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Abstract

Backgroud: The emergence and ongoing spread of antimicrobial-resistant bacteria is a major public health threat.
Infections caused by antimicrobial-resistant bacteria are associated with substantially higher rates of morbidity and
mortality compared to infections caused by antimicrobial-susceptible bacteria. The emergence and spread of these bacteria
is complex and requires incorporating numerous interrelated factors which clinical studies cannot adequately address.

Methods/Principal Findings: A model is created which incorporates several key factors contributing to the emergence and
spread of resistant bacteria including the effects of the immune system, acquisition of resistance genes and antimicrobial
exposure. The model identifies key strategies which would limit the emergence of antimicrobial-resistant bacterial strains.
Specifically, the simulations show that early initiation of antimicrobial therapy and combination therapy with two antibiotics
prevents the emergence of resistant bacteria, whereas shorter courses of therapy and sequential administration of
antibiotics promote the emergence of resistant strains.

Conclusions/Significance: The principal findings suggest that (i) shorter lengths of antibiotic therapy and early interruption
of antibiotic therapy provide an advantage for the resistant strains, (ii) combination therapy with two antibiotics prevents
the emergence of resistance strains in contrast to sequential antibiotic therapy, and (iii) early initiation of antibiotics is
among the most important factors preventing the emergence of resistant strains. These findings provide new insights into
strategies aimed at optimizing the administration of antimicrobials for the treatment of infections and the prevention of the
emergence of antimicrobial resistance.
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Introduction

Antimicrobial resistance among bacteria has become a

worldwide public health threat [1–3]. Despite substantial inter-

ventions aimed at preventing the emergence and spread of

antimicrobial-resistant bacteria, the rates continue to rise rapidly

[4]. The geographic locations affected by antimicrobial resistance

are mounting [2]. The economic impact of antimicrobial

resistance is substantial [1]. Infections caused by these antimicro-

bial-resistant bacteria are associated with substantially higher

mortality rates, longer hospital stays and greater hospital costs,

compared to infections caused by antimicrobial-susceptible

bacteria [5,6]. In 1998, it was estimated that the annual cost of

antimicrobial resistance in hospitals due to Staphylococcus aureus was

already $122 million and of nosocomial infections was $4.5 billion

[1,7]. A recent estimate showed that there were 18,650 deaths in

patients with invasive methicillin-resistant S. aureus in the United

Sates in 2005, exceeding the total number of deaths due to HIV/

AIDS in the same year [8].

In the last decade, mathematical models have been increasingly

used as tools to identify factors responsible for observed patterns of

antimicrobial resistance, to predict the effect of various factors on

the prevalence of antimicrobial resistance, and to help design

effective control and intervention programs [9–16]. We also refer

to the surveys on this topic [14,15,17–19]. Most of these studies

have used differential equations models, which aggregate patient

and health-care worker populations into compartments such as

colonized or uncolonized patients and contaminated or uncon-

taminated health-care workers. Interventions proposed by these

studies have focused on reducing the transmission of antimicro-

bial-resistant bacteria between patients thereby preventing de novo

acquisition. Antimicrobial treatments have also been evaluated in

some of these studies. For example, Bonhoeffer et al. [10]

considered two models for treatment and resistance with a single
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and two drugs, respectively. They found that when more than one

antibiotic is employed, sequential (cycling) use of different

antibiotics is not as good as that with a combination of antibiotics.

Bergstrom et al. [11] further developed a mathematical model to

study the efficacy of cycling program and found that cycling is

unlikely to reduce the spread of antimicrobial resistance. Se also

[49,50].

One of the main limitations in providing guidance with

antibiotic administration is the paucity of data regarding optimal

duration of therapy and patterns of use which would reduce the

emergence and spread of resistant bacteria. This lack of data is due

to the fact that patient-oriented clinical studies cannot fully address

the multitude of factors that are involved in the treatment of

infections, the emergence of resistance and the role of the immune

system in eradicating the infection. D’Agata et al. [12] integrated

an individual-based model and a deterministic model to provide a

quantitative analysis of the emergence and spread of antimicrobial

resistant bacteria and demonstrated that early initiation of

treatment and minimization of its duration mitigates antimicrobial

resistance epidemics in hospitals.

