Contributions à l'analyse harmonique réelle et complexe et à ses applications

Philippe Jaming

MAPMO-Fédération Denis Poisson

Orléans, 2 Juillet 2007

(日) (日) (日) (日) (日) (日) (日)

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Plan de l'exposé

Valeurs au bord de fonctions harmoniques

- Distribution au bord
- Pluriharmonicité
- Principes d'incertitude
 - Motivations
 - Heisenberg
 - Décroissance rapide

3 Reconstruction de phase

- Le problème
- Triple corrélation
- Ambiguïté radar

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Valeurs au bord de fonctions harmoniques

Principes d'incertitude

Reconstruction de phase

Distribution au bord

Motivation : la boule euclidienne

Exemple : $X = \mathbb{B}_n$ boule unité euclidienne, $B = \mathbb{S}^{n-1}$, Δ =Laplacien usuel, $\mathbb{P}(x, \zeta) = \frac{1-|x|^2}{(1+|x|^2-2\langle x, \zeta \rangle)^{(n-1)/2}}$.

 µ distribution, ℙ[µ](x) = ⟨µ, ℙ(x, ·)⟩ bien définie, harmonique, |ℙ[µ](x)| ≤ C(1 - |x|)^{-A}.
 Supposons Δu = 0 et |u(x)| ≤ C(1 - |x|)^{-A}. Soit φ ∈ C[∞](Sⁿ⁻¹) et

$$F(r) = \int_{\mathbb{S}^{n-1}} u(r\zeta) \varphi(\zeta) \,\mathrm{d}\zeta$$

Question : F(r) a-t-elle une limite quand $r \rightarrow 1$? F vérifie une EDO de la forme

$$F''(r) + \frac{h(r)}{1-r}F'(r) = O((1-r)^{-\alpha})$$

 \Rightarrow *F* a une limite quand *r* \rightarrow 1.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Reconstruction de phase

Distribution au bord

Motivation : la boule euclidienne

Exemple : $X = \mathbb{B}_n$ boule unité euclidienne, $B = \mathbb{S}^{n-1}$, Δ =Laplacien usuel, $\mathbb{P}(x, \zeta) = \frac{1-|x|^2}{(1+|x|^2-2\langle x, \zeta \rangle)^{(n-1)/2}}$.

- μ distribution, $\mathbb{P}[\mu](x) = \langle \mu, \mathbb{P}(x, \cdot) \rangle$ bien définie, harmonique, $|\mathbb{P}[\mu](x)| \leq C(1 |x|)^{-A}$.
- 2 Supposons $\Delta u = 0$ et $|u(x)| \leq C(1 |x|)^{-A}$. Soit $\varphi \in C^{\infty}(\mathbb{S}^{n-1})$ et

$$F(r) = \int_{\mathbb{S}^{n-1}} u(r\zeta)\varphi(\zeta) \,\mathrm{d}\zeta$$

Question : F(r) a-t-elle une limite quand $r \rightarrow 1$?

F vérifie une EDO de la forme

$$F''(r) + \frac{h(r)}{1-r}F'(r) = O((1-r)^{-\alpha})$$

 \Rightarrow *F* a une limite quand *r* \rightarrow 1.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Reconstruction de phase

Distribution au bord

Motivation : la boule euclidienne

Exemple : $X = \mathbb{B}_n$ boule unité euclidienne, $B = \mathbb{S}^{n-1}$, Δ =Laplacien usuel, $\mathbb{P}(x, \zeta) = \frac{1-|x|^2}{(1+|x|^2-2\langle x, \zeta \rangle)^{(n-1)/2}}$.

- μ distribution, $\mathbb{P}[\mu](x) = \langle \mu, \mathbb{P}(x, \cdot) \rangle$ bien définie, harmonique, $|\mathbb{P}[\mu](x)| \leq C(1 |x|)^{-A}$.
- **2** Supposons $\Delta u = 0$ et $|u(x)| \le C(1 |x|)^{-A}$. Soit $\varphi \in C^{\infty}(\mathbb{S}^{n-1})$ et

$$F(r) = \int_{\mathbb{S}^{n-1}} u(r\zeta)\varphi(\zeta)\,\mathrm{d}\zeta$$

Question : F(r) a-t-elle une limite quand $r \rightarrow 1$?

F vérifie une EDO de la forme

$$F''(r) + \frac{h(r)}{1-r}F'(r) = O((1-r)^{-\alpha})$$

 \Rightarrow *F* a une limite quand *r* \rightarrow 1.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Reconstruction de phase

Distribution au bord

Motivation : la boule euclidienne

Exemple : $X = \mathbb{B}_n$ boule unité euclidienne, $B = \mathbb{S}^{n-1}$, Δ =Laplacien usuel, $\mathbb{P}(x, \zeta) = \frac{1-|x|^2}{(1+|x|^2-2\langle x, \zeta \rangle)^{(n-1)/2}}$.

- μ distribution, $\mathbb{P}[\mu](x) = \langle \mu, \mathbb{P}(x, \cdot) \rangle$ bien définie, harmonique, $|\mathbb{P}[\mu](x)| \leq C(1 |x|)^{-A}$.
- ② Supposons $\Delta u = 0$ et $|u(x)| \le C(1 |x|)^{-A}$. Soit $\varphi \in C^{\infty}(\mathbb{S}^{n-1})$ et

$$F(r) = \int_{\mathbb{S}^{n-1}} u(r\zeta)\varphi(\zeta)\,\mathrm{d}\zeta$$

Question : F(r) a-t-elle une limite quand $r \rightarrow 1$?

F vérifie une EDO de la forme

$$F''(r) + \frac{h(r)}{1-r}F'(r) = O((1-r)^{-\alpha})$$

 \Rightarrow *F* a une limite quand *r* \rightarrow 1.

<ロ> <@> < => < => < => < => のへの

Reconstruction de phase

Distribution au bord

Motivation : la boule euclidienne

Exemple : $X = \mathbb{B}_n$ boule unité euclidienne, $B = \mathbb{S}^{n-1}$, Δ =Laplacien usuel, $\mathbb{P}(x, \zeta) = \frac{1-|x|^2}{(1+|x|^2-2\langle x, \zeta \rangle)^{(n-1)/2}}$.

- μ distribution, $\mathbb{P}[\mu](x) = \langle \mu, \mathbb{P}(x, \cdot) \rangle$ bien définie, harmonique, $|\mathbb{P}[\mu](x)| \leq C(1 |x|)^{-A}$.
- ② Supposons $\Delta u = 0$ et $|u(x)| \le C(1 |x|)^{-A}$. Soit $\varphi \in C^{\infty}(\mathbb{S}^{n-1})$ et

$$F(r) = \int_{\mathbb{S}^{n-1}} u(r\zeta)\varphi(\zeta)\,\mathrm{d}\zeta$$

Question : F(r) a-t-elle une limite quand $r \rightarrow 1$?

F vérifie une EDO de la forme

$$F''(r) + \frac{h(r)}{1-r}F'(r) = O((1-r)^{-\alpha})$$

 \Rightarrow *F* a une limite quand *r* \rightarrow 1.

<ロ> <@> < => < => < => < => のへの

Reconstruction de phase

Distribution au bord

Motivation : la boule euclidienne

Exemple : $X = \mathbb{B}_n$ boule unité euclidienne, $B = \mathbb{S}^{n-1}$, Δ =Laplacien usuel, $\mathbb{P}(x, \zeta) = \frac{1-|x|^2}{(1+|x|^2-2\langle x, \zeta \rangle)^{(n-1)/2}}$.

- μ distribution, $\mathbb{P}[\mu](x) = \langle \mu, \mathbb{P}(x, \cdot) \rangle$ bien définie, harmonique, $|\mathbb{P}[\mu](x)| \leq C(1 |x|)^{-A}$.
- ② Supposons $\Delta u = 0$ et $|u(x)| \le C(1 |x|)^{-A}$. Soit $\varphi \in C^{\infty}(\mathbb{S}^{n-1})$ et

$$F(r) = \int_{\mathbb{S}^{n-1}} u(r\zeta)\varphi(\zeta)\,\mathrm{d}\zeta$$

Question : F(r) a-t-elle une limite quand $r \rightarrow 1$?

F vérifie une EDO de la forme

$$F''(r) + \frac{h(r)}{1-r}F'(r) = O((1-r)^{-\alpha})$$

 \Rightarrow *F* a une limite quand *r* \rightarrow 1.

・ロト・4回ト・モー・モー・ショーのQの

Reconstruction de phase

Distribution au bord

Le demi-plan supérieur

- Sur \mathbb{R}^{n+1}_+ , le noyau de Poisson \mathbb{P} n'est pas dans $\mathcal{S}(\mathbb{R}^n) \Rightarrow$, $\mathbb{P} * \nu$ n'est pas défini pour tout $\nu \in \mathcal{S}'$.
- ② Si $f \in L^1_{loc}$ est t.q. $\int_{\mathbb{R}^n} |f(x)| (1 + |x|^2)^{-\frac{n-1}{2}} dx < +\infty$ alors $\mathbb{P} * f$ est bien définie.
- Par intégration par parties, on fait porter la condition sur les dérivées de f :

 $\mathcal{D}_{L^{1}}^{\prime} = \{ f = \sum_{\alpha} \partial^{\alpha} f_{\alpha}, \ f_{\alpha} \in L^{1} \} = \text{distributions intégrables} \\ \int f = \langle f, 1 \rangle = \int f_{0}.$

Reconstruction de phase

Distribution au bord

Le demi-plan supérieur

- Sur \mathbb{R}^{n+1}_+ , le noyau de Poisson \mathbb{P} n'est pas dans $\mathcal{S}(\mathbb{R}^n) \Rightarrow$, $\mathbb{P} * \nu$ n'est pas défini pour tout $\nu \in \mathcal{S}'$.
- ② Si $f \in L^1_{loc}$ est t.q. $\int_{\mathbb{R}^n} |f(x)| (1 + |x|^2)^{-\frac{n-1}{2}} dx < +\infty$ alors $\mathbb{P} * f$ est bien définie.
- Par intégration par parties, on fait porter la condition sur les dérivées de f :

 $\mathcal{D}_{L^{1}}' = \{ f = \sum_{\alpha} \partial^{\alpha} f_{\alpha}, f_{\alpha} \in L^{1} \} = \text{distributions intégrables} \\ \int f = \langle f, 1 \rangle = \int f_{0}.$

Le demi-plan supérieur

- Sur \mathbb{R}^{n+1}_+ , le noyau de Poisson \mathbb{P} n'est pas dans $\mathcal{S}(\mathbb{R}^n) \Rightarrow$, $\mathbb{P} * \nu$ n'est pas défini pour tout $\nu \in \mathcal{S}'$.
- ② Si $f \in L^1_{loc}$ est t.q. $\int_{\mathbb{R}^n} |f(x)| (1 + |x|^2)^{-\frac{n-1}{2}} dx < +\infty$ alors $\mathbb{P} * f$ est bien définie.
- Par intégration par parties, on fait porter la condition sur les dérivées de f :

 $\mathcal{D}_{L^{1}}' = \{f = \sum_{\alpha} \partial^{\alpha} f_{\alpha}, f_{\alpha} \in L^{1}\} = \text{distributions intégrables}$ $\int f = \langle f, 1 \rangle = \int f_{0}.$

Le demi-plan supérieur

- Sur \mathbb{R}^{n+1}_+ , le noyau de Poisson \mathbb{P} n'est pas dans $\mathcal{S}(\mathbb{R}^n) \Rightarrow$, $\mathbb{P} * \nu$ n'est pas défini pour tout $\nu \in \mathcal{S}'$.
- ② Si $f \in L^1_{loc}$ est t.q. $\int_{\mathbb{R}^n} |f(x)| (1 + |x|^2)^{-\frac{n-1}{2}} dx < +\infty$ alors $\mathbb{P} * f$ est bien définie.
- Par intégration par parties, on fait porter la condition sur les dérivées de f :

 $\mathcal{D}_{L^{1}}^{\prime} = \{f = \sum_{\alpha} \partial^{\alpha} f_{\alpha}, f_{\alpha} \in L^{1}\} = \text{distributions intégrables}$ $\int f = \langle f, 1 \rangle = \int f_{0}.$

Le demi-plan supérieur

- Sur \mathbb{R}^{n+1}_+ , le noyau de Poisson \mathbb{P} n'est pas dans $\mathcal{S}(\mathbb{R}^n) \Rightarrow$, $\mathbb{P} * \nu$ n'est pas défini pour tout $\nu \in \mathcal{S}'$.
- Si $f \in L^1_{loc}$ est t.q. $\int_{\mathbb{R}^n} |f(x)| (1 + |x|^2)^{-\frac{n-1}{2}} dx < +\infty$ alors $\mathbb{P} * f$ est bien définie.
- Par intégration par parties, on fait porter la condition sur les dérivées de f :

 $\mathcal{D}_{L^{1}}' = \{f = \sum_{\alpha} \partial^{\alpha} f_{\alpha}, f_{\alpha} \in L^{1}\} = \text{distributions intégrables}$ $\int f = \langle f, 1 \rangle = \int f_{0}.$

Le demi-plan supérieur

- Sur \mathbb{R}^{n+1}_+ , le noyau de Poisson \mathbb{P} n'est pas dans $\mathcal{S}(\mathbb{R}^n) \Rightarrow$, $\mathbb{P} * \nu$ n'est pas défini pour tout $\nu \in \mathcal{S}'$.
- ② Si $f \in L^1_{loc}$ est t.q. $\int_{\mathbb{R}^n} |f(x)| (1 + |x|^2)^{-\frac{n-1}{2}} dx < +\infty$ alors $\mathbb{P} * f$ est bien définie.
- Par intégration par parties, on fait porter la condition sur les dérivées de f :

 $\mathcal{D}'_{L^1} = \{ f = \sum_{\alpha} \partial^{\alpha} f_{\alpha}, \ f_{\alpha} \in L^1 \} = \text{distributions intégrables} \\ \int f = \langle f, 1 \rangle = \int f_0.$

Le demi-plan supérieur

- Sur \mathbb{R}^{n+1}_+ , le noyau de Poisson \mathbb{P} n'est pas dans $\mathcal{S}(\mathbb{R}^n) \Rightarrow$, $\mathbb{P} * \nu$ n'est pas défini pour tout $\nu \in \mathcal{S}'$.
- Si $f \in L^1_{loc}$ est t.q. $\int_{\mathbb{R}^n} |f(x)| (1 + |x|^2)^{-\frac{n-1}{2}} dx < +\infty$ alors $\mathbb{P} * f$ est bien définie.
- Par intégration par parties, on fait porter la condition sur les dérivées de f :

 $\mathcal{D}'_{L^1} = \{ f = \sum_{\alpha} \partial^{\alpha} f_{\alpha}, \ f_{\alpha} \in L^1 \} = \text{distributions intégrables} \\ \int f = \langle f, 1 \rangle = \int f_0.$

If et G sont S'-convolables si ∀φ ∈ S, (φ ∗ Ğ)F ∈ D'_{L1} et alors ⟨F ∗ G, φ⟩ = ⟨(φ ∗ Ğ)F, 1⟩

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Distribution au bord

Le demi-plan supérieur

Théorème (Alvarez, Guzmán-Partida et Pérez-Esteva)

F est S'-convolable avec \mathbb{P} si et seulement si

$$(1+|x|^2)^{(n-1)/2}F\in \mathcal{D}'_{L^1}.$$

Dans ce cas, on a toutes les propriétés attendues ($\mathbb{P} * F$ est une fonction, est harmonique, a une valeur au bord).

