Young’s Inequality in weak LP spaces). Young’s Inequality/weak LP spaces
1 1
Let 1 < p,q,r < +00 be such that % + - =1+ —. Let f € LP(RY), g € LI (R?) then f * g exists
q T
a.e. and f* g € L"(R?) with
1 #gllir < Crgr 7L o gl
where Cp, 4 » 45 a constant depending only on p,q,r.
REMARK 3.13. Young’s inequality fails in some of the end points:
—Ifg=1and 1 <p=r < oo, one can consider f = 1jg ) and g(x) = |z| =% then f % g = +o0
on [0,1].
~Ifr=+oc0and 1 < q=p’ < +oo, consider f = (|z[*/?log|z|)"*1|;>2 and g = |z|~1/7 then
f*g=+o0on [—1,1].

DEFINITION 3.14. Given 0 < a < d and f € S(R?). The Riesz Potential of f is defined by
f(y)
(e = [ 2

——dy.
Rra [T —y|* Y
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COROLLARY 3.15 (Hardy-Littlewood-Sobolev Inequalities). Let 0 < a < d, 1 < p < d/a and

d
= pa_ Then there exists a constant C = C(d,«,p) such that, for every f € LP(R?),
—ap

Mo ()l L@y < ClIf I Le@ay-
Equivalently, if % + 9+ % = 1 then there exists a constant C = C(p,a,d) such that, for every
f e LP(RY) and every h € L™ (R%),
[ | f@lo = vl hi) dody < CUFl ool
Rd JRd

ProOOF. Consider the function g defined on R? by g(z) = |2/~9T and notice that g €
L4/ (R%). Tt remains to apply Young’s Inequality with 1 < p < d/a, ¢ = d/(d — a) and

and that the
P

1
to notice that 1 < ¢ < +oo, while 1 + = = 1% + Ta gives precisely r = y P
r

condition 1 < p < d/« is then equivalent to 1 < r,p < +o0.
The second inequality follows the first one by duality. O

6. Regularization

6.1. Spaces of smooth functions: C°(RY) and S(R?). Spaces of smooth functions will
play a key role in the sequel. The first space we consider is the following:

CX(RY) = {f € C®RY) : IR > 0s.t. f(z) =0if ||z| > R}

the space of smooth functions with compact support.
One may wonder if such functions actually exist so let us start by giving an example:

if x <
EXAMPLE 3.16. Let g be defined on R by g(x) = 0 | 1 z2<0 . Then g is clearly C* on
e /7 ifr >0
P
R\ {0}. Moreover, for every k, there exists a polynomial P, such that ¢*)(z) = ;g:)g(x) when
x # 0.
Indeed, the formula is clearly true for £k = 0. For k = 1, ¢’(z) = 0 when & < 0 while
1
g (x) = 7*2671/‘76 so that the formula is also true for k& = 1. Assuming ¢(*) is of that form up to
x
some rank k£ > 1 we get
P/ (z) 2k Py (x) Py (x) 2P| (z) — (2kx + 1) Py (x)
g(kJrl)(z) = #g([ﬂ) - 22k+1 g(ﬂ?) 72k g/(x) = . 72k+2 g(SC)

and if Py is a polynomial, so is P41 () := 22 P (z) — (2kz + 1) Py (x).

Alternatively, one may also show that ¢(®) (z) = Qi (1/x)g(x) with Q}, a polynomial.

Next, it is clear that g is continuous at 0. Assuming g is of class C*~' on R, as ¢*)(z) =
Py ()

22k

g™ (2) — 0 when = — 0~. Tt follows that g(*) extends by continuity at 0 so that g(*~1) is of class
C', thus g is of class C*.

Finally define f through f(z) = g(1 — ||z — a||?/n?) and note that g is clearly C*° (taking the
euclidean norm) and that f(z) = 0 when 1 — ||z — a||?/n? < 0 that is, when |z — al| > 7. Thus f
is C* supported in the ball B(a,n).

e /% we get that ¢*)(2) — 0 when = — 01 and as ¢®*)(2) = 0 when z < 0 we also get that

0 ifz<0

. . Next, we define
e /T ifr >0

EXAMPLE 3.17. We still consider g defined on R by g(z) = {

() 0 for x <0
glxr —1/x
h(z) = = < forO0<z<1.
2+ g(1 — e—1/% fe—1/(1-2)
g(z) + g( ) : for z > 1

As g(z) + g(1 —z) # 0 for all z, clearly h is of class C*> on R.
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Next, we define B(z) = h(2 + x)h(2 — x) which is clearly C>°. Further, for |z| > 2, one of
24xz,2—xis < 0so B(z) =0. For |z| <1, both 24,2 —x are > 1 so that h(2+z) = h(2—2) =1
and B(z) =1. Finallyas 0 < ¢ <1, 0 < B < 1. Tt follows that:

The function B is a smooth bump function:
— B is C* with support [—2,2] and,
— B(x)=1forze[-1,1] and 0 < B < 1.
Note that given a < b < ¢ < d there exists a function B € C* such that B =1 on [b,¢|, B =

0
outside [a,b] and 0 < b < 1. To do so, one choses B(x) = h(a + fz)h(y — dz) with 3,5 > 0,
v —dd=a+ Pa=0and a+ b=y — dc=1. The choice is thus

—a 1 d 1

T B= TTa—e 6:d—c'

Note that one may tensor such functions: B(z1,...,z4) = H?Zl B;(x;). Then, if @1, Q2 are two
cubes with the closure of @)1 in the interior of Q2 (so that the boundaries don’t touch) then there
exists B € C* such that B(z) =1 on 1, B(z) = 0 outside Q2 and 0 < B < 1.

It should be noted that once we have an element of C°, we get many others:

LEMMA 3.18. Let ¢ € LY(R?) and f € CZ(R?) then ¢ x f € C®(RY) and, if ¢ is compactly
supported then so if o x f € C.(R?).

We will define the support of ¢ € L!(R?) in a precise way later on, here we simply mean that
there is an R > 0 such that ¢(z) = 0 whenever |z| > R.

PROOF. Indeed, if f € C°(R?) then f is bounded so that ¢ * f(z) = / e(t)f(x —t)dt. Set
Rd

F(xz,t) = ¢(t) f(x—t) and note that, for ¢ fixed, x — F(x,t) is C* (unless |p(t)| = 400 so this is true
for almost every t). Further for every a € N4, 92 F(x,t) = ¢(t)0%f(x —t). But 0“f is continuous
with compact support so that it is bounded [0%f(u)| < C,, thus |02 F(x,t)| < Cule(t)| € L*(RY).
Lebesgue’s derivation theorem then implies that ¢ * f is of class C* with 0%(p * f) = @ * 0% f.

Finally, if ¢ and f are both compactly supported, there is an R such that, if |¢| > R and
|u| > R then ¢(t) = 0 and f(u) = 0. But then, if || > 2R and |t| < R, | — t| > R. It follows
that, when || > 2R, F(z,t) = p(t)f(z —t) = 0 for all ¢ € R thus

Rd
and the proof is complete. O

Although C.(R%) is a large class (we will even see that it is dense in every LP(R?) space with
p < +00), this class is too small to contain a function like the Gaussian. We will thus define a
larger class that has almost the same property. To do so, for o, 5 € N¢ and f : R? — C, let

Pas(f) = sup [z°0° f(x)].
zERY

DEFINITION 3.19. The Schwarz class is the set
S(RY) = {f € C*(R?) :Va, B € N po s(f) < +00}.

The Schwarz class is thus the space of all smooth functions such that all derivatives have
fast decrease at infinity (i.e. faster than any polynomial). The class is not empty as obviously
C*(RY) c S(RY).

EXAMPLE 3.20. Let f be a Gaussian on R?, f(z) = e‘“”‘””z, a > 0 (the norm is the Euclidean
norm). Then f € S(RY).

For simplicity, we will show this for d = 1 and a = 1/2 so f(z) = e~ /2, Then, for every k,
there exists a polynomial Py, such that f(*)(z) = Py(z)e=*"/2. This is clear since Py = 1 and, by
induction, f*+V(z) = (P{(z) — ka(x))eﬂ”Q/2 and Pyy1 = Pj(x) — zPy(x) is a polynomial if Py
is. Finally, xNPk(x)e_$2/2 is clearly bounded.
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It should be noted that the choice of p, g to define S (R?) is somewhat arbitrary. We may as
well take m,n two integers and define

P (f) = sup (1+ [z[*)™ Z

d
z€eR 18]<n

o8
S|

Then if we notice that (1 + |z|?)™ is a polynomial of degree 2m
(1+ |z*)™ Z Ca
la|<2m
and C' = max |c,| then
Brn(f) < Y2 leal D sup [a%0° (@) SC Y0 > paslf
loj]<zm  |B]<n TR la|<2m |B|<n
On the other hand,
o] = o] < ]2 < 2l < (1 ).
For the last inequality, one checks separately the cases || <1 and |z| > 1. But then
Pap(f) < Doy, (f)-
It follows that
S(RY) = {f € C®°(RY) : Vm,n € N, ppn(f) < +oo}.
This change of “semi-norm” is sometimes convenient, for instance for the following lemma

LEMMA 3.21. For every 1 < p < oo, S(RY) C LP(RY).

ProoF. The lemma is trivial when p = +o0 since po,o(f) = || f|l
For other p’s we will use the fact that, integrating in polar coordinates

“+o0 d—l
—drdog_, (0
/Rd 1+|x|2 /S/ 1+ r2)r 7074 1(0)

if 2k > d. It follows that, if

Pdp — 2 ) — s e
L@ s = [ 10+ Py @ 5w <ol [ g <+

a1 +o0 7adfl
=04-1(S" ——dr <+
0d 1( )A (1 +T2)K r o0

It is now easy to prove the following that we leave as an exercice

PROPOSITION 3.22. Let o € N, Xy € C, T € GL(R?) an invertible linear transformation.
Then

—if f,9 € C(RY) s0 is \f + pg, foT, fg, z*f, 0“f;
—if f,g € SR?) sois A\f + pg, foT, fg, a“f, 0*f.

Let us now extend Lemma 3.18 which shows that we can add f * g to the above list.

LEMMA 3.23. Let 1 < p < oo, p € LP(R?) and f € S(R?) then ¢ x f € C*®(R?). Further if,
for every a € N4, t*p € LP(RY) then ¢ * f € S(R?).

The second part of the lemma is satisfied if o is compactly supported or if ¢ € S(R?).
PROOF. The general scheme of proof is the same as for Lemma 3.18. Note that, as S(RY) C

LY (RY), 1/p+1/p’ =1, we have ¢ * f € L°(R?) and

oo f@) = [ oOf@=na

For p = 1, there is nothing to change: we again define F(t,z) = ¢(t)f(z — t) and, for every
a € N OOF (t,2) = @(t)0% f(x — t) so that [09F (t,2)| < pa.o(f)|e(t)| € LY (R?). By Lebesgue’s
Differentiation Theorem, ¢ * f is of class C*™ with 0%(¢ * f) = ¢ * (0*f).



6. REGULARIZATION 41

For p > 1, this can not work and we need to use the fact that f has some extra decrease that
can compensate the fact that ¢ ¢ L. First, note that it is enough to show that ¢ * f is of class
C® on the ball B(0, R) with R arbitrary. So assume that |z| < R

p(t) A+t

OeF(tx) = OS2 =) = Ty (T 4 o — 2)a

(1+ |z =t f(x —t).

First, as (1+ [t[2)~¢ € L (R?) (it is in all LI(RY) spaces, ¢ > 1) and ¢ € L?, Holder’s inequality

|p(8)] 1
h that ®(t) .= ————— € L (R%).
shows that ®(t) (1+|t\2)d€ (R%)
Next (1+ |z —#*)!|0° f(z = )| < pajal(f).
Finally if |[t| > 2R, and || < R, |z —t| > |t| — |x| > |t| — R > |t|/2 so that

2\d 2 \d
U < (L) <

(1+]z—t2)4 — \ 1+ |t]2/4
while for |t| < 2R,
(1 + [t d
m < (1+2R)%.

Assuming R > 2, we get that this bound also holds for |[t| > 2R and finally
02 F(t,2)] < fujal (F)(1+2R)'D(1) € L' (R).

By Lebesgue’s Differentiation Theorem, ¢ f is of class C* with 0%(p* f) = ¢ (0“f) on B(0, R)
and as R is arbitrary, the same holds on R?.

It remains to prove that, for all a, 3, 0% (p * f) = x%p * (0% f) is bounded. As f € S(R?)
implies that 9° f € S(R?), it is enough to consider the case 8 = 0. But now, define M(t) = t;3(t),
then

i+ () = /}Rdgo(t)xif(m Cydt = /R o) (@i — 1) (@ — 1) dt—i—/Rd tio(t) f(z — 1) dt
=@*x M;f + Mo * f

which is bounded since M;p € LP(R?) and M;f € S(R?). An induction on the length of o then
shows that, for every a € N¢, 2%p % f is bounded. O

REMARK 3.24. A careful examination of the above proofs shows that, for ¢ € LP(R%) and
f € CF(R?) such that for every a with |a| < k there is a x > 0 such that (1 + [t[2)™* € L?' (i.e.
2kp’ > d) and (1 + [t|>)*0%f € L™, we have p x f € Ck.

6.2. Regularization by convolution.

THEOREM 3.25 (Approximation of unity). Let 1 < p < +oo and j € S(R?) be such that j > 0
and [, j(x) dz =1. For s >0, denote by js the function defined by j,(t) = s~j(t/s).

Then, for every ¢ € LP(RY), ¢ * j, € C°(R?) and ¢ * js — ¢ in LP when s — 0.

For p = 400, L™ has to be replaced by Co(R?): for every ¢ € Co(R?), ¢ * j, € C®(R?) and
p * js — @ uniformly when s — 0.

Proor. We will only give the proof for 1 < p < +00. We leave to the reader the case p = +oc.
The only thing that one needs to use is the fact that functions in Co(R?) are uniformly continuous.
Let us first note that js € S(R?) and that

/Rdjs(t)dtz Adj(t/s)s*ddt:Adj(r)dr: 1

with a change of variable r = ¢/s. In particular, ¢ * j, € C®(R?).
Next, j, € L?' (R%) with L+ =1, 50 that

% ja() = /R ult)ele — 1)t
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But then

p(x) — ¢ * js(z)

f@) [ dode= [ e
= [ a0t~ oo = 1) .

From Minkowski’s inequality we deduce that
lo=oxiil, < [ GuOlle - ol dt.
Rd

Now fix ¢ > 0. As p < +o0, we have seen that || —7¢l, — 0 when ¢ — 0 so that
there exists 7 > 0 such that, if |t| <, |l¢ —7¢l|, < e. When [¢[ > n we can simply use that
le — 7l < 2[lll, We then write

A

lo—xill, < / 50l - mpll dt + / 50l — el dt
[t|<n [t|>n

: / Ju(t) dt +2] g, / ja(t)dt.
R4 [t|>n

It remains to recall that [y, js(t)dt = 1 and to notice that

/t|zn fa(0)di = /“217 sTi(t/s)dt = /TZWSj(r) dr =0

when s — 0. In particular, there is an %’ such that, if s < 7/, 2||<p\|p/ Js(t)dt < e and then
[t]>n

IA

||<P_<,0*jsHp§2€- u

Again, the hypothesis can be weakened without changing the proof. To do so, we may assume
that (js)s>o is a family of L!(R?) functions such that

(1) there is a constant C' > 0 such that, for all s > 0,

/ js(x)de =1 and / l7s(x)|dz < C.
R4 Rd

(2) For every n > 0, flw\>n |7s(z)] dz — 0 when s — 0.

Such a family is called an approzimation of the identity (and sometimes a mollifier).

COROLLARY 3.26. The space C°(R?) is dense in every LP(RY) space with 1 < p < +oo and
thus so is every space containing it like C.(R%) and S(R?).

PROOF. Let f € LP(R?) and ¢ > 0. Let j € C°(R?) and j4(t) = s~4;(t/s) First, for R large
enough Hf— flngH < e. Next there exists s such that Hf1|x|§R — (f1jz<Rr) *jSH < e. But
then ||f — (f1ljz<r) *js|| < 2e and (f1,<g) * js € C°(RY). O

REMARK 3.27. One has to be careful with the density of C.(R?) in LP(R¢). The proof given here
relies on approximation of unity. This in turn relies on the fact that translations are continuous.

We have proven this last fact by first proving it for characteristic functions of cubes, from
which we deduced the fact for simple step functions. Then we concluded that translations are
continuous by density of step functions in LP. Our proof is thus not circular.

It turns out that it is simpler to prove that translations are continuous by first proving this
fact for functions in C.(R?) and then using the density of this last step. The approximation of
unity theorem then allows to prove that C°(R?) is dense in LP, but the density of C.(R?) then
needs a different proof.



CHAPTER 4

Some Fourier analysis

The aim of this chapter is to recall some facts about Fourier analysis and complex analysis
that are needed in this course.

1. Fourier Transforms
1.1. The L'-theory.

DEFINITION 4.1. For f € L'(RY) we define the Fourier transform of f, and denote it either
by f or Ff, the function defined on R by

FIfE) = (&) = . Fz)e 28 qg.

Let us start with a fundamental example:

ExAMPLE 4.2. Let a <b € R and f = 1[,4. Then if { # 0,

b
. -1 . _
_ —2imxé dr = —2iwb§ _ —2imaf
= e r = ——\€ (&
fo = [ 5g )
p2imSEE J2imbtzee  —2imbzo
N € 2
— rimghe sinm(b— a)g.
S
A b
When £ =0, f(£) :/ dzx =b—a.
a
1 ift=0
It is convenient to introduce the function sinct = < sint . Note that this is an analytic

— ift#0
function.
If we write ¢ = %2 for the center of the interval [a,b] and ¢ for its length, ¢ = 2r then

2
f(f) = Le?™ ¢ ginc wlé = 2re®™ sinc 27r€.

d
Let us now notice that, if f is a temsor function f(xi,...,2q) = Hfj(xj), then so is
j=1

d
fr f&,...,&) = J] fi(&). This follows directly from Fubini’s Theorem and the fact that
j=1
d
e 2im(@,€) _ p=2m T wi€ _ H e~ 2imi&;
j=1
d d
Now, for Q = H[aj,bj] a cube, write {; = b; — a; for its side length, |Q| = Héj for its
j=1

Jj=1
d

volume, ¢ = (‘“—;rbl, e %) for its center of gravity. Let f(x) = 1g(z) = H (4, b;1(z;) then
j=1

d
f(f) =1Q| e2im(ed) H sinc ml;&;.

j=1

43
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Note for future use that f € Co(R?).

Let us now start detailing properties of the Fourier transform. First, it is well defined. Indeed,
let F(x,&) = f(z)e=27(®€), Then, for z fixed, £ — F(z,&) is continuous. Moreover, |F(z,¢)| =

|f(x)] € L'(RY), it follows that f(£) = /d F(z,£)dz is well defined and continuous. Further,
R L

fol < [ 1P@olde= [ 1@ de = 17l ey

As f — f is clearly linear, this shows that this mapping is bounded L'(R?) — C,(R?), the space
of bounded continuous functions on R%. Actually, a bit more is true:

THEOREM 4.3 (Riemann-Lebesgue Lemma). The Fourier transform F is a bounded linear
mapping L'(R?) — Co(R?) with || F [l < [If]];-

ProOF. We have already seen that JF is a bounded linear mapping L*(R?) — Cy(R?) with
| Ffllo <IIfll;- It remains to prove that Ff € Co(R%) when f € L'(R?).

This is indeed the case when f = 1, @ a cube, thus also when f is a (finite) linear combination
of such functions, that is, when f is a step function. But step functions are dense. Thus, if
f € L*(RY), there exists a sequence fi of step functions, such that || f; — f|;+ — 0 when k — occ.
But then

IFf = Flullo = IF(f = fillo < I = filly = 0.
In other words, Ffx — Ff in Cp(RY). As Ffi € Co(R?) which is closed in Cy(R?) (see the chapter
on convolutions for a proof), we get that Ff € Co(R?). O

A SECOND PROOF. There is an alternative proof of the fact that f(£) — 0 when & — +oo.
First note that —1 = e~ ™ = ¢~ 2 (¢/2161%.€) tpyg

2f(§) = f(x)e 2@ qg — ) Ftwe2m(6/2167.6) o= 2im(z.6) g
Rz R

= | f@e i@ a— [ pla)e i) gp
Rd Rd

_ B _ & ]| 2t
- /Rd[f(x) f(x 2|£2>}e2 & dz.

. 1 .
In other words, (&) = 5]—'[]‘ — T¢21e2f1(€). Tt follows that | f(€)] < || f — T§/2|§|2fH1. Now letting

|¢| — oo and using the continuity of a — 7, f from R? — L'(R%) shows that |f(¢)| — 0.
Recall that this continuity required the same density argument. O

Let us now list the main properties of the Fourier transform. To do so, we need to introduce
some notation. For a,w € R, X\ > 0, T € GL,(R?) (a d x d invertible matrix) and f a function
on R?, we define new functions on R?

Taf(2) = flw = a), Muf(x) = e 2790 f(x), 6:f(2) = f(A2), Arf(z) = f(T™ a).
Note that 7,, M, 65, Ap are continuous linear mappings LP — LP for every p.

PROPOSITION 4.4. Assume that f € L*(R?) then

- ]:[Taf] = Ma]:[f], ]:[wa} = wa]:[f]’

— Foaf] = A=UF[01/f] and more generally F[Ar f] = | det T|Ap-1): F[f].

— If &f € LYR?) then f admits a continuous partial derivative in the &; direction with

ggj@ — —2inFla; £1(©)-
—If f is C* with % € LY (R%), then f{(%ﬂ (&) = 2im&; FIfIE).

—If f,9 € L'(R?) then F[f * g = F[f]Flg].
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PrOOF. The first 4 follow from a simple change of variable
— changing variable y = = — a,

Flra fI(§) = » F(z — a)e~2m@E) dp = 9 Fly)e=2imu+ad) gy

— e—QiTr(a,f) / f(y)e—ZiTr(y,E) dy — 6_2iﬂ<a’£>f(f).
Rd
— the next one is even easier
FIMAE) = [ flae e min0 qn = [ fa)e im0 da = fig+).
Rd

— changing variable y = Az,

]:[5)\.]0](5) = - f()\sc)e—2i7r(:c,€> dz = )\—d /Rd f(y)e_%ﬂ@/)\’f) dy

[ fly)e TSN dy = A€/ N).
Rd

It is a particular case of the following;:
— changing variable y = T~ 'z, = Ty

FlArfI(§) = » F(T 1 2)e ™0 dg = | det T /Rd Fly)e=2mTu8) gy

= 1aetT| [ )T dy = |dee T,

—~The next two ones are slightly more subtle. First assume that x;f € L'(R4) and consider again
F(x,€) = f(x)e 2™ @8 Then, for x fixed, £ — F(x,&) is of class C, |F(x,&)| = |f(z)| € L' (RY)
and

’8F
29

It follows that f(¢) = F(x,¢)dx is differentiable with respect to &; with
Rd

(z,8) ‘ = ‘ 2imx; f(x)e _2”@”’5)‘ = 2r|z; f| € L*(RY).

gé (&) = /R ) gg (z,6) = /R ) —2imx; f(x)e 28 A = F[-2imx; f](€).
aof

— Now, assume that f € C!, f, % € L'. To simplify notation, we will take j = 1. Note that, from
J

Fubini’s Theorem,

/Rd|f(x)\dx:/d71 <A|f(x1,x2,...,xd)|dx1> dzg -+ -dzg < +00

so that / |f(z1,22,...,24)| dz1 < +o00 for almost every (xa,...,24). The same is true with

af
¢;

replacing f. If two properties hold almost everywhere, they jointly hold almost everywhere. We
may thus take an (z9,...,24) such that

0]
/\f(xl,x27...,md)|dx1<—|—oo and / f(ml,xg,...,xd) dri < 400
R 85]
and almost every (z3,...,x4) is like that. The fundamental theorem of calculus then shows that
T 8f
flzr, 20, .. 2q) = f(O,29,...,24) + (t,zo,...,xq)dt

o 0§

+oo 8f
— f(0,zq,...,2q4) + ——(t,xa,...,xq)dt

0 agj

when x; — +oo. Thus f(z1,z2,...,24) has a limit in +oo. But then / |f(z1,22,...,2q)|dz1 <
R

400 implies that this limit is zero.
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Next, write z,& € R? as = = (21,7), & = (&1,€) with z, & € R, Integrating by parts,

0 , 0 . s

/ 875-]01(x17 i)efmw(x,g)dml _ 851 ($17 £)672z7rm1§1 dxle—21ﬂ<x,§>
— e_2m< z.£) [f(ml,f)e_giﬂllgl}

“+ o0

— 00

+2imé&y / flay, f)e_%“‘”151 dxlefzi”@’a
R

2i7r§1/f(m1,§:)e_2”(z’5> dz;.
R

It remains to integrate with respect to the d — 1 remaining variables and to use Fubini.
The last property is a direct consequence of Fubini and the change of variable u = x — y

Flfgl(§) = /Rd N FW)gla — y) dy e 2@ dg
= / / o2 (@.8) (4 dy
= / / —2z7r(u+y &) du dy
= / / _2”"<u &) due™ 2im(y,&) dy
= / —zm (y,€) dy = B(é)g(g)
as claimed. .