Mathematical models have also developed to study pharmaco-

dynamics of various antimicrobial therapies [20–23]. Lipsitch and

Levin [22] presented a simple mathematical model of pharmaco-

kinetics and bacterial population dynamics that is designed to

address the problem of suppressing the emergence of resistance

during treatment. They restricted their consideration to treatment

with bactericidal antibiotics and the evaluation of resistance by

mutation. Via mathematical modelling and computer simulations,

the effect of mutation in antimicrobial resistance has further

investigated by Levin and Rozen [23] who showed non-inherited

resistance could extend the duration of antimicrobial treatment,

cause treatment failure and promote the generation and ascent of

inherited resistance in treated patients.

Bacteria can also develop antimicrobial resistance through the

acquisition of new genetic material from other resistant organisms,

such as horizontal gene transfer [24,25]. The widespread

dissemination of antimicrobial resistance genes are the results of

improper and excessive administration of antibiotics, combined

with the ready bacterial ability to transfer antimicrobial resistance

genes through plasmids and transposons and the presence of large

transfer communities such as hospitals [24]. Compared to the

mathematical modelling on population dynamics of the antimi-

crobial resistance bacteria, there are few models describing the

horizontal transfer of antimicrobial resistance genes [24], which

could help better understand the mechanisms of antimicrobial

resistance in bacteria and provide more effective treatment.

Multidrug-resistant bacteria can colonize specific sites in the

host and evade immune surveillance [26]. The nature of the host

immune response to multidrug-resistant bacterial infection is

complex. To the best of our knowledge, the combined effect of

immune response, horizontal gene transfer and antibiotic

treatment has not been modelled and explored. In this article,

we develop a new mathematical model which incorporates three

key aspects in the emergence of resistance caused by antibiotic

exposure: the response of the host’s immune system, horizontal

transfer of resistance genes and patterns of antibiotic treatment

regimens. Specifically, we want to propose a model for the

bacterial population and study the within-host dynamics that

would provide critical information regarding the optimal regimens

for antibiotics administration in the treatment of infections in

order to prevent the emergence of antimicrobial resistant bacteria.

By mathematical modelling and numerical simulations, we

demonstrate the importance and significance of the necessary

length of antimicrobial treatment, the early initiation of treatment,

and the combination of antibiotics in preventing antimicrobial

resistant bacterial infections in treated patients.

Table 1. List of Parameters and their Values.

Symbol Interpretation Value Units References

l Growth rate of bacteria 2.7726 (without treatment)(i) day21 [27,28,29]

2.7726 21.9 with treatment A (sensitive to A)

2.7726 22.1 with treatment B (sensitive to B)

d Division rate of bacteria 2.7726 day21 This study(ii)

m Mortality rate of sensitive bacteria 0 without treatment day21 This study

1.9 with treatment A (for sensitive to A) day21

2.1 with treatment B (for sensitive to B)

k lk is the carrying capacity of bacteria 1015/2.7726(iii) This study

c Killing rate of Phagocytes 33.6038(iii) day21 This study

P Total Number of Phagocytes 332711(iii) This study

t Recombination rate 1023 day21 [41,43]

p Probability that a plasmid is lost during the division without antibiotic pressure 0.4(iv) This study

(i)In the work from [31], the E. coli generation time in vivo in the gastrointestinal tract was approximately 60 min (l = 16.6622 day21) and was quasi-static in the lumen
content. However, the authors state that these results are specific to their experimental conditions, without competition with other bacteria. In our model, we chose a
longer generation time based on (a) other studies [27–29]; and (b) the relevance of our simulations. Indeed, if l is set at 16.6622 day21, the bacterial growth was at a
rate that antibiotic therapy was totally inefficient, even for susceptible bacteria.

(ii)In this study we assume that the mortality rate of bacteria in absence of antibiotics is negligible.
(iii)These parameters have been adjusted to maintain an infection threshold of 106 bacteria [32] and a rate of invasion comparable to previous studies [12].
(iv)The probability that a plasmid is lost during the division without antibiotic pressure depends on the bacteria and plasmid size. According to several studies, we chose

an average parameter representative of E. coli and the common size of plasmid bearing resistance genes [33–36]. This probability may vary from 0 to 1 among 50
generations cell. In this model, this parameter was set at a value to provide adequate simulations.

doi:10.1371/journal.pone.0004036.t001
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Methods

(A) Model with immune response and single antibiotic
treatment

We first present an ideal case of a homogenous bacterial

population within a host treated by an antimicrobial agent. Since a

growing bacterial population will eventually saturate due to the

limitation of nutrients and space, we use the logistic growth to

describe the population dynamics of the bacteria. Also assume that

the bacteria are killed by the antimicrobial agent at a constant rate

proportional to the density of the bacteria population.

