
THE PHASE RETRIEVAL PROBLEM FOR CYCLOTOMIC CRYSTALS

PHILIPPE JAMING

Abstract. Abstract : In this survey, we present the results on the phase retrieval problem
for cyclotomic crystals, following J. Rosenblatt’s paper [Ro] in a simplified setting. We
then present some extensions to the triple-correlation function due to the author and M.
Kolountzakis [JamK] and conclude with some open problems.

1. Introduction

1.1. Phase retrieval problems.
Usually, when one measures a quantity, due to noise, poor measurement equipment, transmi-
tion in messy media... the phase of the quantity one wishes to know is lost. In mathematical
terms, one wants to know a quantity ϕ(t) knowing only |ϕ(t)| for all t ∈ Rd. Stated as
this, the problem has too many solutions to be useful and one tries to incorporate a priori
knowledge on ϕ to decrease the underterminancy.

A typical situation is that ϕ = f̂ for some compactly supported function f ∈ L2(Rd) (in
short f ∈ L2

c(R)) or more generally for some compactly supported Schwartz distribution
f ∈ S ′(Rd). Let us temporarilly concentrate on the one-dimensional case for finite-energy
signals. The problem is then:

Problem 1.
Given f ∈ L2

c(R), find all g ∈ L2
c(R) such that |f̂(ξ)| = |ĝ(ξ)| for (almost) all ξ ∈ R.

As f is compactly supported, its Fourier transform is analytic so that actually |f̂(ξ)| =
|ĝ(ξ)| for all ξ ∈ R.

Problem 1 has been solved by Walter [Wa] and we may now describe this solution. First
note that this problem has trivial solutions g(t) = cf(t − α) and g(t) = cf(−t − α) where
c ∈ C with |c| = 1 and α ∈ R. However, there may be more solutions: as f ∈ L2

c(R),
with support [−σ, σ], then, f̂ is an entire function of order 1 of type σ. By Hadamard’s
Factorization Theorem, one may then write

f̂(z) = zkeaz+b
∏ (

1− z

zk

)
ez/zk
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where a, b ∈ R and the zk’s are the zeroes of f̂ in the complex plane. Moreover, this zeroes
essentially characterize f̂ , so that if we knew |f̂(ξ)| for all ξ ∈ C (and not only ξ ∈ R) we
would be done.

To overcome this, write |f̂(ξ)|2 = |ĝ(ξ)|2 as f̂(ξ)f̂(ξ) = ĝ(ξ)ĝ(ξ) and note that this equation
extends to ξ in all of C. It follows that a zero of ĝ is either a zero of f̂ or a conjugate of a zero
of f̂ . Hadamard’s Factorization Theorem for ĝ then shows that every solution is a function
of the form

ĝ(z) = zkea′z+b′
∏ (

1− z

ζk

)
ez/ζk

where a′ = a + iα, b′ = b + iβ and for each k, ζk = zk or ζk = zk. Such a choice ζk ∈ {zk, zk}
for all k, is called a zero-flipping. Using a Theorem of Titchmarsh [Ti] on the behavior
of zeroes of Fourier transforms of compactly supported functions, one can check that every
zero-flipping actually gives rise to a solution of Problem 1.

Note that the trivial solutions are then obtained from α, β and either ζk = zk for every k
in which case g = eiβf(t− α), or ζk = zk for every k in which case g = eiβf(−t− α).

We refer the reader to [Hu] for more details. This book also contains many other occurences
of the phase retrieval problem. Further results may be found in the survey [KST] and in the
introduction of [Jam4]

1.2. Diffraction.
We will now concentrate on the phase retrieval problem for cyclotomic crystals. To present
this, let us first give a short introduction to diffraction theory as may be found in many
textbooks in physics.

Consider a monochromatic parallel beam of X-rays with amplitude 1 and wavelength λ
which we will for simplicity normalize to λ = 1. Let us considerer two scattering centers O
and P , which may be atoms or electrons. Without loss of generality, we may assume that
this beam is in the direction ~i = (1, 0, 0) and O is at the origin. Let us now compute the
resultant scattered radiation in a given direction ~s. The phase of the wave scattered by the
point P is ahaed of the phase of the wave scattered by the point O by a quantity

δ =
2π

λ
(AO − PB) = 2π〈~r,~s 〉

where ~r = ~OP , A is the orthogonal projection of P on the line parallel to ~s issued from O
and B is the orthogonal projection of O on the line parallel to ~i issued from P .

Thus, if a is the amplitude of the wave scattered by P , then the wave from P may be
written as a exp 2iπ〈~r,~s〉 where the phase of the wave scattered from O is taken to be zero.
The quantity a may be called the scattering factor of P and is in general a function of ~s.
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Suppose now there is a set of N scattering points at positions ~rj , j = 1, . . . , N of scattering
factor aj . Then the total wave scatttered is obtained by summing the waves scattered by all
scatterers in a given direction. Hence the total scattered amplitude corresponding to ~s is

F (~s) =
N∑

j=1

aj exp 2iπ〈~rj , ~s〉

which is the Fourier transform of the linear combination of Dirac masses
N∑

j=1

ajδ~rj
.

Finally, note that the measurement process allows only to get |F (~s)| and not F .

1.3. The phase retrieval problem in crystals.
We will now work out the nature of the diffraction pattern given by a repetitive structure
scattering matter, as in a (periodic) crystal. The atoms in a crystal are arranged according
to the symmetry of a three-dimensional structure with unit-cell translation vectors ~a,~b,~c.
Inside a unit cell, their are N different atoms that occur at position ~rj given by

~rj = xj~a + yj
~b + zj~c

with 0 ≤ xj , yj , zj ≤ 1.
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Suppose the crystal is a parallelepipedal block that contains Na, Nb, Nc cells respectively
along the direction ~a,~b,~c. The measure of the scattering amplitude then gives

∣∣∣∣∣∣

Na−1∑

a=0

Nb−1∑

b=0

Nc−1∑

c=0




N∑

j=1

aj exp 2iπ
〈
rj + a~a + b~b + c~c,~s

〉



∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

N∑

j=1

aj exp 2iπ〈rj , ~s〉
∣∣∣∣∣∣

2∣∣∣∣∣
Na−1∑

a=0

Nb−1∑

b=0

Nc−1∑

c=0

exp 2iπ
〈
a~a + b~b + c~c,~s

〉∣∣∣∣∣

2

:= |FS(~s)|2|FL(~s)|2.

