MAXIMUM REGULARITY OF HUA HARMONIC FUNCTIONS

P. JAMING

1. The Siegel upper half space
1.1. Setting. On \mathbb{C}^{2} consider $r(z)=\operatorname{Im}\left(z_{2}\right)-\left|z_{1}\right|^{2}$. The Siegel upper half space and its boundary are given by

$$
\begin{aligned}
\mathcal{U} & =\left\{z=\left(z_{1}, z_{2}\right): r(z)>0\right\} \\
\partial \mathcal{U} & =\left\{z=\left(z_{1}, z_{2}\right): r(z)=0\right\}
\end{aligned}
$$

The Heisenberg group is given by $\mathbb{H}=\mathbb{C} \times \mathbb{R}$ with the action given by

$$
[\zeta, t][\eta, s]=[\zeta+\eta, t+s+2 \operatorname{Im}(\zeta \bar{\zeta})]
$$

acts on \mathcal{U} and $\partial \mathcal{U}$ bu

$$
[\zeta, t] z=\left(z_{1}+\zeta, z_{2}+t+2 i z_{2} \bar{\zeta}+i|\zeta|^{2}\right)
$$

This action is simply transitive on $\partial \mathcal{U}$ but not on \mathcal{U}. For this, one needs to add dilations: if $a>0$ then $a \cdot z=\left(a^{1 / 2} z_{1}, a z_{2}\right)$. One can then identify $S=\mathbb{H} \succeq \mathbb{R}_{+}^{*}$ with \mathcal{U} by identifying [$\zeta, t, a] \in S$ with $[\zeta, t, a] \cdot i$ where the action of S on \mathcal{U} is given by

$$
[\zeta, t, a] \cdot z=[\zeta, t] \cdot a \cdot z .
$$

The group law is then

$$
[\zeta, t, a][\eta, s, b]=\left[[\zeta, t]\left[a^{1 / 2} \eta, a s\right], a b\right]=\ldots
$$

One can then define left invariant vector field :

- on \mathbb{H} by

$$
X=\frac{\partial}{\partial x}+2 y \frac{\partial}{\partial t}, Y=\frac{\partial}{\partial y}+2 x \frac{\partial}{\partial t}, Z_{1}=\frac{1}{2}(X-i Y), T=\frac{\partial}{\partial t} ;
$$

- on S by

$$
a^{1 / 2} X, a^{1 / 2} Y, a^{1 / 2} Z_{1}, a T, a \partial_{a}, a Z_{2}=\frac{a}{2}\left(T-i \partial_{a}\right) .
$$

One may then identify functions on \mathcal{U} with functions on S and extend notions such as holomorphy, pluriharmonicity... from functions on \mathcal{U} to functions on S. For instance

	on \mathcal{U}	on S
f holomorphic	$\frac{\partial f}{\partial z_{1}}=\frac{\partial f}{\partial z_{2}}=0$	$\bar{Z}_{1} f=\bar{Z}_{2} f=0$
f pluri-harmonic	$\frac{\partial^{2} f}{\partial z_{k} \partial \bar{z}_{j}}=0$	$Z_{2} \bar{Z}_{1} f=Z_{1} \bar{Z}_{2} f=Z_{2} \bar{Z}_{2} f=0$ and $\left(Z_{1} \bar{Z}_{1}+2 i \overline{Z_{2}}\right) f=0$.

[^0]Finally we will consider the following family of second order differential operators ($\alpha \in \mathbb{R}$)

$$
\mathcal{L}_{\alpha}=-\frac{1}{2}\left(Z_{1} \bar{Z}_{1}+\bar{Z}_{1} Z_{1}\right)+i \alpha T, \quad \text { on } \mathbb{H}
$$

(we simply write $\mathcal{L}=\mathcal{L}_{0}$) and

$$
L=-\frac{1}{2} a\left(\mathcal{L}+\partial_{a}\right)+a^{2}\left(\partial_{a}^{2}+T^{2}\right), \quad \text { on } S
$$

This operator has a Poisson kernel :
recall that the Haar measure on $\mathbb{H} \sim \mathbb{R}^{3}$ is the Lebesgue measure of \mathbb{R}^{3} and that convolution is given by

$$
f * g[\zeta, t]=\int_{\mathbb{H}} f[\eta, s] g\left([\eta, s]^{-1}[\zeta, t]\right) d \eta d s
$$

For exists $a>0$, there exists a unique function P_{a} on \mathbb{H} with $\int_{\mathbb{H}} P_{a}=1$, called the Poisson kernel, such that F is L harmonic and bounded if and only if $F=f * P_{a}$.