Let B(t) be the number of bacteria at time t. Let d (day21) be the

division rate and m (day21) the mortality rate due to antibiotic

treatment. So l = d2m is net growth rate and lk is the carrying

capacity of the bacteria, the term {B tð Þ2
.

lk describes the

limitation of space and food available to the bacteria. The

bacterium Escherichia coli is chosen for this model since baseline

parameters pertaining to its biology are available from the

literature. For E. coli, the average in vivo doubling time (AV) is

0.4 day, based on data from several studies [27,28,29]. The growth

rate is l = ln2/ AV = 2.7726 day21. The maximum number is set

at lk~1015 bacteria [12]. Thus, k~1015
�

2:7726.

Now we consider the response of the host’s immune system to

the invading bacteria. The innate immunity is characterised by a

rapid action of the host’s effectors cells including leukocytes, which

will limit the multiplication of bacteria and destroy them. Assume

that the killing rate of bacteria by leukocytes satisfies the Monod

function [21,30]. In our model, the minimal infecting dose, or

threshold of bacteria required to overcome the immune system,

will be addressed. This value implies that above the threshold, the

immune response is ineffective against bacterial growth and the

infection progresses.

For the immune system to be ineffective and the infection to

progress, the bacterial population need to be above the minimal

infecting dose, or threshold, which is related to the number of

phagocytes. Indeed, we can consider the following equation:

B’ tð Þ~ lB tð Þ|fflffl{zfflffl}
Division
and
Mortality

{ B tð Þ2
.

k|fflfflfflfflffl{zfflfflfflfflffl}
Limitation
of
Ressources

{ c
P

PzB tð ÞB tð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Immune
Response

,

ð1Þ

where P is the equilibrium number of activated phagocytes, and c
(day21) is the maximal killing rate of bacteria by activated

phagocytes. We assume that the number of phagocytes remains

constant. The main consequence of this assumption is that the

threshold of invasion and the threshold of bacterial eradication are

the same [21]. For other values see Table 1.

Model (1) has at most three non-negative equilibria. �BB0~0 is

always an equilibrium, which is stable if l = d2m.0 and unstable

if l = d2m,0. There eventually exist two other equilibria which

are solutions of the quadratic equation B2{ kl{Pð ÞBz

kP c{lð Þ~0. It has two roots �BB+~ kl{Pð Þ+
ffiffiffiffi
D
p� �.

2 if

D : ~ kl{Pð Þ2{4kP c{lð Þw0, where �BB{ corresponds to the

invasion threshold and �BBz corresponds to the maximal bacterial

load. In practice, we fix �BB{~106 [32] and �BBz~1015 corre-

sponding to the experimental value obtained in previous studies

[12]. Notice that with parameter values in Table 1, �BB{ is unstable

Figure 1. Simulations of Model (1) on the duration of antimicrobial treatment and its effects on infection progression. The initial
value is chosen between 106 and 1015, so the solution increases initially. The green line represents the threshold of bacterial load above which an
infection develops. Below this threshold, the phagocyte density is sufficient to prevent the progression to infection. (a) Treatment starts at the 4th day
after an infection and lasts for 9 days. The bacterial load decreases to below the threshold and the infection is prevented. (b) Treatment starts at the
4th day after an infection and lasts for only 6 days. The bacterial load decreases to close to the threshold, but stays above it and increases again. The
infection becomes more progressive.
doi:10.1371/journal.pone.0004036.g001
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and �BBz is stable. Thus, the asymptotic behavior of solutions of

Model (A) depends on the location of the initial value. If the initial

bacterial load is between 106 and 1015, then the solution will

increase and approach �BBz as time involves. However, treatment

can change the dynamics (see simulations in Results).