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Distribution au bord

Le demi-plan supérieur

Théorème (Alvarez, Guzmán-Partida et Pérez-Esteva)

F est S'-convolable avec \mathbb{P} si et seulement si

$$(1+|x|^2)^{(n-1)/2}F\in \mathcal{D}'_{L^1}.$$

Dans ce cas, on a toutes les propriétés attendues ($\mathbb{P} * F$ est une fonction, est harmonique, a une valeur au bord).

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Distribution au bord

Le demi-plan supérieur

Théorème (Alvarez, Guzmán-Partida et Pérez-Esteva)

F est S'-convolable avec \mathbb{P} si et seulement si

$$(1+|x|^2)^{(n-1)/2}F\in \mathcal{D}'_{L^1}.$$

Dans ce cas, on a toutes les propriétés attendues ($\mathbb{P} * F$ est une fonction, est harmonique, a une valeur au bord).

Reconstruction de phase

Distribution au bord

Extension de rang 1 de groupes homogènes - notations

• Groupe de Heisenberg $\mathbb{H}^n = \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$,

$$(x, y, t)(x', y', t') = (x + x', y + y', t + t' + 2(xy' + x'y))$$

mesure de Lebesgue=mesure de Haar

• Champs de vecteurs invariants à gauche

$$\mathcal{X}_i = \frac{\partial}{\partial x_i} + 2y_i \frac{\partial}{\partial t}, \quad \mathcal{Y}_i = \frac{\partial}{\partial y_i} - 2x_i \frac{\partial}{\partial t}, \ i = 1, \dots, n \quad \text{et} \quad \mathcal{T} = \frac{\partial}{\partial t}.$$

- |.| norme non homogène, Q = 2n + 1 dimension homogène
- \mathbb{R}^*_+ groupe de dilatations non-homogènes $a(x, y, t) = (ax, ay, a^2 t)$ $\mathcal{S} = \mathbb{R}^*_+ \propto \mathbb{H}^n$

Reconstruction de phase

Distribution au bord

Extension de rang 1 de groupes homogènes - notations

• Groupe de Heisenberg $\mathbb{H}^n = \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$,

$$(x, y, t)(x', y', t') = (x + x', y + y', t + t' + 2(xy' + x'y))$$

mesure de Lebesgue=mesure de Haar

Champs de vecteurs invariants à gauche

$$\mathcal{X}_i = \frac{\partial}{\partial x_i} + 2y_i \frac{\partial}{\partial t}, \quad \mathcal{Y}_i = \frac{\partial}{\partial y_i} - 2x_i \frac{\partial}{\partial t}, \ i = 1, \dots, n \quad \text{et} \quad \mathcal{T} = \frac{\partial}{\partial t}.$$

- |.| norme non homogène, Q = 2n + 1 dimension homogène
- \mathbb{R}^*_+ groupe de dilatations non-homogènes $a(x, y, t) = (ax, ay, a^2t)$ $S = \mathbb{R}^*_+ \propto \mathbb{H}^n$

Reconstruction de phase

Distribution au bord

Extension de rang 1 de groupes homogènes - notations

• Groupe de Heisenberg $\mathbb{H}^n = \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$,

$$(x, y, t)(x', y', t') = (x + x', y + y', t + t' + 2(xy' + x'y))$$

mesure de Lebesgue=mesure de Haar

Champs de vecteurs invariants à gauche

$$\mathcal{X}_i = \frac{\partial}{\partial x_i} + 2y_i \frac{\partial}{\partial t}, \quad \mathcal{Y}_i = \frac{\partial}{\partial y_i} - 2x_i \frac{\partial}{\partial t}, \ i = 1, \dots, n \quad \text{et} \quad \mathcal{T} = \frac{\partial}{\partial t}$$

- |.| norme non homogène, Q = 2n + 1 dimension homogène
- \mathbb{R}^*_+ groupe de dilatations non-homogènes $a(x, y, t) = (ax, ay, a^2t)$ $S = \mathbb{R}^*_+ \propto \mathbb{H}^n$

Reconstruction de phase

Distribution au bord

Extension de rang 1 de groupes homogènes - notations

• Groupe de Heisenberg $\mathbb{H}^n = \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$,

$$(x, y, t)(x', y', t') = (x + x', y + y', t + t' + 2(xy' + x'y))$$

mesure de Lebesgue=mesure de Haar

• Champs de vecteurs invariants à gauche

$$\mathcal{X}_i = \frac{\partial}{\partial x_i} + 2y_i \frac{\partial}{\partial t}, \quad \mathcal{Y}_i = \frac{\partial}{\partial y_i} - 2x_i \frac{\partial}{\partial t}, \ i = 1, \dots, n \quad \text{et} \quad \mathcal{T} = \frac{\partial}{\partial t}$$

- |.| norme non homogène, Q = 2n + 1 dimension homogène
- \mathbb{R}^*_+ groupe de dilatations non-homogènes $a(x, y, t) = (ax, ay, a^2t)$ $\mathcal{S} = \mathbb{R}^*_+ \propto \mathbb{H}^n$

Principes d'incertitude

Reconstruction de phase

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Distribution au bord

Extension de rang 1 de groupes homogènes - noyau

■
$$\mathbb{P}(x) \simeq (1 + |x|)^{-Q - \Gamma}$$

■ $|X^{\alpha}\mathbb{P}(x)| \le C(1 + |x|)^{-Q - \Gamma - d(\alpha)}$
■ $|(a\partial_a)^k \mathbb{P}_a(x)| \le Ca^{-Q - k}(1 + |a.x|)^{-Q - \Gamma}$

- D'_{L1} défini comme ci-dessus (avec des dérivées invariantes)
- de même que la S'-convolution.

Principes d'incertitude

Reconstruction de phase

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Distribution au bord

Extension de rang 1 de groupes homogènes - noyau

•
$$\mathbb{P}(x) \simeq (1+|x|)^{-Q-\Gamma}$$
•
$$|X^{\alpha}\mathbb{P}(x)| \leq C(1+|x|)^{-Q-\Gamma-d(\alpha)}$$
•
$$|(a\partial_a)^k\mathbb{P}_a(x)| \leq Ca^{-Q-k}(1+|a.x|)^{-Q-\Gamma}$$

- D'_{L1} défini comme ci-dessus (avec des dérivées invariantes)
- de même que la S'-convolution.

Principes d'incertitude

Reconstruction de phase

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Distribution au bord

Extension de rang 1 de groupes homogènes - noyau

1
$$\mathbb{P}(x) \simeq (1+|x|)^{-Q-\Gamma}$$

2 $|X^{\alpha}\mathbb{P}(x)| \leq C(1+|x|)^{-Q-\Gamma-d(\alpha)}$

$$(a\partial_a)^k \mathbb{P}_a(x) | \leq C a^{-Q-k} (1+|a.x|)^{-Q-\Gamma}$$

- D'_{L1} défini comme ci-dessus (avec des dérivées invariantes)
- de même que la *S'*-convolution.

Principes d'incertitude

Reconstruction de phase

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Distribution au bord

Extension de rang 1 de groupes homogènes - noyau

1
$$\mathbb{P}(x) \simeq (1+|x|)^{-Q-\Gamma}$$

2 $|X^{\alpha}\mathbb{P}(x)| \le C(1+|x|)^{-Q-\Gamma-d(\alpha)}$
3 $|(a\partial_a)^k\mathbb{P}_a(x)| \le Ca^{-Q-k}(1+|a.x|)^{-Q-\Gamma}$

- D'_{L1} défini comme ci-dessus (avec des dérivées invariantes)
- de même que la *S'*-convolution.

Principes d'incertitude

Reconstruction de phase

▲□▶▲□▶▲□▶▲□▶ □ のQで

Distribution au bord

Extension de rang 1 de groupes homogènes - noyau

1
$$\mathbb{P}(x) \simeq (1+|x|)^{-Q-\Gamma}$$

2 $|X^{\alpha}\mathbb{P}(x)| \le C(1+|x|)^{-Q-\Gamma-d(\alpha)}$
3 $|(a\partial_a)^k\mathbb{P}_a(x)| \le Ca^{-Q-k}(1+|a.x|)^{-Q-\Gamma}$

- *D*'_{L1} défini comme ci-dessus (avec des dérivées invariantes)
- de même que la S'-convolution.

Principes d'incertitude

Reconstruction de phase

▲□▶▲□▶▲□▶▲□▶ □ のQで

Distribution au bord

Extension de rang 1 de groupes homogènes - noyau

1
$$\mathbb{P}(x) \simeq (1+|x|)^{-Q-\Gamma}$$

2 $|X^{\alpha}\mathbb{P}(x)| \le C(1+|x|)^{-Q-\Gamma-d(\alpha)}$
3 $|(a\partial_a)^k\mathbb{P}_a(x)| \le Ca^{-Q-k}(1+|a.x|)^{-Q-\Gamma}$

- *D*'_{L1} défini comme ci-dessus (avec des dérivées invariantes)
- de même que la S'-convolution.

Principes d'incertitude

Reconstruction de phase

Distribution au bord

Extension de rang 1 de groupes homogènes - résultats

Théorème (Damek, Dziubanski, J, Pérez-Esteva)

 $T \in S'$ est S'-convolable avec \mathbb{P}_a pour a > 0 si et seulement si $T \in (1 + |x|^2)^{\frac{Q+\Gamma}{2}} \mathcal{D}'_{l^1}(\mathbb{H}^n).$

 $T * \mathbb{P}_a$ est une fonction de classe \mathcal{C}^{∞} en (a, x) qui converge vers T dans S' quand $a \to 0$.

◆□▶ ◆□▶ ◆ ミ▶ ◆ ミ▶ ・ ミー のへぐ

Principes d'incertitude

Reconstruction de phase

Distribution au bord

Extension de rang 1 de groupes homogènes - résultats

Théorème (Damek, Dziubanski, J, Pérez-Esteva)

 $T \in S'$ est S'-convolable avec \mathbb{P}_a pour a > 0 si et seulement si $T \in (1 + |x|^2)^{\frac{Q+\Gamma}{2}} \mathcal{D}'_{l^1}(\mathbb{H}^n).$

 $T * \mathbb{P}_a$ est une fonction de classe \mathcal{C}^{∞} en (a, x) qui converge vers T dans S' quand $a \to 0$.

◆□▶ ◆□▶ ◆ ミ▶ ◆ ミ▶ ・ ミー のへぐ

Principes d'incertitude

Reconstruction de phase

(日) (日) (日) (日) (日) (日) (日)

Distribution au bord

Extension de rang 1 de groupes homogènes - résultats

Théorème (Damek, Dziubanski, J, Pérez-Esteva)

 $T \in S'$ est S'-convolable avec \mathbb{P}_a pour a > 0 si et seulement si $T \in (1 + |x|^2)^{\frac{Q+\Gamma}{2}} \mathcal{D}'_{l^1}(\mathbb{H}^n).$

 $T * \mathbb{P}_a$ est une fonction de classe \mathcal{C}^{∞} en (a, x) qui converge vers T dans \mathcal{S}' quand $a \to 0$.

Reconstruction de phase

Pluriharmonicité

- B_n boule de Kⁿ, (K = R et d = 1 ρ = n-1/2 ou K = C et d = 2, ρ = n) et S^{nd-1} sphère unité. N = r∂/∂r dérivée normale.
- *u* fonction sur \mathbb{B}_n a une *distribution au bord* si $\forall \varphi \in C^{\infty}(\mathbb{S}^{nd-1}),$

$$\lim_{r\to 1} \int_{\mathbb{S}^{nd-1}} u(r\zeta)\varphi(\zeta) \,\mathrm{d}\zeta \text{ existe.}$$

- Si △u = 0 et u a une distribution au bord, alors ∀k, N^ku aussi !
- Si D_Ku = 0 (D_K Laplacien hyperbolique) et u a une distribution au bord, alors ∀k < ρ, N^ku aussi !

