

8

9

10

13

14

Review **Data-Driven Mathematical Modeling Approaches for** COVID-19: a survey

Jacques Demongeot¹, and Pierre Magal^{2,3,4,*}

- 1 Université Grenoble Alpes, AGEIS EA7407, F-38700 La Tronche, France
- 2 Department of Mathematics, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- 3 Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France.
- 4 CNRS, IMB, UMR 5251, F-33400 Talence, France.
- Correspondence: pierre.magal@u-bordeaux.fr

Abstract: In this review, we successively present the methods for phenomenological modeling of the evolution of reported and unreported cases of COVID-19, both in the exponential phase of growth and then in a complete epidemic wave. After the case of an isolated wave, we present the modeling of several successive waves separated by endemic stationary periods. Then, we treat the case of multi-compartmental models without or with age structure. Eventually, we review the literature, based on 230 articles selected in 11 sections, ranging from the medical survey of hospital cases to forecasting the dynamics of new cases in the general population.

Keywords: COVID-19 epidemic wave prediction; Epidemic models; Time series; Phenomenological models; Social changes; Time dependent models; Contagious disease; Endemic phase; Epidemic wave; Endemic/epidemic; Reported and unreported cases; Parameters identification;

I simply wish that, in a matter which so closely concerns the well-being of mankind, no 11 decision shall be made without all the knowledge which a little analysis and calculation can 12 provide, Daniel Bernoulli 1765.

Contents

1.	Introduction	3	1!
2.	Reported and unreported data	3	10
	2.1. What are the unreported cases?	3	1
	2.2. Example of unreported cases	4	1
	2.3. Testing data for New York state	4	19
3.	Phenomenological models	6	21
4.	Epidemic model with reported and unreported individuals	7	2
	4.1. Mathematical model	$\overline{7}$	2
	4.2. Given Parameters	8	2
	4.3. Computed parameters	8	2
5.	Modeling the exponential phase	9	2
	5.1. Initial number of infected and transmission rate	9	2
	5.2. Application to COVID-19 in mainland China	9	2
	5.3. Spectral method in epidemic time series	11	2
	5.4. Monotone property of the cumulative distribution	12	2

Citation: Demongeot, J.; Magal, P. Data-Driven Mathematical Modeling Approaches for COVID-19: a survey. Appl. Sci. 2023, 1, 0. https://doi.org/

Received: September 2023 Revised: Accepted: Published:

Copyright: ©2023 by the authors. Submitted to Appl. Sci. for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

6.	Modeling a single epidemic wave	14	30
	6.1. What factors govern the transmission of pathogens	14	31
	6.2. More results and references about the time dependent transmission rate		32
	modeling	15	33
	6.3. Why do we need a time-dependent transmission rate?	16	34
	6.4. Theoretical formula for $\tau(t)$	16	35
	6.5. Explicit formula for $\tau(t)$ and I_0	18	36
	6.6. Results	21	37
7.	Modeling multiple epidemic waves	23	38
	7.1. Phenomenological model used for multiple epidemic waves	23	39
	7.2. Phenomenological Model apply to France	24	40
	7.3. Phenomenological Model apply to several countries	25	41
	7.4. Earlier results about transmission rate reconstructed from the data	26	42
	7.5. Instantaneous reproduction number	26	43
	7.6. Results	26	44
	7.7. Consequences of the results	28	45
-		~ ~	
8.	Exponential phase with more compartments	29	46
	8.1. A model with transmission from the unreported infectious	29	47
	8.2. The exponential phase approximation	29	48
	8.3. Uncertainty due to the period chosen to fit the data	31	49
9	Modeling COVID-19 epidemic with age groups	32	50
5.	9.1 Epidemic model with age groups	32	50
	9.2. Cumulative reported cases with age structure in Japan	32	51
	9.3 Method to Fit of the Age Structured Model to the Data	34	52
	9.4 Bate of contact	34	53
		01	54
10	A survey for COVID-19 mathematical modeling	37	55
	10.1. Medical survey	37	56
	10.2. Incubation, Infectiousness, and Recovery Period	38	57
	10.3. Data	38	58
	10.3.1. Contact tracing	38	59
	10.3.2. Testing data	38	60
	10.3.3. Unreported and uncertainty in the number of reported case data	38	61
	10.3.4. Clusters	39	62
	10.3.5. More phenomenological model to fit the data	39	63
	10.3.6. Wasted water data	39	64
	10.3.7. Discrete and random modeling	39	65
	10.3.8. Time series and wavelet approaches	39	66
	10.3.9. Transmission estimation and spatial modeling	39	67
	10.3.10. Forecasting methods	40	68
	10.4. SIR like models	40	69
	10.4.1. Multigroups or multiscale models	40	70
	10.4.2. Model with unreported or asymptomatic compartment	40	71
	10.5. Connecting reported case data with SIR like model	40	72
	10.6. Re-infections, natural and hybrid immunity	41	73
	10.7. Mortality	41	74
	10.8. Vaccination and mitigation measures	41	75
	10.9. Chronological age	41	76
	10.10. Basic reproduction number	42	77
	10.11. Prediction of COVID-19 evolution	42	78
		10	
A .	When the output is a single exponential function	43	79

В.	References																																															4 4	1	
----	------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	------------	---	--

1. Introduction

The COVID-19 outbreak has been the catalyst for increased scientific activity, particularly in data collection and modeling the dynamics of new cases and deaths due to the outbreak.

Such scientific excitement contemporary with a pandemic is not new. Several historical epidemic episodes have led to significant advances in public health, biostatistics, databases, and discrete or continuous mathematical modeling of disease evolution, considering the mechanisms of contagion, host resistance, and mutation of the infectious agent. Historically, we can thus distinguish several epidemic outbreaks followed by important scientific breakdowns:

- A) The plague epidemic of 1348 saw the development of the beginnings of epidemiology with the recording of cases at the abbey of St Antoine (Isère in France) and in the network of hospitals managed by the Antonin monks;
- B) During the London cholera epidemic of 1654, John Snow discovered the waterborne 94 transmission of cholera, which led to significant changes to improve public health, 95 notably by constructing improved sanitation facilities. This epidemic and its resolution 96 by Snow even before the discovery of the responsible germ was a founding event in 97 intervention epidemiology, with the validation of methods that can be applied to all 98 diseases, not just contagious (infectious or social), in particular the principle of coupling 99 the mapping of patients with that of sources of water for domestic consumption, which 100 would later lead to the development of Geographic Information Systems (GIS) in 101 epidemiology and to work such as the collection of water used as a COVID-19 tracer 102 in the French Obépine project (https://www.reseau-obepine.fr/); 103
- C) The smallpox epidemic of 1760 led to the importation into Europe of the inoculation practiced in Turkey (subsequently leading to vaccination by inert vaccine by Jenner) and to the creation of the first models for predicting epidemic waves by Bernoulli and d'Alembert.

In the tradition of these past discoveries, we will therefore present some recent progress 108 in modeling the dynamics of infectious diseases and their transmission mechanisms in this article.

The plan of the paper is the following. Section 2 presents some background about 111 the reported data. We explain some phenomena related to data collection, such as contact 112 tracing, daily numbers of tests, and more. In section 3, we explain the main idea behind 113 the notion of a phenomenological model. In section 4, we introduce an epidemic model with 114 unreported cases and explain how to compare such a model with the data. In section 5, 115 we consider the exponential phase of an epidemic, where the phenomenological model will 116 be an exponential function. In section 6, we consider a single epidemic wave, where the 117 phenomenological model will be the Boulli-Verhulst model. We consider several successive 118 epidemic waves in section 7. In section 8, we present some new results to understand 119 how to compare the data and the epidemic models with several compartments during the 120 exponential phase. In section 9, we consider a model with age groups and explain how to 121 deal with data in large systems. Section 10 is a survey section where we try to give some 122 references for a selected number of important topics to model epidemic outbreaks. 123

2. Reported and unreported data

2.1. What are the unreported cases?

The unreported cases correspond to mild symptoms because people will only get tested in case of severe symptoms. Unreported cases can result from a lack of tests or asymptotic patients [1]. That is infected patients that do not show symptoms. Unreported cases are partly due to a low daily number of tests.

80

81

82

83

84

85

86

87

88

89

90

91

92

93

124

2.2. Example of unreported cases

A published study traced COVID-19 infections resulting from a business meeting in Germany attended by a person who was infected but had no symptoms at the time [2]. Four people were eventually infected from this single contact.

Figure 1. Timeline of Exposure to Index Patient with Asymptomatic 2019-CoV Infection in Germany.

A team in Japan [3] reports that 13 people evacuated from *Diamond Princess* were ¹³⁴ infected, 4 of whom, or 31 %, never developed symptoms. ¹³⁵

On the French *aircraft carrier Charles de Gaulle*, clinical and biological data for all 1739 crew members were collected on arrival at the Toulon harbor and during quarantine: 1121 crew members (64%) were tested positive for COVID-19 using RT-PCR, and among these, 24% were asymptomatic [4].

2.3. Testing data for New York state

The goal of the figure below is to show that due to the changes in the method of detecting the cases, a jump occurred on February 12 in Wuhan in, China. The testing technology was not well developed at the early beginning of the epidemic, and such a problem also occurs in other countries.

Figure 2. Cumulative number of cases in Wuhan China.

The dynamic of the daily number of tests is connected to the dynamic of the daily number of reported cases in a complex way [5].

The large peak in the number of tests at the end of April 2020, shows that the number of cases was strongly underestimated during the period. Because increasing the number of tests increases the number of positive test. Later on, the epidemic wave passed and the changes in the number of test had almost no influence on the number of positive test.

Figure 3. In this figure, we plot the daily number of tests for the New York State. The black curve, orange curve, and blue curve correspond respectively to the number of tests, the number of positive tests, and the number of negative tests.

The number of reported cases is the consequence of the combination of the dynamic of the number of tests (a complex dynamic which depends on human perceptions of the epidemic outbreak), and the dynamic of the epidemic outbreak (which is also very complex due the contact rate which depends on human perceptions) and the dynamic of transmission (which can also be complex due to the changes of susceptibility in the population).

Figure 4 presents the flowchart of the model used in [5]. In Figure 5 (which was obtained in [5]), we use the daily number of tests as an input of the model, and we fit the output of the model to the cumulative number of cases.

Figure 4. Flow chart of the epidemic model. In this diagram n(t) is the daily number of tests at time t is an input of the model. We consider a fraction $(1-\sigma)$ of false negative tests and a fraction σ of true positive tests. The parameter g reflects the fact that the tests are devoted not only to the symptomatic patients but also to a large fraction of the population of New York state.

Figure 5. The black curves are produced by using the New York state data only. The blue curves are constructed by using the model with the testing data as input of the model.

In Figure 5, on the left-hand side, we consider the daily fluctuations of the number 159 of reported cases (epidemic dynamic) and the daily number of tests (testing dynamics). 160 Combining test dynamics and infection dynamics results in a complex time-parameterized 161 curve. Nevertheless, we obtain a good correspondence between the top and the bottom 162 left figures. The correspondence becomes excellent on the figures on the right, where we 163 consider the cumulative number of declared cases and the cumulative number of tests. 164

3. Phenomenological models	165
Along this note, we use phenomenological models to fit the data.	166

Definition 1. A phenomenological model is a mathematical model used to describe the data 167 without mechanistic description of the processes involved in the phenomenon. 168

In the next section, we will use exponential functions to get a continuous time repre-169 sentation of the data. This will be our first example of a phenomenological model. Our 170 goal here is to replace the data by a function that captures the robust tendency of the 171 phenomenon. In some sense, we are trying to get rid of the noise around the tendency. 172

By using, for example, spline functions, we can always fit the data perfectly. Then the 173 fit is too precise to capture the significant information, and if we compute the derivatives of 174 such a perfect fit, we will obtain a very noisy signal that is not meaningful. 175

Therefore the underlying idea of the phenomenological model is to derive a robust 176 tendency with a limited number of parameters that will represent the data. Such a model is 177 supposed to reduce the signal's noisy part and capture the robust part of the signal. 178

The phenomenological model can then replace the data, permitting analysis of some 179 consequences when injected into the models. For example, we will obtain a meaningful 180 range of parameters.

Figure 6. We can apply statistical methods to estimate the parameters of the proposed phenomenological model and derive their average values with some confidence intervals. The phenomenological model is used at the first step of the modelling process, providing regularized data to the epidemic model and allowing the identification of its parameters.

4. Epidemic model with reported and unreported individuals

4.1. Mathematical model

Transmissions between infectious and susceptible individuals are described by

$$\begin{cases} S'(t) = -\tau(t) S(t) I(t), \\ I'(t) = \tau(t) S(t) I(t) - \nu I(t), \end{cases}$$
(1)

where S(t) is the number of susceptible and I(t) the number of infectious at time t.

The system (1) is complemented with the initial data

$$S(t_0) = S_0 \ge 0$$
, and $I(t_0) = I_0 \ge 0$, (2)

where t_0 is a time from which the epidemic model (1) becomes applicable.

In this model, the rate of transmission $\tau(t)$ combines the number of contacts per unit of time and the probability of transmission (see Section 6.1 for more information).

The number $1/\nu$ is the average duration of the asymptomatic infectious period, $\tau(t) S(t) I(t)$ is the flow of S-individuals becoming I-infected at time t. That is,

$$\int_{t_1}^{t_2} \tau(\sigma) S(\sigma) I(\sigma) \mathrm{d}\sigma$$

is the number of individual that became I during the time interval $[t_1, t_2]$.

Similarly, $\nu I(t)$ is the flow of *I*-individuals leaving the *I*-compartment. That is

$$\int_{t_1}^{t_2} \nu I(\sigma) \mathrm{d}\sigma$$

is the number of individual that became I during the time interval $[t_1, t_2]$.

The epidemic model associated with the flowchart in Figure 7 applies to the Hong Kong flu outbreak in New York City [6,7].

190

191

182

183

184

185

186

Figure 7. Flowchart.

We assume that the flow of reported individuals is a fraction $0 \le f \le 1$ of the flow of recovered individuals νI . That is, 194

$$CR'(t) = f \nu I(t), \text{ for } t \ge t_0,$$
(3)

where CR(t) is the cumulative number of reported individuals, and f is the fraction of reported individuals. The fraction f is the fraction of patients with severe symptoms, and 1-f the fraction of patients with mild symptoms.

4.2. Given Parameters

In this study, the following parameters will be given:

• Number of susceptible individuals when the epidemic starts

 $S_0 = 67$ millions for France.

• Time from which the epidemic model starts to be valid, also called initial time of the model t_0 .

Remark 2. The time t_0 is a time where the epidemic phase started already.

• The average duration of the infectiousness $\frac{4.1}{\nu} = 3$ days. 204 • The fraction of reported individuals f = 0.9. 205

4.3. Computed parameters

The following parameters will be obtained by comparing the output of the model and the data:

• I_0 the number of asymptomatic infectious patients at the start of the epidemic. 209 • $\tau(t)$ the rate of transmission. 210

206

199

200

5. Modeling the exponential phase

At the early stage of the epidemic, we can assume that S(t) is constant, and equal to S_0 . We can also assume that $\tau(t)$ remains constant equal to $\tau_0 = \tau(t_0)$. Therefore, by replacing these parameters into the I-equation of system (1) we obtain

$$I'(t) = (\tau_0 S_0 - \nu)I(t).$$

Therefore

$$I(t) = I_0 e^{\chi_2(t-t_0)},$$
(4)

where

$$\chi_2 = \tau_0 S_0 - \nu.$$
 (5)

5.1. Initial number of infected and transmission rate

By using (3) and (4), we obtain

$$CR(t) = \chi_1 \left(e^{\chi_2(t-t_0)} - 1 \right) + \chi_3.$$
(6)

We observe that

$$\operatorname{CR}(t_0) = \chi_{3_2}$$

then χ_3 is a parameter which must be estimated from the data.