(B) Model with resistant strains to one antibiotic through
horizontal gene transfer

Antimicrobial resistance among bacteria can be intrinsic or

acquired either through de novo mutations or via the acquisition of

antimicrobial-resistance genes [25]. The latter occurs through

horizontal gene transfer of mobile genetic elements including

plasmids, integrons and transposons37. Acquisition of resistance

genes is among the main mechanism of antimicrobial resistance

among E. coli isolates [38–40].

Let BS tð Þ and BR(t) denote the population levels of antibiotic-

sensitive (plasmid free) and antibiotic-resistant (plasmid bearing)

bacteria at time t, respectively, so that B tð Þ~BS tð ÞzBR tð Þ is the

total bacterial load in a host. Thus, BS tð Þ=B tð Þ is the fraction of

bacteria that are antibiotic-sensitive and BR tð Þ=B tð Þ is the

fraction of bacteria that are antibiotic-resistant. Let t be the

recombination rate (i.e. horizontal gene transfer rate) of plasmid

free and plasmid bearing to plasmid bearing. Then

tBS tð ÞBR tð Þ=B tð Þ represents the recombination process. Let p

be the probability that a plasmid is lost, which varies after 50

generations from 0, 40 or 100% [33–35] and depends on the

type of plasmid, its stability and copy number, and the presence

of the antibiotic pressure. In practice this leads to the estimation

of dR
p
2

as the reversion rate of plasmid bearing to plasmid free,

where dR is the division rate of the antibiotic-resistant bacteria.

Let dS be the division rate of the antibiotic-sensitive bacteria, mS

and mR be the mortality rates of plasmid free and plasmid

bearing bacteria, respectively.

Extending the model of Webb et al. [16] to include the immune

response, we obtain the following:

BS
’ tð Þ~{t

BS tð ÞBR tð Þ
B tð Þ z dS{mSð ÞBS tð ÞzdR

p

2
BR tð Þ{

B tð Þ
k

BS tð Þ{c
P

PzB tð ÞBS tð Þ

BR
’ tð Þ~t

BS tð ÞBR tð Þ
B tð Þ z dR 1{

p

2

� �
{mR

� �
BR tð Þ{

B tð Þ
k

BR tð Þ{c
P

PzB tð ÞBR tð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð2Þ

The rate of horizontal gene transfer occurs at a rate ranging from

1021 to 1026 genes per cell per generation [41–43]. In this model,

we assume that gene transfer occurs at a rate of 1023/day. Since

plasmid-bearing bacteria have a longer generation time than

plasmid-free bacteria, we assumed a 40% increase in generation

time among the plasmid-bearing bacteria [36,44]. In the absence

of antibiotic pressure, plasmids carrying antimicrobial resistance

genes are lost to minimize costs associated with replication and

conservation, as shown in several studies [33–36]. In our model,

plasmid loss during bacterial replication is set at 1025 per cell and

per generation [36,45,46]. In absence of antibiotics, we can

assume that dS{mSð Þ~ dR{mRð Þ. In this case B(t) satisfies Model

(1). So we observe that BS tð ÞzBR tð Þ~�BBz.

Figure 2. Simulations of Model (1) on the initiation of an antimicrobial therapy and infection progression. (a) Treatment starts at the 1st

day after an infection and lasts for 9 days. The bacterial load decreases to below the threshold and the infection is prevented. (b) Treatment starts at
the 3rd day after an infection and lasts for 9 days. The bacterial load decreases slightly, but stays above the threshold and increases even during the
treatment.
doi:10.1371/journal.pone.0004036.g002
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Note that we have extinction when B 0ð Þv�BB{ or invasion when

B 0ð Þw�BB{ and (BS tð Þ, BR(t)) converges to (�BBS,�BBR) as time t

increases, where �BBS~dRp�BBz=2 and �BBR~�BBz 1{dRp= 2tð Þð Þ.
The proportion of antibiotic-susceptible and -resistant bacteria

can therefore be quantified in function of the parameter in absence

of antibiotics.