Reconstruction de phase

Pluriharmonicité

- B_n boule de Kⁿ, (K = R et d = 1 ρ = n-1/2 ou K = C et d = 2, ρ = n) et S^{nd-1} sphère unité. N = r∂/∂r dérivée normale.
- *u* fonction sur \mathbb{B}_n a une *distribution au bord* si $\forall \varphi \in \mathcal{C}^{\infty}(\mathbb{S}^{nd-1}),$

$$\lim_{r\to 1}\int_{\mathbb{S}^{nd-1}}u(r\zeta)\varphi(\zeta)\,\mathsf{d}\zeta\text{ existe.}$$

- Si △u = 0 et u a une distribution au bord, alors ∀k, N^ku aussi !
- Si D_Ku = 0 (D_K Laplacien hyperbolique) et u a une distribution au bord, alors ∀k < ρ, N^ku aussi !

Reconstruction de phase

(日) (日) (日) (日) (日) (日) (日)

Pluriharmonicité

- B_n boule de Kⁿ, (K = R et d = 1 ρ = n-1/2 ou K = C et d = 2, ρ = n) et S^{nd-1} sphère unité. N = r∂/∂r dérivée normale.
- *u* fonction sur \mathbb{B}_n a une *distribution au bord* si $\forall \varphi \in \mathcal{C}^{\infty}(\mathbb{S}^{nd-1}),$

$$\lim_{r\to 1} \int_{\mathbb{S}^{nd-1}} u(r\zeta)\varphi(\zeta) \,\mathrm{d}\zeta \text{ existe.}$$

- Si ∆u = 0 et u a une distribution au bord, alors ∀k, N^ku aussi !
- Si D_Ku = 0 (D_K Laplacien hyperbolique) et u a une distribution au bord, alors ∀k < ρ, N^ku aussi !

Reconstruction de phase

Pluriharmonicité

- B_n boule de Kⁿ, (K = R et d = 1 ρ = n-1/2 ou K = C et d = 2, ρ = n) et S^{nd-1} sphère unité. N = r∂/∂r dérivée normale.
- *u* fonction sur \mathbb{B}_n a une *distribution au bord* si $\forall \varphi \in \mathcal{C}^{\infty}(\mathbb{S}^{nd-1}),$

$$\lim_{r\to 1} \int_{\mathbb{S}^{nd-1}} u(r\zeta)\varphi(\zeta) \,\mathrm{d}\zeta \text{ existe.}$$

- Si ∆u = 0 et u a une distribution au bord, alors ∀k, N^ku aussi !
- Si D_Ku = 0 (D_K Laplacien hyperbolique) et u a une distribution au bord, alors ∀k < ρ, N^ku aussi !
Principes d'incertitude

Reconstruction de phase

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Pluriharmonicité

boules hyperboliques : indice critique

Théorème (Bonami-Bruna-Grellier $\mathbb{K} = \mathbb{C}$, J. $\mathbb{K} = \mathbb{R}$)

Soit *u* t.q. $D_{\mathbb{K}}u = 0$ et *u* a une distribution au bord. Si $N^{\rho}u$ a aussi une distribution au bord, alors *u* est pluriharmonique (=constante si $\mathbb{K} = \mathbb{R}$).

Décomposition en harmoniques sphériques : si $\mathbb{K} = \mathbb{R}$,

$$u(r\zeta) = \sum_{k=0}^{+\infty} \underbrace{{}_{2}F_{1}(k, 1 - \frac{n}{2}, k + \frac{n}{2}, r^{2})}_{\text{fonction hypergéométrique de Gauss}} u_{k}(r\zeta).$$

Principes d'incertitude

Reconstruction de phase

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Pluriharmonicité

boules hyperboliques : indice critique

Théorème (Bonami-Bruna-Grellier $\mathbb{K} = \mathbb{C}$, J. $\mathbb{K} = \mathbb{R}$)

Soit *u* t.q. $D_{\mathbb{K}}u = 0$ et *u* a une distribution au bord. Si $N^{\rho}u$ a aussi une distribution au bord, alors *u* est pluriharmonique (=constante si $\mathbb{K} = \mathbb{R}$).

Décomposition en harmoniques sphériques : si $\mathbb{K} = \mathbb{R}$,

$$u(r\zeta) = \sum_{k=0}^{+\infty} \underbrace{{}_{2}F_{1}(k, 1 - \frac{n}{2}, k + \frac{n}{2}, r^{2})}_{\text{fonction hypergéométrique de Gauss}} u_{k}(r\zeta).$$

Reconstruction de phase

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Pluriharmonicité

boules hyperboliques : indice critique

Théorème (Bonami-Bruna-Grellier $\mathbb{K} = \mathbb{C}$, J. $\mathbb{K} = \mathbb{R}$)

Soit *u* t.q. $D_{\mathbb{K}}u = 0$ et *u* a une distribution au bord. Si $N^{\rho}u$ a aussi une distribution au bord, alors *u* est pluriharmonique (=constante si $\mathbb{K} = \mathbb{R}$).

Décomposition en harmoniques sphériques : si $\mathbb{K} = \mathbb{R}$,

$$u(r\zeta) = \sum_{k=0}^{+\infty} \underbrace{{}_{2}F_{1}(k, 1 - \frac{n}{2}, k + \frac{n}{2}, r^{2})}_{\text{fonction hypergéométrique de Gauss}} u_{k}(r\zeta).$$

Reconstruction de phase

Pluriharmonicité

Groupe de Heisenberg

 $S \simeq U^n := \left\{ z \in \mathbb{C}^{n+1} : \operatorname{Im} z_{n+1} > \sum_{j=1}^n |z_j|^2 \right\}.$ On définit les opérateurs différentiels sur S : j = 1, ..., n

$$Z_j = a^{1/2} (\mathcal{X}_j - i \mathcal{Y}_j)/2 \quad Z_{n+1} = a(T - i \partial_a)/2$$

- holomorphe si $\overline{Z}_j F = 0$ pour $j = 1, \dots, n+1$,
- antiholomorphe si $Z_j F = 0$ pour $j = 1, \ldots, n+1$,
- pluriharmonique si $Z_k \overline{Z}_j F = 0$ pour $1 \le j \ne k \le n+1$, $Z_{n+1} \overline{Z}_{n+1} F = 0$ et $(Z_k \overline{Z}_k + 2i \overline{Z}_{n+1}) F = 0$ pour k = 1, ..., n.

Reconstruction de phase

Pluriharmonicité

Groupe de Heisenberg

 $S \simeq U^n := \left\{ z \in \mathbb{C}^{n+1} : \operatorname{Im} z_{n+1} > \sum_{j=1}^n |z_j|^2 \right\}.$ On définit les opérateurs différentiels sur S : j = 1, ..., n

$$Z_j = a^{1/2} (\mathcal{X}_j - i\mathcal{Y}_j)/2$$
 $Z_{n+1} = a(T - i\partial_a)/2$

- holomorphe si $\overline{Z}_j F = 0$ pour j = 1, ..., n + 1,
- antiholomorphe si $Z_j F = 0$ pour $j = 1, \ldots, n+1$,
- pluriharmonique si $Z_k \overline{Z}_j F = 0$ pour $1 \le j \ne k \le n+1$, $Z_{n+1} \overline{Z}_{n+1} F = 0$ et $(Z_k \overline{Z}_k + 2i \overline{Z}_{n+1}) F = 0$ pour k = 1, ..., n.

Reconstruction de phase

Pluriharmonicité

Groupe de Heisenberg

 $S \simeq U^n := \left\{ z \in \mathbb{C}^{n+1} : \operatorname{Im} z_{n+1} > \sum_{j=1}^n |z_j|^2 \right\}.$ On définit les opérateurs différentiels sur $S : j = 1, \dots, n$

$$Z_j = a^{1/2} (\mathcal{X}_j - i \mathcal{Y}_j)/2 \quad Z_{n+1} = a(T - i \partial_a)/2$$

- holomorphe si $\overline{Z}_j F = 0$ pour j = 1, ..., n + 1,
- antiholomorphe si $Z_j F = 0$ pour $j = 1, \ldots, n + 1$,
- pluriharmonique si $Z_k \overline{Z}_j F = 0$ pour $1 \le j \ne k \le n+1$, $Z_{n+1} \overline{Z}_{n+1} F = 0$ et $(Z_k \overline{Z}_k + 2i \overline{Z}_{n+1}) F = 0$ pour k = 1, ..., n.

Reconstruction de phase

Pluriharmonicité

Groupe de Heisenberg

 $S \simeq U^n := \left\{ z \in \mathbb{C}^{n+1} : \operatorname{Im} z_{n+1} > \sum_{j=1}^n |z_j|^2 \right\}.$ On définit les opérateurs différentiels sur $S : j = 1, \dots, n$

$$Z_j = a^{1/2} (\mathcal{X}_j - i \mathcal{Y}_j)/2 \quad Z_{n+1} = a(T - i \partial_a)/2$$

- holomorphe si $\overline{Z}_j F = 0$ pour j = 1, ..., n + 1,
- antiholomorphe si $Z_j F = 0$ pour j = 1, ..., n + 1,
- pluriharmonique si $Z_k \overline{Z}_j F = 0$ pour $1 \le j \ne k \le n+1$, $Z_{n+1} \overline{Z}_{n+1} F = 0$ et $(Z_k \overline{Z}_k + 2i \overline{Z}_{n+1}) F = 0$ pour k = 1, ..., n.

Principes d'incertitude

Reconstruction de phase

Pluriharmonicité

valeurs au bord

$$\mathcal{L}_{\alpha} = -\frac{1}{4} \sum_{j=1}^{n} (\mathcal{X}_{j}^{2} + \mathcal{Y}_{j}^{2}) + i\alpha \mathcal{T} \quad \text{sur } \mathbb{H}_{n}$$
$$\mathcal{L}_{\alpha} = -\alpha a (\mathcal{L}_{0} + n\partial_{a}) + a^{2} (\partial_{a}^{2} + \mathcal{T}^{2}) \quad \text{sur } \mathcal{S}.$$

Théorème (Bonami, Buraczewski, Damek, Hulanicki, J.)

F L_{α} -harmonique bornée, *f* sa valeur au bord : $\forall \varphi \in \mathcal{S}(\mathbb{H}^n)$,

$$\int F(\omega, a) arphi(\omega) \, \mathrm{d} \omega o_{a o 0} \, \int f(\omega) arphi(\omega) \, \mathrm{d} \omega$$

Principes d'incertitude

Reconstruction de phase

Pluriharmonicité

valeurs au bord

$$\mathcal{L}_{\alpha} = -\frac{1}{4} \sum_{j=1}^{n} (\mathcal{X}_{j}^{2} + \mathcal{Y}_{j}^{2}) + i\alpha \mathcal{T} \quad \text{sur } \mathbb{H}_{n}$$
$$\mathcal{L}_{\alpha} = -\alpha a (\mathcal{L}_{0} + n\partial_{a}) + a^{2} (\partial_{a}^{2} + \mathcal{T}^{2}) \quad \text{sur } \mathcal{S}.$$

Théorème (Bonami, Buraczewski, Damek, Hulanicki, J.)

 $F L_{\alpha}$ -harmonique bornée, f sa valeur au bord : $\forall \varphi \in \mathcal{S}(\mathbb{H}^n)$,

$$\int F(\omega, a) arphi(\omega) \, \mathrm{d} \omega o_{a o 0} \, \int f(\omega) arphi(\omega) \, \mathrm{d} \omega$$

Principes d'incertitude

Reconstruction de phase

Pluriharmonicité

valeurs au bord

$$\mathcal{L}_{\alpha} = -\frac{1}{4} \sum_{j=1}^{n} (\mathcal{X}_{j}^{2} + \mathcal{Y}_{j}^{2}) + i\alpha \mathcal{T} \quad \text{sur } \mathbb{H}_{n}$$
$$\mathcal{L}_{\alpha} = -\alpha a (\mathcal{L}_{0} + n\partial_{a}) + a^{2} (\partial_{a}^{2} + \mathcal{T}^{2}) \quad \text{sur } \mathcal{S}.$$

Théorème (Bonami, Buraczewski, Damek, Hulanicki, J.)

F L_{α} -harmonique bornée, *f* sa valeur au bord : $\forall \varphi \in \mathcal{S}(\mathbb{H}^n)$,

$$\int F(\omega, a) \varphi(\omega) \, \mathsf{d}\omega o_{a o 0} \int f(\omega) \varphi(\omega) \, \mathsf{d}\omega$$

) F pluriharmonique $\Leftrightarrow \mathcal{L}_{-n}\mathcal{L}_n f = (\mathcal{L}_0^2 + n^2 \mathcal{T}^2)f = 0$

Principes d'incertitude

Reconstruction de phase

Pluriharmonicité

valeurs au bord

$$\mathcal{L}_{\alpha} = -\frac{1}{4} \sum_{j=1}^{n} (\mathcal{X}_{j}^{2} + \mathcal{Y}_{j}^{2}) + i\alpha \mathcal{T} \quad \text{sur } \mathbb{H}_{n}$$
$$\mathcal{L}_{\alpha} = -\alpha a (\mathcal{L}_{0} + n\partial_{a}) + a^{2} (\partial_{a}^{2} + \mathcal{T}^{2}) \quad \text{sur } \mathcal{S}.$$

Théorème (Bonami, Buraczewski, Damek, Hulanicki, J.)

