Monitoring the temporal and spatio-temporal dynamics of the effective reproduction number from mortality data

L Roques, BioSP, INRAE

With :

Virgile Baudrot, Olivier Bonnefon, Samuel Soubeyrand, BioSP INRAE Jacques Demongeot, UGA, Faculty of Medicine of Grenoble Henri Berestycki, CAMS, EHESS

Part I: Estimating R_t from mortality data, a simple formula

One Health Available online 24 October 2020, 100187 In Press, Journal Pre-proof (?)

Towards unified and real-time analyses of outbreaks at country-level during pandemics

Samuel Soubeyrand ^a $ightarrow \bar{M}$, Jacques Demongeot ^b, Lionel Roques ^a

Show more 🤝

https://doi.org/10.1016/j.onehlt.2020.100187 Under a Creative Commons license Get rights and content open access

Samuel Soubeyrand

Jacques Demongeot

Main ideas

- SIRD model with constant parameters over moving window $(t \tau, t)$
- Work with daily mortality data (cumulated value \hat{D}_t)

$$S'(s) = -\frac{\alpha_s}{N} S I$$

$$I'(s) = \beta I(s) \left(\frac{\alpha_s S}{\beta N} - 1\right)$$

$$I'(s) = \frac{\alpha_s}{N} S I - (\beta + \gamma) I$$

$$R'(s) = \beta I$$

$$D'(s) = \gamma I$$

$$\int_{0}^{T} I(s) = \beta I(s) (\mathcal{R}_t - 1)$$

$$D'(s) = \gamma I$$

$$D(s) = D(t - \tau) + \gamma I(t - \tau) \int_{t-\tau}^{s} e^{\beta u (\mathcal{R}_t - 1)} du$$

$$D(t - \tau) = \hat{D}_{t-\tau} + (\hat{D}_t - \hat{D}_{t-\tau}) \frac{e^{\beta (\mathcal{R}_t - 1) (s - (t - \tau))} - 1}{e^{\beta \tau (\mathcal{R}_t - 1)} - 1}, \text{ for all } s \in (t - \tau, t).$$

 $\rightarrow D(s)$ does not depend on the mortality rate γ and on $I(t-\tau)$

$$D(s) = \hat{D}_{t-\tau} + (\hat{D}_t - \hat{D}_{t-\tau}) \frac{e^{\beta (R_t - 1) (s - (t-\tau))} - 1}{e^{\beta \tau (R_t - 1)} - 1}, \text{ for all } s \in (t - \tau, t).$$

For each t, \mathcal{R}_t is computed with a standard (mean square) fitting procedure, over *smoothed* mortality data.

Data: JHU CSSE, 27 October 2020

$$D(s) = \hat{D}_{t-\tau} + (\hat{D}_t - \hat{D}_{t-\tau}) \frac{e^{\beta (R_t - 1) (s - (t-\tau))} - 1}{e^{\beta \tau (R_t - 1)} - 1}, \text{ for all } s \in (t - \tau, t).$$

For each t, \mathcal{R}_t is computed with a standard (mean square) fitting procedure, over *smoothed* mortality data.

Data: JHU CSSE, 27 October 2020

October 27: $\mathcal{R}_t(\text{France}) \approx 1.3 \text{ vs } \mathcal{R}_t(\text{US}) \approx 1.0$

 $PFR \coloneqq \frac{number \ of \ deaths}{total \ population}$

October 27: $PFR(France) = 51/100\,000$ vs $PFR(US) = 69/100\,000$

 $\rightarrow PFR(\text{US}) \approx 1.3 \times PFR(\text{France})$

Higher immunity rate in the US explains the lower \mathcal{R}_t ?

Part II: Spatio-temporal dynamics of COVID-19 in France local effects vs global factors

Olivier Bonnefon

Virgile Baudrot

Samuel Soubeyrand

CSH) Spring Harbor Laboratory **BMJ** Yale

Henri Berestycki, CAMS, EHESS

THE PREPRINT SERVER FOR HEALTH SCIENCES

Comment on this paper

A parsimonious model for spatial transmission and heterogeneity in the COVID-19 propagation

Lionel Roques, Olivier Bonnefon, D Virgile Baudrot, Samuel Soubeyrand, Henri Berestycki doi: https://doi.org/10.1101/2020.07.15.20154740

This article is a preprint and has not been certified by peer review [what does this mean?]. It reports new medical research that has yet to be evaluated and so should not be used to guide clinical practice.

January 24, 2020: 1st reported cases in France. Some cases already present in December 2019 (Retrospective PCR tests, [Deslandes et al. 2020]).

