
MAXIMUM REGULARITY OF HUA HARMONIC FUNCTIONS

P. JAMING

1. The Siegel upper half space

1.1. Setting. On C2 consider r(z) = Im(z2) − |z1|2. The Siegel upper half space and its
boundary are given by

U ={z = (z1, z2) : r(z) > 0}
∂U ={z = (z1, z2) : r(z) = 0}

The Heisenberg group is given by H = C× R with the action given by

[ζ, t][η, s] = [ζ + η, t+ s+ 2Im(ζη̄)]

acts on U and ∂U bu
[ζ, t]z = (z1 + ζ, z2 + t+ 2iz2ζ̄ + i|ζ|2).

This action is simply transitive on ∂U but not on U . For this, one needs to add dilations: if
a > 0 then a · z = (a1/2z1, az2). One can then identify S = H � R∗+ with U by identifying
[ζ, t, a] ∈ S with [ζ, t, a] · i where the action of S on U is given by

[ζ, t, a] · z = [ζ, t] · a · z.
The group law is then

[ζ, t, a][η, s, b] =
[
[ζ, t][a1/2η, as], ab

]
= ...

One can then define left invariant vector field :
— on H by

X =
∂

∂x
+ 2y

∂

∂t
, Y =

∂

∂y
+ 2x

∂

∂t
, Z1 =

1
2
(X − iY ), T =

∂

∂t
;

— on S by
a1/2X, a1/2Y, a1/2Z1, aT, a∂a, aZ2 =

a

2
(T − i∂a).

One may then identify functions on U with functions on S and extend notions such as
holomorphy, pluriharmonicity... from functions on U to functions on S. For instance

on U on S

f holomorphic ∂f
∂z1

= ∂f
∂z2

= 0 Z1f = Z2f = 0

f pluri-harmonic ∂2f
∂zk∂z̄j

= 0 Z2Z1f = Z1Z2f = Z2Z2f = 0 and (Z1Z1 + 2iZ2)f = 0.
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Finally we will consider the following family of second order differential operators (α ∈ R)

Lα = −1
2
(Z1Z1 + Z1Z1) + iαT, on H

(we simply write L = L0) and

L = −1
2
a(L+ ∂a) + a2(∂2

a + T 2), on S.

This operator has a Poisson kernel :
recall that the Haar measure on H ∼ R3 is the Lebesgue measure of R3 and that convolution
is given by

f ∗ g[ζ, t] =
∫

H
f [η, s]g([η, s]−1[ζ, t])dηds.

For exists a > 0, there exists a unique function Pa on H with
∫

H Pa = 1, called the Poisson
kernel, such that F is L harmonic and bounded if and only if F = f ∗ Pa.

1.2. Harmonicity and pluri-harmonicity 1.

Theorem 1.1. Assume that F = f ∗ Pa with f bounded. Then
(1) F is holomorphic if and only if L1f = 0,
(2) F is anti-holomorphic if and only if L−1f = 0,
(3) F is pluri-harmonic if and only if (L2 + T 2)f = L−1L1f = 0.

Sketch of proof. Denote by C the Cauchy-Szegö projection. There is a well-known function
Φ such that, if f is smooth and fastly decreasing, then f − C(f) = L1(f ∗ Φ).

Apply this to fϕR with ϕR a dilation of a cutoff function, compose with Z̄1 (this removes
C(fϕR)) estimate the convolution, noting that it is an integration over a shell and let R→ 0,
this gives Z̄1f = 0.

The second point is obtained by conjugation. For the 3rd point, note that L1F is anti-
holomorphic, one obtains pluri-harmonicity by computing commutators. �

1.3. Automatic regularity of harmonic functions. We will say that a function G on S
has a boundary distribution if, for every ψ ∈ C∞c (H),

lim
a→0

∫
H
G(ω, a)ψ(ω)dω

exists. It is obvious that if G has a boundary distribution, so do LG and TG.

Theorem 1.2. If F is harmonic with a boundary distribution, then ∂aF has also a boundary
distribution.

Sketch of proof. Let ψ ∈ C∞c (H) and set

ϕ(a) =
∫

H
∂aF (ω, a)ψ(ω)dw.

We want to show that ffi has a limit as a→ 0. We have

a∂2
aF (a)− 1

2
∂aF = (

1
2
L+ aT 2)F
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and the right hand side has a boundary distribution. Multiplying by ψ and integrating over
H gives

∂aϕ−
1
2
ϕ = g(a)

for some function g that has a limit as a→ 0. Solving this differential equation, we get

ϕ(a) = λa1/2 + a1/2

∫ a

1

g(t)
t1+1/2

dt

and, as 1/2 > 0 it is easy to show that this has a limit as a→ 0. �

1.4. Maximal regularity of t-invariant harmonic functions. If F is L-harmonic and
t-invariant (i.e TF = 0), then ΛF = 0 with

Λ =
1
2
a(∆− ∂a) + a2∂2

a

where ∆ is the Euclidean Laplacian.