F L_{α} -harmonique bornée, *f* sa valeur au bord : $\forall \varphi \in \mathcal{S}(\mathbb{H}^n)$,

$$\int F(\omega, a)\varphi(\omega) \, \mathrm{d}\omega \to_{a \to 0} \int f(\omega)\varphi(\omega) \, \mathrm{d}\omega$$

• *F* holomorphe $\Leftrightarrow \mathcal{L}_n f = 0$.

F pluriharmonique $\Leftrightarrow \mathcal{L}_{-n}\mathcal{L}_n f = (\mathcal{L}_0^2 + n^2 \mathcal{T}^2)f = 0$

Principes d'incertitude

Reconstruction de phase

Pluriharmonicité

valeurs au bord

$$\mathcal{L}_{\alpha} = -\frac{1}{4} \sum_{j=1}^{n} (\mathcal{X}_{j}^{2} + \mathcal{Y}_{j}^{2}) + i\alpha \mathcal{T} \quad \text{sur } \mathbb{H}_{n}$$
$$\mathcal{L}_{\alpha} = -\alpha a (\mathcal{L}_{0} + n\partial_{a}) + a^{2} (\partial_{a}^{2} + \mathcal{T}^{2}) \quad \text{sur } \mathcal{S}.$$

Théorème (Bonami, Buraczewski, Damek, Hulanicki, J.)

F L_{α} -harmonique bornée, *f* sa valeur au bord : $\forall \varphi \in \mathcal{S}(\mathbb{H}^n)$,

$$\int F(\omega, a) \varphi(\omega) \, \mathsf{d}\omega o_{a o 0} \int f(\omega) \varphi(\omega) \, \mathsf{d}\omega$$

• *F* anti-holomorphe $\Leftrightarrow \mathcal{L}_{-n}f = 0.$ • *F* pluriharmonique $\Leftrightarrow \mathcal{L}_{-n}\mathcal{L}_nf = (\mathcal{L}_0^2 + n^2\mathcal{T}^2)f = 0$

Principes d'incertitude

Reconstruction de phase

Pluriharmonicité

valeurs au bord

$$\mathcal{L}_{\alpha} = -\frac{1}{4} \sum_{j=1}^{n} (\mathcal{X}_{j}^{2} + \mathcal{Y}_{j}^{2}) + i\alpha \mathcal{T} \quad \text{sur } \mathbb{H}_{n}$$
$$\mathcal{L}_{\alpha} = -\alpha a (\mathcal{L}_{0} + n\partial_{a}) + a^{2} (\partial_{a}^{2} + \mathcal{T}^{2}) \quad \text{sur } \mathcal{S}.$$

Théorème (Bonami, Buraczewski, Damek, Hulanicki, J.)

F L_{α} -harmonique bornée, *f* sa valeur au bord : $\forall \varphi \in \mathcal{S}(\mathbb{H}^n)$,

$$\int F(\omega, a) \varphi(\omega) \, \mathsf{d}\omega o_{a o 0} \int f(\omega) \varphi(\omega) \, \mathsf{d}\omega$$

• *F* anti-holomorphe $\Leftrightarrow \mathcal{L}_{-n}f = 0.$ • *F* pluriharmonique $\Leftrightarrow \mathcal{L}_{-n}\mathcal{L}_nf = (\mathcal{L}_0^2 + n^2\mathcal{T}^2)f = 0.$

Principes d'incertitude

Reconstruction de phase

Pluriharmonicité

Régularité maximale

Théorème (Bonami, Buraczewski, Damek, Hulanicki, J.)

- $\alpha > 0$ et $k = [n\alpha] + 1$.
- $F L_{\alpha}$ -harmonique bornée.
- **O** Pour $0 \le p \le k, \forall \varphi \in \mathcal{S}(\mathbb{H}^n)$

$$\sup_{a\leq 1} \left| \int_{\mathbb{H}^n} \partial^p_a F(w,a) \varphi(w) \, \mathrm{d} w \right| < \infty$$

2 si $\forall \varphi \in \mathcal{S}(\mathbb{H}^n)$

$$\sup_{a\leq 1} \left| \int_{\mathbb{H}^n} \partial_a^{k+1} F(w,a) \varphi(w) \, \mathrm{d} w \right| < \infty$$

Principes d'incertitude

Reconstruction de phase

Pluriharmonicité

Régularité maximale

Théorème (Bonami, Buraczewski, Damek, Hulanicki, J.)

- $\alpha > 0$ et $k = [n\alpha] + 1$.
- $F L_{\alpha}$ -harmonique bornée.
- Pour $0 \le p \le k, \forall \varphi \in \mathcal{S}(\mathbb{H}^n)$

$$\sup_{a\leq 1} \left| \int_{\mathbb{H}^n} \partial^p_a F(w,a) \varphi(w) \, \mathrm{d} w \right| < \infty$$

2 si $\forall \varphi \in \mathcal{S}(\mathbb{H}^n)$

$$\sup_{a\leq 1} \left| \int_{\mathbb{H}^n} \partial_a^{k+1} F(w,a) \varphi(w) \, \mathrm{d} w \right| < \infty$$

Principes d'incertitude

Reconstruction de phase

Pluriharmonicité

Régularité maximale

Théorème (Bonami, Buraczewski, Damek, Hulanicki, J.)

- $\alpha > 0$ et $k = [n\alpha] + 1$.
- $F L_{\alpha}$ -harmonique bornée.

• Pour $0 \le p \le k, \forall \varphi \in \mathcal{S}(\mathbb{H}^n)$

$$\sup_{a\leq 1} \left| \int_{\mathbb{H}^n} \partial^p_a F(w,a) \varphi(w) \, \mathrm{d} w \right| < \infty$$

2 si $\forall \varphi \in \mathcal{S}(\mathbb{H}^n)$

$$\sup_{a\leq 1} \left| \int_{\mathbb{H}^n} \partial_a^{k+1} F(w,a) \varphi(w) \, \mathrm{d} w \right| < \infty$$

Principes d'incertitude

Reconstruction de phase

Pluriharmonicité

Régularité maximale

Théorème (Bonami, Buraczewski, Damek, Hulanicki, J.)

- $\alpha > 0$ et $k = [n\alpha] + 1$.
- $F L_{\alpha}$ -harmonique bornée.

• Pour
$$0 \le p \le k$$
, $\forall \varphi \in \mathcal{S}(\mathbb{H}^n)$

$$\sup_{a\leq 1} \left| \int_{\mathbb{H}^n} \partial^p_a F(w,a) \varphi(w) \, \mathrm{d} w \right| < \infty$$

2 si
$$\forall \varphi \in \mathcal{S}(\mathbb{H}^n)$$

$$\sup_{a\leq 1} \left| \int_{\mathbb{H}^n} \partial_a^{k+1} F(w,a) \varphi(w) \, \mathrm{d} w \right| < \infty$$

Principes d'incertitude

Reconstruction de phase

 ∞

Pluriharmonicité

Régularité maximale

Théorème (Bonami, Buraczewski, Damek, Hulanicki, J.)

- $\alpha > 0$ et $k = [n\alpha] + 1$.
- $F L_{\alpha}$ -harmonique bornée.

• Pour
$$0 \le p \le k$$
, $\forall \varphi \in \mathcal{S}(\mathbb{H}^n)$
$$\sup_{a \le 1} \left| \int_{\mathbb{H}^n} \partial_a^p F(w, a) \varphi(w) dw \right| < 0$$

is
$$\forall \varphi \in \mathcal{S}(\mathbb{H}^n)$$

$$\sup_{a \leq 1} \left| \int_{\mathbb{H}^n} \partial_a^{k+1} F(w, a) \varphi(w) \, \mathrm{d} w \right| < \infty$$

000000000000

Reconstruction de phase

▲□▶▲□▶▲□▶▲□▶ □ のQで

Principes d'incertitude

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Motivations

Théorème d'échantillonage de Shannon

Théorème d'échantillonage de Shannon

 $f \in L^2(\mathbb{R})$ à spectre $[-\Omega, \Omega]$, $h < \pi/\Omega$

$$f(t) = \sum_{k \in \mathbb{Z}} f(kh) \operatorname{sinc} \frac{\pi}{h} (t - kh).$$

On ne mesure pas tout l'échantillon, mais seulement les $kh \in [-T, T]$.

Idéal : f à support et à spectre compact.

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Motivations

Théorème d'échantillonage de Shannon

Théorème d'échantillonage de Shannon

 $f \in L^2(\mathbb{R})$ à spectre $[-\Omega, \Omega]$, $h < \pi/\Omega$

$$f(t) = \sum_{k \in \mathbb{Z}} f(kh) \operatorname{sinc} \frac{\pi}{h} (t - kh).$$

On ne mesure pas tout l'échantillon, mais seulement les $kh \in [-T, T]$.

Idéal : f à support et à spectre compact.

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

Motivations

Théorème d'échantillonage de Shannon

Théorème d'échantillonage de Shannon

 $f \in L^2(\mathbb{R})$ à spectre $[-\Omega, \Omega]$, $h < \pi/\Omega$

$$f(t) = \sum_{k \in \mathbb{Z}} f(kh) \operatorname{sinc} \frac{\pi}{h} (t - kh).$$

On ne mesure pas tout l'échantillon, mais seulement les $kh \in [-T, T]$.

Idéal : f à support et à spectre compact.

Principes d'incertitude

Reconstruction de phase

▲□▶▲□▶▲□▶▲□▶ □ のQで

Motivations

Équation de Shrödinger

Équation de Shrödinger

$$\begin{cases} i\partial_t v + \frac{1}{4\pi}\partial_x^2 v = 0\\ v(x,0) = v_0(x) \end{cases}$$

a pour solution

$$\mathbf{v}(\mathbf{x},t) = \int_{\mathbb{R}} \mathbf{e}^{-i\pi\xi^2 t + 2i\pi\mathbf{x}\xi} \widehat{\mathbf{v}_0}(\xi) \, \mathrm{d}\xi = \left(\mathbf{e}^{-i\pi\xi^2 t} \widehat{\mathbf{v}_0}\right)^{\mathsf{r}}.$$

Principes d'incertitude

Reconstruction de phase

Heisenberg

Principe d'incertitude de Heisenberg-Pauli-Weil

Notations. $f \in L^2$,

- $-\hat{f}$ transformée de Fourier,
- $\mu(f)$ moyenne de $|f|^2 dx$, $\Delta(f)$ dispersion.

Principe d'incertitude de Heisenberg

 $f \in L^2(\mathbb{R}), \, \Delta(f)\Delta(\widehat{f}) \geq \frac{1}{4\pi} \|f\|_2^2$ = $\Leftrightarrow f = \gamma$, gaussienne.

・ロト・御ト・モト・モー うへの

Reconstruction de phase

(日) (日) (日) (日) (日) (日) (日)

Heisenberg

Principe d'incertitude de Heisenberg-Pauli-Weil

Notations. $f \in L^2$,

- $-\hat{f}$ transformée de Fourier,
- $\mu(f)$ moyenne de $|f|^2 dx$, $\Delta(f)$ dispersion.

Principe d'incertitude de Heisenberg

$$\begin{split} & f \in L^2(\mathbb{R}), \, \Delta(f) \Delta(\widehat{f}) \geq \frac{1}{4\pi} \|f\|_2^2 \\ & = \Leftrightarrow f = \gamma, \, \text{gaussienne.} \end{split}$$

Reconstruction de phase

(日) (日) (日) (日) (日) (日) (日)

Heisenberg

Principe d'incertitude de Heisenberg-Pauli-Weil

Notations. $f \in L^2$,

- $-\hat{f}$ transformée de Fourier,
- $\mu(f)$ moyenne de $|f|^2 dx$, $\Delta(f)$ dispersion.

Principe d'incertitude de Heisenberg

 $f \in L^2(\mathbb{R}), \, \Delta(f)\Delta(\widehat{f}) \ge \frac{1}{4\pi} \|f\|_2^2$ = $\Leftrightarrow f = \gamma$, gaussienne.

Reconstruction de phase

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Heisenberg

Principe d'incertitude de Heisenberg-Pauli-Weil

Notations. $f \in L^2$,

- $-\hat{f}$ transformée de Fourier,
- $\mu(f)$ moyenne de $|f|^2 dx$, $\Delta(f)$ dispersion.

Principe d'incertitude de Heisenberg

 $f \in L^2(\mathbb{R}), \, \Delta(f)\Delta(\widehat{f}) \geq \frac{1}{4\pi} \|f\|_2^2$ = $\Leftrightarrow f = \gamma$, gaussienne.

Principes d'incertitude

Reconstruction de phase

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Heisenberg

Démonstration

•
$$\Delta^2(f) + \Delta^2(\widehat{f}) \ge \frac{1}{2\pi} ||f||_2^2$$
 avec $\mu(f) = \mu(\widehat{f}) = 0$
• $\Delta^2(f) + \Delta^2(\widehat{f}) = \langle Hf, f \rangle$, *H* opérateur de Hermite.
• $\langle Hf, f \rangle = \sum_{k=0}^{\infty} \frac{2k+1}{\frac{2\pi}{\ge 1/2\pi}} |\langle f, h_k \rangle|^2$.

 $\rightarrow h_1$ est un optimum pour $\Delta^2(f) + \Delta^2(f)$ avec $f \perp h_0$.

Principes d'incertitude

Reconstruction de phase

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Heisenberg

Démonstration

•
$$\Delta^2(f) + \Delta^2(\widehat{f}) \ge \frac{1}{2\pi} ||f||_2^2$$
 avec $\mu(f) = \mu(\widehat{f}) = 0$
• $\Delta^2(f) + \Delta^2(\widehat{f}) = \langle Hf, f \rangle$, *H* opérateur de Hermite.
• $\langle Hf, f \rangle = \sum_{k=0}^{\infty} \frac{2k+1}{2\pi} |\langle f, h_k \rangle|^2$.

