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This article is devoted to investigate some dynamical properties of a
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1 Introduction

In this paper we investigate a Hopf bifurcation for the following system describ-
ing a random walk process on (0,+∞):





∂tu
+(t, x) + c+∂xu

+(t, x) = −σ+u+(t, x) + σ−u−(t, x)− µu+(t, x), x ≥ 0,
∂tu

−(t, x)− c−∂xu
−(t, x) = σ+u+(t, x)− σ−u−(t, x)− µu−(t, x), x ≥ 0,

c+u+(t, 0) = c−u−(t, 0) + αf(
∫ +∞
0

γ(x) (u+(t, x) + u−(t, x)) dx),
(u+(0, .), u−(0, .)) =

(
u+0 , u

−
0

)
∈ L1

+ ((0,+∞) ,R)× L1
+ ((0,+∞) ,R) ,

(1.1)

∗Research was partially supported by the French Ministry of Foreign and European Affairs
program France-China PFCC EGIDE (20932UL).
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where c+ > 0, c− > 0, 0 ≤ σ+ < σ−, µ > 0 and

γ ∈ L∞
+ ((0,+∞) ,R) .

In model (1.1), the variable x is maturity of the individuals (i.e. the ability of
individuals to reproduce). Depending on the context, in population dynamics
the maturity can be measured by using the age of individuals, but also their
size or their weight. We refer to Arino [5], Arino and Sanchez [6], Calsina and
Saldana [10], Calsina and Sanchón [11], Webb [56], and Ackleh and Deng [1]
(and references therein) for studies on size-structured models in the context of
ecology and cell population dynamics. In this article we are interested in the
maturity measured by size or the weight of individuals.

At the individual level the growth in maturity can be viewed as a stochastic
process. The point in such a model is to combine both the stochastic growth
in maturity and the reproduction γ(x). The combination of this two processes
will influence the dynamical properties of the population. The constant c+ > 0
(respectively c− > 0) is the speed at which the maturity increases (respectively
decays) at the individual level. The function x → u+(t, x) (respectively x →
u−(t, x)) is the density of population with growing maturity (respectively with
decreasing maturity) at time t. The growing velocity is c+, and the decaying
velocity is −c−. The multiplicative terms σ+ > 0 and σ− > 0 are called turning
rates in the context of random walk (see [29]). This means that, individuals
pass alternatively from the growing speed c+ to the decaying speed −c− (and
conversely). The time spent by an individual in the u+-class (respectively u−-
class) follows an exponential law with mean 1/σ+ (respectively 1/σ−). In other
words, once individuals are born the maturity grows as a succession of increases
and decreases with eventually an advantage or a disadvantage driven by the
parameters σ+ and σ−, and/or driven by the speeds c+ and −c−. The mortality
of individuals is described by the parameters µ. The total density of population
is

u(t, x) := u+(t, x) + u−(t, x),

that is to say that for each x1, x2 ∈ [0,+∞) with x1 < x2, the quantity

∫ x2

x1

u(t, x)dx

is the number of individuals with maturity x in between x1 and x2 at time t.
As far as we know the model (1.1) has not been considered in the context

of population dynamics, while it seems very natural to introduce stochastic
fluctuations between individuals to describe their growth in maturity. One
may observe that when c− = 0, the u−-class corresponds to a resting phase
or a non growing phase. Models with resting phase have been studied in the
context of cell population dynamic to describe the quiescences of cells. We
refer to Gyllenberg and Webb [28], and Dyson, Villella-Bressan and Webb [21,
22] (and references therein) for results on this subject. In this article we will
focus on the case c− > 0 (the case c− = 0 will be investigated elsewhere). In
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this case, the maturity can be understood as the weight of individuals, since
at the individuals level the maturity can increase and decrease. The maturity
may then stochastically fluctuate due to availability of food, or environmental
fluctuations (temperature, etc...). The case c− > 0 corresponds mathematically
to a random walk process. Since the work of Kac [35], random walk model
have been extensively used in the context of population dynamics. We refer
to Hadeler [29] and references therein for a nice survey. For example, random
walk model has been used to model chemotaxis phenomenon Hillen [30, 31, 32],
or more recently to study pattern formation Eftimie et al. [23, 24, 25]. We
also refer to Chalub et al. [14], Bellomo et al. [7] for more results going in that
direction.

In usual size structured model (see [56] and references therein), given a
group of individuals with the same size x0 ∈ (0,+∞) at a given time t0, all
the individuals of this group will also have the same size in the future. The
goal of model (1.1) is to describe the fact that given a group of individuals
with the same maturity x0 at a given time t0, their maturities are likely to be
different after a period of time. Indeed, due to the exchanges between the class
u+ and the class u−, and since the time spent in the class u+ and the class u−

is stochastic, the model (1.1) allows to describe such a phenomenon. So given
a group of individuals with the same maturity x0 ∈ (0,+∞) at a given time,
their maturities will be distributed around some mean value after a period of
time (i.e. the density of population will not be concentrated at one point in the
future). This type of phenomenon has been previously considered in [15] by
using a diffusion process. Here our goal is to reconsider this problem by using a
random walk process.

In order to understand further the model (1.1), we now consider some special
cases. First, by integrating system (1.1) with respect to x, we obtain

d
∫ +∞
0

u(t, x)dx

dt
= αf

(∫ +∞

0

γ(x)u(t, x)dx

)
− µ

∫ +∞

0

u(t, x)dx.

It follows that αf
(∫ +∞

0
γ(x)u(t, x)dx

)
is the flux of new born individuals at

time t. Through this article, we will assume that f(x) is a Ricker’s type birth
function [46, 47], defined by

f(x) := x exp (−ξx) ,

for some constant ξ > 0. This type of birth function has been commonly used in
the literature, to take into account some limitation of births when the population
increases. The function γ(x) takes into account the minimal size necessary for
individuals to reproduce. When γ ≡ 1, then the total number of individuals
U(t) :=

∫ +∞
0

u(t, x)dx satisfies the following ordinary differential equation

{
dU(t)

dt
= αf (U(t))− µU(t), ∀t ≥ 0,

U(0) = U0 ≥ 0.
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Hence, the positive equilibrium (when it exists) is globally asymptotically stable,
and no oscillations can occur around the positive equilibrium. This first shows
that the oscillating properties strongly dependent on the specific choice of the
function γ(x).

Set

U−(t) :=

∫ +∞

0

u−(t, x)dx.

When the turning rate σ+ = 0, we obtain

dU−(t)

dt
=

∫ +∞

0

c−∂xu
−(t, x)dx− (σ− + µ)U−(t)

= −c−u−(t, 0)− (σ− + µ)U−(t) ≤ −(σ− + µ)U−(t),

hence
U−(t) ≤ e−(σ−+µ)tU−(0) → 0 as t→ +∞.

Thus when σ+ = 0, the dynamical properties of system (1.1) are captured by
the following system





∂tu
+(t, x) + c+∂xu

+(t, x) = −µu+(t, x),
c+u+(t, 0) = αf(

∫ +∞
0

γ(x)u+(t, x)dx),
u+(0, ·) = u+0 ∈ L1

+(0,+∞).

After the change of variable x = c+a and v(t, a) = u+(t, c+a), the above equa-
tions corresponds exactly to the age-structured model considered in [43]. In this
case, we can derive an Hopf bifurcation theorem under certain assumptions for
the function γ(x). One can note that the assumptions in [43] made on γ(x) are
only needed to analyze the characteristic equation. The same will be true for
the present article.

Due to the large number of parameters, the mathematical analysis of model
(1.1) is difficult in general. Here we will make some simplifying assumptions in
order to obtain an approximation of the model (with convection and diffusion)
presented in [15]. In what follows, we will make the following assumption.

Assumption 1.1 We assume that

c+ = c− := c > 0, and 0 < σ+ < σ−.

Throughout the paper we will use the following notations

η0 :=
σ+ + σ−

2
and σ0 :=

σ− − σ+

2
,

which is equivalent to
σ± = η0 ∓ σ0.

Then the above assumption on σ+ and σ− are equivalent to

η0 > σ0 > 0.
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Under Assumption 1.1, system (1.1) can be considered as a formal approxima-
tion of the following reaction diffusion equation





∂tu(t, x) = ε2∂2xu(t, x)− ρ∂xu(t, x)− µu(t, x),

−ε2∂xu(t, 0) + ρu(t, 0) = αf(
∫ +∞
0

γ(x)u(t, x)dx),
u(0, .) = u0 := u+0 + u−0 ∈ L1

+ ((0,+∞) ,R) .

(1.2)

To be more precise, fix the mortality µ > 0 and assume

lim
η0→+∞

c2

2 (η0 + µ)
= ε2 > 0 and lim

η0→+∞

cσ0
η0 + µ

= ρ > 0, (1.3)

which means that when η0 → +∞, both of c and σ0 increase as a positive
constant times

√
η0. We introduce

v(t, x) = c
(
u+(t, x)− u−(t, x)

)
.

With our notations, we have

v(t, 0) = αf(

∫ +∞

0

γ(x)u(t, x)dx), (1.4)

∂tu(t, x) + ∂xv(t, x) = −µu(t, x), (1.5)

∂tv(t, x) + c2∂xu(t, x) = −2c
(
σ+u+ − σ−u−

)
− µv(t, x). (1.6)

Assuming that u(t, x) and v(t, x) are C1
(
[0,+∞)

2
,R
)
, differentiating (1.5)

with respect to t and (1.6) with respect to x, then by eliminating ∂2xtv(t, x) and
note that

∂xv(t, x) = −µu(t, x)− ∂tu(t, x), (1.7)

we obtain the following telegraph equation

∂2t u(t, x) + 2 (η0 + µ) ∂tu(t, x)

= c2∂2xu(t, x)− 2cσ0∂xu(t, x)− (2η0 + µ)µu(t, x).