Now write ~s in reciprocal coordinates ~s = x~a∗ + y~b∗ + z~c∗ where ~a∗,~b∗,~c∗ is the dual basis to
~a,~b,~c, then

|FL(~s)|2 =
sin2(Naπx)
sin2(πx)

sin2(Nbπy)
sin2(πy)

sin2(Ncπz)
sin2(πz)

.

It follows that
|FL(~s)|2

(NaNbNc)2
→ δZ~a∗+Z~b∗+Z~c∗(~s). As Na, Nb and Nc are all three big, one thus

considers that a diffraction experiment allows to measure |FS(~s)|2 for ~s ∈ Z~a∗ + Z~b∗ + Z~c∗.
Let us now consider a particular case where all atoms in the crystal are identical, that is

aj = a for all j and we may assume that a = 1. We further assume that the atoms can only
occupy specific positions

~rj =
kj

p
~a +

lj
q
~b +

mj

r
~c, 0 ≤ kj ≤ p− 1, 0 ≤ lj ≤ q − 1, 0 ≤ mj ≤ r − 1.

Moreover, we assume that aj = a
(1)
kj

a
(2)
lj

a
(3)
mj (with the obvious abuse of notation) with each

a
(1)
kj

, a
(2)
lj

, a
(3)
mj = 0 or 1. Such a crystal is called a cyclotomic crystal. Then the measurement

gives, for a, b, c ∈ Z,

|FS(a~a∗ + b~b∗ + c~c∗)|2

=

∣∣∣∣∣∣

n−1∑

j=0

a
(1)
j exp(2iπaj/n)

∣∣∣∣∣∣

2∣∣∣∣∣
n−1∑

k=0

a
(2)
k exp(2iπbk/n)

∣∣∣∣∣

2∣∣∣∣∣
n−1∑

l=0

a
(3)
l exp(2iπcl/n)

∣∣∣∣∣

2

.

This leads us to introduce the following problem n which we will now concentrate:

Problem 2 (Phase Retrieval Problem for Cyclotomic Crystals).
Given ρ0, . . . , ρn−1 ∈ {0, 1}, find all η0, . . . , ηn−1 ∈ {0, 1} such that, for all k = 0, . . . , n− 1,

∣∣∣∣∣∣

n−1∑

j=0

ηje
2iπkj/n

∣∣∣∣∣∣
=

∣∣∣∣∣∣

n−1∑

j=0

ρje
2iπkj/n

∣∣∣∣∣∣
.

Trivial solutions to this problem are given by

ηj = ρj−j0 (modn) and ηj = ρ−j−j0 (modn)
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for some j0 ∈ {0, . . . , n− 1}. Indeed, one respectively has

n−1∑

j=0

ηje
2iπkj/n = e2iπkj0/n

n−1∑

j=0

ρje
2iπkj/n

and

n−1∑

j=0

ηje
2iπkj/n = e2iπkj0/n

n−1∑

j=0

ρje2iπkj/n.

2. Notations and preliminaries on cyclotomic roots

Facts in this section are classical and can be found in almost any introductory book on
algebra. We include them here for the sake of self-completeness.

We will now adopt the following notations:
— we fix an integer n and define ω = e2iπ/n and ζ = eiπ/n.
— We will identify Zn := Z/nZ with {0, . . . , n− 1}, Γn := {ωk, k = 0, . . . , n− 1} the set of
n-th roots of unity and {δ0, . . . , δn−1} the set of Dirac masses at 0, . . . , n− 1 (seen as e.g. a
subset of the set of measures on Zn). Moreover, we will say that Zn ⊂ Z2n in the sense that
Γn ⊂ Γ2n.
— Next we define Q[Zn] = {P =

∑

g∈Zn

ρgδg : ρg ∈ Q}. To an element P ∈ Q[Zn], we

associate a polynomial P(x) :=
n−1∑

k=0

ρkx
k. We define P ∗ =

∑

g∈Zn

ρ−gδg to which corresponds

the polynomial P∗(x) =
n−1∑

k=0

ρn−kx
k. Note that P ∗∗ = P .

— For P ∈ Q[Zn] and k ∈ Z, we define the discrete Fourier transform as P̂ (k) = P(ωk). This
is obviously n-periodic and is thus defined on Zn. Note that P̂ ∗ = P̂ .
— For P,Q ∈ Q[Zn] we define P ∗ Q as the element in Q[Zn] which is associated to the
polynomial P(x)Q(x) (modxn − 1). Obviously P ∗ Q = Q ∗ P and (P ∗ Q)∗ = P ∗ ∗ Q∗.
Moreover P̂ ∗Q = P̂ Q̂.
— Finally, if E ⊂ Zn we define χE =

∑

k∈E

δk ∈ Q[Zn] and we call such elements of Q[Zn] sets.

Note that χ∗E = χn−E .

The n-th root of unity ωj is said to be a root of order o(j) where o(j) is the smallest
integer such that jo(j) is divisible by n. Explicitly o(j) = n/gcd(j, n). If n = pk1

1 · · · pkm
m is

the decomposition of m into prime numbers, it follows that possible orders are o = pl1
1 · · · plm

m

where 0 ≤ lj ≤ kj .
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The nth roots of a given order m constitute the roots of the so-called cyclotomic polynomial
Πm. These polynomials are explicitly defined by

Πm(x) =
∏

1≤j≤m

j relatively prime to m

[
x− exp

(
2iπj

m

)]
.