We can now give as a second example the case of the Gaussian:
EXAMPLE 4.5. Let f be the Gaussian defined for z € R by f(z) = e~ then f(¢) = e "¢

Indeed, first note that f(0) = / e~™" dz. But then, using Fubini in the first line and changing
R

to polar coordinates:
f(0)?2 = / i dx/ -y dy = / e~ (@) 4y dy
R2

“+o0 27
/ / e~ d6r dr

/ 2rre” ™ dr = [—6_7”"2]6”’0 =1
0

As f(0) is the integral of a positive function, f(0) > 0 thus f(0) =

Next, note that f satisfies the differential equation f’ = —2mxf thus F[f'] = —2xF[zf]. As
clearly f is C! with f,zf, f' € L' we can use the above properties: f' = —2inF[zf] F[f'] = 2inf.
It follows that f satisfies the differential equation ( f ) = —2n¢ f which is the same equation as the
one satisfied by the Gaussian. Thus f: cf. Comparing values at 0, we get f: f-

In higher dimensions, we immediately get that, if v(z) = e~ ™" then 4(¢) = e~ "l¢°. The
result is more general

EXAMPLE 4.6. Now, let A be a positive definite symetric matrix and define f on R? through
flz) = e~ ™(Az,2)  Then f(g) — det(A)71/26—7T<A71m)z>‘

Indeed, as A is a real sumetric matrix, it is diagonalizable in an orthonormal matrix, A = PAP"
with A a diagonal martrix and P an orthogonal matrix. Write A = diag (A1,...,\g). As A is
positive definite, the A;’s are > 0 thus we can write A\; = u?. Then define B = Pdiag (1, . . . , ptq) P
and notice that B® = B and that A = B? = B'B. It follows that (Ar,z) = (B'Bz,x) = |Bx|?.
As the p;’s are > 0, B is invertible thus f(z) = v(Bz). It follows that f € L'(RY) and that
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f(x) = |det B-Yy(B~'z). But B~* = Pdiag (1/p1,...,1/puq)P" is symetric with (B~1){B~! =
(B~1)2 = A~ thus |det B~!| = det(A4)~/2 and
|B~'z|> = (B '2,B"'z) = (B™")'B 'z,z) = (A" 'z, z)
It follows that f(&) = det(A)~1/2e~ (A .x)

1.2. The inversion formula and the Fourier transform on S(RY). We are now going
to show that the Fourier transform can be inverted and that it is (almost) its own inverse. To do
s0, let us start with the following simple observation:

Assume that f,g € L'(R?), then fg¢e Co(R%) so that f§ and gf are both integrable. But as

/ / F@)g(w)| dydz = | fll 219l < +oo,

Fubini’s theorem shows that

/ f@)i@)de = / F(@)g(y)e 2@ dy da

(124) = [ o) [ f@e 0 dndy = [ gw)i) dy.
Rd Rd Rd
Let us now replace g by M_ g so that g is replaced by 7,g. We get
(1.25) [ #@ita-w)dz = [ o) ay.
Rd Rd

The right hand side looks like a convolution and is indeed g * f when g is even. Let us take as
an example g(y) = e~™I" so that §(z) = A I#/A” Write vy (z) = A=%e~ /A Then (1.25)
reads

(1.26) f *’7)\((,0) — / e—7r|>\y\2f.(y)€2m(w,y) dy.
R

Now, since v € S(RY), according to Theorem 3.25, f * v» — f in L'(RY). In particular, if
fi, fo € LY(R?) are such that fi = f then fi % vz(w) = fo * ya(w). Letting A\ — 0 shows that
f1 = f2- In other words, the Fourier transform is one-to-one.

What about the right hand side? Note that e~ f(y)e2m (@) —5 f(y))e2™ @) when A — 0.
Further, as |[e~"M/° f(y)e2im@)| = |e=MI f())| < |f(y)|, if f € L} (R?), we can use dominated
convergence and obtain the following theorem:

THEOREM 4.7 (Fourier inversion formula). The Fourier transform is one-to-one L'(RY) —
Co(R?). Let f € L*(R?) be such that f € L*(R?), then f € Co(R?) and

fla) = [ Fer=ien ag

PrOOF. We have not fully proven the above theorem, we have only shpwn that thAe inversion
formula is valid in L' (R?). The observation is that the right hand side is F[f](—z). As f € L*(R%),
Riemann-Lebesgue’s lemma implies that the right hand side is in Cy. Now f*7, — fin L' thus has

a subsequence that converges almost-everywhere, thus f is almost everywhere equal to F|[f](—z) 1.e.
is in the same class as a Cy function. Our convention is that we chose f to be this Cy function. [

The Fourier inversion theorem shows that the Fourier transform is almost its own inverse, this
explains the very symetric properties we have already observed in Proposition 4.4.
REMARK 4.8. If f = 1{_; 1) then f =sinc2nt ¢ LY(R). It follows that /f(é“)e%”g”: d¢ does
R

not make sense. We will see below that

S -~ .
lim /Rf(f)eQ“TE”” d§ — 11 ()

R,S—+4o0

in L2. Actually,
R

lim / F()e¥ e de — 11_, ()
—R

R— 400
is valid pointwise, excepted at the jumps +1. Note that we now integrate over a symetric interval.
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REMARK 4.9. It is important to have in mind that the Fourier transform is not a bijection
LY (R?) — Co(R?) as there are functions in Co(R?) that are not Fourier transforms of L' functions.

Now, let f € S(R?). For every a € N4, 2 f € S(R?) C L}(R?). Tt follows from Proposition 4.4
that f € C>(R%) and oo f = (—2im)lel Flz® f]. Further as 2 f € S, for every § € N4, 9%(zf) €
S ¢ L*(R%). Applying again Proposition 4.4 we obtain that ##9f = (—2ix)ll=181 F[58 (x> f)].
But then, Riemann-Lebesgue’s Lemma implies that F[0” (2 f)] is in Cp, in particular, it is bounded.
We have just shown that, f € C>°(R%) and that, for every a, 8 € N?, 289 f is bounded, that is,
that f € S(RY).

Finally, as S(R?) C L!(R?), the Fourier inversion theorem applies to every f € S(R?) and for
such an f, f(z) = F[f](—z). Writing Zf(y) = f(—y) and noticing that Zf € S(R?) and that
FIfl(—z) = FIZf)(x), we see that every f € S(RY) is the Fourier transform of a function in the
Schwartz class. We have thus shown the following:

THEOREM 4.10. The Fourier transform is a bijection S(R?) — S(R?). The inverse map is
given by F1[f](§) = FIf1(=£)

1.3. The L?-theory, Hausdorff-Young. Our aim here is to extend the Fourier transform
to other LP spaces. Let us recall that if f,g € S(R?) ¢ L*(R?) then

[ @i ae= [ aw)iwa.

Now let h € S(R?), then h € S(R?) and the Fourier inversion Formula reads

) = [ e dy = [ Re o) ay = #lidy)l.

We now replace g by h(y) € S(R?) in the above formula. We thus obtain
oh@de= [ fhldy  fheSE),
R L

In particular, taking h = f, we get || F[f]llr2@a) = || fllr2ra) for every f € S(R?). As S(RY)
is dense in L?(R?), we can apply the Banach extension principle. It follows that F extends to
a continuous linear mapping L?(R%) — L2(RY). Further the mapping F~1(f)(z) = F(f)(—z)
also extends from S(R?) to a continuous linear mapping L?(R?) — L*(R%). As F~'[F[f]] =
F[Ff) = f for all f € S(RY), by density of S(R?) in L*(R?), this identity stays true for
f € L2(R%). In particular, F is a bijection L?(R?) — L%(R?) and its inverse map is F L.

Finally, the mappings 7,, M,,, §x, At are all continuous on L?(R%), so the corresponding prop-
erties in Proposition 4.4 stay true in L?(R%).

In summary

THEOREM 4.11. The Fourier transform extends into a continuous linear mapping L?(R%) —
L?(R?) and the extended map is a bijection. The mapping is an isometry and satisfies

— Plancherel’s identity: for all f € L?>(R?)

[ @ ae= [ 17 e

— Parseval’s identity: for all f,g € L?>(R?)

/f s de = [ (€036 de

Further, the identities F|1,f] = M F[f], FIMuf] = 7—oF[f], Florf] = A~ d]:[(sl/)\.ﬂ and F[Ar f] =
| det T|App-11e F[f] are all valid for f € L*(R%).

Let us note that the convolution identity m = f§ does not extend to f,g € L2(R?) as in

this case f * g € Co(R?) and m has to be understood in the sense of distributions.
It is then a direct consequence of interpolation theory that the Fourier transform also extends

, 1 1
to a bounded linear operator from L? — LP with 1 <p <2, — + — = 1. It should be noted that
p

this result is false when p > 2, but we will not prove this here.
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1 1
THEOREM 4.12 (Hausdorff-Young Inequality). Let 1 < p <2 and p' be the dual index ~ 4 — =
p D

1. Then the Fourier transform F extends to a continuous operator from LP — L*" with

IF AN < 11,
PROOF. It is enough to notice that the result is true for p = 1 (Riemann-Lebesgue) and p = 2
1 1-6 6
(Parseval) and that if 1 < p < 2, there exists § € (0,1) such that — = — + 3 and that the dual
p
index is given by
1 6 1-90 n
P2 o0 2
with the convention 1/00 = 0. O

EXAMPLE 4.13. Let a > 0 and define f on R as ef (t) = 1jg 1o0ye”* and e () = 1 (0,0
Note that eX € L*(R) N L2(R) so that its Fourier transform is given by

+ i (a+2im&)t 1
- — —la 17 dt —
€a (&) /0 ¢ a+ 2imé
while

0 0i 1

€, (§) = / ela= 2Tt 4 — g

1

Let ¢t be defined on R by c¢F(x) = PR Note that ¢& € L? but not in L' so that it has
a+ 2irx

an L2-Fourier transform but not an L'-Fourier transform. Never the less ¢ = FleX] in L'-sense

thus also in the L*-sense. Thus, the Fourier inversion theorem gives F[cE](¢) = F[Flef]](¢) =
FUF[eE]] (=€) = eX(—€) = eF(£). This has to be understood in the L? sense, in particular,
equalities hold only almost everywhere.
One may notice that e is not continuous so that, according to Riemann-Lebesgue, they are
not Fourier transforms of L! functions. Note however that
—— o 1 2
ca teall) =) +el) = TorE Y Ui~ a2 1 2l

is an L'-function. Thus Fourier inversion applies and we get the following expressions

+oo
/ efa\t|672i7rt§ dt = 2a
—oo a? + (2m€)?

+oo
2a 2imte _
ints g _ alt]
L. i = ¢

In particular, taking a = 27 and using parity, we have
—+o0
. 1 1
/ e—27r|t\6227rt§ dt= = 5,
o Tlté

1 e 1 2t 27|t
— 00

(1.27)

ExaMPLE 4.14. An example of a function in Cj that is not a Fourier transform of
an L' function.

Let us define f on R by f(t) = igi(’z. Note that f € L%(R) but f ¢ L'(R). The Fourier

transform of f can thus not be calculated via [ f (t)e=2"*€ dt but only as an L? limit. To carry
out this limit, we will need the following identity

1 oo
_1 / ot gy
1+ [¢] 0
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Using Fubini’s Theorem, we see that

R “+o00
/ sgn(t) 6721‘7”5 dt = / / sgn —(1+|t)z dxe*Zzﬂ'tf dt
_r 1+t
—+oo
/ / bgn —(1+|t)z 72z7rt£ dt dz

+o0 )
(1.28) = / efx/ sgn(t)e 1T e=2mE gt dy
0 -R

To see that one is allowed to apply Fubini’s theorem, one writes | sgn(t)e~(1H1thze=2imte| — =(1+]thz <
e ® € LY([-R, R] x R, dtdx). But now, if £ # 0, (or  # 0)

R 0 R
/ €7|t\1672iﬂ't§ dt = _/ et(at72i7r§) ds +/ eft(erZiﬂ'f) dt
—R —-R 0

[ etle2ime)° . o—tla+2ine) 1B
| z—2imé ], x +2imé |,

14+ efR(x72i7r£) 1— e*R(ZEJrQiTK‘E) _47;71,5 efR(x72iﬂ'£) efR(m+2i7r§)
z — 2iné T g 2ineé a2+ (276)? Tz 2iné  x+ 2mé
Inserting this into (1.28) gives
R e—2imt +o00 e~ T +o0 e—R(z—?iﬂ'{) e—R(z+2i7‘rf)
dt = 4 ——d — ~*dux.
/R1—|—|t| ”5/ T (27€)2 x+/0 ( © — 2in€  + 2in€ )e o

But, if z >0

e~ R(z—2ir¢) e~ R(z+2imf)

T — 2im€ oz + 2im€
when R — +oo while, if £ # 0,

e—R(:E—Ziﬂ'E) e—R(w+2i7r£) e~ Rz e~ Rz
— — . e’ < — + . e’
‘( x — 2imé x + 2imé ) ' (|a:—2m§| m+227r§|)
< S cl'(r).

s
We may thus apply domintated convergence and obtain that, for £ # 0

400 e—R(ac—2i7r§) e—R(z+2i7rf)
/ . — . e *dx — 0
0 r — 2im€ T+ 2imé
when R — +o0 and thus

R e 2iTtE +o00 e T
i ———dt = 41 ——d
L R e ey e

But, the L2-limit of this integral (seen as a function of ¢) is the Fourier transform of f. It follows
that, for almost every &,

R 400 e~ T +oo e—2ﬂ'|f‘u
=43 ——dx =2 —d
fle) = imt [ e =2isenle) [ S du
with a change of variable z = 27 |{|u.
One may observe that this function is continuous except at 0 where it has a jump discontinuity

and goes to 0 at infinity. This follows immediately from Lebesgue’s theorem: if we write F'(£,u) =
e—27r\§\u

u?+1
e 1
| (£’U)| U2+1 —1+u2
— if we fix u, & = F(&u) thus £ — f0+°° F(¢,u)du is continuous over R. In particular

+oo tooo g T
F = — du=—
—if we fix u > 0, F'(§,u) — 0 when £ — +oo. Thus f0+°o F(&,u)du — 0 as well.

then

—27|¢|u

e L'(RY);
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Thus f({) = 2isgn(§) 0+°O F(&,u)du has the properties we just announced with f(O*) =
—f(07) =im.

One should also note that limpg_, 4o ffR f(t)dt = 0 since f is odd.

Let us now erase the jump discontinuities with the help of the previous example. Let g =
frin(cf —c]) = bng,n»l(:‘) + %. Note that g(t) ~ 3sgn(t)/t in 400 so that g € L*(R) but not
in L(R). By linerity § = f — ime] + ime]. All three functions f,ef,e] are continuous outside 0
and f(0%) = +im, ef (0F) = 0, ¢ (0¥) = 1. Thus the jump discontinuities cancels.

. . . d+1
2. Computation of the Poisson kernel in the upper half space RY

In this section, we will consider Q@ = R = {(z,¢) : = € R ¢ > 0} and its boundary
0Q = R? (identified with the set of vectors of the form (z,0), 2 € R?). The Laplace operator on
RE is the operator

0% 02

Recall that a function f € C? (Riﬂ) is said to be harmonic if Af = 0. We will be dealing with the
Dirichlet Problem, u € C2(RE™) N C(REH)

Au=0 in Q
u(z,0) = f(r) zeRL

Here we assume to start that u € S(Rfl) and that f € S(RY). Let us denote by u(¢, t) the Fourier
transform of « in the x variable:

u(,t) = /Rd w(x, t)e” e dg.

This is well defined due to the hypothesis © € & which also justifies the following computation:
integration by parts shows that

02 u(€,t) = (2im€;)?a(E, 1) = —(2m€;)2alE, 1)

while inverting differentiation and integration shows that

D2ul€, 1) = O2A(E, ).

We thus want 924(€,t) + (2m|€|)?u(€,t) = 0 and @(&,0) = f(£). Solving this ODE gives
e, 1) = e A + T BE).

Notice that we are appearently missing a boundary condition for unique determination of u. How-
ever, this is not the case since we assumed that u € S(Rf‘l) so that, for fixed £, we require

o~

u(&,t) — 0 when ¢ — 400 which requires B(§) = 0. Then the condition u(&,0) = f(£) shows that

A(€) = f(¢) and R
a(e,t) = e 2 F(g).

—2ml¢lt as a Fourier transform (in ) of a function Py(z,t) that we want

It remains to recognize e
to determine explicitely.
The first observation is that e~ 7€t = (t€) with ¢(s) = e~ 2715 so Py(z,t) = t~Py(x/t,1)
and it is enough to determine P(u) = Py(u, 1) which has Fourier transform o(s) = e=27sl.
In dimension d = 1, this has been done in (1.27) which shows that
1 1
ml+a2
Let us prove the analogous fact in any dimension, namely that:

P1 (.T) =

LeEMMA 4.15. The Poisson kernel on ]Ri“ is given by
cqt

(2.29) Pa(z,t) = T

)

K
where cq = —32% is constant such that f]Rd Py(z) dx = 1.

s

N
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ProoOF OF (2.29). We will of course only compute Py(z,1) and use scaling. To do so, we will
use the following Subordination Formula that we will prove later:

“+o0 —7s
(2.30) e~ 2l = / e/ E__ 4.
0 S

From this Formula, we can compute the inverse Fourier transform of the function R¢ — R
given by & — e 27l¢l

+o0o — T
/ e—27r|§|e2i7r(£,x) df — / / e_ﬂ—|§|2/3€ s ds e2i¢r(§,$) d£
R4 Rd JO \/g
_ /m/ e IEl /s giten) qe €1 g
0 R4 \/g
+oo

_ 2 7S
_ / /2, —smal ds
0 Vs

+oo d
_ / §(@+1)/2—sm(1+]af?) 95
0

s
1 / > Hd+1)/2,—t dt _ €d
@+ D/2(1 4 |z[2)[d+D/2 J, ¢ (1 + |x]2)(@+D)/2

where we have used Fubini in the second line (show its validity as an exercice) and the fact that

e~Pile* is its own Fourier transform and the scaling property of the Fourier transform on R%. In
the next to last line, we use the change of variable ¢t = m(1 + |z|?)s. The constant is

+o0 d+1
ey = R a2, - 4 I (4
r@+n/2 [ n T

T2
as claimed.
The constant ¢4 could be computed independently using that

/ Pu(z) dz = Py(0) = e~10 — 1.
Rd

Thus, integrating in polar coordinates

da i1 +oo ’I“d_l
€a = /Rd(1+|~T|2)(d+1)/2:Ud1(S )/o Wdr

/2
Ud,l(Sd_l)/ (sinf)?~1dg r = tanf
0

274/2 1T(d/2)[(1/2) =n

I(d/2)2T((d+1)/2) T (4L

)

using classical computations. O

PROOF OF THE SUBORDINATION FORMULA (2.30). The proof is based on the computation of
the Fourier transform of e~271% in dimension 1 given in (1.27):

1 (™ 1 .
—2mlt| —— - 7217rt§d )
‘ w/ o 1+ e’ -

An alternative way to prove this formula is to apply the theory of residues to e’ /(1 + 22).
Next, a simple change of variables shows that

1 T

“+oo
— — —m(14£2)s d
1+¢ " m(1+e) W/o ‘ ’
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so that, with Fubini, for £ > 0,

+oo +oo R )
6—271'5 _ / / e—Tr(l-i-f )s dse—Qwrtf df
+oo
/ / —Tr(1+£ )$ o —2imtE de ds
/ e~ s/ 757r§ 672171'1‘/5 df ds
0 —0o0

+oo
_ / e e —ne?)s U5 ds
0 Vs

where we use the fact that e~ ¢ is its own Fourier transform so that
Fle ™) (t) = s~ /2e /s,
The result for £ < 0 is obtained by parity. a

Now that those computations have been done, let us be a bit more formal and extend the
result we are looking for:
DEFINITION 4.16. The Poisson kernel of the upper half spacs R4 for is defined by
t
(12 + |z[2)([@+D/2

P(z,t) =cq reRYE>0

EES
where ¢4 = F(dil)

T 2

3. The Paley-Wiener theorems

We start with the following observation: if we fix z, the function ¢ — e~2"*¢ is holomorphic,
we may thus be willing to apply Lebesgue’s holomorphy theorem to the Fourier transform

fle) = / Fl@)e e 4g

we need to bound f(z)e~2"%¢ by an L'-function that is independant of ¢ in the domain of holo-
morphy. As |f(x)e” 27| = |f(x)|e?™*™& this will be easy when f is supported in [—c,c|. It
turns out that it is a bit simpler to work with inverse Fourier transform.
THEOREM 4.17 (Paley-Wiener). Let A,c > 0 and f € L?(R). The following are equivalent
(1) f=F a.e. on R with F an holomorphic function over C such that |F(z)| < Ae'™clzl.
(2) f is supported in [—c, c].

PROOF. Assume first that fis supported in [—c¢, ¢]. Recall from Plancherel that f € L*(R)
so that Cauchy-Schwarz implies that f € L!(R). Further, if * € [—c,c] and |z| < p, then
|f(€)e=2m¢#| < | f(x)e?™P| It follows that the function F defined by

F(z)= [ [(e ®m dg
is holomorphic over the disc D(0, p) with

c
FEI< [ IOl dg < VI Flact™.
As p is arbitrary, we get that F' is holomorphic over C and that |F(z)| < v/2¢| f||,e?™*. On the
other hand, the L? Fourier inversion theorem shows that f = F a.e. on R.

Let us now show the converse. We will not distinguish between f and F', that is we assume
that f extends to an entire function. For ¢ > 0 define f.(z) = f(z)e~2¢l*l. Cauchy-Schwarz shows
that f. € L'(R). We are going to show that

+o0 )
(3.31) lim fo(@)e ™2 dz =0  £E€R, |¢] >

e—0 o
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Before we do so, let us see how we conclude from there. First, an easy application of domlnated
convergence shows that || f — f.|l, = 0 so that, by L cont1nu1ty of the Fourier transform fg — f

in L2, In partlcular there is a sequence such that fak & — f({) for almost every ¢ € R. But

(3.31) shows that fak (€) — 0 for |¢] > ¢ so that f =0 a.e. on R\ [—¢,¢| and is thus supported in
[—ec, c] as claimed.

For § € R we now define the path I'y = {te?” : ¢ > 0} and the half-plane IIp,, = {z € C :
R(ze?) > n}. Let

+oo
Dy(z) = /F F(w)e ™% dw = ew/o F(te") exp(—2mzte’?) dt.
6

But, if n > c and z € Ilg ,, then
|F(te) exp(—2mzte’®)| < Aexp(—2n[R(ze) — Jt) < Ae™ 2719t ¢ L1(R)

and z — F(te')exp(—=zte'?) is holomorphic so that ®, is holomorphic over Ip,. Asn > c is
arbitrary, ®4 is holomorphic over the half-plane Ilg ..
However, for # = 0 and # = 7 more is true since

+oo
Dy(2) = /0 f(t)e 2™t dt

is holomorphic in the half-plane R(z) > 0 while

@W(z)/;oof( et dt = / f(t)e ™", dt

is holomorphic in the half-plane R(z) < 0. This follows from the fact that f € L?(R). Indeed,
z — f(t)e~?™*! is holomorphic and if R(z) > a > 0 then |f(t)e=2™*!| < |f(t)|e 2" € L'(R) with
Cauchy-Schwarz so that ®q is holomorphic in the half plane R(z) > o > 0 and « is arbitrary. The
argument for @ is similar.

Now notice that

+oo 0 +o00
/ fs(m)efmﬁr&w de = / f(t)ef27r(*e+i§)t dt + / f(t)e*%r(pﬂ‘g)t dt
oo oo 0
- 7®w(75+15)+¢0(8+lf)

We want to show that this quantity goes to 0 as ¢ — 0 when |£]| > ¢. To do so, we will show that
®g and P, agree on Ily . NIl ., the intersection of their domain of definition i.e. they are analytic
continuations of one another. In particular, if £ < —c¢,

—®r (e +i6) + Po(e + i) = —Prja(—e + i) + Prj2(e +i§) - 0 when e — 0
by continuity. For £ > ¢ we conclude with ®_. / instead of ®, 5.

