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Abstract

This paper is devoted to the study of the essential growth rate of some class of semigroup generated by bounded perturbation
of some non-densely defined problem. We extend some previous results due to Thieme [H.R. Thieme, Quasi-compact semigroups
via bounded perturbation, in: Advances in Mathematical Population Dynamics—Molecules, Cells and Man, Houston, TX, 1995,
in: Ser. Math. Biol. Med., vol. 6, World Sci. Publishing, River Edge, NJ, 1997, pp. 691–711] to a class of non-densely defined
Cauchy problems in Lp . In particular in the context the integrated semigroup is not operator norm locally Lipschitz continuous.
We overcome the lack of Lipschitz continuity of the integrated semigroup by deriving some weaker properties that are sufficient to
give information on the essential growth rate.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The goal of this paper is to study the essential growth rate of some class of semigroup generated by bounded
perturbation of some non-densely defined Cauchy problem. In order to investigate such problems, we first need to
consider non-densely defined non-homogeneous Cauchy problem

du

dt
= Au(t) + f (t), t ∈ [0, τ0], u(0) = x ∈ D(A), (1.1)

where A : D(A) ⊂ X → X is a linear operator on a Banach space X and f ∈ L1((0, τ0),X). When A is a Hille–
Yosida operator and is densely defined (i.e., D(A) = X), the problem has been extensively studied (see Pazy [15] and
Yosida [26]). When A is a Hille–Yosida operator but its domain is non-densely defined, Da Prato and Sinestrari [5]
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investigated the existence of several types of solutions for (1.1). They first reformulated (1.1) as a sum of operator
problems (i.e., Bu = Au+f with Bu(t) = du

dt
), and then obtained the existence and uniqueness of integrated solutions

of (1.1) for each x ∈ D(A) and each f ∈ L1((0, τ0),X).
A very important and useful approach to investigate such non-densely defined Cauchy problems is to use the

integrated semigroup theory, which was first introduced by Arendt [1,2]. In the context of Hille–Yosida operators,
we have the following relationship between the integrated semigroup and integrated solutions of (1.1). An integrated
semigroup {S(t)}t�0 is a strongly continuous family of bounded linear operators on X, which commute with the
resolvent of A, such that for each x ∈ X the map t → S(t)x is an integrated solution of the Cauchy problem

du

dt
= Au(t) + x, u(0) = 0. (1.2)

Arendt [1,2] proved that if there is a strongly continuous family of bounded linear operators {S(t)}t�0 on X, which is
assumed to be exponentially bounded (see Section 2 for precise definition), and if (μI −A)−1x = μ

∫ ∞
0 e−μtS(t)x dt

holds for all x ∈ X and all μ > ω large enough (where (ω,∞) ⊂ ρ(A)), then {S(t)}t�0 is an integrated semigroup and
A is called its generator. Kellermann and Hieber [8] further developed the integrated semigroup theory and provided
an easy proof of Da Prato and Sinestrari’s result [5]. To be more specific, Kellermann and Hieber [8] proved that
when A is a Hille–Yosida operator, the map t → (S ∗ f )(t) := ∫ t

0 S(t − s)f (s) ds is continuously differentiable and
u(t) = d

dt
(S ∗ f )(t) is an integrated solution of (1.1). For recent studies on the integrated semigroup theory, we refer

to the monographs of Arendt et al. [3], Xiao and Liang [27] and the references cited therein.
In this article, as in Magal and Ruan [10] and Thieme [22], we consider the case where the integrated solution of

the Cauchy problem (1.1) only exists whenever f belongs the Lp((0, τ0),X) for some p ∈ [1,+∞). The situation is
motivated in particular by application to age-structured model, or application to neutral delay differential equations
in Lp . We make the following assumptions.

Assumption 1.1. We assume that the resolvent set of A is non-empty, and the part A0 of A in X0 = D(A) is the
infinitesimal generator of a strongly continuous semigroup {TA0(t)}t�0 of bounded linear operators on X0.

Under Assumption 1.1, it follows that ρ(A) = ρ(A0), because both the resolvent set of A and the resolvent set of
A0 are not empty, and it also follows that A generates a integrated semigroup {SA(t)}t�0 on X.

Assumption 1.2. Let p ∈ [1,+∞) be fixed. We assume that there exist M̂ > 0 and ω̂ ∈ R, such that for each τ > 0
and each f ∈ Lp((0, τ ),X), there exists uf ∈ C([0, τ ],X) an integrated solution of the Cauchy problem (1.1) with
x = 0, satisfying∥∥uf (t)

∥∥ � M̂
∥∥eω̂(t−.)f (.)

∥∥
Lp((0,t),X)

, ∀t ∈ [0, τ ].

Let L : D(A) → X be a bounded linear operator. The purpose of this paper is to obtain an estimation of ω0,ess((A+
L)0), the essential growth rate of {T(A+L)0(t)}t�0 (see Section 3 for a precise definition of the essential growth rate).
When the domain of A is dense in X, then {T(A+L)0(t)}t�0 is obtained as the unique solution of

T(A+L)0(t) = TA0(t) +
t∫

0

TA0(t − s)LT(A+L)0(s) ds,

and when

LTA0(t) is compact for each t > 0,

by using the approach of Webb [23] (see also [13, Theorem 3.2]), one may deduce that (because x →∫ t

0 TA(t − s)LT(A+L)(s)x ds is compact for each t � 0)

ω0,ess
(
(A + L)0

)
� ω0,ess(A0).

The main problem here is to obtain the same results as above whenever A is non-densely defined. In Section 2, we
obtain the following theorem (see Theorem 2.7).
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Theorem 1.1. Let Assumptions 1.1 and 1.2 be satisfied. Let L : D(A) → X be a bounded linear operator. Then
A + L : D(A) ⊂ X → X also satisfies Assumptions 1.1 and 1.2. In particular (A + L)0 the part of A + L in X0 is
the infinitesimal generator of a strongly continuous semigroup {T(A+L)0(t)}t�0 of bounded linear operators on X0.
Moreover {T(A+L)0(t)}t�0 is the unique solution of the fixed point problem

T(A+L)0(t) = TA0(t) + d

dt

t∫
0

SA(t − s)LT(A+L)0(s) ds.

Also inspired by the results of Thieme [19], we obtain the following theorem which is the main result of this paper.

Theorem 1.2. Let Assumptions 1.1 and 1.2 be satisfied. Let L : D(A) → X be a bounded linear operator. Assume that

LTA0(t) is compact for each t > 0.

Then we have the following inequality

ω0,ess
(
(A + L)0

)
� ω0,ess(A0).