For fixed µ > 0, letting η0 → +∞ and assuming (1.3) be satisfied, we formally
obtain the following limit equation:

∂tu(t, x) = ε2∂2xu(t, x)− ρ∂xu(t, x)− µu(t, x). (1.8)

It follows from (1.7) and (1.8) that

∂xv(t, x) = −µu(t, x)− ∂tu(t, x) = −ε2∂2xu(t, x) + ρ∂xu(t, x). (1.9)

Integrating both sides of (1.9) with respect to x over (0,+∞) and assuming that
v(t, .) ∈W 1,1(0,+∞), u(t, .) ∈W 2,1(0,+∞), we obtain

v(t, 0) = −ε2∂xu(t, 0) + ρu(t, 0). (1.10)
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The following boundary condition is derived by putting (1.10) into (1.4)

−ε2∂xu(t, 0) + ρu(t, 0) = αf(

∫ +∞

0

γ(x)u(t, x)dx).

From the above computation, we can conclude that the distribution of the popu-
lation u(t, x) of our model (1.1) formally approximates to the solution of reaction
diffusion system (1.2).

The existence of Hopf bifurcation has been studied for system (1.2) in [43]
whenever ε = 0, and in [15] whenever ε > 0 and ρ > 0 (which is a parabolic
system). The goal of this article is to extend the analysis to study the existence
of Hopf bifurcation for hyperbolic system (1.1). This work is based on the
Hopf bifurcation theorem proved in [39, Theorem 2.4] for semilinear non-densely
defined abstract Cauchy problems.

We would like to point out that there are few results concerning the existence
of non-trivial periodic solutions in the context of age/size structured models. We
refer to Cushing [17, 18], Prüss [45], Swart [50], Kostova and Li [38], Bertoni
[8], Magal and Ruan [44]. It is believed that such periodic solutions in age
structured models are induced by Hopf bifurcations (Castillo-Chavez et al. [13],
Inaba [33, 34], Zhang et al. [57]).

Hopf bifurcation analysis has been considered for various classes of partial
differential equations in Amann [2], Crandall and Rabinowitz [16], Da Prato
and Lunardi [19], Guidotti and Merino [27], Koch and Antman [37], Sandstede
and Scheel [48], and Simonett [49]. However, since there is a nonlinear and
nonlocal boundary condition in our model (1.1), their results and techniques do
not apply to (1.1).

The paper is organized as follows. In Section 2, we reformulate (1.1) as
a non-densely defined Cauchy problem, and the existence and uniqueness of
the semiflow generated by (1.1) are investigated. The existence of the positive
equilibrium is studied in Section 3. In Section 4, we linearize system (1.1) at
the positive equilibrium, investigate the spectral properties of the linearized
equation, and give the characteristic equation. The stability of the system is
considered in Section 5. In Section 6, the Hopf bifurcation is studied when α is
considered as the bifurcation parameter. In Section 6.1, we study the existence
of purely imaginary eigenvalues of the characteristic equation. The transver-
sality condition is studied in Section 6.2, and an Hopf bifurcation theorem is
presented in Section 6.3. Finally, in Section 7 we summarize the results of the
paper, and some bifurcation diagrams are presented, as well as some numerical
simulations of (1.1).

2 Preliminary

In this section we follow the approach used by Thieme [51] for age structured
model. We also refer to Arendt [3], Thieme [52], Kellermann and Hieber [36],
the book of Arendt et al. [4] and Magal and Ruan [41, 42, 43] for details on
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the theory of integrated semigroups. Firstly, we rewrite the system (1.1) as a
non-densely defined abstract Cauchy problem. Consider the Banach space

X = R× L1 (0,+∞)× L1 (0,+∞)

endowed with the usual product norm

∥∥∥∥∥∥




α
ϕ+

ϕ−



∥∥∥∥∥∥
= |α|+ ‖ϕ+‖L1(0,+∞) + ‖ϕ−‖L1(0,+∞) .

The positive cone of X is

X+ = R+ × L1
+ (0,+∞)× L1

+ (0,+∞) .

We introduce the linear operator A : D(A) ⊂ X → X defined by

A




0
ϕ+

ϕ−


 =




−cϕ+(0) + cϕ−(0)
−cϕ′

+

cϕ′
−




with
D (A) = {0} ×W 1,1 (0,+∞)×W 1,1 (0,+∞) .

It is easy to see that A is non-densely defined since

D(A) = {0} × L1 (0,+∞)× L1 (0,+∞) 6= X.

Set
X0 := D(A) and X0+ := X0 ∩X+.

Let A0 : D(A0) ⊂ X0 → X0 be the part of A in X0, which is defined by

A0x = Ax, ∀x ∈ D(A0),

with
D(A0) :=

{
x ∈ D(A) : Ax ∈ D(A)

}
.

It is readily checked that

D(A0) =








0
ϕ+

ϕ−


 ∈ {0} ×W 1,1 (0,+∞)

2
: −cϕ+(0) + cϕ−(0) = 0



 .

Define the linear operator L : D(A) → D(A) by

L




0
ϕ+

ϕ−


 =




0
−σ+ϕ+ + σ−ϕ− − µϕ+

σ+ϕ+ − σ−ϕ− − µϕ−



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and the map F : D(A) → X by

F




0
ϕ+

ϕ−


 =




αf(
∫ +∞
0

γ(x) (ϕ+(x) + ϕ−(x)) dx)
0
0


 .

By identifying

(
u+(t, .)
u−(t, .)

)
to v(t) =




0
u+(t, .)
u−(t, .)


, under Assumption 1.1, we

rewrite the problem (1.1) as the following abstract Cauchy problem

dv(t)

dt
= Av(t) + Lv(t) + F (v(t)), for t ≥ 0, and v(0) =




0
u+0
u−0


 ∈ D(A).

(2.1)
Since the range of L is include inX0, (A+L)0 the part of A+L : D(A) ⊂ X → X
is defined by

(A+ L)0x = (A+ L)x, ∀x ∈ D((A+ L)0),

with
D((A+ L)0) = D(A0).

Lemma 2.1 The linear operator A is Hille-Yosida operator. More precisely,
the resolvent set ρ (A) of A satisfies

(0,+∞) ⊂ ρ (A) ,

and ∥∥∥(λI −A)
−n
∥∥∥
L(X)

≤ 1

λn
, ∀λ > 0, ∀n ≥ 1.

Moreover for each λ > 0 we have

(λI −A)
−1




α
ψ+

ψ−


 =




0
ϕ+

ϕ−




⇔{
ϕ+(x) = c−1e−

λ
c
x
[∫ +∞

0
e−

λ
c
lψ−(l)dl + α

]
+ c−1

∫ x
0
e−

λ
c
(x−l)ψ+(l)dl,

ϕ−(y) = c−1
∫ +∞
y

e−
λ
c
(l−y)ψ−(l)dl.

Furthermore A0 is the infinitesimal generator of {TA0
(t)}t≥0 the strongly con-

tinuous semigroup of bounded linear operator on X0 defined by

TA0
(t)




0
ϕ+

ϕ−


 =




0
TA0

(t)+ (ϕ+, ϕ−)
TA0

(t)− (ϕ−)




where
TA0

(t)− (ϕ−) (x) = ϕ−(x+ ct),
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and

TA0
(t)+ (ϕ+, ϕ−) (x) =

{
ϕ+(x− ct), if x ≥ ct,
ϕ−(ct− x), if x < ct.

In what follows, for z ∈ C,
√
z denotes the principal branch of the general

multi-valued function z1/2. The branch cut is the negative real axis and the
argument of z, denoted by arg(z), is π on the upper margin of the branch cut.
So if z = ρeiθ, θ ∈ (−π, π), ρ > 0, then

√
z =

√
ρeiθ/2. In what follows, we will

use the following notation:

Ω := {λ ∈ C : Re (λ) > −µ} , (2.2)

and
Λ := (σ0)

2
+ (λ+ µ)

2
+ 2η0(λ+ µ), ∀λ ∈ C. (2.3)

We now establish some inequalities which will be used in the following.

Lemma 2.2 Let Assumption 1.1 be satisfied. Then for each λ ∈ Ω, we have

Re (λ) + µ+ η0 > Re
√
Λ > σ0 +Re (λ) + µ.

Proof. Set √
Λ = a+ ib, with a > 0.

Then

Re(Λ) = a2 − b2 = (σ0)
2
+ (Re (λ) + µ)

2 − (Im (λ))
2
+2η0 (Re (λ) + µ) , (2.4)

Im(Λ) = 2ab = 2 (Re (λ) Im (λ) + µIm (λ) + η0Im (λ)) . (2.5)

Since by assumption η0 > σ0 > 0, so by using (2.4) we obtain

a2 < (Re (λ) + µ+ η0) ,

thus
Re

√
Λ < Re (λ) + µ+ η0.