They have integer coefficients, are irreducible over the rationals and further, if P ∈ Q[X] is
such that Q(ωj) = 0 then Q(X) = Πo(j)(X)R(X) with R ∈ Q[X]. In particular, Q(ωk) = 0
for all k’s such that n/gcd(k, n) = n/gcd(j, n).

For instance,
Xm − 1 =

∏

1≤j≤m

j divides m

Πj(X).

3. Non-trivial solutions

3.1. Reformulation of Problem 2.

As |P̂ |2 = P̂ P̂ ∗ = P̂ ∗ P ∗, we may now reformulate and generalize the Phase Retrieval
Problem 2 as follows:

Problem 3.
(1) Given P ∈ Q[Zn], find all Q ∈ Q[Zn] such that Q ∗Q∗ = P ∗ P ∗.
(2) Given E ⊂ Zn, find all F ⊂ Zn such that χF ∗ χ∗F = χE ∗ χ∗E.

Note that if a ∈ Zn, then δa ∗ δ∗a = δa ∗ δ−a = δa−a = δe and that δe ∗ P = P . Thus
(±δa ∗ P ) ∗ (±δa ∗ P )∗ = δa ∗ δ∗a ∗ P ∗ P ∗ = P ∗ P ∗. Also if Q = P ∗ then Q∗∗ = P so that
Q ∗Q∗ = P ∗ P ∗.
Definition.
If P, Q are as in Problem 3(1), they are said to be homometric. If moreover there exists
a ∈ Zn such that Q = ±δa ∗ P or Q = ±δa ∗ P ∗, then P and Q are said to be trivially
homometric.

Remark.
Note that, as two sets E and F are homometric if and only if |χ̂E(k)| = |χ̂F (k)| for all k,
then in particular, for k = 0 we get |E| = |F |.

Using the properties above, it is then easy to prove the following:

Proposition 3.1.
If A,B ∈ Q[Zn] then P = A ∗B and Q = A∗ ∗B are homometric.

Proof. Indeed P ∗P ∗ = A∗B ∗A∗ ∗B∗ = A∗B∗ ∗A∗ ∗B∗∗ = (A∗B∗)∗(A∗B∗)∗ = Q∗Q∗. ¤

Remark 3.2.
We have Q[Zn] ⊂ Q[Z2n] in the sense that if, to P ∈ Q[Zn], we associate the polynomial P,
then the polynomial P+ given byP+(Z) = P(Z2) is associated to an element P+ ∈ Q[Z2n].
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It is then obvious that if P,Q ∈ Q[Zn] are homometric if and only if P+ and Q+ are
homometric in Q[Z2n].

In general, P and Q are not trivially homometric. Note also that if A and B are sets, P
and Q need not be sets. Nevertheless, this may happen:

Example.
For this example, it is easier to work with polynomials. Let A = 1 + x + x3 so that A∗ =
1 + x2 + x3. If we take B = 1 + x4 + x9 then

P = AB = 1 + x + x3 + x4 + x5 + x7 + x9 + x10 + x12

while
Q = A∗B = 1 + x2 + x3 + x4 + x6 + x7 + x9 + x11 + x12.

These corespond respectively to the sets E = {0, 1, 3, 4, 5, 7, 9, 10, 12} and F = {0, 2, 3, 4, , 6, 7, 9, 11, 12}
in Z13.

To see that E and F are not homometric, note that in E the only element that has no
“neighbor (mod 13)” is 7 and in F it is 9. So if E = F −a then a = 2 as 9 has to be translated
to 7. But

F − 2 (mod 13) = {0, 1, 2, 4, 5, 7, 9, 10, 11} 6= E (mod 13).

Now reflect F , −F = {0, 1, 2, 4, 6, 7, 9, 10, 11} and now 4 is the only “isolated” element so if
E = −F + a then a = 1 but

−F + 1 = {1, 2, 3, 5, 7, 8, 10, 11, 12} 6= E (mod 13).

The reader should now be convinced that this is just a matter of computing length and
relative position of intervals in E and F , as these are conserved by translation and symmetry.
E contains one interval of length 1, {7} which is surrounded by two intervals of length 2,
{4, 5} and {9, 10} while F contains one interval of length 1, {9} which is surrounded by an
interval of length 2, {6, 7} and an interval of length 3, {11, 12, 0}.

3.2. Patterson diagrams.
There is a more geometric way of looking at homometric sets, which actually explains the
denomination.

It is convenient to represent a set E ⊂ Zn as a set of roots of unity on circle of unit
circumference in the plane: ΓE = {ζk, k ∈ E}. Each pair of points in ΓE is joined by a cord.
The set of cords thus obtained is called the Patterson diagram of E. We give to each cord
in the Patterson diagram, a length equal to the length of the smaller arc that it subtends.
Thus they are of the form 2πm/n, m ∈ {0, . . . , n− 1} and typically, only m is shown.

Then E and F are homometric if and only if, every distance that appears in the Patterson
diagram of E appears in the Patterson diagram of F with same multiplicity, and vice versa.

The sets E and F are trivially homometric if their Patterson diagrams are obtained from
each other by a rotation and (eventually) a symmetry.

For every set E of cardinality 1, 2 or 3, it is then easy to see that if E and F are homometric,
then they are trivially homometric. For sets of cardinality 4, the situation is different. In
Figure 1 and 2 we exhibit two families of non-trivially homometric sets of four elements:
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2m−s
 =m+r

2m−r
   =m+s

2m−r
   =m+s

2m−s
 =m+r
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ss

r

m

2m

m

2m

Figure 1. The two sets in Z/nZ with n = 4m are homometric. Here r + s =
1/4, the case r = s was discovered by Paterson and the general case by Erdös.
Such sets will be called type 1 sets.

m

2m

3m 5m

4m

m

2m

4m

5m
6m

3m

6m

Figure 2. The two sets in Z/nZ with n = 13m are homometric. These were
discovered by Edgar. Such sets will be called type 2 sets.