One may note that when A is a Hille–Yosida operator (which corresponds here to the case p = 1 in Assump-
tion 1.2), the above result basically summarizes the results proved by Thieme [19]. The above question has been stud-
ied by Rhandi and Schnaubelt [16] using extrapolation method, but they assume in addition that the map t → LTA0(t)

is operator norm continuous which is not satisfied in general for age structured models. The above result uncompass
this difficilty. We also refer to Thieme [20,21] for further result going in that direction. So finally here the point is to
extend the previous results of Thieme [19] for the case p = 1 to the case p ∈ [1,+∞).

The above theorem can apply to various class of examples, such as age-structured problems in Lp, functional
differential equations in the space of continuous functions (see Liu, Magal and Ruan [9] for more details). In particular,
the above theorem can be applied to study neutral function differential equation in Lp (see Ducrot, Liu and Magal [6]
for more details).

The plan of the paper is the following. In Section 2, we recall some results about integrated semigroups. In Sec-
tion 3, we recall some results about the spectral theory for linear operators. The Section 4 is devoted to the proof the
main result Theorem 1.2.

2. Integrated semigroup

In this section we recall some results about integrated semigroups. We refer to Arendt [1,2], Neubrander [14],
Kellermann and Hieber [8], Thieme [18], and Arendt et al. [3], and Magal and Ruan [10] for more detailed results on
this subject.

Let X and Z be two Banach spaces. Denote by L(X,Z) the space of bounded linear operators from X into Z

and by L(X) the space L(X,X). Let A : D(A) ⊂ X → X be a linear operator. If A is the infinitesimal generator of a
strongly continuous semigroup of bounded linear operators on X, we denote by {TA(t)}t�0 this semigroup. We denote
by ρ(A) = {λ ∈ C: λI − A is invertible} the resolvent of A. From here on, we also denote by X0 := D(A), and A0
the part of A in X0, which is a linear operator on X0 defined by

A0x = Ax, ∀x ∈ D(A0) := {
y ∈ D(A): Ay ∈ X0

}
.

If (ω,+∞) ⊂ ρ(A), then it is easy to check that for each λ > ω,

D(A0) = (λI − A)−1X0 and (λI − A0)
−1 = (λI − A)−1|X0 .

In the following, we assume that operator A satisfies the following assumption.

Assumption 2.1. We assume that A : D(A) ⊂ X → X is a linear operator on a Banach space (X,‖.‖), satisfying the
following properties:
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(a) There exist two constants ωA ∈ R and MA � 1, such that (ωA,+∞) ⊂ ρ(A) and∥∥(λI − A)−k
∥∥
L(X0)

� MA

(λ − ωA)k
, ∀λ > ωA, ∀k � 1;

(b) limλ→+∞(λI − A)−1x = 0, ∀x ∈ X.

By using Hille–Yosida theorem (see Pazy [15, Theorem 5.3 on p. 20]), Lemma 2.1 in [10], and the fact that if
ρ(A) 	= ∅ then ρ(A) = ρ(A0), one obtains the following lemma.

Lemma 2.1. Assumption 2.1 is satisfied if and only if ρ(A) 	= ∅, A0 is the infinitesimal generator of a C0-semigroup
{TA0(t)}t�0 on X0, and∥∥TA0(t)

∥∥ � MAeωAt , ∀t � 0.

Now we give the definition of integrated semigroups.

Definition 2.2. Let (X,‖.‖) be a Banach space. A family of bounded linear operators {S(t)}t�0 on X is called an
integrated semigroup if

(i) S(0) = 0;
(ii) The map t → S(t)x is continuous on [0,+∞) for each x ∈ X;

(iii) S(t) satisfies S(s)S(t) = ∫ s

0 (S(r + t) − S(r)) dr , ∀t, s � 0.

An integrated semigroup {S(t)}t�0 is said to be non-degenerate, if S(t)x = 0, ∀t � 0, implies x = 0. According
to Thieme [18], we say that a linear operator A : D(A) ⊂ X → X is the generator of a non-degenerate integrated
semigroup {S(t)}t�0 on X if and only if

x ∈ D(A), y = Ax ⇔ S(t)x − tx =
t∫

0

S(s)y ds, ∀t � 0.

From [18, Lemma 2.5], we know that if A generates {SA(t)}t�0, then for each x ∈ X and t � 0,

t∫
0

SA(s)x ds ∈ D(A) and SA(t)x = A

t∫
0

SA(s)x ds + tx.

An integrated semigroup {S(t)}t�0 is said to be exponentially bounded if there exist two constants M̂ > 0 and ω̂ > 0,

such that∥∥S(t)
∥∥
L(X)

� M̂eω̂t , ∀t � 0.

When we restrict ourself to the class of non-degenerate exponentially bounded integrated semigroups, Thieme’s notion
of generator is equivalent the one introduced by Arendt [2]. More precisely, combining Theorem 3.1 in Arendt [2] and
Proposition 3.10 in Thieme [18], one has the following result.

Theorem 2.3. Let {S(t)}t�0 be a strongly continuous exponentially bounded family of bounded linear operators on a
Banach space (X,‖.‖) and A : D(A) ⊂ X → X be a linear operator. Then {S(t)}t�0 is a non-degenerate integrated
semigroup and A its generator if and only if there exists some ω̂ > 0 such that (ω̂,+∞) ⊂ ρ(A) and

(λI − A)−1x = λ

∞∫
0

e−λsS(s)x ds, ∀λ > ω̂.

The following result is well-known in the context of integrated semigroups (see [10, Proof of Proposition 2.4]).
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Proposition 2.4. Let Assumption 2.1 be satisfied. Then A generates a uniquely determined non-degenerate exponen-
tially bounded integrated semigroup {SA(t)}t�0. Moreover, for each x ∈ X, each t � 0, and each μ > ωA, SA(t)x is
given by

SA(t)x = μ

t∫
0

TA0(s)(μI − A)−1x ds + [
I − TA0(t)

]
(μI − A)−1x. (2.1)

Furthermore, the map t → SA(t)x is continuously differentiable if and only if x ∈ X0 and

dSA(t)x

dt
= TA0(t)x, ∀t � 0, ∀x ∈ X0.

From now on we denote by

(SA ∗ f )(t) =
t∫

0

SA(t − s)f (s) ds, ∀t ∈ [0, τ ],

whenever f ∈ L1((0, τ ),X).
We now consider the inhomogeneous Cauchy problem

du

dt
= Au(t) + f (t), t ∈ [0, τ0], u(0) = x ∈ D(A), (2.2)

and assume that f belongs to some appropriate subspace of L1((0, τ0),X).

Definition 2.5. A continuous map u ∈ C([0, τ0],X) is called an integrated solution of (2.2) if and only if
t∫

0

u(s) ds ∈ D(A), ∀t ∈ [0, τ0],

and

u(t) = x + A

t∫
0

u(s) ds +
t∫

0

f (s) ds, ∀t ∈ [0, τ0].

