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1. INTRODUCTION

The aim of this article is to study an optimal control problem for a
system of nonlinear elliptic equations with Dirichlet boundary conditions,

��u x � a x � x � c x u x � eu x u x � � x ,Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .
x � � ,

1.1Ž .��� x � b x u x � d x � x � f� x u x � � x ,Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .
x � � ,

u x � � x � 0, on � � ,Ž . Ž .
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where � is a bounded and regular domain in � n. This system arises from
population dynamics where it models the steady-state solutions of the

� �corresponding nonlinear evolution problem 3 . Here, functions u and �
represent two interacting subpopulations of the same species living in �.
More precisely, u means the concentration of the adult population and �
means the concentration of the young one. Functions a and b show,
respectively, the rate of young which become adults and the rate of young
produced by adults. Moreover, functions c and d reflect the result of
harvesting a portion of the population and they play the role of control.
The constants e and f measure the crowding effect and the competition
between u and � . The Laplacian operator shows the diffusive character of

Ž .u and � within �, and the boundary condition in 1.1 may be interpreted
as the condition that the populations u and � may not stay on � �.

We define the class of admissible controls,

C � C � c, d � L� � � L� � : 0 	 c 	 � , 0 	 d 	 � ,� 4Ž . Ž . Ž .� � 1 21 2

where � and � are fixed positive constants. Under certain assumptions1 2
Ž � � � � . Ž .see hypotheses H1 and H2 below , system 1.1 will have, for each given
Ž . Ž Ž .c, d � C � C , a unique coexistence state a solution u, � with both� �1 2

. Ž .components nonnegative and nontrivial denoted by u , � , and wec, d c, d
will be interested in maximizing the payoff functional J: C � C � �,� �1 2

defined by

2 2J c, d � �u x c x � c x � �� x d x � d x , 1.2Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .H c , d c , d
�

where � and � are fixed positive constants. This functional represents the
difference between economic revenue and cost. The positive constants �
and � describe, respectively, the quotient between the price of the species

Ž� �.and the cost of the control 3, 9, 13 .
The article is organized as follows. Section 2 gives the existence and

Ž .uniqueness of coexistence states of system 1.1 . In our opinion, the results
Žand the methods of this section mainly, the proof of uniqueness by using

.convexity arguments may be of interest, in addition to the control problem
considered in this article. In Section 3, we prove the existence of an
optimal control. Moreover, the optimal controls are characterized in terms
of the optimality system, which is the state system coupled with the adjoint
one. This may be used to prove, when the parameters � and � are
sufficiently small, the uniqueness and approximation to the optimal con-
trol.

� � ŽRelated problems were considered in 7, 16 Dirichlet boundary condi-
. � � Ž .tions and 15 Neumann boundary conditions , where the authors con-
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sider the case of a scalar equation. Systems of equations, with a similar
� � � �payoff functional, were studied in 3, 9, 13 . In 3 , the authors study a

Ž .problem like 1.1 but with Neumann boundary conditions. Here, we
consider the case of Dirichlet boundary conditions, which seems to be

Ž � �.different in many aspects from the Neumann one see 7, 15, 14 . More-
� �over, the current article offers definite improvements on the article 3 . For

example, we simplify the proof about the uniqueness of coexistence states
Ž . � �of 1.1 with respect to that given in 3 . In addition, we delete some of the

� � Žhypotheses used in 3 to obtain the optimality conditions see Theorem 3.3
.below , which is very important for the applications. In the proofs, more-

over of some standard techniques of control theory, we use different
Žmethods and results on elliptic problems upper and lower solutions

.notion, strong maximum principle and strictly convex operators in ordered
Banach spaces. Finally, the corresponding parabolic control problem will

� �be treated elsewhere 12 .