In June, the spatial pattern of the disease spread seems to have kept track of the first introductions

Local PFR at county scale

 $PFR \coloneqq \frac{number \ of \ deaths}{total \ population}$

This spatial pattern may also be correlated with covariates such as climate [Demongeot et al. 2020]

PFR

Mean temperature (30 March -11 June)

Pearson correlation coefficient: -0.21.

Is this pattern the consequence of the heterogeneity of spatial covariates?

Does it simply reflect the initial heterogeneity?

Data

Mainland France (excluding Corsica island) = 94 counties called 'départements'.

Daily number of hospital deaths excluding nursing homes at the county scale are available from Santé Publique France

Models

Model \mathcal{M}_0 : Standard mean field SIRD model at country scale

$$\begin{cases} S'(t) = -\frac{\alpha(t)}{N} S I, \\ I'(t) = \frac{\alpha(t)}{N} S I - (\beta + \gamma) I, \\ R'(t) = \beta I, \\ D'(t) = \gamma I, \end{cases}$$

- $\alpha(t)$: the contact rate (to be estimated)
- $1/\beta$ is the mean time until an infectious becomes recovered: 10 days \rightarrow Median period of viral shedding: 20 days

 \rightarrow infectiousness tends to decay before the end of this period: starts from 2.5 days before symptom onset and declines within 7 days of illness onset.

• γ : hospital death rate of the infectious. The IFR corresponds to the fraction of the infected who die, that is: $\gamma/(\gamma + \beta)$. Thus, a value of 0.5% [Roques et al, 2020, Salje et al, 2020] for the IFR implies a value $\gamma = 5 \cdot 10^{-4}$.

Model \mathcal{M}_1 : SIRD model at the 'département' scale with globally constant contact rate and no spatial transmission. The model \mathcal{M}_0 is applied at the scale of each département k, leading to compartments S_k , I_k , R_k , D_k , with N replaced by N_k , the total population in the département k.

In this approach, the contact rate $\alpha(t)$ is assumed to be the same in all of the départements.

Model M_2 : SIRD model at the 'département' scale with spatially heterogeneous contact rate and no spatial transmission.

The model \mathcal{M}_1 is extended by assuming that the contact rate $\alpha_k(t)$ depends on the considered département.

Model \mathcal{M}_3 : Département scale model with globally constant contact rate and spatial transmission [Kendall, 1956]. The model \mathcal{M}_1 is extended to take into account disease transmission events between the départements:

$$\begin{cases} S'_{k}(t) = -\frac{\rho(t)}{N_{k}} S_{k} \sum_{j=1}^{n_{d}} w_{j,k} I_{j}, \\ I'_{k}(t) = \frac{\rho(t)}{N_{k}} S_{k} \sum_{j=1}^{n_{d}} w_{j,k} I_{j} - (\beta + \gamma) I_{k}, \\ R'_{k}(t) = \beta I_{k}, \\ D'_{k}(t) = \gamma I_{k}. \end{cases}$$

- Implicitly assumes that infectious individuals may transmit the disease to susceptible individuals in other départements, but eventually return to their département of origin.
- Power law decay with the distance: $w_{j,k} = \frac{1}{1 + (\operatorname{dist}(j,k)/d_0)^{\delta}}$, with $\operatorname{dist}(j,k)$ the geographic distance (in km) between the centroids of départements jand k
- Supported by analysis of the short-time dispersal of bank notes in the US [Brockmann et al, 2006]
- Standard choice in infectious disease modelling [e.g., Merler and Ajelli 2009, for influenza]

Summary of the models

	Heterog.	Heterog.	Intercounty	Nb. parameters
	initial data	contact rate	$\operatorname{transmission}$	
\mathcal{M}_0	no	no	no	n_t
\mathcal{M}_1	yes	no	no	n_t
\mathcal{M}_2	yes	yes	no	$n_d \times n_t$
\mathcal{M}_3	yes	no	yes	$n_t + 2$

Table 1: Main characteristics of the four models. The quantity $n_t = 74$ corresponds to the number of days of the observation period and $n_d = 87$ corresponds to the number of administrative units.

Observation model. $\overline{D}_k(t)$: expected cumulative number of deaths given by the model, in département k. Daily number of new observed deaths $\hat{\mu}_{k,t}$ in département k:

$$\hat{\mu}_{k,t} \sim \text{Poisson}(\overline{D}_k(t) - \overline{D}_k(t-1)).$$

With the mean-field model \mathcal{M}_0 , $\overline{D}_k(t) = D(t) N_k/N$.