From (2.5) we deduce that

Im (λ) =
ab

Re (λ) + µ+ η0
,

and then from (2.4) we obtain

a2 = (σ0)
2
+ (Re (λ) + µ)

2 −
(

ab

Re (λ) + µ+ η0

)2

+ 2η0 (Re (λ) + µ) + b2,

or equivalently

a2 =

(
1 +

(
b

Re (λ) + µ+ η0

)2
)−1

×
(
(σ0)

2
+ (Re (λ) + µ)

2
+ 2η0 (Re (λ) + µ) + b2

)
.
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For λ ∈ Ω, we have

a2 − (σ0 +Re (λ) + µ)
2
=

(
1 +

(
b

Re (λ) + µ+ η0

)2
)−1

×
(
2 (η0 − σ0) (Re (λ) + µ) + b2

(
1−

(
σ0 +Re (λ) + µ

Re (λ) + µ+ η0

)2
))

> 0,

(Re (λ) + µ+ η0)
2−a2 =

(
1 +

(
b

Re (λ) + µ+ η0

)2
)−1

×
(
(η0)

2 − (σ0)
2
)
> 0,

and the result follows.
In the following lemma, we summarize some properties of A + L, and we

obtain an explicit formula for the resolvent of A+ L.

Lemma 2.3 The linear operator A + L : D(A) ⊂ X → X is Hille-Yosida
operator. We have the following inclusion

Ω ⊂ ρ (A+ L) = ρ ((A+ L)0) ,

∥∥∥(λI − (A+ L))
−n
∥∥∥
L(X)

≤ 1

(λ+ µ)n
, ∀λ > −µ, ∀n ≥ 1,

and
(λI − (A+ L))−1X+ ⊂ X+, ∀λ > −µ (large enough).

Moreover
{
T(A+L)

0
(t)
}
t≥0

the strongly continuous semigroup of bounded linear

operator on X0 generated by (A+ L)0 satisfies

ω0 ((A+ L)0) = lim
t→+∞

ln
(∥∥T(A+L)

0
(t)
∥∥)

t
≤ −µ. (2.6)

Furthermore, for each λ ∈ Ω we have the following explicit formula:

(λI − (A+ L))
−1




α
ψ+

ψ−


 =




0
ϕ+

ϕ−




is equivalent to

ϕ+(x) =
1

c
σ−

(ζ1 − ζ2)

∫ +∞

x

eζ1(x−s)
(
ψ+(s)

σ−

(
ζ2 +

λ+ σ+ + µ

c

)
+
ψ−(s)

c

)
ds

+ eζ2xc2 +
1

c
σ−

(ζ1 − ζ2)

∫ x

0

eζ2(x−s)
(
ψ+(s)

σ−

(
ζ1 +

λ+ σ+ + µ

c

)
+
ψ−(s)

c

)
ds,
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ϕ−(x) =
c

σ−

(
ζ1 +

λ+ σ+ + µ

c

)

× 1
c
σ−

(ζ1 − ζ2)

∫ +∞

x

eζ1(x−s)
(
ψ+(s)

σ−

(
ζ2 +

λ+ σ+ + µ

c

)
+
ψ−(s)

c

)
ds

+
c

σ−

(
ζ2 +

λ+ σ+ + µ

c

)

×
(
eζ2xc2 +

1
c
σ−

(ζ1 − ζ2)

∫ x

0

eζ2(x−s)
(
ψ+(s)

σ−

(
ζ1 +

λ+ σ+ + µ

c

)
+
ψ−(s)

c

)
ds

)
,

where

ζ1 :=
σ0 +

√
Λ

c
, ζ2 :=

σ0 −
√
Λ

c
, (2.7)

c1 :=
1

c
σ−

(ζ1 − ζ2)

∫ +∞

0

e−ζ1s
(
ψ+(s)

σ−

(
ζ2 +

λ+ σ+ + µ

c

)
+
ψ−(s)

c

)
ds,

(2.8)

c2 :=

α
c +

(
−1 + c

σ−

(
ζ1 +

λ+σ++µ
c

))
c1

1− c
σ−

(
ζ2 +

λ+σ++µ
c

) . (2.9)

Proof. The proof is straightforward.
By using the results in Thieme [51], Magal [40], and Magal and Ruan [42],

we have the following theorem.

Theorem 2.4 (Existence) There exists a unique continuous semiflow {U(t)}t≥0

on X0+ such that ∀x ∈ X0+, t→ U(t)x is the unique integrated solution of

dU(t)x

dt
= (A+ L)U(t)x+ F (U(t)x), U(0) = x,

or equivalently,

U(t)x = x+ (A+ L)

∫ t

0

U(l)xdl +

∫ t

0

F (U(l)x) dl, ∀t ≥ 0.

3 Positive equilibrium

Now we consider the positive equilibrium of (2.1).

Lemma 3.1 (Equilibrium) There exists a positive equilibrium of the system
(1.1) (or (2.1)) if and only if

R0 := αχ > 1,

11



where

χ :=
1 + c

σ−

(
(ζ2)0 +

σ++µ
c

)

c
(
1− c

σ−

(
(ζ2)0 +

σ++µ
c

))
∫ +∞

0

γ (x) e(ζ2)0xdx.

Moreover, when it exists, the positive equilibrium is unique and is given by

v̄ =




0
u+

u−


 with

u+(x) = e(ζ2)0x (c2)0 ,

u−(x) = c
σ−

(
(ζ2)0 +

σ++µ
c

)
×
(
e(ζ2)0x (c2)0

)
,

where

(ζ2)0 :=
σ0 −

√
Λ0

c
, (3.1)

Λ0 := (σ0)
2
+ µ2 + 2η0µ, (3.2)

and

(c2)0 :=
1

c
(
1− c

σ−

(
(ζ2)0 +

σ++µ
c

)) lnR0

ξχ
. (3.3)

Proof. It is obvious that

A




0
u+

u−


+ L




0
u+

u−


+ F




0
u+

u−


 = 0

⇔




0
u+

u−


 = (− (A+ L))

−1




αf(
∫ +∞
0

γ (x)
(
u+(x) + u−(x)

)
dx)

0
0


 .

According to the explicit formula of the resolvent of A+ L obtained in Lemma
2.3, taking λ = 0, we have




0
u+

u−


 = (− (A+ L))

−1




αf(
∫ +∞
0

γ (x)
(
u+(x) + u−(x)

)
dx)

0
0




or equivalently

u+(x) = e(ζ2)0x (c2)0 ,

u−(x) = c
σ−

(
(ζ2)0 +

σ++µ
c

)
×
(
e(ζ2)0x (c2)0

)
,

where

(ζ2)0 =
σ0 −

√
Λ0

c
,

12



and

(c2)0 =
αf
(∫ +∞

0
γ (x)

(
u+(x) + u−(x)

)
dx
)

c
(
1− c

σ−

(
(ζ2)0 +

σ++µ
c

)) . (3.4)

Since

u+(x) + u−(x)

=

(
1 +

c

σ−

(
(ζ2)0 +

σ+ + µ

c

))
×
(
e(ζ2)0x (c2)0

)

= e(ζ2)0x
1 + c

σ−

(
(ζ2)0 +

σ++µ
c

)

c
(
1− c

σ−

(
(ζ2)0 +

σ++µ
c

))αf
(∫ +∞

0

γ (x)
(
u+(x) + u−(x)

)
dx

)
,

(3.5)

it follows that

u+ + u− 6= 0 iff

∫ +∞

0

γ (x)
(
u+(x) + u−(x)

)
dx 6= 0.

Integrating both sides of (3.5) after multiplying by γ (x) , we have

∫ +∞

0

γ (x)
(
u+(x) + u−(x)

)
dx = χαf

(∫ +∞

0

γ (x)
(
u+(x) + u−(x)

)
dx

)
.

So we obtain

1 = χα exp

(
−ξ
∫ +∞

0

γ (x)
(
u+(x) + u−(x)

)
dx

)
,

which is equivalent to

∫ +∞

0

γ (x)
(
u+(x) + u−(x)

)
dx =

ln (χα)

ξ
. (3.6)

Substituting (3.6) into (3.4) yields

(c2)0 =
1

c
(
1− c

σ−

(
(ζ2)0 +

σ++µ
c

)) lnR0

ξχ
,

and the result follows.

4 Linearized equation and spectral properties

From now on, we set the positive equilibrium v̄ =




0
u+

u−


, where u+ and u−

are given in Lemma 3.1 with R0 > 1.
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The linearized system of (2.1) around v̄ is

dv(t)

dt
= (A+ L) v(t) +DF (v̄)v(t) for t ≥ 0, v(t) ∈ X0, (4.1)

where

DF (v̄)




0
ϕ+

ϕ−


 =




η(α)
∫ +∞
0

γ(x) (ϕ+(x) + ϕ−(x)) dx
0
0


 ,

with

η(α) = αf ′
(∫ +∞

0

γ(x)
(
u+(x) + u−(x)

)
dx

)
.

Note that
f ′(x) = e−ξx(1− ξx).

Using (3.6) it follows that

η(α) =
α

R0
(1− lnR0) =

1

χ
(1− ln (αχ)) .

This Cauchy problem (4.1) corresponds to the following system of linear hyper-
bolic partial differential equations





∂tu
+(t, x) + c∂xu

+(t, x) = −σ+u+(t, x) + σ−u−(t, x)− µu+(t, x),
∂tu

−(t, x)− c∂xu
−(t, x) = σ+u+(t, x)− σ−u−(t, x)− µu−(t, x),

cu+(t, 0) = cu−(t, 0) + η(α)
∫ +∞
0

γ(x) (u+(t, x) + u−(t, x)) dx,
(u+(0, .), u−(0, .)) =

(
u+0 , u

−
0

)
∈ L1

+ ((0,+∞) ,R)× L1
+ ((0,+∞) ,R) .