2. EXISTENCE AND UNIQUENESS OF COEXISTENCE STATES

The following assumptions are made throughout the article,

� � n � Ž .H1 � is a smooth bounded domain in � , a, b, c, d � L � ,�
e, f � ��,

� Ž . � �Ž . 4where L � � g � L � : g 
 0 .�

Ž . 1Ž . �Ž . Ž 1Ž .DEFINITION. A pair of functions u, � � H � � L � , H � is0 0
. Ž .the usual Sobolev space , is a weak solution of system 1.1 provided

	u x 	
 x dx � a x � x � c x u xŽ . Ž . Ž . Ž . Ž . Ž .H H
� �

�eu x u x � � x 
 x dx ,Ž . Ž . Ž . Ž .Ž .
2.1Ž .

	� x 	
 x dx � b x u x � d x � xŽ . Ž . Ž . Ž . Ž . Ž .H H
� �

�f� x u x � � x 
 x dxŽ . Ž . Ž . Ž .Ž .

1Ž . Ž . Ž .for all 
 � H � . It follows that each weak solution u, � of 1.10
1, � 1, �Ž . Ž . Ž . � �belongs to C � � C � for all � � 0, 1 8 . By a coexistence state

Ž . Ž . Ž .of system 1.1 we mean a solution u, � of 1.1 with both components
nonnegative and nontrivial.

�Ž .Also, for each g � L � , we denote g � ess inf g, g � ess sup g. Fi-
�Ž . Ž .nally, for every q � L � , � q is the principal eigenvalue of the eigen-1
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value problem,

��u � qu � �u , in � , u � 0, on � � .

� � Ž .It is known 10 that � q is simple and it verifies the variational1
characterization,

� � 2 � � 2	u � q uH H
� �� q � inf .Ž .1

1 2Ž . � 4u�H � � 00 � �uH
�

Ž . Ž .We denote by 
 q the unique eigenfunction associated to � q verifying1 1
Ž . � Ž .� �
 q � 0 in �, 
 q � 1. Let us note that, for every constantL Ž� .1 1

Ž . Ž . Ž . Ž .� � �, one has 
 � � 
 0 , � � � � 0 � � .1 1 1 1

The main result of this section is the next theorem where we suppose
that the positive constants � , � , e, f and the functions a, b are given.1 2
Then, under some additional hypotheses, we prove the existence and the

Ž . Ž .uniqueness of coexistence states of system 1.1 for each c, d � C � C .� �1 2

Basically, these additional hypotheses are of two types. On the one hand,
the quantity ab must be greater than a positive constant which depends on
� , � , and �. On the other hand, the constants a, b must be, respectively,1 2
smaller than the other two positive constants which depend on a, b, e, and
f.

THEOREM 2.1. Let � � 0, for i � 1, 2, be two positi�e numbers. Assumei
� �H1 and

�1� �H2 ab � � � � � , a 	 a 1 �  , b 	 b 1 �  ,Ž . Ž . Ž . Ž .1 1 1 2

where  � af�be.
Ž .Then, for each c, d � C � C , there exists a unique coexistence state� �1 2

Ž . Ž . Ž . � � � �� �u, � of system 1.1 . Moreo�er, u, � � 0, a�e � 0, b�f , i.e.,L Ž� . L Ž� .
0 	 u 	 a�e, 0 	 � 	 b�f.

Proof. The proof is divided into two parts. We first prove the existence
of coexistence states by using the upper�lower solution method. For the
uniqueness, we combine different results and techniques such as the

� �strong maximum principle for elliptic operators 8 and some ideas related
to the uniqueness of fixed points for order convex maps in ordered Banach

� �spaces 2, 11 .
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More precisely, the existence of coexistence states is based on Theorem
� �2.3 of 6 . In fact, the functions,

a b
� �u� � ��
 0 , u � , �� � �
 0 , � � 2.2Ž . Ž . Ž .1 1e f

Ž .are a system of upper�lower solutions for system 1.1 , where the constant
� is chosen to satisfy

� � aŽ .1 2
� � � , 2.3Ž .

b � �Ž .1 1

� �and � is a sufficiently small positive real number. To see this, from H2 we
obtain

b b a
0 
 a � a � .ž /f f e

Therefore,

b a2

0 
 a x � a � ,Ž .Ž .
f e

which trivially implies

b a a2

0 
 a x � a � c x � .Ž . Ž .Ž .
f e e

But then,

a a2

0 
 a x � a � x � c x �Ž . Ž . Ž .Ž .
e e

� � �for each � � ��, � , which we rewrite in the form,

��u� 
 a x � x � c x u� � eu� u� � � 2.4Ž . Ž . Ž . Ž . Ž .