By using (3) at t_0 , we obtain

$$I_0 = \frac{CR'(t_0)}{\nu f} = \frac{\chi_1 \chi_2}{\nu f},$$
(7)

and by using (5)

$$\tau_0 = \frac{\chi_2 + \nu}{S_0}.$$

Note that the above estimations of I_0 and τ_0 are robust since we used the data over a period (i.e., not only at t_0) to evaluate χ_1, χ_2 .

5.2. Application to COVID-19 in mainland China

The figures below are taken from [8] (see [9] for similar results).

211

212

214

215

216

217

Figure 8. In this figure, we plot the best fit of the exponential model to the cumulative number of reported cases of COVID-19 in mainland China between February 19 and March 1. We obtain $\chi_1 = 3.7366, \chi_2 = 0.2650$ and $\chi_3 = 615.41$ with $t_0 = 19$ Feb. The parameter χ_3 is obtained by minimizing the error between the best exponential fit and the data.

Remark 3. Fixing f = 0.5 and $\nu = 0.2$, we obtain

 $I_0 = 3.7366 \times 0.2650 \times \exp(0.2650 \times 19) / (0.2 \times 0.5) = 1521,$

and

$$\tau_0 = \frac{0.2650 + 0.2}{1.4 \times 10^9} = 3.3214 \times 10^{-10}.$$

One may compare Figure 2 with Figure 9 and realize that there is no more jump in Figure 9. Here, we canceled out the jump in Figure 2 due to a change of method in counting the number of cases. More precisely, on February 16, 2020, the cumulative data in Figure 2 jumps by 17409 cases (the original data are available in [10, Table 2]). From that day, public health authorities in China decided to include the patients showing symptoms.

Figure 9. In this figure, the black dots represent the cumulative number of cases for China (with correction for the jump presented in Figure 2). The period marked in red corresponds to the period considered in Figure 8.

Remark 4. It is important to understand that, throughout this article, we fit the cumulative reported data by using a phenomenological. The reason is simple: the cumulative data are much smoother, while the daily number of reported cases are much more fluctuating. Therefore, it is "in theory" much easier to fit the cumulative data with a phenomenological model. Unfortunately, the problem is not that simple. So for example, in the exponential phase, we obtain the parameters

$$CR(t) = \chi_1 \left(e^{\chi_2(t-t_0)} - 1 \right) + \chi_3$$

by using a best fit to the cumulative number of cases.

Next, when we compute the first derivative of the above model to the daily number of 228 cases, this gives a pretty reasonable approximation of the daily number of reported cases. 229 Another way to avoid the first derivative $t \rightarrow CR(t)$, is to use the following model

$$D'(t) = f\nu I(t) - D(t)$$

In this model, we use the same input flow of infected as for the model used to compute the cumulative number of cases. But here, we assume that daily cases individuals only stay one day in the D compartment. This model is also equivalent to

$$D(t) = e^{-(t-t_0)} D_0 + \int_{t_0}^t e^{-(t-\sigma)} f \nu I(\sigma) d\sigma,$$

and by replacing $f\nu I(\sigma)$ by the cumulative data $CR(\sigma)$, we obtain a formula for the daily number of cases.

So, during the exponential phase, once we obtain the best fit of the model to the cumulative data, the daily number of cases is given by

$$D(t) = e^{-(t-t_0)} D_0 + \int_{t_0}^t e^{-(t-\sigma)} \chi_1 \left(e^{\chi_2(\sigma-t_0)} - 1 \right) + \chi_3 d\sigma.$$

The model's advantage is that it avoids computing a derive of the cumulative number of 232 cases, which can be an issue.

5.3. Spectral method in epidemic time series

During the COVID-19 pandemic, most people viewed the oscillations around the 235 exponential growth at the beginning of an epidemic wave as the default in reporting the 236 data. The residual is probably partly due to the reporting data process (random noise). 237 Nevertheless, a significant remaining part of such oscillations could be connected to the 238 infection dynamic at the level of a single average patient. Eventually, the central question we 239 try to address here is: Is there some hidden information in the signal around the exponential 240 tendency for COVID-19 data? So we consider the early stage of an epidemic phase, and 241 we try to exploit the oscillations around the tendency in order to reconstruct the infection 242 dynamic at the level of a single average patient. We investigate this question in [11]. 243

The figures below are taken from [11, see Figures 13 and 14].

Then in the figure below we plot the first residual. That is,

$$\operatorname{Residual}_{1}(t) = \operatorname{CR}(t) - \left[A_{1}e^{\alpha_{1}t} + C_{1}\right]$$

234

Figure 11. In this figure, we plot the first residual when subtracting the exponential tendency obtained in Figure 9 to the cumulative reported cases data between 19 October and 19 November 2020 (black dots). We plot the best fit of the model to the first residual (red curve).

5.4. Monotone property of the cumulative distribution

The influence of the errors made in the estimations (at the early stage of the epidemic) has been considered in the recent article [12]. To understand this problem, let us first consider the case of the rate of transmission $\tau(t) = \tau_0$ in the model (1).

From the epidemic model to the data Assume that the transmission rate $\tau(t)$ is constant equal to $\tau > 0$ in the model (1). Then by integrating the S-equation in model (1) between t_0 and t, we obtain

$$S(t) = S_0 e^{\tau \operatorname{CI}(t)} \tag{8}$$

where

$$\operatorname{CI}(t) = \int_{t_0}^t I(\sigma) d\sigma.$$

Moreover

$$I'(t) = \tau S(t)I(t) - \nu I(t)$$

replacing S(t) by 8, and by integrating between t_0 and t we obtain

$$I(t) = I_0 + S_0 \left(1 - e^{-\tau CI(t)} \right) - \nu CI(t).$$

Remembering that CI(t)' = I(t), we conclude that the cumulative number of cases should follow a single ordinary differential equation 253

$$CI(t)' = I_0 + S_0 \left(1 - e^{-\tau CI(t)} \right) - \nu CI(t).$$
(9)

The system (9) is complemented with the initial distribution of the model

$$\operatorname{CI}(t_0) = \operatorname{CI}_0 \ge 0.$$

This equation should be a good phenomenological model whenever $t \mapsto \tau(t)$ is a constant function. We refer to [13], and [14, Chapter 8] for a comprehensive presentation on the monotone ordinary differential equations.

Theorem 5. Let $t > t_0$ be fixed. The cumulative number of infectious CI(t) is strictly increasing with respect to the following quantities 258

- (i) $I_0 > 0$ the initial number of infectious individuals; 259
- (ii) $S_0 > 0$ the initial number of susceptible individuals; 260
- (iii) $\tau > 0$ the transmission rate;

245 246 247

248

249

250

(iv) $1/\nu > 0$ the average duration of the infectiousness period.

Error in the estimated initial number of infected and transmission rate

Assume that the parameters χ_1 and χ_2 are estimated with a 95% confidence interval

$$\chi_{1.95\%}^{-} \leq \chi_1 \leq \chi_{1.95\%}^{+}$$

and

 $\chi_{2,95\%}^{-} \le \chi_2 \le \chi_{2,95\%}^{+}.$

We obtain

$$I_{0,95\%}^{-} := \frac{\chi_{1,95\%}^{-} \chi_{2,95\%}^{-} e^{\chi_{2,95\%}^{-} t_0}}{\nu f} \le I_0 \le I_{0,95\%}^{+} := \frac{\chi_{1,95\%}^{+} \chi_{2,95\%}^{+} e^{\chi_{2,95\%}^{-} t_0}}{\nu f},$$

and

$$\tau_{0,95\%}^{-} := \frac{\chi_{2,95\%}^{-} + \nu}{S_0} \le \tau_0 \le \tau_{0,95\%}^{+} := \frac{\chi_{2,95\%}^{+} + \nu}{S_0}.$$

Remark 6. By using the data for mainland China we obtain

$$\chi_{1.95\%}^- = 1.57, \chi_{1.95\%}^+ = 5.89, \chi_{2.95\%}^- = 0.24, \chi_{2.95\%}^+ = 0.28$$

In Figure 12, we plot the upper and lower solutions $CR^+(t)$ (obtained by using $I_0 = I_{0,95\%}^+$ and $\tau_0 = \tau_{0,95\%}^+$) and $CR^-(t)$ (obtained by using $I_0 = I_{0,95\%}^-$ and $\tau_0 = \tau_{0,95\%}^-$) ²⁶⁵ corresponding to the blue region and the black curve corresponds to the best estimated values $I_0 = 1521$ and $\tau_0 = 3.3214 \times 10^{-10}$.

Recall that the final size of the epidemic corresponds to the positive equilibrium of (9)

$$0 = I_0 + S_0 [1 - \exp(-\tau_0 C I_\infty)] - \nu C I_\infty.$$

In Figure 12 the changes in the parameters I_0 and τ_0 (in (5.4)-(5.4)) do not affect significantly the final size.

Figure 12. In this figure, the black curve corresponds to the cumulative number of reported cases CR(t) obtained from the model (7) with CR'(t) = $\nu fI(t)$ by using the values $I_0 = 1521$ and $\tau_0 = 3.32 \times 10^{-10}$ obtained from our method and the early data from February 19 to March 1. The blue region corresponds the 95% confidence interval when the rate of transmission $\tau(t)$ is constant and equal to the estimated value $\tau_0 = 3.32 \times 10^{-10}$.

Remark 7. Theorem 5 can be used day by day to fit the cumulative number of infected CI(t). Indeed, if we assume that $\tau(t)$ is a day-by-day piece-wise constant, we can use the monotone properties to find a unique daily value for τ to fit the cumulative data to obtain a perfect match. Such an algorithm was developed in [8].

262

6. Modeling a single epidemic wave 274 6.1. What factors govern the transmission of pathogens

Estimating the average transmission rate is one of the most crucial challenges in the 276 epidemiology of communicable diseases. This rate conditions the entry into the epidemic 277 phase of the disease and its return to the extinction phase, if it has diminished sufficiently. 278 It is the combination of three factors, one, the coefficient of virulence, linked to the 279 infectious agent (in the case of infectious transmissible diseases), the other, the coefficient of 280 susceptibility, linked to the host (all summarized into the probability of transmission), and 281 also, the number of contact per unit of time between individuals (see [15]). The coefficient of 282 virulence may change over time due to mutation over the course of the disease history. The 283 second and third also, if mitigation measures have been taken. This was the case in China 284 from the start of the pandemic (see [16]). Monitoring the decrease in the average transmission 285 rate is an excellent way to monitor the effectiveness of these mitigation measures. Estimating 286 the rate is therefore a central problem in the fight against epidemics. 287

The transmission rate may vary over time, and it may significantly impact epidemic outbreaks. As explained in [15], the transmission rate can be decomposed as follow

 $\tau(t) = \frac{\text{the probability of transmission}}{\text{the average duration of a contact}}$

In this formula, the transmission probability may depend on climatic changes (temperature, 288 humidity, ultraviolet, and other external factors), and the average duration of contact depends 289 on human social behavior. It can be noted that the transmission rate is proportional to the 290 inverse of the average contact duration because the shorter the average contact duration, 291 the greater the number of contacts per unit of time. 292

Remark 8. A model was proposed by [17] to describe the evolution of the transmission rate during a single epidemic wave. Namely, the model is the following

$$\tau(t) = \begin{cases} \tau_0, & \text{if } t_0 \le t \le N \\ \tau_0 \Big(p e^{-\mu(t-N)} + (1-p) \Big), & \text{if } t \ge N, \end{cases}$$

where N corresponds to the day when the public measures take effect, and μ is the rate at which they take effect (this parameter describes the speed at which the public measures are taking place). The fraction $0 \le p \le 1$ is the fraction by which the transmission rate is reduced when applying public measures. We can rewrite this model shortly by using $t^+ = \max(t, 0)$, the positive part of t. That is,

$$\tau(t) = \tau_0 \Big(p e^{-\mu(t-N)^+} + (1-p) \Big),$$

Such a model was successfully used by [10, 18-20] and others.

Nevertheless, the model for joining the end of an epidemic wave to the next epidemic 294 wave is still unknown. A tentative model was proposed in [18]. 295

Contact patterns are impacted by social distancing measures. The average number of 296 contacts per unit of time depends on the density of population [21,22]. The probability of 297 transmission depends of the virulence of the pathogen which can depend on the temperature, 298 the humidity, and the Ultraviolet [23,24]. In COVID-19 the level of susceptibility may 299 depend on blood group and genetic lineage. It is indeed suspected that the 300

Blood group [25]: Blood group O is associated with a lower susceptibility to SARS-301 CoV2;302

275

Genetic lineage [26] A gene cluster inherited from Neanderthal has been identified as 303 a risk factor for severe symptoms. 304

6.2. More results and references about the time dependent transmission rate modeling

Throughout this section, the parameter $S_0 = 1.4 \times 10^9$ will be the entire population 306 of mainland China (since COVID-19 is a newly emerging disease). The actual number of 307 susceptibles S_0 can be smaller since some individuals can be partially (or totally) immunized 308 by previous infections or other factors. This is also true for Sars-CoV2, even if COVID-19 is 309 a newly emerging disease. 310

At the early beginning of the epidemic, the average duration of the infectious period 311 $1/\nu$ is unknown, since the virus has never been investigated in the past. Therefore, at the 312 early beginning of the COVID-19 epidemic, medical doctors and public health scientists used 313 previously estimated average duration of the infectious period to make some public health 314 recommendations. Here we show that the average infectious period is impossible to estimate 315 by using only the time series of reported cases, and must therefore be identified by other 316 means. Actually, with the data of Sars-CoV2 in mainland China, we will fit the cumulative 317 number of the reported case almost perfectly for any non-negative value $1/\nu < 3.3$ days. In 318 the literature, several estimations were obtained: 11 days in [27], 9.5 days in [28], 8 days in 319 [29], and 3.5 days in [30]. The recent survey by Byrne et al. [31] focuses on this subject. 320

Result

In Section 6.4, our analysis shows that

- It is hopeless to estimate the exact value of the duration of infectiousness by using SI models. Several values of the average duration of the infectious period give the exact same fit to the data.
- We can estimate an upper bound for the duration of infectiousness by using SI models. In the case of Sars-CoV2 in mainland China, this upper bound is 3.3 days.

In [2], it is reported that transmission of COVID-19 infection may occur from an 322 infectious individual who is not yet symptomatic. In [32], it is reported that COVID-19 323 infected individuals generally develop symptoms, including mild respiratory symptoms and 324 fever, on average 5-6 days after the infection date (with a configure of 95%, range 1-14325 days). In [33], it is reported that the median time prior to symptom onset is 3 days, the 326 shortest 1 day, and the longest 24 days. It is evident that these time periods play an 327 important role in understanding COVID-19 transmission dynamics. Here the fraction of 328 reported individuals f is unknown as well. 329

Result

In Section 6.4, our analysis shows that:

- It is hopeless to estimate the fraction of reported by using the SI models. Several values for the fraction of reported give the exact same fit to the data.
- We can estimate a lower bound for the fraction of unreported. We obtain $3.83 \times 10^{-5} < f \le 1$. This lower bound is not significant. Therefore we can say anything about the fraction of unreported from this class of models.

As a consequence, the parameters $1/\nu$ and f have to be estimated by another method, 331 for instance by a direct survey methodology that should be employed on an appropriated 332 sample in the population in order to evaluate the two parameters. 333

The goal of this section is to focus on the estimation of the two remaining parameters. 334 Namely, knowing the above-mentioned parameters, we plan to identify

 I_0 the initial number of infectious at time t_0 ;

330

321

335

344

• $\tau(t)$ the rate of transmission at time t.

This problem has already been considered in several articles. In the early 70s, London and Yorke [34,35] already discussed the time dependent rate of transmission in the context of measles, chickenpox and mumps. More recently, [36] the question of reconstructing the rate of transmission was considered for the 2002-2004 SARS outbreak in China. In [17] a specific form was chosen for the rate of transmission and applied to the Ebola outbreak in Congo. Another approach was also proposed in [37].

6.3. Why do we need a time-dependent transmission rate?

In Figure 13, we observe that the SI model with a constant transmission rate initially fits the data well. With this choice of parameters, the SI model is also supposed with the exponential function. But the model and the exponential function diverge relatively rapidly from the data. It is easy to understand that once people were informed about the COVID-19 outbreak, they tried to protect themself, and the number of contacts per unit of time then reduced gradually. That is, the transmission rate gradually decreased.