Proposition 1.3. Assume that F is bounded and Λ-harmonic such that, for every ψ ∈ S(Cn)
and k = 0, 1 or 2,

(BR) sup
a≤1

∣∣∣∣∫
Cn

∂kaF (ζ, a)ψ(ζ)dζ
∣∣∣∣ < +∞.

Then F is constant.

Proof. Let Qa be the Poisson kernel for Λ, so that F = Qa∗f with f bounded. Let ϕ ∈ S(Cn)
such that 0 /∈ suppϕ̂, we will prove that

〈
f̂ , ϕ̂Q̂a

〉
=

∫
Fa(ζ)ϕ(ζ)dζ = 0.

Once this is done, f̂ is a distribution supported in {0} so f is bounded polynomial, thus a
constant.

To prove the claim, we first identify Qa : Q̂a(ξ) = z(a|ξ|2/2) where z is the unique bounded
solution of

(a∂2
a −

1
2
∂a − 1)z(a) = 0

with z(0) = 1 (z is the Legendre function).
Then we study the regularity of z :

∂2z(a|ξ|2/2) = γ(a|ξ|2) + a−1/2|ξ|−1γ̃(a|ξ|2)

with γ, γ̃ smooth functions, γ̃(0) 6= 0.
The condition (BR) implies the claim. �

1.5. Fourier analysis on H. The represntations f H on L2(R) are given by (λ ∈ R∗) :

Rλ[u, v, t]Φ(x) = e2iπλ(ux+uv/2+t/4)Φ(x+ v).

The fourier transform of a function f on H is the operator defined by〈
f̂(λ)φ, ψ

〉
=

∫
H

〈
Rλ(w)∗φ, ψ

〉
f(w)dw.
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It is an Hilbert-Schmidt operator with kernel Kλ
f (x, v)F1,3f(λ(x + v)/2, x − v, λ/4). The

inversion formula is given by

f(u, v, t) =
∫

R∗
tr

(
f̂(λ)Rλ(u, v, t)

)
|λ|ndλ.

The trace in this formula may be written using hλk , a properly scaled Hermite basis, and

eλk(ω) =
〈
Rλ(ω)hλk , h

λ
k

〉
.

1.6. Identification of Pa. Notons ωf(w) = f(ωw). Alors

Lemma 1.4. For λ 6= 0 and k ∈ N, set

gλk (ω, a) =
〈
ω̂Pa(λ)hλk , h

λ
k

〉
= eλk ∗ P̌a(ω−1).

Then gλk (ω, a) = eλk(ω
−1)g(|λ|a) where g is the unique bounded solution of(

∂2
a −

(
k + 1
a

+ 1
))

g(a) = 0

with g(0) = 1.

Such a g is a confluent hypergeometric function.
The proof uses the fact that eλk are eigenfunctions of L and T .

1.7. An orthogonality property. For ψ ∈ S(R) and k ∈ N, write

eψk (ω) =
∫

R
eλk(ω)ψ(λ)dλ.

Proposition 1.5. Let f be a bounded function on H and F = f ∗Pa. Assume that F satisfies

(BR) sup
a≤1

∣∣∣∣∫
H
∂kaF (ω, a)ψ(ω)dω

∣∣∣∣ < +∞

for k = 0, 1, 2 and ψ ∈ S(H). Then for k 6= 0, w ∈ H, ψ with ψ̂ ∈ C∞c (R \ {0}),∫
H
wf(ω)eψk (ω)dω = 0.

1.8. Final result.

Theorem 1.6. Let f be a bounded function on H and F = f ∗ Pa. Assume that F satisfies

(BR) sup
a≤1

∣∣∣∣∫
H
∂kaF (ω, a)ψ(ω)dω

∣∣∣∣ < +∞

for k = 0, 1, 2 and ψ ∈ S(H). Then F is pluri-harmonic.
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Sketch of proof. By replacing f by ψ ∗ f with ψ smooth, we may assume that f is smooth
and has 4 bounded derivatives.

Write g = (L2 + T 2)f and G = g ∗ Pa = (L2 + T 2)F . Then G still satisfies the hypothesis
of the theorem.

According to Theorem 1.1, it is enough to prove that g = 0 and, with Harnack, that g is
a constant. With Proposition 1.3, it is enough to prove that G does not depend on t.