� � �for each � � ��, � .
Ž .Also, from 2.3 we obtain that, if � is sufficiently small, then

�� � � � � 0 � � 	 a x � e��
 x � e� 2�
 x ,Ž . Ž . Ž . Ž . Ž .Ž .1 1 1 1 1 1

which trivially implies

�� 0 	 a x � e��
 x � c x � � e� 2�
 xŽ . Ž . Ž . Ž . Ž .1 1 1

for each c � C .�1
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Ž .Since the function 
 � 
 0 is strictly positive in �, we deduce from1 1
the previous expression,

��� 0 
 x 	 �
 x a x � e��
 x � c x ��
 xŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž .1 1 1 1 1

� e� 2� 2
 2 x .Ž .1

Then,

��� 0 
 x 	 � x a x � e��
 x � c x ��
 x � e� 2� 2
 2 xŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .1 1 1 1 1

� � �for each � � ��, � .
Ž .Lastly, as ��u� � � 0 u�, we obtain1

��u� 	 a x � x � c x u� � eu� u� � � 2.5Ž . Ž . Ž . Ž . Ž .

� � �for each � � ��, � .
We can proceed in the same way, proving

���� 
 b x u � d x �� � f�� u � �� 2.6Ž . Ž . Ž . Ž .

� � �for each u � u�, u , and

���� 	 b x u � d x �� � f�� u � �� 2.7Ž . Ž . Ž . Ž .

� � �for each u � u�, u .
Ž . Ž . � �The inequalities 2.4 � 2.7 prove that functions u�, u , ��, � are a

Ž . Ž .system of upper�lower solutions for system 1.1 , concluding that 1.1 has
� �Ž . � � � �a coexistence state u, � � u�, u � ��, � .

Remark. Note that the positive constants � and � may be chosen
Ž .independently from c, d � C � C .� �1 2

� � � � Ž .Next, we prove that under hypotheses H1 and H2 , 1.1 has a unique
coexistence state. This purpose will be carried out with the help of some
previous lemmas. The first one refers to some properties satisfied by the

Ž .nonnegative solutions of the scalar equations associated to 1.1 .

Ž . Ž .LEMMA 2.2. 1. Gi�en � � C � continuous functions defined on � ,
Ž . 1Ž .0 	 � 	 b�f, there exists a unique nonnegati�e weak solution P � � H �0

�Ž .� L � sol�ing the problem,

��u � a x � � c x u � eu u � � , in � ,Ž . Ž . Ž . 2.8Ž .
u � 0, on � � .

1, �Ž . Ž . Ž . Ž .This unique solution P � � C � , �� � 0, 1 , 0 	 P � 	 a�e, and
Ž . Ž . Ž . Ž .� � 0 � P � � 0. Moreo�er, if � 	 0 and t � 0, 1 , then P t� � tP �

Ž . Ž .� 0 in �. Also, if � 
 � then P � 
 P � .2 1 2 1
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Ž .2. Gi�en u � C � , 0 	 u 	 a�e, there exists a unique nonnegati�e
Ž . 1Ž . �Ž .weak solution Q u � H � � L � sol�ing the problem,0

��� � b x u � d x � � f� u � � , in � ,Ž . Ž . Ž . 2.9Ž .
� � 0, on � � .