(4.2)
Next we study the spectral properties of the linearized equation (4.2). To sim-
plify the notation, we define Bα : D(Bα) ⊂ X → X as

Bαx = Ax+ Lx+DF (v̄)x with D(Bα) = D(A),

and we consider (Bα)0 the part of Bα in D(A), then

(Bα)0 x = Bαx = Ax+ Lx+DF (v̄)x

with

D ((Bα)0) =








0
ϕ+

ϕ−


 ∈ 0×W 1,1(0,+∞)×W 1,1(0,+∞) :

cϕ+(0)− cϕ−(0) = η(α)
∫ +∞
0

γ(x) (ϕ+(x) + ϕ−(x)) dx
}
.

In the following lemma we mainly obtain an explicit formula for the resolvent
of Bα. In what follows, this formula will be used to compute the order of the
eigenvalue of Bα.
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Lemma 4.1 For each λ ∈ Ω = {λ ∈ C : Re (λ) > −µ} , we have

λ ∈ ρ (Bα) ⇔ ∆(α, λ) 6= 0,

with

∆(α, λ) := 1− η(α)
1 + c

σ−

(
ζ2 +

λ+σ++µ
c

)

c
(
1− c

σ−

(
ζ2 +

λ+σ++µ
c

))
∫ +∞

0

γ(x)eζ2xdx.

where

ζ2 :=
σ0 −

√
Λ

c
, and Λ := (σ0)

2
+ (λ+ µ)

2
+ 2η0(λ+ µ).

Moreover, we have the following explicit formula:

(λI −Bα)
−1




ς
ψ+

ψ−


 =




0
ϕ+

ϕ−




⇔
ϕ+(x) = ω1(x) + ω2(x) + ω3(x) + ∆(α, λ)−1eζ2x [ς+η(α)W (λ)]

c
(
1− c

σ−

(
ζ2+

λ+σ++µ
c

)) ,

ϕ−(x) =
c
σ−

(
ζ1 +

λ+σ++µ
c

)
ω1(x) +

c
σ−

(
ζ2 +

λ+σ++µ
c

)
(ω2(x) + ω3(x))

+ ∆(α, λ)−1 c
σ−

(
ζ2 +

λ+σ++µ
c

)
eζ2x [ς+η(α)W (λ)]

c
(
1− c

σ−

(
ζ2+

λ+σ++µ
c

)) ,

where

ω1(x) :=
1

c

σ−

(ζ1−ζ2)
∫ +∞
x

(
ψ+(s)
σ−

(
ζ2 +

λ+σ++µ
c

)
+ ψ

−
(s)
c

)
eζ1(x−s)ds,

ω2(x) :=
1

c

σ−

(ζ1−ζ2)
∫ x
0

(
ψ+(s)
σ−

(
ζ1 +

λ+σ++µ
c

)
+ ψ

−
(s)
c

)
eζ2(x−s)ds,

ω3(x) := eζ2x
−1+ c

σ−

(
ζ1+

λ+σ++µ
c

)

1− c

σ−

(
ζ2+

λ+σ++µ
c

) c1,

W (λ) :=
∫ +∞
0

γ(x)
((

1 + c
σ−

(
ζ1 +

λ+σ++µ
c

))
ω1(x)

+
(
1 + c

σ−

(
ζ2 +

λ+σ++µ
c

))
(ω2(x) + ω3(x))

)
dx,

and c1, ζ1, ζ2 are defined in Lemma 2.3.

Proof. Since λ ∈ Ω, by Lemma 2.3, the linear operator (λI −A− L) is invert-
ible. It follows that

λI −Bα is invertible ⇔ I −DF (v̄) (λI −A− L)
−1

is invertible

and

(λI −Bα)
−1

= (λI −A− L)
−1
[
I −DF (v̄) (λI −A− L)

−1
]−1

.
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We start by computing
[
I −DF (v̄) (λI −A− L)

−1
]−1

. So we consider the sys-

tem
[
I −DF (v̄) (λI −A− L)

−1
]



ς̂
ϕ̂+

ϕ̂−


 =




ς
ψ+

ψ−




which is equivalent to



ς̂
ϕ̂+

ϕ̂−


−




η(α)
∫ +∞
0

γ(x) (ϕ+(x) + ϕ−(x)) dx
0
0


 =




ς
ψ+

ψ−


 ,

where 


0
ϕ+

ϕ−


 = (λI −A− L)

−1




ς̂
ϕ̂+

ϕ̂−


 .

It follows that

ϕ̂+ = ψ+,

ϕ̂− = ψ−,

and it remains to consider

ς̂ − η(α)

∫ +∞

0

γ(x) (ϕ+(x) + ϕ−(x)) dx = ς, (4.3)

where the formula of ϕ+(x) and ϕ−(x) can be obtained by Lemma 2.3

ϕ+(x) =ω1(x) + ω2(x) + ω3(x) + eζ2x
ς̂

c
(
1− c

σ−

(
ζ2 +

λ+σ++µ
c

)) ,

ϕ−(x) =
c

σ−

(
ζ1 +

λ+ σ+ + µ

c

)
ω1(x) +

c

σ−

(
ζ2 +

λ+ σ+ + µ

c

)
(ω2(x) + ω3(x))

+
c

σ−

(
ζ2 +

λ+ σ+ + µ

c

)
eζ2x

ς̂

c
(
1− c

σ−

(
ζ2 +

λ+σ++µ
c

)) .

Hence, (4.3) is equivalent to

ς̂ − ς̂η(α)
1 + c

σ−

(
ζ2 +

λ+σ++µ
c

)

c
(
1− c

σ−

(
ζ2 +

λ+σ++µ
c

))
∫ +∞

0

γ(x)eζ2xdx = η(α)W (λ) + ς.

We deduce that
[
I −DF (v̄) (λI −A− L)

−1
]
is invertible if and only if ∆(α, λ) 6=

0. Moreover, we have

[
I −DF (v̄) (λI −A− L)

−1
]−1




ς
ψ+

ψ−


 =




ς̂
ϕ̂+

ϕ̂−



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is equivalent to

ϕ̂+ = ψ+,

ϕ̂− = ψ−,

ς̂ = ∆(α, λ)−1 [η(α)W (λ) + ς] .

Therefore,

(λI −Bα)
−1




ς
ψ+

ψ−


 = (λI −A− L)

−1
[
I −DF (v̄) (λI −A)

−1
]−1




ς
ψ+

ψ−




= (λI −A− L)
−1




ς̂
ϕ̂+

ϕ̂−




= (λI −A− L)
−1




∆(α, λ)−1 [ς + η(α)W (λ)]
ψ+

ψ−


 ,

and by Lemma 2.3, the result follows.
By using the above explicit formula for the resolvent of Bα we obtain the

following lemma.

Lemma 4.2 If λ0 ∈ σ(Bα) ∩ Ω, then λ0 is a simple eigenvalue of Bα if and
only if

d∆(α, λ0)

dλ
6= 0.

Since DF (v̄) is a bounded linear operator, and (A + L) is a Hille-Yosida
operator, it follows that Bα = A+L+DF (v̄) is a Hille-Yosida operator. Conse-
quently, (Bα)0 is the infinitesimal generator of a strongly continuous semigroup{
T(Bα)

0
(t)
}
t≥0

on X0.

Lemma 4.3 The essential growth rate of
{
T(Bα)

0
(t)
}
t≥0

satisfies the following

estimation:
ω0,ess ((Bα)0) ≤ −µ.

Proof. Since DF (v̄) is compact, and ω0,ess ((A+ L)0) ≤ ω0 ((A+ L)0) ≤ −µ
(see Lemma 2.3), by using the result in Thieme [53] or Ducrot, Liu and Magal
[20, Theorem 1.2], we obtain ω0,ess ((Bα)0) ≤ ω0,ess ((A+ L)0) ≤ −µ.

Lemma 4.4 We have

σ((Bα)0) ∩ Ω = σp((Bα)0) ∩ Ω = {λ ∈ Ω : ∆(α, λ) = 0} .

Proof. By Lemma 4.3 and results on spectral theory (see Webb [54, 55], Engel
and Nagel [26]) we have

σ((Bα)0) ∩ Ω = σp((Bα)0) ∩ Ω.

Then by Lemma 4.1, the result follows.
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5 Local stability

This section is devoted to the local stability of the positive steady state v. Recall
that this positive equilibrium v exists and is unique if and only if R0 > 1. Since
the essential growth rate ω0,ess ((Bα)0) < 0, we apply the local stability result
proved in Thieme [51] or in Magal and Ruan [42]. So it is sufficient to prove
that all the eigenvalues of Bα have a strictly negative real part.

Lemma 5.1 If R0 > 1, then λ = 0 is not a root of the characteristic equation
∆(α, λ) = 0.

Proof. Since

∆(α, 0) = 1− η(α)
1 + c

σ−

(
(ζ2)0 +

σ++µ
c

)

c
(
1− c

σ−

(
(ζ2)0 +

σ++µ
c

))
∫ +∞

0

γ(x)e(ζ2)0xdx

= 1− η(α)χ

= 1− 1

χ
(1− ln (αχ))× χ

= ln (αχ) = lnR0 > 0,

the result follows.

Lemma 5.2 If λ is a root of the characteristic equation such that

Re(λ) ≥ 0,

then we have
Re (ζ2) < (ζ2)0 ,

and
Re
(√

Λ
)
>
√

Λ0 +Re (λ) ≥
√
Λ0.

Proof. Set √
Λ = a+ ib, with a > 0.