1.2. Harmonicity and pluri-harmonicity 1.

Theorem 1.1. Assume that $F=f * P_{a}$ with f bounded. Then
(1) F is holomorphic if and only if $\mathcal{L}_{1} f=0$,
(2) F is anti-holomorphic if and only if $\mathcal{L}_{-1} f=0$,
(3) F is pluri-harmonic if and only if $\left(\mathcal{L}^{2}+T^{2}\right) f=\mathcal{L}_{-1} \mathcal{L}_{1} f=0$.

Sketch of proof. Denote by C the Cauchy-Szegö projection. There is a well-known function Φ such that, if f is smooth and fastly decreasing, then $f-C(f)=\mathcal{L}_{1}(f * \Phi)$.

Apply this to $f \varphi_{R}$ with φ_{R} a dilation of a cutoff function, compose with \bar{Z}_{1} (this removes $C\left(f \varphi_{R}\right)$) estimate the convolution, noting that it is an integration over a shell and let $R \rightarrow 0$, this gives $\bar{Z}_{1} f=0$.

The second point is obtained by conjugation. For the 3 rd point, note that $\mathcal{L}_{1} F$ is antiholomorphic, one obtains pluri-harmonicity by computing commutators.
1.3. Automatic regularity of harmonic functions. We will say that a function G on S has a boundary distribution if, for every $\psi \in \mathcal{C}_{c}^{\infty}(\mathbb{H})$,

$$
\lim _{a \rightarrow 0} \int_{\mathbb{H}} G(\omega, a) \psi(\omega) d \omega
$$

exists. It is obvious that if G has a boundary distribution, so do $\mathcal{L} G$ and $T G$.
Theorem 1.2. If F is harmonic with a boundary distribution, then $\partial_{a} F$ has also a boundary distribution.

Sketch of proof. Let $\psi \in \mathcal{C}_{c}^{\infty}(\mathbb{H})$ and set

$$
\varphi(a)=\int_{\mathbb{H}} \partial_{a} F(\omega, a) \psi(\omega) d w
$$

We want to show that $f f i$ has a limit as $a \rightarrow 0$. We have

$$
a \partial_{a}^{2} F(a)-\frac{1}{2} \partial_{a} F=\left(\frac{1}{2} \mathcal{L}+a T^{2}\right) F
$$

and the right hand side has a boundary distribution. Multiplying by ψ and integrating over \mathbb{H} gives

$$
\partial_{a} \varphi-\frac{1}{2} \varphi=g(a)
$$

for some function g that has a limit as $a \rightarrow 0$. Solving this differential equation, we get

$$
\varphi(a)=\lambda a^{1 / 2}+a^{1 / 2} \int_{1}^{a} \frac{g(t)}{t^{1+1 / 2}} d t
$$

and, as $1 / 2>0$ it is easy to show that this has a limit as $a \rightarrow 0$.
1.4. Maximal regularity of t-invariant harmonic functions. If F is L-harmonic and t-invariant (i.e $T F=0$), then $\Lambda F=0$ with

$$
\Lambda=\frac{1}{2} a\left(\Delta-\partial_{a}\right)+a^{2} \partial_{a}^{2}
$$

where Δ is the Euclidean Laplacian.
Proposition 1.3. Assume that F is bounded and Λ-harmonic such that, for every $\psi \in \mathcal{S}\left(\mathbb{C}^{n}\right)$ and $k=0,1$ or 2 ,

$$
\begin{equation*}
\sup _{a \leq 1}\left|\int_{\mathbb{C}^{n}} \partial_{a}^{k} F(\zeta, a) \psi(\zeta) d \zeta\right|<+\infty \tag{BR}
\end{equation*}
$$

Then F is constant.
Proof. Let Q_{a} be the Poisson kernel for Λ, so that $F=Q_{a} * f$ with f bounded. Let $\varphi \in \mathcal{S}\left(\mathbb{C}^{n}\right)$ such that $0 \notin \operatorname{supp} \hat{\varphi}$, we will prove that $\left\langle\hat{f}, \hat{\varphi} \hat{Q}_{a}\right\rangle=\int F_{a}(\zeta) \varphi(\zeta) d \zeta=0$.