1, �Ž . Ž . Ž . Ž .This unique solution Q u � C � , �� � 0, 1 , 0 	 Q u 	 b�f, and
Ž . Ž . Ž . Ž .u � 0 � Q u � 0. Moreo�er, if u 	 0 and t � 0, 1 , then Q tu � tQ u

Ž . Ž .� 0 in �. Also, if u 
 u then Q u 
 Q u .2 1 2 1

Ž .Proof. Let � � C � , 0 	 � 	 b�f, be given. Then, as in the proof of
� � �Theorem 2.1 and by using H2 , it is easily checked that u� � 0, u � a�e

Ž .are, respectively, subsolution and supersolution for problem 2.8 .
� � � ŽWe can apply Theorem 1 in 5 to obtain functions w� 	 w both

1, � Ž ..belonging to C � , respectively, minimal and maximal solutions of
Ž . �2.8 between u� and u . Moreover,

�� w� � w� � e� w� � w�Ž . Ž .
� c x w� � w� � e w� � w� w� � w� 	 0.Ž . Ž . Ž . Ž .

Therefore, the maximum principle for elliptic operators implies w� 	 w�
� � � �and consequently w � w�. This concludes that, in the interval u�, u ,

Ž . �2.8 has a unique solution. But, let us observe that, instead of u we may
Ž .choose any sufficiently positive large constant as a supersolution for 2.8 .

Moreover, from regularity theory, we have that any nonnegative weak
Ž . Ž .solution of 2.8 must be bounded. This proves that given � , 2.8 has a

unique nonnegative weak solution. On the other hand,

�� P � � c x P � � eP � P � � � � a x � ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .

Ž .in �. It follows from the maximum principle that � � 0 � P � � 0 and
Ž . Ž .that if � 	 0 then P � � 0 in � and � P � �� n � 0, on � �, where ��� n

denotes the directional derivative with respect to the outward-pointing
normal on � �.

Ž .Moreover, if M is a fixed positive number, t � 0, 1 and � 	 0, then by
definition of operator P, we have

�� P t� � tP � � M P t� � tP �Ž . Ž . Ž . Ž .Ž . Ž .
� P t� � tP � �c x � eP t� � etP � � MŽ . Ž . Ž . Ž . Ž .Ž . Ž .

� eP 2 � t � t 2 � etP � �Ž . Ž . Ž .

 P t� � tP � �c x � eP t� � etP � � M . 2.10Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .
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Ž . Ž .Also, it is easily seen that tP � is a strict subsolution of 2.8 for the
function t� , i.e.,

�� tP � � a x t� � c x tP � � etP � tP � � � , in � .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .

Ž . Ž .This implies P t� 
 tP � in �. Hence, if M is sufficiently large, from
Ž . Ž . Ž .2.10 and again by the maximum principle, P t� � tP � � 0 in �.

Ž . Ž .Finally, if � 
 � , the function P � is a subsolution of 2.8 for the2 1 1
Ž . Ž . Ž .function � , since a x � eP � 
 a x � a 
 0, and this implies2 1

�� P � 	 a x � � c x P � � e P � P � � � , in � .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .1 2 1 1 1 2

Ž . Ž .Therefore, P � 	 P � .1 2
By analogous considerations it is possible to prove the properties of the

operator Q.

Ž .In the following lemma, we show that 1.1 has a unique coexistence
� � � �state in the interval 0, a�e � 0, b�f .

Ž . Ž .LEMMA 2.3. 1. If u, � is a coexistence state of 1.1 , such that 0 	 u 	
Ž . Ž . Ž .Ž .a�e, 0 	 � 	 b�f, then u � P � and � � Q u . Consequently, QP � � � .

Ž . � 4 Ž .Ž .2. If � � C � � 0 is such that 0 	 � 	 b�f, and QP � � � , then
Ž Ž . . Ž .the pair P � , � is a coexistence state of 1.1 .

Ž . � 43. There exists a unique � � C � � 0 , 0 	 � 	 b�f, such that
Ž .Ž .QP � � � .