0 .
Now take 6, p with 0 < 8 — ¢ < 7 and put v = % If z = pe™7, then

R(ze¥) = pcos b-v = R(ze")

2
which shows that z € I, . N 1Iy . as soon as p > ¢/n with n = cos P ; 2.
Consider the arc T', = {re’® : p < a < 0} and
0 o
Y(r) = f(w)e ™2 dw = r/ f(re?®)e= ezl qq,
I, ©

Note that for p < a <0
727rremz| _ 6727Trpcos(a7'y) < 67271"(‘/77]

le
thus
0
[(r)] < r/ e2me=rr o < (0 — @)re2rie=rmr
7

so that ¢(r) — 0 when r — +o00 as soon as p > ¢/n.
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But then, for p > ¢/n, integrating f(w)e™2"*" along the segment {te’¥ : 0 <t < r} then along
I', and then along the segment {te?® : r > > 0} gives

r ) ) 0 ) i .
0= / f(teitp)e—%rte“"z e dt + 7/)(7°) + / f(tew)e—%rte 02 619 dt.
0 T

Letting r — +o00, we obtain 0 = ®,(z) — ®y(2) provided |z| = p > ¢/n.
In other words, ®,(z) = ®¢(z) on the half-line {z = pe= : p > ¢/n} and therefore coincide
on IL, . NIl . as claimed and the proof is completed. O






CHAPTER 5

The maximal function

In this chapter, we will introduce the Hardy-Littlewood Maximal Function (in its centered and
uncentered version) and investigate its main properties. Those functions play an important role in
harmonic analysis as they control many operators appearing in harmonic analysis.

1. Maximal functions

Recall that for A C R%, we denote by |A| its Lebesgue measure and that B(x,r) is the (open)
ball centered at = and of radius r, B(z,7) = {y € R : |z —y| < r}.

DEFINITION 5.1. For f € L} (R?), we define the
— (centered) Hardy-Littlewood Mazimal Function by

1
M[f](z) = sup ——s
r>0 |B(l‘,7“)| B(z,r)
— (uncentered) Hardy-Littlewood Mazimal Function by
MIf)(x) = sup sup / w)] du.
IB W, S

r>0yeB(z,r)

[/ (u)] du;

These are respectively the maximum of the averages of |f| over all balls centered at = and over
all balls containing z. Those functions are obviously well-defined for f € L} . in particular, they
are well defined for f € LP(RY).

Here are some properties of M and M:

locy

PROPOSITION 5.2. The maximal functions satify the following properties

(i) M[f] = M[|f]] and M[f] = M]|f]].

(i) If, for some x € RY, M[f](x) = 0 (resp. M[f](z) =0) then f = 0.
(iii) M and M are sub- lmear

(iv) [M[flloc < | flloc and [M[flloc < |f]loo-

(v) M[f] < M[f] < 27M[f].

PROOF. (i) is obvious and for (ii) if M[f](z) = 0 then, for every r > 0, / |f(u)|du =0
B(z,r)
thus f = 0 a.e. on B(z,r). As r is arbitrary, f = 0 a.e. on R

Clearly

: F() + g(w)|d . F () du + 9w d
—_— w)+gu)|du < ———— w)|du + ——— g(u)| du
|B(I7T)‘ B(x,r) ‘B(I’T” B(z,r) |B(l‘,7")| B(x,r)

IN

M{f](x) + Mg](x)
thus taking the suppremum over r > 0 gives M[f +g] < M[f]+ Mlg]. M[Af] = |\ M[f] is obvious.
The same argument works for M.

(iv) is trivial as is M[f] < M[f] (take y = z in the definition of M). On the other hand if
y € B(z,r) then B(y,r) C B(z, 2r) thus

1 2d
s e [ el e [ sl 2
|B(y7 )| B(y,r) ‘B y,r | (z 2r) ‘B(xv 27“)| B(z,2r)
Taking the supremum over all y € B(x,r) and then all r > 0 gives M[f] < 2¢M|[f]. O

The maximal functions have been defined with the balls associated to the Euclidean norm. The
properties of M, M don’t depend on this choice. To illustrate this, let us consider cubes instead
of balls. Write Q(x,7) = {y € R? : max; |z; — ;| < r}.

57
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DEFINITION 5.3. For f € L} (RY), we define the

loc
— square Maximal Function by

O . 1

— uncentered square Maximal Function by

f(w)du;

1
MP[f(z) = sup sup ——— u)| du.
[f]( ) r>0 yeQ(z,r) |Q(y77“)| B(y,r) ‘f( )|

LEMMA 5.4. For f € L}, (R?) and x € R?,

loc
2~ T2 Mf](x) < MP[f](x) < 272 M[f](x)
and
22 M(f)(x) < MP[f)(x) < 22 M[f)(x)
PROOF. Recall that Q(x,2-%%r) C B(z,r) C Q(z,r) thus
1 1
Q@ Jown TN =BG Lo e
2d2/2

= TS5 aio d?/2
= B2 S ey A <20 TMU)

IN

|f(u)] du

thus, taking the supremum over r, MP[f](z) < 2%°/2M|[f](x). Conversely

1 1
o L Wl £ o [ e
|B($7T)‘ B(x,r) \Q(x,2*d/27“)| Q(z,r)
24/ da2/2 70
Q@ N Jo )|f(u)|du§2* 2 MO[f)(x).
The proof for the uncentered case is the same. O

EXERCICE 5.5. Let f = 1(, ], show that
b—a b—a

when z < a when 2 < a

2|z —b| |z — b

Mfl(z) =<1 whena <z <b and M[fl(z)=<1 when a <z <b.
b—ia when z > b u when z > b
2|z — al | — al

REMARK 5.6. Note that in this example, M[f], M[f] ¢ L*(R) though f € L'(R). This is a
general fact:
If in the supremum defining M|[f](x) we consider the average over the ball B(z,|z| + R) and
notice that this ball contains B(0, R) then
> : [ il
2 u)| du.
[B(O, DI(Jz] + R)? J50,R)

MIf]

Now, if f € L'(R?) and f # 0, we chose R large enough to have / |f(w)|dw > 0 then this
B(0,R)

inequality shows that M|[f] ¢ L'(R?). In particular, the Hardy-Littlewood maximal functions are

not of strong (1, 1)-type.

The main result of this section is the following which is more or less te best possible.

THEOREM 5.7 (Hardy-Littlewood). Both M and M are of weak-type (1,1)

d
o s Ml >ap < 2 [ rldu

and of strong type (p,p) for every 1 < p < +o0.
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The (trivial) case p = 400 was stated in the previous proposition and, once we establish that
M, M are of weak-type (1,1), Marcienkiewicz interpolation allows to conclude that they are of
strong type (p,p). Also, in view of M[f] < M[f] < 2¢M]|f], it is enough to consider the case of
M.

To do so, we will need a simple covering lemma:

LeEMMA 5.8 (Covering lemma). Let Bi,..., B, be a collection of balls. Then there ezists a
sub-collection Bj,,...,Bj  of pairwise disjoint balls such that
Z‘Bjk‘ - U By, | = 3~ U B,
k=1 k=1 j=1

Proor. Up to reordeing the balls, we can assume that |By| > |Bz| > --- > |B,| (in other
words, we re-order the balls by decreasing radius).

We then go along the sequence of balls and keep only those balls that do not intersect any
previous ball. In other words, we set j; = 1 then j, = min{k > j; : By N B;, = 0} so that Bj, is
the first ball that does not intersect Bj,. Next j3 = min{k > jo : By N (B;, U Bj,) = 0} so that
Bj, is the first ball that does not intersect B;, nor Bj,...

By construction, this family of balls is disjoint. Now take any ball B; in the orginal collection
of balls. Either this is one of balls in the subcollection, B; = Bj, or there is an ¢ such that
Je < j < jet1 which means that B; intesects one of Bj, U ---U B;, (otherwise we would have
jes1 = j), say Bj, . But, from the fact that the balls have been ordered with decreasing radius,
the radius of B; is “smaller than the radius of Bj,, and then B; C 3BM (the ball with same center

as Bj, but radius multiplied by 3). This implies that U B; C U 3B5;, But then
Jj=1 k=1

m

< Z ‘BB]k| = Sdz ‘Bjk‘
k=1

O

PROOF OF THE THEOREM. Let o > 0 and E, = {z : M[f](z) > a} and « € E,. Then there

exists a ball B(y,r) containing x and such that |f(u)|du > «. But this implies

|B(y7 T)| B(y,r)
that if z € B(y,r), M[f](z) > a, since the ball B(y,r) is one of the balls in the supremum defining
M([f](z). It follows that B(y,r) C E, which is therefore an open set.

Now let K C E, be a compact set. By definition, for each x € E,, there exists a ball B,
containing z and such that / |f(u)|du > «|Bg|. As {B, : = € K} is a covering of K, we can
extract a finite collection of balls By,..., B, that still covers K. Apply the covering Lemma to this
collection and get a subcollection Bj,, ..., B, . Then each Bj, satisfies |B,,| < é/B. |f (w)| du.

Further
K| < UB <3dZ|ng|<fZ/ u)| du
3d 34
- 2 fldu< [ (fw]de
& JURL, By & /R
where we have used the disjointness of the B;,’s in the last line. g

2. Control of other maximal functions
We will now consider an other family of maximal functions:

THEOREM 5.9. Let k be a decreasing, non-negative, continuous function (except at finitely
many points) on [0,4+00). Let K(x) = k(|z|) be the radial function associated to k, and assume
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that K € L'(R%). For e > 0, define K. = ¢ =K (z/¢) the dilates of K. Let
My[f)(w) = sup Kz + |f|(z)

be the maximal function associated to the dilates of K. Then

(2.32) Mi[fl(z) < K| L2 ey MLf](2)-

In particular, f — My[f] is of weak-type (1,1) and of strong type (p,p) for every 1 < p < 4o0.
Further My[f] is finite almost everywhere when f € LP(R?), 1 < p < +oc.

PROOF. The second part of the theorem follows from (2.32).

Note that K. * |f|(z) is well defined as the integral of a non-negative quantity when f € L}, _.

First, let k; = Kkl so that k; is compactly supported and, for each x, kj(x) — k(=)
increasingly. If (2.32) holds for each k;, then it is enough to pass to the limit to obtain (2.32) for
k. We can thus assume that k is compactly supported. Further, it is enough to establish (2.32)
for z = 0 and then apply the inequality with f(¢ + ) instead of f(¢) to obtain the result in full
generality.

For simplicity, we will now assume that k is C'-smooth (using Stieltjes integrals avoids this)
and supported in [0, R]. Up to replacing f by |f| wa may also assume that f > 0. We want to
estimate

400
Kex 100) = Rd f(2)Ke(—o) dz = /0 e k(r/e) /dil f(r¢)do(¢) r*tdr.

Write F(r / f(r¢)do(¢) and note that this is well defined for almost every r. Define

G(r) = / F(s)s ! ds and note that G(0) = 0 and that, integrating in polar coordinates, (and
0
using that f = |f]

)
1
()= f gy N =By [ 1509l < BO.MAO)

In particular, G(r) is finite.
Then, as k(R) = 0, integrating by parts gives

eR eR
K.* f(0) = /0 e k(r/e)F(r)r¢tdr = /0 e k(r/e)G (r) dr
eR
= /0 —e 1 (r /o) G(r) dr

eR
(2.33) < /0 —e~ 47! (r/€)|B(0, )| dr M[£](0)

where we have used that k decreases so that —&’ > 0. It remains to notice that, changing variable
s =r/e and then interating again by parts gives

eR
|- epIB.ar =1 (r eyt dr
0

I
Q

sds

I
Q

— dBO.) / (s)s™ ds = 1K e
0

where we have used that & is radial and supported in [0, R].
Grouping (2.33) and (2.34) gives (2.32). O

We leave as an exercice to adapt the proof to the case where k is piecewise C! with only finitely
many jump discontinuities.

A careful reading will show that the crux of the proof is the following lemma that we state
here with less regularity for the kernel.



3. USING MAXIMAL FUNCTIONS FOR ALMOST EVERYWHERE CONVERGENCE 61

LEMMA 5.10. Let h be a non-negative decreasing function and define g on R% by g(x) = h(|z|)
so that g is radial. Assume that g € L*(R?). Let v € L'(R?) be such that |v(z)| < g(x). Then, for
u € LP(RY), 1 < p < +oo,

[ atirete - | < gl Ml
almost everywhere in RY.

It can be proved along the lnes above but we give a more direct approach which avoids Stiletjes
measures:

PRrROOF. It is of course enough to prove

(2.34) /U(y)g(ﬂc —y)dy < /Rd g(y) dyM[u](x).

with u non-negative.
We first notice that, if h = 19 ;) then g = 19, then [|g||; = [B(0, p)| = |B(x, p)| and this is
the trivial inequality

1
2.35 / u(y)dy < |B(z,p supi/ u(y) dy.
(2.35) - () 1B( )IS>O B@.5) Jows )

Next, if h is a non-negative decreasing step function, then we can write

h(T) = Z cj l[O,pj]
=1

n
with ¢; > 0 and p; < p2 < --- < p,. But then g = chlB(o,pj) and in this case (2.34) is
j=1
just a linear combination of (2.35). We conclude by noticing that every decreasing function can
be approximated from below by an increasing sequence of simple step functions of this type and
conclude by monotone convergence. |

3. Using maximal functions for almost everywhere convergence

3.1. General principle. Let us explain how maximal functions are used to obtain almost
everywhere convergence.

The general setting is as follows: (X, B, 1) and (Y, B, v) are two measure spaces and 1 < p, ¢ <
+00.

For each ¢ > 0 we consider a linear operator T. : LP(u) — L°(Y) and to this family of
operators we associate the maximal function

T (fl(y) = sup IT=[f](y)]-

We assume that T, [f] is measurable.

Next we assume that there is some dense vector space D C LP(u) and a bounded operator
T : LP(u) — L%v) such that, if f € D, T(f) := lim.,07:(f) exists and is finite v-almost
everywhere. Note that this defines a linear operator on D.

With thouse notations we have the following theorem:

THEOREM 5.11. Assume that T, is of weak-type (p,q) i.e. there exists B > 0 such that, for
every f € LP(p),
1T 2s, vy < BlIfll (-
Then for every f € LP(u),
T1f(y) = lim T [f](y)

e—0
exists for v-almost every y € Y and defines a linear mapping T on LP(u) (uniquely extending T
from D to LP(u)) such that, for every f € LP(u),

(3.36) 1T g, ) < Bl FIlLe -
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PROOF. Given f € LP(u), we define its oscillation by
Osc[f](y) = limsup lim sup T[f1(y) = Tyl F1(w)]-
We would like to show that, for every f € LP(u) and every § > 0,
(3.37) v({y : Osc[f](y) > 6}) = 0.

Once this is done, we would have that, for almost every y € Y, T.[f](y) is a Cauchy-family so that
T[f(y) = lim.—,0 T-[f](y) exists. This then defines an operator T on L? () that coincides with T
on D. Since then |T[f]| < Ti[f], the of bound (3.36) follows.

We will use density of D to approximate Of. Given n > 0, there exists g € D such that
I.f = gllr(uy < n. Further, if T.[g](y) converges (which happens for almost every y), Osc[g](y) = 0
i.e. Osclg] = 0 v-a.e. Next, as the T.’s are linear,

\T=[f1(y) = Tolf1(w)| < |T:[f — 9l(y) — Tolf — gl(y)| + |T:[g)(y) — Tolg](y)|
thus, taking lim sup’s,

Osc[f](y) < Osclf — g](y) + Osclg)(y)

and we get that Osc[f] < Osc[f — g] v-a.e.
Finally, note that Osc[f — g] < 2T.[f — ¢] thus {y : Osc[f](y) > 0} C {y : 2T.[f —g] > ¢} and
therefore

v({y : Osc[fl(y) > 0}) < v({y : T.[f —g] > 6/2})

- (QB||J‘—9||L<M>"
- )
q
< 2Bn
- 5
As 1 > 0 was arbitrary, we can let n — 0 and obtain that (3.37) as desired. O

3.2. Lebesgue’s Differentiation Theorem. We will first use the (centered) maximal func-
tion. Consider , K(z) = |B(0,1)|"'1(g 1) (which is associated to the radial decreasing function
k(r) = |B(0,1)]7'1j94j(r) that has only one jump) and note that

K.(z):=e 'K(z/e) = mlB(O,E) (z).

Let T. be defined by T.[f] = K. * f that is

1 1

Ts[f](y) |B(O,E)| iy f( )1B 0,e) (y (E) dx |B(O7€)| Bly.e)
is the mean of f over the ball centered at y of radius €. As a consequence T, = M is the centered
Hardy-Littlewood Maximal Function. In particular, we already know that T is of weak-type (1, 1)
and of strong-type (p,p).

Next, let D = C.(R?) the set of continuous compactly supported functions. This set is dense
in LP(R?) for 1 < p < +oo. Further, if f € C.(R?) and y € RY, then for every n > 0, there exists
€0 > 0 such that if € < g9 and = € B(y, ¢) then |f(z) — f(y)| < n. It follows that

1 1
_— f(x)dx—if fly)dx
|B(0,¢)| JB(y,e) |B(0,¢)] JB(y,e)

1
< —_— — dax <n.
S B9 B(y’e)lf(x) fy)ldz <n

As a consequence, T.[f](y) — f(y) when ¢ — 0 (for all y). This is exactly the setting of the
previous section with 7' = Id and we have proven the following;:

f(z)dx

T [f1(y) — f(w)| =

THEOREM 5.12 (Lebesgue Differentiation). Let 1 < p < 400 and f € LP(R%). Then, for
almost every y € R?,

1

(3.38) —
|B(Oa 5)| B(y,e)

f(z) de — [f(y)

when € — 0.
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REMARK 5.13. A point such that (3.38) holds is called a Lebesgue point of f.

1 1
Note that if f = g a.e. then 7/ fl@)yde = ——— g(z) dz. In particular,
‘3(075)‘ B(y,e) |B(O>€)| B(y,e)

Lebesgue points do not depend on the particular element of the equivalence class (a.e.) of f one
takes.

EXERCICE 5.14. Show that the theorem still holds if f € L}, (R?).

loc

Hint: Apply the theorem to f1p(,) and show that this determines all Lebesgue points of f in
B(0,n).

3.3. Limits of convolutions.

PROPOSITION 5.15. Let p € LY(R%), m = / o(x)dx and, fort >0, pi(z) = t~%p(x/t). Let

Rd
1<p<+oco and f € LP(RY). Then
(i) @i * h € LP(RY) with || = h|| < ||¢|l1]|kll, and ¢ h — mh in LP(RY) when t — 0.
For p = +oo the same is true provided (say) f is continuous with compact support.
(ii) Assume further that the least radial majorant of ¢, ®(x) := supy>, [¢(y)| is in L'(R%)
then s * h — mf a.e. whent — 0.

PRrOOF. The inequality ||¢: * h|| < |l@|l1]|k]lp is Young’s inequality since ||¢¢|l1 = ||¢ll1. We
then note that

o1 * h(z) — mh(z) = /

[ o) (e — ) = h@) dy = | o(0) (bl = t9) = 1) dy

Rd
thus

e h=milly < [ el =l do

Asfor all y # 0, ||7eyh — ||, — 0 when ¢t — 0 and |p(y)|[|7eyh — R, < 2||2]lple(y)] € LY(R) we get
the first statement from dominated convergence.

The second statement follows from the general principle and the fact that |¢; * h(x)] <
||t M [f](x). The details are left to the reader. O

3.4. Harmonic functions on the upper half plane and Poisson integrals. In this
section, we will consider @ = RT" = {(z,¢) : 2 € R% ¢ > 0} and its boundary 09 = R?
(identified with the set of vectors of the form (z,0), 2 € R?). The Laplace operator on R%"! is the
operator

A function f € C3(RE™) is said to be harmonic if Af = 0. We will be dealing with the Dirichlet
Problem, u € S(@)

Au=0 in O
u(z,0) = f(r) zeRI
Recall the following:

DEFINITION 5.16. The Poisson kernel of the upper half spacs R‘fl for is defined by

t

d
CENEDIGE reRYt>0

P(x,t) =cq

d+1
where ¢; = F(i"’l)

T 2

The key properties we need here are the following:
— P(z,t) = t=4Py(z/t) where Py is defined in (2.29);

— Py € LY(R%) and / Py(z)dx = 1;
Rd

— AP =0 where A is the Laplace operator on R‘fl.
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The first two properties are obvious or already proven. The last property is a direct computa-
tion (though we have already proven it via the Fourier transform)

1 t?
O P(t,x) = cq @+ [2]2) @072 —(d+1)cq (12 + [2]2)(@+3)/2
thus
3t t
2 -
OP(the) = —ald ) e T el D8 GG
ca(d+1) 2 2
= e |x|2)(d+5)/2t(dt —3lz|%)
Oz, P(t,x) = —cq(d + 1) (12 + |2]2)(@+3)/2
thus
tx?

82 P(t,x) = —ca(d + 1) + ca(d+1)(d + 3)

GEFRICEE @+ )7

and, summing from j =1 to d,

te|?
(t2 + |z|2)(@+5)/2

+ca(d+1)(d+3)

d

2 —
;8$jP(t,x) —eadd+ 1) gy
j:

ca(d+1) 2 2
= o patdt + 3l

and the fact that AP = 0 follows.
We can now prove the main result of this section:

THEOREM 5.17. Let 1 < p < +oo and f € LP(RY). Let
u(z,t) = P(t,) = f(z) = | Plz—y,t)f(y)dy
R4

be the Poisson extension of f. Then u € CQ(Rfl) with Au = 0 in Rf‘l and, for almost every
r € R, u(x,t) — f(x) whent — 0.

PROOF. As P(z,t) = t~%Py(x/t), for t fixed, P(---,t) € L'(R?) so that u is well defined.
Further, the family {P(-,¢) : ¢ > 0} is an approximation of the identity so that u(---,t) — f in
LP(RY).

The previous computations show that 9, P, 07 P, d,, P, 833_P € L?(R%) so that there is no diffi-
culty in applying Lebesgue’s theorem to show that Au = 0.

Finally, the properties of P show that we are in the framework of Section 3.1 so that u(-,t) — f
a.e. (|

REMARK 5.18. Note that this shows that if f € C.(R¢) then u(--- ,t) — f uniformly.

4. The Calder6on-Zygmund decomposition
In the course on interpolation, we have already used several times a decomposition of a function
f € LY(R) in the form (A > 0)
(@)= fLlipen+ flipsa =g +b.
The first piece, g = f1jf<x is the good part of f since g € L'(R) and is also bounded,

lglly <IIfll; and [lgll,c <A
The bad part b = f1,f~ satisfies

lblly < 1fll and Jsuppp] < 10

with Markov’s inequality.
For general measure spaces, this is the best one can hope for. But in R? one can get a better
decomposition of the function b. To do so, we will use dyadic cubes:
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DEFINITION 5.19. A dyadic cube is a subset of R? of the form
Q = Qr.m = [2"m1, 25 (my + 1)[x[28ma, 28 (ma 4+ 1)[x - -+ x [28mg, 2% (mg + 1)]

where k € Z and m = (my,...,mq) € Z4.
We denote by D the set of dyadic cubes and define the dyadic mazimal function a

MYf)(z) = sup ﬁ /Q £l dy.

r€QED

One easily checks that |Q..,| = 28! and that if Q,Q’ are two diyadic cubes with |Q| < |Q’|
then either @ and Q' are disjoint or Q C Q’. The dyadic cubes thus enjoy a tree structure. We
call k£ the generation of the cube and Dy the set of cubes of generation k and note that this is a
covering of R?. Every cube Q of generation k can be divided into 2¢ cubes of generation k + 1
which we call the daughters of ). In the opposite direction, there is a unique cube @’ of generation
k + 1 such that Q C Q" and @’ is called the mother of Q.

We leave as an exercice to show that there are constants a, b, ¢ (depending on the dimension
d) such that for every A > 0,

{a = MO[f](x) > ad} < [{z = M[f](z) > A} < 0l{z = MI[f)(z) > A}
In particular, M? is of weak-type (1,1) and of strong type (p,p) for every p > 1.

THEOREM 5.20 (Calderén-Zygmund Decomposition). Let f € L'(R?) and o > 0. Then there
ezists functions g and b such that

(1) f=g+0;
2) llglls < Ifllh and [lgllos < 2%0;
(3) the function b may be written as b = Zb- where

a) each b; is supported in o dyadic cube Qj;
b) if j#k, QN Qr=0;
(©) / () dz = 0;
Qj
)
)

This decomposztwn of f is called the Calder6n-Zygmund Decomposition of f at scale (or level) «.

REMARK 5.21. The function ¢ is called the good function as it is in every LP space with
lglly < NlgllillgllEst < 24P~ Dar=1|| ],

The function b is the bad part, it satifies [|b]l1 < [|f]l1 + llglli < 2||f]|1 and contains the
singularities of f but has mean zero. We can’t expect any LP-regularity for this function.

PROOF. We first chose the smallest k such that 2%¢ > 7Hf||1 Now for each cube Q € Dy, we
consider its 2¢ daugthers. Such a daughter Q will be added to the set of selected cubes S if

1
@'/Q|f(x)|dx>a.

For each @ € Dj_1 \ S1, we repeat the operation and consider its daughters. Such a daughter Q
will be added to the set of selected cubes Ss if

1
|Q~|/Q|f(x)|dx > ...

At each generation k — j, 7 > 1 we thus construct a set of selected cubes S; such that if Qe S;,

then )
@/Q|f(:v)|dx > a.