By the proof of Lemma 2.2, it follows that

ab = Re (λ) Im (λ) + µIm (λ) + η0Im (λ) . (5.1)

a2 =

(
1 +

(
b

Re (λ) + µ+ η0

)2
)−1

×
(
(σ0)

2
+ (Re (λ) + µ)

2
+ 2η0 (Re (λ) + µ) + b2

)
.
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Hence

a2 −
(√

Λ0 +Re (λ)
)2

=

(
1 +

(
b

Re(λ)+µ+η0

)2)−1

×
(
2Re (λ)

(
µ+ η0 −

√
Λ0

)
+

(
1− (

√
Λ0+Re(λ))

2

(Re(λ)+µ+η0)
2

)
b2
)
.

(5.2)

If Re (λ) = 0 and b = 0, then by using (5.1), we have Im (λ) = 0, so λ = 0,
which is impossible by Lemma 5.1. Thus if Re (λ) ≥ 0, we have

(Re (λ))
2
+ b2 > 0.

Consequently, from (5.2) we obtain

a2 −
(√

Λ0 +Re (λ)
)2

> 0,

i.e.,

Re
(√

Λ
)
>
√

Λ0 +Re (λ) ≥
√
Λ0.

Since

ζ2 =
σ0 −

√
Λ

c
and (ζ2)0 =

σ0 −
√
Λ0

c
,

we deduce that
Re (ζ2) < (ζ2)0 ,

which completes the proof.
The main result of this section is the following theorem. One may observe

that the condition obtained here is similar to the one obtained in [15, Theorem
5.3].

Theorem 5.3 If
1 < R0 ≤ e2,

then the positive equilibrium v̄ of the system (1.1) is locally asymptotically stable.

Proof. We consider the characteristic equation

∆(α, λ) = 1− η(α)
1 + c

σ−

(
ζ2 +

λ+σ++µ
c

)

c
(
1− c

σ−

(
ζ2 +

λ+σ++µ
c

))
∫ +∞

0

γ(x)eζ2xdx = 0.

Since

Re

(
1 +

c

σ−

(
ζ2 +

λ+ σ+ + µ

c

))
=

−Re
(√

Λ
)
+Re (λ) + 2η0 + σ0 + µ

σ− > 0,

the above characteristic equation is equivalent to .

c
(
1− c

σ−

(
ζ2 +

λ+σ++µ
c

))

(
1 + c

σ−

(
ζ2 +

λ+σ++µ
c

)) = η(α)

∫ +∞

0

γ(x)eζ2xdx. (5.3)
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By Lemma 5.2, if Re (λ) ≥ 0, we must have

Re (ζ2) < (ζ2)0 .

Then it is derived from (5.3) that

∣∣∣∣∣∣

c
(
1− c

σ−

(
ζ2 +

λ+σ++µ
c

))

(
1 + c

σ−

(
ζ2 +

λ+σ++µ
c

))

∣∣∣∣∣∣
=

∣∣∣∣η(α)
∫ +∞

0

γ(x)eζ2xdx

∣∣∣∣

≤ |η(α)|
∫ +∞

0

γ(x)eReζ2xdx

< |η(α)|
∫ +∞

0

γ(x)e(ζ2)0xdx

= |η(α)|χ
c
(
1− c

σ−

(
(ζ2)0 +

σ++µ
c

))

1 + c
σ−

(
(ζ2)0 +

σ++µ
c

) .

We claim that if Re (λ) ≥ 0, then

∣∣∣∣∣∣

c
(
1− c

σ−

(
ζ2 +

λ+σ++µ
c

))

(
1 + c

σ−

(
ζ2 +

λ+σ++µ
c

))

∣∣∣∣∣∣
>
c
(
1− c

σ−

(
(ζ2)0 +

σ++µ
c

))

1 + c
σ−

(
(ζ2)0 +

σ++µ
c

) . (5.4)

Since Λ0 = σ2 + µ2 + 2η0µ,

1 +
c

σ−

(
(ζ2)0 +

σ+ + µ

c

)
= 1 +

η0 + µ−
√
Λ0

σ− > 0,

1− c

σ−

(
(ζ2)0 +

σ+ + µ

c

)
= 1− η0 + µ−

√
Λ0

σ− =
σ0 +

√
Λ0 − µ

σ− > 0,

inequality (5.4) is satisfied if

∣∣∣∣1−
c

σ−

(
ζ2 +

λ+ σ+ + µ

c

)∣∣∣∣
2(

1 +
c

σ−

(
(ζ2)0 +

σ+ + µ

c

))2

>

∣∣∣∣1 +
c

σ−

(
ζ2 +

λ+ σ+ + µ

c

)∣∣∣∣
2(

1− c

σ−

(
(ζ2)0 +

σ+ + µ

c

))2

,

⇔ (
σ0 +Re

(√
Λ
)
−Re (λ)− µ

)2 (
σ0 −

√
Λ0 + 2η0 + µ

)2

+
(
Im
(√

Λ
)
− Im (λ)

)2 (
σ0 −

√
Λ0 + 2η0 + µ

)2

>
(
σ0 −Re

(√
Λ
)
+Re (λ) + 2η0 + µ

)2 (
σ0 +

√
Λ0 − µ

)2

+
(
Im
(√

Λ
)
− Im (λ)

)2 (
σ0 +

√
Λ0 − µ

)2
.

(5.5)
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Since η0 + µ >
√
Λ0, we obtain

σ0 −
√

Λ0 + 2η0 + µ > σ0 +
√
Λ0 − µ > 0.

It follows that
(
Im
(√

Λ
)
− Im (λ)

)2 (
σ0 −

√
Λ0 + 2η0 + µ

)2

≥
(
Im
(√

Λ
)
− Im (λ)

)2 (
σ0 +

√
Λ0 − µ

)2
.

Then (5.5) will be proved if

(
σ0 +Re

(√
Λ
)
−Re (λ)− µ

)2 (
σ0 −

√
Λ0 + 2η0 + µ

)2

>
(
σ0 −Re

(√
Λ
)
+Re (λ) + 2η0 + µ

)2 (
σ0 +

√
Λ0 − µ

)2
.

Since p2 > q2 ⇔ (p + q)(p − q) > 0, after some simplifications, the above
inequality is equivalent to,

[(
σ0 +Re

(√
Λ
)
−Re (λ)− µ

)(
σ0 −

√
Λ0 + 2η0 + µ

)

+
(
σ0 −Re

(√
Λ
)
+Re (λ) + 2η0 + µ

)(
σ0 +

√
Λ0 − µ

)]
(5.6)

× 2 (η0 + σ0)
(
Re
(√

Λ
)
−Re (λ)−

√
Λ0

)
> 0.

Remember that Λ0 = (σ0)
2 + µ2 + 2η0µ and η0 > σ0 > 0, we have

σ0 −
√

Λ0 + 2η0 + µ > η0 + µ−
√
Λ0 > 0, (5.7)

σ0 +
√

Λ0 − µ > 0. (5.8)

By Lemma 5.2 we have

2 (η0 + σ0)
(
Re
(√

Λ
)
−Re (λ)−

√
Λ0

)
> 0. (5.9)

By using again Lemma 5.2 and (5.8) we also have

σ0 +Re
(√

Λ
)
−Re (λ)− µ >

√
Λ0 + σ0 − µ > 0. (5.10)

By Lemma 2.2 we have Re (λ) + µ + η0 − Re
(√

Λ
)
> 0, and by noting that

η0 > σ0 > 0, we obtain

σ0 −Re
(√

Λ
)
+Re (λ) + 2η0 + µ > Re (λ) + η0 + µ−Re

(√
Λ
)
> 0. (5.11)

It follows from (5.7)-(5.11) that (5.6) is satisfied. Consequently, inequality (5.4)
is satisfied. Now we observe that if

|η(α)|χ
c
(
1− c

σ−

(
(ζ2)0 +

σ++µ
c

))

1 + c
σ−

(
(ζ2)0 +

σ++µ
c

) ≤
c
(
1− c

σ−

(
(ζ2)0 +

σ++µ
c

))

1 + c
σ−

(
(ζ2)0 +

σ++µ
c

) ,
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i.e.,
|η(α)|χ ≤ 1, (5.12)

there will be no roots of the characteristic equation with non-negative real part.
Since

η(α) =
α

R0
(1− lnR0) =

1

χ
(1− lnR0) ,

the above inequality (5.12) is equivalent to

|lnR0 − 1| ≤ 1,

and the result follows.

6 Hopf bifurcation

In this section, regarding α as the bifurcation parameter we will study the
existence of Hopf bifurcation by using the Hopf bifurcation theory developed by
Liu, Magal and Ruan [39, Theorem 2.4]. In order to apply this Hopf bifurcation
theorem to system (2.1), we need to show the four following properties:

(i) the essential growth rate of (Bα)0 is strictly negative;

(ii) the existence of a unique pair of purely imaginary eigenvalues of Bα0
for

some fixed parameter α0;

(iii) the purely imaginary eigenvalues of Bα0
are simple;

(iv) the transversality condition.

Notice that ω0,ess ((Bα)0) < 0 has already been proved in Lemma 4.3. So we
only need to focus on the three last properties.

By Theorem 5.3 we already know that the positive equilibrium v̄ of the
system (1.1) is locally asymptotically stable if

1 < R0 ≤ e2,

that is
α ∈ (α̂0, α̂1] ,

where

R0 = αχ, α̂0 :=
1

χ
and α̂1 :=

e2

χ
.