We consider the case where the map f belongs to Lp((0, τ0),X) for some p ∈ [1,+∞) and we make the following
assumption.

Assumption 2.2. Let be p ∈ [1,+∞). Assume that there exist M̂ > 0 and ω̂ ∈ R such that for each τ0 > 0 and each
f ∈ C1([0, τ0],X),∥∥∥∥ d

dt
(SA ∗ f )(t)

∥∥∥∥ � M̂

( t∫
0

(
eω̂(t−s)

∥∥f (s)
∥∥)p

ds

)1/p

, ∀t ∈ [0, τ0].

Next from Theorem 2.11 in Magal and Ruan [10], we have the following result.

Theorem 2.6. Let Assumptions 2.1 and 2.2 be satisfied. Then for each τ > 0 and each f ∈ Lp((0, τ ),X), the map
t → (SA ∗ f )(t) is continuously differentiable on [0, τ ]. The map t → u(t) defined by

u(t) = TA0(t)x + d

dt
(SA ∗ f )(t), ∀t ∈ [0, τ ],

is an integrated solution of (2.2). Moreover, for each f ∈ Lp((0, τ ),X), we have the following estimate∥∥∥∥ d

dt
(SA ∗ f )(t)

∥∥∥∥ � M̂
∥∥eω̂(t−.)f (.)

∥∥
Lp((0,t),X)

, ∀t ∈ [0, τ ]. (2.3)
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From now on for each τ > 0 and each f ∈ Lp((0, τ ),X), we set

(SA � f )(t) = d

dt
(SA ∗ f )(t), ∀t ∈ [0, τ ].

We now recall some properties that we will be used in the sequel. The proof of these relations can be found for instance
in Magal and Ruan [10]. First we have for each τ > 0 and f ∈ Lp([0, τ ],X):

(SA � f )(t) = lim
μ→+∞

t∫
0

TA0(t − l)μ(μI − A)−1f (l) dl, ∀t ∈ [0, τ ]. (2.4)

This approximation formula was already observed by Thieme [17] in the classical context of integrated semigroups
generated by a Hille–Yosida operator. From this approximation formulation, we then deduce that for each pair
t, s ∈ [0, τ ] with s � t, and f ∈ C([0, τ ],X),

(SA � f )(t) = TA0(t − s)(SA � f )(s) + (
SA � f (s + .)

)
(t − s). (2.5)

We also observe that

SA(t) = d

dt

t∫
0

SA(t − s)x ds.

So as an immediate consequence of Assumption 2.2, we have∥∥SA(t)
∥∥
L(X)

� δ(t), ∀t � 0, (2.6)

where

δ(t) := M̂

( t∫
0

epω̂l dl

)1/p

, ∀t � 0. (2.7)

The following result is a consequence of Theorem 3.1 in [10].

Theorem 2.7. Let Assumptions 2.1 and 2.2 be satisfied. Let L : D(A) → X be a bounded linear operator. Then
A + L : D(A) ⊂ X → X also satisfies Assumptions 2.1 and 2.2. In particular (A + L)0 the part of A + L in X0 is
the infinitesimal generator of a strongly continuous semigroup {T(A+L)0(t)}t�0 of bounded linear operators on X0.
Moreover {T(A+L)0(t)}t�0 is the unique solution of the fixed point problem

T(A+L)0(t) = TA0(t) + d

dt

t∫
0

SA(t − s)LT(A+L)0(s) ds.

Proof. Theorem 3.1 in [10] trivially applies to this situation and it remains to prove that there exists ω̃ ∈ R, and
M̃ > 0, such that∥∥(SA+L � f )(t)

∥∥ � M̃
∥∥eω̃(t−.)f (.)

∥∥
Lp((0,t),X)

, ∀t ∈ [0, τ ],
whenever f ∈ Lp((0, τ ),X). In order to obtain this estimation, we apply the last part of Theorem 3.1 in [10] to
A + L − γ I for some γ > 0.

Let γ > 0 be fixed. We have

(SA−γ I � f )(t) = lim
μ→+∞

t∫
0

TA0−γ I (t − l)μ(μI − A)−1f (l) dl

= e−γ t lim
μ→+∞

t∫
0

TA0(t − l)μ(μI − A)−1eγ lf (l) dl

= e−γ t
(
SA � eγ.f (.)

)
(t).
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So it follows that∥∥(SA−γ I � f )(t)
∥∥ � M̂

∥∥e(ω̂−γ )(t−.)f (.)
∥∥

Lp((0,t),X)
, ∀t ∈ [0, τ ],

and

M̂
∥∥e(ω̂−γ )(t−.)f (.)

∥∥
Lp((0,t),X)

� δγ (t) sup
s∈[0,t]

∥∥f (s)
∥∥,

where

δγ (t) := M̂

( t∫
0

ep(ω̂−γ )l dl

)1/p

, ∀t � 0.

Moreover, for γ > 0 large enough, we have

δγ (t)‖L‖ < 1, ∀t � 0,

and it follows from the last part of Theorem 3.1 in [10] that∥∥(SA+L−γ I � f )(t)
∥∥ � M̂ ′∥∥e(ω̂−γ )(t−.)f (.)

∥∥
Lp((0,t),X)

, ∀t ∈ [0, τ ],
and by using the same argument as above the result follows. �

The following result is proved in Magal and Ruan [11, Proposition 2.15]. This result provides an exponential
estimation of ‖(SA � f )(t)‖ expressed in function of the growth rate of {TA0(t)}t�0.

Proposition 2.8. Let Assumptions 2.1 and 2.2 be satisfied. Let ε > 0 be fixed. Then for each τε > 0 satisfying
MAδ(τε) � ε, we have

e−γ t
∥∥(SA � f )(t)

∥∥ � 2ε max(1, e−γ τε )

(1 − e(ωA−γ )τε )
sup

s∈[0,t]
e−γ s

∥∥f (s)
∥∥, ∀t � 0,

whenever γ ∈ (ωA,+∞) and f ∈ C(R+,X).

To conclude this section we give several equivalent conditions which are necessary and sufficient conditions to
verify Assumption 2.2. For that purpose let us recall some notions.

Definition 2.9. Let (Y,‖.‖Y ) be a Banach space. Let E be a subspace of Y ∗. Then E is called a norming space of Y

if the map |.|E : T → R
+ defined by

|y|E = sup
y∗∈E,‖y∗‖Y∗�1

y∗(y), ∀y ∈ Y,

is a norm equivalent to ‖.‖Y .

Let (Y,‖.‖Y ) be a Banach space. Let a � b be two given real numbers and let g : [a, b] → Y be a map. If q ∈
[1,+∞) we set

VLq(g, a, b) = sup

(
n∑

i=1

‖g(ti) − g(ti−1)‖q
Y

|ti − ti−1|q−1

)1/q

,

where the supremum is taken over all partitions a = t0 < · · · < tn = b of the interval [a, b]. We also set

VL∞(g, a, b) = sup
a<t<s<b

(‖g(t) − g(s)‖Y

|t − s|
)

.