Next, notice that the set of selected cubes U Sy is countable and that two selected cubes are
£>1
disjoint since once a cube is selected, none of its daughters can be selected and two cubes of the
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same generation are disjoint. We re-order the set of selected cubes as U Se = {Q;}; which is
£>1
precisely the set of disjoint cubes we are looking for. Note that this set may be empty in which

case we set b =0 and g = f.
1
b= {1107 [ W) 1q,

Now, for each j, we define
which is well defined since f € L*(R?), is supported in @; and has clearly integral 0 (over Q;
which is its support thus over R?). We then set b = > b; (note that this sum is well defined since
> b;(z) has at most one non-zero term since the b;’s have disjoint support) and g = f —b.

For each j, let @; be the mother of Q;. As Q; was not selected,

1
a1 o @l <a
It follows that
A @) < F@)lde = 2 [ ()] de < 2%,
Q] Jq, |Qa| Q; Q5 Ja,
But then
/j 1b; ()] dz < / If(ar)ldx+/Qj |Q1j_| [ wlay< 2/j (@) de < 2941 0]Q;).

On the other hand, as @; was selected,

@l | 5@l

J

therefore, using the fact that the @);’s are disjoint,

1 1
Sl [ i@l il

It remains to prove the estimate of g. We obviously have
o [ for v e RI\UQ,
g(x) = .
|Q]\fQ y)dy for z € Q,

Note that this is well defined as x can only belong to at most one @);. A direct consequence is that

/Rd|g(x)|dm = /Rd\UQJ |dx+Z/ )| dz

< )| dz + / dydx
/]Rd\U Q; | Z |QJ| )|
- Dlar+ 3 [ 15l =171
fee, PN
Further, we have already shown that o / y)|dy < 2% so that |g| < 2% on JQ;. T
j

remains to prove the same estimate on R%\ JQ;.
But, for each j > 1, there is a unique cube in Dj_; to which x belongs and this cube has not

been selected. Call it Q;j) and note that

1 1
||Q§3)/Q;j> f(y)dy| < |Q§3)|/62£” If(y)|dy < a.

Further, the diameter of ng) goes to 0 as j — 400 and each of these cubes contains x. So the
intersection of its closures is reduced to a single point which can only be x. Using Lebesgue’s
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Differentiation Theorem, we conclude that, for almost every z € R*\ J Q;,

. 1
flz) = jggloc w /Q;f) f(y)dy
thus | f(z)| < a. O

The fact that Lebesgue’s Differentiation Theorem holds for dyadic cubes is a direct consequence
of the weak-type (1,1) property of M¢.






CHAPTER 6

The Hilbert and Newton transforms

1. The Hilbert transform

1.1. The conjugate Poisson kernel. In this section we will identify C* := {z € C :
Im(z) > 0} with the upper half-plane R? in the usual way. For f € LP(R) (1 < p < +00), real
valued, the Poisson integral U(x + it) = u(x,t) = P; * f(z) is a real valued harmonic function
on CT and it is well known from your course on complex analysis that U is the real part of an
holomorphic function, U = RF. We can thus write F' = U 4 iV with V harmonic and further V
is unique up to a constant.

At least when f € S(R), it is easy to explicitely determine V' with the help of Fourier analysis.

Indeed, U(x + it) = P,  f(z) = F~ [P, f](z), that is

U(x+it) = /e—zﬂt\s\ﬂg)ezimgdf
R

oo R 0 NN
| e fgacs [ enenfie ag

0 —o00

Now the first integral is holomorphic in z = x + it while the second one is anti-holomorphic (of the
form G(z) with G holomoprhic) so that both are harmonic. One can thus chose

~

+00 0
Wit = [ @i dg- [ e feag

0

which is harmonic and such that U + iV is holomorphic. In other words

Ve +it) = [ —isign(©)e 2 o) g = [ —isign(teye > Feyerme de.
R

R

Using Fourier inverstion again, V(z + it) = Q; * f(z) with Q;(z) = ¢t~ 'Q1(z/t) and @\1(5) =
—isign(&)e2mIEl
It is not difficult to compute the inverse Fourier transform of ¢); and to obtain

F U0 () = / —isign(¢)e™2mlel g2imat ¢
R

0 ] +oo )
(/ e27r§(1+1£) dE _ / e27rf(—1+mc) df)
—o0 0

. 1 " 1 1 =z
= 1 = - —
1+ix  —14ix T2 +1
One thus obtains an L?(R)-function that is not in L*(R). However, L?-Fourier inversion shows

is —isign(&)e2I¢l

x
that the L2-Fourier transform of Q = —
a2+ 1
We can now introduce the following:

DEFINITION 6.1. The Poisson kernel on Ri is given by

1 t
bw) =2 e

and the conjugate Poisson kernel on Ri is given by
1 =z
T r2 12

69

Qi(z) =
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Observe the following facts:

— Pi(z) =t71P(z/t) and Q; = t71Q1(x/t);

- P e LY(R), Q1 ¢ L*(R) but Q; € LY(R) for all ¢ > 1;

- ﬁt(f) = e 27l (L'-Fourier transform) and @:(5) = —isign(&)e~2m¢l (L2-Fourier trans-

form).

From Young’s inequality, we may thus define Q; x f when f € LP(R), 1 < p < +oo and

1 1 1 1
obtain a function in L"(R) with — = — + — — 1. Note that the condition — > 0 requires to chose
p g r

r
1 1 1 .
->1—--=— thatis ¢ <p'

Next, observe that
1 t+ix i x—it i1

P ] = — = — = —
L iQ mx?+t2  wlr+it)2 wa+it
so that ' )
. i y
P, =— [ ————d
v * f(2) +iQu  f(x) 7 leatit—y Y

is indeed holomorphic in z = x + it, provided the integral converges.

DEFINITION 6.2. For f € LP(R), 1 < p < 400, we define
— the conjugate Poisson integral of f on Ri by

1 _
Q) = Qe flw) =+ [ )y
— the Cauchy-transform of f on C\ R by

cine =g [0y

The above computations show that
S (PIf](x,t) +iQ[f](x, 1)) when ¢ > 0

5 (=PUfI(@, ~t) +iQ[f)(z,~1)) whent<0

We now want to study the convergence of Q;[f] when ¢t — 0. We can no longer apply the same
theory as for the Poisson kernel since

—0 | =

Clf)(a +it) =

lim Q; = % ¢ I’(R)

t—0
for any p. Actually, it is not even a tempered distribution.
On the other hand lim; 0 Q¢ (¢) = —isign(¢) so that, applying Parseval twice, if f € L?(R)
then —isign(¢)f € L?(R) and the operator

f— F [~isign(é)f]
is bounded L?(R) — L*(R).
This is the operator we are going to study now

1.2. The Hilbert transform.
DEFINITION 6.3. The Hilbert transform is the operator L?(R)L?(R) defined by

H(€) = —isign(€) f(€)
that is

R o~ .
Hi(z)= lim — / i sign(€) F(€)e"€ de

R—+o00 27 [ _p
where the limit is in the L?(R)-sense.
PROPOSITION 6.4. The Hilbert transform has the following properties:

(i) For f € L*(R), Hf = lim;_,o Q¢ * f.
(i) 1 H Sl = Il H = B~ “H and H? = 1.
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(iii) Q:[f] = P.[Hf] and Q:[f](z) — Hf(x) in L? and a.e. whent — 0.

(iv) Let 7of(x) = f(z — a) the translations (a € R), 0sf(z) = f(sx) the positive dilations
(s > 0) and Rf(x) = f(—x) the reflection. Then H commutes with the translations
and positive dilations: H[1,f] = 1 H[f], H[0sf] = dsH[f] and anti-commutes with the
reflection RH[f] = —H[Rf].

(v) If a bounded operator T : L?*(R) — L*(R) commutes with the translations and posi-
tive dilations and anti-commutes with the reflection, then it is a multiple of the Hilbert
transform.

PROOF. For (i), we have already seen that Q, x f is well defined and in L?(R) when f € L*(R)
through Hausdorff-Young and that

Q: # (£) = —isign(&)e > f ().

Now | —isign(€)e "I f(¢)] < |F() € L*(R) and —isign(§)e>"1f(§) —~ ~isign(¢)f(¢) ae.
when ¢ — 0 so that dominated convergence immediately shows that Q/t*\f — —z’sign(f)fA: l/LI\f
in L?(R) when t — 0. Using the continuity of the inverse Fourier transform (Parseval) we get that
Qi+ f — Hf in L*(R) when t — 0.
For (ii), the first two are just Parseval:
1E fIl; = I1E FII5 = || - ésign(€) 113 = LF15 = 1 /13

while

(Hf,g) = (H].5) = / _isign(6) F(©)7(0) d¢ / F(e)vign@5(@) de

= (f.~Hg)=(f,~Hy)
that is H* = —H - -
On the other hand, H f = g if and only if H f = g that is —isign(€) f(£) = g(£) or, equivalently
f(f) = isign(§)g(§) = —ﬁ\g that is f = —Hg. Thus H~' = —H as well. As H can be defined as
a Fourier multiplier ﬁ-[?] =— sign({)f, we get

T . e . 245 ~
H2([f] = —isign(§)H[f] = (—isign(§))"f = —f
thus H? = —1I.

For (iii), we first notice that if f € L?(R) then Q.[f] = P[Hf] coincide since both have
as Fourier transform —isign(&)e 2mélf(€). Then, as Hf € L?*(R), we have already shown that
P,[Hf] — Hf in L? and a.e. when t — 0 so the result follows for Q;[f].

The last two are left as an exercice. One should first show that if a bounded operator T :
L?(R) — L?(R) commutes with the translations then there exists m € L> such that T'f = mf. O

We will now give a more direct definition of the Hilbert transform. One would of course like to

1 1
define Hf = — x f but this is not possible since — ¢ L'(R) and even the more general Sobolev
T T
inequality does not apply.
To overcome this issue, let us introduce

DEFINITION 6.5. The principal value distribution associated to 1/z

1
up—,p ) = lim/ de, » € S(R).
T =0 |z|>e T

The first step is to notice that, as 1/z is odd, this is well defined. Indeed, let x be an even
function supported in [—2,2] and such that x(x) =1 on [—1,1]. Then

/|m gng)dx_/:@dx+/;>ﬁ@dx—o

after changing variable x — —x in the first integral. It follows that

[ g o) = p(OX(@) o [ o)
lg|>e T e<|z|<2 €L |z]>2 T

It remains to notice that
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— the second integral is absolutely convergent when ¢ € S(R) since 7 1p(z) = O(z~2) in this

case. .
— as ¢ is smooth, M

/way—wmxw>

_2 x

extends into a continuous function over [—2,2] so that

dx is absolutely convergent thus

/ ﬂw—wmnupm_ﬁ/Qﬂw—wmmuxm
e<|z|<2 x —2

x

when ¢ — 0. 1
It is not difficult to slightly modify this argument to show that pv — is a distribution of order
x

1 with
1
(v 3o0)| < swplef@)] +asuplr o)
z z€R z€R
Next, we can fix f € S(R), z € R and apply this to ¢(y) = f(z — y). This shows that
fle—y
@-v)y,

ly|>e Y

pv1 * f(x) := lim
x

e—0
is well defined pointwise. Our aim is to show that this coincides with the Hilbert transform:
PROPOSITION 6.6. For f € L?(R), the limit
lim 7}"(3: ~v) dy
e—0 |y\>s y

exists both in L*(R) and almost everywhere and is equal to nHf. In other words, the Hilbert
transform can also be defined as

Hf(:zc):liml Mdy

e—=0 T ly|>e Yy

where the limit exists in L>(R) and almost everywhere.

1
PROOF. Let us introduce hi(z) = —xl‘zbt and note that hy(x) = t~thy(x/t). Define Hy[f] =
s
hy * f and observe that as h; € L*(R),
1
@) = [ Cfe-ndy= [ b=
ly|>t Y R

is well defined for every x € R when f € L*(R).
We now consider U,[f] = Qi[f] — Hi[f] = ¢ * f with

(@) = Qula) — () = $(Qu(e /1) ~ (/1)) = T r(2/1)

where )
X
priu) = — T te>1 ) =y 1 —1 :
T \z? +1 € - ————  when |i]']| > 1
7w x(l 4 22?)

One can then note that ¢ is odd and has thus mean m = 0. Further, its radial majorant is easily
computed

L <

— if |z

O(z) = sup |p(y)| = { 27 N
ly|>= lp(z)] if |z| > 1

since |¢| is continuous and increases from 0 to 1/27 on [0,1] while it is decreasing after 1. In
particular, ® € L*(R). Applying Proposition 5.15, we get that ¥,[f] — 0 in L?*(R) and a.e. when
t — 0. But we already know that Q.[f] — Hf both in L? and a.e. so that the same holds for
Hy[f]. 0

To conclude this section, we will show two further applications of the Hilbert transform, the
first one connects the transform to complex analysis:
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THEOREM 6.7 (Plemelj Formula). Let f € C}(R) be such that f(z) = O(x™') when z — +oo,

then
in/ ) g, - Ef@)+iHf@)
y—

‘ m =
21 =0 R

(@+ic) Y 2
Note that the conditions on f are just to make everything defined pointwise. Boundedness
considerations and a density argument allow to extend this formula in various settings.

PRrROOF. First, a change of variable allows to only consider the case z = 0. Also, we only
consider the + sign in front of e. We thus want to prove that

iy [ L0 g, - LOHEIW SOy L[ S0,
ly|>e

24 £—0 RY — i€ 2 2 250 21 Y

that is (changing variable y = cw in the integrals and multplying by 2im)

L
/fsw ( | |>1) dy —inf(0) = 0
w
S S ) , : T
Now let p(w) = _ and note ¢ is bounded while for |w| > 1, p(w) = w{w— Which
w—1 w

is integrable at infinity, thus ¢ € L!(R). Further, decomposing ¢ as a sum of an even and an odd
integrable function
1 1yy>1 i w o Ly

(p(w):w—i_ w_ ::w2+1 w? +1 w

. dw .
/Rgo(w)dw—z/Rwzi_'_1 = im.
It follows that

[ e (55 = M) ay - inp0) = [ (flew) - 10) (51 - 242

As f(ew) — f(0) — 0 and is bounded by 2|/ f||cc < 400 the conclusion follows from dominated
convergence. 0O

we get

Assume now that f further extends to an holomorphic function in the upper-half plane C*

ith a decay bound 2) < —.
w y bound |£(2)] < 7

1 f(y)
2im Jpy— (x +ig)

Cauchy’s Formula then gives

dy = f(z +ie) — f(x)

when ¢ — 0 so that Plemelj’s Formula shows that f = HTlH i.e. Hf = —if. In particular,

comparing real and imaginary parts, we get
Rf=—HImf and Imf=HRf.

Let us conclude this section with the link between Hilbert transform and Fourier integrals:

define the modulation operator M, f(x) = %7 f(x). Note that ]\//[:f(g) = f({ —a).
Next observe that if a < b

—14+1=0 ifé&<a<d
sign({ —a) —sign({ —b) =41 —-1=0 if&>b>a =21
141=2 ifa<é<b

so that
b i 1 ~ ) 1 N _
/a f(é')GQlﬂ'wE dg = 2 / Slgn(f _ a) (€)e2mw£ dg _ §/RSign(£ _ b) (§)€2z7r:r§ df
2imax N . 2inbx R o
= € 5 /]RSlgn(ﬁ) (é— +a)6217r1w§ d§ . € 5 /]RSlgn(ﬁ) (é. + b)eQZﬂ'zwé dé—
gimax 2imbe

T2 /R_iSign("c)m(aeQmEdH 2 A_iSign(ﬁ)@(é)eQi”xfdf
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so that Fourier inversion gives

b ~ .
| R de = 5 (Mo f] = ML HDL )

Note that if f € S(R), then

R
tw [ ot ag =

R—+o00

by Fourier inversion. If we are able to show that H is bounded LP(R) — L?(R) for some p > 1 (we
already know this for p = 2 and we will do so for all 1 < p < +00) then the family of operators

TR 1
Salfle) = 5= [ Pl e (MRH{M ) = M (M)

is uniformly bounded. It follows from Banach-Steinhaus that Sg[f] — f in LP(R).
A difficult example of Kolmogorov shows that this is false in L!(R) but it is more easy to show
that H is not bounded on L!(R):

EXERCICE 6.8. Compute H1(,p)-
EXERCICE 6.9. Show that if f € S(R) then

zHf(x) — %/]Rf(x)dx

when z — +o0.
Conclude that H is not a bounded operator L'(R) — L*(R).

2. Newton potential
We continue with an operator that appeared in the introduction:

DEFINITION 6.10. Let d > 3.
The Newton potential is the function defined on R\ {0} by

Cq 1
MO =ri= = m=aBo)

and the Newton potential of a function f € S(R?) is given by the convolution with T':
Al = [ T =)f)

Note that, for z # 0 and j,k € {1,...,d}

or T
- = —(d =2,
5 () = (4= 2ear
and if k # j
0T Ty
=d(d — 2)eq—L—=
a$k6$] (E) ( )Cd|z|d+2
while

T da? 1
@(x) = (d - 2)cq <|x|d+2 - |:cd>

J

or
in particular AT' = 0. Note that e is integrable so that Lebesgue’s Theorem shows that
Ly

(2) = —(d - 2)eq / 23 Y5 () dy.

a |z —ylt

or(f]
8xj

The argument does not work for the second derivative for which the following formula is only

formal:
82F[f] _ (x-_y,)(xk_yk)
Snya. (7) = dld =2 [, 20 g

Instead we are now going to prove the following:
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THEOREM 6.11. Let f € S(R?) then, for every x € R? and every 1 < j,k < d,

0°I'[f]
o) = (2020 [ o) 1@
: (z; — ;) (e — yk)
4+ d(d — 2)cgq lim dy.
(@Dl [ S ) dy
In particular, this limit exists for every x.
PrOOF. Throughout the proof f € S(R?) and x € R? are fixed.
It is enough to prove the formula for £ = 1. To simplify notation, we write 0 = i and
X1
0; = 6‘% Let e = (1,0,...,0) and notice that, for every t € R and R > 2,
J
A T[fl(x + te) — O, T[f](x o;il'(x +te—y) — 0,7 (x —
i L t) j [f}():/ iT( yt) iT( y)f(y)dy
Rd
o;l'(x —y+te) — 0, T (x —
-/ (M= =OTE Y poyre ) )y
RN\ B(a, [t| R)

1 1
+f 0L W) dyty [ oTre [ dyy [ Tl
R4\B(w [t R) t B t B 1R

Note that the two first integrals are well defined when f € S(R?) since I and its partial derivatives
are bounded on the domain of integration.

Denote the 4 terms by T%,, j = 1,2,3,4. The remaining of the proof consists in treating
each of these terms in a speciﬁc claim. We will let ¢ — 0 and R — +oco. In some steps, those
convergences can be independent and in some not. The simplest would be to chose R = t~1/3 but
this can make notation a bit heavy.

Claim 1. We have lim;_,olimp_, oo T}%’t = 0.
Applying the mean value theorem twice, there are a 61, 0s € [0, 1] such that

0T (z — y + tey) — 0;T(z — y)
t

—00;T(x —y)
= 00,1 (x — y + the) — 00,1 (z — y) = t6,0°0;T(x — y + t0:10q¢).
But, on one hand, there is a constant C such that [920;T(u)| < C/|u|"!, on the other hand if
R > 2 then [t0se| < [t| < £ thus, for y € R?\ B(z, [t|R) i.e. |z —y| > [t|R
|z —y + th102¢e| > |z — y| — [t0102¢e] > |z — y|/2

so that

241 C
2

We have thus shown that

Thel <210t [ W gy <ot [ e - ulsw)lay
R4\ B(z,|t| R) |z —yl Rd

pmd-t if r > [t|R

(¢|R)=4-1 it r < |{|R’ Note that h is decrasing and that g(z) = h(|z|) satifies
if r <

where h(r) = {

+oo d
_ d—1 d—1 3., _ d—1 (ItIR) 1 _ hRd
We then apply Lemma 5.10 to get

. 2d+1 Clﬁ?d

T, < 271 Cltlllgll, M[f)(x) 7

which goes to zero when t — 0 and R — +o0.
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Claim 2. We claim that

(2.39) T, — lim 00;T(x —y)f(y)dy
e=0 Jpa\ B(a,e)
when t — 0, R — +oo with Rt — 0 (and the limit in (2.39) exist for every x).
We need the following symmetry observations: Let D = B(0, p) \ B(0,r) with p > r. then
o°T
p 01,0

When k # j this comes from the fact that D is symmetric with respect to the transformation
2

o
O0x0x;

invariant under permutation of variables thus
2 2
X x
J _ k
, e = a2
_ |z
JAELE Z/ fejtr? 4 = [y e

T
The formula for —— sows that
Oxj,

(2.40) x)dz = 0.

x; — —x; while () is odd for this transform. When k& = j, we use the fact that D is

so that

/ @;(z) da = 0.

p 07}
We then write, for |t|R < 1,
tho= [ oore-yiwd+ [ 20,1 (x — 1) F(0) dy.
R\ B(z,1) B(z,1)\B(z,R|t])
The first integral is well defined. For the second one, we use (2.40) to write

0T (z —y) f(y) dy = 0;T(x —y)(f(y) — f(x)) dy.

/B(x,l)\B(x,Rq) /B(m,l)\B(r,th)

Since f € S(R?), the mean value theorm gives

[f (@) = fW)l < V£l ]z =yl
thus with the estimate |0?T'(z — y)| < C|z — y|~ we get that

VAL

|z — gl

00;1(x —y) f(y)| <C

which is integrable aover B(z,1). Thus

/ 90,1z — ) f(y) dy
B(z,1)\B(z,R|t|)

has a limit when R — 400, t = 0 with Rt — 0 and

1. T2 :1 F B .
t—>0,R—>14Irnoo,Rt—>o Rt = 1 RO\ B(a.) 90;T(x —y)f(y) dy

Claim 3. We claim that
lim lim TR ¢ = ((d —2)eq /d YiYk del(y)) f(z).
§d—1

t—0 R—+o0

We write
1
Tf;’c’t — t/( . il (z +te—y)(f(y) — flz+te)) dy
ot
—l—M/ o'z +te—y)dy := Tg TRt.
t B(z,|t|R)
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Using the mean value theorem and the bound on |9;T(u)| < Clu|~%"1 we get

1 Vilily— (z+te
< L oISy = e +10)
It JB(x,t1R) |z + te —y|
CIV £l / dy
N It Blaotte2)t|R) [T +te —yld=2

since B(z,|t|R) C B(zx + te,2|t|R) as R > 1. One can then change variable v = = + te — y and
integrate in polar coordinates v = r( to get

ClIV£la R e
< ngfl(g )/0 de'f’
20|V fllioa—1(S* M R?|t|

which goes to zero when t — 0, R — +o00 but R*t — 0.
For the second term, we notice that

N

I Tiel

13} 13}
@F(x—kte—y)::aTj (33—|—te—y)=—a—yj (z +te —y).
Then, integrating by parts (Green’s Formula)
1 1 0
f/ Oil(x+te—y)dy = —f/ —TI'(z+te—y)dy
t JB(a,|t|R) t JB(a,|t|r) OV
1

= —f/ I(z+te—y)v;dy
U JoB(x,|t|R)

i [ DRI+ te)G doaa(€)
Sd*l

= —Rsian() [ T+ R sin(0e) doaea Q)

since I is homogeneous of degree —d + 2. Next we use again a symmetry argument to get

JRRGITRIGRY

so that
/ O;l'(x+te—y)dy = —Rsign(t) / (F(C + Rt sign(t)e) — F(C))Cj dog—1(¢)
B(x,|t|R) gd-1
or
5 [ G A

= cqg(d—2) /Sdil G1¢j dog-1(C)

when R — 400 (with the fact that OT'(() = —cq(d — 2){; when [(| = 1).
The conclusion follows by letting ¢ — 0
The proof for Té’t is similar and we obtain the same limit. To make all steps work simultane-

ously, it is enough to take R = t~1/3 and to let t — 0. ]






CHAPTER 7

Calderon-Zygmund operators

1. Definition

In this chapter we are interested in operators that are (at least formally) defined by a kernel
K i.e. are of the form

7fa) = | K@i

and we are looking for conditions on K which garantee that T is of strong type (p,p). We are
in particular looking for conditions that go beyond the Schur test and would cover the Hilbert
transform and the Newton potential.

IWe will denote by A = {(z,z) € R¢ x R? : x € R4},

DEFINITION 7.1. A function K € C1(R? x R%\ A) is called a standard or singular kernel if
there is a constant Cy > 0 and an « with 0 < o <1 such that the following estimates hold:

i) For every (z,y) € R? x R4\ A, |K(z,y)] < ———;
| |
r—=Yy

1
(ii) For every x,y,z € R? with 5,z # z, and |y — 2| < §|m —y|

ly — 2|
|K(z,y) — K(z,2)| < COW

1
and for every z,vy,z € R? with z,y # 2, and |z — y| < §|m —z|

|z —y|*

|K (2, 2) = K(y,2)| < Com~

REMARK 7.2. The second property of a standard kernel is usually called the smoothness prop-
erty of K as it is essentially a Holder smoothness property. The factor 1/2 appearing there is of
mild interest as long as this factor is < 1.