Once this is done, \hat{f} is a distribution supported in $\{0\}$ so f is bounded polynomial, thus a constant.

To prove the claim, we first identify $Q_{a}: \hat{Q}_{a}(\xi)=z\left(a|\xi|^{2} / 2\right)$ where z is the unique bounded solution of

$$
\left(a \partial_{a}^{2}-\frac{1}{2} \partial_{a}-1\right) z(a)=0
$$

with $z(0)=1$ (z is the Legendre function).
Then we study the regularity of z :

$$
\partial^{2} z\left(a|\xi|^{2} / 2\right)=\gamma\left(a|\xi|^{2}\right)+a^{-1 / 2}|\xi|^{-1} \tilde{\gamma}\left(a|\xi|^{2}\right)
$$

with $\gamma, \tilde{\gamma}$ smooth functions, $\tilde{\gamma}(0) \neq 0$.
The condition (BR) implies the claim.
1.5. Fourier analysis on \mathbb{H}. The represntations $f \mathbb{H}$ on $L^{2}(\mathbb{R})$ are given by $\left(\lambda \in \mathbb{R}^{*}\right)$:

$$
R^{\lambda}[u, v, t] \Phi(x)=e^{2 i \pi \lambda(u x+u v / 2+t / 4)} \Phi(x+v)
$$

The fourier transform of a function f on \mathbb{H} is the operator defined by

$$
\langle\hat{f}(\lambda) \phi, \psi\rangle=\int_{\mathbb{H}}\left\langle R^{\lambda}(w)^{*} \phi, \psi\right\rangle f(w) d w .
$$

It is an Hilbert-Schmidt operator with kernel $K_{f}^{\lambda}(x, v) \mathcal{F}_{1,3} f(\lambda(x+v) / 2, x-v, \lambda / 4)$. The inversion formula is given by

$$
f(u, v, t)=\int_{\mathbb{R}^{*}} \operatorname{tr}\left(\hat{f}(\lambda) R^{\lambda}(u, v, t)\right)|\lambda|^{n} d \lambda
$$

The trace in this formula may be written using h_{k}^{λ}, a properly scaled Hermite basis, and

$$
e_{k}^{\lambda}(\omega)=\left\langle R^{\lambda}(\omega) h_{k}^{\lambda}, h_{k}^{\lambda}\right\rangle
$$

1.6. Identification of P_{a}. Notons ${ }_{\omega} f(w)=f(\omega w)$. Alors

Lemma 1.4. For $\lambda \neq 0$ and $k \in \mathbb{N}$, set

$$
g_{k}^{\lambda}(\omega, a)=\left\langle\widehat{{ }_{\omega} P_{a}}(\lambda) h_{k}^{\lambda}, h_{k}^{\lambda}\right\rangle=e_{k}^{\lambda} * \check{P}_{a}\left(\omega^{-1}\right)
$$

Then $g_{k}^{\lambda}(\omega, a)=e_{k}^{\lambda}\left(\omega^{-1}\right) g(|\lambda| a)$ where g is the unique bounded solution of

$$
\left(\partial_{a}^{2}-\left(\frac{k+1}{a}+1\right)\right) g(a)=0
$$

with $g(0)=1$.
Such a g is a confluent hypergeometric function.
The proof uses the fact that e_{k}^{λ} are eigenfunctions of \mathcal{L} and T.
1.7. An orthogonality property. For $\psi \in \mathcal{S}(\mathbb{R})$ and $k \in \mathbb{N}$, write

$$
e_{k}^{\psi}(\omega)=\int_{\mathbb{R}} e_{k}^{\lambda}(\omega) \psi(\lambda) d \lambda
$$