(C) Model with different antibiotic treatments and
multidrug-resistant (MDR) strains

Finally we consider the situation when the bacteria are

multidrug-resistant. We will model different antibiotic treatments

and study the combined treatment regimens. Denote

BS(t)–the number of antibiotic-sensitive (plasmid-free)

bacteria at time t

BA(t)–the number of bacteria resistant to antibiotic A but

not resistant to antibiotic B (i.e. bacteria bearing only

plasmid A)

BB(t)–the number of bacteria resistant to antibiotic B but

not resistant to antibiotic A (i.e. bacteria bearing only

plasmid B)

BAB(t)–the number of bacteria resistant to both antibiotics

A and B (i.e. bacteria bearing both plasmids A and B) .

Considering exposure to two antibiotics and generalizing the

Model (2) which includes the effect of the saturation due to food or

space limitation, and the effect of immune system, we have the

following model:

BS
’ tð Þ~{t

BS tð Þ BA tð ÞzBB tð ÞzBAB tð Þð Þ
B tð Þ z dS{mSð ÞBS tð Þ

zdA
p

2
BA tð ÞzdB

p

2
BB tð ÞzdAB

p2

2
BAB tð Þ{ B tð Þ

k
Bs tð Þ

{c
P

PzB tð ÞBS tð Þ

BA
’ tð Þ~t

BS tð ÞBA tð Þ
B tð Þ {t

BA tð Þ BB tð ÞzBAB tð Þð Þ
B tð Þ

z dA 1{
p

2

� �
{mA

� �
BA tð ÞzdAB

p

4
BAB tð Þ

{
B tð Þ

k
BA tð Þ{c

P

PzB tð ÞBA tð Þ

BB
’ tð Þ~t

BS tð ÞBB tð Þ
B tð Þ {t

BB tð Þ BA tð ÞzBAB tð Þð Þ
B tð Þ

z dB 1{
p

2

� �
{mB

� �
BB tð ÞzdAB

p

4
BAB tð Þ

{
B tð Þ

k
BB tð Þ{c

P

PzB tð ÞBB tð Þ

BAB
’ tð Þ~t

BS tð ÞBAB tð Þ
B tð Þ

zt
BA tð Þ BB tð ÞzBAB tð Þð ÞzBB tð Þ BA tð ÞzBAB tð Þð Þ

B tð Þ z

z dAB 1{
p

2
{

p2

2

� �
{mAB

� �
BAB tð Þ{ B tð Þ

k
BAB tð Þ{c

P

PzB tð ÞBAB tð Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð3Þ

To simplify, we will assume that dS~dA~dB~dAB~2:7726=day
and the mortality rates are shown in Table 1.

Figure 3. Simulations of Model (2) on the interruption of treatment and infection progression. (a) Treatment is interrupted for 1 day at
day 3 and continues for the rest of the 9-day therapy. The bacterial load does not change much and increases afterward, the infection is progressive.
(b) Treatment is interrupted for 1 day at day 5 and continues for the rest of the 9-day therapy. The bacterial load decreases steadily and the infection
can be prevented.
doi:10.1371/journal.pone.0004036.g003

ð3Þ
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Results

By carrying out numerical simulations of Models (1)–(3), we

study the impact of several factors, such as the immune response,

duration of antimicrobial therapy, initiation and interruption of

treatment, delay and sequential antimicrobial regimens, and

combination of antimicrobial therapies, on the progress of an

infection within a host. Note that in all simulations, the initial

values are chosen near the equilibrium values of these models.

(A) Immune system response and duration of
antimicrobial therapy

The first simulation (Model (1)) demonstrates the importance of

longer antimicrobial therapies required to prevent the progression

of an infection. When the bacterial load is below the minimal

infecting dose, the immune system is effective in killing bacteria

and the patient does not develop an infection. When the duration

of an antimicrobial therapy is for 9 days, the bacterial load is

reduced below the threshold and progression of the infection is

prevented. However, a shorter antimicrobial therapy of 6-day

courses does not reduce the bacterial load to below the threshold

and therefore an infection is not prevented (Figure 1).

(B) Initiation and interruption of treatment and resistant
strains to one antibiotic

The second simulation (Model (2)) addresses the issue of the

importance of the timing of antibiotic initiation in the progression

to an infection. The model includes the susceptible strain and a

strain that is resistant to antibiotic A. Antibiotics are administered

for a total of 9 days to optimize the duration of therapy, as shown

in Figure 1.