To check that K is a standard kernel, it is usually more convenient to check that there is a
constant C; such that
Ch

VoK (2,9)], [V K (2, y)| < [z =yl

Indeed, let x,y, z € R? with y, 2 # z and |y — 2| <
is a 0 € [y, z] such that

| — y| then, by the mean value theorem, there

DN =

K(z,y) — K(z,2) = (VyK(z,0),y — ).
Thus

|K(2,y) — K(2,2)| = [VyK(z,0)| |y — 2| < mw - z|.

1
Asbely.z, [y =0l <ly—=2 < gle—yl,

1
|z =0l >z —yl—ly—0| > |z —y[—|y—=2[> i\m—yl-
We conclude that
2d+101
K (z,y) — K(z,2)| < WW — 2|
The second estimate is similar.

79



80 7. CALDERON-ZYGMUND OPERATORS

ExamMPLE 7.3. In dimension d = 1, both K(z,y) =

1
and K(z,y) = are singular
)

1
lz —yl
kernels. If Q : S9! — R is Holder continuous then

K(x,y):Q(x_y) !

lz =yl ) |z —yl?

is a singular kernel on R¢ x R<.
We leave this fact as an exercice.

These conditions are not sufficient for the operator T associated to K to be of strong (2, 2)-type.

DEFINITION 7.4. A Calderén-Zygmund operator is an operator T of strong type (2,2) such
that there exists a singular kernel K such that if f € L?(IR) is supported in a compact set E then
for every z ¢ E,

Tf)= | K(z,y)f(y)dy.
R

EXAMPLE 7.5. Let b be a bounded function on R? and T'f = bf then T is bounded L?(R%) —

L?(R%) and if f € L?(R) is supported in a compact set E then for every = ¢ E

Tf(e) = ba)f(@) =0 = [ 0fw)dy

so that T is a Calderon-Zygmund operator with kernel 0. In particular the kernel is not unique.
However, a functional analytic argument allows to show that this is the only source of non-
uniqueness.

In general, Calderén-Zygmund operators are just singular in the sense that K just fails to
be integrable so the difficulty is to analyse the singularity correctly to see that some cancelation
occurs.

ExaMPLE 7.6. The Hilbert transform H is a Calderén-Zygmund operator with kernel K (z,y) =
1 1

T — Y
set E then for every x ¢ E
. 1 1 1 1
i) =tin [ L fe)dy= [ 2 f)dy.

e=0 Jjpy|>e TT—Y AaTT—Y

This follows from the fact that if = ¢ F then for € small enough, |z — y| < e implies that f(y) =0

since, we proved that H is of strong type (2,2) and if f € L?(R) is supported in a compact

REMARK 7.7. A Calder6n-Zygmund operator needs not be translation invariant, self-adjoint,
dilation invariant,... However, if T is a Calder6n-Zygmund operator with kernel K, then 7_,T'7,,
01/2Tdx and T™ are also Calderén-Zygmund operators. We leave as an exercice to determine the
kernel in each case.

As the adjoint will play a role in the sequel, let us detail that case:
LemMA 7.8. Let T be a Calderon-Zygmund operator and K be a standard kernel associated to

it. Define its adjoint by
/ Tf(x)g(z)dz —/ f(2)Tg(x)

for every f,g € L?>(R?). Then T* is also a Calderén-Zygmund operator with kernel K*(z,y) =
K(y,x).

PROOF. That T* is a well-defined bounded linear operator on L?(R?) is a standard fact from
any course on Hilbert spaces. The only thing that needs to be shown is that 7™ is associated to
the kernel K* as it is clear that K™ is also a standard kernel.

Now, let f,g € L?(R%) have disjoint compact support. Then

[ taTs@iae = [ Ti@id
[ [ K@) dit
Rd JRd

/ </ny dy)dm
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whith Fubini which is justified by the fact that f(y)K(z,y)g(z) € L'(R? x R?) since f,g € L
and K is bounded over supp f x supp g (since those supports are compact and disjoint thus at a
positive distance).
Now fix ¢ € C2°(R?) with [ ¢ =1 and z ¢ suppg. For £ > 0 take f = e~ %¢((x — 2)/e) which
has disjoint support from g when ¢ is small enough and let € — 0 then,

oo = [ oTa@ar= [ o) [ Ko ) ae= oo [ Kot an) @)

Rd

Letting € — 0, by the approximation of unity theorem, we get

Tg() = [ KGala) dy

for almost every z. O

REMARK 7.9. Some authors prefer defining Calderén-Zygmund operators with the help of
distribution theory. Here we consider W € S&’(R? x R?) and assume that W coincides with a
standard kernel K on R? x R\ A where A = {(z,z) : z € R?%} is the diagonal of R? x R, This
means that, if ' € S(R? x RY) is supported away from A (i.e. dist(supp F,A) > 0) then

(W, F>s'(Rded),S(Rded) = // K(z,y)F(z,y)dz dy.
R4 xR

Note that this integral is absolutely convergent and that more than one distribution W can coincide
with K.

Next, we consider an operator T : S(RY) — S’'(R?). The Schwarz kernel theorem states that
there exists Wr € S’(R? x R?) such that

(Tf,0)s ray,srray = (Wr, [ ® ©) 5/(RixR1), 5(RIXRY)

for every f,p € S(R?). We then say that T is a Calderén-Zygmund operator if its kernel Wrp
coincides with a standard kernel of the diagonal and if 7" extends to a bounded operator L?(R?) —
L2(RY).

The last part means that there exists C' > 0 such that, for every f € S(RY), Tf € L*(R?)
(as a distribution) meaning that there is a g € L2(R%) with ||g||2 < C||f]||2 such that, for every
¢ € S(RY)

<Tf7 <)O>S(Rd)’3/(Rd) = /Rd g(x)go(x) dz.

Of course, we identify ¢ =T'f.

Under this definition, T is thus always defined on S(R?). Saying that T is of strong type
(p,p), 1 < p < +00, then means that the g above is also in LP(R?) with | g, < Cpl/f|l,. This in

turn implies that T (uniquely) extends from an operator S(R%) — LP(R?) to a bounded operator
LP(RY) — LP(RY).

We will now turn to boundedness properties of Calderén-Zygmund operators.

2. Boundedness of Calderéon-Zygmund operators

We will start with a simple lemma that shows that an operator with singular kernel maps
fluctuating (zero-mean) localized functions into weakly localized functions:

LEMMA 7.10. Let K be a singular kernel and denote by Cy, o the parameters in Definition
7.1. Let ¢ € L*(R?) be supported in a ball B = B(xg,r) with zero mean / o(x) de = 0. For
B
x ¢ 2B = B(xg,2r) define
To(o) = [ Ka.v)oly) dy
B
then O
r
T < d
1@ € e [ 1l
so that
Co
Tl wan2m) < €2 l1£ll
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where C' depends on the dimension, but not on f nor on K.

PrOOF. Using the fact that f has mean 0, we write
0= [ Koty = [ (5.9 - Kam) i) .

1 1
But = ¢ 2B and xg,y € B thus |29 —y| <r < §2r < §|33 — Zp| so that
| 0|O¢ ,],.,OL

K - K < .
K (2,9) (, o) 0Tz = zo|dte = "0z — goldte

We thus get the first estimate from the triangle inequality. But then, integrating in polar
coordinates

N B “+o0 td_l
(2.41) ITflsnem < Cor® [ 1F)layoas(s™) [ Gz
(2.42) = e [ 1wl
as claimed. O

This lemma of course applies to Calderén-Zygmund operators but we did not need L2-boundedness
which will now play a key role:

THEOREM 7.11. Let T be a Calderon-Zygmund operator, then T extends into an operator of
weak-type (1,1).

ProOF. We take f € S(R?) and A > 0. We want to show that

s> 2y < Ml

To do so, we will exploit the Calderén-Zygmund decomp051tion and the previous lemma. The
parameter in the decomposition can be chosen to be & = A\. We thus get a decomposition f = g+b,
b=>",b; with b; supported in Q; with [ b; = 0. Further ||g|l2 < 29\| |1, [|b;]1 < 2¢T1A|Q;| and

||f||1
2 1Q;l <
First Tf Tg+ > Tb; so that |[Tf| < |Tg|+ > |Tb;| and if this sum is > A, then at least one
of the terms is > \/2 so that

{ITF1 > M < [{ITgl > A/2} + ({1 ) Thi| > A/2}].
For the first term, we exploit the fact that g € L? so that Tg € L? and Chebichev’s inequality:
4 4 Ch
ITgl > M2} < 55 ITgl3e < 5171 salgle < SIS

with C; = 29%2|| T2, ;..
For the second term, we will start exploiting the previous lemma which states that, if

1T L1 (mev2q,) < Cllbjlln < C2A[Q;]
where C5 depends on the dimension and the parameters of the kernel associated to T'. In particular
| ZTbj”Ll(Rd\U2Qj) < Z 17651 (mav2q,) < Cz)\z 1Q;] < Caf fll1-
Therefore, using Markov’s estimate
202

{z e RN 20, : S Thita)| > 42} | < %HZT@-‘ panysay = T

Now comes the big advantage of weak-type estimates of strong type estimates: we do not need to
estimate »_ T'b; over the remaining set J2@Q);, we only need to estimate the size of this set:

20| <> Resi <2 10il < Q—fnfnl
{17 > w2 < Sl

so that finally
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with C3 = 2Cy + 29,
Putting everything together, we get

C C
ITA > A < 2l + 5205
as expected. O

COROLLARY 7.12. Let T be a Calderén-Zygmund operator and 1 < p < 400, then T is of
strong type (p,p).

PROOF. Recall that, by definition, a Calderén-Zygmund operator is bounded on L?. First, for
1 < p < 2, using the fact that T is of weak-type (1,1) and of strong type (2,2), we get that T is
of strong type (p,p) by interpolation.

Next, let 2 < p < +o00. If T is a Calderén-Zygmund operator then so is 7%. Thus T™* is of
strong-type (p’,p’) thus T is of strong type (p, p)- O

The case p = +oo is left-out for the moment and will require the introduction of a new function
space, the space of Bounded Mean Oscillating functions

3. Truncated Calderén-Zygmund operators

3.1. Truncation of Calderén-Zygmund operators. Calderén-Zygmund operators are for-
maly defined as

Tfa) = [ Ko f)dy

and we would like to give a reasonable meaning to this definition. The example of the Hilbert
transform suggest that we should look at the truncated version

(3.49) i@ = [ K

and to let ¢ — 0.
The first observation is that 7T, makes sense:

LEMMA 7.13. Let K be a standard kernel and define T. via (3.43). Then T.f is well defined
and of strong type (p,0) for every 1 < p < +o0.

ProOOF. It is enough to apply Hélder’s inequality

Colga\ gy
L@ < [ K@l < [ D )
R4\ B(z,¢) R |z — Y
Hcol]Rd\B(w,s) Il
- lz—ylt |,
, Colri\B(z.e) _d —d
When p =1, p’ = 400 and Tyt < Coe™% so that |T.(f)(z)| < Coe™ || fll;-

When 1 < p < +oo, 1 < p’ < +oo and we integrate in polar coordinates

Colpa\ B || a1y [T ldr a1y [T dr
H e =yl ||, =04-1(S )/E T oa-1(S )/8 T < T
and the conclusion follows. O

The kernel of T is
Ke(2,y) = K(2,9) {0 g)erixra: |o—y|>e}
which is no longer a standard kernel as the smoothness condition is no longer satisfied.

One can overcome this by introducing a smooth cutoff function. Let ¢ € C*°(R) be such that
0 < ¢ <1, pisradial and p(z) =0 when |z| <1 and p(z) =1 when |z| > 2 and define

K#(z,y) = K(z,5)¢ ("’”y>

3

1
Then K¢ is a standard kernel: let z,y, z be such that « # y, z and |y — z| < §|x -yl
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C C
~As [K(z,y)| € g and 0< 9 <1, [KE (0y)] <

| |z —y|
— Next recall that Cl |
oy —=
|K(2,y) — K(z,2)| < W
and write
T—y T—y x—z
K?(z,y) — K¢ (z,2) = (K(z,y) — K(z,2))¢ <€> + K(z,2) <g0( g ) —cp( . >) .
Again, as 0 < ¢ < 1 we immediately get that
rT—-y Coly — 2|
K - K .
(KGo) - K)o (20 )] < O

On the other hand, from the Mean Value Theorem, there is a 6 € [y, z] such that

P(5) o () (e (7)o )

: . - r—0\ _ =0
But ¢ is constant in B(0,1) and in R®\ B(0,2) so that Vo <€> = O unless 1 < — < 2.

1
Further 0 € [y, 2] i.e. 0 =ty + (1 —t)z for some 0 <t <1land |y —z| < §\x—y| so that
1
o =0l =lz—y+ 1=y -2 2]z -yl - 1=y -2 = S|z —yl
. x—0
We conclude that, if Vp (€> #0

2e 22¢
1< <
Iaf—9\ |z —y|

It folows that

T —y T —2z 2? N oly — 2%z =yl
'w( ) —s0< )\ < 2 | Vellaly - 2l < 2| Vilaly - 2]
£ £ |z —y| |z —y]

. . 1 .
using again that |y — z| < §|x — y|. In conclusion

T —y T—=z l+a ly —2|*
K(z, - <2 \Y 0007
’ (xz)<(p< € ) (p< € >>‘ Vel Ol —yldte
as expected.

The second smoothness estimate is obtained the same way.
We can then define

TS f(x / K¢ (z,y)f(y) dy.
We leave as an exercice to show that T f(z) is well defined when f € LP(R?).
PROPOSITION 7.14. Let 1 < p < +oo and f € LP(R?). With the notations above we have
T2 f(z) = T f(x)] < CM[f](x)
where C is a constant depending on the dimension and the parameters of the kernel and on ¢ but
not on €.

In particular, T, is of of weak type (1,1) (resp. strong type (p,p) for 1 < p < 4+00) if and only
if T¥ is.

PROOF. Write

T f(z) — T.f(x) = /Rd <1Rd\B(x,€) (y) —¢ <x — y)) K(z,y)f(y)dt.

€
Note that

x—y)’ _ {0 and if y ¢ B(z, 2¢)

1 — .
r\B(.) () = @ < € <1 if y € B(xz,2¢) \ B(x,¢)



3. TRUNCATED CALDERON-ZYGMUND OPERATORS 85

It follows that

|f(y)]
¢ f(2) - T.f (@) < c/ L
| (=) (@)l 0 B(x,2¢)\B(z,¢) |z — y|4
Co Co B 0 2
< S umla=2C2 il
€ JB(x,2¢) |B(0, 2¢) Lza)
< Co|B(0,2)|M[f](x)
as claimed. O

We now want to define T'f as lim7.f. The first observation is that this can not be done
pointwise. This can already be seen from the simple operator T f (x) = b(x) f(z), b bounded, which
is a Calderon-Zygmund operator with kernel 0 so that T; f(z) = 0 though T f # 0.

The following lemma clears out the situation for pointwise limite.

LEMMA 7.15. The limit lim._,o T. f(z) exists a.e. for every f € S(RY) if and only if the limit
lim K(z,y)dy
e20 Je<la—yl<1

exists almost everywhere.

ProOF. First, assume that lim. .o 7. f(z) exists a.e. for every f € S(R?). For f take a
function € S(R?) that is 1 in B(0,2) and note that, if || < 1 and |z —y| < 1 then |y| < 2 so that

Liw= [  Kewdr [ Kewnfds
<lz—y|<1 |z—y|>1
The second integral is absolutely convergent and does not depend on € so that
lim K(z,y)dy =1lim T, f(x
e—0 e<|z—y|<1 ( ) e—0 ( )

exists almost everywhere in B(0,1). We leave as an exercice to adapt the proof to show almost
everywhere convergence in any ball B(zg,1).
Conversely, suppose that for some z € R?,

L = lim K(x,y)dy
e20 Je<la—y|<1

exists. For f € S(RY), write

i = [ Kewias [ ke
-/ K(a,) (1) — @) dy + ) | K(x.y)dy
<lz—y|<1 e<|z—y|<1

+ /| K

The second term is a limit when € — 0 and the third one is an absolutely convergent integral that
does not depend on ¢. It remains to show that the first one has a limit. But from the mean value
theorem and the growth estimate of K we get

/ |K (z,y)||f(x) — f(y)|dy S/ IV flloolz —yldy < 400
l—y|<1 l—y|<1 \m |

thus the integral / K(z,y)f(y)dy is absolutely convergent and
lz—y|<1

/< |<1K(x’y)f(y) dy — K(z,y)f(y)dy

|z—y|<1

when € — 0. O
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3.2. Maximal truncated Calderéon-Zygmund operator.
DEFINITION 7.16. Let K be a standard kernel and define the truncated Calderén-Zygmund
operators associated to K for f € S(RY) by
i@ = [ K@i
le—y|>e

and the mazimal truncated Calderén-Zygmund operator associated to K for f € S(R?) by
T.f(w) = sup |[T- f(z)|.
e>0

Note that T is well defined so that T is also (but may take the value +00) and is a sublinear
operator.

THEOREM 7.17. Assume that T is a Calderdn-Zygmund operator associated to a kernel K and
let T, be the maximal truncated Calderén-Zygmund operator associated to K.
Then T is of weak type (1,1) and of strong type (p,p) for 1 < p < 4o0.

The proof of this theorem requires several steps. The first one is Kolmogorov’s Lemma 2.31.
The second one shows that T, can be controlled by expressions involving maximal functions.

LeMMA 7.18. Let T be a Calderon-Zygmund operator associated to a kernel K and 0 < v < 1.
For every f € C.(RY),
T @) < C[(MITA @) + Mf (@)
with a constant C that depends on K and d only.
PRrOOF. Let z € RY ¢ > 0 and B = B(z,¢/2), 2B = B(z,¢). Write
f=flap+ f(1 =12B):= fi + fo.
As f is compactly supported, fo € L?(R?%) and f, is supported in R? \ B(z, 2¢) so that

T o) = / K(z,9)f(y) dy = T.f (2).
R4\ B(z,¢)

Further, if z € B(x,e/2) then z ¢ supp fa thus

/ K () foly) dy — / K(z,9)fay) dy
R4\2B

R4\2B

ITf2(z) = Tfa(2)] =

IN

[ 1K) = K )] dy
Rd\2B

|z — 2|
C f(y)|dy
/Rd\B(:c,a) 0 |17 - y|d+a | ( )|

< 1ly — x| when y ¢ B(z,¢). But then

IN

since |fo| < |f] and |z — 2| <

| ™

(0%

C, +o0o _
0

w2 O
> kz:o yeB(x,20+1e)\ B 2he) (27€)(HH) |

S0 / 7l dy
20 e 2k (2ke)? gy artic)\ B(w,2ke) '

IN

T f2(x) = Tf2(2)]

IN

Now notice that

1 1
S - dy < 29B(0,1 7/ d
(2k+1)g)d /B(z,2k+ls)\B(:c,2ks)|f(y)| o= 1B )||B($a2k+15) B(m,2k+15)|f(y)| Y
< 29B(0,1)|M[f](x)

so that

+o0o
Th(a) ~ Th(2) < o2 BO VMW Y 507 = PO prg)(0) = Amifi(a).

k=0
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We thus get
(3.44) Tef(2)| = T f2(2)| < AM[f](z) +|T f2(2)| < AM[f](z) + |Tf(2)| + T f1(2)]

whenever z € B = B(z,¢/2).
As the right hand side does not depend on ¢, it is enough to bound it by the desired quantity.
To do so, we will now separate two cases.

Case 1. The lemma when v = 1.

If we had T f(z) = 0 there would be nothing to prove so we assume that T, f(x) # 0 and take
0 <X <|T.f(z)]. We define

Bi={ze€ B :|Tf(z)| >A/2} , Ba={z€B:|Tf(2)|>A/2}

and

B if M[f](x) > \/3A°

Note that if z € B then either z € By, z € By or (3.44) implies that M[f](z) > A\/3A in which
case Bs = B. In any case, we have B = By U By U Bs.
However, Markov’s inequality shows that

By — {0) if M[f](z) < \/3A4

2 2|B
Bl < 2 [ e < L)
B
On the other hand, T is a Calderén-Zygmun operator, it is of weak-type (1,1) so that
C 2C|B|
Byl < = < M
Bal < St < 222 aay
since fi = f on 2B and f; = 0 on R?\ 2B. In particular, if B3 = (), then
2|B 2C|B
81 < 181 +18:] < 22 ariri@) + 29 g

which implies that
A <2M[Tfl(z) + 2CM|f](x).
A contrario, if B3 # ) then
A <3AM[f] < max(2C,3A)M|[f](x) + 2M|T f](x)
and this inequality holds in all cases so that, taking the supremum over all A
e f(z)] < max(2C, 3AIM [f](x) + 2M[T f](x)
and it remains to take the supremum over all € to establish the lemma in this case.
Case 2. The lemma when 0 < v < 1.

We will use the following inequalities for a,b,c >0 and 0 < v < 1
—(a+b+c) <a¥+b" + .
To see this, note first that (141¢)” < 1+¢” since both quantities are equal when ¢ = 0 and the
s y Uy 1 1
derivative of (1 +1¢)Y — (1 +¢") is v <(1 7
one get (a+ b)Y < a” 4 b” and iterating one gets the desired inequality.
_ (a+b+ C)l/u < Hy(al/u +b1/u + Cl/y)
This time t — t'/” is convex so that

1/v 1/v 1/v
(a—i—b)l/” — ol/v (a—2|—b> < 21/V#

< 0 when t > 0. Then, factoring a or b

and then
(a+b+c)1/u < 21/1/71(a1/z/+ (b+c)1/u) < 21/1/71 (al/u+21/V71b1/u+21/u7161/1/)

which gives the result with x, = 22/V~2,
Now, from (3.44), we deduce that

[T f (@) < AM[f](2)” + [T f()" + [T fi(2)]
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and, averaging over z € B we get

v z)” L 2)|¥ dz L 1(2)]¥ dz
@) < AMU ) + o [ il s+ o [ iThera

T.f(@)] < K, (M[f]<x>+ (/. ITf(Z)I”dZ)l/VJr (% /. Tﬁ(z)“dz)W)

with K, depending in A and v. Next

1/v
(; / Tf(Z)I”dZ> < (M7 ().

On the other hand, T begin of weak-type (1,1) we may apply Kolmogorov’s Lemma 2.31 to get

thus

1/v 1/v
1* 71 - 1/v 1 1/v
T vd < Cr|BI" V|| fullY — oMY dz < CV M1 .
(IBI/Bl fi(2)] z) < <|B| | B| |f1||1> b |B|/B|f(z)| 2 < C3lY M[f)(x)
Gathering all estimates, we get the lemma in this case as well. 0

For LP-boundedness of T*, we only need the case v = 1 sincenoth f — M|[f] and f — M[|Tf|]
are of strong type (p,p) (as T is). The remaining of the section consists in proving the 7, is also
of weak-type (1,1). We first need one more lemma.

LEMMA 7.19. Let T be a Calderon-Zygmune operator and let 0 < v < 1. Then for every X\ > 0,
and every f € L'(R%) N L>°(RY),

£l

o (MIS)@)" > 0] < 055

where C' depends on the norm of S and d only.
To prove this, we will use the following maximal operator:

DEFINITION 7.20. A dyadic interval is an interval of the form I, = [27%5,27%(j + 1)[ and a
dyadic cube is a set of the form Q) = H‘Z:l[2_kjg,2_k(jg + 1)[. The set of all dyadic cubes is
denoted by D.

For f € L}, (R%), we define the Dyadic Mazimal Function M, as

loc
1
d o«
M [f](w)—mgggD@'/Qlf(U)ldu

where the supremum is taken over all dyadic cubes @ € D that contain x.

This maximal function is comparable to M in the sense that
{z + Mlpl(z) > A} < o+ Malgl(z) > A}

for some constants ¢, ¢’ depending only on the dimension. Note that they are not comparable
pointwise as one may have My[¢](z) = 0 (e.g. away from the support of ¢) while M[yp](z) # 0.