Definition 2.10. For each q ∈ [1,+∞], the map g : [a, b] → Y is called of q-bounded variation if VLq(g, a, b) is a
finite quantity.
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Then we consider a family of linear bounded operators T (t) ∈ L(X,Y ) for t � 0, where X and Y are Banach
spaces. As in Thieme [22], we introduce for each q ∈ [1,∞)

V q(T , a, b) = sup

{∥∥∥∥∥
n∑

i=1

(
T (ti) − T (ti−1)

)
xi

∥∥∥∥∥
}

,

where the supremum is taken over all partitions a = t0 < · · · < tn = b of the interval [a, b] and over any (x1, . . . , xn) ∈
Xn with

∑n
i=1(ti − ti−1)‖xi‖q

X � 1. Finally we consider

V ∞(T , a, b) = sup

{∥∥∥∥∥
n∑

i=1

(
T (ti) − T (ti−1)

)
xi

∥∥∥∥∥
}

,

where the supremum is taken over all partitions a = t0 < · · · < tn = b of the interval [a, b] and over any (x1, . . . , xn) ∈
Xn with ‖xi‖X � 1 ∀i = 1, . . . , n.

Definition 2.11. For each q ∈ [1,+∞], the map t → T (t) is called of q-bounded semi-variation if V q(T , a, b) is a
finite quantity.

To conclude this section, we give various equivalent conditions to verify Assumption 2.2. Combining the result of
Section 4 in Magal and Ruan [10] and the results of Section 3 in Thieme [22] one has the following theorem.

Theorem 2.12. Let Assumption 2.1 be satisfied. Let p,q ∈ [1,∞] be given such that 1
p

+ 1
q

= 1 and ω̂ ∈ R be given.
Then the following statements are equivalent:

(i) There exists some constant M̂ > 0 such that for each τ > 0 and any f ∈ C1([0, τ ],X),∥∥(SA � f )(t)
∥∥ � M̂

∥∥eω̂(t−.)f (.)
∥∥

Lp((0,t),X)
, ∀t ∈ [0, τ ].

(ii) There exists a norming space E of X0, such that for each x∗ ∈ E the map t → x∗ ◦ SA−ω̂I (t) is of q-bounded
variation from [0, a] into X∗ for any a > 0 and

sup
x∗∈E,‖x∗‖X∗

0
�1

lim
t→∞ VLq

(
x∗ ◦ SA−ω̂I (.),0, t

)
< +∞.

(iii) There exists a norming space E of X0, such that for each x∗ ∈ E there exists χx∗ ∈ L
q
+((0,∞),R) with

∥∥x∗ ◦ SA−ω̂I (t + h) − x∗ ◦ SA−ω̂I (t)
∥∥ �

t+h∫
t

χx∗(s) ds, ∀t, h � 0,

and

sup
x∗∈E: ‖x∗‖�1

‖χx∗‖Lq(0,+∞) < +∞.

(iv) There exists a norming space E of X0, such that for each x∗ ∈ E there exists χx∗ ∈ L
q
+((0,∞),R),

∥∥x∗ ◦ (
λI − (A − ω̂I )

)−n∥∥
X∗ � 1

(n − 1)!
∞∫

0

sn−1e−λsχx∗(s) ds

for each n � 1 and for each λ sufficiently large, and

sup
x∗∈E: ‖x∗‖�1

‖χx∗‖Lq(0,+∞) < +∞.

(v) The map t → SA−ω̂I (t) is of p-bounded semi-variation from [0, τ ] into L(X,X0) for each τ > 0, and

sup
τ>0

V p(SA−ω̂I ,0, τ ) < +∞.
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3. Spectral theory

In this section we recall some known results of spectral theory. We first introduce some notations. Let L : D(L) ⊂
X → X be a linear operator on a complex Banach space X. Denote by ρ(L) the resolvent set of L,N(L) the null
space of L, and R(L) the range of L. The spectrum of L is σ(L) = C\ρ(L). The point spectrum of L is the set

σP (L) := {
λ ∈ C: N(λ − L) 	= {0}}.

The essential spectrum (in the sense of Browder [4]) of L is denoted by σess(L). That is the set of λ ∈ σ(L) such
that at least one of the following conditions holds: (i) R(λI − L) is not closed; (ii) λ is a limit point of σ(L);
(iii) Nλ(L) := ⋃+∞

k=1 N((λI − L)k) is infinite dimensional.
Let Y be a subspace of X. Then we denote by LY : D(LY ) ⊂ Y → Y the part of L on Y , which is defined by

LY x = Lx, ∀x ∈ D(LY ) := {
x ∈ D(L) ∩ Y : Lx ∈ Y

}
.

Definition 3.1. Let L : D(L) ⊂ X → X be the infinitesimal generator of a linear C0-semigroup {TL(t)}t�0 on a
Banach space X. We define ω0(L) ∈ [−∞,+∞) the growth bound of L by

ω0(L) := lim
t→+∞

ln(‖TL(t)‖L(X))

t
.

The essential growth bound ω0,ess(L) ∈ [−∞,+∞) of L is defined by

ω0,ess(L) := lim
t→+∞

ln(‖TL(t)‖ess)

t
,

where ‖TL(t)‖ess is the essential norm of TL(t) defined by∥∥TL(t)
∥∥

ess = κ
(
TL(t)BX(0,1)

)
,

here BX(0,1) = {x ∈ X: ‖x‖X � 1}, and for each bounded set B ⊂ X, κ(B) = inf{ε > 0: B can be covered by a
finite number of balls of radius � ε} is the Kuratovsky measure of non-compactness.

Then we have the following result:

Theorem 3.2. Let L : D(L) ⊂ X → X be the infinitesimal generator of a linear C0-semigroup {TL(t)} on a Banach
space X. Then

ω0(L) = max
(
ω0,ess(L), max

λ∈σ(L)\σess(L)
Re(λ)

)
.

Assume in addition that ω0,ess(L) < ω0(L). Then for each γ ∈ (ω0,ess(L),ω0(L)], {λ ∈ σ(L): Re(λ) � γ } ⊂ σp(L)

is non-empty, finite and contains only poles of the resolvent of L. Moreover, there exists a finite rank bounded linear
operator of projection Π : X → X satisfying the following properties:

(a) Π(λI − L)−1 = (λ − L)−1Π , ∀λ ∈ ρ(L);
(b) σ(LΠ(X)) = {λ ∈ σ(L): Re(λ) � γ };
(c) σ(L(I−Π)(X)) = σ(L) \ σ(LΠ(X)).