In Figure 2(a), the treatment starts at the first day of an infection

and in Figure 2(b), treatment is delayed and starts at the third day

of the infection. The treatment occurs with antibiotic A which is

ineffective against the resistant strain A. The simulations show that

if the initiation of a therapy is delayed the infection will progress. If

the antimicrobial therapy starts early, the infection can be treated

successfully, with both the susceptible and resistant strains.

The third simulation (Model (2)) addresses the issue of treatment

interruption and its impact on the progression of an infection. The

importance of initiating appropriate antibiotic therapy at the start

of infection is addressed in these simulations. In both Figures 3(a)

and 3(b) the treatment duration is for 9 days, but in Figure 3(a) the

treatment is interrupted for one day at day 3 and in Figure 3(b) the

interruption occurs at day 5. These simulations demonstrate that

early interruption of therapy results in the progression of an

infection with the resistant strain since the bacterial load of the

resistant strain exceeds the threshold of the minimum infecting

dose prior to treatment interruption.

We assume that the patient is harbouring a sensitive strain

(AsBs) and a strain that is resistant to antibiotic A but susceptible to

antibiotic B (ArBs). The effects of varying treatment sequences

with antibiotics A and B are simulated in Figure 4. Treatment with

antibiotic A is ineffective and the infection progresses, but

subsequent treatment with antibiotic B is effective in eradicating

the infection (Figure 4(a)). Concurrent therapy with antibiotics A

and B is more effective as the patient is treated with an effective

antibiotic against ArBs (Figure 4(b)).

(C) Delay and sequential antibiotic regimens on the
emergence of MDR strains

The impact of early initiation of therapy is addressed in the final

model (Model (3)) for treating two-drug resistant strains, since this

Figure 4. Simulations of Model (3) on multiple antibiotic therapies. In both simulations, treatment starts at the 4th day after the infection and
lasts for 9 days. (a) If antibiotic A fails in the first therapy, then a second treatment with antibiotic B has to be administrated to prevent the infection.
(b) A combination of both antibiotics A and B can bring the bacterial level below the threshold and the infection can be prevented.
doi:10.1371/journal.pone.0004036.g004
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treatment was effective in eliminating the single-drug resistant

strain (Figure 2(a)). We assume that the patient is colonized with

three E. coli populations: a strain that is sensitive to both antibiotics

A and B (AsBs), a second strain that is sensitive to antibiotic A and

resistant to antibiotic B (AsBr), and a third strain which is resistant

to antibiotic B and sensitive to antibiotic A (AsBr). The impact of

concurrent or sequential therapies with antibiotics A and B and its

effect on the emergence of the two-drug resistant strains (ArBr) is

assessed.

We consider two scenarios: (i) The patient is treated with the

antibiotic A and than immediately with the antibiotic B, followed

by both antibiotics simultaneously (Figure 5(a)). (ii) Treatment

starts at the first day after the infection (Figure 5(b)). Simulations

demonstrate that early initiation of therapy, on day 1, can

eliminate the two-drug resistant strain ArBr irrespective of the

sequence of antibiotic therapies (Figure 5(b)). In this scenario, the

bacterial load of ArBr always remains below threshold. Thus, early

initiation of therapy and combined antimicrobial therapy are the

key measures to prevent and control infections with multi-drug

resistant strains.

To further simulate the early initiation of therapy and the effect

of combined therapy, in Figure 6(a) the patient is treated on the 3rd

day after infection with both antibiotics A and B simultaneously.

In Figure 6(b) the patient is treated on the 10th day after infection

with both antibiotics A and B simultaneously.

In these simulations (Figures 5 and 6), the antibiotic regimens

that eradicate the infection and eliminate the resistant strains are

therapies using antibiotics A and B simultaneously. In Figure 5(b)

and Figure 6, as opposed to Figure 5(a), the bacterial loads of AsBr

and ArBs decrease during therapy with antibiotic A and B,

respectively. The decrease in bacterial quantity diminishes the rate

of horizontal gene transfer, thereby preventing the emergence of

ArBr, despite ineffective therapy against two-drug resistant strain.

The efficacy of initiating therapy with both antibiotics simulta-

neously is persistent even if therapy is delayed (Figure 6(a)). The

optimal regimen in treating the two-drug resistant strains is

demonstrated in Figure 6(b): early treatment with a combination

of two antibiotics.