PROOF. It is enough to prove the statement for My instead of M.
The second property is that there is a constant ¢y depending on the dimension only such that
for every ¢ € L1(RY),

{z : Mglp)(z) > A} §cd/ |o(z)| dz.
{z: Malp](z)>A}

We leave as an exercice to prove this statement using the Calderon-Zygmund decomposition.
We apply this estimate to p(z) = |Sf]”(z) to get
1/v

{z o (Mal|SfI")(2)) " > A = Wz o My[|Sf]"](z) > A"}
Cd SflY(x)| dz.
= W {a: (Md[|5f|v1<m>)””>x}| el

But, for any p > 1 (exercice based on Holder) My[p] < M[|¢|P]*/P. In particular, if p = ¢/v
with ¢ > 1> v

(Maf|S£171(2)) " < (MallSF|7)(x))
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thus
oo (MaISF 1) > AY < oo (MallSFI9())" > A}
< Y Sfl9(x)dx
A e (MdHSf\q}(m))”q»}' Jre)
<

Cd Cd
S [ 151 da < 17l < oo

since S is of strong type (q,q) and f € L' N L thus also in LY.
This set being of finite measure, we can apply Kolmogorov’s Lemma 2.31 to get

[{z © (Ma[|SfI"](2))

1/v Cd

> A < 5 s |Sf(z)|” da
j A S (Mallss1#1@) " 52y

C v 1/v —v v

< sola s (MalSA7@) > NI

which is the desired estimate

{a + (MallSfI")(=))

after simplification. O

cl/u
SV N

1/v
THE WEAK (1,1) BOUNDEDNESS. Let f € C2°(R%). From Lemma 7.18 we have

{o : [Tf@)] > M <[z« (MITF")(2)) 7 > A/2CH + {2+ Mf(x) > A/2C}].

From the weak (1,1) boundedness of the maximal function,

1/v

o+ M) > M2} < Sl
and from Lemma 7.19 we get that
o (MTf1)())

Putting everything together, we get the weak (1,1) bound for f € C>°(R%). We then get the general
case by density. O

1/v C/
> 208 < Il

3.3. Extension to the vector valued setting. For future use, note that one may extend
results from this section (without difficulty) to the Hilbert valued setting. To start with, let
us fix a Hilbert space H. Then a function f : R — H is said to be measurable if, for every
h € H, x — (f(x),h) is measurable which implies that  — ||f(x)| is measurable as well since

1 (@) = suppp<i (F(), h).

Then, for 1 < p < +oo, LP(R?, H) is the space of all measurable functions such that || f|| €

LP(RY) with
1/p
e = ( [ 7P ac)

with the usual adaptation wen p = +o0.

It is not hard to check (using Riesz’ Representation Theorem) that the dual of LP(R?, H) is
LY (R, H) with 1/p + 1/p = 1. The Marcinkiewicz interpolation theorem and the Riesz-Thorin
interpolation theorem go through in this setup as well.

Further, if f € L'(R?, H), we can define is integral as follows: first, if h € H, then |{f(z), h)| <
I f(@) ||z ||h|lg € LY (RY) so that we may define

10 = [ (). as

and check that h — Iy(h) is linear with |[Iy(h)| < ||f|lo1 e, ml|Rllm. That is Iy € H' and from
Riesz-representation, this means that there is a unique Z; € H such that, for every h € H,

If(h) = (Zy,h). One denotes Zy = / f(x)dx and
Rd

( f(sc)dx,h>=/ (F(@).hydz  Vhe H.
Rd R4
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We can now extend the theory of Calderén-Zygmund operators to the vector valued setting.
Let H,, H, be two Hilbert spaces. A function K : R¢ x R? — B(Hq, Hs) is a standard kernel if

(1) It is measurable i.e. for every h € Hy, the function Kh : R? x R? — H, is measurable;

C
(2) If z # y then [|[K(z,y)| g, —m, < Tz =g

1
3) If ly—2 < §|x — y| then

Cly — 2|
1K (2, y) — K (2, 2) |, 1, < [z — g|tta
. 1
and if |z — y| < 5@ — 2| then
Clz — y|*
1K (2, 2) = K(y, )| 51— m1, < [z — 2|+

where C| « are constants.

A linear operator T' : L?(R% H;) — L%(R%, H,) is then called a Calderén-Zygmund operator
if it is bounded and if there exists a standard kernel K : R? x RY — B(H;, Hy) such that, if
f € L?*(R?, Hy) has compact support and z ¢ supp f, then

71e) = | Ko f)ds
The following result is proven exactly the same way as in the complex valued case:

THEOREM 7.21. If T is a Calderon-Zygmund operator, then T (has an extension that) is of
weak type (1,1)
1Nl me, o)
A
and of strong type (p,p) for 1 <p < +o00: |Tf||Lore,m,) < CllfllLr e my)-

{z eR?: |Tf(@)lla, > A} < C

4. The space BMO(R?)

4.1. Singular integral operators on L™. So far, we have developped a fairly satisfactory
theory of singular operators on LP N L% for 1 < p < +oo (Calderén-Zygmund operators were
assumed to be continuous on L?, we showed that they extend boundedly to LP N L?, 1 < p < 400
and then extended them to all of LP). The situation is more delicate for f € L. To see why, let
us investigate the formula

7re) = | Ko ) d

This formula is problematic for two reasons

— first it is singular when z is closed to y since K(x,y) ~ |z — y|™™ is not integrable when
y ~ x. To deal with this issue, one can try to localize f away from zx.

— A second issue is that the integral does not make sense whe y — +o0 neither since K(z,y) ~
|y|~™ in this case. When f € LP, p < 400 we dealt with this problem by using the Holder inequality
which allowed to gain some decrease |y|_"pl at infinity. To over come this, one may look at two
nearby points x1, 2 and consider (formally)

Tf(er) - Tf(xs) = / (K(21,) — K(z2,9)) £ (4) dy.

Rd

Now when K (z1,y) — K(22,y) & |x1 —22|¥|z1—y| " =~ |y| "~ when |y| — oco. This is sufficient
to ensure integrability at infinity in the integral.

To implement this heuristic, let 7' be a Calderén-Zygmund operator with kernel K. Fix
f € L>=(R%), Q a cube with center cg, @* = (1+ 2d'/?)@ then we split f into a local and global
part

f=T1g-+f(1-1g)

and, for = € Q, define T'f(z) by

(1.5) 15 = TlfAgle) + [ (KGw) ~ Klegw) ) dy.
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Several observations are to be made:

— the right-hand side of (4.45) is well defined since flg« is bounded with compact support
thus in L? and T is bounded on L2. On the other hand |K (z,y) — K(cq,y)| < |z —cq|®|lz —y| 4~
when 2 € @ and y ¢ Q* (we enlarge @ to Q* to be able to use the smoothness asumption on K
here) thus the intergal in (4.45) converges when f is bounded.

— The operator T is not well defined as an z can belong to several cubes. To overcome this,
one may fix a family of cubes Q = {Q, },cre attached to each x and define

T9f(z) = T{f10:)(z) + / K(z,y) - K(co.)) f(y)dy.
RA\Q%

This would lead to cumbersome checking in the sequel and it is worth noting that two different
families Q, Q would lead to two operators that differ by a constant only : T f(x) = T f(x) + cy.
We will thus rather use (4.45) and consider that T'f is defined modulo a constant:

DEFINITION 7.22. On the set of functions on R¢, we define the equivalence class f ~ g if f —g
is a constant function. By (common) abuse of notation, we can consider an equivalence class [f]
and identify if with any of its elements f in which case we say that f is defined modulo constants.
Note that f = 0 modulo constants means that f is a constant function.

— When f € L*(R%) N L>°(RY) then Tf = Tf. Note that the left-hand side is only defined
modulo a constant.
We now introduce the BMO space which will play a key role soon.

DEFINITION 7.23. For f € L} (R%) and @ a cube, we write

loc
1
fo=15 /Q /() da

for its mean over (). The BM O-norm of f is the quantity
1
£ a0 =sup o [ 1) = folds
Q 1QlJg

where the supremum runs over all cubes in R%. The space BMO(R?) is the space of all functions
modulo constants such that || f||zymo < +oc.

It is clear that the space BMO(R?) is only defined modulo constants. First, if g = f + ¢ then
for every Q, go = fo + ¢ so that ||f|leamo = |gllmo. Further, if f is such that ||f|lgamo = 0

then for every cube Q / |f(z) — foldx = 0 so that f = fo over Q and f is constant over (). In
Q

particular, f is constant over each [—n,n]? and letting n — +o0o, we get that f is a constant, that
is f = 0 modulo constants.
We leave the following proposition as an exercice

PROPOSITION 7.24. (D) [MfllBvo = [N fllBmo and || f+gllsymo < [ fllBmo+lgllsro;
(2) for f € L} (RY), let

loc
1|80, = sup inf / (@) - Blda
BMO. = Qpﬁe(C Q] o .

Then || fllBmo. < |IfllBmo < 2| fllBmo., -
This means that, to show that f € BMO and to estimate ||f||pamo it is enough to

find a number A such that, for each cube Q, a complex number Bg such that
[ 17@) = ol do < 410
Q
This then implies that || f||po < 2A.

(83) BMO is invariant under translations 7, f(x) = f(z — a) and dilations 6\ f(z) = f(A\x)
with

‘Taf”BMO = ||5>\fHBMo = ”fHBMO‘
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(4) for f € L}, .(R?), and B a ball, let
1
fo = [ fa)da
1Bl /s
be the mean of f over B. The BMOP-norm of f is the quantities

1
1fllsro0 = sup = / () — fol ds
B |BlJp
and
1
1 £l zrro0 —Sgp;%@/)glf(m)—aldm-

The space BM OO (R?) is the space of all functions modulo constants such that || f|| gproo <

+00.
Then [|fllgpro0 < IfllBroo < 2(flgpoo- Further BMOOCRY) = BMO(R?) and

lflBaroo is equivalent to || f||Baro-
(5) L*(R?) € BMOR?) with || fllgrro < 2/ |-
(6) log|z| € BMO(R?). However 1g+ logx ¢ BMO(R).

Hint: For BMO = BMO® use the sup inf definition of the norm and the smallest B containing @Q
(or vice versa) and note note that |B| =~ |Q|.

THEOREM 7.25. Let T be a Calderén-Zygmund operator with kernel K. Then T : L (R%) —
BMO(R?) continuously.

PRrROOF. We need to show that if @) is a cube (with center cg) there exists 8o such that
1
o [ 117() = Balde <11
@l Jq

(with C independent of f).
First, for x € @, we can write

TI@) =Tl + [ (Ke9) ~ Kieau) Sy + e
where Sg is a constant depending ) (and which representative of 7' we have chosen).
Next, from Cauchy-Schwarz and the L?-boundedness of T,

M/Q|T[f1cg*](a:)|dx = @/Rd 1Q(x)|T[f1Q*](;,;)|dx§@HTWQ*]

1

- @||TIIL2—>L2||f1Q* 2QI"? < fracl|QI2|Tl| 2 121Q" "% lloc

< (14242 T 2 2] f oo

r2r) 11l L2 maey

1
On the other hand, as |z — cg| < §|x -9,

[ Ewy-Keon)ima| < [ Ky - Kol
RIANQ* RA\Q*
|z — cql®
< ——dy||fll
yily—a|>di/2e(Q) 1T — yl4Te
+oo Td_l
< lzr—c a/ ——dr||flso
< ool [ ]
1 1 1
< Zlr—col—————1flloe < ———=Ifllss
> a|ll' CQ| (dl/Zé(Q))a Hf” = ade/? ”fH
since x € ). Thus
1
sup / (K (2,9) — K(cgr ) F(3) dy| < =] f]lo-
Q ]Rd\Q* (0%
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Finally
Tf(z) - foldz < —= / T[f1g-](x)] dz + sup / (K(z,y) — K(cg,v)) f(y) dy
|Q| Rl Jg Q |Jr\@~
< (2T e + s ) I
as desired. 0

4.2. John-Nirenberg Inequality and interpolation. We have seen that log |x| belongs to
BMO(RY). This is, in a sense, the largest possible singularity. This is not a precise statement in
the pointwise sense but can be shown for level sets. To start, if f € BMO(R?) with || f|zamo =1

then, for every cube @,
1 /
— f(x)— fo|ldx < 1.
0] QI (=) = fal

Using Bienaymé-Chebicheff,

freQ:If@) — fol 2 1)1 < 9.

This says that f can exceed its average fo by (say) 10 on @ on at most 1/10-th of Q.

It turns out that one can iterate the above fact to give far better estimates in the limit A — +oo.
This is because of a basic principle in harmonic analysis: bad behaviour on a proportionnally small
exceptional set (such as 1/10 of any given ball) can often be iterated away if we know that the
exceptional sets are small at every scale: f will then exceed its average by 20 on at most 1/10-th
of 1/10-th of the cube...

The final statement is the following:

THEOREM 7.26 (John-Nirenberg Inequality). Let f € BMO(R?). Then for every cube Q and
every A > 0,

{z € Q : |f(x) — fol > A}| < 202 Mlzso|q).

Proor. Fix f € BMO(R?) with || f||garo = 1. Note that this is not a restriction as we may

replace f by f/||f|lprmo-
Let 1(\) be the best possible constant that one can take in the inequality

VQ [z e @ :[f(2) - fol 2 A <9v(V)IQ].

First note that v is non-increasing since for X’ > A

e e [f(z)—fol 2N < Hz € @ : |f(2) — fol Z N} <4(V)|Q)

thus (\) < ¢(A). Further, from Bienaymeé-Chebicheff ¢)(A) < 1/X and of course, we have the
trivial bound ¥(\) <1 d.e.

oon < min (1.2,

This is of course very bad. To improve this, we will use a variant of the Calderén-Zygmund
decomposition. We start with a dyadic cube @y and denote for m > 1 by D,,, the set of all dyadic
cubes @ of side length £(Q) = 27™4(Qq). We will write Dy for the set of dyadic cubes C Qy. We
will also write F'(z) = |f(z) — fo,l-
Next we will consider A > 1 (to be fixed later) and divide the cubes in Dy into good and bad
cubes where a cube @ is bad if
[l / P A

As we assumed that || f|lpmo = 1, \Qol fQ z)dx < 1 < A the original cube Q) is good (not

bad). Further, each bad cube is contained in a maximal bad cube and we set B for the set of
maximal bad cubes.
When @ € B is maximal bad, then

A<i/ F(x)dz < 2¢A
QI Joq
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Indeed, if Q is the mother of Q, it is not bad so that

) J, P97 g7 fy s <

1
— F(z)|d dp .
s|Q/Q| ()] de < 2

But then, for @ € B,

1
fo — fool = M/Qﬂw) ~ fo, dz

Further, as maximal dyadic cubes are disjoint,

Sl < Y4+ / -3/ Fow

QeB QeB UQeB

A/OF(x)d:ch

IN

since ||f|lsyo = 1.
On the other hand, from the Dyadic Maximal Theorem, or rather the Lebesgue differentiation

theorem that results from it, for almost every x € Qo \ Ugep Q) |f(2) — fo,| == F(z) < A.
Now, consider A > 29A, then

{reQo: If(@)~fol >N} < [KeelJ@: — faol > A
QeB
< relJ@: —fol > A= |fq — fq.
QenB
< D) |{req: — fol > A =277}
QenB
< v -2 )|
QenB
A —29A
< M|Qo|
. (X = 290) d
This means that (\) < —j  assoonas A > 2%A. We can now bootstrap the argument.

Let N > 1 be an integer such that 2¢AN < A < 2¢A(N + 1). Since 9 is non-increasing,
P(2IAN —2970)  (27A(N — 1))  (29A)

A N A - AN
by a direct induction. As ¥(z) < 1/x we get

P(A) < P(29AN) <

() < ﬁ — 9 dg=NInA £ 9=d=(27"A=1)InA

We can for instance chose A = e then for A > 2%,

¢()\) < 2d 72—% < ef =2 d/\

On the other hand, for A < 2%, (\) <1 < ee=2""A We get the result since e€ < 20. O

4.3. BMO and interpolation. The aim of this section is to show that the space BMO can
be used as a substitute of L in harmonic analysis.

LEMMA 7.27. Let 1 < p < q < +0o0 then there exists a constant C = C(p,q,d) such that if
f € LP(RY) N BMO(R?), then f € LY(RY) with

”f”Lq(]R'i) — C”fHLp R4) Hf”BMO (Re)*
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PrROOF. We may assume that ||f|| 5,0 ga) 7 0 otherwise there is nothing to prove (f is con-
stant and in L” thus 0). Then, using homogeneity f — f/| fl|pmo, we assume that [|f|| 5p0rae) =
1. Finaly, using dilations f — f(Az), we may assume that || f|;, = 1.

Throughout this proof, Cy is a constant depending on the dimension only and that changes
from line to line.

We apply the Calderén-Zygmund decomposition to |f|P at level 1. This provides us with a
family B of bad cubes. Then, for each @ € B,

1 1 1/p
(4.46) ol = | [ s@ae] < (i [1rtaras) < cu
1Rl Jo Ql Jg
with Holder. Using the John-Nirenberg Inequality, we get, for each @ € B, and each A > Cy > |fo|

HzeQ [f(@) > A < [{zeQ [f(x) - fol > A= lfel}

< Cue? Pee Q] < G e Q)

with (4.46). Since |f(z)| < Cy on R\ U Q, we get, for every A > Cy,

QeB
Hz eRY |f(@)| >N} < DY HeeQ [f@)> A}
QeB
< CyemCr Q)
QenB
< Cae™ | fI, gay = Cae™

where we have used the fact that the bad cubes in the Calderén-Zygmund decomposition are
disjoint and then that their total volume is controled by the L'-norm of |f|?.
On the other hand, we have

[hl
o e RY [f(@)] > M} < — 5= = A7

We conclude writing

“+oo Cy +oo

= IR EAS )| > < o + Cq e
fe At RY |f A} dA ATPTEAN + C, AT TemCar d\

0 0 Ca

which gives the result. |

REMARK 7.28. Note that if 7" is a Calderén-Zygmund operator, and 1 < p < ¢ < +o0o then
1 _
ITAllg < CITUNEPITI N Badd < C NP1 A1l

DEFINITION 7.29. The sharp mazimal functzon is defined for f € L} (R?) by
M f(z) = sup = / (@) — folda
@3z |Q)|
where the supremum is taken over all cubes containing z. In particular, f € BMO(R?) if and only
if M*f e L°(R?) with ||f|lao = [|MFflloo-

Note that, from the triangle inequality, if z € Q
1 2
o 156 = olar < 5 [ 7@ de < 2MO051(0)
1Ql Jo QI Jq

where MY is the uncentered Hardy-Littlewood maximal function associated to cubes (¢>°-balls).
It follows that M*f < 2MU|[f] pointwise.
Recall that the dyadic maximal function was defined as

1
d R
Mifw) = s o /Q ()| de

where the supremum is taken over all dyadic cubes containing . The dyadic maximal function is
bounded by the MP[f]. A converse bound can not hold (M9[f] may be zero e.g. in dimension 1
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when f is supported in [0, +-00) while MP[f] never is). As M is of weak type (1,1) and of strong
type (p,p) for every p > 1, so is M.
However, it is possible to reverse the inequality in the LP-sense:

THEOREM 7.30 (Feffermann-Stein). Let 1 < pg < p < +oo then, for f € L} (RY) such that
My[f] € L (RY),
1M [Allp < CUME[F]L

where C' depends on d,p only.
The crux of the proof is the following good-\ inequality.
LEMMA 7.31. Let f € Li (R%), A,y > 0. Then

loc
(4.47) {z e RT = MIUf)(z) > 21, MF[f](x) <A} < 2%9{w € RT : MI[f](z) > A}

ProOF. Again C,; will be a constant depending on d only.
Without loss of generality, we can assume that 2y := {z € R? : M?[f](z) > A} has finite
measure. Then, for each x € (2, there is a mazimal dyadic cube @, such that

1
Qx|

(otherwise Q25 would have infinite measure). Write {Q;};cs to be the collection of maximal dyadic
cubes obtained from Qy i.e. {Q;}jes = {Qz : € Qx}. Further, each z belongs to one @; and
maximal dyadic cubes are disjoint so that |J jes @ = g is a partition. It is thus sufficient to
prove that

/ F@)ldy > A
Qux

{z €@y« MUf)(x) >2), M*[f](z) < vA} < 2%9]Q;]

and to sum over j € J to obtain (4.47).

From now on, j is fixed and we can drop the index. Let z € Q be such that M?[f](z) > 2.
Note that

1
M) = swp o [ 5@ ds
reDzer |R| Jr

so that the supremum is taken over dyadic cubes that intersect @) (since both contain x) that is
dyadic cubes that are either included in @ or contain Q. In the case Q C R, @ # R, the maximality
of @ implies that

ﬁ/le(y)ldyéA

and such a cube can be discarded from the maximum since M?[f](x) > 2\. That is, if z € Q ie
such that M9[f](x) > 2, then

MAfl@) = sup ﬁ /R ()] de.

ReD,ze RCQ

In particular, we may replace f by flg and assume that M9[f1g](x) > 2.
Now let @’ be the mother of @ (the unique dyadic cube containing @ of twice the size) and
note that the maximality of ¢ implies that

1
ol = |17 | fta) e

7 .
<L [ jf@lde <
Q| Jor
Therefore, for x € Q,
Ma[(f = fo)lQ] = Ma[f1q] — for > 2 = A=A
We conclude that

{z €@« MUfl(z) > 22} < [{z € Q + Mu[(f — for)1q] > 2)}].
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As the dyadic maximal function is of weak-type (1,1) (with constant 1) we get
weQ: Mise) >N < 5 [ 1076 - alds
291Q| 1 /
< xr) — /| dz
< gL ve - sl
Qd
(4.48) < ‘AQ|Mﬁ[f](£)

for any £ € @’ thus also for any £ € Q.
Now observe that, either there is no & € @ such that M¥[f](¢

)
{z €@« MUf(x) > 2\, M*[f](z) <A} =0
or such a & exists and then, putting it into (4.48), we get

> v, in which case

d
{o € Q; = MIf)(z) > 21, M¥[f)(x) <A} < Ho € Q : MY[f)(z) > 2\}| < ‘Q| A =2%|Q)|

as claimed. 0
We can now conclude:
PROOF OF THEOREM 7.30. We fix py < p < +o0 and, for » > 0, we write
I(r) = /rp)\p_1|{m ERY: My[f] > A} dA.
0
First note that, as p > po
I(r) = L p=po /Tpo)\pﬂ_l\{x €RY . My[f] > A\}d < . L - Po|| Myl f ]||§‘;0(Rd) < +o0.

Po 0
Next, changing variable A — 2\ and using the previous Lemma, we get

r/2
I(r) = 2”/ pAP T {z e RY : My[f] > 2} dA
0
r/2
< 2 [ o m e Rt M) > 20, M < A
0

r/2
+2P/ PP H{z e RY . MP[f] > My} dA
0

IN

r/2
ngdy/ PNz e RYE 2 Mylf] > A} dA
0
r/2
+2P/ pAPH{z e RY . MP[f] > My} dA
0

r/2
< 202981 (r) +2p/ pAPH{z € RY : MY[f] > My} dA.
0

We now chose v = 2~ (P+4+1) 5o that the factor in front of I(r) on the right-hand side is 1/2 and
it can be put to the left-hand side. We get

/2
) < 2p+1/ pAP{z € RY : ME[f] > 2D A} dA
0

o—(p+d+2)r

— 2p+1+p(p+d+1>/ PP H{z e RY : MP[f] > A} dX
0

< 22p+d+2+(p—1)(1)+d+1)||M?i[f]||1£p(Rd)'

Letting r — 400 in the left-hand side, we get the result. g

From the Lebesgue differentiation theorem associated to M?, we get |f| < M?[f] a.e., thus
1 fllp < IMa[f]ll,. We conclude that
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COROLLARY 7.32 (Feffermann-Stein). Let 1 < py < p < 400 then, for f € L}, (R?) such that
Md[f] € Lo (Rd)a
1£ll> < CIMEAIl
where C' depends on d,p only.

THEOREM 7.33. Let 1 < pg < p < +0o. Let T be a linear operator, bounded from LP°(R?) to
LPo(RY) with bound A,, and from L>=(RY) to BMO(R?) with bound Aw. Then T extends to a
bounded linear operator from LP(R?) to LP(R?) with

Po 1_PO
(4.49) [T (N e ray < CApy Aso * [ f || e (ra)-
Here C depends on p,pg and d only.

PROOF. First, T(f) is a priori only defined on LP(R%) N L>°(R?) but (4.49) then allows to
extend T to all of LP(R?).

We consider the sub-linear operator S = M¥*[Tf] which is bounded from LP° to itself with
bound Cj, 4Aopo (if po=1 it sends L' to the weak L' space) and from L to itself with bound
Cy4As since M* sends BMO into L™ with a bound depending on the dimension only.

It remains to apply Marcinkiewicz interpolation to conclude. (|



CHAPTER 8

Litllewood-Paley and multipliers

1. Fourier-multiplies

Among the most common operators met in mathematics, one finds operators that take the
form of convolutions T'f = K x f. For instance, Calderén-Zygmund operators with standard kernel
in the form K(z,y) = k(x — y) can be considered as being of this form. The previous theory then
applies to give a meaning to the associated operator and shows that is also of strong type (p,p)
for 1 < p < 400, of weak type (1,1)... once it is of strong type (2,2).

For L?-boundedness, we have a strong tool at hand, which is the Fourier transform

fie) = F1A©) = [ s ar
(first defined on S(R?) and then extended to L?(R?) thanks to Parseval’s relation | F[f]||2 = || f]l2-
If k£ is a nice function then, using the convolution theorem k * f = kf we can write
kx f = F Lkf]

where F~1 is the inverse Fourier transform, given on S(R?) by

Folela) = [ ple)emiee de
This leads us to the following definition:

DEFINITION 8.1. Let m € L*(R?) be a bounded function and 1 < p < +oco. The Fourier
multiplier associated to m is the operator defined on L%(R?) given by

Tolf] = F mf.