In Theorem 3.2, the existence of the projector Π was first proved by Webb [24,25] which is the projection on the
direct sum the generalized eigenspaces of L associated to all points λ ∈ σ(L) with Re(λ) � γ, and the fact that we
have a finite number of point of the spectrum with real part � γ is proved by Engel and Nagel [7].

The following result is due to Magal and Ruan [12, see Lemma 2.1 and Proposition 3.6].

Theorem 3.3. Let (X,‖.‖) be a Banach space and L : D(L) ⊂ X → X be a linear operator. Assume that ρ(L) 	= ∅
and L0, the part of L in D(L), is the infinitesimal generator of a linear C0-semigroup {TL0(t)}t�0 on a Banach space
D(L). Then σ(L) = σ(L0). Let Π0 : D(L) → D(L) be a bounded linear operator of projection. Assume that

Π0(λI − L0)
−1 = (λI − L0)

−1Π0, ∀λ > ω,ω ∈ R,
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and

Π0
(
D(L)

) ⊂ D(L0) and L0|Π0(D(L)) is bounded.

Then there exists a unique bounded linear operator of projection Π on X satisfying the following properties:

(i) Π |D(L) = Π0;
(ii) Π(X) ⊂ D(L);

(iii) Π(λI − L)−1 = (λI − L)−1Π , ∀λ > ω.
Moreover, for each x ∈ X we have the following approximation formula

Πx = lim
λ→+∞Π0λ(λI − L)−1x.

4. Essential growth rate and bounded perturbation

This section is devoted to the proof of Theorem 1.2.

4.1. Preliminary results

The main result of this section is the following theorem.

Theorem 4.1. Let Assumptions 2.1 and 2.2 be satisfied. Let K1 : X0 → Y be a compact linear operator for X0 into a
Banach space Y . Let K2 : X1 → X be a compact linear operator from a Banach space X1 into X. Let be τ > 0. Then
the map

t → K1(SA � K2f )(t)

is uniformly continuous from [0, τ ] into Y uniformly with respect to f in bounded subsets of C([0, τ ],X1).

Proof. From Assumption 2.2, there exists M̃ > 0, such that for each f ∈ C([0, τ ],X), with ‖f ‖∞ � 1, we have∥∥(SA � f )(t)
∥∥ � M̃, ∀t ∈ [0, τ ].

Since K1 is compact, it follows from Schauder’s theorem that K∗
1 : Y ∗ → X∗

0 is compact. Let ε > 0 be fixed. Then
since K∗

1 BY ∗(0,1) is relatively compact in X∗
0 , we can find x∗

1 , . . . , x∗
n ∈ X∗

0 , with ‖x∗
i ‖ � ‖K1‖ + 1, ∀i = 1, . . . , n,

such that

K∗
1 BY ∗(0,1) ⊂

n⋃
i=1

BY ∗
(
x∗
i , ε

)
.

Since K2 is compact, we can find x1, . . . , xm ∈ X, such that

K2BX1(0,1) ⊂
m⋃

i=1

BX(xi, ε).

Let η > 0 be fixed. Then for each f ∈ C([0, τ ],X), with ‖f ‖∞ � 1, and any t ∈ [0, τ − η], by the Hahn–Banach
theorem, there exists y∗ ∈ BY ∗(0,1), such that∥∥K1(SA � K2f )(t + η) − K1(SA � K2f )(t)

∥∥
Y

= 〈
y∗,K1

(
(SA � K2f )(t + η) − (SA � K2f )(t)

)〉
= 〈

K∗
1 y∗, (SA � K2f )(t + η) − K1(SA � K2f )(t)

〉
.

But there exists i0 ∈ {1, . . . , n}, such that ‖x∗
i0

− K∗
1 y∗‖ � ε, so∥∥K1(SA � K2f )(t + η) − K1(SA � K2f )(t)
∥∥

Y

� εM̂‖K2‖L(X1,X) + ∣∣〈x∗
i0
, (SA � K2f )(t + η) − (SA � K2f )(t)

〉∣∣.
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Now since the map t → f (t) is continuous on [0, τ ], this map is uniformly continuous. Therefore we can find n0 � 1,

such that

|t − s| � τ

n0 + 1
⇒ ∥∥f (t) − f (s)

∥∥ � ε.

We denote by

t
n0
i = iτ

n0 + 1
, ∀i = 0, . . . , n0 + 1,

and we define f n0 : [0, τ ] → X by

f n0(t) = (t − t
n0
i )

(t
n0
i+1 − t

n0
i )

f
(
t
n0
i+1

) + (t
n0
i+1 − t)

(t
n0
i+1 − t

n0
i )

f
(
t
n0
i

)
, ∀t ∈ [

t
n0
i , t

n0
i+1

]
, ∀i = 0, . . . , n0.

Then we have for each i = 0, . . . , n0, and each t ∈ [tn0
i , t

n0
i+1]∥∥f n0(t) − f (t)

∥∥ �
(t − t

n0
i )

(t
n0
i+1 − t

n0
i )

∥∥f
(
t
n0
i+1

) − f (t)
∥∥ + (t

n0
i+1 − t)

(t
n0
i+1 − t

n0
i )

∥∥f
(
t
n0
i

) − f (t)
∥∥ � ε.

But for each i ∈ {0, . . . , n0 + 1}, we can find ji ∈ {0, . . . ,m}, such that∥∥xji
− K2f

(
t
n0
i

)∥∥ � ε.

So if we set

g(t) = (t − t
n0
i )

(t
n0
i+1 − t

n0
i )

xji+1 + (t
n0
i+1 − t)

(t
n0
i+1 − t

n0
i )

xji
, ∀t ∈ [

t
n0
i , t

n0
i+1

]
, ∀i = 0, . . . , n0.

Then we have

‖g − K2f ‖∞ �
∥∥g − K2f

n0
∥∥∞ + ∥∥K2f

n0 − K2f
∥∥∞ �

(
1 + ‖K2‖L(X1,X)

)
ε.

But since g can be rewritten as

g(t) =
m∑

i=1

γi(t)xi,

where the functions γi(t) are the sum of function of the form

γi(t) = (t − t
n0
i )

(t
n0
i+1 − t

n0
i )

1[tn0
i ,t

n0
i+1] + (t

n0
i+2 − t)

(t
n0
i+2 − t

n0
i+1)

1[tn0
i+1,t

n0
i+2],

for distinct i, the function γi(t) is continuous, positive, and is bounded by 1. So to achieve the proof of Theorem 4.1,
it is sufficient to apply the following lemma. �
Lemma 4.2. Let Assumptions 2.1 and 2.2 be satisfied. Let be x ∈ X and x∗ ∈ X∗

0, then the map

t → x∗((SA � h(.)x
)
(t)

)
is uniformly continuous on [0, τ ], uniformly with respect to h in bounded subsets of C([0, τ ],R).

