Phenomenological models and applications to the SARS-CoV-2 epidemic

Quentin Griette (Université de Bordeaux)

quentin.griette@u-bordeaux.fr

Bordeaux IMB Infectious Disease Outbreaks

March 10, 2021

Coronavirus outbreak: an explosion of data

Globally, as of 11:17am CET, 1 December 2020, there have been 62 662 181 confirmed cases of COVID-19, i

... How to exploit these data ?

Quentin Griette (IMB) Phenomenological models and applications to the SARS-CoV-2 epidemic

PART I: Early results on the SIUR model

A model for the COVID-19: the SIUR model

¹Z Liu et al. "Understanding unreported cases in the COVID-19 epidemic outbreak in Wuhan, China, and the importance of major public health interventions". *Biology* 9.3 (2020), p. 50. DOI: 10.3390/biology9030050.

 $^{^2} J$ Qiu. "Covert coronavirus infections could be seeding new outbreaks.". *Nature (Lond.)* (2020). DOI: 10.1038/d41586-020-00822-x.

A model for the COVID-19: the SIUR model

 $\mathbf{R} = \mathbf{Reported}$

f = fraction of reported cases

U = Unreported

Connection with the data

Reported cases are what goes inside the R compartment,

$$\operatorname{CR}'(t) = \nu f I(t).$$

Here we plot the data of the first wave in Mainland China.

Phenomenological model: the exponential function

We first focus on a period with exponential growth: Jan 20 – Jan 30

Phenomenological model: the exponential function

We first focus on a period with exponential growth: Jan 20 - Jan 30

A first phenomenological model

Phenomenological model: the exponential function

I should be growing exponentially, so $CR(t) = \chi_1 e^{\chi_2(t-t_0)} - \chi_3$.

Identifying the parameters

We start from our phenomenological model

$$\operatorname{CR}(t) = \chi_1 e^{\chi_2(t-t_0)} - \chi_3.$$

Therefore $\operatorname{CR}'(t) = \chi_1 \chi_2 e^{\chi_2(t-t_0)} = \nu f I(t)$, and we recover $I(t) = I_0 e^{\chi_2(t-t_0)}$:

$$I_0 = \frac{\chi_1 \chi_2}{\nu f}$$

By using $U'(t) = \chi_2 U_0 e^{\chi_2(t-t_0)} = \nu(1-f)I(t) - \eta U(t)$, we identify U_0 and then R_0

$$U_{0} = \frac{\nu(1-f)I_{0}}{\chi_{2}+\eta}$$
$$R_{0} = \frac{\nu f I_{0}}{\chi_{2}+\eta},$$

and finally by $I'(t) = \tau S(t) (I(t) + U(t)) - \nu I(t)$:

$$\tau = \frac{(\chi_2 + \nu)I_0}{S_0(I_0 + U_0)}.$$

Identification problem

$$I_{0} = \frac{\chi_{1}\chi_{2}}{\nu f}, \qquad U_{0} = \frac{(1-f)\chi_{1}\chi_{2}}{f(\chi_{2}+\eta)}, \qquad R_{0} = \frac{\chi_{1}\chi_{2}}{\chi_{2}+\eta},$$
$$\tau = \frac{(\chi_{2}+\nu)(\chi_{2}+\eta)}{S_{0}((\chi_{2}+\eta)f+\nu(1-f))}.$$

In particular, the parameters ν , f , η and S_0 cannot be identified from the data

The autonomous SIUR model does not match the data!

Simulation with time-dependent $\tau(t)$

In blue we plot the best match for the full model with public intervention measures.

¹Z Liu et al. "Predicting the cumulative number of cases for the COVID-19 epidemic in China from early data". *Math Biosci Eng* 17.4 (2020), pp. 3040–3051. DOI: 10.3934/mbe.2020172.

PART II: Reconstruction of the transmission rate from the data.

¹J Demongeot, Q Griette, and P Magal. "SI epidemic model applied to COVID-19 data in mainland China". *Roy Soc Open Sci* 7.12 (2020), p. 201878. DOI: 10.1098/rsos.201878.

Going further: identifying the transmission rate

Jacques Demongeot, Université Grenoble Alpes.

Pierre Magal, Université de Bordeaux.

The SIR model with time-dependent transmission

Given (non-identifiable) parameters:

 S_0, ν, f .

Goal: identifying $\tau(t)$ and I_0 .

Theorem (Identification of the transmission rate)

Let $S_0 > 0, \nu > 0, f \in (0, 1)$, and $t_0 < T$ be given. Assume that $N(t) \in C^2$ is a given positive function of time. There is at most one function $\tau(t) > 0$ such that

$$\operatorname{CR}(t) = N(t)$$
 for all $t \in [t_0, T]$,

where CR(t) is the cumulative number of reported cases given by the time-dependent SIR model. $\tau(t)$ exists and is given by the formula

$$\tau(t) = \frac{\nu f\left(\frac{N''(t)}{N'(t)} + \nu\right)}{\nu f(I_0 + S_0) - N'(t) - \nu(N(t) - N(t_0))}$$

whenever N(t) is strictly increasing and the denominator of the right-hand side is positive for all $t \in [t_0, T]$. I_0 is given by

$$I_0 = \frac{\mathrm{CR}'(t_0)}{\nu f} = \frac{N'(t_0)}{\nu f}$$

Among the many phenomenological models used to fit the COVID-19 data, we chose the solution to the **Bernoulli-Verhulst equation**

$$N'(t) = \chi N(t) \left(1 - \left(\frac{N(t)}{N_{\infty}} \right)^{\theta}
ight),$$

which has an explicit expression

$$\mathcal{N}(t) = rac{\mathcal{N}_0 e^{\chi(t-t_0)}}{\left(1+\left(rac{\mathcal{N}_0}{\mathcal{N}_\infty}
ight)^{ heta} \left(e^{\chi heta(t-t_0)}-1
ight)
ight)^{rac{1}{ heta}}}.$$