If T,, extends to a bounded linear operator on L?, we say that m is an LP-Fourier-multiplier and
write m € MP(R%) and
[mlame = Tl o Lo

EXAMPLE 8.2. The Hilbert transform is the Fourier multiplier associated to m(§) = —isign(§).

__The first observation is that T, is well-defined since f € L? imply f e L?and, as m € L,
mf € L? thus F~[mf] is well defined. Further

Tl £z = IF 7 mflllz = [mfllz < Imllsll Fllz = Imllo |l £]12

thus Ty, is bounded with ||m| vz = |Tmll2—r2 < Mmoo -

On the other hand, for 0 < € < ||m||« let E. be a set of finite measure on which |m| > ||m|/cc—¢
and f = F 1g_]. Then

T (12 = |F 7 [m1pll2 = [Imlp 2 > (Imle = )l1E 2 = (Imle = )l fll2

which shows that || 1o, |2 12 > ||m|le — €. Letting e — 0 we finally get

ProPOSITION 8.3. If m € L, then the Fourier-multiplier T,, associated to f is bounded
L? — L? and |m||pe = [|m]|oo-

We are now interested in its extension to LP. The first observation is the following:
1
v

1
PROPOSITION 8.4. Let m € L*(RY), 1 <p < 400 and -~ + — = 1.
p

(1) The adjoint of T,, is T, = Tp,.

99



100 8. LITLLEWOOD-PALEY AND MULTIPLIERS

(2) m € MP(RY) if and only if m € LP(R?) if and only if m € MP (R?) with
[mllame = [[mlae = Ml per

(3) if m € MP(RY) then m € MI(RY) for every q € [p,p'] and
Imlloe < Imlpa < fImllage-

PROOF. For f,g € S(RY), we have from Parseval

Totig) = [ Tut@i@ide = [ m(@fe7e e

P

= Rdf(ﬁ)m(ﬁ)ﬁ(é“)d£= 9 f(@)Tag(z) dx = (f, Tng)-

This shows that 7,7, = Ty7. Then, using LP — Lp,—duality

m

Imllae = Tl e e = sup (T f, 9)]
£.9€S®), £ =llgll, =1

= sup |(f, Tmg)| = ”TMHLP’HLP’ = Hm”MP"
£,9€SRY), | fllp=llgll, =1

It remains to notice that if we denote by f*(z) = f(—z) then F = }Aso that

(T, g") = / @ F©F(€) de =Tl g

Rd
thus
[mlme = 1Tl Lr—rr = sup (T f )| = sup (T f*,97)]
1.9€S®RA), | fllp=llgll, =1 1.9€S®RA), || fllp=llgll,r =1
= sup (Twf, 9)| = 1Tl Lo — e = ]| pmo-

f9€S®RY), I f =gl =1

1 6 1-—4¢
For the last part, Let ¢ € [p,p'] and let & € (0,1) be such that — = - + — Using
q p
Riesz-Thorin, we get
0 -0 0 -9
[mllms = 1 Tnllzasze < NTnllZos o Tl 1o = Ml Imll g = llmllae-
In particular, when ¢ = 2, we get ||m|lco = |Timllz2—r2 < ||m||ame- O

REMARK 8.5. One could defined Fourier multipliers for m € L1 _via T,, f = F~1[mf] where
f is such that (say) f is bounded with compact support (this set of functions is dense in LP,
1 < p < +00). One can then show along the lines above that T}, is bounded on L? if and only if
m € L.

The proposition also holds in this case so that if m € M, then m € L*>. There is therefore
no gain in weakening the assumption m € L.

We have just seen that LP multipliers are always bounded, but the opposite is not true. The
difficulty in the theory of multipliers is precisely to get away from the case p = 2.

Let us start with a simple case. One may write T,,f = (F~'m) = f and F~'m € S'(R?) (at
least when f € S). If it happens that K = F~'m is an L!-function (or equivalently m € L), then
we can use Young’s Inequality and get

[T fllp = 1K fllp < K211l

which shows that m € MP with ||m|ame < ||m]]1. A simple condition on m that ensures this is
given in the scale of Sobolev spaces:

DEFINITION 8.6. For s > 0, the Sobolev space W*2(R?) is the space of L?-functions such that
e = [ IFOPO-+1€R) dt < 4o

PROPOSITION 8.7. If s > d/2 and m € W*2(R9), then m € LY (RY) with |||y < Csallmlwa.s.
In particular, for every 1 < p < +o0o0, m € MP with |m||pmr < Csq

|| yyr2.e.
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Proor. This follows from Cauchy-Schwarz writing

/ [m(§)|d§ = / ML+ [E7)* 2+ %) /2 A < Coa | IME)P(1+ [€[7)* d&

Rd R R

with C, 4 = / (1+€]?)7* d¢ < 400 when s > d/2. O
R4

2. Littlewood-Paley theory

2.1. Littlewood-Paley decomposition. We here build a smooth Littlewood-Paley decom-
position, that will be fixed in the remaining of this chapter. This is done as follows:

— we fix a function ¢ € C>®(R?), radial, 0 < ¢ < 1, ¢(£) = 1 when |¢| < 1 and ¢(¢) = 0 when
€] > 2;

— we define

V(&) = o(§) — o(29)

and notice that 1) € C>, is radial, supported in {£ € R? : 1/2 < |¢] < 2} and 0 < ¢ < 1. This
is because ¢(€) = ¢(26) = 1 when 0 < |¢] < 1/2, 0 < ¢(26) < 1 = (¢) when 1/2 < [¢] < 1,
0=¢(28) < (&) <1 when 1< [¢] <2and ¢(§) = ¢(2) = 0 when [¢] > 2. Note that ¢(u) =1 if
lu| = 1.

— for j € Z, we then define ¥;(£) = ¥ (277¢) and notice that v; is supported in {¢ € R? :
27=1 < |¢] < 27%1} and forms a partition of unity

Do) =1 £eR"\{0},

JEZ
Indeed, note that 1;(£) = 0 unless 2971 < |¢| < 29F1 and 1;(29u) = 1 when |u| = 1. In particular,
for [u| = 1, 1;(2°u) = &, thus, if |¢| = 2 (there is at most one such ¢)

Z%‘(f) = 25]',2 =1

jE€L JEL
On the other hand, for ¢ # 0 with |¢| # 2%, k € Z, there is a unique £ such that 2¢ < |¢] < 2¢+1
and then ;(§) =0 unless j = £ or j = ¢+ 1. Then

D owi€) = ve(€) +vesa(€) = 627 — 627 + 0(2771E) — $(271)
JEZ
= o277 (27 =10

since [27¢71¢| < 1 and [27¢F1¢] > 2.
Further, through the same computation

k
> i) = 0(¢/2")
Jj=—00
when &£ # 0. This is extended by continuity for £ = 0.
Next we associate some multiplicators to this partition: for f € S(R9), let

*Ajfzf:[i/)jf] and
~Suf =Y Af.

j=—00
Those operators are better defined on the Fourier side as

A& =0, (©)F(€) and  Spf(€) = 6(£/2%)F(6).

In particular, both operators consist in multiplying fby a smooth compactly supported function
(thus preserving S) and then taking inverse Fourier transform (which also preserves S). Thus
A, S+ S(RY) — S(RY). Using Parseval, it is trivial to see that [|A;f|2, [|Skfll2 < ||f]l2 so that
they both extend into bounded linear operators L?(R%) — L2(R%).

We now list their simplest properties:

PROPOSITION 8.8. For f € L*(R?),
(1) A;f =5;f = Sj-1f;
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(2) limg_s oo Spf =0 and limg_ 1 oo Spf = f (with limits in the L? sense);
(3) For every f € L*(R%), in the L?-sense,
DA =1
jez
We leave this simple proposition as an exercice, all statements follow from Parseval and dom-
inated convergence.
The third statement is called the Littlewood-Paley decomposition of f € L?(R?) and consists
in breaking up f in pieces which are localized on the Fourier side around |¢| ~ 27.
One may further notice that ¢;(x) = do-s9(x) where §)f(xz) = f(Az) has inverse Fourier

transform given by 2jd52j12; (since the inverse Fourier transform of 4 is also its Fourier transform).
Using the fact that the Fourier transform of a convolution is the product of Fourier transfoms, we
may identify R
Ajf =27%(000) * f

and, in the same way Sy, f = 284(6,.0)  f. As $,7 € S(R), these operators are thus well defined
on every LP-space thanks of Young’s Inequality. One may also show that, taking Fourier transform
in the sense of distributions, - R

Ajf =00-50f
which is thus supported in {2771 < |¢] < 271},

Our aim is to extend the decomposition of f to LP(R?).

— ~

2.2. Littlewood-Paley decomposition and differentiation. Recall that 0% f(&) = (2imw&)* f(§)
so that

VI = an® [P 7€)
In particular, if A; is as in the previous section, then A;f is supported in an annulus {¢ :
27971 < €] < 2771} 50 that
T2 220 F(E)F < [VAFE)P < 16722 |A; f (€)%
Parseval then implies that
w2 (|8 fll2 < IVA; fll2 < 4n27 | A f]l2.
This fact is valid in any LP-space:

PROPOSITION 8.9. Let 1 < p < +oo. There exists a constant C depending on d,p only such
that, if f € LP(R?) and j € Z, then
fractC2 || A flly < IVA; fllp < C27[1A; fp.
PRrROOF. Recall that
8y (@) = 2800 0)  fa) = 27 [ DD =9) )y

As ¢ is a C> with compact support, 1 € S(R?) and thus ¢ € S(R?). One easily checks that one
may differentiate this integral

VA, f(z) =2 / VIV (2 (2~ ) fy) dy =2 / VIV f(x —y) dy = 2 (265 V) * f
Rd R4
It remains to apply Young’s Inequality to get
192,51, < 27||27%8: V4| 1711, = 2199111151,
which gives the upper bound we are looking for (that depends on ). Note that this implies that
if f € LP then VA, f € LP.

We now turn to the lower bound. This is done essentially by inverting V. To do so, we
introduce a second Littlewood-Paley function p € C* that is radial, 0 < p < 1, supported in
{€: 1/4<|¢] <4} and such that p=1on {£ : 1/2 <[] < 2}.

Recall that, if f € LP then A;f (Fourier transform taken in the sense of distributions) is
supported in {£ : 2771 < |€] < 2771} then

p(E/2) DS 1(€) = 2im&pl(€/20) A, (€) = 2im&n N, F(£)
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since p(¢/2%) =1 on the support of A/J\f Multiplying by &, and summing, we thus get

d
3" p(E/2)ende D () = 2ime*g ()
k=1

that we re-write

2] /\

Inverting the Fourier transform, we have

d
Ajf=277 ZKM (0D f)

k=1

with

(€, x Y Nk il @
Kj’k(x) B 2]/ ple/2 )227T|f\2 e >d§ =2 /77>1/4 pl) 22'71-|77|262 i >d77

with the change of variable = £/27 and the fact that p(n) = 0 for |n| < 1/4. As

2

M| o 2

2im|n[?

for |n| > 1/4, we get
2 .
(@) < 227 o]

Further,

2im29 (n,x) __ 9=j 1 2iw27 (n,x)
e = — e €
2im2xy

thus, integrating by parts, (using that p is compactly supported) we get

- 1 Nk w27 (1
K. - — 2jd i o 2im27 (n,x) d
(@) 2im2xy /n>1/4 o) 2imfn? " !

; 1 Mk -y
— _2]d : i / ) ( : ) 62171'2 (n,z) dn.
2in27xs Jy>1/4 e | P(1) 2ir|1|2 n

It is not hard to see that 877[21,:# is bounded over {|n| > 1/4} so that

: + 19ep]l1
| ]yk(‘r” — C 2]|J)[|

. . . 1 .
Now, if 27||z||s > 1 then for at least one ¢, 27|xy| > 1 so that 27|z,| > 5(1 + 27|x¢|) thus

‘ ( )| < 2]d20(||p||1 +Z€ ”a@pH )
1+ 27|z '

On the other hand, if 27||z||c < 1, (1 + 27||7]|oo) ™t > 1/2 and we will use the bound

20l 23 | 2max(L, C)(llplls + >, [|0epll1
1+ 20|z = ! 14 27| '

K (@)] < 27 plly < 2] ]|

In all cases, we have a bound of the form
K (@) < C279(1 + 27|l o)~

(with C depending on p). Now iterating the argument and using multiple integration by parts, we
get a bound of the form

K e(2)] < On20(1+ 27|zl oc) ™
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for every N, where C depends on N but not on j. In particular, taking N = d + 1 we obtain that
Kjr € L'(R?) and [|K; [y < Cagal/(1 + |2[ee) @ *|l1 a bound that does not depend on j. But
then

1A fll, = 27 JZHKM* (kB f)llp <27 ]ZIIK
k=1 k=1
< 277dCan (L4 lz]loe) ™ IV A £l
as claimed. 0

2.3. The main theorem. The general heuristic of the Littlewood-Paley decomposition is
that, the A;f having (almost) separated support in the Fourier domain, they behave almost
independently. In particular, one should have

SN = D1 f
J

J

1/2

This is of course a too strong statement, however, it may hold in the LP-sense. First, it holds in
the L2-sense: with Parseval
2

DA\ = |FDoA =X FAA = / d‘Z_w(s/w) () dg = / O de.

On the other hand
1/2]2

E_ A fI? = /Rdgjmjf(x)ﬁdx
A F(E)2 ¢ — N2 TN (2
/Rde:A]f(&N ac= | Y vle/2 VI e de

Now, for fixed j, there are at most 2 consecutive j’s for which 1(£/27)? # 0. Call them k, k + 1,
then we have

= (B(E/2) + w(E/2)F = B(€/2%)? + p(€/2H)? + 20(€/2)h(€/2 )
2(9(6/2%)* +0(/2541)?) <2

IN

since 0 < ¢ < 1. It follows that
1<) w(E/2)?
J
thus

T2 IN21 7Y ey 12 D)
NG dgg/w}jjw@m Fords<z2 [ IfoP i

The following result is the central result of this chapter:

THEOREM 8.10. Defined the Littlewood-Paley square function as

1/2
DoIAfP
J

Then, for every 1 < p < +o0, there exists a constant C' depend on p,d only, such that for every
f € LP(RY),

SISl < ISPy < OISl

PRrOOF. We define the vector-valued operator S[f] = (Ajf)jez so that S[f] = ||§[f”|g2(z).

We want to show that [|S[f] is comparable to || f||L»rae). We have just shown that s

HLp (Rd’zz(z))
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is a bounded linear operator from L?(R?) to L?(R%, ¢*(Z)). Further, the operator S is associated

to the kernel R

X(‘Tv y) = {2jdw(2j<x - y)) }jEZ'
The LP-boundedness will follow immediately from vector-valued Calderén-Zygmund theory once
we show the following:

LEMMA 8.11. The kernel K is a vector-valued Calderon-Zygmund kernel.

We postpone the proof of the lemma and first show that the converse bound also holds. The
first observation is that, if §= {g;}e2(z) : R? — ¢3(Z) then

| (8w @), e = [ S A e
= [ S uemfonie

JEZL
/ S FOvE/2)5 (€ de
JEL
- / F(@)5F@) da.
Rd

By duality, £>-Cauchy-Schwarz and Hélder,

55 = sw |[ 5T = s | [ (S0.0@),, , 40

Ifllp=11/Re Ifllp=1 /R £2(7)

< sw [ 18A@.d@),, [de< s [ 150 e l5E)]e d
I fllp=1JRd £(2) I£llp=1

. 1/p /v

< sw ([ IsA@Ea) (] o pdx)
Ifllp=1 \JRd

= HS Lp(]Rd)—>LP(Rd7€2)HgHLpI(Rd’Zz).

Now we repeat the Littlewood-Paley decomposition but starting with

P(€) = p(€/4) — (4€)
that is, we set

A (&) = 0(&/2) ().
We still have that > (£/2F) is bounded from above and below while the previous arguments still
show that there is a constant C' such that

1/2
DOIA P < CIfl,
JEZL
p

and

ZAjgj < CHﬁHLp(Rd’zz)

JEZ

p
thus
A a /
> 8,857 <CYSUN|,, g y < C 1N

jEL
P
The support properties of ¢ and the fact that this function is 1 on {1/2 < |¢] < 2} imply that

AjAjf = A;f. we thus get

11, = ZAf > Aza,1| =S|

JEL JEZ

I

Lr (R4, ﬁ2)
p
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which is what we want to prove.
It remains to prove the lemma.

PROOF OF LEMMA 8.11. As ¢ thus ¢ € S(R?), there is a C' > 0 such that

[D(6)] < Cmin(L, ¢4,
the first bound being better when |£| < 1 while the second one is better for |£| > 1. Now fix x # y
1 .
and let J € Z be such that 3 < 27|z —y| < 2 (such a J exists) and note that, if j < J, 27|z —y| < 2
while for j > J, 27|z — y| > 2. We write
R Cc274 ifj<J
@) <y o .
Then
o~ 2 o~ 2 Sy~ 2
Siie-n)| = X PREE-)| + Y P E-y)

jez o< i< J>J+1
<c ¥ g2d ¢ S L
= |z — y[2d+4 94;j
—0o<j<J J>T+1
92Jd C 9—4(J+1)
e

1—92-2d + ‘l‘ _y|2d+4 1—92-4

c 2 \* ¢ 1
2 _ 4
o () Ty

IA

which is the desired bound

/

||K($7y)||z2(z) <
For the smoothness bound, we note that
VyK(2,y) = =V K(z,y) = {2 V(2 (2 = ) }ez.

We leave as an exercice to adapt the previous proof to obtain the estimate

. C//
IVl (@, y)le2z) < EEra

|z —yld

From there, the proof of the smoothness estimate follows as in the scalar case. O

This concludes the proof of the theorem. O

3. The Hormander-Mikhlin Theorem

We have already seen that a function m € W2#(R?) with s > d/2 defines a multiplier for every
1 < p < +o00. The flavour of this result is that, some smoothness together with controllable local
singularities and some global decay will give a multiplier.

We present now two refinements, usually called Hérmander multiplier theorems. The first one
starts with a function m € L° which will garantee that the associated multiplier is of strong
type (2,2). The function will further be assumed to be smooth away from the origin and with
derivatives that decay at least as fast as their order:

THEOREM 8.12 (First Hormander-Mikhlin Theorem). Let m be a bounded function, that is C*°
on R\ {0} and such that, for every o € N¢, there exists a constant C,, . with
Cm,a
€]l

Then k = F~[m] agrees with a C* function on R%\ {0} and, for every a € N, there exists a
constant Dg o with

|[0%m(&)| < for all € € R?\ {0}.

Dy o
|0%k(z)] < |x|di‘a| for all z € R\ {0}.
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In particular K (x,y) = k(xz —y) is a Calderon-Zygmund kernel and T,, is of strong type (p,p) for
every 1 < p < 4o00.

Here k = F~'[m] has to be taken in the sense of distributions.

ExXAMPLE 8.13. The Hilbert transform is a particular case of this theorem with m(§) =
isign(§).

ProOF. We will use the Littlewood-Paley decomposition to write, for £ # 0,

m(€) =Y w(€/2)m(€) =) _m;(¢)
JEL JEL
Each m; is C> and supported in the annulus A; = {¢ : 277! < [¢] <2771} We may thus define
kj(x) = 771]»(5)62”(’”’€> d¢
Rd

the inverse Fourier transform of m;. Let us now see how the hypothesis on m transfers into
estimates on k;. First, we notice that

0%kj(z) = / (2im€)*m; (€)™ (=8 dg
Rd
from which we immediately deduce that
|0%k; ()] S/ (2m)*[€°|m; (€)] A€ < (2m)* [[ml|oo| A7|(27F1)1] < By o270

J

where we use that [¢*| < [¢[l*l < (27+1)l*] when ¢ € A; and that |4;| < |B(0,27%")] <
24| B(0,1)|274.
Further,

d
0 . )
< V§> 24 ( mf) _ § :Wag eQm(z,f) — 21-7_‘,‘1,|26217r(z,§>
J4
=1

that is
<3'Ua V§>62m<z,§> — o2im(z,6)
2i|x|?

when x # 0. Thus, for every M > 0, and x # 0,

/R L(2im€)m; () <<”?’ Vf))M e?mne) dg

2im|x|?

9%k; ()
d

_ Lo : Y € vf 217r
B Z 2i7r|33|2 / .(2W£) i) & (227T|.132> ds
Ve

L=
(3.50) - ‘szw / l2ime) mAé)}(éMZ) 2in(e.) g

after an integration by parts. Now note that, if we denote (eg)¢=1,... 4 is the standard basis of R4
then

[(2“T§) P(£/27)m(€)] = ae(2im€)*~4p(£/27)m(€)
TE)” 7j—a N\m 1m€) J —a m
4 (20m€)°27 (e P )m(e) + (2im€) (e 2) (e,

Now, this is either 0 or £ € A; thus 277![¢] < 29%! in which case
(i) |(2ime)omeep(€/27)ym(€)] < (4m)7 U= | 27 (el=D),
(i) |(2ime)"2? (e 2m(6)| < (amy Tl 20,
¢

9

i) [(2im€)06/2) g m(©)] < (m)eH1C, 20010,
0
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All in one, we get

&,

for some constant 1. It then follows from (3.50) with M =1 that

‘a[(%é)%(f/?j)m(&)] < gy 2700l

d -
|| (o — Rol o _
%k < E o1 20Uel=1)1 g < 2l gi(dt|al—1)
‘ ()] < . 27T|$|2H 1 |4;] < ]

One may then

— pursue integration by parts in (3.50)

— use Leibnitz formula to estimate 9°[(2im&)¥(&/27)m(€)]

and we finally get that, for every a, M, there is a constant &, s such that

o ROC,M j(d+|a|—M
0%k (z))| gWQJ( la=M)

Summarising all estimates, for each M, a, we get a constant o,z o such that
0%k; (2)| < oar,q min(27(@HOD || =M oi(d+lal =My

Next we estimate

o[ (@Hled)

S |0k@) <00a Y, 2D <5y,

JEZ:2i<1/ x| JEZ:27<1/|x|

while, for M > d + |a,

Z 0%k (z)] < omalz™M Z o (d+|a|— M)
JEZ:2i>1/|x| ez 2121 x|
Farala) ™M |z~ (@HaI=M) < G ||~ (dHlaD,

IN

In particular, for each a, the series ) jez 0%k; is normally convergent over every compact set
E C RY\ {0}. Tt follows that Y., k; converges over R?\ {0} to some function k € C>*(R*\ {0})
and we have also proven the claimed bound

B,

It remains to show that k = k on R%\ {0}, that is
(k, ) = (k, ) for every ¢ € C°(R?) with supp ¢ ¢ R?\ {0}.

But, by definition of the Fourier transform,

~

(k, @) = (k, @) = (m,p) = y m(§)(&) dg
since € S(R?) and m € L>* C L}, .
On the other hand, as ¢ is compactly supported away from 0, ) k; converges uniformly to k

over the support of ¢ thus

o) = [ (ko | e@ar =% [ k@@

JEZ JEZ
=S (ko) = S0, 8) = Z/ F(6)p(e) de
jez jez jez /R?

-3 | wermezea- [ X vie/2) | miepgte) s
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since Z@b({/?) converges a.e. (to 1) and partial sums are bounded by 1 so that Lebesgue’s
JEL
Dominated Convergence shows that one may invert summation over j and integration. Finally we
get
(ko) = [ m(©)P(E) & = (k. )
R

as expected.

We now conclude by noting that T, is a Calderén-Zygmund operator associated to K (x,y) =
k(x —y):

— K is a standard kernel since, when = # y
By

N By .
K = — < K = K = |Vk(x — <
|K(z,y)| = |k(z —y)| < P—r VoK (z,y)| = [VyK(z,y)| = [VE(z —y)| < P

— Ty, is bounded on L? since m € L*°;
—if f € L?(R?%) has compact support and x ¢ supp f then, for every y € supp f, z —y ¢ f so
that

Tpf(z) =k f(z) = / R —y)f(y) dy

Rd
and T, is the operator with kernel K.
It follows from general Calderén-Zygmund theory that T, is of strong-type (p,p). |

The result is not optimal and one does not need as many derivatives.

B
EXAMPLE 8.14. A typical example of an m that satisfies the hypothesis is mg(§) = ;2 when

B is a multi-index of length 2. This kernel is usefull for the following reason: for f € S(R?), we
have

— ) —~ 2%iné)P . N —

(€)= (2ine) F(€) = oot 2inlel*F(€) = ma(OBHE)
that is 0° f = Ty [Af]. As mg satisfies the conditions of the theorem, T5,,, is of strong type (p, p)
for any 1 < p < co. As a consequence

10°11l, < Cull Afl,
i.e. all derivatives of order 2 are controlled by the Laplace operator.
We now give a sharper result.