Figure 13. In this figure, the black dots represent the cumulative number of cases for China (we a correction for the jump presented in Figure 2). The period marked in red corresponds to the period considered in Figure 8. The yellow curve corresponds to the number of infected obtained using model (1) with a constant rate of transmission $\tau(t)$. We observe a rapid divergence between the epidemic model and the data whenever the transmission rate is constant with time.

6.4. Theoretical formula for $\tau(t)$

By using the S-equation of model (1) we obtain

$$S(t) = S_0 \exp\left(-\int_{t_0}^t \tau(\sigma) I(\sigma) \mathrm{d}\sigma\right),$$

next by using the I-equation of model (1) we obtain

$$I'(t) = S_0 \exp\left(-\int_{t_0}^t \tau(\sigma) I(\sigma) d\sigma\right) \tau(t) I(t) - \nu I(t),$$

and by taking the integral between t and t_0 we obtain a Volterra integral equation for the cumulative number of infectious 353

$$\operatorname{CI}'(t) = I_0 + S_0 \left[1 - \exp\left(-\int_{t_0}^t \tau(\sigma) I(\sigma) \mathrm{d}\sigma\right) \right] - \nu \operatorname{CI}(t), \tag{10}$$

which is equivalent to (by using (3))

$$\operatorname{CR}'(t) = \nu f \left(I_0 + S_0 \left[1 - \exp\left(-\frac{1}{\nu f} \int_{t_0}^t \tau(\sigma) \operatorname{CR}'(\sigma) \mathrm{d}\sigma\right) \right] \right) + \nu \operatorname{CR}_0 - \nu \operatorname{CR}(t).$$
(11)

The following result permits to obtain a perfect match between the SI model and the time-dependent rate of transmission $\tau(t)$.

Theorem 9. Let S_0 , ν , f, $I_0 > 0$ and $CR_0 \ge 0$ be given. Let $t \to I(t)$ be the second component of system (1). Let $\widehat{CR} : [t_0, \infty) \to \mathbb{R}$ be a two times continuously differentiable function satisfying

$$\widehat{CR}(t_0) = CR_0, \tag{12}$$

$$\widehat{\operatorname{CR}}'(t_0) = \nu f I_0, \tag{13}$$

$$\widehat{\mathbf{CR}}'(t) > 0, \forall t \ge t_0, \tag{14}$$

and

$$\nu f(I_0 + S_0) - \widehat{\operatorname{CR}}'(t) - \nu \left(\widehat{\operatorname{CR}}(t) - \operatorname{CR}_0\right) > 0, \forall t \ge t_0.$$
(15)

Then

$$\widehat{CR}(t) = CR_0 + \nu f \int_{t_0}^t I(s) ds, \forall t \ge t_0,$$
(16)

if and only if

$$\tau(t) = \frac{\nu f\left(\frac{\widehat{\mathbf{CR}}''(t)}{\widehat{\mathbf{CR}}'(t)} + \nu\right)}{\nu f(I_0 + S_0) - \widehat{\mathbf{CR}}'(t) - \nu\left(\widehat{\mathbf{CR}}(t) - \mathbf{CR}_0\right)}.$$
(17)

Proof. Assume first (16) is satisfied. Then by using equation (10) we deduce that

$$S_0 \exp\left(-\int_{t_0}^t \tau(\sigma)I(\sigma)d\sigma\right) = I_0 + S_0 - I(t) - \nu \operatorname{CI}(t).$$

Therefore

$$\int_{t_0}^t \tau(\sigma) I(\sigma) d\sigma = \ln \left[\frac{S_0}{I_0 + S_0 - I(t) - \nu \text{CI}(t)} \right] = \ln(S_0) - \ln[I_0 + S_0 - I(t) - \nu \text{CI}(t)]$$

therefore by taking the derivative on both side

$$\tau(t)I(t) = \frac{I'(t) + \nu I(t)}{I_0 + S_0 - I(t) - \nu \text{CI}(t)} \Leftrightarrow \tau(t) = \frac{\frac{I'(t)}{I(t)} + \nu}{I_0 + S_0 - I(t) - \nu \text{CI}(t)}$$
(18)

and by using the fact that $CR(t) - CR_0 = \nu f CI(t)$ we obtain (17).

Conversely, assume that $\tau(t)$ is given by (17). Then if we define $\widetilde{I}(t) = \widehat{CR}'(t)/\nu f$ and $\widetilde{CI}(t) = \left(\widehat{CR}(t) - CR_0\right)/\nu f$, by using (12) we deduce that

$$\widetilde{\mathrm{CI}}(t) = \int_{t_0}^t \widetilde{I}(\sigma) d\sigma,$$

and by using (13)

$$\widetilde{I}(t_0) = I_0. \tag{19}$$

354

360

361

363

364

365

366

Moreover from (17) we deduce that $\widetilde{I}(t)$ satisfies (18). By using (19) we deduce that $t \to \widetilde{\operatorname{CI}}(t)$ is a solution of (10). By uniqueness of the solution of (10), we deduce that $\widetilde{\operatorname{CI}}(t) = \operatorname{CI}(t), \forall t \ge t_0$ or equivalently $\operatorname{CR}(t) = \operatorname{CR}_0 + \nu f \int_{t_0}^t I(s) ds, \forall t \ge t_0$. The proof is completed. \Box

The formula (17) was already obtained by Hadeler [38, see Corollary 2].

6.5. Explicit formula for $\tau(t)$ and I_0

In 1766, Bernoulli [39] investigated an epidemic phase followed by an endemic phase. 374 This appears clearly in Figures 9 and 10 in [40] who revisited the original article of Bernoulli. 375 We also refer to [41] for another article revisiting the original work of Bernoulli. A similar 376 article has been re-written in French as well by [42]. In 1838, Verhulst [43] introduced the 377 same equation to describe population growth. Several works comparing cumulative reported 378 cases data and the Bernoulli–Verhulst model appear in the literature (see [44-46]). The 379 Bernoulli–Verhulst model is sometimes called Richard's model, although Richard's work 380 came much later in 1959. 381

Many phenomenological models have been compared to the data during the first phase of the COVID-19 outbreak. We refer to the paper of [47] for a nice survey on the generalized logistic equations. Let us consider here for example, the Bernoulli-Verhulst equation 382

$$CR'(t) = \chi_2 CR(t) \left(1 - \left(\frac{CR(t)}{CR_{\infty}}\right)^{\theta} \right), \forall t \ge t_0,$$
(20)

supplemented with the initial data

$$CR(t_0) = CR_0 \ge 0.$$

Let us recall the explicit formula for the solution of (20)

$$CR(t) = \frac{e^{\chi_2(t-t_0)}CR_0}{\left[1 + \frac{\chi_2\theta}{CR_{\infty}^{\theta}}\int_{t_0}^t \left(e^{\chi_2(\sigma-t_0)}CR_0\right)^{\theta}d\sigma\right]^{1/\theta}} = \frac{e^{\chi_2(t-t_0)}CR_0}{\left[1 + \frac{CR_0^{\theta}}{CR_{\infty}^{\theta}}\left(e^{\chi_2\theta(t-t_0)} - 1\right)\right]^{1/\theta}}.$$
 (21)

The model's main advantage is that it is rich enough to fit the data, together with a limited number of parameters. To fit this model to the data, we only need to estimate four parameters χ_2, θ, CR_0 , and CR_{∞} .

Remark 10. Plenty of possibilities exist to fit the data, including split functions (irregular functions with many parameters) and others. In [48], they proposed several possible alternatives, including a generalized logistic equation of the form

$$\operatorname{CR}'(t) = \chi_2 \operatorname{CR}(t)^{\theta} \left(1 - \left(\frac{\operatorname{CR}(t)}{\operatorname{CR}_{\infty}} \right) \right), \forall t \ge t_0$$

The above equation has no explicit solution. Therefore it is more difficult to use it than the Bernoulli-Verhulst model. We also refer to [49,50] for more phenomenological model to fit an epidemic wave.

372

373

Figure 14. In this figure, we plot the best fit of the Bernoulli-Verhulst model to the cumulative number of reported cases of COVID-19 in China. We obtain $\chi_2 = 0.66$ and $\theta = 0.22$. The black dots correspond to data for the cumulative number of reported cases and the red curve corresponds to the model.

Estimated initial number of infected

By combining (10) and the Bernoulli-Verhulst equation (20) for $t \to CR(t)$, we deduce the initial number of infected

$$I_0 = \frac{\operatorname{CR}'(t_0)}{\nu f} = \frac{\chi_2 \operatorname{CR}_0 \left(1 - \left(\frac{\operatorname{CR}_0}{\operatorname{CR}_\infty}\right)^\theta\right)}{\nu f}.$$
 (22)

Remark 11. We fix f = 0.5, from the COVID-19 data in mainland China and formula (22) (with $CR_0 = 198$), we obtain

$$I_0 = 1909 \text{ for } \nu = 0.1$$

and

$$I_0 = 954 \text{ for } \nu = 0.2.$$

By using (20) we deduce that

$$CR''(t) = \chi_2 CR'(t) \left(1 - \left(\frac{CR(t)}{CR_{\infty}}\right)^{\theta} \right) - \frac{\chi_2 \theta}{CR_{\infty}^{\theta}} CR(t) (CR(t))^{\theta - 1} CR'(t)$$
$$= \chi_2 CR'(t) \left(1 - \left(\frac{CR(t)}{CR_{\infty}}\right)^{\theta} \right) - \frac{\chi_2 \theta}{CR_{\infty}^{\theta}} (CR(t))^{\theta} CR'(t),$$

therefore

$$CR''(t) = \chi_2 CR'(t) \left(1 - (1+\theta) \left(\frac{CR(t)}{CR_{\infty}} \right)^{\theta} \right).$$
(23)

392

Estimated rate of transmission

By using the Bernoulli-Verhulst equation (20) and substituting (23) in (17), we obtain

$$\tau(t) = \frac{\nu f\left(\chi_2 \left(1 - (1 + \theta) \left(\frac{CR(t)}{CR_{\infty}}\right)^{\theta}\right) + \nu\right)}{\nu f(I_0 + S_0) + \nu CR_0 - CR(t) \left(\chi_2 \left(1 - \left(\frac{CR(t)}{CR_{\infty}}\right)^{\theta}\right) + \nu\right)}.$$
 (24)

This formula (24) combined with (21) gives an explicit formula for the rate of transmission.

Since $CR(t) < CR_{\infty}$, by considering the sign of the numerator and the denominator of (24), we obtain the following proposition.

Proposition 12. The rate of transmission $\tau(t)$ given by (24) is non negative for all $t \ge t_0$ 397 if

ν

$$\geq \chi_2 \theta, \tag{25}$$

and

$$f(I_0 + S_0) + \nu CR_0 > CR_\infty(\chi_2 + \nu).$$
(26)

Compatibility of the model SI with the COVID-19 data for mainland China

The model SI is compatible with the data only when $\tau(t)$ stays positive for all $t \ge t_0$. From our estimation of the Chinese's COVID-19 data we obtain $\chi_2 \theta = 0.14$. Therefore from (25) we deduce that model is compatible with the data only when

$$1/\nu \le 1/0.14 = 3.3 \text{ days.}$$
 (27)

This means that the average duration of infectious period $1/\nu$ must be shorter than 3.3 days.

Similarly the condition (26) implies

$$f \ge \frac{\mathrm{CR}_{\infty}\chi_2 + (\mathrm{CR}_{\infty} - \mathrm{CR}_0)\nu}{S_0 + I_0} \ge \frac{\mathrm{CR}_{\infty}\chi_2 + (\mathrm{CR}_{\infty} - \mathrm{CR}_0)\chi_2\theta}{S_0 + I_0}$$

and since we have $CR_0 = 198$ and $CR_{\infty} = 67102$, we obtain

$$f \ge \frac{67102 \times 0.66 + (67102 - 198) \times 0.14}{1.4 \times 10^9} \ge 3.83 \times 10^{-5}.$$
 (28)

So according to this estimation the fraction of unreported $0 < f \leq 1$ can be almost as small as we want.

Figure 15 illustrates the Proposition 12. We observe that the formula for the rate of transmission (24) becomes negative whenever $\nu < \chi_2 \theta$.

396

398

394

395

399

400

401

Figure 15. In this figure, we plot the rate of transmission obtained from formula (24) with f = 0.5, $\chi_2 \theta = 0.14 < \nu = 0.2$ (in Figure (a)) and $\nu = 0.1 < \chi_2 \theta = 0.14$ (in Figure (b)), $\chi_2 = 0.66$ and $\theta = 0.22$ and $CR_{\infty} = 67102$ which is the latest value obtained from the cumulative number of reported cases for China.

In Figure 16 we plot the numerical simulation obtained from (1)-(3) when $t \to \tau(t)$ is replaced by the explicit formula (24). It is surprising that we can reproduce perfectly the original Bernoulli-Verhulst even when $\tau(t)$ becomes negative. This was not guaranteed at first, since the I-class of individuals is losing some individuals which are recovering.

Figure 16. In this figure, we plot the number of reported cases by using model (1) and (10), and the rate of transmission is obtained in (24). The parameters values are f = 0.5, $\nu = 0.1$ or $\nu = 0.2$, $\chi_2 = 0.66$ and $\theta = 0.22$ and $CR_{\infty} = 67102$ is the latest value obtained from the cumulative number of reported cases for China. Furthermore, we use $S_0 = 1.4 \times 10^9$ for the total population of China and $I_0 = 954$ which is obtained from formula (22). The black dots correspond to data for the cumulative number of reported cases observed and the blue curve corresponds to the model.

6.6. Results

In [8], we designed an algorithm, based on the monotone property described in Theorem 5 to recover the transmission rate from the data. In this section, we reconsider the result presented in [8] where several method was used to regularized the data.

In Figure 17 we plot several types of regularized cumulative data in figure (a) and several types of regularized daily data in figure (b). Among the different regularization methods, an important one is the Bernoulli-Verhulst best fit approximation.

Figure 17. In this figure, we plot the cumulative number of reported cases (left) and the daily number of reported cases (right). The black curves are obtained by applying the cubic spline matlab function "spline(Days,DATA)" to the cumulative data. The left-hand side is obtained by using the cubic spline function and right-hand side is obtained by using the derivative of the cubic spline interpolation. The blue curves are obtained by using cubic spline function to the day by day values of cumulative number of cases obtained from the best fit of the Bernoulli-Verhulst model. The orange curves are obtained by computing the rolling weekly daily number of cases (we use the matlab function "smoothdata(DAILY, 'movmean', 7)") and then by applying the cubic spline function the rolling weekly to the daily number of cases (we use the matlab function "smoothdata(DAILY, 'gaussian', 7)") and then by applying the cubic spline function to the corresponding cumulative number of cases (we use the matlab function "smoothdata(DAILY, 'gaussian', 7)") and then by applying the cubic spline function to the corresponding cumulative number of cases (we use the matlab function "smoothdata(DAILY, 'gaussian', 7)") and then by applying the cubic spline function function to the corresponding cumulative number of cases (we use the matlab function "smoothdata(DAILY, 'gaussian', 7)") and then by applying the cubic spline function to the corresponding cumulative number of cases (we use the matlab function "smoothdata(DAILY, 'gaussian', 7)") and then by applying the cubic spline function to the corresponding cumulative number of cases.

In Figure 18 we plot the rate of transmission $t \to \tau(t)$ obtained by using Algorithm 414 2. We can see that the original data gives a negative transmission rate while at the other 415 extreme the Bernoulli-Verhulst seems to give the most regularized transmission rate. In 416 Figure 18-(a) we observe that we now recover almost perfectly the theoretical transmission 417 rate obtained in (24). In Figure 18-(b) the rolling weekly average regularization and in 418 Figure 18-(c) the Gaussian weekly average regularization still vary a lot and in both cases 419 the transmission rate becomes negative after some time. In Figure 18-(c) the original data 420 gives a transmission rate that is negative from the beginning. We conclude that it is crucial 421 to find a "good" regularization of the daily number of case. So far the best regularization 422 method is obtained by using the best fit of the Bernoulli-Verhulst model. 423

425

Figure 18. In this figure we plot the transmission rates $t \to \tau(t)$ obtained by using Algorithm 2 with the parameters f = 0.5 and $\nu = 0.2$. In figure (a) we use the cumulative data obtained by using the Bernoulli-Verhulst regularization. In figure (b) we use the cumulative data obtained by using the rolling weekly average regularization. In figure (c) we use the cumulative data obtained by using the Gaussian weekly average regularization. In figure (d) we use the original cumulative data.