 $ightarrow h_1$ est un optimum pour $\Delta^2(f) + \Delta^2(\widehat{f})$ avec $f \perp h_0$.

Principes d'incertitude

Reconstruction de phase

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Heisenberg

Démonstration

•
$$\Delta^2(f) + \Delta^2(\widehat{f}) \ge \frac{1}{2\pi} ||f||_2^2$$
 avec $\mu(f) = \mu(\widehat{f}) = 0$
• $\Delta^2(f) + \Delta^2(\widehat{f}) = \langle Hf, f \rangle$, *H* opérateur de Hermite.
• $\langle Hf, f \rangle = \sum_{k=0}^{\infty} \frac{2k+1}{2\pi} |\langle f, h_k \rangle|^2$.

 $\rightarrow h_1$ est un optimum pour $\Delta^2(f) + \Delta^2(f)$ avec $f \perp h_0$.

Principes d'incertitude

Reconstruction de phase

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Heisenberg

Démonstration

•
$$\Delta^2(f) + \Delta^2(\widehat{f}) \ge \frac{1}{2\pi} ||f||_2^2$$
 avec $\mu(f) = \mu(\widehat{f}) = 0$
• $\Delta^2(f) + \Delta^2(\widehat{f}) = \langle Hf, f \rangle$, *H* opérateur de Hermite.
• $\langle Hf, f \rangle = \sum_{k=0}^{\infty} \frac{2k+1}{\frac{2\pi}{\ge 1/2\pi}} |\langle f, h_k \rangle|^2$.

 $\rightarrow h_1$ est un optimum pour $\Delta^2(f) + \Delta^2(f)$ avec $f \perp h_0$.

Principes d'incertitude

Reconstruction de phase

Heisenberg

Démonstration

•
$$\Delta^2(f) + \Delta^2(\widehat{f}) \ge \frac{1}{2\pi} ||f||_2^2$$
 avec $\mu(f) = \mu(\widehat{f}) = 0$
• $\Delta^2(f) + \Delta^2(\widehat{f}) = \langle Hf, f \rangle$, *H* opérateur de Hermite.
• $\langle Hf, f \rangle = \sum_{k=0}^{\infty} \frac{2k+1}{\frac{2\pi}{\ge 1/2\pi}} |\langle f, h_k \rangle|^2$.

 $\rightarrow h_1$ est un optimum pour $\Delta^2(f) + \Delta^2(\hat{f})$ avec $f \perp h_0$.

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

Heisenberg

Optimalité de la base de Hermite (J.-Powell)

Théorème (J.-Powell)

• $\{e_k\}_{k\geq 0} \subset L^2(\mathbb{R})$ orthonormale \Rightarrow

$$\sum_{k=0}^{n} \left(\Delta^{2}(e_{k}) + \Delta^{2}(\widehat{e_{k}}) + |\mu(e_{k})|^{2} + |\mu(\widehat{e_{k}})|^{2} \right) \geq \frac{(n+1)^{2}}{2\pi}$$

- = pour $k = 0, \ldots, n_0 \Leftrightarrow e_k = c_k h_k, |c_k| = 1$
- $\{e_k\}_{k\in I} \subset L^2(\mathbb{R})$ orthonormale t.q. $\Delta(e_k), \Delta(\widehat{e_k}), |\mu(e_k)|, |\mu(\widehat{e_k})| \leq C \Rightarrow \#I \leq 8\pi C^2.$

Principes d'incertitude

Reconstruction de phase

Heisenberg

Optimalité de la base de Hermite (J.-Powell)

Théorème (J.-Powell)

•
$$\{e_k\}_{k\geq 0} \subset L^2(\mathbb{R})$$
 orthonormale \Rightarrow

$$\sum_{k=0}^n \left(\Delta^2(\boldsymbol{e}_k) + \Delta^2(\widehat{\boldsymbol{e}_k}) + |\mu(\boldsymbol{e}_k)|^2 + |\mu(\widehat{\boldsymbol{e}_k})|^2 \right) \geq \frac{(n+1)^2}{2\pi}$$

• = pour $k = 0, \ldots, n_0 \Leftrightarrow e_k = c_k h_k, |c_k| = 1$

• $\{e_k\}_{k \in I} \subset L^2(\mathbb{R})$ orthonormale t.q. $\Delta(e_k)$, $\Delta(\widehat{e_k})$, $|\mu(e_k)|$, $|\mu(\widehat{e_k})| \leq C \Rightarrow \#I \leq 8\pi C^2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆○◆

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Heisenberg

Optimalité de la base de Hermite (J.-Powell)

Théorème (J.-Powell)

•
$$\{e_k\}_{k\geq 0} \subset L^2(\mathbb{R})$$
 orthonormale \Rightarrow

$$\sum_{k=0}^n \left(\Delta^2(\boldsymbol{e}_k) + \Delta^2(\widehat{\boldsymbol{e}_k}) + |\mu(\boldsymbol{e}_k)|^2 + |\mu(\widehat{\boldsymbol{e}_k})|^2 \right) \geq \frac{(n+1)^2}{2\pi}$$

• = pour $k = 0, \ldots, n_0 \Leftrightarrow e_k = c_k h_k, |c_k| = 1$

• $\{e_k\}_{k\in I} \subset L^2(\mathbb{R})$ orthonormale t.q. $\Delta(e_k)$, $\Delta(\widehat{e_k})$, $|\mu(e_k)|$, $|\mu(\widehat{e_k})| \leq C \Rightarrow \#I \leq 8\pi C^2$.

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Heisenberg

Optimalité de la base de Hermite (J.-Powell)

Théorème (J.-Powell)

•
$$\{e_k\}_{k\geq 0} \subset L^2(\mathbb{R})$$
 orthonormale \Rightarrow

$$\sum_{k=0}^n \left(\Delta^2(\boldsymbol{e}_k) + \Delta^2(\widehat{\boldsymbol{e}_k}) + |\mu(\boldsymbol{e}_k)|^2 + |\mu(\widehat{\boldsymbol{e}_k})|^2 \right) \geq \frac{(n+1)^2}{2\pi}$$

- = pour $k = 0, \ldots, n_0 \Leftrightarrow e_k = c_k h_k, |c_k| = 1$
- $\{e_k\}_{k\in I} \subset L^2(\mathbb{R})$ orthonormale t.q. $\Delta(e_k)$, $\Delta(\widehat{e_k})$, $|\mu(e_k)|$, $|\mu(\widehat{e_k})| \leq C \Rightarrow \#I \leq 8\pi C^2$.
Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Décroissance rapide

Décroissance rapide (Hardy 1933)

Théorème de Hardy

 $f \in L^2(\mathbb{R})$ a, b > 0. Supposons

1 $|f(x)| \le C(1+|x|)^N e^{-\pi a|x|^2}$ 2 $|\widehat{f}(\xi)| \le C(1+|\xi|)^N e^{-\pi b|\xi|^2}$.

• si $ab = 1 f(x) = P(x)e^{-\pi a|x|^2}$, *P* polynôme.

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Décroissance rapide

Décroissance rapide (Hardy 1933)

Théorème de Hardy

- $f \in L^2(\mathbb{R})$ a, b > 0. Supposons
 - $|f(x)| \le C(1+|x|)^N e^{-\pi a|x|^2},$
 - 2 $|\hat{f}(\xi)| \leq C(1+|\xi|)^N e^{-\pi b|\xi|^2}$.

• si $ab = 1 f(x) = P(x)e^{-\pi a|x|^2}$, *P* polynôme.

Principes d'incertitude

Reconstruction de phase

Décroissance rapide

Décroissance rapide (Hardy 1933)

Théorème de Hardy

- $f \in L^2(\mathbb{R})$ a, b > 0. Supposons
- $|f(x)| \leq C(1+|x|)^N e^{-\pi a|x|^2}$,

2
$$|\hat{f}(\xi)| \leq C(1+|\xi|)^N e^{-\pi b|\xi|^2}.$$

• si $ab = 1 f(x) = P(x)e^{-\pi a|x|^2}$, *P* polynôme.

・ロト・日本・山田・ 山田・ 山口・

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Décroissance rapide

Décroissance rapide (Hardy 1933)

Théorème de Hardy

- $f \in L^2(\mathbb{R})$ a, b > 0. Supposons
 - $|f(x)| \leq C(1+|x|)^N e^{-\pi a|x|^2}$,

2
$$|\hat{f}(\xi)| \leq C(1+|\xi|)^N e^{-\pi b|\xi|^2}.$$

• si $ab = 1 f(x) = P(x)e^{-\pi a|x|^2}$, *P* polynôme.

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Décroissance rapide

Décroissance rapide (Hardy 1933)

Théorème de Hardy

- $f \in L^2(\mathbb{R})$ a, b > 0. Supposons
 - $|f(x)| \leq C(1+|x|)^N e^{-\pi a|x|^2},$

2
$$|\hat{f}(\xi)| \leq C(1+|\xi|)^N e^{-\pi b|\xi|^2}$$
.

• si $ab = 1 f(x) = P(x)e^{-\pi a|x|^2}$, *P* polynôme.

Décroissance rapide

Extension

Principes d'incertitude

Reconstruction de phase

Théorème (Beurling-Hörmander)

$$\iint_{\mathbb{R}\times\mathbb{R}} |f(x)\widehat{f}(\xi)| e^{2\pi |x\xi|} \, \mathsf{d} x \, \mathsf{d} \xi < +\infty \Rightarrow f = 0.$$

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆□ >

Décroissance rapide

Extension

Principes d'incertitude

Reconstruction de phase

Théorème (Bonami-Demange-J.)

$$\begin{split} \iint_{\mathbb{R}^d \times \mathbb{R}^d} |f(x)\widehat{f}(\xi)| \frac{e^{2\pi |\langle x, \xi \rangle|}}{(1+|x|+|\xi|)^N} \, \mathsf{d} x \, \mathsf{d} \xi < +\infty \\ \Rightarrow f = P e^{-\langle \mathsf{A} x, x \rangle}. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Décroissance rapide

Extension

Principes d'incertitude

Reconstruction de phase

Théorème (Demange 2004)

$$f \in \mathcal{S}'(\mathbb{R}^d)$$
 t.q. $e^{\pi |x|^2} f \in \mathcal{S}'(\mathbb{R}^d)$ et $e^{\pi |\xi|^2} \widehat{f} \in \mathcal{S}'(\mathbb{R}^d)$
 $\Rightarrow f = P(x)e^{-\langle Ax,x \rangle}$, *A* matrice définie positive, *P* polynôme.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Principes d'incertitude

Reconstruction de phase

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Décroissance rapide

Thèse de B. Demange

Objectif : caractériser f t.q.

$$\iint_{\mathbb{R}^d\times\mathbb{R}^d} |f(x)\widehat{f}(\xi)| \frac{e^{2\pi |\langle x,\xi\rangle|}}{(1+|x|+|\xi|)^N} \, \mathsf{d} x \, \mathsf{d} \xi < +\infty$$

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

Décroissance rapide

Thèse de B. Demange

Objectif : caractériser f, g t.q.

$$\iint_{\mathbb{R}^d imes \mathbb{R}^d} |f(x) \widehat{g}(\xi)| rac{e^{2\pi |\langle x, \xi
angle|}}{(1+|x|+|\xi|)^N} \, \mathsf{d} x \, \mathsf{d} \xi < +\infty$$

et

$$\iint_{\mathbb{R}^d\times\mathbb{R}^d}|\widehat{f}(\xi)g(x)|\frac{e^{2\pi|\langle x,\xi\rangle|}}{(1+|x|+|\xi|)^N}\,\mathrm{d}x\,\mathrm{d}\xi<+\infty$$

Principes d'incertitude

Reconstruction de phase

Décroissance rapide

Thèse de B. Demange

Objectif : caractériser F t.q.

$$\iint_{\mathbb{R}^d imes \mathbb{R}^d} |F(x,\xi)| rac{e^{2\pi |\langle x,\xi
angle|}}{(1+|x|+|\xi|)^N} \, \mathsf{d} x \, \mathsf{d} \xi < +\infty$$

et

$$\iint_{\mathbb{R}^d\times\mathbb{R}^d}|\widehat{F}(x,\xi)|\frac{e^{2\pi|\langle x,\xi\rangle|}}{(1+|x|+|\xi|)^N}\,\mathrm{d}x\,\mathrm{d}\xi<+\infty$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

Décroissance rapide

Thèse de B. Demange

Objectif : caractériser F t.q.

$$\int_{\mathbb{R}^N} |F(x,\xi)| \frac{e^{2\pi |Q(x,\xi)|}}{(1+|x|+|\xi|)^N} \, \mathsf{d} x \, \mathsf{d} \xi < +\infty$$

et

$$\int_{\mathbb{R}^N} |\widehat{F}(x,\xi)| rac{e^{2\pi |\widetilde{Q}(x,\xi)|}}{(1+|x|+|\xi|)^N} \, \mathsf{d}x \, \mathsf{d}\xi < +\infty$$

Principes d'incertitude

Reconstruction de phase

Décroissance rapide

Théorème du parapluie

Théorème du parapluie (J.-Powell)

 $\varphi, \psi \in L^2(\mathbb{R}). \exists N = N(\varphi, \psi) \text{ t.q.}$

• $(e_k)_{k \in I} \subset L^2(\mathbb{R})$ orthonormale

• $\forall k \in I, |e_k| \leq \varphi \text{ et } |\widehat{e}_k| \leq \psi,$

alors $\#I \leq N$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ →□ − のへで

Principes d'incertitude

Reconstruction de phase

Décroissance rapide

Théorème du parapluie

Théorème du parapluie (J.-Powell)

 $\varphi, \psi \in L^2(\mathbb{R}). \exists N = N(\varphi, \psi) \text{ t.q.}$

•
$$(e_k)_{k \in I} \subset L^2(\mathbb{R})$$
 orthonormale

• $\forall k \in I, |e_k| \leq \varphi \text{ et } |\widehat{e}_k| \leq \psi,$

alors $\#I \leq N$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲■ - のへで

Principes d'incertitude

Reconstruction de phase

Décroissance rapide

Théorème du parapluie

Théorème du parapluie (J.-Powell)

$$\varphi, \psi \in L^2(\mathbb{R}). \exists N = N(\varphi, \psi) \text{ t.q.}$$

•
$$(e_k)_{k \in I} \subset L^2(\mathbb{R})$$
 orthonormale

•
$$\forall k \in I, |e_k| \leq \varphi$$
 et $|\widehat{e}_k| \leq \psi$,

alors $\#I \leq N$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Principes d'incertitude

Reconstruction de phase

Décroissance rapide

Théorème du parapluie

Théorème du parapluie (J.-Powell)

$$\varphi, \psi \in L^2(\mathbb{R}). \exists N = N(\varphi, \psi) \text{ t.q.}$$

•
$$(e_k)_{k \in I} \subset L^2(\mathbb{R})$$
 orthonormale

•
$$\forall k \in I, |e_k| \leq \varphi$$
 et $|\widehat{e}_k| \leq \psi$,

alors $\#I \leq N$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Principes d'incertitude

Reconstruction de phase

▲□▶▲□▶▲□▶▲□▶ □ のQで

Décroissance rapide

Théorème du parapluie

Théorème du parapluie (J.-Powell)

$$\varphi, \psi \in L^2(\mathbb{R}). \exists N = N(\varphi, \psi) \text{ t.q.}$$

•
$$(e_k)_{k \in I} \subset L^2(\mathbb{R})$$
 orthonormale

•
$$\forall k \in I, |e_k| \leq \varphi \text{ et } |\widehat{e}_k| \leq \psi,$$

alors $\#I \leq N$.