THEOREM 8.15 (Hormander-Mikhlin Multiplier Theorem). Let n be the smallest integer > d /2
(i.e. d=2(n—1) when d is even and d = 2n — 1 when d is odd). Let m be a bounded function on
R?, of class C™ on R4\ {0} and such that, for every o € N with |a| < n, there is a constant C,,
such that

Ca
o“m —.
0 m(e)| < iy

Let K = F~'[m]. Then K agrees with a locally integrable function K on R4\ {0}. Further, there
exists C such that, for every y € R%\ {0},

/|>2| ‘|K(zfy)fK(x)|dz§ C.

Further, m € MP for every 1 < p < +00.

Proor. We will not take care of constants in this proof and write C' for a constant that
depends on the dimension d only and that may change from one occurence to the following.

As in the previous proof, we only have to control the pieces K. For this, let 8 be a multiindex.
Then

—2inz)P K;(z)|? dx:/ 10%m; (€)]? dé.

I(
R4 R4
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Thus, as long as £ < n, there is a constant C' (that depends on £ only but not on j and in the end
will depend on d only) such that

/(|x|f)2\Kj(m)|2dm:/( b 2K (e \de<cg/ ST [08my(€)[2 de < Cpaitait
R R 181=2¢

where the factor 2/¢ comes from the fact that we integrate over an annulus 297! < |¢| < 27+1
which has measure < €27 while the second factor comes from the fact that annulus, the integrant
is < (277%)2.

In particular, for R > 0, Cauchy-Schwarz gives

1/2
/ K ()| dz S R (/ |Kj(x)2dx) < C2id/2 R/
|z|<R R4
and

1/2 1/2
[ m@las = [ el @) d < ( [ dz) ( / |x|2”|Kj<x>|2dx)
je|>R je|>R | R Rd

(3.51) < (QRY/?kgid/2=jn

since d/2 —n < 0. In particular, chosing R = 277 gives
/ | ()| de < 209/2(279)4/2 4 (29)4/2-ngid/2=in <
Rd

Using the Leibnitz rule, one can extend this computation to the derivatives of K;. First one
proves

(2ima) 0" K (@) do = [ 10%[2ime)m (O de s 212002
R4
Then, the same cut-off and Cauchy-Schwarz shows that

/ 07K, (2)] da < 27,

Next, let h € R\ {0} and write h = |h|h/, then

/Rd (@ + ) — K;(@)|de = /]R

| ,
/ / |IVKj(x+ th')|dzdt < C27|h
Rd

[h]
/ (W, V(@ + th')) dt| da
0

IN

by the previous estimate for |a| = 1.
As a first consequence

/|> i) K@l s 3 2llS1
x| >2|y

27 Syl 27 S|yl

On the other hand, writing |K;(x+vy) — K;(z)| < |K;(z+y)|+|K,;(x)| and noting that |x+y| > |y|
when |z| > 2|y|, we get

/ Kj(w+y) - Kj(a)ldz < 2 )~ / |K;(z)] da
292yl =1 lz[=2]y| 2i>C—1|y|-1 || >yl
S D e
21 >C =1y~
with (3.51).

As in the previous proof, we conclude that K coincides on R?\ {0} with the locally integrable
function ) K. and that

/|>2 K+ y) K@)l dr £ 0
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for y # 0 and that, if f € L?(R?) has compact support and 0 ¢ supp f then

Tfa) = [ Kla=)f)ds

Further, as m € L®, T}, is bounded on L?. We are going to show that T}, is also of weak-type
(1,1) thus, by interpolation, it is of strong type (p,p) for 1 < p < 2 and, by duality, it is of strong
type (p,p) for 2 < p < +oc.

We now take a general f € L' and A > 0. Take its Calderén-Zygmund decomposition at level
AN f=g+ ZQ bg with g a good piece and by bad pieces. We have

{ITF1 > A < [{ITgl > A2} + [{ ) Tool > A/2}-
Q

The good part is easy to deal with since Ty, is of strong type (2,2) so that || T.gll2 < Cllgll2 <
C’)\l/2||f||}/2. From Bienaymé-Tchebichev, we get

which has the desired form.
The bad pieces are delt with as follows: bqg is supported in a cube @ with center cg and we
denote Q* = (1 + 2d'/?)Q. We then write

I Teol > a/23 < | @

+Ha g JQ ¢ 1D Tha()l > A/2}.
Q

But

<M< cedQi<c .

e

As /bQ(y) dy = 0 we have

[ K(:cy)bQ(y)dy‘dx -/
RNQ* [/Q RI\Q*

- /]Rd\Q* /Q‘K(x —y) — K(z —cq)| [bq(y)| dy dz

/(/ \K(w—m—f«w—c@)!dx) Ibo(y)| dy.
Q RA\Q*

Now if y € Q and z ¢ Q* then |x — cg| > 2|y — ¢g| thus

/ |K(x—y)—K(x—cQ)|d$=/ |K(z—cq—(y—cq)) — K(z —cq)|dz < C

Rd\Q*
fee

| ) Tho(z)[dx

/Q(K(x —y)— K(z — CQ))bQ(y) dy‘ dz

A

IN

so that

/Q K(x — p)boly) dy‘ dz < Cllbally < CI1QII

¥ e

CAY QI < CA
Q

It follows that

/ K(z — y)bo(y) dy| dz
Q

/1]
A

IN

= CHf||1

and Bienaymé-Tchebichev shows that the last term is bounded by

ez U@« 13 Tho()] > a2y < 2= Te@luenuen o ol

which has also the requested form. O







APPENDIX A

Integrating over the sphere and the Bessel function

1. The I' and B functions
Recall that the T" function is defined for x > 0

+oo
I(z) = / tre @
0 t

Obviously, I' is well defined and holomorphic over {z € C : R(z) > 0} and its derivatives are given
by
oo dt
) (z) = / In(t)*t%e" e
0
This shows that I is log-convex over RT.
A further result is that, first for 0 < $(z) < 1, T satisfies the functional equation

(1.52) T(2)0(1 - 2) = —

sinmz
which allows to define I' as a meromorphic function over C with poles at the non-positive integers
_1)n
with resudie Res (T', —n) = ( ')
n!
T" also satisfies the duplication formula

(1.53) ['(2)T (z + ;) = 21722 /71 (22).

with no zeroes.

A direct computation shows that I'(1) = I'(2) = 1, any of the functional equation shows that
I'(1/2) = /7 while integration by parts shows that I'(z + 1) = «I'(x) so that I'(n + 1) = n! and
1 (2n)!
I satisfies the asymptotic (Stirling) formula

T(z) = V2ra"" 2 (1 + ﬁ + O(x2)> .

The § function is closely related to the I' function. Recall that it is defined by
1
B(z,y) :/ "1 — )Yt de
0
for z,y > 0. Using Fubini we can write

—+oo —+oo
[(z)l(y) = / / t*lets¥lem5 dt ds
0 0
s

and changing variable u = s +t, v = P (that is s = uwv, t = u(1 — v)) we conclude that
s

B(]},y) =

which allows to extend it analytically.
Further, simplie changes of variables give various expressions

— s =1—t shows that B(y,z) = B(x,y);
z
— t = sin?  shows that B(z,y) = / sin?*~1 0 cos?¥ 1 6 db;
0

syt
—t=

+oo
shows that B(z,y) = / (
0

—d
1+s 1+ s)zty 8

113
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The link with the I" function also shows that

x Yy
~B(r+1,y) = mB(l’,y) and B(z,y +1) = m3($7y);

— B(z,z) =2'"%B (3, 2z).

rsin Ty

2. Spherical coordinates

Spherical coodinates extend the 2-dimensional polar coordinates to higher dimensions. First
note that if z € RY z # 0, then © = r(y,...,{q) with r = |2| = (2% + --- + 22)V/2 and
G+ + GG =1

We can then find 641 € [0, 7] such that {; = cos 64, while (? +---+(? | = sin® ;. Either
this last quantity is 0 or we divide it by sin? #4_; so that

((C1/sin0g—1)* + -+ + (Ca—2/sin04-1)%) + (Ca—1/sinbg_1)* = 1.
It follows that there is a 845 € [0, 7] such that (4—1/sinfy_1 = cosf,4_o and ((Cl/ sinflg_1)%+---+
(Ca_2/sinby_1)?) = sin® 04_o i.e. Cq_1 = cosfy_osinfy_; and CRRE ~—|—C§_2 = (sinfg_osinfy_1)2.

We keep on like this till we obtain (? + (3 = (sinfs - --sinf,_1)? so that there is §; € (—m, ) for
which (; =sinf;sinfs---sinf;_1 and (o = cosf; sinfs - --sinfy_1. In summary

ry = rsinf;sinfy---sinfy_1

To9 = rcosbfysinfy---sinfy_q
Tg_1 = rcosfy_osinfy_q

Ty = rcosfy_1

with » > 0, 6, € (—m, 7], and 0; € [0,7] for j = 2,....d — 1. This leads to a C' bijection
I :(r,01,...,00_1) = (21,...,24) from ]0, +00) x (—m, 7] x [0,7]? onto R%\ {0}. If we fix r > 0,
the image of {r} x (==, 7] x [0,7]? under II is the sphere rS?~! = {z € R? : |z| =r}.

For d = 2 we have just constructed polar coordinates while for d = 3

x = rsinfsing
y = rsinfcosyp r>0,0<60<m 0<p<2m.
z = rcosf

For instance, for d = 3, the Jacobian matrix of this change of variable is

sinfsing rcosfsing rsinfcosp
sinfcosp rcosfcosy —rsinfsing

cosf —rsind 0
and its determinant is
T e liosstiend KR et i g
= r2?cos®fsin 9(7 sin? p — cos? go) + rsin3 9(7 sin? ¢ — cos? cp)
= —rsinf(cos?d +sin®0) = —rsind.

In particular, if we write f in spherical coordinates f(n 0,¢) = f(rsin@sin g, rsinf cos @, r cos )
then

“+o00 2
f(x)dx :/ / / f(rsinfsin g, rsinf cos p,r cosd)rsind dy df dr.
R 0 o Jo
We can then define for ¥ : S? — C,
27
/ U(¢)doa(¢) = / / U (sin 6 sin ¢, sin 0 cos ¢, cos 6) sin § dyp d6.
s2 0

For arbitrary dimension d, a similar computation shows that

27
(2.54) / ( dog— 1 / / / HSIHJ 9 dfy_q1--- dfy do,
§d—1
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with
© = (sin# sinfy -+ -sinfy_1,cos601 sin by - - -sinfy_1,...,cos04-1)

and then
“+ o0
g f(z)dz = /0 /S . f(r¢)dog_1(¢) r¢=tdr.

In particular, if f is radial, f(z) = fo(|z|) then
+oo
f(z)de = o4 1(STh) / fo(r)rd=Ldr.
R4 0

We can now compute the volume of the euclidean ball |B4(p)| and the surface area of the
sphere in R?. Indeed, if f = 1p,(p) so that f(z) = fo(|z|) with fo = 1, we have

+oo
[Ba(p)| = /Rd 1p,(p) () dz = Ud—l(Sdil)/O Lo, (r)r*tdr
P L (Sd-1
= Udfl(Sd_l)A T‘d_ldr:%pd.

This already shows that |By(p)| = |Ba(1)|p? and that 41 (S?1) = d|B(0, 1)|.
On the other hand, if € By(p) then each coordinate of x is < p. Thus

Ba(p) = {(x1,.. ,wa1,2a) : (@] + -+ ah_y) + 2= p}

= {(x1,...,2q-1,2a) : (&} + - +x]_)) = /p? — 23 }

= {(jvxd) D xg € [*pa p]7 ze Bd—l(\/ P2 - 5173)}

Using Fubini (we only integrate non-negative quantities), we find
1

P
|Bd(p)| = ‘/]Rd 1B(p)(x)dx:/_p Ad_ 1Bd71(\/m)(j)djdxd

/p |Ba—1(1/p? — 22%)| dzq

= |Ba-1( \/ H[d=D/2 4.
This gives an induction formula
1Ba(1)] = [Ba-( |/ ) @=D/2 4t = 2|By_y ( |/ — ) d=/2
_ d+1 1
= |Bg_1( |/ 2)d=D/23 =12 45 = B<2,2> |Ba_1(1)|

which the change of variable x = t? and B the 3 function.

It follows that

L ()T (3) r ()

By(1)| = B(d/2+1,1/2)|Bg_1(1)| = 2 2/ |Bg_1(1)| = 2 __|By_1(1

Bal] = B@/2+ 1.1/D)[Bas (0] = 52 Baa (V] = Va5 Bt (1)
ITterating this formula, we get

r r(¢ 27
|Ba(1)| =7 F((‘Q’l ))F(gzz)|3d2(1)| P |Ba—2(1)]

But, when d = 1 of course |B1(1)| = |[-1,1]] = 2 while for d = 2, the area of a disc af radius 1
|B2(1)| = 7 (by definition of 7). An immediate induction then gives

rd/2 7;—1; sid=2p

d = )P .
r(§+1) 2((2;215! sid=2p+1

|Ba(1)| =
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(the first fomula follows from the second one) while

dm/? o
O'd_l(Sdil) = d|Bd(1)| = = .
L(s+1) (39
This formula could also be obtained by an induction, starting with o;(S') = 27 and the fact
that (2.54) shows that

d—1

27 T s
O'd—l(Sd_l):/O /O /0 Hsinﬂ'*lejded_l.-.dezdel:ad_z(Sd—Q)/ sin?™2 0,1 dfg_.
j=2

0

A key property of the surface measure of S?~! is that it is rotation invariant, that is, if
R € SO(d) (a d x d unitary matrix with determinant 1) then, for any continuous function ¢ on
Sd_l,

/ P(RC)dog_1(C) = / o) doa1(©).
Sd*l Sd*l

This property follows immediately from the same property for the Lebesgue measure on R%.

As a consequence, we can derive a formula for the integral of a function that depends only
on the scalar product with a fixed direction ¢(¢) = ¢o({¢,z)). To do so, write = |z|Rey where
eqa=(0,...,0,1) and R € SO(d), then

/ o(Q)dour(¢) = / col|z/{C, Rea)) doa—1(C)
Sd*l Sdfl

[, eollal("C.ea) doana @
[, otialic.ea) doan @

= O'd,Q(Sd_Q) / QD()(|£L'| COS Hd,l) Sind_2 9d71 dﬁd,l
0

with (2.54). Changing variable ¢t = cosf4_1 gives

/ eo((¢,2)) dog—1(C) = ad_g(sd—Q)/ ol|z]t) (1 — 1)z~ d
Sdfl

_1 t2—1

d—1
272

2.95 = 5 at)(1— %)z
(2:55) Frery | el =)

3. The Bessel function

d¢
21

The Bessel function is defined for Rev > —% via the Poisson representation formula as

J (t) (t)l/ 1 /1 ist(l 2)1/ dt
W=z | =————~ e -5 .

2) T T ) Vi
Alternatively, J,, can be defined via the power series

+oo 1 (_1)n n v+2n
J”(t):ZF(qunJrl) n! (2> '

n=0

This function is of class C*° and satisfies

d d

— [tV = =tV T, (t d —[t'J,]=t"J,_1(t

dt[ Ju] Jus1(t) an dt[ Ju] Ju-1(t)

the first one being valid for Rev > —1 and the second only for Rev > 3. One may further verify

that

d 1
Ejy(t) - i(Jyfl(t) - JV+1(t)).
and that J, satisfies a Sturm-Liouville differential equation
d? d
t2—J, +t—J, + (t* — v J, = 0.

de2”” T dt
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A further property is that J, has a “transmutation” property

! 2T(v+1
(3.56) /O Ju(st)s (1 — s) ds = %J/H—u-&-l(t)-

We leave this formula as an exercice based on the series representation of the Bessel function and
the properties of the I' function.
The most important facts for us are that J, have the asymptotic behavior

tl/
T 2T 1)

2cos(t71/173)
Jy(t) ~ \/; t1/22 4 ,when t — +o0.

4. The Fourier transform of the surface measure of the sphere

Jy(t) ,when t — 0

and

The importance of the Bessel function in Fourier analysis comes from the fact that it appears
in the expression of the Fourier transform of the surface measure of the sphere.

LEMMA A.1. For d > 2, the Fourier transform of oq_1 is given by

_ Ja_2 (27[¢])
0a-1(§) = 2m——55—
€1
PROOF. By definition
d—1
: 2z ! , d dt
G — —2im{z,£) do. — —2imt|€] 1— t2 51
=GR raaw) = oy [0
with (2.55). Using the definition of the Bessel function, we then get
d—1 d—2
o s 27 (=2 - Hp(l
ga-1(§) = [ (&l (5 L_Qz) () J%(QW\SD-
(“z4) (2m[€]) 2
As T'(1/2) = 7'/2, the result follows. O

5. Fourier transform of radial functions

LEMMA A.2. Let f € LY(R?) be a radial function and define fo by f(x) = fo(|z|). Then the
Fourier transform of f is given by

Fey — 27)
O ey

PROOF. Observe that fy € L'(R*, 7?1 dr). It is enough to compute

+o00
= / fo(\m|)e_2i”<x’§> dm:/ fo(?“)/ e—2imr(C,6) dO(C)rd_ldr
Re 0 §d—1

+oo . +oo Ja2 (27TT|§|)
= —2im(¢,r€) d—1 — s~ Y
fa [, e tar= [ g = E S ar

d
2

“+o0
/0 fo(T)J%(T\fl)rgfl dr.

=
™~
o

o Foo _
= a3 fO(T)J@(ﬂfDT% Ydr
&1z Jo :
and the asymptotics of the Bessel function in 0 and oo show that all integrals are well defined. O

ExampLe A.3. If we take fo = 1j9,1) we get

_— 2 d_

1
T = i | 7iatemiehrtrar - KZIJ;{H(W)

d
with the transmutation property (3.56) with pu = 5~ 1 and v = 0.
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More generally, if we write . = max(0, ) and m,(z) = (1 — |z|)*.. Then, for v > —d,

I p—— f-11 _poypgr = ZL0EL)
O = oz [ @)= CEE

v



APPENDIX B

The Schur test

In this chapter, we will focus on operators LP(Q, u) — L7(€2,v) defined through a kernel K:

(0.57) T f(x (/ny du(y).

More precisely, we assume that Tk is defined this way on a dense subset of LP(Q, 1) and we are
interrested in conditions on K that ensure that Tk extends to a bounded operator LP(Q, u) —
LY(Q, v).

This is rather easy when p = 1. Indeed, from Minkovski’s Inequality, we get

| Eeniwam| < K@ W, 00
Q Li(Q,v)
= [ 1K@l 0] du)
<

sup 1K (w,0) 3600 [ 1501 o)
yeN Q

This shows the following;:

PROPOSITION B.1. Let (, 1), (Q,v) be two o-finite measure spaces and let 1 < q < co. Let
K :QxQ— C. Assume that

/q
sup(/ | K (2,y)|?dv( )> when ¢ < 400
= yeN

SUP (3 4)exQ |K($,y)| otherwise

is finite. Then the linear operator defined by

Ty f(x &/ny apu(y)

is bounded L*(Q, ) — LI(Q, v) with 1Tk £ (0, =L@,y < M-
The dual case, i.e. with final space L™, is a simple: take 1 < p < +oo and p’ be the dual
1 1
exponent, — —|— — = 1. Then Holder shows that

sup
zeQ

[ K )0 < 501K g,

This shows the following:
PROPOSITION B.2. Let (Q, 1), (Q,v) be two o-finite measure spaces and let 1 < p < co and p’
1 1 ~
such that — + — =1. Let K : Q x Q — C. Assume that
p P

1/p
sup </ | K (z,y)[” du(y)) when p > 1
o \Ja

€N
Sup(z,y)eﬂxfz |K(‘T7 y)| when p= 1
is finite. Then the linear operator defined by

Ty f(x &/ny dju(y)

is bounded LP(Q, 1) — L>®(Q,v) with 1Tkl 1o 02,0y oo (62,0 < M-

M =

119
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For the case LP — LP, we will now prove the following powerful tool:

THEOREM B.3 (Schur Test). Let (2, p), (Q, v) be two o-finite measure spaces and let 1 < p <
co. Let K : Qx Q — C. Assume that

A= sup/ | K (2, y) [P du(y) < +oo
:IJEQ Q
and

B = sup/ | K (x,y)|P dv(z) < 400
yeQ JQ

Then the linear operator defined by
Tif(e) = [ Kle.n)fw)du(y

is bounded LP(Q, 1) — LP(Q, v) with 1Tk N oy Lo (@20) < ALY BY/p,

We take the convention X1/ = 1.

ProoOF. Note that when A =0 or B = 0 then K = 0 a.e. and Tx = 0. We thus exclude this
case.
We have already considered the cases p = 1 and p = co so we assume that 1 < p < +o00 and

1 1

take for p’ the dual exponent — + — = 1. We want to show that, for every f € LP(f2, ) and every
p P

ge L’ ()

/ Ti f(@)g(x) dv(y)| < Ol o9l o
where C' is a constant to be determined. This would then imply
TSl = s | [ Test@atoant)
9l Lo (5, =1 1/

< sup Cllfllauyllaller wy = ClF Lo (-

ol 0t .0y =

Next notice that

[ Tt du<y>\ < [ 1Tcs@)lgte)] ary

Q
while

Tk f(2)] =
But then, from Fubini,

[ (T £(2)] 9(x)| dv(y) = / / K (2, 9)| | (@) 19(9)| daly) d(z)
Q QJQ

(order of integration is not relevant as we integrate non-negative quantities). We thus have to show

(0.59) [ [ 1@l @) )] dus) dv(e) < €l ol

/K(%y)f(y)du(y)’ S/ |K (z, )] [ f(y)] du(y).
Q Q

1
The next step is a reduction to the case A = B = 1. To do so, define a new measure dji = Zdu
so that

sup / K (z,9)[P di(y) = 1
zeQ J/Q

while
1 1/1’) L
1oy = </Q If(x)”Adu(x)) = A7)
If we set dv = %dy then

Sup/~ |K(x,y)|Pdi(z) =1
yeEN JQ
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while ”g”LP’(D) = Bil/p’”gHLp'(yy Finally

[ [ 1@l r@lowl dit) dote) = 4757 [ ] 1K@ 19)]| dulw) do o).
QJQ QJQ

Thus, if we show the case A = B =1, that is,

(0.59) / / (K (2, )] £ 19(9)| A7) d(@) < 1Ll o o)

then
A-1p / / 1K (2, )] £ 99| dpa() dw@) < A2 B2 gl v

which is (0.58) with C' = A'=1/PB1=1/»" = A1/¢'B1/p,

From now on, we thus assume A = B = 1 and will show (0.59). As a last reduction, notice
that (0.59) is homogeneous in f and g, so may replace f and g by f/||f||Lp and g/HgHLP (7). We
thus want to show that

[ [ 15 Gl @ o) dut) dv(e) < 1
QJQ

when ||fHLP(ﬁ) = ||g||LP’(17) =1l and

sup / K ()l duty) = sup / K (2, )P dv(z) = 1.

zeQ/Q

For this, we will use convexity of the exponential function, for a,b > 0,

1 N 1 1
eplna+p' lnbéielna+7/elnb
p p

co1 1
ie. a/PHP < Zq 4 —b that is, for u,v >0
p p

1 1
uv < —uf + —oP .
p
Note that this is trivial when v = 0 and when v = 0 so that
1 1 /
|f(z)g(z)] < ]glf(fﬂ)l” + ];Ig(ff)\”

It follows that

/Q /Q K (2, 9)| 1 @) 19(3)| du(y) dv(z)
< % /Q /Q 1K (2, )| 1 ()P dpu(y) dv(z)
+1§ /Q /Q K (2, )] l(w) P duly) dv(z)

([ sl 1@l ae
2 [ ([l ) s

with Fubini (everything is non-negative). The first integral is bounded by

[ ([ K6l aun)) P asta)
= (ilelg/leyldu )/ |f(x)|P dv(z

:/ @) dv(z) = [ £150(,) =
Q
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while for the second one

([ miano) sl au
_<§25//|ny|d” )/Ig )P dpaly
= [ 1ol ants) = gl = 1.

//'nyuf (@)l lg(y)| dpa(y) dv(x )S%

as claimed. O

In conclusion

'ﬁh—n

REMARK B.4. Schur test sometimes gives an optimal bound. For instance, if p,v are finite
measures and K > 0 and if we know

/ K(x,y)du(y) = A and /~ K(z,y)dv(z) =B
Q Q

then, integrating the first identity with respect to vand the second one with respect to u, we get
Av(Q) = Bu(Q). This reads Txlg = Alg while |[1o, = #(2)"/7 and |15, = ()", Tn
conclusion [|Tx g, = AY?' BY/?|1g],.

On the opp051te when K oscﬂlates one can’t expect any optimality from Schur’s test as no
cancellation is taken into account. A striking example is Q = Q = R? with K (z,y) = e~ 2"%) 5o
that T f = f, the Fourier transform of f. From Plancherel we know that ITx flls = || flly while
A = B = 400 in Schur’s test so that one can not even obtain boundedness.
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