But Proposition 1.5 states that ∫
H
g(ω)eψk (ω)dω = 0

for k = 0 and ψ with 0 /∈ supp ψ̂. As g = (L2 + T 2)f , the same is true for k = 0, then,
by Fourier inversion on the Heisenberg group, g is a polynomial in the t variable, and by
boundedness, does not depend on t. So G does not depend on the t variable. �

2. Hua operators on tube type domains

2.1. Jordan algebras. Let V = Sym(2,R) the symetric 2×2 matrices with product A ·B =
1
2(AB +BA) and scalar product 〈A,B〉 = tr(ABt). This is an Euclidean Jordan algebra.

Let c1 =
(

1 0
0 0

)
and c2 =

(
0 0
0 1

)
. Then

c2i = ci, cicj = 0, c1 + c2 = I

and is maximal for this property. This is a Jordan frame of V .
Let Ω = Int{A · A,A ∈ V } = Sym+(2,R) the set of positive definite symmetric 2 × 2

matrices. This is an irreducible cone in V .
Write L(A)B = AB an endomorphism of V and let V (ci, λ) be the eigenspaces of L(ci).

The only eigenvalues are 0, 1/2 and 1. Here Vi,i := V (ci, 1) = Rci i = 1, 2 and Vi,j :=

V (ci, 1/2)∩V (cj , 1/2) = Rc1,2 with c1,2 = 1√
2

(
0 1
1 0

)
, so that V =

⊕
1≤i≤j≤r V1,1⊕V1,2⊕V2,2.

This is the Peirce decomposition of V .

2.2. Automorphisms of Ω. Let G be the component of I of the group of g ∈ GL(V ) s.t
g · Ω ⊂ Ω. Let G be its Lie algebra.

Let A be the abelian part of G, then A = V ect{L(c1), L(c2)} and note that this are given
by

L(c1) =

1 0 0
0 1/2 0
0 0 0

 L(c2) =

0 0 0
0 1/2 0
0 0 1

 .

Let N be the nilpotent part of G, N =
⊕

i<j Ni,j where Ni,j = V ect{ci,j2ci} and the 2

operation is defined by
A2B = L(A ·B) + [L(A), L(B)].

Here N = N1,2 = Rc1,22c1 = R

 0 0 0
1/2 0 0
0 1/2 0

.
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Let S0 = A⊕N and S0 = expS0 =


 a2 0 0

γa ab 0
γ2/2 γb b2

 , a, b > 0γ ∈ R

 .

This acts simply transitively on Ω.

2.3. Tube domains. We now consider the tube domain TΩ = V + iΩ ⊂ V C. Then V S0 acts
on TΩ by (x, I) · (u+ iv) = x+u+uv and (0, s) · (u+ iv) = s ·u+ is · v. The group operation
is therefore (v, s)(v′, s′) = (v + s · v′, s · s′).

The action is simply transitive, so we may identify V S0 with TΩ by (u+ iv) ∼ (v, s) · iI.
The Lie algebra of V S0 is V ⊕ S0 = V ⊕A⊕

⊕
i,j Ni,j .

A basis of order 1 invariant differential operators is given byX1, X2, X1,2 that correspond to
c1, c2, c1,2 ∈ V , Y1,2 that corresponds to 2e1,2 ∈ N and H1,H2 that correspond to L(c1), L(c2)
in A.

2.4. Hua operators and main theorem. We that set

∆1 = X2
1 +H2

1 −H1, ∆2 = X2
2 +H2

2 −H2, ∆1,2 = X2
1,2 + Y 2

1,2 −H2.

At the point iI, these correspond to ∂2

∂z1∂z̄1
, ∂2

∂z2∂z̄2
and ∂2

∂z1,2∂z̄1,2
and one can show that a

function is pluriharmonic if and only if ∆1f = ∆2f = ∆1,2f = 0.
The (strongly diagonal) Hua operators are then given by

Hj = ∆j +
1
2

∑
k<j

∆k,j +
1
2

∑
k>j

∆j,k

so that here they are H1 = ∆1 + 1
2∆1,2 and H2 = ∆2 + 1

2∆1,2. It is known that the bounded
Hua-harmonic functions are the Poisson integrals.

Theorem 2.1. Every bounded Hua-harmonic function f has a finite number of derivatives
with a boundary distribution, unless it is pluri-harmonic.

The proof is an induction on the “rank” of the cone (=the number of elements in the
Jordan frame).

One first isolates everything that contains the index 2 by averaging f over the other
variables (against a test function ψ). This way, one obtains a function over a subgroup of
S which turns out to be the extension of the Heisenberg group presented earlier. Moreover,
the function fψ one obtains is L-harmonic, (the operator L has been built for that purpose).
Further if f has a given number of boundary derivatives, so does the function fψ one obtains
by averaging. From the previous section, we know that if one asks for too many derivatives,
this only occurs if fψ is pluri-harmonic. This then implies that ∆2f = ∆1,2f = 0 so that
H1f = 0 reduces to ∆1f = 0 and finally f is pluri-harmonic.