Proposition 3.3 (Berman & Rosenblatt [Ro]).
Let F ⊂ Zn be a set of 4 elements. If there exists a set F that is homometric to E but not
trivially homometric, then either E and F are of type 1 defined in Figure 1 or E and F are
of type 2 defined in Figure 2.

4. The converse to Proposition 3.1: Rosenblatt’s Theorem

In Proposition 3.1 we have shown how to construct homometric polynomials. We will
now show, following Rosenblatt [Ro], that this construction actually descibes all homometric
paires.

Theorem 4.1 (Rosenblatt [Ro]).
Let P, Q ∈ Q[Zn]. The following are equivalent:

(i) P and Q are homometric;
(ii) there exists ε1, ε2 ∈ {−1, 1}, k1, k2 ∈ Zn, A,B ∈ Q[Zn] such that

P = ε1δk1 ∗A ∗B and Q = ε2δk2 ∗A∗ ∗B;

(iii) there exists ε1, ε2 ∈ {−1, 1}, A,B ∈ Q[Z2n] such that

P = ε1A ∗B and Q = ε2 ∗A∗ ∗B;
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Proof. From Remark 3.2, (iii) clearly implies (i).
If we have (ii), then consider k1, k2 ∈ Zn ⊂ Z2n then v1 = (k1− k2)/2 and v2 = (k1 +k2)/2

both make sense in Z2n. Moreover, δk1 = δv1 ∗ δv2 while δk2 = δ−v1 ∗ δv2 = δ∗v1
∗ δv2 . Then set

A1 = δv1 ∗A and B1 = δv2 ∗B so that P = ε1A1 ∗B1 and Q = ε2A
∗
1 ∗B1.

To prove the remaining part of the theorem, we will need several intermediate results.

Lemma 4.2.
Let V ∈ Q[Zn] such that, for all k, V̂ (k) 6= 0. Then for every W ∈ Q[Zn], there exists
U ∈ Q[Zn] such that U ∗ V = W .

Proof of Lemma 4.2. To U, V, W let us associate the polynomials U,V,W and let us write

U(x) =
n−1∑

j=0

ujx
j , V(x) =

n−1∑

j=0

vjx
j and W(x) =

n−1∑

j=0

wjx
j . Then U ∗ V = W is equivalent to

UV =W (modxn − 1). Since

UV (modxn − 1) =
n−1∑

j=0

(
n−1∑

k=0

ukvj−k (modn)

)
xj

we want that

(4.1)




v0 vn−1 · · · v1

v1
. . . . . .

...
...

. . . . . . vn−1

vn−1 · · · v1 v0







u0
...
...

un−1


 =




w0
...
...

wn−1


 .

Let us write this in matrix form as C(V )U = V. Note that the transpose tC(V ) of C(V ) is a
circulant matrix so that its eigenvectors are known to be

{(1k, ωk, ω2k, . . . , ω(n−1)k), k = 0, . . . , n− 1}.
A simple computation then shows that the corresponding eigenvalues are V̂ (k), k = 0, . . . , n−
1. As these are assumed to be nonzero, det C(V ) = det tC(V ) 6= 0, and as v0, . . . , vn−1 ∈ Q,
det C(V ) ∈ Q. It then follows that for every W , Equation (4.1) has a solution. Moreover,
Cramer’s Formula shows that u0, . . . , un−1 ∈ Q. ¤

We then need the following lemma:

Lemma 4.3.
For every P ∈ Q[Zn] there exist P̃ ∈ Q[Zn] such that

̂̃
P (k) =

{
1 if P̂ (k) = 0
0 else

= χ{k∈Zn : bP (k)=0}.

Remark.
The key point of the lemma is that P̃ is actually in Q[Zn] and not in C[Zn]. Note also that if
we consider δ0 − P then the roles of 0 and 1 are exchanged: δ̂0 − P = χ{k∈Zn : bP (k) 6=0}. This
is actually the polynomial constructed in the proof.
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Proof. Let us write P = ΠP1 where Π is a product of cyclotomic polynomials and P1 ∈ Q[Zn]
is such that P̂1(k) 6= 0 for all k. Write xn − 1 = ΠΠ̃ where Π̃ ∈ Q[Zn] is also a product of

cyclotomic polynomials so that ̂̃Π(k) = 0 if and only if Π̂(k) 6= 0 i.e. if and only if P̂(k) 6= 0.
Let V = P+Π̃ so that V ∈ Q[Zn] and V̂(k) 6= 0 for all k. According to the previous lemma,

there exists U ∈ Q[Zn] such that UV = 1 mod(xn − 1). In particular Û(k)V̂(k) = 1 for all k.
Finally, let W = UPmod(xn − 1) so that, if P̂(k) = 0 then Ŵ(k) = Û(k)P̂(k) = 0.

Otherwise, if P̂(k) 6= 0 then ̂̃Π(k) = 0. Thus

Ŵ(k) = Û(k)P̂(k) = Û(k)(P̂(k) + ̂̃Π(k)) = Û(k)V̂(k) = 1.

This corrects a small mistake in [Ro]. ¤

Definition.
An element U ∈ Q[Zn] is called a spectral unit if U∗ ∗ U = δ0 or equivalently |Û | = 1.

Proposition 4.4.
Let P,Q ∈ Q[Zn], then P and Q are homometric if and only if there exists a spectral unit U
such that U ∗ P = Q.

Proof. Choose R ∈ Q[Zn] such that R̂ = χ{k∈Zn : bP (k)=0}. Then P + R, Q + R ∈ Q[Zn] and

P̂ + R = P̂ +χ{k∈Zn : bP (k)=0} never vanishes. Lemma 4.2 gives then the existence of a solution
U ∈ Q[Zn] of U ∗ (P + R) = Q + R.