Proof. The first and second part are a trivial consequence of the
definition of the operators P and Q. We will prove the last one. To see

Ž . � 4 Ž .Ž .this, let � � C � � 0 , 0 	 � 	 b�f, be such that QP � � � , i � 1, 2.i i i i
It follows from the strong maximum principle that there exists a positive

Žnumber s such that � 
 s� in � see the proof of the previous lemma,1 2
.where it is shown that � � 0 in � and � � �� n � 0 on � � . Moreover, if2 2

s is any positive number such that � � s� in �, then there is � � 01 2
Ž . Ž � �.verifying � � s � � � in � see Lemma 5.3 in 1 . Let us define1 2

� 4s � sup s � 0 : � 
 s� in � . If s � 1, then, by Lemma 2.2, we have0 1 2 0

� � QP � 
 QP s � 
 Q s P � � s QP � � s � ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .1 1 0 2 0 2 0 2 0 2

in � .

This is a contradiction with the definition of s . Hence, we must have0
s 
 1 and as a consequence, � 
 � in �. Analogously, � 	 � .0 1 2 1 2

Ž . Ž .LEMMA 2.4. If u, � is any coexistence state of 1.1 , then 0 	 u 	 a�e
and 0 	 � 	 b�f.
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Ž . Ž . Ž .Proof. Let u, � be any coexistence state of 1.1 and let u , � be the0 0
Ž . � � � �coexistence state of 1.1 which belongs to 0, a�e � 0, b�f . Then,

��� � d x � � f� u � � � b x u , in �Ž . Ž . Ž .
� �It follows from H2 and the maximum principle that � � 0 in � and

� ��� n � 0, on � �. As in the previous lemma, there exists a positive
number t such that � 
 t� in �. Also, if t is any positive number such0

Ž .that � � t� in �, then there exists � � 0 verifying � � t � � � in �.0 0
� 4Let us define t � sup t � 0 : � 
 t� in � . If t � 1, then by Lemma 2.2,0 0 0

we have

� � QP � 
 QP t � 
 Q t P � � t QP � � t � ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .0 0 0 0 0 0

in � .

This is a contradiction with the definition of t . Hence, we must have0
t 
 1 and as a consequence, � 
 � in �. Similarly, u 
 u in �.0 0 0

� � � �Now, by using three previous lemmas we deduce, under H1 and H2 ,
Ž .the uniqueness of coexistence states of 1.1 .

3. THE OPTIMAL CONTROL PROBLEM

� � � �In this section, we prove, under the hypotheses H1 and H2 , the
existence of an optimal control, which is characterized in terms of the
optimality system. To see this, we previously show some differentiability
properties of the payoff functional with respect to the control.

� � � �THEOREM 3.1. Under the assumptions H1 and H2 , there exists an
Ž .optimal control, i.e., there is c, d � C � C such that� �1 2

J c, d � sup J g , hŽ . Ž .
Ž .g , h �C �C� �1 2

Ž Ž ..Proof. Since the state variables solutions of 1.1 and the admissible
Ž .controls functions of C � C are bounded, there exists a maximizing� �1 2

�Ž .4sequence g , h such thatn n

lim J g , h � sup J g , h .Ž . Ž .n n
n�� Ž .g , h �C �C� �1 2

Ž . Ž . Ž . Ž .Let u , � be the unique coexistence state of 1.1 for c, d � g , h ,n n n n
Ž .�n � �. Then, there exists a subsequence, again denoted by g , h , suchn n

that

g , h � g� , h� , weakly in L2 � � L2 � ,Ž . Ž . Ž . Ž .n n

u , � � u� , �� , strongly in H 1 � � H 1 � .Ž . Ž . Ž . Ž .n n 0 0
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Ž . Ž � � .Passing to the limit in the u , � system, we have that u , � is then n
Ž . Ž � � . Žunique coexistence state of 1.1 associated with g , h see the included

.remark in the proof of Theorem 2.1 . Then, by using the lower semiconti-
2Ž .nuity of L � norm with respect to weak convergence, and the definition

of functional J, we have

J g� , h� 
 sup J g , h ,Ž . Ž .
Ž .g , h �C �C� �1 2

Ž � � .which concludes g , h is an optimal control that maximizes the func-
tional J on C � C .� �1 2

Ž .Next, we study the differentiability properties of the solutions of 1.1
with respect to the controls.