So we will study the existence of bifurcation value in (α̂1,+∞) . Recall the
characteristic equation

0 = ∆(α, λ) = 1− η(α)
1 + c

σ−

(
ζ2 +

λ+σ++µ
c

)

c
(
1− c

σ−

(
ζ2 +

λ+σ++µ
c

))
∫ +∞

0

γ(x)eζ2xdx, (6.1)
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where

ζ2 =
σ0 −

√
Λ

c
, Λ = (σ0)

2
+ (λ+ µ)

2
+ 2η0(λ+ µ),

(ζ2)0 =
σ0 −

√
Λ0

c
, Λ0 = (σ0)

2
+ µ2 + 2η0µ, σ

∓ = η0 ± σ0,

η(α) =
α

R0
(1− lnR0) =

1

χ
(1− ln (αχ)) ,

χ =
1 + c

σ−

(
(ζ2)0 +

σ++µ
c

)

c
(
1− c

σ−

(
(ζ2)0 +

σ++µ
c

))
∫ +∞

0

γ (x) e(ζ2)0xdx.

It is clear that
η(α) < 0 for α > α̂1.

6.1 Existence and uniqueness of purely imaginary eigen-

values

This subsection is devoted to the existence and the uniqueness of purely imag-
inary roots of the characteristic equation (6.1) under the following assumption
on the function γ.

Assumption 6.1 Assume that

γ (x) = (x− τ)
n
e−β(x−τ)1[τ,+∞)(x)

for β > 0, n ∈ N, τ > 0, or β = 0, n = 0, τ > 0.

Let Assumption 6.1 be satisfied. In order to obtain the explicit formula for
the characteristic equation, we first give the following computation

∫ +∞

0

γ (x) eζ2xdx = eβτ
∫ +∞

τ

(x− τ)
n
e(ζ2−β)xdx

= eβτ
∫ +∞

0

sne(ζ2−β)(s+τ)ds

= −eβτe(ζ2−β)τ
∫ 0

−∞

(
l

ζ2 − β

)n
el

1

ζ2 − β
dl

=
−eζ2τ

(ζ2 − β)
n+1

∫ +∞

0

(−1)
n
xne−xdx

=
(−1)

n+1
eζ2τn!

(ζ2 − β)
n+1 =

n!eζ2τ

(β − ζ2)
n+1 .

So the characteristic equation (6.1) becomes

0 = 1− η(α)
1 + c

σ−

(
ζ2 +

λ+σ++µ
c

)

c
(
1− c

σ−

(
ζ2 +

λ+σ++µ
c

)) n!eζ2τ

(β − ζ2)
n+1 .
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If we set √
Λ = a+ ib with a > 0,

by noting that σ± = η0∓σ0 and the expression of ζ2, we arrive at the following
characteristic equation

1− n!cnη(α)
2η0 + σ0 − a− ib+ λ+ µ

σ0 + a+ ib− λ− µ

exp
(
(σ0 − a− ib) τc−1

)

(cβ − σ0 + a+ ib)
n+1 = 0. (6.2)

Now we are in the position to look for purely imaginary roots λ = ωi with ω > 0
in (6.2).

Since

√
Λ =

√
(σ0)

2
+ (iω + µ)

2
+ 2η0(iω + µ) = a+ ib with a > 0,

by the proof of Lemma 2.2 we obtain b > 0,

a = a(b) :=

(
1 +

(
b

µ+ η0

)2
)− 1

2 (
(σ0)

2
+ µ2 + 2η0µ+ b2

) 1
2

, (6.3)

and

ω = ω(b) :=
a(b)b

µ+ η0
, (6.4)

that is to say that both of a and ω are functions of b. So in order to obtain
λ = iω with ω > 0, it only remains to determine b in (6.2).

By Lemma 2.2, we have µ+ η0 − a > 0 and a− σ0 − µ > 0, which imply

b− ω = b− ab

µ+ η0
=
µ+ η0 − a

µ+ η0
b > 0,

2η0 + σ0 + µ− a > 0,

cβ − σ0 + a > 0.

Let

(2η0 + σ0 + µ− a)− i (b− ω) : = r1(b)e
iθ1(b),

(a+ σ0 − µ) + i (b− ω) : = r2(b)e
iθ2(b),

cβ − σ0 + a+ ib : = r3(b)e
iθ3(b).
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Then we have

r1(b) =

√
(2η0 + σ0 + µ− a)

2
+ (b− ω)

2
,

r2(b) =

√
(a+ σ0 − µ)

2
+ (b− ω)

2
,

r3(b) =

√
(cβ − σ0 + a)

2
+ b2, (6.5)

θ1(b) = arctan
−b+ ω

2η0 + σ0 + µ− a
,

θ2(b) = arctan
b− ω

a+ σ0 − µ
,

θ3(b) = arctan
b

cβ − σ0 + a
.

Hence it follows from (6.2) that

1− n!cnη(α)
r1(b)e

iθ1(b)

r2(b)eiθ2(b)
exp

(
(σ0 − a− ib) τc−1

)

(r3(b))
n+1

ei(n+1)θ3(b)
= 0,

i.e.,

1 = n!cnη(α)
r1(b) exp

(
(σ0 − a) τc−1

)

r2(b) (r3(b))
n+1 exp i(θ1(b)− θ2(b)− (n+ 1) θ3(b)−

bτ

c
).

Since η(α) < 0 for α > α̂1, taking norm of both sides of the above equation we
deduce that

1 = −n!cnη(α)r1(b)
r2(b)

exp
(
(σ0 − a) τc−1

)

(r3(b))
n+1 ,

and consequently we have

1 = − exp i(θ1(b)− θ2(b)− (n+ 1) θ3(b)−
bτ

c
).

It follows that

η(α) = −r2(b) (r3(b))
n+1

n!r1(b)cn
exp

(
(−σ0 + a) τc−1

)
(6.6)

and

θ1(b)− θ2(b)− (n+ 1) θ3(b)−
bτ

c
= −π − 2kπ, k ∈ Z.

Because

η(α) =
α

R0
(1− lnR0) =

1

χ
(1− ln (αχ)) ,

combining with (6.6) we obtain

α =
1

χ
exp

(
1 + χ

r2(b) (r3(b))
n+1

n!r1(b)cn
exp

(
(−σ0 + a) τc−1

)
)
,
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where

χ =
1 + c

σ−

(
(ζ2)0 +

σ++µ
c

)

c
(
1− c

σ−

(
(ζ2)0 +

σ++µ
c

)) n!e(ζ2)0τ

(β − (ζ2)0)
n+1 . (6.7)

Through the above computation we obtain the following proposition to show
the existence of purely imaginary eigenvalues.

Proposition 6.2 Let Assumptions 1.1 and 6.1 be satisfied. Then the charac-
teristic equation (6.1) has a pair of purely imaginary solutions ±iω, with ω > 0
if and only if there exists b > 0 satisfying

Θ(b) := θ1(b)− θ2(b)− (n+ 1) θ3(b)−
bτ

c
= −π − 2kπ, (6.8)

for some k ∈ Z and

α = α(b) :=
1

χ
exp

(
1 + χ

r2(b) (r3(b))
n+1

n!r1(b)cn
exp

(
(−σ0 + a(b)) τc−1

)
)
, (6.9)

where a(b), ω(b), r1(b), r2(b), r3(b), θ1(b), θ2(b), θ3(b), χ are defined in (6.3)-(6.5)
and (6.7). Moreover, there exists a sequence bk → +∞ as k → +∞, k ∈ N

satisfying (6.8), and the characteristic equation (6.1) admits at least one pair
of purely imaginary solution ±iωk := ±iω(bk) for αk := α(bk).

Proof. It is sufficient to prove that there exists a sequence bk satisfying (6.8)
and bk → +∞ as k → +∞. Clearly, Θ(0) = 0, Θ(+∞) = −∞, and Θ is a
continuous function with respect to b. Then for any k ∈ N there exists some
bk > 0 such that (6.8) is satisfied, and bk → +∞ as k → +∞.

In what follows, we will consider the case for bk → +∞. Firstly, we give the
following lemma which can be easily proved.

Lemma 6.3 Let

a =

(
1 +

(
b

µ+ η0

)2
)− 1

2 (
(σ0)

2
+ µ2 + 2η0µ+ b2

) 1
2

,

and

ω =
ab

µ+ η0
.
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Then we have

lim
b→+∞

a = µ+ η0,

lim
b→+∞

da

db
= lim
b→+∞

b
da

db
= lim
b→+∞

b2
da

db
= 0, lim

b→+∞
b3
da

db
=
(
(η0)

2 − (σ0)
2
)
(µ+ η0) ,

lim
b→+∞

(b− ω) = 0, lim
b→+∞

b (b− ω) =
(η0)

2 − (σ0)
2

2
,

lim
b→+∞

dω

db
= 1, lim

b→+∞
b

(
1− dω

db

)
= 0,

lim
b→+∞

b2
d2a

db2
= 0, lim

b→+∞
b2
d2ω

db2
= 0.

Next we give the following lemma to show that under Assumption 6.1, for
any given α > 0 large enough, there exists at most one pair of purely imaginary
solutions of the characteristic equation.

Lemma 6.4 (Uniqueness) Let Assumptions 1.1 and 6.1 be satisfied. Then
for each α > 0 large enough, ∆(α, iω1) = ∆(α, iω2) = 0 with ω1, ω2 > 0 implies
ω1 = ω2.