7.1. Phenomenological model used for multiple epidemic waves

Endemic phase: During the endemic phase, the dynamics of new cases appears to fluctuate around an average value independently of the number of cases. Therefore the average cumulative number of cases is given by 428

$$\mathbf{CR}(t) = N_0 + (t - t_0) \times a, \text{ for } t \in [t_0, t_1],$$
(29)

where t_0 denotes the beginning of the endemic phase, N_0 is the number of new cases at time t_0 , and a is the average value of the daily number of new cases. 430

Epidemic phase: In the epidemic phase, the new cases are contributing to produce 431 secondary cases. Therefore the daily number of new cases is no longer constant, but varies 432 with time as follows 433

$$CR(t) = N_{base} + \frac{e^{\chi(t-t_0)}N_0}{\left[1 + \frac{N_0^{\theta}}{N_{\infty}^{\theta}}(e^{\chi\theta(t-t_0)} - 1)\right]^{1/\theta}}, \text{ for } t \in [t_0, t_1].$$
(30)

In other words, the daily number of new cases follows the Bernoulli–Verhulst equation. That is, 434

$$N(t) = CR(t) - N_{\text{base}}, \tag{31}$$

we obtain

$$N'(t) = \chi N(t) \left[1 - \left(\frac{N(t)}{N_{\infty}}\right)^{\theta} \right], \qquad (32)$$

completed with the initial value

$$N(t_0) = N_0$$

In the model, $N_{\text{base}} + N_0$ corresponds to the value $CR(t_0)$ of the cumulative number of cases at time $t = t_0$. The parameter $N_{\infty} + N_{\text{base}}$ is the maximal value of the cumulative reported cases after the time $t = t_0$. $\chi > 0$ is a Malthusian growth parameter, and θ regulates the speed at which CR(t) increases to $N_{\infty} + N_{\text{base}}$.

Regularize the junction between the epidemic phases: Because the formula for $\tau(t)$ 441 involves derivatives of the phenomenological model regularizing CR(t) (see equations (8)), 442 we need to connect the phenomenological models of the different phases (epidemic and endemic) as smoothly as possible. Let t_0, \ldots, t_n denote the n + 1 breaking points of the model, that is, the times at which there is a transition between one phase and the next one. We let $\widetilde{CR}(t)$ be the global model obtained by placing the phenomenological models of the different phases side by side.

More precisely, CR(t) is defined by (30) during an epidemic phase $[t_i, t_{i+1}]$, or during the initial phase $(-\infty, t_0]$ or the last phase $[t_n, +\infty)$. During an endemic phase, $\widetilde{CR}(t)$ 449 is defined by (29). The parameters are chosen so that the resulting global model \widetilde{CR} is continuous. We define the regularized model by using the convolution formula: 451

$$CR(t) = \int_{-\infty}^{+\infty} \mathcal{G}(t-s) \times \widetilde{CR}(s) ds = (\mathcal{G} \ast \widetilde{CR})(t), \qquad (33)$$

where

$$\mathcal{G}(t) := \frac{1}{\sigma\sqrt{2\pi}} \mathrm{e}^{-\frac{t^2}{2\sigma^2}}$$

is the Gaussian function with mean 0 and variance σ^2 . The parameter σ controls the trade-off between smoothness and precision: increasing σ reduces the variations in CR(t) and reducing σ reduces the distance between CR(t) and $\widetilde{CR}(t)$. In any case the resulting function CR(t) is very smooth (as well as its derivatives) and close to the original model $\widetilde{CR}(t)$ when σ is not too large. Here, we fix

$$\sigma = 7$$
 days.

Numerically, we will need to compute some $t \to CR(t)$ derivatives. Therefore it is convenient to take advantage of the convolution (33) and deduce that 453

$$\frac{\mathrm{d}^{n}\mathrm{CR}(t)}{\mathrm{d}t^{n}} = \int_{-\infty}^{+\infty} \frac{\mathrm{d}^{n}\mathcal{G}(t-s)}{\mathrm{d}t^{n}} \times \widetilde{\mathrm{CR}}(s)\mathrm{d}s, \tag{34}$$

for n = 1, 2, 3.

7.2. Phenomenological Model apply to France

Figures 19-20 below is taken from [51]. In Figure 19, we present the best fit of our phenomenological model for the cumulative reported case data of COVID-19 epidemic reported case data of COVID-19 epidemic phases. The yellow regions correspond to the endemic phases and the blue regions correspond to the epidemic waves for France, and the chosen period, as well as the parameters values for each period.

Figure 19. The red curve corresponds to the phenomenological model and the black dots correspond to the cumulative number of reported cases in France.

Figure 20 shows the corresponding daily number of new reported cases data (black dots) and the first derivative of our phenomenological model (red curve).

Figure 20. The red curve corresponds to the phenomenological model and the black dots correspond to the cumulative number of reported cases in France.

7.3. Phenomenological Model apply to several countries

Our method to regularize the data was applied to the eight geographic areas. The 464 resulting curves are presented in Figure 21. The blue background color regions correspond 465 to epidemic phases and the yellow background color regions to endemic phases. We added a 466 plot of the daily number of cases (black dots) and the derivative of the regularized model for 467 comparison, even though the daily number of cases is not used in the fitting procedure. The figures generally show an excellent agreement between the time series of reported cases (top 469 row, black dots) and the regularized model (top row, blue curve). The match between the 470 daily number of cases (bottom row, black dots) and the derivative of the regularized model 471 (bottom row, blue curve) is also excellent, even though it is not a part of the optimization 472 process. Of course, we lose some information, like the extreme values ("peaks") of the 473 daily number of cases. This is because we focus on an averaged value of the number of 474 cases. More information could be retrieved by statistically studying the variation around 475 the phenomenological model. However, we leave such a study for future work. The relative 476 error between the regularized curve and the data may be relatively high at the beginning of 477 the epidemic because of the stochastic nature of the infection process and the small number 478 of infected individuals but quickly drops below 1% (see the supplementary material in [52] 479 for more details). 480

Figure 21. In the top rows, we plot the cumulative number of reported cases (black dots) and the best fit of the phenomenological model (blue curve). In the bottom rows, we plot the daily number of reported cases (black dots) and the first derivative of the phenomenological model (blue curve). This figure is taken from [52].

7.4. Earlier results about transmission rate reconstructed from the data

This problem has already been considered in several articles. In the early 70s, London and Yorke [34,35] discussed the time dependent rate of transmission in the context of measles, chickenpox and mumps. Motivated by applications to the data for COVID-19 in [53] the authors also obtained some new results about reconstructing the rate of transmission.

7.5. Instantaneous reproduction number

We use the formula (8) to compute the transmission rate, and we consider the **instantaneous reproduction number**

$$\mathbf{R}_{\mathbf{e}}(\mathbf{t}) = \tau(\mathbf{t})\mathbf{S}(\mathbf{t})/\nu$$

and the quasi-instantaneous reproduction number

$$\mathbf{R}_{\mathbf{e}}^{\mathbf{0}}(\mathbf{t}) = \tau(\mathbf{t})\mathbf{S}_{\mathbf{0}}/\nu,$$

We compare the above indicators with $\mathbf{R}_{\mathbf{e}}^{\mathbf{C}}(\mathbf{t})$ the classical notion of instantaneous reproduction number [54–56].

Remark 13. The standard method to compute $\mathbf{R}_{\mathbf{e}}^{\mathbf{C}}(\mathbf{t})$ (see [54–56]) proposes another form of regularization of the data, which consists of computing the instant of contamination backward in time. This instant is random and follows a standard exponential law.

7.6. Results

In Figure 22, our analysis allows us to compute the transmission rate $\tau(t)$. We use this 493 transmission rate to calculate two different indicators of the epidemiological dynamics for 494 each geographic area, the instantaneous reproduction number and the quasi-instantaneous 495 reproduction number. Both coincide with the basic reproduction number R_0 on the first 496 day of the epidemic. The instantaneous reproduction number at time t, $R_e(t)$, is the basic 497 reproduction number corresponding to an epidemic starting at time t with a constant 498 transmission rate equal to $\tau(t)$ and with an initial population of susceptibles composed 499 of S(t) individuals (the number of susceptible individuals remaining in the population). 500

486

492

The quasi-instantaneous reproduction number at time t, $R_e^0(t)$, is the basic reproduction number corresponding to an epidemic starting at time t with a constant transmission rate equal to $\tau(t)$ and with an initial population of susceptibles composed of S_0 individuals (the number of susceptible individuals at the start of the epidemic). The two indicators are represented for each geographic area in the top row of Figure 22 (black curve: instantaneous reproduction number; green curve: quasi-instantaneous reproduction number).

One interpretation for $R_e(t)$ and another for $R_e^0(t)$. The instantaneous reproduction 507 number indicates if, given the current state of the population, the epidemic tends to 508 persist or die out in the long term (note that our model assumes that recovered individuals 509 are perfectly immunized). The quasi-instantaneous reproduction number indicates if the 510 epidemic tends to persist or die out in the long term, provided the number of susceptible is 511 the total population. In other words, we forget about the immunity already obtained by 512 recovered individuals. Also, it is directly proportional to the transmission rate and therefore 513 allows monitoring of its changes. Note that the value of $R_e^0(t)$ changed drastically between 514 epidemic phases, revealing that $\tau(t)$ is far from constant. In any case, the difference between 515 the two values starts to be visible in the figures one year after the start of the epidemic. 516

We also computed the reproduction number using the method described in [55], which we denoted $R_e^c(t)$. The precise implementation is described in the supplementary material in [52]. It is plotted in the bottom row of Figure 22 (green curve), along with the instantaneous reproduction number $R_e(t)$ (green curve).

Remark 14. In the bottom of Figure 22, we compare the instantaneous reproduction 521 numbers obtained by our method in black and the classical method in [55] in green. We 522 observe that the two approaches are not the same at the beginning. This is because the 523 method of [55] does not consider the initial values I_0 and E_0 while we do. Indeed the 524 method of [55] assumes that I_0 and E_0 are close to 0 at the beginning when it is viewed as a 525 Volterra equation reformulation of the Bernoulli-Kermack-McKendrick model with the age 526 of infection. On the other hand, our method does not require such an assumption since it 527 provides a way to compute the initial states I_0 and E_0 . 528

Figure 22. In the top rows, we plot the instantaneous reproduction number $R_e(t)$ (in black) and the quasi instantaneous reproduction number $R_e^0(t)$ (in green). In the bottom rows, we plot the instantaneous reproduction number $R_e(t)$ (in black) and the one obtained by the standard method [54,55] $R_e^C(t)$ (in green). This figure is taken from [52].

It is essential to "regularize" the data to obtain a comprehensive outcome from SIR 529 epidemic models. In general, the rate of transmission in the SIR model (applying identifica-530 tion methods) is not very noisy and meaningless. For example, at the beginning of the first 531 epidemic wave, the transmission rate should be decreasing since peoples tend to have less 532 and less contact while to epidemic growth. The standard regularization methods (like, for 533 example, the rolling weekly average method) have been tested for COVID-19 data in [8]. 534 The outcome in terms of transmission rate is very noisy and even negative transmission 535 (which is impossible). Regularizing the data is not an easy task, and the method used is very 536 important in order to obtain a meaningful outcome for the models. Here, we tried several 537 approaches to link an epidemic phase to the next endemic phase. So far, this regularization 538 procedure is the best one. 539

Figure 23 illustrates why we need a phenomenological model to regularize the data. 540 On the left-hand side, we observe the $\tau(t)$ becomes negative almost immediately. Therefore, 541 without regularization, the fit may not make sense. 542

Figure 23. In this figure, we plot the instantaneous R_0 . On the left-hand side, we use our smoothing method (with Bernoulli-Verhulst model (endemic) line (endemic) together with a convolution with a Gaussian). On the right-hand side, we use the original cumulative data and our algorithm to fit the cumulative number of cases.

7.7. Consequences of the results

In Figure 22, we saw that the population of susceptible patients is almost unchanged after the epidemic passed. Therefore, the system behaves almost like the non-autonomous system

$$I'(t) = \tau(t)S_0I(t) - \nu I(t), \forall t \ge t_0, \text{ and } I(t_0) = I_0,$$

This means that I(t) depends linearly on I_0 . That is, if we multiply I_0 by some number, the result I(t) will be multiply by the same number.

Figure 24 shows two things. The initial number of infected is crucial when we try to predict the number of infected. The average daily number of cases during the endemic phases have strong impact on the amplitude of the next epidemic waves [51].

Figure 24. We start the simulation at time $t_0 = July 5$, 2020 with the initial value $I_0 = \frac{CR'(t_2)}{\nu f}$ for red curve and with $I_0 = 0.41 \frac{CR'(t_2)}{\nu f}$ for yellow curve).

In this section, we obtained a model that covert the changes of regimen (from endemic 549 to epidemic and conversely). Moreover the detection of the changes of regimen between 550 epidemic wave and endemic period is still difficult to detect. An attempt to study this 551 question can be found in [57]. 552

8. Exponential phase with more compartments

8.1. A model with transmission from the unreported infectious

We consider a model with unreported infection individuals.

$$\begin{cases} S'(t) = -\tau(t)S(t)(I(t) + U(t)), \\ I'(t) = \tau(t)S(t)(I(t) + U(t)) - \nu I(t), \\ U'(t) = \nu (1 - f)I(t) - \eta U(t), \end{cases}$$
(35)

for $t \ge t_0$, and with initial distribution

$$S(t_0) = S_0, I(t_0) = I_0, \text{ and } U(t_0) = U_0.$$
 (36)

The epidemic model associated with the flowchart in Figure 25 applies to influenza 557 outbreaks in [58], hepatitis A outbreaks in [59], and COVID-19 in [9]. 558

Figure 25. Flowchart.

8.2. The exponential phase approximation

We assume that S(t) is constant, and equal to S_0 , and $\tau(t)$ remains constant equal to $\tau_0 = \tau(t_0)$. The consider for example the case of a single age group, we obtain the following 561 model which was first considered for COVID-19

$$\begin{cases} I'(t) = \tau S_0(I(t) + U(t)) - \nu I(t), \\ U'(t) = \nu (1 - f) I(t) - \eta U(t), \end{cases}$$
(37)

for $t \ge t_0$, and with initial distribution

$$I(t_0) = I_0$$
, and $U(t_0) = U_0$. (38)

We can reformulate this system using a matrix formulation

$$\left(\begin{array}{c}I'(t)\\U'(t)\end{array}\right) = A\left(\begin{array}{c}I(t)\\U(t)\end{array}\right), \forall t \in [t_0, t_1],$$

where

$$A = \begin{pmatrix} \tau S_0 - \nu & \tau S_0 \\ \nu(1-f) & -\eta \end{pmatrix}.$$

Then the matrix A is **irreducible** if and only if

$$\nu(1-f) > 0$$
 and $\tau S_0 > 0$.

556

559 560

562

563

553 554

Remember the model (37) to connect the data and the epidemic model

$$\operatorname{CR}'(t) = f \nu I(t), \text{ for } t \ge t_0.$$

Consider the exponential phase of the epidemic. That is,

$$CR'(t) = \chi_1 \chi_2 e^{\chi_2 t}, \forall t \in [t_0, \tau + t_0],$$

for some $\tau > 0$. Combining the two previous equations, we obtain

$$f \nu I(t) = \chi_1 e^{\chi_2(t-t_0)}, \forall t \in [t_0, \tau + t_0],$$

Remember that χ_1 and χ_2 are computed by using the data. More precisely, these parameters 564

are obtained by fitting $t \to \chi_1 e^{\chi_2 t} - \chi_3$ to the cumulative number of cases data during a period of time $[t_0, \tau + t_0]$.