Figure: In this figure, we plot the best fit of the Bernoulli-Verhulst model to the cumulative number of reported cases of COVID-19 in China. We obtain $\chi_2 = 0.66$ and $\theta = 0.22$. The black dots correspond to data for the cumulative number of reported cases and the blue curve corresponds to the model.

Estimated rate of transmission

By using the Bernoulli-Verhulst equation we obtain

$$\tau(t) = \frac{f\left(\chi\left(1 - (1 + \theta)\left(\frac{N(t)}{N_{\infty}}\right)^{\theta}\right) + \nu\right)}{f\left(I_{0} + S_{0}\right) + \nu N_{0} - N(t)\left(\chi\left(1 - \left(\frac{N(t)}{N_{\infty}}\right)^{\theta}\right) + \nu\right)}.$$
 (1)

This formula (1) combined with the explicit formula for N(t) gives an explicit formula for the rate of transmission.

Transmission rate

Transmission rate

 $\nu = 0.1$ is not compatible with the data !

Compatibility of the model SI with the COVID-19 data for mainland China

The model SI is compatible with the data only when $\tau(t)$ stays positive for all $t \ge t_0$. From the formula we deduce that model is compatible with the data only when

$$1/\nu \le 1/0.14 = 3.3$$
 days. (2)

This means that the average duration of infectious period $1/\nu$ must be shorter than 3.3 days.

Similarly we get a condition on f:

$$f \ge \frac{N_{\infty}\chi + (N_{\infty} - N_0)\nu}{S_0 + I_0} \ge \frac{N_{\infty}\chi + (N_{\infty} - N_0)\chi\theta}{S_0 + I_0}$$

and since we have $CR_0=198$ and $N_\infty=67102$, we obtain

$$f \geq \frac{67102 \times 0.66 + (67102 - 198) \times 0.14}{1.4 \times 10^9} \geq 3.83 \times 10^{-5}.$$
 (3)

PART III: Connecting the waves.

 $^{^1\}text{Q}$ Griette, J Demongeot, and P Magal. "A robust phenomenological approach to investigate COVID-19 data for France". *medRxiv* (2021). DOI: 10.1101/2021.02.10.21251500.

·10⁶ 3 2 1 Jan 03 Feb 29 Apr 26 Jun 22 Aug 18 Oct 14 Dec 10 Feb 05

Epidemic & endemic phases

Blue = epidemic phase, yellow = endemic phase

Epidemic phase

Phenomenological model: $CR(t) = N_{base} + N(t)$, where

$$N'(t) = \chi N(t) \left(1 - \left(\frac{N(t)}{N_{\infty}} \right)^{\theta} \right)$$

We can compute:

• the transmission rate

$$\tau(t) = \frac{\nu f\left(\chi \left[1 - (1 + \theta) \left(\frac{N(t)}{N_{\infty}}\right)^{\theta}\right] + \nu\right)}{\nu f\left(I_0 + S_0\right) - \chi N(t) \left[1 - \left(\frac{N(t)}{N_{\infty}}\right)^{\theta}\right] - \nu \left(N(t) - N_0\right)}$$

• the (effective) basic reproduction number

$$\mathcal{R}_0(t) = rac{S(t) au(t)}{
u}$$

Phenomenological model:

$$\operatorname{CR}(t) = N(t) = N_0 + a \times (t - t_0).$$

We can compute:

• the transmission rate

$$\tau(t) = \frac{\nu^2 f}{\nu f (l_0 + S_0) - a - \nu (t - t_0) \times a}$$

• the (effective) basic reproduction number

$$\mathcal{R}_0(t) = rac{S(t) au(t)}{
u}$$

We want to **connect the phases** while keeping the information on the **transmission rate** and **basic reproductive number**.

Theoretical formula for the transmission rate:

$$\tau(t) = \frac{\nu f\left(\frac{\mathrm{CR}''(t)}{\mathrm{CR}'(t)} + \nu\right)}{\nu f\left(l_0 + S_0\right) - \mathrm{CR}'(t) - \nu\left(\mathrm{CR}(t) - \mathrm{CR}_0\right)}$$

 \rightsquigarrow we need a **smooth interpolation** of the phases.

The global model: cumulative cases

The global model: daily cases

The global model: $\mathcal{R}_0(t)$

Projections: cumulative cases

Projections: daily cases

·10⁴ 8 6 4 2 Feb 27 Apr 28 Jun 28 Aug 28 Oct 28 Dec 28 Feb 27 Apr 29 Blue = epidemic phase, yellow = endemic phase, red = projection Last day: June 5, 2021. Red line: 10 000 cases/day.

The global model: $\mathcal{R}_0(t)$

Thank you !