Discussion

Antimicrobial exposure is central to the emergence and spread

of antimicrobial-resistant bacteria. We have presented a model

delineating the interrelated factors of antimicrobial therapy, the

immune system and resistance gene transfer, and their effect on

the emergence of antimicrobial-resistant bacterial strains. The

model delineates novel findings with regards to the timing and

sequence of antibiotic therapy in preventing the emergence of

resistant strains. First, the model shows that shorter lengths of

antibiotic therapy and early interruption of antibiotic therapy

provide an advantage for the resistant strains and result in

infections caused by these resistant bacteria to progress. Second,

the model outlines the optimal antibiotic regimens which prevent

the progression of infection with a resistant strain. Our model

demonstrates that combination therapy with two antibiotics

prevents treatment failure and the emergence of resistant strains,

as opposed to sequential therapy. Third, the model shows that a

delay in the start of therapy is one of the key factors in promoting

the rapid rise in resistant strains. The early timing is even more

important than the type of antibiotic regimen since early initiation

of antimicrobials will prevent emergence of resistance regardless of

whether antibiotics are administered sequentially or concurrently.

Figure 5. Simulations of Model (3) on sequential treatment with antibiotics A and B. (a) Treatment with antibiotic A starts at the 3rd day
after the infection and lasts for 10 days, right after that antibiotic B is administrated for 10 days, and at the 40th day both antibiotics A and B are used
for 10 days. (b) Same therapies except that the first treatment starts at the 1st day after the infection.
doi:10.1371/journal.pone.0004036.g005
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Using a model system which incorporated population-level factors,

D’Agata et al. [12] also demonstrated that early initiation of

therapy is key to preventing the spread of antibiotic-resistant

bacteria within a hospital setting.

Population-level models quantifying the factors promoting the

spread of resistant bacteria have been instrumental in identifying

the preventive strategies most effective at decreasing cross-

transmission between patients [9–19]. These models have shown

the impact of overall antimicrobial exposure on the spread of

resistant bacteria. In our individual-level model, we extend the

analysis of antimicrobial exposure and treatment regimen to

further our understanding of the type and sequence of antimicro-

bial exposure to provide guidance on the optimal prescribing

patterns.

Clinical studies do not provide conclusive evidence of the

benefit of combination therapy in the treatment of infections with

the exception of tuberculosis and HIV [47]. In these cases,

combination therapy is effective due to the high bacterial burden

and high rate of emergence of resistance during therapy through

mutations [47]. For other bacteria is remains unclear from clinical

studies whether combination therapy provides a benefit in

reducing resistance. Thus, current guidelines for improving

antibiotic use from the Infectious Disease Society of America

and the Society for Healthcare Epidemiology do not recommend

use of combination therapy [47]. However, we would like to point

out that in clinical practice, when laboratory tests confirm the co-

existence of different antimicrobial-resistant bacteria with different

antimicrobial susceptibility profiles, combination therapy is used to

target each pathogen. In our paper, combination therapy referred

to the use of two antimicrobials both of which would have efficacy

against the infecting organism. In fact, our model supports the use

of combination therapy in preventing the emergence of multiple

resistant strains within an individual [10,11,19,22,48]. The effect

of widespread combination therapy on the emergence and spread

of resistant bacteria to other patients however was not addressed.

Future models should incorporate both individual- and population

level analysis to determine the impact of the spread of resistant

bacteria within a community or hospital setting.

For the purpose of numerical simulations, in Model (1) we

assumed that the growth of bacteria satisfies the specific logistic

equation and the immune response satisfies the specific Monod

function. It should be pointed out that Model (1) can be

generalized to include a general bacteria growth term g(B) and a

general immune response function p(B), where g(B) is continuously

differentiable and satisfies g(0) = g(K) = 0 for a positive constant K,

and g9(0).0, g9(K),0. p(B) is also continuously differentiable and

satisfies p(B).0 and p9(B).0. Similar extensions apply to Models

(2) and (3).

Our conclusions were mainly based on the numerical

simulations of Models (1)–(3). It would be very interesting and

helpful to perform qualitative analysis of these models and provide

theoretical support for our numerical simulations and thus our

conclusions. Studies on the dynamics of these models are under

consideration and will be reported somewhere else.
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