� � � � Ž .LEMMA 3.2. Let us assume H1 and H2 . Then if c, d � C � C� �1 2
Ž . �Ž . �Ž . Ž . Ž .and g, h � L � � L � are such that c, d � � g, h � C � C� �1 2

for � � 0 small, then
u � u� 1� � , in H � ,Ž .0�

3.1Ž .� � �� 1� � , in H � ,Ž .0�

Ž . Ž . Ž .as � � 0, where u, � is the unique coexistence state of 1.1 for c, d ,
Ž . Ž . Ž .u , � is the unique coexistence state of 1.1 for c � � g, d � � h , and� �

Ž .� , � is the unique solution of the linear system,

��� � c � e 2u � � � � a � eu � � �gu, in � ,Ž . Ž .
3.2��� � d � f u � 2� � � b � f� � � �h� , in � , Ž .Ž . Ž .

� � � � 0, on � � .
Ž� �. Ž .Proof. It follows from a result of Sweers 17, Theorem 1.1 that 3.2

Ž . Ž .has a unique solution � , � . To see this, we may rewrite 3.2 in the form,

Lw � Hw � k , in � ; w � 0, on � � , 3.3Ž .
where

�
w � ,ž /�

�� � c � e 2u � � 0Ž .
L � ,ž /0 �� � d � f u � 2�Ž .

0 a � eu
H � ,ž /b � f� 0

�gu
k � .ž /�h�
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� �Now, all the hypotheses of Theorem 1.1 in 17 are easily checked,
Ž .provided that there is a positive strict supersolution of 3.3 with k � 0.

Ž . Ž . Ž .But, if u, � is the unique coexistence state of 1.1 for c, d , then,
Ž .rewriting 1.1 as

��u � c � e 2u � � uŽ . eu u � �Ž .0 a � eu u� �ž /ž / �b � f� 0 ž /ž / f� u � ���� � d � f u � 2� � Ž .Ž .

uŽ . Ž . Ž .and denoting z � we obtain L � H z 
 0, L � H z 	 0, in �,�
uŽ . Ž .which proves that z � is a positive strict supersolution of 3.3 with�

Ž .k � 0. On the other hand, it is easily seen that the pair � , � defined as� �

Ž . Ž .� � u � u �� , � � � � � �� , satisfies the problem,� � � �

��� � c � e u � u � � � � a � eu � � �gu ,Ž . Ž .� � � � � �

in � ,

3.4Ž .��� � d � f u � � � � � � b � f� � � �h� ,Ž . Ž .� � � � � �

in � ,
� � � � 0, on � � .� �

Moreover, there exists C � 0, such that

� , � 	 C , 3.5Ž .Ž . �� � Ž .L �

�Ž . � � � � � � � �independent of � , where � , � � � � � .L Ž� . L Ž� . L Ž� .� � � �

� 4In fact, if this is not true, then there is a sequence � � 0 verify-n
�Ž . � � Ž . Ž . �Žing � , � � �. Also, it follows that � , � � � , � � � ,L Ž� .� � n n � � �n n n n n

. � �� is a solution of the problem,L Ž� .� n

��� � c � e u � u � � � � a � eu �Ž . Ž .n � n � nn n

u�n� �g in � ,
� , �Ž . �� � Ž .L �n n

3.6Ž .��� � d � f u � � � � � � b � f� �Ž . Ž .n � n � nn n

��n� �h in � ,
� , �Ž . �� � Ž .L �n n

� � � � 0, on � � .n n
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Ž . Ž . Ž �Ž ..2Since � , � , u , � are bounded in L � , using elliptic estimates,n n � �n n
Ž . 2, pŽ . Ž .we have that � , � is bounded in W � for p � 1, � . Therefore,n n

Ž . Ž .there exists a subsequence, again denoted by � , � , such that � , � �n n n n
Ž . Ž .� , � , where � , � is the unique solution of the problem,

��� � c � e 2u � � � � a � eu � � 0, in � ,Ž . Ž .
��� � d � f u � 2� � � b � f� � � 0, in � ,Ž . Ž .