It follows that, for k ∈ Zn,
— if k is such that P̂ (k) 6= 0 so that R̂(k) = 0,

Û(k)P̂ (k) = Û(k)
(
P̂ (k) + R̂(k)

)
= Q̂(k) + R̂(k) = Q̂(k),

thus, as |P̂ (k)| = |Q̂(k)|, we get |Û(k)| = 1;
— otherwise P̂ (k) = 0 so that R̂(k) = 1 thus

Û(k) = Û(k)
(
P̂ (k) + R̂(k)

)
= Q̂(k) + R̂(k) = 1.

Moreover in this case, as 0 = |P̂ (k)| = |Q̂(k)| we also have Û(k)P̂ (k) = Q̂(k).
It follows that for all k ∈ Zn, |Û(k)| = 1 and Û(k)P̂ (k) = Q̂(k). This establishes the first

implication in the proposition, the converse being trivial. ¤

We can now conclude the proof of Rosenblatt’s Theorem.
Let P, Q be two homometric elements of Q[Zn]. Let R = P ∗+Q∗ and S = P ∗−Q∗. Then

R ∗ P = P ∗ ∗ P + Q∗ ∗ P = Q∗ ∗Q + Q∗ ∗ P = Q∗ ∗R∗ = (R ∗Q)∗.

Set A1 = R ∗ P so that R ∗Q = A∗1.

Assume for a moment that R̂ never vanishes, then from Lemma 4.2, there exists B1 ∈ Q[Zn]
such that B1 ∗R = δ0. Then P = B1 ∗A1 = A1 ∗B1 while Q = A∗1 ∗B1. As R̂ might vanish,
further computations are needed.

We now set A2 = S ∗ P and a computation as above then shows that S ∗Q = −A∗2. If Ŝ
never vanishes, a similar argument to the above would allow us to conclude. Again, this may
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not be the case. Using Lemma 4.3, we can choose W1,W2 ∈ Q[Zn] such that Ŵ1 = χ{ bP+ bQ=0}
and Ŵ2 = χ{ bP− bQ=0}. Let V1 = (δ0 −W2) ∗W1 ∈ Q[Zn] and V2 = W1 ∗W2 ∈ Q[Zn] so that

V̂1 = χ{ bP− bQ6=0}∩{ bP+ bQ=0} and V̂2 = χ{ bP− bQ=0}∩{ bP+ bQ=0} = χ{ bP=0}∩{ bQ=0}.

Finally, let V = (δ0 −W1) ∗R + (δ1 − δn−1) ∗ V1 ∗ S + V2.1 Then

V̂ (k) =





R̂(k) 6= 0 if P̂ (k) + Q̂(k) 6= 0
(ωk − ω(n−1)k)Ŝ(k) if P̂ (k) + Q̂(k) = 0 and P̂ (k)− Q̂(k) 6= 0
V̂2(k) = 1 if P̂ (k) + Q̂(k) = 0 and P̂ (k)− Q̂(k) = 0

.

Note that ωk − ω(n−1)k = 0 if and only if k = 0 or k = n/2 and this last case is only possible
when n is even. Hence V̂ (k) 6= 0 unless P̂ (0) + Q̂(0) = 0 and P̂ (0)− Q̂(0) 6= 0 or, when n is
even, P̂ (n/2) + Q̂(n/2) = 0 and P̂ (n/2)− Q̂(n/2) 6= 0.

Assume for a moment that P and Q are such that if P̂ (0)+Q̂(0) = 0 then also P̂ (0)−Q̂(0) =
0 and, in the case n is even, if P̂ (n/2) + Q̂(n/2) = 0 then also P̂ (n/2)− Q̂(n/2) = 0. Then
P̂ (k) = Q̂(k) for all k such that V̂ (k) = 0. Further, as V2 ∗ P = V2 ∗Q = 0,

V ∗ P = (δ0 −W1) ∗B1 + (δ1 − δn−1) ∗ V1 ∗B2,

and

V ∗Q = (δ0 −W1) ∗B∗
1 − (δ1 − δn−1) ∗ V1 ∗B∗

2

= (δ0 −W1) ∗B∗
1 + (δ1 − δn−1)∗ ∗ V1 ∗B∗

2 .

But, as Ŵ1 and V̂1 are real valued, (δ0 − W1)∗ = δ0 − W1 and V ∗
1 = V1. Hence, letting

A = V ∗P , then A∗ = V ∗Q. Since V̂ is never zero, we get from Lemma 4.2 that there exists
B ∈ Q[Zn] such that B ∗ V = δ0. This gives then P = A ∗B and Q = A∗ ∗B.

We will now make the necessary adjustments.
— Assume first that n is odd and that P̂ (0) + Q̂(0) = 0 while P̂ (0)− Q̂(0) 6= 0. Then we

just have to replace P by P0 = −P which is trivially homometric to P thus homometric to
Q. The previous argument gives a factorization P = −A ∗B and Q = A∗ ∗B.

— Assume now that n is even. Assume further that P̂ (0) + Q̂(0) = P̂ (n/2) + Q̂(n/2) = 0
while P̂ (0) − Q̂(0) 6= 0 and P̂ (n/2) − Q̂(n/2) 6= 0. Then, again we replace P by P0 = −P
and we conclude as above.

— Assume now that P̂ (0) + Q̂(0) = 0 but P̂ (n/2) + Q̂(n/2) 6= 0 and P̂ (0) − Q̂(0) 6= 0.
Consider P0 = −δ1 ∗ P which is trivially homometric to P , thus homometric to Q. Then
P̂0(0) = −P̂ (0) so that P̂0(0) + Q̂(0) 6= 0 while P̂0(n/2) = −ωn/2P̂ (n/2) = P̂ (n/2) so that
P̂0(n/2) + Q̂(n/2) 6= 0 and we are back in the previous case. We thus obtain a factorization
P0 = A ∗B thus P = −δn−1 ∗A ∗B and Q = A∗ ∗B.