Proof. Let h ∈ C1
c ((0, τ ),R) be given. Then we have

d

dt

t∫
0

x∗(SA(t − s)x
)
h(s) ds = d

dt

t∫
0

x∗(SA(s)x
)
h(t − s) ds = SA(t)h(0) +

t∫
0

x∗(SA(s)x
)
h′(t − s) ds

=
t∫

0

x∗(SA(s)x
)
h′(t − s) ds.
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Due to Assumption 2.2 we have∣∣x∗((SA � h(.)x
)
(τ )

)∣∣ � Ĉ‖h‖Lp((0,τ ),R)

for some constant Ĉ independent of function h. This implies that for any function h ∈ C1
c ((0, τ ),R) we have∣∣∣∣∣

τ∫
0

x∗(SA(s)x
)
h′(τ − s) ds

∣∣∣∣∣ � Ĉ‖h‖Lp((0,τ ),R). (4.1)

Now if ϕ ∈ C1
c ((0, τ ),R), then setting h(s) = ϕ(τ − s), we obtain h ∈ C1

c ((0, τ ),R) and due to (4.1), we conclude
that ∣∣∣∣∣

τ∫
0

x∗(SA(s)x
)
ϕ′(s) ds

∣∣∣∣∣ � C‖ϕ‖Lp((0,τ ),R), ∀ϕ ∈ C1
c

(
(0, τ ),R

)
.

Since p ∈ [1,+∞), by the Riesz’s representation theorem, we know that there exists g ∈ Lq((0, τ ),R) with 1
q
+ 1

p
= 1

such that
τ∫

0

x∗(SA(s)x
)
ϕ′(s) ds =

τ∫
0

g(s)ϕ(s) ds, ∀ϕ ∈ C1
c

(
(0, τ ),R

)
.

Therefore function x∗(SA(.)x)|[0,τ ] belongs to W 1,q ((0, τ ),R) with q ∈ (1,+∞]. Next since x∗(SA(0)x) = 0, we
obtain the following integral representation:

x∗(SA(t)x
) =

t∫
0

g(l) dl, ∀t ∈ [0, τ ],

and

x∗(SA � h(.)x
)
(t) =

t∫
0

g(t − s)h(s) ds.

Finally we obtain that for any (s, t) ∈ [0, τ ]2, with t � s,

∣∣x∗(SA � h(.)x
)
(t) − x∗(SA � h(.)x

)
(s)

∣∣ � ‖h‖∞

[∣∣∣∣∣
t−s∫
0

∣∣g(l)
∣∣dl

∣∣∣∣∣ +
s∫

0

∣∣g(t − s + l) − g(l)
∣∣dl

]
.

This completes the proof of Lemma 4.2. �
4.2. Proof of Theorem 1.2

In this section we investigate the essential spectral growth rate of a bounded perturbation of A. Inspired by the
work of Thieme [19, Theorem 3] we will make the following assumption.

Assumption 4.1. Let L : X0 → X be a bounded linear operator such that LTA0(t) : X0 → X is compact for every
t > 0.

Let Z be a Banach space, and let I be an interval in R. From now on we denote by

Cs

(
I,L(X0,Z)

)
the space of strongly continuous map from I into L(X0,Z). Then for each V ∈ Cs([0, τ ],L(X0,X)), we denote by
(SA � V (.))(t) the bounded linear operator from X0 into itself, defined by(

SA � V (.)
)
(t)(x) := (

SA � V (.)x
)
(t), ∀t ∈ [0, τ ], ∀x ∈ X0.

Next we need some preliminary lemmas.
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Lemma 4.3. Let Assumptions 2.1 and 2.2 be satisfied. Let τ > 0 be given. Then for each V ∈ C([0, τ ],L(X0,X)), the
map t → (SA � V (.))(t) is continuous from [0, τ ] into L(X0).

Proof. Let t, s ∈ [0, τ ] with t � s. From (2.5) we have(
SA � V (.)

)
(t) = TA0(s)

(
SA � V (.)

)
(t − s) + (

SA � V (t − s + .)
)
(s).

Thus we obtain(
SA � V (.)

)
(t) − (

SA � V (.)
)
(s) = TA0(s)

(
SA � V (.)

)
(t − s) + (

SA � (
V (.) − V (t − s + .)

))
(s).

Next using Assumption 2.2, one has for any x ∈ X,∥∥(
SA � V (.)

)
(t) − (

SA � V (.)
)
(s)

∥∥ � δ(t − s)
∥∥TA0(s)

∥∥ sup
l∈[0,t−s]

∥∥V (l)
∥∥ + δ(s) sup

l∈[0,s]

∥∥V (l) − V (t − s + l)
∥∥,

where δ(t) is defined by (2.7). Since V : [0, τ ] → L(X0,X) is continuous, it is also uniformly continuous and the
result follows. �

By using Lemma 4.3 we obtain the following result.

Lemma 4.4. Let Assumptions 2.1 and 2.2 be satisfied. Let be τ > 0. Then we have the following:

(i) For each W ∈ C([0, τ ],L(X0)), there exists a unique V ∈ C([0, τ ],L(X0)) solution of

V (t) = (
SA � LV (.)

)
(t) + W(t), ∀t ∈ [0, τ ].

(ii) For each Ŵ ∈ C([0, τ ],L(X0,X)), there exists a unique V̂ ∈ C([0, τ ],L(X0,X)) solution of

V̂ (t) = L
(
SA � V̂ (.)

)
(t) + Ŵ (t), ∀t ∈ [0, τ ].

Proof. The follows by using standart fixed point argument, and Lemma 4.3. �
Lemma 4.5. Let Assumptions 2.1 and 2.2 be satisfied. Let τ > 0 be fixed. Let F ⊂ C([0, τ ],X) be a set of equicon-
tinuous maps, and assume that there exists λ∗ > ω, such that for each η ∈ (0, τ ],{(

λ∗I − A
)−1

f (t): t ∈ [η, τ ], f ∈F}
(4.2)

is relatively compact. Then for each τ1 ∈ (0, τ ), the set{
(SA � f )(t): t ∈ [0, τ1], f ∈F}

is relatively compact.

Proof. The proof is similar to the proof of Lemma 3.5 in Magal and Thieme [13]. �
The first main result of this section is the following:

Proposition 4.6. Let Assumptions 2.1, 2.2 and 4.1 be satisfied. Let τ > 0 be given and let W : [0, τ ] → L(X0,X) be
strongly continuous. Then we have the following:

(i) If t → L(SA � W(.))(t) is operator norm continuous then the set{
L

(
SA � W(.)x

)
(t): t ∈ [0, τ1], x ∈ BX0(0,1)

}
is compact for each τ1 ∈ (0, τ ).
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(ii) If t → W(t) is operator norm continuous, and the set{
W(t)x: t ∈ [η, τ ], x ∈ BX0(0,1)

}
(4.3)

is compact for each η ∈ (0, τ ], then the set{(
SA � W(.)x

)
(t): t ∈ [0, τ ], x ∈ BX0(0,1)

}
is compact.