� � � � 0, on � � .

Ž . Ž .But Sweer’s theorem implies � , � � 0, 0 , which is a contradiction with
�Ž . � �the property � , � � 1.L Ž� .

Ž . Ž .Finally, 3.4 , 3.5 , again elliptic estimates and the uniqueness of solu-
1Ž . Ž . Ž . Ž .tions of 3.2 , imply that � , � � � , � in H � when � � 0.� � 0

Next, an optimal control is characterized in terms of the optimality
system. This result is very important to obtain an explicit characterization
of the unique optimal control and some of its qualitative properties.

� � � �THEOREM 3.3. Let us assume H1 and H2 . Then, any optimal control
Ž .c, d � C � C may be expressed in the form,� �1 2

� �
c � min u 1 � r , � , in � ,Ž . 1½ 52

3.7Ž .
� �

d � min � 1 � s , � , in � ,Ž . 2½ 52

Ž . Ž . Ž .where u, � is the corresponding solution of 1.1 and r, s is the unique
solution of the adjoint system,

�
�� r � c � e 2u � � r � b � f� s � c, in � ,Ž . Ž .

�
� 3.8Ž .�� s � d � f u � 2� s � a � eu r � d , in � ,Ž . Ž .
�

r � s � 0, on � � .

Ž .Proof. We begin by proving that system 3.8 has a unique solution
Ž . 2, pŽ .r, s which belongs to W � , for any p sufficiently large. To see this,

Ž . Ž . Ž .we may observe that r, s is a solution of 3.8 if and only if R, S �
Ž .�r, � s is a solution of

�� R � c � e 2u � � R � b � f� S � �c, in � ,Ž . Ž .
3.9Ž .��S � d � f u � 2� S � a � eu R � �d , in � ,Ž . Ž .

R � S � 0, on � � .



OPTIMAL CONTROL IN ELLIPTIC SYSTEMS 583

Ž . Ž .System 3.9 is similar to system 3.2 , but it must be remembered that just
Ž .to prove the existence of solutions of 3.2 we need the existence of a

positive strict supersolution for the homogeneous system. The existence of
Ž . Ž .this supersolution is not clear now, since the terms a � eu and b � f�

were interchanged. We overcome this difficulty by using another approach
based on some elementary notions of linear functional analysis. To

Ž . pŽ . pŽ .see this, let us define for p � n the operator A: L � � L � �
2, pŽ . 2, pŽ . Ž . Ž . Ž .W � � W � , by A g, h � U, V , where U, V is the unique

solution of the system,

��U � c � e 2u � � U � g , in � ,Ž .
3.10Ž .��V � d � f u � 2� V � h , in � ,Ž .

U � V � 0, on � � .

Ž . Ž .Then, R, S is a solution of 3.9 if and only if

I � AB R , S � A �c, �d , 3.11Ž . Ž . Ž . Ž .

Ž . ŽŽ . Ž . .where AB R, S � A b � f� S, a � eu R .
Ž . Ž . Ž .Now, let us observe that A �c, �d � C � � C � and that the

Ž . Ž . Ž . Ž . Žoperator AB: C � � C � � C � � C � is linear and compact see
� �. Ž . Ž .17 . Therefore, 3.11 will have a solution if the operator I � AB: C �

Ž . Ž . Ž . � ��C � � C � � C � has a trivial kernel 4 . But this fact is easily
Ž . Ž .Ž . Ž .checked since if R, S satisfies I � AB R, S � 0, 0 , then,

�� R � c � e 2u � � R � b � f� S � 0, in � ,Ž . Ž .
3.12Ž .��S � d � f u � 2� S � a � eu R � 0, in � ,Ž . Ž .

R � S � 0, on � � .

Ž .Moreover, if � , � is the unique solution of the system,

��� � c � e 2u � � � � a � eu � � g , in � ,Ž . Ž .
3.13��� � d � f u � 2� � � b � f� � � h , in � , Ž .Ž . Ž .