— Finally, assume that P̂ (n/2)+ Q̂(n/2) = 0 but P̂ (0)+ Q̂(0) 6= 0 and P̂ (n/2)− Q̂(n/2) 6=
0. We then set P0 = δ1 ∗ P which is homometric to Q and for which P̂0(0) = P̂ (0) and

1The factor δ1 − δn−1 could be replaced by any factor E ∈ Q[Zn] such that E∗ = −E and for which we

know the zeroes of bE. But such an E necessarily has bE = − bE, thus bE(0) = 0 and, if n is even bE(n/2) = 0,
since these two numbers are real. So E = δ1 − δn−1 is the simplest possible choice.
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P̂0(n/2) = −P̂ (n/2). It is then immediate to see that we are in the previous case and that
we obtain a factorization P = δn−1 ∗A ∗B and Q = A∗ ∗B. ¤

5. A remark on trivial solutions

Trivial solutions appear in every phase retrieval problem, but with no precise definition of
what such a solution should be. In [BGJam] we proposed a definition that adapts to every
problem. In our case, this would read:
Definition.
A trivial solution is a linear map T : Q[Zn] → Q[Zn] such that

(1) for every P ∈ Q[Zn], P and TP are homometric.
(2) for every set E ⊂ Zn, there exist a set F ⊂ Zn such that TχE = χF .

Remark : According to Proposition 4.4, if we omit Condition 2 in the above definition, for
every spectral unit U , TP = U ∗ P is a trivial solution and every solution is trivial.

Proposition 5.1.
Every trivial solution is either of the form TP = δk ∗ P or of the form TP = δk ∗ P ∗.

Proof. Let us recall that if χE and χF are homometric, then E and F have same cardinality.
Now if E = {k}, the set F given by χF = TχE has only one element, call it jk. If E = {k, `}

then χF = TχE = T (δk +δ`) = Tδk +Tδ` = δjk
+δj`

and as F has to have 2 elements, jk 6= j`,
thus k 7→ jk is one to one from Zn → Zn thus also onto, that is, there exists a permutation
σ such that jk = σ(k).

Finally, {0, k} and {σ(0), σ(k)} are homometric if and only if for all j ∈ {0, . . . , n− 1},
|1 + ωjk|2 = |ωjσ(0) + ωjσ(k)|2

that is, cos
2πjk

n
= cos

2πj
(
σ(k)− σ(0)

)

n
. So either j

(
σ(k) − σ(0)

)
= jk mod n and σ(k) =

k + σ(0) modn or j
(
σ(k)− σ(0)

)
= −jk mod n and σ(k) = −k + σ(0) modn.

It is then easy to check that in the first case TP = δσ(0) ∗ P and in the second TP =
δσ(0) ∗ P ∗. ¤

6. Higher order invariants

A direct inspection shows that, P =
∑

pkδk, Q =
∑

qkδk ∈ Q[Zn] are homometric if and
only if, for all k ∈ Zn, ∑

pjpj+k =
∑

qjqj+k.

It is sometimes possible to measure the more general quantity

N
(r)
P (k1, . . . , kr−1) =

n−1∑

j=0

pjpj+k1 · · · pj+kr−1

where r ≥ 2 is a fixed integer and k1, . . . , kk−1 run over Zn. N (r) is called an invariant of
order r. The invariant of order 2 is also called the Patterson function. If P = χE , we will
simply write N

(r)
E = N

(r)
P . This leads to the following problem:

Problem 4.
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(i) Fixed r ≥ 3, does N
(r)
P = N

(r)
Q imply that qj = εpj+j0 for some j0 ∈ Zn and ε = 1 if

r is even while ε ∈ {+1,−1} if r is odd?
If yes, what is the smallest r for which this is possible.

(ii) What is the answer to the previous question when P and/or Q are further restricted
to sets, i.e. does N

(r)
Q = N

(r)
E imply that Q = ±χE−k0 for some k0 ∈ Zn?

Restriction on P and Q.
As our primary interest is in Problem 4(ii), it is natural to assume that pj , qj ≥ 0 for all j
and at least one is nonzero. We will write P,Q ∈ Q+[Zn]. In particular, this removes the
parameter ε in Problem 4(i). This also implies that P̂ (0) =

∑
pj = ‖p‖1 > 0 and also implies

that P̂ (−k) = P̂ (k).

Remark.

Note that
n−1∑

k1,...,kr−1=0

N
(r)
P (k1, . . . , kr−1) = ‖P‖n

1 so that if N
(r)
P = N

(r)
Q then ‖P‖1 = ‖Q‖1.

Further
n−1∑

kr−1=0

N
(r)
P (k1, . . . , kr−1) = N

(r−1)
P (k1, . . . , kr−2)‖P‖1.

It follows that if N
(r)
P = N

(r)
Q then, for all r′ ≤ r, N

(r′)
P = N

(r′)
Q . Therefore, the second part

of Problem 4(i) makes sense.

Taking the discrete Fourier transform of N
(r)
P in the k1, . . . , kr−1 variable, it is easy to

check that N
(r)
P = N

(r)
Q if and only if

(6.2) Q̂j1 · · · Q̂jr−1Q̂j1+···+jr−1 = P̂j1 · · · P̂jr−1P̂j1+···+jr−1

for all j1, . . . , jr−1 ∈ Zn.
First, taking j1 = · · · = jr−1 = 0 in (6.2), and using the fact that Q̂(0) =

∑
qj is real

(rational), we get that Q̂(0)r = P̂ (0)r. Thus Q̂(0) = P̂ (0) if r is odd and Q̂(0) = ±P̂ (0) if r

is even. There is no loss of generality in assuming that Q̂(0) = P̂ (0).
Next, take j1 = j arbitrary and j2 = · · · = jr−1 = 0 in (6.2), then we get |q̂(j)|2 = |p̂(j)|2.