Proof. Proof of (i). Since the map t → L(SA � W(.))(t) is continuous from [0, τ ] into L(X0,X), this map is also
uniformly continuous. Let τ1 ∈ (0, τ ) be fixed, we deduce that

lim
h↘0

sup
t∈[0,τ1]

∥∥∥∥∥L
(
SA � W(.)

)
(t) − 1

h

t+h∫
t

L
(
SA � W(.)

)
(s) ds

∥∥∥∥∥
L(X0,X)

= 0.

But for each t ∈ [0, τ1], and each h ∈ (0, τ − τ1), we have

1

h

t+h∫
t

L
(
SA � W(.)

)
(s) ds = 1

h
L

[ t+h∫
0

SA(t + h − s)W(s) ds −
t∫

0

SA(t − s)W(s) ds

]

= 1

h
L

t+h∫
t

SA(t + h − s)W(s) ds + 1

h
L

t∫
0

[
SA(t + h − s) − SA(t − s)

]
W(s)ds.

On the one hand, recalling that we have

SA(t + r) = TA0(r)SA(t) + SA(r), ∀t, r � 0,

we obtain

1

h
L

t∫
0

[
SA(t + h − s) − SA(t − s)

]
W(s)ds = 1

h
L

t∫
0

TA0(t − s)SA(h)W(s) ds, ∀t ∈ [0, τ1].

On the other hand one has∥∥∥∥∥ 1

h
L

t+h∫
t

SA(t + h − s)W(s) ds

∥∥∥∥∥
L(X0,X)

� 1

h

h∫
0

∥∥SA(h − s)
∥∥
L(X0,X)

ds‖L‖L(X0,X) sup
t∈[0,τ ]

∥∥W(t)
∥∥
L(X0,X)

.

Here we can notice that, since W is strongly continuous, the uniform boundedness principle implies that the above
supremum is finite. Next, Assumption 2.2 implies ‖SA(t)‖L(X0,X) � δ(t) for each t � 0. Therefore we deduce that
‖SA(t)‖L(X0,X) → 0 when t → 0+. Thus when h → 0+ we have∥∥∥∥∥ 1

h
L

t+h∫
t

SA(t + h − s)W(s) ds

∥∥∥∥∥
L(X0,X)

→ 0 uniformly with respect to t ∈ [0, τ1].

It follows that

lim
h↘0

sup
t∈[0,τ1]

∥∥∥∥∥L
(
SA � W(.)

)
(t) − 1

h
L

t∫
0

TA0(t − s)SA(h)W(s) ds

∥∥∥∥∥
L(X0,X)

= 0.

From Assumption 4.1, the operator LTA0(t − s) is compact for any 0 � s < t < τ1. Thus using the same argument
as in the proof of Theorem 3.2 in [13] completes the proof of assertion (i). Finally assertion (ii) directly follows
from Lemma 4.5. Indeed if we set F = {t → W(t)x, x ∈ BX0(0,1)} ⊂ C([0, τ ],X). Then the map t → W(t) is
operator norm continuous from [0, τ ] into L(X0,X), it is uniformly continuous. Thus F is equicontinuous subset of



Author's personal copy

A. Ducrot et al. / J. Math. Anal. Appl. 341 (2008) 501–518 515

C([0, τ ],X). Finally for any λ > ωA, the map (λ − A)−1 is a bounded operator of X and due to assumption (4.3), for
each η ∈ (0, τ ) the set{

(λ − A)−1W(t)x, t ∈ [η, τ ], x ∈ BX0(0,1)
}

is relatively compact. Then Lemma 4.5 applies and completes the proof of assertion (ii). �
We now use the above result to obtain an approximated expression for the semigroup {T(A+L)0(t)}t�0. For that

purpose we consider the map B : Cs([0,+∞),L(X0)) → Cs([0,+∞),L(X0)) defined by

B(V )(t) = (
SA � LV (.)

)
(t),

and B̃ : Cs([0,+∞),L(X0,X)) → Cs([0,+∞),L(X0,X)) defined by

B̃(W)(t) = L
(
SA � W(.)

)
(t).

Then we have the following result.

Proposition 4.7. Let Assumptions 2.1, 2.2 and 4.1 be satisfied. Assume that for some integer n � 0, the map

t → LBn(TA0)(t) = B̃n(LTA0)(t)

is operator norm continuous on [0,+∞). Then we have the following expression

T(A+L)0(t)x =
n∑

k=0

Bk
(
TA0(.)x

)
(t) + C(t)x,

where operator C(t) ∈ L(X0) is compact for each t � 0.

Proof. We first recall that the semigroup T(A+L)0(t) satisfies the following fixed point formulation

T(A+L)0(t) = TA0(t) + (
SA � LT(A+L)0(.)

)
(t), ∀t � 0.

This rewrites using the map B as follows:

T(A+L)0 = TA0 +B(T(A+L)0).

Next multiplying this equality by L leads us to

LT(A+L)0 = LTA0 + B̃(LT(A+L)0).

By induction, we obtain

B̃n(LT(A+L)0) = B̃n(LTA0) + L
(
SA � B̃n(LT(A+L)0)

)
. (4.4)

Now by assumption t → B̃n(LTA0)(t) is operator norm continuous. Thus by using Lemma 4.4, we obtain that
the map t → B̃n(LT(A+L)0)(t) = LBn(T(A+L)0)(t) is operator norm continuous. Then from (4.4), the operator
t → B̃n+1(LT(A+L)0)(t) is operator norm continuous. So by Proposition 4.6(i), we deduce that{

B̃n+1
(
LT(A+L)0(.)x

)
(t): t ∈ [0, τ ], x ∈ BX0(0,1)

}
(4.5)

is compact for any τ > 0.
Next we claim that the set{

B̃n
(
LTA0(.)x

)
(t): t ∈ [η, τ ], x ∈ BX0(0,1)

}
(4.6)

is compact for any 0 < η � τ . Indeed for n = 0, this directly follows from Assumption 4.1, and if n � 1 since the map
t → B̃n(LTA0)(t) is operator norm continuous, this follows from Proposition 4.6(ii).