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Décroissance rapide

•
$$\varepsilon > 0$$
 et $T, \Omega > 0$ t.q.
$$\int_{|x|>T} |\varphi(x)|^2 dx < \varepsilon \quad , \quad \int_{|x|>\Omega} |\psi(x)|^2 dx < \varepsilon$$

- Landau-Pollak-Slepian, $\exists \{\gamma_k\}$ b.o.n. $(e_k) \simeq P_{\gamma_1, \dots, \gamma_{[4T\Omega]}} e_k$
- coordonnées des e_k dans γ₁,..., γ_[4TΩ] → "code sphérique" dans C^{4TΩ} ≃ R^{8TΩ}.
- Un code sphérique est fini !

Principes d'incertitude

Reconstruction de phase

(日) (日) (日) (日) (日) (日) (日)

Décroissance rapide

•
$$\varepsilon > 0$$
 et $T, \Omega > 0$ t.q.

$$\int_{|x|>T} |\varphi(x)|^2 \, \mathrm{d} x < \varepsilon \quad , \quad \int_{|x|>\Omega} |\psi(x)|^2 \, \mathrm{d} x < \varepsilon$$

- Landau-Pollak-Slepian, $\exists \{\gamma_k\}$ b.o.n. $(e_k) \simeq P_{\gamma_1, \dots, \gamma_{[4T\Omega]}} e_k$
- coordonnées des e_k dans $\gamma_1, \ldots, \gamma_{[4T\Omega]} \to$ "code sphérique" dans $\mathbb{C}^{4T\Omega} \simeq \mathbb{R}^{8T\Omega}$.
- Un code sphérique est fini !

Principes d'incertitude

Reconstruction de phase

(日) (日) (日) (日) (日) (日) (日)

Décroissance rapide

•
$$\varepsilon > 0$$
 et $T, \Omega > 0$ t.q.

$$\int_{|x|>T} |\varphi(x)|^2 \, \mathrm{d} x < \varepsilon \quad , \quad \int_{|x|>\Omega} |\psi(x)|^2 \, \mathrm{d} x < \varepsilon$$

- Landau-Pollak-Slepian, $\exists \{\gamma_k\}$ b.o.n. $(e_k) \simeq P_{\gamma_1,...,\gamma_{[4T\Omega]}} e_k$
- coordonnées des e_k dans $\gamma_1, \ldots, \gamma_{[4T\Omega]} \rightarrow$ "code sphérique" dans $\mathbb{C}^{4T\Omega} \simeq \mathbb{R}^{8T\Omega}$.
- Un code sphérique est fini !

Principes d'incertitude

Reconstruction de phase

(日) (日) (日) (日) (日) (日) (日)

Décroissance rapide

•
$$\varepsilon > 0$$
 et $T, \Omega > 0$ t.q.

$$\int_{|x|>T} |arphi(x)|^2 \,\mathrm{d}x < arepsilon \quad,\quad \int_{|x|>\Omega} |\psi(x)|^2 \,\mathrm{d}x < arepsilon$$

- Landau-Pollak-Slepian, $\exists \{\gamma_k\}$ b.o.n. $(e_k) \simeq P_{\gamma_1,...,\gamma_{[4T\Omega]}} e_k$
- coordonnées des e_k dans $\gamma_1, \ldots, \gamma_{[4T\Omega]} \rightarrow$ "code sphérique" dans $\mathbb{C}^{4T\Omega} \simeq \mathbb{R}^{8T\Omega}$.
- Un code sphérique est fini !

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Décroissance rapide

Estimations sur les codes sphériques

 $(e_1, \ldots, e_N) \in \mathbb{S}^{d-1}$ $[-\alpha, \alpha]$ -code sphérique si $\langle e_i, e_j \rangle \in [-\alpha, \alpha]$.

- (indépendance linéaire) $\alpha < \frac{1}{d} \Rightarrow N \le d$;
- (comptage de volume) $N \leq \left(\frac{2-\alpha}{1-\alpha}\right)^d$;
- (Delsarte-Goethals-Siedel) $\alpha < \frac{1}{\sqrt{d}} N \le \frac{1-\alpha^2}{1-\alpha^2 d} d$
- (J 20 ? ?) $\alpha = d^{(-1+\gamma)/2}/6, \gamma > 0$ alors $N_{max} \ge e^{d^{\gamma}/C}$.

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Décroissance rapide

Estimations sur les codes sphériques

 $(e_1, \ldots, e_N) \in \mathbb{S}^{d-1} [-\alpha, \alpha]$ -code sphérique si $\langle e_i, e_j \rangle \in [-\alpha, \alpha]$.

- (indépendance linéaire) $\alpha < \frac{1}{d} \Rightarrow N \le d$;
- (comptage de volume) $N \leq \left(\frac{2-\alpha}{1-\alpha}\right)^d$;
- (Delsarte-Goethals-Siedel) $\alpha < \frac{1}{\sqrt{d}} N \le \frac{1-\alpha^2}{1-\alpha^2 d} d$
- (J 20 ? ?) $\alpha = d^{(-1+\gamma)/2}/6, \gamma > 0$ alors $N_{max} \ge e^{d^{\gamma}/C}$.

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Décroissance rapide

Estimations sur les codes sphériques

 $(e_1, \ldots, e_N) \in \mathbb{S}^{d-1} [-\alpha, \alpha]$ -code sphérique si $\langle e_i, e_j \rangle \in [-\alpha, \alpha]$.

- (indépendance linéaire) $\alpha < \frac{1}{d} \Rightarrow N \le d$;
- (comptage de volume) $N \leq \left(\frac{2-\alpha}{1-\alpha}\right)^d$;
- (Delsarte-Goethals-Siedel) $\alpha < \frac{1}{\sqrt{d}} N \le \frac{1-\alpha^2}{1-\alpha^2 d} d$

• (J 20??) $\alpha = d^{(-1+\gamma)/2}/6, \gamma > 0$ alors $N_{max} \ge e^{d^{\gamma}/C}$.

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Décroissance rapide

Estimations sur les codes sphériques

 $(e_1, \ldots, e_N) \in \mathbb{S}^{d-1} [-\alpha, \alpha]$ -code sphérique si $\langle e_i, e_j \rangle \in [-\alpha, \alpha]$.

- (indépendance linéaire) $\alpha < \frac{1}{d} \Rightarrow N \le d$;
- (comptage de volume) $N \leq \left(\frac{2-\alpha}{1-\alpha}\right)^d$;
- (Delsarte-Goethals-Siedel) $\alpha < \frac{1}{\sqrt{d}} N \le \frac{1-\alpha^2}{1-\alpha^2 d} d$
- (J 20??) $\alpha = d^{(-1+\gamma)/2}/6, \gamma > 0$ alors $N_{max} \ge e^{d^{\gamma}/C}$.

Principes d'incertitude

Reconstruction de phase

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Décroissance rapide

Reconstruction de Phase

Principes d'incertitude

Reconstruction de phase

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Le problème

Reconstruction de phase

Problème de la phase

Reconstruire f à partir de |f|

+ information a priori

Principes d'incertitude

Reconstruction de phase

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Le problème

Reconstruction de phase

Problème de la phase

Reconstruire f à partir de |f|

+ information a priori

Principes d'incertitude

Reconstruction de phase

▲□▶▲□▶▲□▶▲□▶ □ のQで

Le problème

Reconstruction de phase

Problème de la phase

Reconstruire f à partir de |f|

+ information a priori

Principes d'incertitude

Reconstruction de phase

Le problème

Reconstruction de phase

Problème de la phase

Reconstruire f à partir de |f|

+ information a priori

(Difraction) $f = \widehat{\varphi}, \varphi \in L^2$ à support compact.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆 ・のへで

Principes d'incertitude

Reconstruction de phase

▲□▶▲□▶▲□▶▲□▶ □ のQで

Le problème

Reconstruction de phase

Problème de la phase

Reconstruire f à partir de |f|

+ information a priori

(Cristallographie) $f = \widehat{\varphi}, \varphi = \sum \rho_i \delta_{x_i}$.

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

Le problème

Reconstruction de phase

Problème de la phase

Reconstruire f à partir de |f|

+ information a priori

(Ambiguïté Radar) f = A(u)(x, y),

$$A(u) = \int_{\mathbb{R}} u\left(t - \frac{x}{2}\right) \overline{u\left(t + \frac{x}{2}\right)} e^{2i\pi yt} dt.$$

Principes d'incertitude

Reconstruction de phase

Le problème

Problème de la phase en dimension 1

Problème de la phase en dimension 1

- $\varphi \in L^2(\mathbb{R})$ à support compact,
- Trouver $\psi \in L^2(\mathbb{R})$ à support compact, t.q. $\forall \xi \in \mathbb{R}$, $|\widehat{\psi}(\xi)| = |\widehat{\varphi}(\xi)|$.
- Solution triviale $\psi = c\varphi(\pm x a), |c| = 1, a \in \mathbb{R}.$

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

Le problème

Problème de la phase en dimension 1

Problème de la phase en dimension 1

- $\varphi \in L^2(\mathbb{R})$ à support compact,
- Trouver $\psi \in L^2(\mathbb{R})$ à support compact, t.q. $\forall \xi \in \mathbb{R}$, $|\widehat{\psi}(\xi)| = |\widehat{\varphi}(\xi)|$.
- Solution triviale $\psi = c\varphi(\pm x a), |c| = 1, a \in \mathbb{R}.$

Principes d'incertitude

Reconstruction de phase

(日) (日) (日) (日) (日) (日) (日)

Le problème

Problème de la phase en dimension 1

Problème de la phase en dimension 1

- $\varphi \in L^2(\mathbb{R})$ à support compact,
- Trouver $\psi \in L^2(\mathbb{R})$ à support compact, t.q. $\forall \xi \in \mathbb{R}$, $|\widehat{\psi}(\xi)| = |\widehat{\varphi}(\xi)|$.
- Solution triviale $\psi = c\varphi(\pm x a), |c| = 1, a \in \mathbb{R}.$

Principes d'incertitude

Reconstruction de phase

(日) (日) (日) (日) (日) (日) (日)

Le problème

Problème de la phase en dimension 1

Problème de la phase en dimension 1

- $\varphi \in L^2(\mathbb{R})$ à support compact,
- Trouver $\psi \in L^2(\mathbb{R})$ à support compact, t.q. $\forall \xi \in \mathbb{R}$, $|\widehat{\psi}(\xi)| = |\widehat{\varphi}(\xi)|$.
- Solution triviale $\psi = c\varphi(\pm x a), |c| = 1, a \in \mathbb{R}.$
Principes d'incertitude

Reconstruction de phase

(日) (日) (日) (日) (日) (日) (日)

Le problème

Problème de la phase en dimension 1

Problème de la phase en dimension 1

- $\varphi \in L^2(\mathbb{R})$ à support compact,
- Trouver $\psi \in L^2(\mathbb{R})$ à support compact, t.q. $\forall \xi \in \mathbb{R}$, $|\widehat{\psi}(\xi)| = |\widehat{\varphi}(\xi)|$.
- Solution triviale $\psi = c\varphi(\pm x a), |c| = 1, a \in \mathbb{R}.$

 $\widehat{\varphi}, \widehat{\psi}$ entières de type exponentiel (Paley Wiener).

Principes d'incertitude

Reconstruction de phase

Le problème

Problème de la phase en dimension 1

Problème de la phase en dimension 1

- $\varphi \in L^2(\mathbb{R})$ à support compact,
- Trouver $\psi \in L^2(\mathbb{R})$ à support compact, t.q. $\forall \xi \in \mathbb{R}$, $|\widehat{\psi}(\xi)| = |\widehat{\varphi}(\xi)|$.
- Solution triviale $\psi = c\varphi(\pm x a), |c| = 1, a \in \mathbb{R}.$

$$\widehat{\varphi}(z) = \kappa z^m e^{bz} \prod \left(1 - \frac{z}{z_k}\right) e^{\frac{z}{z_k}}$$

 $\mathcal{Z}(\widehat{\varphi}) = \{z_k\}$ zéros de $\widehat{\varphi}$ (Factorisation de Hadamard).