We may thus write qj = eiϕjpj . Reintroducing this in (6.2), we see that Problem 4 amounts
to solving the functional equation

(6.3) ϕj1+···+jr−1 ≡ ϕj1 + · · ·+ ϕjr−1 (mod 2π)

for all j1, . . . , jr−1 ∈ supp p̂ such that j1 + · · ·+ jr−1 ∈ supp P̂ .
The main difficulty will be to handle the holes of supp P̂ .

Remark 6.1.
If supp P̂ = Zn and that N

(3)
Q = N

(3)
P . then, with r = 3, j1 = j, j2 = k, (6.3) reduces to

ϕj+k = ϕj + ϕk, therefore k → e2iπϕk is a character of Zn, thus there exists j0 ∈ Zn such
that for all k ∈ Zn, cωkj0 for some c ∈ C with |c| = 1.

But then Q̂(k) = cωkj0P̂ (k) thus qk = cpk−k0.
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A more refined argument, based on a Lemma of Lenstra [Le] gives the following result
([GM, Theorem 3]):

Theorem 6.2 (Grünbaum & Moore).
Let n be an odd integer and let P, Q ∈ Q+[Zn] be such that N

(3)
Q = N

(3)
P . Assume further that

P̂ (1) 6= 0, then there exists k0 ∈ Zn such that for all k ∈ Zn, qk = pk−k0.

Moreover, Grünbaum and Moore also proved the following:

Theorem 6.3 (Grünbaum & Moore).

(i) Let n be an odd integer and let P, Q ∈ Q+[Zn] be such that N
(4)
Q = N

(4)
P . Then there

exists k0 such that for all k ∈ Zn, qk = pk−k0.
(ii) Let n be an even integer and let P, Q ∈ Q+[Zn] be such that N

(6)
Q = N

(6)
P . Then there

exists k0 such that for all k ∈ Zn, qk = pk−k0.
(iii) Let n be an even integer and let E ⊂ Zn be such that χ̂E(1) 6= 0. Every Q ∈ Q+[Zn]

such that N
(4)
Q = N

(4)
P is of the form qk = pk−k0 for some k0 ∈ Zn.

From this and a little bit of number theory, one may then get the following ([JamK,
Theorem 3]):

Proposition 6.4 (Jaming & Kolountzakis).
Let a ≥ 1 be an integer and ℘ ≥ 3 a prime. Let n = ℘a and let P,Q ∈ Q+[Zn] be such that
N

(3)
Q = N

(3)
P . Then there exists k0 ∈ Zn such that F = E − k0.

Proof. If a = 1 i.e. n = ℘. As P̂ (0) 6= 0, there are only two possibilities:
— either P̂ (k) = 0 for some k and then P̂ (k) = 0 for all k 6= 0, thus P = cχZn and the

same holds for Q;
— or P̂ does not vanish and we conclude with Remark 6.1.
Assume now we have proved the Theorem for n = ℘b for b = 0, . . . , a−1 and let P ∈ Q[Z℘a ].

This time, there are four possibilities:
— P̂ (k) = 0 for all k 6= 0 and we conclude as above;
— P̂ (k) 6= 0 and Remark 6.1 gives the result;
— P̂ (k) = 0 only for those k of the form k = `℘a−b, 1 ≤ ` ≤ ℘b, b ≥ 1 and then Theorem

6.2 gives the result;
— or P̂ (k) 6= 0 only for those k of the form k = `℘a−b, 1 ≤ ` ≤ ℘b, b ≥ 1. But then P̂ is

supported in a subgroup of Zpa and so is then Q̂. We may thus assume that P, Q ∈ Q[Zpa ]
and have same 3-deck there and we conclude with the induction hypothesis. ¤

This result was already known in the case n = ℘ a prime, but the above proof is simpler
see [JamK] for references. The second result proved in [JamK] is the following:

Proposition 6.5 (Jaming & Kolountzakis).
Let p ≥ 3 and q ≥ 3 be two distinct prime numbers and n = pq. Let E ⊂ Zn and assume that
Q ∈ Q+[Zn] has N

(3)
Q = N

(3)
E , then Q = χE−k for some k ∈ Zn.

Proof. There was a small gap in the proof of [JamK], so we take here the occasion to correct
this.
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In this case there are 4 cyclotomic classes {0}, Cp the nonzero multiples of p, Cq the nonzero
multiples of q and R all other numbers. We have to study the zero set of χ̂E . First χ̂E(0) 6= 0
so there are only 5 cases left: χ̂E may either

— never vanish, in this case we conclude with Remark 6.1;
— vanish on Cp ∪ Cq ∪R, that is everywhere except at 0, but then E = Zn qui Q = χZn ;
— vanish on Cp on Cq or on Cp ∪ Cq only. Then, as p, q ≥ 3, χ̂E(1) 6= 0 and we conclude

with Theorem 6.2;
— vanish on Cp∪R or on Cq∪R. In this case E is supported respectively on the subgroups

qZp and pZq of Zpq and we conclude with Proposition 6.4;
— vanish on R. But in [JamK], we proved that this can not happen for sets! ¤
Finally, note that if p, q, r ≥ 3 are three prime numbers p 6= q, then Grünbaum and Moore

constructed two functions P,Q ∈ Q[Zn] that are not translates of each other but that have
N

(3)
P = N

(3)
Q . In [JamK], we over-interpreted the results in [GM] by saying that these were

sets. This was finally solved in [KK].

7. Some open problems

7.1. Are non-trivial homometric sets exceptional?
Radcliffe and Scott proved that generically, the 3-deck problem has only trivial solutions:

Theorem 7.1 (Radcliffe & Scott [RS]).
The proportion of subsets of Zn that are not determined up to translations by their 3-deck
goes to 0 as n → +∞.