Real-time monitoring of the parameters and data assimilation procedure.

-Smooth out the effect of small variations in the data

-Avoid identifiability/computational issues due to the large number of parameters, while keeping the temporal dependence of the parameters

 \rightarrow we fit auxiliary problems with time-constant parameters over moving windows $(t-\tau/2,t+\tau/2)$:

$$\begin{cases} \tilde{S}'_k(s) = -\frac{\tilde{\alpha}}{N_k} \,\tilde{S}_k \,\tilde{I}_k, \\ \tilde{I}'_k(s) = \frac{\tilde{\alpha}}{N_k} \,\tilde{S}_k \,\tilde{I}_k - (\beta + \gamma) \,\tilde{I}_k, & \text{for } s \in (t - \tau/2, t + \tau/2), \\ \tilde{R}'_k(s) = \beta \,\tilde{I}_k, \\ \tilde{D}'_k(s) = \gamma \,\tilde{I}_k, \end{cases}$$
($\tilde{\mathcal{M}}_{1,t}$)

Initial conditions at the date $t - \tau/2$ are computed iteratively from the solution of the model \mathcal{M}_i .

The parameters of the models $\tilde{\mathcal{M}}_i$ are estimated with a maximum likelihood procedure

Inference procedure: maximum likelihood estimation over $(t - \tau/2, t + \tau/2)$ for each t.

Probability of the observations $\hat{\mu}_k$, given the model:

$$f_{\overline{D}_k,\hat{\mu}_k}(s) := \frac{(\overline{D}_k(s) - \overline{D}_k(s-1))^{\hat{\mu}_{k,s}}}{\hat{\mu}_{k,s}!} e^{-(\overline{D}_k(s) - \overline{D}_k(s-1))}$$

Models $\tilde{\mathcal{M}}_{0,t}, \tilde{\mathcal{M}}_{1,t}$: $\mathcal{L}(\tilde{\alpha}_t) = \prod_{k=1}^{n_d} \prod_{s=t-\tau/2}^{t+\tau/2} f_{\overline{D}_k,\hat{\mu}_k}(s).$ MLE $\tilde{\alpha}_t^*$, we set $\alpha(t) = \tilde{\alpha}_t^*$ in models $\mathcal{M}_0, \mathcal{M}_1.$

Model $\tilde{\mathcal{M}}_{2,t}$, esimated parameters $\tilde{\alpha}_k$ (independently in each département).

$$\mathcal{L}_k(\tilde{\alpha}_k) = \prod_{s=t-\tau/2}^{t+\tau/2} f_{\overline{D}_k,\hat{\mu}_k}(s).$$

MLE $\tilde{\alpha}_{k,t}^*$, we set $\alpha_k(t) = \tilde{\alpha}_{k,t}^*$

Model \mathcal{M}_3 , use the estimate obtained with model \mathcal{M}_1 with $\rho(t) = C \alpha(t)$. Estimate 3 parameters:

C, the proximity scale d_0 and the exponent δ (ML estimation).

Results: model fit

	Heterog.	Heterog.	Intercounty	Nb. parameters
	initial data	contact rate	$\operatorname{transmission}$	
\mathcal{M}_0	no	no	no	n_t
\mathcal{M}_1	yes	no	no	n_t
\mathcal{M}_2	yes	yes	no	$n_d \times n_t$
\mathcal{M}_3	yes	no	yes	$n_t + 2$

Table 1: Main characteristics of the four models. The quantity $n_t = 74$ corresponds to the number of days of the observation period and $n_d = 87$ corresponds to the number of administrative units.

Model	AIC	BIC	Log-likelihood	ΔAIC
\mathcal{M}_0	$2.68 \cdot 10^{4}$	$2.73 \cdot 10^{4}$	$-13.4 \cdot 10^{3}$	$-9.57 \cdot 10^{3}$
\mathcal{M}_1	$1.74 \cdot 10^{4}$	$1.79 \cdot 10^{4}$	$-8.62 \cdot 10^{3}$	-220
\mathcal{M}_2	$2.97 \cdot 10^{4}$	$7.36 \cdot 10^{4}$	$-8.41 \cdot 10^{3}$	$-1.25 \cdot 10^4$
\mathcal{M}_3	$1.72 \cdot 10^{4}$	$1.77 \cdot 10^{4}$	$-8.52 \cdot 10^{3}$	0

Table 2: Log-likelihood, AIC and BIC values for the four models. The last column Δ AIC corresponds to the difference with the AIC value of the best model (here \mathcal{M}_3).