Proof. By Proposition 6.2, we know that if ∆(α, iω) = 0, then we have the
following expression for α

α =
1

χ
exp

(
1 + χ

r2(b) (r3(b))
n+1

n!r1(b)cn
exp

(
(−σ0 + a) τc−1

)
)
,

where

χ =
1 + c

σ−

(
(ζ2)0 +

σ++µ
c

)

c
(
1− c

σ−

(
(ζ2)0 +

σ++µ
c

)) n!e(ζ2)0τ

(β − (ζ2)0)
n+1

which is independent of ω, and r1(b), r2(b), r3(b), a, b can be seen as functions
of ω. To be more precise, we have the following formulae for r1(b), r2(b), r3(b), a
and b

r1(b) =

√
(2η0 + σ0 + µ− a)

2
+ (b− ω)

2
,

r2(b) =

√
(a+ σ0 − µ)

2
+ (b− ω)

2
,

r3(b) =

√
(cβ − σ0 + a)

2
+ b2,

a =

(
1 +

(
b

µ+ η0

)2
)− 1

2 (
(σ0)

2
+ µ2 + 2η0µ+ b2

) 1
2

,

b =
µ+ η0
a

ω.
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In order to prove this lemma, we will prove that dα(b)
db > 0 for all b ≥ 0 large

enough, and dω(b)
db > 0, ∀b ≥ 0. So one deduce that we can construct a map

ω → α(ω). Moreover for each ω > 0 large enough, we will prove that

dα(ω)

dω
> 0,

and the result will follows.
Step 1: We claim that

dα(b)

db
> 0, for b large enough,

i.e.,

d

db

(
r2(b) (r3(b))

n+1

r1(b)cn
exp

(aτ
c

))
> 0, for b large enough. (6.10)

Indeed, we have

d

db

(
r2(b) (r3(b))

n+1

r1(b)cn
exp

(aτ
c

))
= (r3(b))

n
(
exp

(aτ
c

))
c−n ×A,

where

A := (r1(b))
−2

((
d

db
r2(b)

)
r3(b)r1(b) + (n+ 1) r2(b)

(
d

db
r3(b)

)
r1(b)− r2(b)r3(b)

(
d

db
r1(b)

))

+ (r1(b))
−1
r2(b)r3(b)

τ

c

da

db
.

Thus in order to prove (6.10) we only need to show that A > 0 for b large
enough. By Lemma 6.3 we have

a→ µ+ η0, as b→ +∞,

r1(b) and r2(b) → η0 + σ0, as b→ +∞, (6.11)

r3(b) → +∞, as b→ +∞,

b

r3(b)
→ 1, as b→ +∞, (6.12)

and a basic calculation leads to

d

db
r1(b) =

1

r1(b)

(
(2η0 + σ0 + µ− a)

(
−da
db

)
+ (b− ω)

(
1− dω

db

))
(6.13)

→ 0, as b→ +∞,

d

db
r2(b) =

1

r1(b)

(
(a+ σ0 − µ)

da

db
+ (b− ω)

(
1− dω

db

))
→ 0, as b→ +∞,

d

db
r3(b) =

1

r3(b)

(
(cβ − σ0 + a)

da

db
+ b

)
→ 1, as b→ +∞. (6.14)
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Because

lim
b→+∞

(
d

db
r2(b)

)
(r3(b)) = lim

b→+∞

d
dbr2(b)

(r3(b))
−1 = lim

b→+∞

d2

db2 r2(b)

− (r3(b))
−2 d

dbr3(b)

= lim
b→+∞

(
r3(b)

b

)2(
d

db
r3(b)

)−1 d
dbr1(b)

(r1(b))
2

×
(
(a+ σ0 − µ)

(
b2
da

db

)
+ (b (b− ω))

(
b

(
1− dω

db

)))

− lim
b→+∞

(
r3(b)

b

)2
1

r1(b)

(
d

db
r3(b)

)−1

×
(
b2
(
da

db

)2

+ (a+ σ0 − µ) b2
d2a

db2
+

(
b

(
1− dω

db

))2

− (b− ω)

(
b2
d2ω

db2

))
,

then by Lemma 6.3, (6.11), (6.12), (6.13) and (6.14) we obtain that

lim
b→+∞

(
d

db
r2(b)

)
(r3(b)) = 0.

Similarly, we can deduce that

lim
b→+∞

(
d

db
r1(b)

)
(r3(b)) = 0.

Therefore, we have

lim
b→+∞

A = lim
b→+∞

(
(r1(b))

−2

(
(n+ 1) r2(b)

(
d

db
r3(b)

)
r1(b)

)
+ (r1(b))

−1
r2(b)

r3(b)

b

τ

c

(
b
da

db

))

= lim
b→+∞

(r1(b))
−2

(
(n+ 1) r2(b)

(
d

db
r3(b)

)
r1(b)

)
= n+ 1 > 0,

which completes the proof for this step.
Step 2: By using the limits (6.11) and (6.12) obtained in Step 1, and by using
the expression for α (i.e. (6.9)) we deduce that

α→ +∞, as b→ +∞.

Step 3: We prove
dω

db
> 0, ∀b ≥ 0.
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Since ω = ab
µ+η0

and a =

(
1 +

(
b

µ+η0

)2)− 1
2 (

(σ0)
2
+ µ2 + 2η0µ+ b2

) 1
2

, we

have

dω

db
=

d

db

(
ab

µ+ η0

)

=
a

µ+ η0
+

b

µ+ η0
× da

db

=
a

µ+ η0
+

b

µ+ η0
× b

a

(
1 +

(
b

µ+η0

)2)2

(η0)
2 − (σ0)

2

(µ+ η0)
2 > 0,

and the result in Step 3 follows.

Step 4: Finally by using the formula ω (b) = a(b)b
µ+η0

, and since a(b) → µ+ η0, as
b→ +∞, we deduce that

ω (0) = 0, and lim
b→+∞

ω (b) = +∞,

and the proof is completed.

6.2 Transversality condition

The aim of this section is to prove a transversality condition for model (1.1)
under Assumptions 1.1 and 6.1.

Lemma 6.5 If α > α̂1, λ ∈ Ω and ∆(α, λ) = 0, then

∂∆(α, λ)

∂α
< 0.

Proof. We have

∆(α, λ) = 1− η(α)
1 + c

σ−

(
ζ2 +

λ+σ++µ
c

)

c
(
1− c

σ−

(
ζ2 +

λ+σ++µ
c

))
∫ +∞

0

γ(x)eζ2xdx,

η(α) =
1

χ
(1− ln (αχ)) ,

where χ is independent of α, then

dη(α)

dα
= − 1

αχ
,

∂∆(α, λ)

∂α
= −dη(α)

dα

1 + c
σ−

(
ζ2 +

λ+σ++µ
c

)

c
(
1− c

σ−

(
ζ2 +

λ+σ++µ
c

))
∫ +∞

0

γ(x)eζ2xdx.
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Since ∆(α, λ) = 0, we obtain

∂∆(α, λ)

∂α
= −dη(α)

dα
× 1

η(α)
=

1

α (1− ln (αχ))
.

Moreover, if α > α̂1, then
∂∆(α,λ)
∂α < 0.

Lemma 6.6 Let Assumptions 1.1 and 6.1 be satisfied. For each k ≥ 0 large
enough, let λk = iωk, ωk > 0 be the purely imaginary root of the characteristic
equation associated to αk > 0 (provided in Proposition 6.2), then we have

Re
∂∆(αk, iωk)

∂λ
> 0.

Proof. Under Assumption 6.1, substituting σ± = η0 ∓ σ0 in the expression of
the characteristic equation, we have

∆(α, λ) = 1− η(α)
2η0 + cζ2 + λ+ µ

c (2σ0 − cζ2 − λ− µ)

n!eζ2τ

(β − ζ2)
n+1 .

After a simple of computation, we obtain

∂∆(α, λ)

∂λ
= −η(α) n!eζ2τ

(β − ζ2)
n+1

d

dλ

2η0 + cζ2 + λ+ µ

c (2σ0 − cζ2 − λ− µ)

− η(α)
2η0 + cζ2 + λ+ µ

c (2σ0 − cζ2 − λ− µ)

d

dλ

n!eζ2τ

(β − ζ2)
n+1 ,

d

dλ

2η0 + cζ2 + λ+ µ

c (2σ0 − cζ2 − λ− µ)
=

(
cdζ2dλ + 1

)
(2η0 + 2σ0)

c (2σ0 − cζ2 − λ− µ)
2 ,

d

dλ

n!eζ2τ

(β − ζ2)
n+1 =

n!eζ2τ

(β − ζ2)
n+1

(
τ +

n+ 1

β − ζ2

)
dζ2
dλ

,

dζ2
dλ

=
d

dλ


σ0 −

√
(σ0)

2
+ (λ+ µ)

2
+ 2η0(λ+ µ)

c


 = −λ+ µ+ η0

c
√
Λ

.

If ∆(α, iω) = 0, we deduce

1 = η(α)
2η0 + cζ2 + iω + µ

c (2σ0 − cζ2 − iω − µ)

n!eζ2τ

(β − ζ2)
n+1 .

It follows that

∂∆(α, iω)

∂λ
=

(
− iω+µ+η0√

Λ
+ 1
)
(2η0 + 2σ0)

(
−σ0 −

√
Λ + iω + µ

)(
2η0 + σ0 −

√
Λ + iω + µ

)

+

(
τ +

c (n+ 1)

cβ − σ0 +
√
Λ

)(
iω + µ+ η0

c
√
Λ

)
,
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where
Λ = (σ0)

2
+ (iω + µ)

2
+ 2η0 (iω + µ) .

Set √
Λ = a+ ib, with a > 0.