� � � � 0, on � �

then,

� 0 � �0 � gR � hS 3.14Ž . Ž . Ž .H H
� �

Ž . pŽ . pŽ . Ž . Ž .for any g, h � L � � L � . This proves that R, S � 0, 0 .
The remaining part of the proof is standard. In fact, a similar reasoning

� �may be seen in 3, 7 . However, for clarity of the exposition, we sketch the
Ž . Ž .main ideas. Let c, d � C � C be an optimal control and g, h �� �1 2
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�Ž . Ž . �L � so that c � � g, d � � h � C � C as � � 0 . Then,� �1 2

J c � � g , d � � h 	 J c, d .Ž . Ž .

Dividing by � , letting � � 0�, and using Lemma 3.2, we have

�� c � ��d � �ug � ��h � 2cg � 2 dh 	 0, 3.15Ž . Ž .H
�

Ž . Ž . Ž .where � , � is the unique solution of 3.2 . Now, multiplying in 3.8 the
Ž .first equation by �� , the second equation by ��, multiplying in 3.2 the

first equation by �r, the second equation by � s, integrating and subtract-
ing both expressions, we obtain

�c� � � d� � gu�r � h�� s � 0. 3.16Ž . Ž .H
�

Ž . Ž .Combining 3.15 and 3.16 , we deduce

�gu�r � h�� s � �ug � ��h � 2cg � 2 dh 	 0. 3.17Ž . Ž .H
�

If h � 0, the previous relation is

g u� �r � 1 � 2c 	 0. 3.18Ž . Ž .Ž .H
�

By a standard control argument concerning the sign of the variation g
depending on the size of c, we obtain the desired characterization of c. A

Ž � �.similar reasoning may be done for d see 3 .

� � � �COROLLARY 3.4. Assume H1 , H2 , and �, � sufficiently small. Then,
Ž .any optimal control c, d � C � C may be expressed in the form,� �1 2

� �� �
c � u 1 � r , d � � 1 � s , 3.19Ž . Ž . Ž .

2 2
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Ž .where u, � , r, s satisfies the optimality system,

� �2 2��u � � a � eu � u 1 � r � eu ,Ž . Ž .
2
� �2 2��� � u b � f� � u 1 � s � f� ,Ž . Ž .
2

� ���� r � u 1 � r � e 2u � � r � b � f� sŽ . Ž . Ž .
2 �

� 3.20Ž .�� u 1 � r ,Ž .
2

� ���� s � � 1 � s � f u � 2� s � a � eu rŽ . Ž . Ž .
2 �

� �� � 1 � s ,Ž .
2

u � 0, � � 0 in � ; u � � � r � s � 0, on � � .

Remarks. 1. The previous expression for the optimal controls may be
used for deducing some of their qualitative properties. For instance, under

Ž .the hypotheses of the previous theorem, all the optimal controls c, d
Ž . Ž .must belong to the space C � � C � .

2. It would be possible to prove, by using similar ideas to those used
� �in 3, 7 , that under the hypotheses of the previous theorem, the operator,

T : C � C � C � C� � � �1 2 1 2

defined as

� �
T c, d � u 1 � r , � 1 � s ,Ž . Ž . Ž .ž /2 2

Ž . Ž . Ž .where u, � is the unique coexistence state of 1.1 and r, s is the unique
Ž .solution of 3.8 , is contractive. In fact, for proving that the mapping

Ž . Ž .c, d � u, � is Lipschitz, it is sufficient to consider in Lemma 3.2,
Ž . Ž . Ž .instead of � , � , the functions Du g, h and D� g, h , the� � Žc, d . Žc, d .

Ž . Ž .directional derivatives of u and � , at c, d in the direction g, h , and then
to show that these derivatives are uniformly bounded.

The contractive character of T may be used to demonstrate that when
the parameters � and � are sufficiently small, the optimal control is
unique. Moreover, this gives an iterative scheme which provides a se-
quence of functions converging to the unique optimal control. This treat-
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� �ment would be essentially different from that presented in 3 , where the
concave character of the functional J was established to obtain the
uniqueness of the optimal control.
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