Finally, using (4.4)–(4.6), we conclude that the set{
B̃n

(
LT(A+L)0(.)x

)
(t): t ∈ [η, τ ], x ∈ BX0(0,1)

}
is compact for each η ∈ (0, τ ].
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Recalling now that

Bn+1(T(A+L)0) = (
SA � B̃n(LT(A+L)0)

)
,

and that the map t → B̃n(LT(A+L)0)(t) is operator norm continuous, we deduce by using Proposition 4.6(ii) with this
map that the set{

Bn+1(T(A+L)0x)(t): t ∈ [0, τ ], x ∈ BX0(0,1)
}

is compact. Finally the result follows from the following expression:

T(A+L)0 = TA0 +B(TA0) +B2(TA0) + · · · +Bn(TA0) +Bn+1(T(A+L)0).

This completes the proof of Proposition 4.7. �
We now prove the following proposition that will be essential in the proof of our main result.

Proposition 4.8. Let Assumptions 2.1, 2.2 and 4.1 be satisfied. Then the map t → L(SA � LTA0(.))(t) is operator
norm continuous from [0,+∞) into L(X0,X).

Proof. Let ε > 0 be fixed. By using formula (2.5), for t � 2ε,

L
(
SA � LTA0(.)

)
(t) = LTA0(ε)

(
SA � LTA0(.)

)
(t − ε) + (

SA � LTA0(. + t − ε)
)
(ε)

and (
SA � LTA0(.)

)
(t − ε) = TA0(t − 2ε)

(
SA � LTA0(.)

)
(ε) + (

SA � LTA0(. + ε)
)
(t − 2ε).

So

L
(
SA � LTA0(.)

)
(t) = Kε

(
SA � KεTA0(.)

)
(t − 2ε) + R(ε, t),

where

Kε = LTA0(ε)

and

R(ε, t) = LTA0(ε)TA0(t − 2ε)
(
SA � LTA0(.)

)
(ε) + (

SA � LTA0(. + t − ε)
)
(ε)

is of order ε by Assumption 2.2. By Assumption 4.1 the linear operator Kε is compact. So by Theorem 4.1 the map
t → Kε(SA � KεTA0(.))(t − 2ε) is operator norm continuous on [2ε,+∞), and the result follows. �
Proof of Theorem 1.2. Let us first note that by Proposition 4.8, the map t → L(SA �LTA0(.))(t) is norm continuous,
so by applying Proposition 4.7 for n = 1, we deduce that

T(A+L)0(t) = TA0(t) + (
SA � LTA0(.)

)
(t) + C(t), (4.7)

where C(t) is a compact operator for each t � 0.
Assume first that ω0,ess(A0) = ω0(A0). By construction for each γ > ω0(A0), there exists Mγ > 0∥∥TA0(t)

∥∥ � Mγ eγ t , ∀t � 0,

and it follows that Assumption 2.1 is also satisfied, whenever we replace MA and ωA by Mγ and γ , respectively. So
by applying Proposition 2.8, it follows that for each γ > ω0(A0) there exists some constant M1

γ > 0 such that

e−γ t
∥∥(

SA � LTA0(.)
)
(t)

∥∥ � M1
γ ‖L‖ sup

s∈[0,t]
e−γ s

∥∥TA0(s)
∥∥ � M1

γ ‖L‖Mγ , ∀t � 0.

From (4.7) we obtain∥∥T(A+L)0(t)
∥∥

ess �
∥∥TA0(t)

∥∥ + ∥∥(
SA � LTA0(.)

)
(t)

∥∥ � Cγ eγ t , ∀t � 0,
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for some constant Cγ . Therefore we conclude that ω0,ess((A + L)0) � γ for all γ > ω0(A0), which implies

ω0,ess
(
(A + L)0

)
� ω0,ess(A0).

We now consider the case ω0,ess(A0) < ω0(A0). Let γ ∈ (ω0,ess(A0),ω0(A0)] be fixed. By using Theorem 3.2 we
consider Π0 : X0 → X0 the finite rank linear bounded projector satisfying:

(a) Π0(λI − A0)
−1 = (λ − A0)

−1Π0, ∀λ ∈ ρ(A0);
(b) σ(A0|Π0(X)) = {λ ∈ σ(A0): Re(λ) � γ };
(c) σ(A0|(I−Π0)(X)) = σ(A0) \ σ(A0|Π0(X)).

Since Π0 corresponds to the projection on the direct sum of some generalized eigenspaces of finite dimension, we
have Π0(X0) ⊂ D(A0). Moreover since Π0 is a finite rank operator, the restriction A0|Π0(X0) is bounded. Then using
Theorem 3.3 we extend this projector in Π : X → X with the following properties:

(i) Π |X0 = Π0;
(ii) Π(X) ⊂ X0;

(iii) Π(λI − A)−1 = (λI − A)−1Π , ∀λ > ωA.

Since Π0 is a finite rank operator, Π0T(A+L)0(t) is compact for each t � 0 therefore∥∥T(A+L)0(t)
∥∥

ess = ∥∥(I − Π0)T(A+L)0(t)
∥∥

ess.

On the other hand one has

(I − Π0)T(A+L)0(t) = (I − Π0)TA0(t) + (I − Π0)
(
SA � LTA0(.)

)
(t) + C0(t)

= (I − Π0)TA0(t) + (I − Π0)
(
SA � L(I − Π0)TA0(.)

)
(t)

+ (I − Π0)
(
SA � LΠ0TA0(.)

)
(t)Π0 + C0(t),

where (I − Π0)(SA � LΠ0TA0(.))(t)Π0 and C0(t) are compact for any t � 0.
It follows that∥∥T(A+L)0(t)

∥∥
ess �

∥∥[
(I − Π0)TA0(t) + (I − Π0)

(
SA � L(I − Π0)TA0(.)

)
(t)

]
(I − Π0)

∥∥.

We set Y := (I − Π)X endowed with the norm of X. Then since (I − Π) commutes with the resolvent of A,

B : D(B) ⊂ Y → Y the part of A in Y, and B0 the part of B in D(B), satisfy Assumptions 2.1 and 2.2 in Y , and we
have the following:[

(I − Π0)TA0(t) + (I − Π0)
(
SA � LTA0(.)

)
(t)

]
(I − Π0) = [

TB0(t) + (
SB � (I − Π)LTB0(t)

)]
(I − Π0),

and by construction (see (c) above) we have σ(A0|(I−Π0)(X)) = σ(B0) ⊂ {λ ∈ C: Re(λ) < γ }, and ω0,ess(A0) =
ω0,ess(B0) < γ . So

ω0(B0) < γ

and ∥∥T(A+L)0(t)
∥∥

ess �
∥∥[

TB0(t) + (
SB � (I − Π)LTB0(t)

)]∥∥
L(Y )

∥∥(I − Π0)
∥∥.

So by applying the same argument as in the first part of the proof (i.e. the case ω0,ess(A0) = ω0(A0)), we deduce that

ω0,ess
(
(A + L)0

)
< γ, ∀γ > ω0,ess(A0).

The proof is completed. �
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