We can rewrite $f \nu I(t) = \chi_1 e^{\chi_2 t}$ by using an inner product

$$\left\langle y_0, \left(\begin{array}{c} I(t) \\ U(t) \end{array} \right) \right\rangle = \chi_1 e^{\chi_2 t}, \text{ with } y_0 = \left(\begin{array}{c} \nu f \\ 0 \end{array} \right)$$

where $\langle ., . \rangle$ is the Euclidean inner product defined in dimension 2 as

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2.$$

The following theorem is proved in Appendix A.

Theorem 15. Let $\chi_1 > 0$, $\chi_2 > 0$, and $\tau > 0$. Let A be a n by n real matrix. Assume that the off-diagonal elements of A are non-negative, and A is irreducible. Assume that there exist two vectors $y_0 > 0$, and $x_0 > 0$ such that

(Linear model)
$$\dot{x}(t) = Ax(t), \text{ and } x(0) = x_0,$$

satisfies

(Connection with the data)
$$\langle y_0, x(t) \rangle = \chi_1 e^{\chi_2 t}, \forall t \in [0, \tau]$$

where $\langle x, y \rangle$ is the Euclidean inner product.

Then χ_2 must be the dominant eigenvalue A (i.e., the one with the largest real part). Moreover, we can choose a vector $x_0 \gg 0$ (i.e., with all its components strictly positive), satisfying

$$Ax_0 = \chi_2 x_0.$$

Multiplying x_0 by a suitable positive constant, we obtain $\langle y_0, x_0 \rangle = \chi_1$, and we obtain

$$\langle y_0, x(t) \rangle = \chi_1 e^{\chi_2 t}, \forall t \in [0, \tau].$$

Returning back to the example of epidemic model with unreported cases, we must find I(0) > 0 and U(0) > 0 such that

$$\begin{pmatrix} \tau S_0 - \nu & \tau S_0 \\ \nu(1-f) & -\eta \end{pmatrix} \begin{pmatrix} I(0) \\ U(0) \end{pmatrix} = \chi_2 \begin{pmatrix} I(0) \\ U(0) \end{pmatrix}.$$

After a few computations (see the supplementary in Liu et al. [9]), we obtain

$$\tau = \frac{\chi_2 + \nu}{S_0} \frac{\eta + \chi_2}{\nu(1 - f) + \eta + \chi_2},\tag{39}$$

571

567

572

31 of 56

and

$$U_0 = \frac{\nu(1-f)}{\eta + \chi_2} I_0 = \frac{(1-f)\nu}{\eta + \chi_2} I_0.$$
(40)

Remark 16. Let $\chi_1 > 0$, $\chi_2 > 0$, $\phi_1 > 0$, $\phi_2 > 0$, and $\tau > 0$. Assume that $x_0 > 0$, $y_0 > 0$ and $z_0 > 0$ satisfy

$$\dot{x}(t) = Ax(t), and x(0) = x_0,$$

and

$$\langle y_0, x(t) \rangle = \chi_1 e^{\chi_2 t}, \forall t \in [0, \tau],$$

$$\langle z_0, x(t) \rangle = \phi_1 e^{\phi_2 t}, \forall t \in [0, \tau].$$

If $\chi_2 \neq \phi_2$ the matrix A must be reducible. That is, up to a re-indexation of the components of x(t), the matrix A reads as

$$A = \left(\begin{array}{cc} A_{11} & 0\\ A_{21} & A_{22} \end{array}\right)$$

where A_{ij} are block matrices. The matrix A presents a weak coupling between the last block's 575 components and the first block's components. 576

8.3. Uncertainty due to the period chosen to fit the data

The principle of our method is the following. By using an exponential best fit method we obtain a best fit of (6) to the data over a time $[t_1, t_2]$ and we derive the parameters χ_1 and χ_2 . The values of $I_0 U_0$, and τ_0 are obtained by using (7), (36) and (37). Next, we use

$$\tau(t) = \tau_0 e^{-\mu(t-N)^+},$$

we fix N (first day of public intervention) to some value and we obtain μ by trying to get the best fit to the data.

In the method the uncertainty in our prediction is due to the fact that several sets of parameters (t_1, t_2, N, f) may give a good fit to the data. As a consequence, at the early stage of the epidemics (in particular before the turning point) the outcome of our method can be very different from one set of parameters to another. We try to solve this uncertainty problem by using several choices of the period to fit an exponential growth of the data to determine χ_1 and χ_2 and several choices for the first day of intervention N. So in this section, we vary the time interval $[t_1, t_2]$, during which we use the data to obtain χ_1 and χ_2 by using an exponential fit. In the simulations below, the first day t_1 and the last day t_2 vary such that

Earliest day $\leq t_1 \leq t_2 \leq$ Latest day.

We also vary the first day of public intervention:

Earliest first day of intervention $\leq N \leq$ Latest first day of intervention.

We vary f between 0.1 to 0.9. For each $(t_1, t_2, \nu, f, \eta, \mu, N)$ we evaluate μ to obtain the best fit of the model to the data. We use the mean absolute deviation as the distance to data to evaluate the best fit to the data. We obtain a large number of best fit depending on $(t_1, t_2, \nu, f, \eta, \mu, N)$ and we plot smallest mean absolute deviation MAD_{min}. Then we plot all the best fit graphs with mean absolute deviation between MAD_{min} and MAD_{min} + 40.

The figure below is taken from Liu et al. [60].

585

Figure 26. In this figure, we consider the data for Germany. We plot the cumulative number of cases of the left hand side and the daily number of cases on the right hand side. In (a) and (b) we use the data until March 22. In (c) and (d) we use the data until April 11. (e) and (f) we use the data until June 10.

9. Modeling COVID-19 epidemic with age groups

This section considers an epidemic whenever the population is divided into age groups. Here, age means the chronological age, which is nothing but the time since birth.

9.1. Epidemic model with age groups

The epidemic model with age structure and unreported cases reads as follows, for each $t \ge t_0$,

$$\begin{cases} S_{1}'(t) = -\tau_{1}S_{1}(t) \left[\phi_{11}\frac{I_{1}(t) + U_{1}(t)}{N_{1}} + \dots + \phi_{1n}\frac{I_{n}(t) + U_{n}(t)}{N_{n}} \right], \\ \vdots \\ S_{n}'(t) = -\tau_{n}S_{n}(t) \left[\phi_{n1}\frac{I_{1}(t) + U_{1}(t)}{N_{1}} + \dots + \phi_{nn}\frac{I_{n}(t) + U_{n}(t)}{N_{n}} \right], \\ \begin{cases} I_{1}'(t) = \tau_{1}S_{1}(t) \left[\phi_{11}\frac{I_{1}(t) + U_{1}(t)}{N_{1}} + \dots + \phi_{1n}\frac{I_{n}(t) + U_{n}(t)}{N_{n}} \right] - \nu I_{1}(t), \\ \vdots \\ I_{n}'(t) = \tau_{n}S_{n}(t) \left[\phi_{n1}\frac{I_{1}(t) + U_{1}(t)}{N_{1}} + \dots + \phi_{nn}\frac{I_{n}(t) + U_{n}(t)}{N_{n}} \right] - \nu I_{n}(t), \end{cases} \end{cases}$$

and

$$\begin{cases} U_1'(t) = \nu_2^1 I_1(t) - \eta U_1(t), \\ \vdots \\ U_n'(t) = \nu_2^n I_n(t) - \eta U_n(t), \end{cases}$$

586 587 588

with the initial values

$$S_i(t_0) = S_i^0, I_i(t_0) = I_i^0$$
, and $U_i(t_0) = U_i^0, \forall i = 1, ..., n$.

9.2. Cumulative reported cases with age structure in Japan

We first choose two days d_1 and d_2 between which each cumulative age group grows like an exponential. By fitting the cumulative age classes [0,10[,[10,20[, ... and [90,100[between d_1 and d_2 , for each age class j = 1,...10 we can find χ_1^j , χ_2^j and χ_3^j

 $\operatorname{CR}_{j}^{data}(t) \simeq \chi_{1}^{j} e^{\chi_{2}^{j}t} - \chi_{3}^{j}.$

We obtain

$$\begin{array}{c}
CR_{1}(t) = \chi_{1}^{1} e^{\chi_{2}^{1}t} - \chi_{3}^{1}, \\
\vdots \\
CR_{n}(t) = \chi_{1}^{n} e^{\chi_{2}^{n}t} - \chi_{3}^{n},
\end{array}$$
(41)

where

$$\chi_{i}^{i} \geq 0, \forall i = 1, \dots, n, \forall j = 1, 2, 3.$$

In Figures 27-28, the growth rate of the exponential fit depends on the age group [61]. In 592 Figures 27-28, we see the similarity of dynamical behavior at the two extreme age groups [0,20] and [70,100]. 594

Figure 27. In this figure, we plot an exponential fit to the cumulative data for each age groups [0, 10[, [10, 20[, ... and [90, 100] in Japan.

Figure 28. In this figure, we plot an exponential fit to the cumulative data for each age groups $[0, 10[, [10, 20[, \ldots and [90, 100[in Japan.$

591

9.3. Method to Fit of the Age Structured Model to the Data

By assuming that the number of susceptible individuals remains constant we have for each $t \ge t_0$,

$$\begin{cases} I_1'(t) = \tau_1 S_1 \left[\phi_{11} \frac{I_1(t) + U_1(t)}{N_1} + \ldots + \phi_{1n} \frac{I_n(t) + U_n(t)}{N_n} \right] - \nu I_1(t), \\ \vdots \\ I_n'(t) = \tau_n S_n \left[\phi_{n1} \frac{I_1(t) + U_1(t)}{N_1} + \ldots + \phi_{nn} \frac{I_n(t) + U_n(t)}{N_n} \right] - \nu I_n(t), \end{cases}$$

and

$$\begin{cases}
U_1'(t) = \nu_2^1 I_1(t) - \eta U_1(t), \\
\vdots \\
U_n'(t) = \nu_2^n I_n(t) - \eta U_n(t),
\end{cases}$$
(42)

with the initial values

$$I_i(t_0) = I_i^0$$
, and $U_i(t_0) = U_i^0, \forall i = 1, ..., n$.

9.4. Rate of contact

The values in Figure 29 describe the contact rates between age groups. The values used are computed from the values obtained in [62].

Figure 29. For each age class in the y-axis we plot the rate of contacts between one individual of this age class and another individual of the age class indicated on the x-axis. The figure represents the rate of contacts before the start of public measures (April 11).

We assume that

$$\left\{ \begin{array}{l} \mathrm{CR}_1(t)' = \nu_1^1 I_1(t), \\ \vdots \\ \mathrm{CR}_n(t)' = \nu_1^n I_n(t), \end{array} \right.$$

where

$$\nu_1^i = \nu f_i$$
, and $\nu_2^i = \nu (1 - f_i), \forall i = 1, \dots, n$.

Therefore, we obtain

where

$$I_j^\star := \frac{\chi_1^j \, \chi_2^j}{\nu_1^j}.$$

 $I_j(t) = I_j^{\star} e^{\chi_2^j t},$

If we assume that the $U_j(t)$ have the following form

ı

$$U_j(t) = U_j^{\star} e^{\chi_2^j t},$$

595

597

then by substituting in (42) we obtain

$$U_j^\star = \frac{\nu_2^j I_j^\star}{\eta + \chi_2^j}.$$

The cumulative number of unreported cases $CU_j(t)$ is computed as

$$\mathrm{CU}_j(t)' = \nu_2^j I_j(t),$$

and we used the following initial condition:

$$\mathrm{CU}_{j}(0) = \mathrm{CU}_{j}^{\star} = \int_{-\infty}^{0} \nu_{2}^{j} I_{j}^{*} e^{\chi_{2}^{j} s} ds = \frac{\nu_{2}^{2} I_{j}^{\star}}{\chi_{2}^{j}}.$$

We define the error between the data and the model as follows

$$\begin{cases} I_1'(t) = \tau_1 S_1 \left[\phi_{11} \frac{I_1(t) + U_1(t)}{N_1} + \dots + \phi_{1n} \frac{I_n(t) + U_n(t)}{N_n} \right] - \nu I_1(t) + \varepsilon_1(t), \\ \vdots \\ I_n'(t) = \tau_n S_n \left[\phi_{n1} \frac{I_1(t) + U_1(t)}{N_1} + \dots + \phi_{nn} \frac{I_n(t) + U_n(t)}{N_n} \right] - \nu I_n(t) + \varepsilon_n(t), \end{cases}$$

or equivalently

$$\begin{cases} \varepsilon_{1}(t) = (\chi_{2}^{1} + \nu)I_{1}^{\star}e^{\chi_{2}^{1}t} - \tau_{1}S_{1}\left[\phi_{11}\frac{I_{1}^{\star} + U_{1}^{\star}}{N_{1}}e^{\chi_{2}^{1}t} + \ldots + \phi_{1n}\frac{I_{n}^{\star} + U_{n}^{\star}}{N_{n}}e^{\chi_{2}^{n}t}\right],\\ \vdots\\ \varepsilon_{n}(t) = (\chi_{2}^{n} + \nu)I_{n}^{\star}e^{\chi_{2}^{n}t} - \tau_{n}S_{n}\left[\phi_{n1}\frac{I_{1}^{\star} + U_{1}^{\star}}{N_{1}}e^{\chi_{2}^{1}t} + \ldots + \phi_{nn}\frac{I_{n}^{\star} + U_{n}^{\star}}{N_{n}}e^{\chi_{2}^{n}t}\right].\end{cases}$$

Lemma 17. Assume that the matrix ϕ be fixed. If we consider the errors $\varepsilon_1^{\tau}(t), \ldots, \varepsilon_n^{\tau}(t)$ as a function of τ , then we can a unique value $\tau^* = (\tau_1^*, \ldots, \tau_n^*)$ which minimizes that L^2 norm of the errors. That

$$\sum_{j=1,\dots,n} \int_{d_1}^{d_2} \varepsilon_j^{\tau^*}(t)^2 dt = \min_{\tau \in \mathbb{R}^n} \sum_{j=1,\dots,n} \int_{d_1}^{d_2} \varepsilon_j^{\tau}(t)^2 dt.$$

Moreover,

$$\tau_j^{\star} = \frac{\int_{d_1}^{d_2} K_j(t) H_j(t) dt}{\int_{d_1}^{d_2} H_j(t)^2 dt},$$

with

$$K_j(t) := \left(\chi_2^j + \nu\right) I_j^* e^{\chi_2^j t}, \forall j = 1, \dots, n,$$

and

$$H_j(t) := S_j \left[\phi_{j1} \frac{I_1^{\star} + U_1^{\star}}{N_1} e^{\chi_2^{1} t} + \dots + \phi_{jn} \frac{I_n^{\star} + U_n^{\star}}{N_n} e^{\chi_2^{n} t} \right], \forall j = 1, \dots, n.$$

Proof. We look for the vector $\tau = (\tau_1, \dots, \tau_n)$ which minimizes of

$$\min_{\tau \in \mathbb{R}^n} \sum_{j=1,\dots,n} \int_{d_1}^{d_2} \varepsilon_j(t)^2 dt.$$

Define for each $j = 1, \ldots, n$

$$K_j(t) := \left(\chi_2^j + \nu\right) I_j^* e^{\chi_2^j t}$$

and

$$H_j(t) := S_j \left[\phi_{j1} \frac{I_1^{\star} + U_1^{\star}}{N_1} e^{\chi_2^1 t} + \dots + \phi_{jn} \frac{I_n^{\star} + U_n^{\star}}{N_n} e^{\chi_2^n t} \right]$$

 $\varepsilon_j(t) = K_j(t) - \tau_j H_j(t).$

so that

Hence for each $j = 1, \ldots, n$

$$\int_{d_1}^{d_2} \varepsilon_j(t)^2 dt = \int_{d_1}^{d_2} K_j(t)^2 dt - 2\tau_j \int_{d_1}^{d_2} K_j(t) H_j(t) dt + \tau_j^2 \int_{d_1}^{d_2} H_j(t)^2 dt,$$

and the minimum of $\int_{d_1}^{d_2} \varepsilon_j(t)^2 dt$ is obtained for τ_j satisfying

$$0 = \frac{\partial}{\partial \tau_j} \int_{d_1}^{d_2} \varepsilon_j(t)^2 dt = -2 \int_{d_1}^{d_2} K_j(t) H_j(t) dt + 2\tau_j \int_{d_1}^{d_2} H_j(t)^2 dt$$

whenever

$$\tau_j = \frac{\int_{d_1}^{d_2} K_j(t) H_j(t) dt}{\int_{d_1}^{d_2} H_j(t)^2 dt}$$

Under this condition, we obtain

$$\int_{d_1}^{d_2} \varepsilon_j(t)^2 dt = \int_{d_1}^{d_2} K_j(t)^2 dt - \tau_j^2 \int_{d_1}^{d_2} H_j(t)^2 dt.$$

Remark 18. It does not seem possible to estimate the matrix of contact ϕ by using similar optimization method. Indeed, if we look for a matrix $\phi = (\phi_{ij})$ which minimizes

$$\min_{\phi \in M_n(\mathbb{R})} \sum_{j=1,\dots,n} \int_{d_1}^{d_2} \varepsilon_j(t)^2 dt,$$

it turn out that

$$\sum_{j=1,\dots,n} \int_{d_1}^{d_2} \varepsilon_j(t)^2 dt = 0$$

whenever ϕ is diagonal. Therefore the optimum is reached for any diagonal matrix. Moreover by using similar considerations, if several χ_j^2 are equal, we can find a multiplicity of optima (possibly with ϕ not diagonal). This means that trying to optimize by using the matrix ϕ does not yield significant and reliable information.