Proposition 1.5. Let f be a bounded function on \mathbb{H} and $F=f * P_{a}$. Assume that F satisfies

$$
\begin{equation*}
\sup _{a \leq 1}\left|\int_{\mathbb{H}} \partial_{a}^{k} F(\omega, a) \psi(\omega) d \omega\right|<+\infty \tag{BR}
\end{equation*}
$$

for $k=0,1,2$ and $\psi \in \mathcal{S}(\mathbb{H})$. Then for $k \neq 0, w \in \mathbb{H}, \psi$ with $\hat{\psi} \in \mathcal{C}_{c}^{\infty}(\mathbb{R} \backslash\{0\})$,

$$
\int_{\mathbb{H}} w f(\omega) e_{k}^{\psi}(\omega) d \omega=0
$$

1.8. Final result.

Theorem 1.6. Let f be a bounded function on \mathbb{H} and $F=f * P_{a}$. Assume that F satisfies

$$
\begin{equation*}
\sup _{a \leq 1}\left|\int_{\mathbb{H}} \partial_{a}^{k} F(\omega, a) \psi(\omega) d \omega\right|<+\infty \tag{BR}
\end{equation*}
$$

for $k=0,1,2$ and $\psi \in \mathcal{S}(\mathbb{H})$. Then F is pluri-harmonic.

Sketch of proof. By replacing f by $\psi * f$ with ψ smooth, we may assume that f is smooth and has 4 bounded derivatives.

Write $g=\left(\mathcal{L}^{2}+T^{2}\right) f$ and $G=g * P_{a}=\left(\mathcal{L}^{2}+T^{2}\right) F$. Then G still satisfies the hypothesis of the theorem.

According to Theorem 1.1, it is enough to prove that $g=0$ and, with Harnack, that g is a constant. With Proposition 1.3, it is enough to prove that G does not depend on t.

But Proposition 1.5 states that

$$
\int_{\mathbb{H}} g(\omega) e_{k}^{\psi}(\omega) d \omega=0
$$

for $k=0$ and ψ with $0 \notin \operatorname{supp} \hat{\psi}$. As $g=\left(\mathcal{L}^{2}+T^{2}\right) f$, the same is true for $k=0$, then, by Fourier inversion on the Heisenberg group, g is a polynomial in the t variable, and by boundedness, does not depend on t. So G does not depend on the t variable.

2. Hua operators on tube type domains

2.1. Jordan algebras. Let $V=\operatorname{Sym}(2, \mathbb{R})$ the symetric 2×2 matrices with product $A \cdot B=$ $\frac{1}{2}(A B+B A)$ and scalar product $\langle A, B\rangle=\operatorname{tr}\left(A B^{t}\right)$. This is an Euclidean Jordan algebra.

Let $c_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $c_{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$. Then

$$
c_{i}^{2}=c_{i}, c_{i} c_{j}=0, c_{1}+c_{2}=I
$$

and is maximal for this property. This is a Jordan frame of V.
Let $\Omega=\operatorname{Int}\{A \cdot A, A \in V\}=\operatorname{Sym}_{+}(2, \mathbb{R})$ the set of positive definite symmetric 2×2 matrices. This is an irreducible cone in V.

Write $L(A) B=A B$ an endomorphism of V and let $V\left(c_{i}, \lambda\right)$ be the eigenspaces of $L\left(c_{i}\right)$. The only eigenvalues are $0,1 / 2$ and 1 . Here $V_{i, i}:=V\left(c_{i}, 1\right)=\mathbb{R} c_{i} i=1,2$ and $V_{i, j}:=$ $V\left(c_{i}, 1 / 2\right) \cap V\left(c_{j}, 1 / 2\right)=\mathbb{R} c_{1,2}$ with $c_{1,2}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, so that $V=\bigoplus_{1 \leq i \leq j \leq r} V_{1,1} \oplus V_{1,2} \oplus V_{2,2}$. This is the Peirce decomposition of V.
2.2. Automorphisms of Ω. Let G be the component of I of the group of $g \in G L(V)$ s.t $g \cdot \Omega \subset \Omega$. Let \mathcal{G} be its Lie algebra.

Let \mathcal{A} be the abelian part of \mathcal{G}, then $\mathcal{A}=\operatorname{Vect}\left\{L\left(c_{1}\right), L\left(c_{2}\right)\right\}$ and note that this are given by

$$
L\left(c_{1}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 0
\end{array}\right) \quad L\left(c_{2}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Let \mathcal{N} be the nilpotent part of $\mathcal{G}, \mathcal{N}=\bigoplus_{i<j} \mathcal{N}_{i, j}$ where $\mathcal{N}_{i, j}=V \operatorname{ect}\left\{c_{i, j} \square c_{i}\right\}$ and the operation is defined by

$$
A \square B=L(A \cdot B)+[L(A), L(B)]
$$

Here $\mathcal{N}=\mathcal{N}_{1,2}=\mathbb{R} c_{1,2} \square c_{1}=\mathbb{R}\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 / 2 & 0 & 0 \\ 0 & 1 / 2 & 0\end{array}\right)$.