Statisticians often argue that AIC chooses the best predictive model, and BIC attempts to select the 'true' process that generated the data.

Results: model fit, regional scale

Results: model fit, parameter values

For model \mathcal{M}_3 ,

MLE: C = 0.87, $d_0 = 2.16$ km and $\delta = 1.85$

- nearly quadratic decay of the weights with the distance
- non-local contagion plays a secondary role compared to within-county contagion: the minimum distance between two counties is 36 km \rightarrow weight 5.5/1000, to be compared with the weight 1 for within-county contagion.
- C is significantly smaller than 1 thus non-local contagion term plays an important role on the spreading of the epidemic.

Byproduct of the estimation of the parameter $\alpha(t)$ (resp. $\alpha_k(t)$) of model \mathcal{M}_1 effective reproduction number in each département, which is given by the formula:

$$\mathcal{R}_t^k = \frac{\alpha(t)}{\beta + \gamma} \frac{S_k(t)}{N_k},$$

Other byproduct: immunity rate $R_k/N_k \pmod{\mathcal{M}_3}$

http://covid19-forecast.biosp.org/

COVID-19 Visualization	= 890/Π INRAQ
🗠 Forecast	Days
🗠 Immunity	2020-04-06
🌐 Мар	2020-04-08 2020-04-27 2020-05-18 2020-06-08 2020-06-29 2020-07-20 2020-06-10 2020-06-31 2020-06-31 2020-06-21
🛢 Data	
4 Credits	Hereins and source and s

Results: limiting movement vs limiting the probability of transmission per contact

We start from the state of the epidemic at June 11. During 10 days, with model \mathcal{M}_3 :

- 'local' contact rate $\rho(t) \approx 0.05 \rightarrow \rho(t) = 0.1 \ (\times 2)$
- $d_0 \approx 2 \text{ km} \rightarrow d_0 = 20 \text{ km} (\times 10)$

We test four strategies (during 30 days):

- Strategy 1: no restriction. $\rho(t) = 0.11$ and $d_0 = 20$ km;
- Strategy 2: restriction on intercounty movement. $\rho(t) = 0.11, d_0 = 2.16$ km, corresponding
- Strategy 3: reduction of the contact rate within each département. $\rho(t) = 0.05$ and $d_0 = 20$ km;
- Strategy 4: reduction of the contact rate and restriction on intercounty movement: $\rho(t) = 0.05$ and $d_0 = 2.16$ km.

We test four strategies:

- Strategy 1: no restriction.
- Strategy 2: restriction on intercounty movement.
- Strategy 3: reduction of the contact rate within each département.
- Strategy 4: reduction of the contact rate and restriction on intercounty movement

Figure 4: Daily number of deaths due to a new outbreak in logarithmic scale; comparison between four management strategies. The number of deaths is computed over the whole country.

Final number of deaths and \mathcal{R}_t over the whole country estimated by fitting I(t) with an exponential function $(I'(t) = (\beta + \gamma)I(\mathcal{R}_t - 1))$.

- Strategy 1: no restriction. 17271 deaths and $\mathcal{R}_t \approx 2$.
- Strategy 2: restriction on intercounty movement. 81% decrease in the cumulative number of deaths (3281 deaths) and $\mathcal{R}_t \approx 1.2$;
- Strategy 3: reduction of the contact rate within each département. 88% decrease (strategy 3, 2139 deaths) and $\mathcal{R}_t \approx 0.8$;
- Strategy 4: reduction of the contact rate and restriction on intercounty movement. 91% decrease (1503 deaths) and $\mathcal{R}_t \approx 0.4$.

To be compared with the 3 232 deaths during the last 30 days.

Conclusions

• Once the epidemic is established, the effect of global processes such as restriction policies and sanitary measures overwhelms the effect of local factors.

 \rightarrow France is a geographically middle size centralised country

• Initial conditions and spatial diffusion are the main drivers of the spatial pattern of the COVID-19 epidemic

 \rightarrow Covariates might play a major role in the emergence of the disease, but our work focuses on the disease dynamics after the emergence.

- Herd immunity (without masks) $1 1/\mathcal{R}_0 \approx 70\%$ of the population has been infected. Most impacted dépatements: the immunity rate is 16%, whereas it is less than 1% in less affected counties.
- Model \mathcal{M}_3 much more parsimonious than fully heterogeneous model \mathcal{M}_2 \rightarrow better suited to isolating key features of the epidemiological dynamics.

Thank you!