Proof. In order for a set E ⊂ Zn not to be determined by its 3-deck, a necessary condition
is that its Fourier transform vanishes. But, Kleitmans’s extension [Kl] of Erdös’s theorem
on the Littlewood-Offord problem states that, if (xj)j=1,...,n is some collections of vectors of

a normed linear space with ‖xj‖ ≥ 1, then at most

(
n

[n/2]

)
of the sums of the form

∑

j∈E

xj

can belong to any fixed set of diameter at most 1. As a consequence, if we consider for fixed

i the collection of complex numbers {ωij , j = 0, . . . , n− 1} then there are at most
(

n
[n/2]

)

subsets E of Zn such that
χ̂E(i) :=

∑

j∈E

ωij = 0.

Moreover, if χ̂E vanishes, then it aso vanishes for some integer d that dividees n. We thus
get that the proportion of sets that are not determined by their 3-deck is at most

d(n)
(

n
[n/2]

)

2n
,

where d(n) is the number of divisors of n. As, for any ε > 0, d(n) = O(nε), we get that this
proportion goes to 0 with n. ¤

An improved estimate of the proportion of sets not determined up to translation by their
3-deck is given in [KK].
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It is then natural to ask if a similar phenomena occurs for the phase retrieval problem:

Problem 5 (Radcliffe & Scott [RS]).
Does the proportion of subsets of Zn for which the phase retrieval problem has non trivial
solutions go to 0 with n?

7.2. Number of non-trivial homometric sets.
Definition.
For k ≥ 1, let C(k) be the maximal number of mutually non-trivial homometric sets of
cardinal k.

In other words, we want that there exist n ∈ Z and E1, . . . , EC(k) ⊂ Zn such that none of
them is a translate of any other and which are all homometric.

The only thing that is known about C(k) is the following:

Proposition 7.2 (Rosenblatt).
For every m ≥ 1, C(3m) ≥ 2m.

Proof. First note that, as there is no restriction on n, by taking n big enough, periodicity
has no importance.

Let A = {0, 1, 3}. This set has the property that if x1, x2, y1, y2 ∈ A are such that
|x1−x2| = |y1−y2| then {x1, x2} = {y1, y2}. Let Am = 3m +A and, for ε1, . . . , εm ∈ {−1, 1},
define A(ε1, . . . , εm) = ε1A1 + · · ·+ εmAm ⊂ Z. It is then easy to see that all A(ε1, . . . , εm)’s
are all homometric to A(1, . . . , 1) and are not translates of each other. ¤
Problem 6 (Rosenblatt).

(i) Is C(k) > 1 if k ≥ 5?
(ii) Is there an increasing function m(k) such that C(k) ≥ m(k)?

One of the difficulties here is that, even though we have a characterization of homometric
pairs in Theorem 4.1, it is very difficult to use this to construct sets. The following ex-
ample given by J. Rosenblatt shows that well. To descibe this example, we will work with
polynomials. Let

A(x) = x−5/2(1− x3 + x5) and B(x) = x5/2(1 + x + x2 + x3 + x4 + x5 + x7)

so that P (x) = A(x)B(x) = 1 + x + x2 + x5 + x7 + x9 + x12 and Q(x) = A(1/x)B(x) =
1 + x + x5 + x7 + x8 + x10 + x12. It follows that the sets E = {0, 1, 2, 5, 7, 9, 12} and
F = {0, 1, 5, 7, 8, 10, 12} are homometric (say in Z25). The reader may nevertheless check
that P and Q can not be factored by polynomials that have only non-negative coefficients.

7.3. The heavy atom method.
The heavy atom method consist in modifying the crystal by adding a heavy atom to each
unit cell and then doing a second diffraction experiment.

In other words, one does a first experiment which measures |P̂ |2. In the second experiment,
P is replaced by P + Cδk where C > 0 is the electron density of the addet atom and k is
its position. Without loss of generality, we may assume that k = 0. One then measure
| ̂P + Cδ0|2 = |P̂ + C|2.

The question is then to decide whether |Q̂| = |P̂ | and | ̂Q + Cδk| = | ̂P + Cδ0| for some
k ∈ Zn implies that qj = p±j−k.
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Indeed

| ̂Q + Cδk(j)|2 = |Q̂(j) + Cωkj |2 = |Q̂(j)|2 + C2 + 2CReω−kjQ̂(j)

while | ̂P + Cδ0(j)|2 = |P̂ (j)|2 + C2 + 2CRe P̂ (j). Thus the two constraints imply that
Reω−kjQ̂(j) = Re P̂ (j). Then, as

(
Re ω−kjQ̂(j)

)2 +
(
Imω−kjQ̂(j)

)2 = |ω−kjQ̂(j)|2 = |P̂ (j)|2 =
(
Re P̂ (j)

)2 +
(
Im P̂ (j)

)2

we also have Imω−kjQ̂(j) = εjIm P̂ (j) with εj ∈ {−1, 1}. Now, up to replacing qj by qj−k,
we may assume that k = 0. Then, Q̂ = P̂χ{εj=1}+ P̂ ∗χ{εj=−1}. Conversely, every Q ∈ Q[Zn]
such that Q̂ can be written as Q̂ = P̂χE + P̂ ∗χZn\E is a solution of the problem.

The difficulty here is to find all sets E for which Q ∈ Q[Zn]. Nevertheless, to find such a
set, it is enough to take R ∈ Q[Zn] and then set εj = 1 if and only if R̂(j) 6= 0. According

to Lemma 4.3, there exists R̃ ∈ Q[Zn] such that χ{εj=1} = ̂̃
R. It then follows that Q̂ =

P̂
̂̃
R + P̂ ∗(1− ̂̃

R) thus Q = (P − P ∗) ∗ R̃ + P ∗. This is in strong contrast with what happens
in L2(R), see [KST].

Problem 7.
(i) If P is a set, can one construct a Q as above that is also a set?
(ii) Are all solutions described this way? In other terms, if E ⊂ Zn is a set such that

χE = R̂ for some R ∈ Q[Zn], is E a zero set of a Fourier transform of some S ∈
Q[Zn]?
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