・ロト・四ト・ヨト・ヨト・日・ 今日・

Reconstruction de phase

Le problème

Problème de la phase en dimension 1

Problème de la phase en dimension 1

- $\varphi \in L^2(\mathbb{R})$ à support compact,
- Trouver $\psi \in L^2(\mathbb{R})$ à support compact, t.q. $\forall \xi \in \mathbb{R}$, $|\widehat{\psi}(\xi)| = |\widehat{\varphi}(\xi)|$.
- Solution triviale $\psi = c\varphi(\pm x a), |c| = 1, a \in \mathbb{R}.$

Théorème de Walter

$$\widehat{\psi}(z) = \kappa e^{i\alpha} z^m e^{(b+i\beta)z} \prod \left(1 - \frac{z}{\zeta_k}\right) e^{\frac{z}{\zeta_k}}$$

 $\alpha, \beta \in \mathbb{R}, \forall k, \zeta_k \in \{z_k, \overline{z_k}\}$

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Le problème

En dimension *d* ≥ 2 ?

- Cas radial : Lawton
- Cas des fonctions caratéristiques de convexes :

Problème du covariogramme

- Seconde mesure ? (ex problème de Pauli)
- Troisième mesure ?

Principes d'incertitude

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Le problème

En dimension *d* ≥ 2 ?

- Cas radial : Lawton
- Cas des fonctions caratéristiques de convexes :

Problème du covariogramme

- Seconde mesure ? (ex problème de Pauli)
- Troisième mesure ?

Principes d'incertitude

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Le problème

- En dimension *d* ≥ 2 ?
 - Cas radial : Lawton
 - Cas des fonctions caratéristiques de convexes :

Problème du covariogramme

- Seconde mesure ? (ex problème de Pauli)
- Troisième mesure ?

Principes d'incertitude

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Le problème

- En dimension *d* ≥ 2 ?
 - Cas radial : Lawton
 - Cas des fonctions caratéristiques de convexes :

Problème du covariogramme

- Seconde mesure ? (ex problème de Pauli)
- Troisième mesure ?

Principes d'incertitude

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Le problème

- En dimension *d* ≥ 2 ?
 - Cas radial : Lawton
 - Cas des fonctions caratéristiques de convexes :

Problème du covariogramme

- Seconde mesure ? (ex problème de Pauli)
- Troisième mesure ?

Principes d'incertitude

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Le problème

- En dimension d ≥ 2 ?
 - Cas radial : Lawton
 - Cas des fonctions caratéristiques de convexes :

Problème du covariogramme

- Seconde mesure ? (ex problème de Pauli)
- Troisième mesure ?

Principes d'incertitude

Reconstruction de phase

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Triple corrélation

Autre mesure : triple-corrélation

$$|\widehat{f}|^2 = \widehat{N_f^{(2)}}$$
 avec $N_f^{(2)}(x) = \int_{\mathbb{R}} f(t) \overline{f(t-x)} dt$

Probleme de la triple correlation

 $f \ge 0, N_f(x, y) := \int_{\mathbb{R}} f(t) f(t - x) f(t - y) dt.$ • At on $N_g = N_f \Rightarrow g(t) = I(t - a)$?

• A-I-on $N_{\chi_F} = N_{\chi_E} \rightarrow F = E - a$ if

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

Triple corrélation

Autre mesure : triple-corrélation

$$|\widehat{f}|^2 = \widehat{N_f^{(2)}}$$
 avec $N_f^{(2)}(x) = \int_{\mathbb{R}} f(t) \overline{f(t-x)} dt$

Problème de la triple corrélation

$$f \geq 0, N_f(x, y) := \int_{\mathbb{R}} f(t) f(t-x) f(t-y) dt$$

- A-t-on $N_g = N_f \Rightarrow g(t) = f(t-a)$?
- A-t-on $N_{\chi_F} = N_{\chi_E} \rightarrow F = E a$?

Principes d'incertitude

Reconstruction de phase

Triple corrélation

Autre mesure : triple-corrélation

$$|\widehat{f}|^2 = \widehat{N_f^{(2)}}$$
 avec $N_f^{(2)}(x) = \int_{\mathbb{R}} f(t) \overline{f(t-x)} dt$

Problème de la triple corrélation

$$f \geq 0, N_f(x, y) := \int_{\mathbb{R}} f(t)f(t-x)f(t-y) dt.$$

• A-t-on
$$N_g = N_f \Rightarrow g(t) = f(t-a)$$
 ?

• A-t-on
$$N_{\chi_F} = N_{\chi_E} \rightarrow F = E - a$$
?

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ○ ● ●

Principes d'incertitude

Reconstruction de phase

Triple corrélation

Autre mesure : triple-corrélation

$$|\widehat{f}|^2 = \widehat{N_f^{(2)}}$$
 avec $N_f^{(2)}(x) = \int_{\mathbb{R}} f(t) \overline{f(t-x)} dt$

Problème de la triple corrélation

$$f \geq 0, N_f(x, y) := \int_{\mathbb{R}} f(t)f(t-x)f(t-y) dt.$$

• A-t-on
$$N_g = N_f \Rightarrow g(t) = f(t-a)$$
?

• A-t-on
$$N_{\chi_F} = N_{\chi_E} \rightarrow F = E - a$$
 ?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Triple corrélation

triple-corrélation : résultats

$$\widehat{g}(\xi) = e^{i\varphi(\xi)}\widehat{f}(\xi) \text{ avec } \varphi(\xi + \eta) = \varphi(\xi) + \varphi(\eta), \ \xi, \eta, \xi + \eta \in \operatorname{supp} \widehat{f}$$

Théorème (J.-Kolountzakis)

- Si f à support compact, g(t) = f(t a).
- $\exists f$ t.q. \exists une infinité de g t.q. $N_g = N_f$.
- Si $f = \chi_E$ alors $g = \chi_F$.
- Pour $E = \bigcup [k a_k, k + a_k]$ et si $N_{\chi_F} = N_{\chi_E}$ alors F = E a.

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Triple corrélation

triple-corrélation : résultats

$$\widehat{g}(\xi) = e^{i\varphi(\xi)}\widehat{f}(\xi) \text{ avec } \varphi(\xi + \eta) = \varphi(\xi) + \varphi(\eta), \ \xi, \eta, \xi + \eta \in \operatorname{supp} \widehat{f}$$

Théorème (J.-Kolountzakis)

- Si *f* à support compact, g(t) = f(t a).
- $\exists f$ t.q. \exists une infinité de g t.q. $N_g = N_f$.
- Si $f = \chi_E$ alors $g = \chi_F$.
- Pour $E = \bigcup [k a_k, k + a_k]$ et si $N_{\chi_F} = N_{\chi_E}$ alors F = E a.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Triple corrélation

triple-corrélation : résultats

$$\widehat{g}(\xi) = e^{i\varphi(\xi)}\widehat{f}(\xi) \text{ avec } \varphi(\xi + \eta) = \varphi(\xi) + \varphi(\eta), \ \xi, \eta, \xi + \eta \in \operatorname{supp} \widehat{f}$$

Théorème (J.-Kolountzakis)

- Si *f* à support compact, g(t) = f(t a).
- $\exists f \text{ t.q. } \exists \text{ une infinité de } g \text{ t.q. } N_g = N_f.$
- Si $f = \chi_E$ alors $g = \chi_F$.
- Pour $E = \bigcup [k a_k, k + a_k]$ et si $N_{\chi_F} = N_{\chi_E}$ alors F = E a.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Triple corrélation

triple-corrélation : résultats

$$\widehat{g}(\xi) = e^{i\varphi(\xi)}\widehat{f}(\xi)$$
 avec $\varphi(\xi + \eta) = \varphi(\xi) + \varphi(\eta)$,
 $\xi, \eta, \xi + \eta \in \operatorname{supp} \widehat{f}$

Théorème (J.-Kolountzakis)

- Si *f* à support compact, g(t) = f(t a).
- $\exists f \text{ t.q. } \exists \text{ une infinité de } g \text{ t.q. } N_g = N_f.$

• Si
$$f = \chi_E$$
 alors $g = \chi_F$.

• Pour $E = \bigcup [k - a_k, k + a_k]$ et si $N_{\chi_F} = N_{\chi_E}$ alors F = E - a.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Triple corrélation

triple-corrélation : résultats

$$\widehat{g}(\xi) = e^{i\varphi(\xi)}\widehat{f}(\xi) \text{ avec } \varphi(\xi + \eta) = \varphi(\xi) + \varphi(\eta), \ \xi, \eta, \xi + \eta \in \operatorname{supp} \widehat{f}$$

Théorème (J.-Kolountzakis)

- Si *f* à support compact, g(t) = f(t a).
- $\exists f \text{ t.q. } \exists \text{ une infinité de } g \text{ t.q. } N_g = N_f.$

• Si
$$f = \chi_E$$
 alors $g = \chi_F$.

• Pour $E = \bigcup [k - a_k, k + a_k]$ et si $N_{\chi_F} = N_{\chi_E}$ alors F = E - a.

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

Ambiguïté radar

Problème d'ambiguïté radar

Problème d'ambiguïté radar

• Pour $u \in L^2(\mathbb{R})$ on définit la *fonction d'ambiguïté radar*

$$A(u)(x,y) = \int_{\mathbb{R}} u\left(t - \frac{x}{2}\right) \overline{u\left(t + \frac{x}{2}\right)} e^{2i\pi yt} dt$$

• On cherche tous les $v \in L^2(\mathbb{R})$ tels que

 $|A(v)(x,y)| = |A(u)(x,y)| \qquad \forall (x,y) \in \mathbb{R}^2$

Principes d'incertitude

Reconstruction de phase

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ambiguïté radar

Problème d'ambiguïté radar

Problème d'ambiguïté radar

• Pour $u \in L^2(\mathbb{R})$ on définit la *fonction d'ambiguïté radar*

$$\mathcal{A}(u)(x,y) = \int_{\mathbb{R}} u\left(t-rac{x}{2}
ight) \overline{u\left(t+rac{x}{2}
ight)} e^{2i\pi yt} \mathrm{d}t$$

• On cherche tous les $v \in L^2(\mathbb{R})$ tels que

 $|A(v)(x,y)| = |A(u)(x,y)| \qquad \forall (x,y) \in \mathbb{R}^2$

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Ambiguïté radar

Problème d'ambiguïté radar

Problème d'ambiguïté radar

• Pour $u \in L^2(\mathbb{R})$ on définit la *fonction d'ambiguïté radar*

$$\mathcal{A}(u)(x,y) = \int_{\mathbb{R}} u\left(t-rac{x}{2}
ight) \overline{u\left(t+rac{x}{2}
ight)} e^{2i\pi yt} \mathrm{d}t$$

• On cherche tous les $v \in L^2(\mathbb{R})$ tels que

 $|A(v)(x,y)| = |A(u)(x,y)| \quad \forall (x,y) \in \mathbb{R}^2$

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Ambiguïté radar

Problème d'ambiguïté radar

Problème d'ambiguïté radar

• Pour $u \in L^2(\mathbb{R})$ on définit la *fonction d'ambiguïté radar*

$$\mathcal{A}(u)(x,y) = \int_{\mathbb{R}} u\left(t-rac{x}{2}
ight) \overline{u\left(t+rac{x}{2}
ight)} e^{2i\pi yt} \mathrm{d}t$$

• On cherche tous les $v \in L^2(\mathbb{R})$ tels que

 $|A(v)(x,y)| = |A(u)(x,y)| \quad \forall (x,y) \in \mathbb{R}^2$

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Ambiguïté radar

Problème d'ambiguïté radar

- Partenaires triviaux : $v(t) = ce^{2i\pi bt}u(\pm t a)$, |c| = 1, $a, b \in \mathbb{R}$.
- Les autres partenaires sont dits étranges.
- J. 1998 : caractérisation des partenaires quand u à support compact sans zéro-flipping

Principes d'incertitude

Reconstruction de phase

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ambiguïté radar

Problème d'ambiguïté radar

- Partenaires triviaux : $v(t) = ce^{2i\pi bt}u(\pm t a), |c| = 1, a, b \in \mathbb{R}.$
- Les autres partenaires sont dits étranges.
- J. 1998 : caractérisation des partenaires quand u à support compact sans zéro-flipping

Principes d'incertitude

Reconstruction de phase

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Ambiguïté radar

Problème d'ambiguïté radar

- Partenaires triviaux : $v(t) = ce^{2i\pi bt}u(\pm t a), |c| = 1, a, b \in \mathbb{R}.$
- Les autres partenaires sont dits étranges.
- J. 1998 : caractérisation des partenaires quand u à support compact sans zéro-flipping

Principes d'incertitude

Reconstruction de phase

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ambiguïté radar

Première discrétisation - Problème

Problème d'ambiguïté pour les fonctions de Hermite

Soit $u = P(x)e^{-\pi x^2}$, *P* polynôme. Trouver tous les partenaires de *v*.