In the Figure below, we present an example of application of our method to fit the Japanese data. We use the period going from 20 March to 15 April.

Figure 30. We plot a comparison between the model (without public intervention) and the age structured data from Japan (black dots).

In the Figure below, we present an example of application of our method to fit the Japanese data. We use the period going from 20 March to 15 April.

Figure 31. We plot a comparison between the model (without public intervention) and the age structured data from Japan (black dots).

10. A survey for COVID-19 mathematical modeling

During the COVID-19 pandemic, scientific workforces in different fields published COVID-19-related papers. The number of articles published increased considerably during 611 this period. For example, on August 23, 2023, the WHO COVID-19 Research Database 612 [63] contains 724288 full texts of articles concerning the COVID-19 outbreak. Consequently, 613 providing an extensive review on the subject is hopeless. Here, we make some arbitrary 614 choices that can always be discussed. Our main goal is to give extra references on the topics 615 mentioned earlier and highlight topics not considered in the previous sections. Several 616 articles have attempted to do systematic reviews on COVID-19. We refer to [64,65] for more 617 results and a broader overview of the subject. 618

The idea of this survey was mostly to collect references from the Infectious Disease Outbreak webinar, which took place from 2020 to 2022 [66].

10.1. Medical survey

Mathematical models alone do not provide reliable information. In Figure 13, we show the divergence of the mathematical model from the data. It is therefore fundamental to bring medical results into the models.

It is therefore fundamental to integrate medical facts into mathematical models. We have tried throughout this text to explain how to make maximum use of the data either as input (test data) or as output (reported case data). But the dynamics of infection can

609 610

619

620

631

632

633

634

635

636

637

638

639

640

641

642

be understood much better by examining concrete case studies in hospitals. For example, 628 modeling the dynamics of infectious clusters is crucial in preventing the spread of disease. We refer to [67-81] for more results and references.

The early development of an epidemic are very important, and an interesting retrospect of the first weeks of COVID-19 in China was presented by Zhao in [82].

10.2. Incubation, Infectiousness, and Recovery Period

The infectious dynamic has three phases:

- The emission of the infectious agent, which depends on its concentration during its (i) expulsion (remotely by air transportation or directly by secretion contact) from the contagious person;
- (ii) Transmission of the infectious agent (through an intermediate fluid or on a contact surface):
- (iii) The reception of the infectious agent by a future host who becomes infected and whose symptomatology and secondary emission capacities will depend on the infectious agent's pathogenic nature and the host's immune defenses.

These defenses are set up in two successive stages, corresponding to innate immunity, then 643 to acquired immunity. It is, therefore, conceivable that the transmission capacity of an 644 infectious person depends on the individual infection age. That is, the time since this person 645 was infected. We refer to [3,83-89] for more results on the subject. In [90], we proposed a 646 method to understand the average individual dynamic of infection by clusters data. When 647 considering epidemic exponential phase data, a time series approach is proposed in [11]. We 648 refer to [91] for more results on the subject. 649

10.3. Data

An essential aspect of epidemics outbreaks is understanding the biases in the data. 651 That is the different causes, such as unreported case data, tests, false positive PRC tests, 652 and other factors that may bias our understanding of the data. Clusters of infected also 653 provide another kind of data that may give another angle to examine the same problem. We 654 should also mention the data provided by the wasted water that offers a helpful complement 655 to the existing reported case data. 656

10.3.1. Contact tracing

Contact tracing has been the main tool of public health authorities, for example, in 658 South Korea when the COVID-19 pandemic started. In France, a dedicated digital tool 659 called Stop-Covid has been developed. In [92], authors estimate that this digital approach 660 was adopted not because digital solutions (to contact tracing) are superior to traditional 661 ones but by default due to alienation and lack of interdisciplinary cooperation, which could 662 be due to the fact that contact tracing is balancing personal privacy and public health, 663 causing significant biases in classical inquiries with questionnaires [93]. We refer to [91-104]664 for more results on the subject. 665

10.3.2. Testing data

A mathematical model to understand the bias in PCR tests was proposed first by 667 [105,106]. Diagnostic tests, particularly the PCR test, have been of considerable importance 668 in most countries' follow-up of new cases. We refer [107-113]. Mathematical models, 669 including testing data as an input of the model, were proposed by [5,114]. 670

10.3.3. Unreported and uncertainty in the number of reported case data	671
--	-----

The origin of unreported cases of COVID-19 is multiple. It may be due to

- a poor organization of the reporting system by the medical profession or recording by (i) 673 the administrative staff (especially at weekends); 674
- (ii) The presence of asymptomatic cases;

650

657

666

672

681

686

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

716

(iii) The non-consultation and/or the non-taking of medication in the symptomatic case, for reasons related to the patient or his entourage (presence of an intercurrent pathology or an existing chronic disease masking the symptoms, reasons financial, religious, philosophical, social, etc.).

We refer to [5,9,10,60,115-120] for more results on the subject.

10.3.4. Clusters

The detection and monitoring of clusters are difficult to achieve and the discovery of patient zero, in a given geographical area, is always a delicate challenge. Nevertheless, there are a number of studies regarding this problem. We refer to [121–128] for more results on the subject.

10.3.5. More phenomenological model to fit the data

Since Daniel Bernoulli's classic primordial model [39–42], a number of phenomenological models have emerged, such as that of Richards that Ma cited [129] just before the beginning of Covid-19 outbreak. The COVID-19 pandemic was an opportunity to recall this princeps work and to propose new approaches along the same lines, namely minimal modeling integrating the basic mechanisms of infectious transmission. We refer to [51,129–136] for more results and references on the subject.

10.3.6. Wasted water data

The French national Obepine project has shown the value of monitoring the COVID-19 pandemic in wastewater, where the concentration of viral RNA fragments can serve as an early indicator of the onset of new waves of cases. An Italian study (Gragnani et al.) has even suggested that SARS-Cov-2 RNA was present in wastewater from Milan, Turin (December 18, 2019) and Bologna (January 29, 2020) long before the first Italian case was described (February 20 2020). We refer to [137–144] for more results on the subject.

10.3.7. Discrete and random modeling

Some modeling approaches are discrete and play with daily data. The equations of the contagion dynamics can be of two types:

- (i) They can be difference equations modeled on the differential equations of the continuous SIR model;
- (ii) or they can be stochastic in nature, with generally additive Gaussian noise in the second member.

They generally lend themselves well to the statistical estimation of their parameters from the data. We refer to [145-148] for more results and references on the subject.

10.3.8. Time series and wavelet approaches

If we consider the data recorded on the size of the different sub-populations involved in the contagion process (susceptible, infected, cured, immune, etc.), a possible approach is that of the signal theory, with its classical methods data processing (time series, Fourier transformation, wavelet transformation, etc.). This approach is generally an excellent introduction to the implementation of prediction methods. We refer to [11,130,149–152] for more results and references on the subject.

10.3.9. Transmission estimation and spatial modeling

Estimating the transmission parameter and studying its spatio-temporal variations is fundamental because it conditions the epidemic waves' location, shape, and duration. The spatial heterogeneity of this parameter, often due to geo-climatic (such as temperature) and/or demographic (such as susceptible population density), are crucial factors in the existence of natural barriers to the spread of a pandemic. We refer to [153–156] for more results and references on the subject.

The generation time characterizes the speed at which infections occur and differs in 723 different populations and between SARS-CoV-2 variants. This is a key epidemiological 724 factor that was estimated for SARS-CoV-2 in [96,157,158].

10.3.10. Forecasting methods

The prediction of epidemics is one of the major objectives of modeling. It can be carried out by the continuation, in time and space, of the solutions of the spatio-temporal equations of the chosen model or the extrapolation of a statistical description of the evolution of the observed variables. We refer to [53,60,159-161] for more results and references on the subject.

10.4. SIR like models

Since 2020, many articles have appeared on using the SIR model in modeling the 733 COVID-19 outbreak. After [9], several SIR with the symptomatic and asymptomatic 734 compartment, in order to model reported and unreported patients mechanisms. Several 735 article along this line were published [162-166].

The major default of this study is the fact that they use a transmission rate constant 737 in time. This assumption allows, for example, [164] to estimate the fraction of unreported patients. As explained in section 6, the transmission rate must be time-dependent. In [8], we proved that it is hopeless to estimate the fraction of unreported patients since we can get the exact same fit to the data for a large interval of values of this parameter. Several groups 741 realized that time-dependent transmission rate in an important issue in such a problems [8, 10, 18-20, 51-53, 60, 120].

During COVID-19 pandemic, models progressively complexified to become SIAURDV models, incorporating explicitly as ODE variables the numbers of asymptomatic (A), nonreported (U), vaccinated (V), and deceased (D) patients. We refer to [167-172] for more results and references on the subject.

10.4.1. Multigroups or multiscale models

The notion of multi-group and multi-scale appeared when the COVID-19 outbreak 749 appeared, with specific dynamics in several geographical regions of different scales and, in 750 one area, in several distinct groups (demographic, ethnic, economic, religious, social, etc.). 751 We refer to [166, 173-178] for more results and references on the subject. 752

10.4.2. Model with unreported or asymptomatic compartment

Modeling the mechanisms of non-reporting of new cases or deaths due to an epidemic 754 makes it possible to compensate for the bias coming from a partial observation of the 755 infected, due to the existence of asymptomatic cases or a deficient administrative registration 756 mechanism. We refer to [179-185] for more results and references on the subject. 757

10.5. Connecting reported case data with SIR like model

Very few studies considered that problem in the literature, while again, it is interesting to understand the bias induced by such a mechanism. For example, it would make sense to consider a model including a delay in reporting the data

$$\operatorname{CR}'(t) = f\nu \int_0^\tau \gamma(s)I(t-s)ds$$

where $s \mapsto \gamma(s)$ is a non negative map. The quantity $\gamma(s)$ is the probability of reporting s units of time after the individual leaves the compartment I. This corresponds to patients showing symptoms. We deduce that we must have

$$\int_0^\tau \gamma(s) ds = 1$$

725 726

727

728 729 730

731

732

736

738

739

740

742

743

744

745

746

747

748

753

Unfortunately, people have not considered this issue in the literature. The consequence of such a model for reported case data seems particularly important. We refer to [186-188] for more results and references on the subject.

10.6. Re-infections, natural and hybrid immunity

The risk of reinfection with the SARS-Cov2 virus comes from two factors:

- One is due to the infectious agent and its mutagenic genius, modifying its contagiousness (i) and pathogenicity:
- (ii) The other is due to the host, whose natural, innate, and acquired defenses by the adaptive immune system or artificially by vaccination prevent or stop the infection.

The modeling of these two facets of the reinfection process makes it possible to understand 768 the mechanisms of eradication or, on the contrary, the continuation of a pandemic, thanks 769 to or despite collective public health measures. We refer to [189-194] for more results and 770 references on the subject. 771

10.7. Mortality

Mortality may appear as more robust data to be connected with epidemic models. The 773 bias for report cases data will also exist for the number of reported dead patients. Again, the 774 model to connect the data and the epidemic model might be more complex than a fraction 775 of the recovered. Nevertheless, there is evidence of an increased risk of death in the event 776 of co-infection. The mortality risk increases dramatically when a patient is infected with 777 another severe disease. This question of co-infection with severe diseases with COVID-19 778 was studied in [195]. We refer to [196-203] for more results and references on the subject.

10.8. Vaccination and mitigation measures

Vaccination and exclusion by temporary confinement or physical barriers (masks, antiviral protection, or anti-transmission intermediates) are the public health measures intended to mitigate or stop an epidemic. The modeling of their gradual introduction and their effects on the spread of the epidemic makes it possible to understand their effectiveness or, on the contrary, their uselessness and, therefore, to adapt the coercive measures best, whether collective or individual [204–218].

10.9. Chronological age

The problem of age structure is crucial in epidemic modeling for three reasons:

- (i) The immune system efficacy depends on age. Therefore, its adaptive component is less and less able to resist a new pathogenic agent or react to a vaccine;
- (ii) Age groups communicate differently with each other, with the most mobile (working age group) having the greatest chance of transmission and the most dependent (elderlies) on the care by younger caregivers having the greatest chance of being infected;
- The prevalence of chronic diseases favoring infections is very unevenly distributed, (iii) 794 the age groups at both ends of life being the most susceptible: the young due to the 795 immaturity of the immune system and school promiscuity, and the elderly due to the 796 existence of chronic comorbidities (diabetes, respiratory pathologies, cardiovascular 797 diseases, and immune depression).

These disparities make it necessary to take age into account (through at least three 799 major classes, young people under 20, adults from 20 to 65, and seniors over 65), preventive 800 measures (education, vaccination, isolation) being taken according to this age stratification, 801 crossed with the risk factors linked to the occurrence of chronic pathologies. 802

Few papers combined epidemic model with age-structure and age structured data 803 [108,219-228]. The problem of understanding the relationships between data and models 804 is far from well understood. In Section 9, based on [61], we proposed an approach to 805 understanding how to connect the model and the data during the exponential phase. But 806 such a problem needs further investigation. 807

761 762

763

764

765

766

767

759

760

772

780 781

782

783 784 785

786

787

788

789

790

791

792

793

10.10. Basic reproduction number

The basic reproduction number R_0 is an essential parameter for predicting the occurrence of an epidemic wave. It can vary over time and depends on two main factors:

- (i) In the infectious subject, the successive establishment of natural defense mechanisms (innate and adaptive) explains the variations in daily R_0 during his period of contagiousness;
- (ii) In subjects who are not yet infected, their susceptibility is also dependent on their immune status, but also on the collective public health measures taken at the population level.

Methods for estimating daily R_0 are therefore fundamental to understanding the temporal and spatial evolution of a pandemic [229–234].

10.11. Prediction of COVID-19 evolution

The difficulty of predicting the evolution of a pandemic is due to the adaptive capacities 820 of the infectious agent and the infected and transmitting host. On the one hand, the genetic 821 mutations of the infectious agent and its contagious power and pathogenic dangerousness 822 develop a highly infectious and low pathogenic variant, often signaling the natural end 823 of a pandemic. On the other hand, the permanent adaptation strategy of individual and 824 collective host defense measures makes it possible to anticipate the effects of changes in 825 the agent's infectious strategy. In both cases, modeling the dynamics of mutation and 826 prevention is essential to predict and act in near real-time on the evolution of a pandemic 827 [12, 235 - 242].828

809 810

811

812

813

814

815

816

819

808

830

831

832 833

834

Appendix

Appendix A When the output is a single exponential function

Let $X \in \mathbb{R}^n$. We recall that

• $X \ge 0$ if for each $i \in \{1, \dots, n\}$ such that $X_i \ge 0$;

$$X > 0$$
 if $X \ge 0$ and there exists $i \in \{1, \dots, n\}$ such that $X_i > 0$;

• $X \gg 0$ if $X_i > 0$ for each $i \in \{1, \dots, n\}$.