Through the proof of Lemma 2.2, we have

a2 =

(
1 +

(
b

µ+ η0

)2
)−1 (

(σ0)
2
+ µ2 + 2η0µ+ b2

)

and

ω =
ab

µ+ η0
,

and by Proposition 6.2, we obtain that

b→ +∞, as k → +∞.

It follows that

ω → +∞, as b→ +∞,

a → µ+ η0, as b→ +∞.

We have (
τ +

c (n+ 1)

cβ − σ0 +
√
Λ

)(
iω + µ+ η0

c
√
Λ

)

=
τ

c

a (µ+ η0) + bω + i (aω − b (µ+ η0))

a2 + b2

+(n+ 1)
cβ − σ0 + a− ib

(cβ − σ0 + a)
2
+ b2

a (µ+ η0) + bω + i (aω − b (µ+ η0))

a2 + b2
,

and (
− iω+µ+η0√

Λ
+ 1
)
(2η0 + 2σ0)

(
−σ0 −

√
Λ + iω + µ

)(
2η0 + σ0 −

√
Λ + iω + µ

) =
2η0 + 2σ0
a2 + b2

× [a (a− (µ+ η0)) + b (b− ω)] + i (b− ω) (a+ µ+ η0)(
(−σ0 − a+ µ) (2η0 + σ0 − a+ µ)− (ω − b)

2
)
+ i2 (ω − b) (µ+ η0 − a)

.

Hence

Re

[(
τ +

c (n+ 1)

cβ − σ0 +
√
Λ

)(
iω + µ+ η0

c
√
Λ

)]

=
τ

c

a (µ+ η0) + b ab
µ+η0

a2 + b2

+(n+ 1)
(cβ − σ0 + a)

(
a (µ+ η0) + b ab

µ+η0

)
+ b

(
a ab
µ+η0

− b (µ+ η0)
)

(
(cβ − σ0 + a)

2
+ b2

)
(a2 + b2)

→ τ

c
, as b −→ +∞.
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By Lemma 6.3, we have

Re

(
− iω+µ+η0√

Λ
+ 1
)
(2η0 + 2σ0)

(
−σ0 −

√
Λ + iω + µ

)(
2η0 + σ0 −

√
Λ + iω + µ

)

=
2η0 + 2σ0
a2 + b2

×
[(

(−σ0 − a+ µ) (2η0 + σ0 − a+ µ)− (ω − b)
2
)2

+ 4 (ω − b)
2
(µ+ η0 − a)

2

]−1

×
[
(a (a− (µ+ η0)) + b (b− ω))

(
(−σ0 − a+ µ) (2η0 + σ0 − a+ µ)− (ω − b)

2
)

−2 (b− ω)
2
(a+ µ+ η0) (µ+ η0 − a)

]

→ 0, as b −→ +∞.

Thus we deduce that

lim
b→+∞

Re
∂∆(α, iω)

∂λ
=
τ

c
> 0,

and the result follows.
Now, we are in position to derive the transversality condition.

Theorem 6.7 (Transversality condition) Let Assumptions 1.1 and 6.1 be
satisfied. For each k ≥ 0 large enough, let λk = iωk, ωk > 0 be the purely
imaginary root of the characteristic equation associated to αk > 0 (defined in

Proposition 6.2), then there exists ρk > 0 (small enough) and a C1-map λ̂k :
(αk − ρk, αk + ρk) → C such that

λ̂k(αk) = iωk, ∆(α, λ̂k(α)) = 0, ∀α ∈ (αk − ρk, αk + ρk),

satisfying the transversality condition

Re
dλ̂k(αk)

dα
> 0.

Proof. By Lemma 6.6 we can use the implicit function theorem around each
(αk, iωk) provided by Proposition 6.2 for each k ≥ 0 sufficiently large, and

obtain that there exists ρk > 0 and a C1-map λ̂k : (αk − ρk, αk + ρk) → C such
that

λ̂k(αk) = iωk, ∆(α, λ̂k(α)) = 0, ∀α ∈ (αk − ρk, αk + ρk).

Moreover, we have

∂∆
(
α, λ̂k(α)

)

∂α
+
∂∆

(
α, λ̂k(α)

)

∂λ

dλ̂k(α)

dα
= 0, ∀α ∈ (αk − ρk, αk + ρk) .
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It follows that

dλ̂k(α)

dα
= − 1

∂∆(α,λ̂k(α))
∂λ

∂∆
(
α, λ̂k(α)

)

∂α
, ∀α ∈ (αk − ρk, αk + ρk) .

By using Lemma 6.5, we deduce that ∀α ∈ (αk − ρk, αk + ρk)

Re
d

dα
λ̂k(α) > 0 ⇔ Re



∂∆

(
α, λ̂k (α)

)

∂λ


 > 0.

In particular, we have

Re
d

dα
λ̂k(αk) > 0 ⇔ Re

(
∂∆(αk, iωk)

∂λ

)
> 0.

By Lemma 6.6, the result follows.

6.3 Hopf bifurcations

For α large enough, the existence of a unique pair of pure imaginary eigenval-
ues of Bα and transversality condition have been obtained by Proposition 6.2,
Lemma 6.4 and Theorem 6.7 in subsections 6.1 and 6.2. Moreover, according to
Lemma 4.2, the simplicity of these eigenvalues follows directly from Lemma 6.6.
Remember that ω0,ess ((Bα)0) < 0, has been obtained in Lemma 4.3. Now all
the four aspects mentioned at the beginning of this section have been studied.
Hence by using the Hopf bifurcation Theorem proved in [39, Theorem 2.4], we
obtain the following Hopf bifurcation result.

Theorem 6.8 (Hopf Bifurcation) Let Assumptions 1.1 and 6.1 be satisfied.
Then there exists k0 ∈ N (large enough) such that for each k ≥ k0, the number
αk (defined in Proposition 6.2) is a Hopf Bifurcation point for system (1.1)
parametrized by α, around the equilibrium point v̄ given in Lemma 3.1.

7 Summary and numerical simulations

In this section, we first summarize the main results of this paper, then we will
present some numerical simulations.

First, we proved that the positive equilibrium exists if and only if

R0 := αχ > 1.

Moreover when it exists, the positive equilibrium is unique. Then we have inves-
tigated the local asymptotic behavior around the positive equilibrium. Namely,
we proved that:

(a) The positive equilibrium is locally asymptotic stable if 1 < R0 ≤ e2.
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(b) Hopf bifurcation may occur whenever

γ (x) = (x− τ)
n
e−β(x−τ)1[τ,+∞)(x),

for β > 0, n ∈ N, τ > 0, or β = 0, n = 0, τ > 0.
Then regarding α as a bifurcation parameter, we obtain an infinite number

of Hopf bifurcation points αk. More precisely, Proposition 6.2 we obtain a
sequence bk going to +∞ and satisfying (6.8), and the bifurcation points are
given by

αk =
1

χ
exp

(
1 + χ

r2(bk) (r3(bk))
n+1

n!r1(bk)cn
exp

(
(−σ0 + ak) τc

−1
)
)
,

where ak, χ, r1(bk), r2(bk), r3(bk) are defined as before (see section 6).
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Figure 1: In this figure, we plot some bifurcation curves given by (6.8) and (6.9)
in the (η0, lnα)-plane for τ = 2, µ = 1, c = 1, n = 1, β = 3 and σ0 = 1.

Figure 1 allows to understand the influence of η0 on the bifurcation points.
It can be observed that when k is large the bifurcation parameter α grows
extremely fast with respect to some relatively small interval of η0.

Now we can also compare the system (1.1) with system (1.2). So we let η0
goes to infinity and we assume that (1.3) is satisfied. Set

c = ε
√

2(η0 + µ) and σ0 =
1

ε

√
η0 + µ

2
.

Then in Figure 2 we consider ε and α as the parameters of the system, we draw
the bifurcation diagrams in the (ε, α)-plane with large value of η0. Formally
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this provides an approximation of the bifurcation diagram obtained for system
(1.2) in [15].
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Figure 2: In this figure, we plot some bifurcation curves given by (6.8) and (6.9)

with c = ε
√

2(η0 + µ) and σ0 = 1
ε

√
η0+µ

2 in the (ε, α)-plane for τ = 2, µ = 5,

n = 1, β = 0.1, η0 = 105.

Next we provide some numerical simulations of the solutions of system (1.1),
in order to show that the theoretical results can be observed numerically. In
Figures 3, 4, and 5, we fix γ (x) = (x− 0.75) e−0.1×(x−0.75)1[0.75,1.5)(x), σ0 =
0.5, c = 1, µ = 0.05, and ξ = 0.5, and the parameter α varies from 40 to 80.

In Figure 3 and Figure 4 we plot the total number of individuals growing
in maturity (respectively decaying in maturity) (i.e. the L1 norm of u+(t, .)
respectively the L1 norm of u−(t, .)). We observe that when α increases, the
system passes from a stable to an oscillating regimen.
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Figure 3: Graph of the evolution of the L1-norm of the solutions u+(t, x) in
function of time.
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Figure 4: Graph of the evolution of the L1-norm of the solutions u−(t, x) in
function of time.

To conclude this article, we plot the distribution u+(t, .) and u−(t, .) of the
system in maturity in Figure 5. We can see that the largest oscillations take
place for the small maturity and decay rapidly when the maturity increases.
Intuitively, if the oscillations can persist for large maturity values then the
system can produce some undamped oscillation, namely some periodic solutions.
Actually, the problem is much more delicate then that, and one needs a rigorous
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mathematical analysis to understand the influence of the parameters on the
oscillating properties of the system.

Figure 5: Surface of solutions u+(t, x), u−(t, x)
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