Let $\mathcal{S}_{0}=\mathcal{A} \oplus \mathcal{N}$ and $S_{0}=\exp \mathcal{S}_{0}=\left\{\left(\begin{array}{ccc}a^{2} & 0 & 0 \\ \gamma a & a b & 0 \\ \gamma^{2} / 2 & \gamma b & b^{2}\end{array}\right), a, b>0 \gamma \in \mathbb{R}\right\}$.
This acts simply transitively on Ω.
2.3. Tube domains. We now consider the tube domain $T_{\Omega}=V+i \Omega \subset V^{\mathbb{C}}$. Then $V S_{0}$ acts on T_{Ω} by $(x, I) \cdot(u+i v)=x+u+u v$ and $(0, s) \cdot(u+i v)=s \cdot u+i s \cdot v$. The group operation is therefore $(v, s)\left(v^{\prime}, s^{\prime}\right)=\left(v+s \cdot v^{\prime}, s \cdot s^{\prime}\right)$.

The action is simply transitive, so we may identify $V S_{0}$ with T_{Ω} by $(u+i v) \sim(v, s) \cdot i I$.
The Lie algebra of $V S_{0}$ is $V \oplus S_{0}=V \oplus \mathcal{A} \oplus \bigoplus_{i, j} \mathcal{N}_{i, j}$.
A basis of order 1 invariant differential operators is given by $X_{1}, X_{2}, X_{1,2}$ that correspond to $c_{1}, c_{2}, c_{1,2} \in V, Y_{1,2}$ that corresponds to $2 e_{1,2} \in \mathcal{N}$ and H_{1}, H_{2} that correspond to $L\left(c_{1}\right), L\left(c_{2}\right)$ in \mathcal{A}.
2.4. Hua operators and main theorem. We that set

$$
\Delta_{1}=X_{1}^{2}+H_{1}^{2}-H_{1}, \quad \Delta_{2}=X_{2}^{2}+H_{2}^{2}-H_{2}, \quad \Delta_{1,2}=X_{1,2}^{2}+Y_{1,2}^{2}-H_{2}
$$

At the point $i I$, these correspond to $\frac{\partial^{2}}{\partial z_{1} \partial \bar{z}_{1}}, \frac{\partial^{2}}{\partial z_{2} \partial \bar{z}_{2}}$ and $\frac{\partial^{2}}{\partial z_{1,2} \partial \bar{z}_{1,2}}$ and one can show that a function is pluriharmonic if and only if $\Delta_{1} f=\Delta_{2} f=\Delta_{1,2} f=0$.

The (strongly diagonal) Hua operators are then given by

$$
\mathbb{H}_{j}=\Delta_{j}+\frac{1}{2} \sum_{k<j} \Delta_{k, j}+\frac{1}{2} \sum_{k>j} \Delta_{j, k}
$$

so that here they are $\mathbb{H}_{1}=\Delta_{1}+\frac{1}{2} \Delta_{1,2}$ and $\mathbb{H}_{2}=\Delta_{2}+\frac{1}{2} \Delta_{1,2}$. It is known that the bounded Hua-harmonic functions are the Poisson integrals.

Theorem 2.1. Every bounded Hua-harmonic function f has a finite number of derivatives with a boundary distribution, unless it is pluri-harmonic.

The proof is an induction on the "rank" of the cone (=the number of elements in the Jordan frame).

One first isolates everything that contains the index 2 by averaging f over the other variables (against a test function ψ). This way, one obtains a function over a subgroup of S which turns out to be the extension of the Heisenberg group presented earlier. Moreover, the function f_{ψ} one obtains is L-harmonic, (the operator L has been built for that purpose). Further if f has a given number of boundary derivatives, so does the function f_{ψ} one obtains by averaging. From the previous section, we know that if one asks for too many derivatives, this only occurs if f_{ψ} is pluri-harmonic. This then implies that $\Delta_{2} f=\Delta_{1,2} f=0$ so that $\mathbb{H}_{1} f=0$ reduces to $\Delta_{1} f=0$ and finally f is pluri-harmonic.

[^0]: Joint work with A. Bonami (Orléans), D. Buraczewski, E. Damek, A. Hulanicki (Wrocław).