Let $A = (a_{ij}) \in M_n(\mathbb{R})$ a $n \times n$ matrix with non-negative off-diagonal elements, and assume that $A + \delta I$ is non-negative irreducible whenever $\delta > 0$ is large enough. The projector associated to the Perron-Frobenius dominant eigenvalue is defined by

$$\Pi x = \frac{\langle V_L(A), x \rangle V_R(A)}{\langle V_L(A), V_R(A) \rangle}, \forall x \in \mathbb{R}^n,$$
(A1)

where $V_R(A) \gg 0$ (respectively $V_L(A) \gg 0$) is a right eigenvector (resp. left eigenvector) of A associated with the dominant eigenvalue

$$s(A) = \max{\{\operatorname{Re}\lambda : \lambda \in \sigma(A)\}},\$$

where $\sigma(A)$ is the spectrum of A (i.e. the set of all eigenvalues of A). Then we have

$$A\Pi = \Pi A = s(A)\Pi.$$

Recall that the euclidean inner product is defined by

$$\langle X, Y \rangle = \sum_{i=1}^{n} X_i Y_i.$$

The network associated with a non-negative matrix A corresponds to all the oriented paths from the node i to the node j whenever $a_{ij} > 0$.

A non-negative matrix A is *irreducible* if the network associated with A is strongly connected. That is, if we can join any two nodes i and j by using a succession of oriented paths.

To understand irreducible matrices in epidemics, one may consider the contact matrix in epidemic models. Then, the contact matrix is irreducible if any infected sub-group has a non-zero probability of infecting any other group (by transmitting the pathogen to intermediate sub-groups if needed).

Theorem A1. Let $A = (a_{ij}) \in M_n(\mathbb{R})$, and assume that the off-diagonal elements of Aare non-negative, and $A + \delta I$ is non-negative irreducible whenever $\delta > 0$ is large enough. We assume that there exists a vector $X_0 > 0$ such that

$$X'(t) = AX(t), \forall t \in [0, \tau], \text{ with } X(0) = X_0,$$
 (A2)

and there exists a vector Y > 0 satisfying

$$\sum_{i=1}^{n} Y_i X_i(t) = \chi_1 e^{\chi_2 t}, \forall t \in [0, \tau],$$
(A3)

with $\chi_1 > 0$, $\chi_2 > 0$, and $\tau > 0$.

Then we have

$$\chi_2 = s(A), and \chi_1 = \langle Y, \Pi X_0 \rangle.$$

850

That is,

$$\sum_{i=1}^{n} Y_i X_i(t) = \langle Y, \Pi X_0 \rangle e^{s(A)t}, \forall t \ge 0.$$

In other words, we can not distinguish the growth induced by $\langle Y, X_0 \rangle$ and $\langle Y, \Pi X_0 \rangle$. There-852 fore we can replace X_0 with ΠX_0 , and the output $\langle Y, X(t) \rangle$ will be the same. 853

Proof. The equation (A3) is equivalent to

$$\langle Y, e^{At}X_0 \rangle = \chi_1 e^{\chi_2 t}, \forall t \in [0, \tau],$$

For each $\delta > 0$ large enough such that $A + \delta I$ is non-negative and primitive, we have

$$\langle Y, e^{(A+\delta I)t} X_0 \rangle = \chi_1 e^{(\chi_2+\delta)t}, \forall t \in [0,\tau],$$

so by computing the derivatives on both sides of the above equation and taking t = 0, we obtain

$$\langle Y, (A+\delta I)^m X_0 \rangle = \chi_1 (\chi_2 + \delta)^m, \forall m \in \mathbb{N}.$$

But we have $r(A + \delta I) = s(A) + \delta$, and

$$\langle Y, \frac{(A+\delta I)^m}{r(A+\delta I)^m} X_0 \rangle = \chi_1 \frac{(\chi_2+\delta)^m}{(s(A)+\delta)^m}, \forall m \in \mathbb{N},$$

and since the right-hand side of the above equality converges to $\langle Y, \Pi X_0 \rangle > 0$ (where $\Pi \gg 0$ is the projector defined in (41), we deduce that

$$\lim_{m \to \infty} \frac{(\chi_2 + \delta)^m}{(s(A) + \delta)^m} = \frac{\langle Y, \Pi X_0 \rangle}{\chi_1} > 0,$$

and the result follows.

References

- Oran, D.P.; Topol, E.J. Prevalence of asymptomatic SARS-CoV-2 infection: a narrative 1. review. Annals of internal medicine 2020, 173, 362-367. 857
- 2.Rothe, C.; Schunk, M.; Sothmann, P.; Bretzel, G.; Froeschl, G.; Wallrauch, C.; Zimmer, T.; 858 Thiel, V.; Janke, C.; Guggemos, W.; et al. Transmission of 2019-nCoV infection from an 859 asymptomatic contact in Germany. New England journal of medicine 2020, 382, 970–971.
- 3. Nishiura, H.; Linton, N.M.; Akhmetzhanov, A.R. Serial interval of novel coronavirus (COVID-19) infections. International journal of infectious diseases 2020, 93, 284–286.
- Bylicki, O.; Paleiron, N.; Janvier, F. An outbreak of COVID-19 on an aircraft carrier. N 4. Engl J Med 2021, 384, 976-7.
- Griette, Q.; Magal, P. Clarifying predictions for COVID-19 from testing data: The example 5.of New York State. Infectious Disease Modelling 2021, 6, 273-283.
- Magal, P.; Webb, G. The parameter identification problem for SIR epidemic models: identifying 6. unreported cases. Journal of mathematical biology 2018, 77, 1629-1648.
- 7. Ducrot, A.; Magal, P.; Nguyen, T.; Webb, G. Identifying the number of unreported cases in SIR epidemic models. Mathematical medicine and biology: A journal of the IMA 2020, 37, 243-261.
- 8. Demongeot, J.; Griette, Q.; Magal, P. SI epidemic model applied to COVID-19 data in 872 mainland China. Royal Society Open Science 2020, 7, 201878. 873
- 9. Liu, Z.; Magal, P.; Seydi, O.; Webb, G. Understanding unreported cases in the COVID-19 874 epidemic outbreak in Wuhan, China, and the importance of major public health interventions. 875 Biology 2020, 9, 50. 876
- Liu, Z.; Magal, P.; Seydi, O.; Webb, G. A COVID-19 epidemic model with latency period. 10. 877 Infectious Disease Modelling 2020, 5, 323–337. 878
- 11. Demongeot, J.; Magal, P. Spectral method in epidemic time series: Application to COVID-19 879 pandemic. Biology 2022, 11, 1825. 880

854

855 856

860

861

862

863

864

865

866

870

871

- Roda, W.C.; Varughese, M.B.; Han, D.; Li, M.Y. Why is it difficult to accurately predict the 12. COVID-19 epidemic? Infectious disease modelling 2020, 5, 271–281.
- Smith, H.L. Monotone dynamical systems: an introduction to the theory of competitive and 13.cooperative systems: an introduction to the theory of competitive and cooperative systems; Number 41, American Mathematical Soc., 1995.
- Ducrot, A.; Griette, Q.; Liu, Z.; Magal, P. Differential Equations and Population Dynamics I, 14. Introductory approaches; Springer, 2022.
- 15.Magal, P.; Ruan, S. Susceptible-infectious-recovered models revisited: From the individual level to the population level. Mathematical biosciences 2014, 250, 26–40.
- 16. Qiu, Y.; Chen, X.; Shi, W. Impacts of social and economic factors on the transmission of coronavirus disease 2019 (COVID-19) in China. Journal of population economics 2020, 33, 1127–1172.
- Chowell, G.; Hengartner, N.W.; Castillo-Chavez, C.; Fenimore, P.W.; Hyman, J.M. The basic 17. reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda. Journal of theoretical biology 2004, 229, 119–126.
- Augeraud-Véron, E. Lifting the COVID-19 lockdown: different scenarios for France. Mathe-18.matical Modelling of Natural Phenomena 2020, 15, 40.
- Liu, Z.; Magal, P.; Seydi, O.; Webb, G. Predicting the cumulative number of cases for the 19.COVID-19 epidemic in China from early data. Mathematical Biosciences and Engineering **2020**, 17, 3040-3051.
- Eikenberry, S.E.; Mancuso, M.; Iboi, E.; Phan, T.; Eikenberry, K.; Kuang, Y.; Kostelich, E.; 20.Gumel, A.B. To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic. Infectious disease modelling 2020, 5, 293–308.
- 21.Rocklöv, J.; Sjödin, H. High population densities catalyse the spread of COVID-19. Journal of travel medicine 2020, 27, taaa038.
- 22.Seligmann, H.; Vuillerme, N.; Demongeot, J. Summer COVID-19 third wave: faster high altitude spread suggests high UV adaptation. MedRxiv 2020, pp. 2020–08.
- Demongeot, J.; Flet-Berliac, Y.; Seligmann, H. Temperature decreases spread parameters of 23.the new Covid-19 case dynamics. Biology 2020, 9, 94.
- Wang, J.; Tang, K.; Feng, K.; Lv, W.; et al. High temperature and high humidity reduce the 24.transmission of COVID-19. Available at SSRN 2020, 3551767, 2020b.
- Guillon, P.; Clément, M.; Sébille, V.; Rivain, J.G.; Chou, C.F.; Ruvoën-Clouet, N.; Le Pendu, 25.J. Inhibition of the interaction between the SARS-CoV spike protein and its cellular receptor by anti-histo-blood group antibodies. Glycobiology 2008, 18, 1085–1093.
- 26.Zeberg, H.; Pääbo, S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature 2020, 587, 610-612.
- 27.Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The lancet 2020, 395, 1054–1062.
- 28.Hu, Z.; Song, C.; Xu, C.; Jin, G.; Chen, Y.; Xu, X.; Ma, H.; Chen, W.; Lin, Y.; Zheng, Y.; et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Science China Life Sciences 2020, 63, 706-711.
- Ma, S.; Zhang, J.; Zeng, M.; Yun, Q.; Guo, W.; Zheng, Y.; Zhao, S.; Wang, M.H.; Yang, Z. 29.Epidemiological parameters of coronavirus disease 2019: a pooled analysis of publicly reported individual data of 1155 cases from seven countries. Medrxiv 2020, pp. 2020–03.
- Li, R.; Pei, S.; Chen, B.; Song, Y.; Zhang, T.; Yang, W.; Shaman, J. Substantial undocumented 30.infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science **2020**, 368, 489-493.
- Byrne, A.W.: McEvov, D.; Collins, A.B.; Hunt, K.; Casev, M.; Barber, A.; Butler, F.; Griffin, 31. 929 J.; Lane, E.A.; McAloon, C.; et al. Inferred duration of infectious period of SARS-CoV-2: 930 rapid scoping review and analysis of available evidence for asymptomatic and symptomatic 931 COVID-19 cases. BMJ open **2020**, 10, e039856.
- WHO. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 COVID-32.933 https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-19. 934 covid-19-final-report.pdf. 935
- Yang, Z.; Zeng, Z.; Wang, K.; Wong, S.S.; Liang, W.; Zanin, M.; Liu, P.; Cao, X.; Gao, Z.; 33. 936 Mai, Z.; et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China 937 under public health interventions. Journal of thoracic disease 2020, 12, 165. 938

882

883

884

885

886

887

888

889

890

891

892

893

894

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

- 34. London, W.P.; Yorke, J.A. Recurrent outbreaks of measles, chickenpox and mumps: I. Seasonal 939 variation in contact rates. American journal of epidemiology 1973, 98, 453-468.
- Yorke, J.A.; London, W.P. Recurrent outbreaks of measles, chickenpox and mumps: II. 35.941 Systematic differences in contact rates and stochastic effects. American journal of epidemiology 942 1973, 98, 469-482. 943
- 36.Wang, W.; Ruan, S. Simulating the SARS outbreak in Beijing with limited data. Journal of 944 theoretical biology 2004, 227, 369-379. 945
- 37.Smirnova, A.; deCamp, L.; Chowell, G. Forecasting epidemics through nonparametric estima-946 tion of time-dependent transmission rates using the SEIR model. Bulletin of mathematical 947 biology 2019, 81, 4343-4365. 948
- Hadeler, K. Parameter identification in epidemic models. Mathematical biosciences 2011, 38 949 229, 185-189. 950
- Bernoulli, D. Essai d'une nouvelle analyse de la mortalité causée par la petite vérole et 39. 951 des avantages de l'inoculation pour la prévenir. Mémoire Académie Royale des Sciences de 952 Mathématique et de Physiques, Paris 1766.
- Dietz, K.; Heesterbeek, J. Daniel Bernoulli's epidemiological model revisited. Mathematical 40. biosciences 2002, 180, 1–21.
- Bernoulli, D.; Blower, S. An attempt at a new analysis of the mortality caused by smallpox 41. and of the advantages of inoculation to prevent it. Reviews in medical virology 2004, 14, 275.
- Bernoulli, D.; Chapelle, D. Essai d'une nouvelle analyse de la mortalité causée par la petite 42.vérole, et des avantages de l'inoculation pour la prévenir. HAL Id: hal-04100467 2023.
- 43.Verhulst, P.F. Notice sur la loi que la population suit dans son accroissement. Correspondence mathematique et physique 1838, 10, 113-129.
- 44. Hsieh, Y.H. Richards model: a simple procedure for real-time prediction of outbreak severity. In Modeling and dynamics of infectious diseases; World Scientific, 2009; pp. 216–236.
- Wang, X.S.; Wu, J.; Yang, Y. Richards model revisited: Validation by and application to 45. infection dynamics. Journal of theoretical biology 2012, 313, 12–19.
- 46. Zhou, G.; Yan, G. Severe acute respiratory syndrome epidemic in Asia. *Emerging infectious* diseases 2003, 9, 1608-1610.
- 47. Tsoularis, A.; Wallace, J. Analysis of logistic growth models. *Mathematical biosciences* 2002, 179. 21-55.
- Bürger, R.; Chowell, G.; Lara-Díaz, L.Y. Comparative analysis of phenomenological growth 48.models applied to epidemic outbreaks. Mathematical Biosciences and Engineering 2019, 16, 4250-4273.
- 49.Pelinovsky, E.; Kokoulina, M.; Epifanova, A.; Kurkin, A.; Kurkina, O.; Tang, M.; Macau, E.; Kirillin, M. Gompertz model in COVID-19 spreading simulation. Chaos, Solitons & Fractals **2022**, 154, 111699.
- 50.Pelinovsky, E.; Kurkin, A.; Kurkina, O.; Kokoulina, M.; Epifanova, A. Logistic equation and COVID-19. Chaos, Solitons & Fractals 2020, 140, 110241.
- Griette, Q.; Demongeot, J.; Magal, P. A robust phenomenological approach to investigate 51.COVID-19 data for France. Mathematics in Applied Sciences and Engineering 2021, 2, 149-160.
- Griette, Q.; Demongeot, J.; Magal, P. What can we learn from COVID-19 data by using 52.epidemic models with unidentified infectious cases? Mathematical Biosciences and Engineering 2022, 19, 537-594.
- Bakhta, A.; Boiveau, T.; Maday, Y.; Mula, O. Epidemiological forecasting with model 53.reduction of compartmental models. application to the COVID-19 pandemic. Biology 2021, 10.22.
- Obadia, T.; Haneef, R.; Boëlle, P.Y. The R_0 package: a toolbox to estimate reproduction 54.numbers for epidemic outbreaks. BMC medical informatics and decision making 2012, 12.1-9.
- 55.Cori, A.; Ferguson, N.M.; Fraser, C.; Cauchemez, S. A new framework and software to estimate time-varying reproduction numbers during epidemics. American journal of epidemiology **2013**, 178, 1505–1512.
- 56.Thompson, R.N.; Stockwin, J.E.; van Gaalen, R.D.; Polonsky, J.A.; Kamvar, Z.N.; Demarsh, P.A.; Dahlqwist, E.; Li, S.; Miguel, E.; Jombart, T.; et al. Improved inference of time-varying reproduction numbers during infectious disease outbreaks. *Epidemics* **2019**, *29*, 100356.
- 57.Demongeot, J.; Magal, P.; Oshnubi, K. Forecasting the changes between endemic and epidemic phases of a contagious disease, with the example of COVID-19. Submitted.