Principes d'incertitude

Reconstruction de phase

Ambiguïté radar

Première discrétisation - résultats

•
$$v = Q(x)e^{-\pi x^2}, d(Q) = d(P)$$

On écrit *u*, *v* dans la base de Hermite *u* = ∑ α_jH_j (idem pour *u*), puis on leur associe P = ∑ α_jt^j (idem pour *v*) et alors

$$A(u)(x,y) = \sum \frac{2^{-j}}{j} \mathcal{P}^{(j)}(Z) \overline{\mathcal{P}^{(j)}(-Z)} e^{\pi |Z|^2/4} \qquad Z = x + iy$$

- Pour presque tout et quasi tout polynôme *P*, $u = P(x)e^{-\pi x^2}$ n'a que des partenaires triviaux
- L'ensemble des fonctions qui n'ont pas de partenaires étranges est dense dans L².

Principes d'incertitude

Reconstruction de phase

Ambiguïté radar

Première discrétisation - résultats

•
$$v = Q(x)e^{-\pi x^2}, d(Q) = d(P)$$

On écrit *u*, *v* dans la base de Hermite *u* = ∑ α_jH_j (idem pour *u*), puis on leur associe P = ∑ α_jt^j (idem pour *v*) et alors

$$A(u)(x,y) = \sum \frac{2^{-j}}{j} \mathcal{P}^{(j)}(Z) \overline{\mathcal{P}^{(j)}(-Z)} e^{\pi |Z|^2/4} \qquad Z = x + iy$$

- Pour presque tout et quasi tout polynôme *P*, $u = P(x)e^{-\pi x^2}$ n'a que des partenaires triviaux
- L'ensemble des fonctions qui n'ont pas de partenaires étranges est dense dans L².

Principes d'incertitude

Reconstruction de phase

Ambiguïté radar

Première discrétisation - résultats

•
$$v = Q(x)e^{-\pi x^2}, d(Q) = d(P)$$

On écrit *u*, *v* dans la base de Hermite *u* = ∑ α_jH_j (idem pour *u*), puis on leur associe P = ∑ α_jt^j (idem pour *v*) et alors

$$A(u)(x,y) = \sum \frac{2^{-j}}{j} \mathcal{P}^{(j)}(Z) \overline{\mathcal{P}^{(j)}(-Z)} e^{\pi |Z|^2/4} \qquad Z = x + iy$$

- Pour presque tout et quasi tout polynôme *P*, $u = P(x)e^{-\pi x^2}$ n'a que des partenaires triviaux
- L'ensemble des fonctions qui n'ont pas de partenaires étranges est dense dans L².

Principes d'incertitude

Reconstruction de phase

Ambiguïté radar

Première discrétisation - résultats

•
$$v = Q(x)e^{-\pi x^2}, d(Q) = d(P)$$

On écrit *u*, *v* dans la base de Hermite *u* = ∑ α_jH_j (idem pour *u*), puis on leur associe P = ∑ α_jt^j (idem pour *v*) et alors

$$A(u)(x,y) = \sum \frac{2^{-j}}{j} \mathcal{P}^{(j)}(Z) \overline{\mathcal{P}^{(j)}(-Z)} e^{\pi |Z|^2/4} \qquad Z = x + iy$$

- Pour presque tout et quasi tout polynôme *P*, $u = P(x)e^{-\pi x^2}$ n'a que des partenaires triviaux
- L'ensemble des fonctions qui n'ont pas de partenaires étranges est dense dans L².

Principes d'incertitude

Reconstruction de phase

Ambiguïté radar

Première discrétisation - résultats

•
$$v = Q(x)e^{-\pi x^2}, d(Q) = d(P)$$

On écrit *u*, *v* dans la base de Hermite *u* = ∑ α_jH_j (idem pour *u*), puis on leur associe P = ∑ α_jt^j (idem pour *v*) et alors

$$A(u)(x,y) = \sum \frac{2^{-j}}{j} \mathcal{P}^{(j)}(Z) \overline{\mathcal{P}^{(j)}(-Z)} e^{\pi |Z|^2/4} \qquad Z = x + iy$$

- Pour presque tout et quasi tout polynôme *P*, $u = P(x)e^{-\pi x^2}$ n'a que des partenaires triviaux
- L'ensemble des fonctions qui n'ont pas de partenaires étranges est dense dans L².

Principes d'incertitude

Reconstruction de phase

Ambiguïté radar

Deuxième discrétisation - problème

Problème d'ambiguïté pour les trains d'onde

• Soit $u = \sum \alpha_j H(t-j), H \in L^2$ à support [0, 1/2] et $x \in [k - 1/2, k + 1/2]$

$$A(u)(x,y) = \underbrace{\sum_{j} \alpha_{j} \overline{\alpha_{j-k}} e^{2i\pi j y}}_{\mathcal{A}(\alpha)(k,y)} A(H)(x-k,y)$$

Trouver β t.q. ∀k ∈ Z, y ∈ T, |A(β)(k, y)| = |A(α)(k, y)|
Solutions triviales b_j = ce^{iωj} a_{±j-k}, |c| = 1, ω ∈ R, k ∈ Z
Les autres sont appelés partenaires étranges.

Principes d'incertitude

Reconstruction de phase

Ambiguïté radar

Deuxième discrétisation - problème

Problème d'ambiguïté pour les trains d'onde

Soit u = ∑ α_jH(t − j), H ∈ L² à support [0, 1/2] et x ∈ [k − 1/2, k + 1/2]

$$A(u)(x,y) = \underbrace{\sum_{j} \alpha_{j} \overline{\alpha_{j-k}} e^{2i\pi j y}}_{\mathcal{A}(\alpha)(k,y)} A(H)(x-k,y)$$

Trouver β t.q. ∀k ∈ Z, y ∈ T, |A(β)(k, y)| = |A(α)(k, y)|
Solutions triviales b_j = ce^{iωj} a_{±j-k}, |c| = 1, ω ∈ R, k ∈ Z
Les autres sont appelés partenaires étranges.

Principes d'incertitude

Reconstruction de phase

Ambiguïté radar

Deuxième discrétisation - problème

Problème d'ambiguïté pour les trains d'onde

$$A(u)(x,y) = \underbrace{\sum_{j} \alpha_{j} \overline{\alpha_{j-k}} e^{2i\pi j y}}_{\mathcal{A}(\alpha)(k,y)} A(H)(x-k,y)$$

- Trouver β t.q. ∀k ∈ Z, y ∈ T, |A(β)(k, y)| = |A(α)(k, y)|
 Solutions triviales b_i = ce^{iωj}a_{±i-k}, |c| = 1, ω ∈ R, k ∈ Z
- Les autres sont appelés partenaires étranges.

Principes d'incertitude

Reconstruction de phase

Ambiguïté radar

Deuxième discrétisation - problème

Problème d'ambiguïté pour les trains d'onde

Soit u = ∑ α_jH(t − j), H ∈ L² à support [0, 1/2] et x ∈ [k − 1/2, k + 1/2]

$$A(u)(x,y) = \underbrace{\sum_{j} \alpha_{j} \overline{\alpha_{j-k}} e^{2i\pi j y}}_{\mathcal{A}(\alpha)(k,y)} A(H)(x-k,y)$$

Trouver β t.q. ∀k ∈ Z, y ∈ T, |A(β)(k, y)| = |A(α)(k, y)|
Solutions triviales b_j = ce^{iωj} a_{±j-k}, |c| = 1, ω ∈ R, k ∈ Z
Les autres sont appelés partenaires étranges.

Principes d'incertitude

Reconstruction de phase

Ambiguïté radar

Deuxième discrétisation - problème

Problème d'ambiguïté pour les trains d'onde

• Soit $u = \sum \alpha_j H(t-j)$, $H \in L^2$ à support [0, 1/2] et $x \in [k - 1/2, k + 1/2]$

$$A(u)(x,y) = \underbrace{\sum_{j} \alpha_{j} \overline{\alpha_{j-k}} e^{2i\pi j y}}_{\mathcal{A}(\alpha)(k,y)} A(H)(x-k,y)$$

- Trouver β t.q. $\forall k \in \mathbb{Z}, y \in \mathbb{T}, |\mathcal{A}(\beta)(k, y)| = |\mathcal{A}(\alpha)(k, y)|$
- Solutions triviales $b_j = ce^{i\omega j}a_{\pm j-k}$, |c| = 1, $\omega \in \mathbb{R}$, $k \in \mathbb{Z}$
- Les autres sont appelés partenaires étranges.
Principes d'incertitude

Reconstruction de phase

Ambiguïté radar

Deuxième discrétisation - reformulation

Le problème est équivalent à $\mathbb{K}^*_{\alpha}\mathbb{K}_{\alpha} = \mathbb{K}^*_{\beta}\mathbb{K}_{\beta}$ où $\mathbb{K}_{\alpha} = [\gamma_{j,k}]$ (*matrice d'ambiguïté* de α) avec

Principes d'incertitude

Reconstruction de phase

Ambiguïté radar

Deuxième discrétisation - reformulation

Le problème est équivalent à $\mathbb{K}^*_{\alpha}\mathbb{K}_{\alpha} = \mathbb{K}^*_{\beta}\mathbb{K}_{\beta}$ où $\mathbb{K}_{\alpha} = [\gamma_{j,k}]$ (*matrice d'ambiguïté* de α) avec

$$\gamma_{j,k} = \begin{cases} \alpha_{(j+k)/2} \alpha_{(j-k)/2} & j,k \text{ de même parité} \\ = 0 & \text{sinon} \end{cases}$$

Principes d'incertitude

Reconstruction de phase ○○○○○○○○○●

Ambiguïté radar

Deuxième discrétisation - résultats

- $\mathbb{K}_{\alpha} \otimes \mathbb{K}_{\beta} = \mathbb{K}_{\alpha \otimes \beta}$
- (α, α') (β, β') couples de partenaires (même triviaux)
 ⇒ α ⊗ β et α' ⊗ β' partenaires étranges en général !
- L'ensemble des fonctions ayant des partenaires étranges est dense dans L²(R).
- Presque toute et quasi toute suite de longueur n n'a que des partenaires triviaux.
- Si u(t) = ∑ α_jχ_[0,1/3] alors u n'a pas que des partenaires triviaux ⇔ α n'a que des partenaires triviaux.

Principes d'incertitude

Reconstruction de phase ○○○○○○○○○●

Ambiguïté radar

Deuxième discrétisation - résultats

Théorème (Bonami-Garrigós-J.-Poly)

• $\mathbb{K}_{\alpha} \otimes \mathbb{K}_{\beta} = \mathbb{K}_{\alpha \otimes \beta}$

- (α, α') (β, β') couples de partenaires (même triviaux)
 ⇒ α ⊗ β et α' ⊗ β' partenaires étranges en général !
- L'ensemble des fonctions ayant des partenaires étranges est dense dans L²(R).
- Presque toute et quasi toute suite de longueur n n'a que des partenaires triviaux.
- Si u(t) = ∑ α_jχ_[0,1/3] alors u n'a pas que des partenaires triviaux ⇔ α n'a que des partenaires triviaux.

Principes d'incertitude

Reconstruction de phase ○○○○○○○○○●

Ambiguïté radar

Deuxième discrétisation - résultats

- $\mathbb{K}_{\alpha} \otimes \mathbb{K}_{\beta} = \mathbb{K}_{\alpha \otimes \beta}$
- (α, α') (β, β') couples de partenaires (même triviaux)
 ⇒ α ⊗ β et α' ⊗ β' partenaires étranges en général !
- L'ensemble des fonctions ayant des partenaires étranges est dense dans L²(R).
- Presque toute et quasi toute suite de longueur n n'a que des partenaires triviaux.
- Si u(t) = ∑ α_jχ_[0,1/3] alors u n'a pas que des partenaires triviaux ⇔ α n'a que des partenaires triviaux.

Principes d'incertitude

Reconstruction de phase ○○○○○○○○○●

Ambiguïté radar

Deuxième discrétisation - résultats

- $\mathbb{K}_{\alpha} \otimes \mathbb{K}_{\beta} = \mathbb{K}_{\alpha \otimes \beta}$
- (α, α') (β, β') couples de partenaires (même triviaux)
 ⇒ α ⊗ β et α' ⊗ β' partenaires étranges en général !
- L'ensemble des fonctions ayant des partenaires étranges est dense dans L²(R).
- Presque toute et quasi toute suite de longueur n n'a que des partenaires triviaux.
- Si u(t) = ∑ α_jχ_[0,1/3] alors u n'a pas que des partenaires triviaux ⇔ α n'a que des partenaires triviaux.

Principes d'incertitude

Reconstruction de phase ○○○○○○○○○●

Ambiguïté radar

Deuxième discrétisation - résultats

- $\mathbb{K}_{\alpha} \otimes \mathbb{K}_{\beta} = \mathbb{K}_{\alpha \otimes \beta}$
- (α, α') (β, β') couples de partenaires (même triviaux)
 ⇒ α ⊗ β et α' ⊗ β' partenaires étranges en général !
- L'ensemble des fonctions ayant des partenaires étranges est dense dans L²(R).
- Presque toute et quasi toute suite de longueur n n'a que des partenaires triviaux.
- Si u(t) = ∑ α_jχ_[0,1/3] alors u n'a pas que des partenaires triviaux ⇔ α n'a que des partenaires triviaux.

Principes d'incertitude

Reconstruction de phase ○○○○○○○○○●

Ambiguïté radar

Deuxième discrétisation - résultats

- $\mathbb{K}_{\alpha} \otimes \mathbb{K}_{\beta} = \mathbb{K}_{\alpha \otimes \beta}$
- (α, α') (β, β') couples de partenaires (même triviaux)
 ⇒ α ⊗ β et α' ⊗ β' partenaires étranges en général !
- L'ensemble des fonctions ayant des partenaires étranges est dense dans L²(R).
- Presque toute et quasi toute suite de longueur n n'a que des partenaires triviaux.
- Si u(t) = ∑ α_jχ_[0,1/3] alors u n'a pas que des partenaires triviaux ⇔ α n'a que des partenaires triviaux.