- Arino, J.; Brauer, F.; van den Driessche, P.; Watmough, J.; Wu, J. Simple models for containment of a pandemic. *Journal of the Royal Society Interface* 2006, 3, 453–457.
- Regan, D.; Wood, J.; Benevent, C.; Ali, H.; Smith, L.W.; Robertson, P.; Ferson, M.; Fairley, 1000
 C.; Donovan, B.; Law, M. Estimating the critical immunity threshold for preventing hepatitis 1001
 A outbreaks in men who have sex with men. *Epidemiology & Infection* 2016, 144, 1528–1537. 1002
- Liu, Z.; Magal, P.; Webb, G. Predicting the number of reported and unreported cases for the COVID-19 epidemics in China, South Korea, Italy, France, Germany and United Kingdom.
 Journal of Theoretical Biology 2021, 509, 110501.
- Griette, Q.; Magal, P.; Seydi, O. Unreported cases for age dependent COVID-19 outbreak in Japan. Biology 2020, 9, 132.
- Prem, K.; Cook, A.R.; Jit, M. Projecting social contact matrices in 152 countries using contact surveys and demographic data. *PLoS computational biology* 2017, 13, e1005697.
- 63. WHO. COVID-19 Research Database. https://search.bvsalud.org/global-literature-on-novelcoronavirus-2019-ncov/.
- 64. Ioannidis, J.P.; Salholz-Hillel, M.; Boyack, K.W.; Baas, J. The rapid, massive growth of COVID-19 authors in the scientific literature. *Royal Society open science* **2021**, *8*, 210389. 1013
- Rodriguez-Morales, A.J.; Cardona-Ospina, J.A.; Gutiérrez-Ocampo, E.; Villamizar-Peña, R.; 1014
 Holguin-Rivera, Y.; Escalera-Antezana, J.P.; Alvarado-Arnez, L.E.; Bonilla-Aldana, D.K.; 1015
 Franco-Paredes, C.; Henao-Martinez, A.F.; et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. *Travel medicine and infectious disease* 1017
 2020, 34, 101623.
- 66. IDO. Infectious Disease Outbreaks webinar. https://www.math.u-bordeaux.fr/~pmagal100p/ webinar2020.html.
- Azevedo, F.M.; Morais, N.d.S.d.; Silva, D.L.F.; Candido, A.C.; Morais, D.d.C.; Priore, S.E.;
 Franceschini, S.d.C.C. Food insecurity and its socioeconomic and health determinants in
 pregnant women and mothers of children under 2 years of age, during the COVID-19 pandemic:
 A systematic review and meta-analysis. Frontiers in Public Health 2023, 11, 1087955.
- Tille, F.; Van Ginneken, E.; Winkelmann, J.; Hernandez-Quevedo, C.; Falkenbach, M.; Sagan, 1025
 A.; Karanikolos, M.; Cylus, J. Perspective: Lessons from COVID-19 of countries in the 1026
 European region in light of findings from the health system response monitor. Frontiers in 1027
 public health 2023, 10, 1058729.
- Lu, W.; Ren, H. Diseases spectrum in the field of spatiotemporal patterns mining of infectious diseases epidemics: A bibliometric and content analysis. Frontiers in Public Health 2023, 1030 10, 1089418.
- Chen, X.; Zhang, C.; Ibrahim, S.; Tao, S.; Xia, X.; Li, Y.; Li, C.; Yue, F.; Wang, X.; Bao, S.; 1032
 et al. The impact of facemask on patients with COPD: A systematic review and meta-analysis. 1033
 Frontiers in public health 2022, 10, 1027521. 1034
- Hu, Z.; Song, C.; Xu, C.; Jin, G.; Chen, Y.; Xu, X.; Ma, H.; Chen, W.; Lin, Y.; Zheng, Y.; 1035 et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among 1036 close contacts in Nanjing, China. Science China Life Sciences 2020, 63, 706–711. 1037
- Arons, M.M.; Hatfield, K.M.; Reddy, S.C.; Kimball, A.; James, A.; Jacobs, J.R.; Taylor, J.; 1038 Spicer, K.; Bardossy, A.C.; Oakley, L.P.; et al. Presymptomatic SARS-CoV-2 infections 1039 and transmission in a skilled nursing facility. New England journal of medicine 2020, 1040 382, 2081–2090.
- Pan, Y.; Yu, X.; Du, X.; Li, Q.; Li, X.; Qin, T.; Wang, M.; Jiang, M.; Li, J.; Li, W.; 1042
 et al. Epidemiological and clinical characteristics of 26 asymptomatic severe acute respiratory syndrome coronavirus 2 carriers. *The Journal of infectious diseases* 2020, 221, 1940–1947. 1044
- Böhmer, M.M.; Buchholz, U.; Corman, V.M.; Hoch, M.; Katz, K.; Marosevic, D.V.; Böhm, S.; 1045 Woudenberg, T.; Ackermann, N.; Konrad, R.; et al. Investigation of a COVID-19 outbreak in Germany resulting from a single travel-associated primary case: a case series. *The Lancet* 1047 *Infectious Diseases* 2020, 20, 920–928.
- Ciotti, M.; Ciccozzi, M.; Terrinoni, A.; Jiang, W.C.; Wang, C.B.; Bernardini, S. The COVID-19 pandemic. Critical reviews in clinical laboratory sciences 2020, 57, 365–388.
- Shi, Y.; Wang, G.; Cai, X.p.; Deng, J.w.; Zheng, L.; Zhu, H.h.; Zheng, M.; Yang, B.; Chen, Z. 1051 An overview of COVID-19. Journal of Zhejiang University. Science. B 2020, 21, 343. 1052
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, 1053
 J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. 1054
 Nature medicine 2021, 27, 601–615. 1055

- Wang, C.C.; Prather, K.A.; Sznitman, J.; Jimenez, J.L.; Lakdawala, S.S.; Tufekci, Z.; Marr, L.C. Airborne transmission of respiratory viruses. *Science* 2021, 373, eabd9149.
- Schippers, M.C.; Ioannidis, J.; Joffe, A.R. Aggressive measures, rising inequalities, and mass formation during the COVID-19 crisis: An overview and proposed way forward. *Frontiers in public health* 2022, p. 2715.
- Kolaski, K.; Logan, L.R.; Ioannidis, J.P. Improving systematic reviews: guidance on guidance and other options and challenges. *Journal of Clinical Epidemiology* 2023.
- Hirt, J.; Janiaud, P.; Gloy, V.L.; Schandelmaier, S.; Pereira, T.V.; Contopoulos-Ioannidis, 1063
 D.; Goodman, S.N.; Ioannidis, J.; Munkholm, K.; Hemkens, L.G. Robustness of reported 1064
 postacute health outcomes in children with SARS-CoV-2 infection: a systematic review. 1065
 Archives of Disease in Childhood 2023, 108, 498–505. 1066
- Zhao, Q. Small data, big time—a retrospect of the first weeks of COVID-19. Journal of the Royal Statistical Society Series A: Statistics in Society 2022, 185, 1793–1814.
- Jones, T.C.; Biele, G.; Mühlemann, B.; Veith, T.; Schneider, J.; Beheim-Schwarzbach, J.; 1069 Bleicker, T.; Tesch, J.; Schmidt, M.L.; Sander, L.E.; et al. Estimating infectiousness 1070 throughout SARS-CoV-2 infection course. *Science* 2021, 373, eabi5273.
- He, X.; Lau, E.H.; Wu, P.; Deng, X.; Wang, J.; Hao, X.; Lau, Y.C.; Wong, J.Y.; Guan, 1072
 Y.; Tan, X.; et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. 1073
 Nature medicine 2020, 26, 672–675. 1074
- Linton, N.M.; Kobayashi, T.; Yang, Y.; Hayashi, K.; Akhmetzhanov, A.R.; Jung, S.m.; Yuan, 1075
 B.; Kinoshita, R.; Nishiura, H. Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly 1077
 available case data. Journal of clinical medicine 2020, 9, 538.
- Wu, Y.; Kang, L.; Guo, Z.; Liu, J.; Liu, M.; Liang, W. Incubation period of COVID-19 caused 1079 by unique SARS-CoV-2 strains: a systematic review and meta-analysis. JAMA network open 1080 2022, 5, e2228008–e2228008.
- Quesada, J.; López-Pineda, A.; Gil-Guillén, V.; Arriero-Marín, J.; Gutiérrez, F.; Carratala Munuera, C. Incubation period of COVID-19: A systematic review and meta-analysis. *Revista Clínica Española (English Edition)* 2021, 221, 109–117.
- Rai, B.; Shukla, A.; Dwivedi, L.K. Incubation period for COVID-19: a systematic review and meta-analysis. *Journal of Public Health* 2021, pp. 1–8.
- Zuo, Y.Y.; Uspal, W.E.; Wei, T. Airborne transmission of COVID-19: aerosol dispersion, lung deposition, and virus-receptor interactions. ACS nano 2020, 14, 16502–16524.
- Demongeot, J.; Griette, Q.; Maday, Y.; Magal, P. A Kermack–McKendrick model with age of infection starting from a single or multiple cohorts of infected patients. *Proceedings of the Royal Society A* 2023, 479, 20220381.
- Alvarez, L.; Colom, M.; Morel, J.D.; Morel, J.M. Computing the daily reproduction number 1092 of COVID-19 by inverting the renewal equation using a variational technique. *Proceedings of the National Academy of Sciences* 2021, 118, e2105112118.
- Rowe, F.; Ngwenyama, O.; Richet, J.L. Contact-tracing apps and alienation in the age of COVID-19. European Journal of Information Systems 2020, 29, 545–562.
- 93. Kapa, S.; Halamka, J.; Raskar, R. Contact tracing to manage COVID-19 spread—balancing personal privacy and public health. In Proceedings of the Mayo Clinic Proceedings. Elsevier, 2020, Vol. 95, pp. 1320–1322.
- 94. Kretzschmar, M.E.; Rozhnova, G.; Bootsma, M.C.; van Boven, M.; van de Wijgert, J.H.; 1100 Bonten, M.J. Impact of delays on effectiveness of contact tracing strategies for COVID-19: a 1101 modelling study. *The Lancet Public Health* 2020, *5*, e452–e459. 1102
- Browne, C.J.; Gulbudak, H.; Macdonald, J.C. Differential impacts of contact tracing and lockdowns on outbreak size in COVID-19 model applied to China. Journal of Theoretical Biology 2022, 532, 110919.
- 96. Hart, W.S.; Maini, P.K.; Thompson, R.N. High infectiousness immediately before COVID-19 1106 symptom onset highlights the importance of continued contact tracing. *Elife* **2021**, *10*, e65534. 1107
- 97. Giovanetti, M.; Cella, E.; Benedetti, F.; Rife Magalis, B.; Fonseca, V.; Fabris, S.; Campisi, 1108
 G.; Ciccozzi, A.; Angeletti, S.; Borsetti, A.; et al. SARS-CoV-2 shifting transmission 1109
 dynamics and hidden reservoirs potentially limit efficacy of public health interventions in Italy. 1110
 Communications biology 2021, 4, 489. 1111
- Zanella, M.; Bardelli, C.; Azzi, M.; Deandrea, S.; Perotti, P.; Silva, S.; Cadum, E.; Figini, S.;
 Toscani, G. Social contacts, epidemic spreading and health system. Mathematical modeling

and applications to COVID-19 infection. Machine Learning and Statistical models in real 1114 world applications 2021, p. 83. 1115

- Bode, M.; Craven, M.; Leopoldseder, M.; Rutten, P.; Wilson, M. Contact tracing for 99. 1116 COVID-19: New considerations for its practical application. McKinsey & Company 2020, 1117 p. 8. 1118
- 100. Martinez-Martin, N.; Wieten, S.; Magnus, D.; Cho, M.K. Digital contact tracing, privacy, 1119 and public health. Hastings Center Report 2020, 50, 43-46. 1120
- 101. Blasimme, A.; Ferretti, A.; Vavena, E. Digital contact tracing against COVID-19 in Europe: 1121 current features and ongoing developments. Frontiers in Digital Health 2021, 3, 660823. 1122
- 102. Jian, S.W.; Cheng, H.Y.; Huang, X.T.; Liu, D.P. Contact tracing with digital assistance in 1123 Taiwan's COVID-19 outbreak response. International Journal of Infectious Diseases 2020, 1124 101, 348-352. 1125
- 103. Thayyil, J.; Kuniyil, V.; Cherumanalil, J.M. COVID-19: digital contact tracing technologies 1126 and ethical challenges. Int J Community Med Public Health 2020, 7, 2854. 1127
- 104. Cho, H.; Ippolito, D.; Yu, Y.W. Contact tracing mobile apps for COVID-19: Privacy 1128 considerations and related trade-offs. arXiv preprint arXiv:2003.11511 2020. 1129
- 105. Peccoud, J.; Jacob, C. Theoretical uncertainty of measurements using quantitative polymerase 1130 chain reaction. Biophysical journal 1996, 71, 101–108. 1131
- 106. Peccoud, J.; Jacob, C. Statistical estimations of PCR amplification rates. In Gene Quantifi-1132 cation; 1998; pp. 111–128. 1133
- 107. Hellewell, J.; Russell, T.W.; Beale, R.; Kelly, G.; Houlihan, C.; Nastouli, E.; Kucharski, A.J. 1134 Estimating the effectiveness of routine asymptomatic PCR testing at different frequencies for 1135 the detection of SARS-CoV-2 infections. BMC medicine 2021, 19, 1-10. 1136
- 108. Kretzschmar, M.E.; Ashby, B.; Fearon, E.; Overton, C.E.; Panovska-Griffiths, J.; Pellis, 1137 L.; Quaife, M.; Rozhnova, G.; Scarabel, F.; Stage, H.B.; et al. Challenges for modelling 1138 interventions for future pandemics. Epidemics 2022, 38, 100546. 1139
- 109. Kucirka, L.M.; Lauer, S.A.; Laeyendecker, O.; Boon, D.; Lessler, J. Variation in false-negative 1140 rate of reverse transcriptase polymerase chain reaction-based SARS-CoV-2 tests by time since 1141 exposure. Annals of internal medicine **2020**, 173, 262–267. 1142
- 110. Böger, B.; Fachi, M.M.; Vilhena, R.O.; Cobre, A.F.; Tonin, F.S.; Pontarolo, R. Systematic 1143 review with meta-analysis of the accuracy of diagnostic tests for COVID-19. American journal 1144 of infection control 2021, 49, 21-29. 1145
- 111. Salvatore, P.P.; Lee, C.C.; Sleweon, S.; McCormick, D.W.; Nicolae, L.; Knipe, K.; Dixon, T.; 1146 Banta, R.; Ogle, I.; Young, C.; et al. Transmission potential of vaccinated and unvaccinated 1147 persons infected with the SARS-CoV-2 Delta variant in a federal prison, July—August 2021. 1148 Vaccine 2023, 41, 1808–1818. 1149
- 112. Arevalo-Rodriguez, I.; Buitrago-Garcia, D.; Simancas-Racines, D.; Zambrano-Achig, P.; 1150 Del Campo, R.; Ciapponi, A.; Sued, O.; Martinez-Garcia, L.; Rutjes, A.W.; Low, N.; et al. 1151 False-negative results of initial RT-PCR assays for COVID-19: a systematic review. PloS one 1152 2020, 15, e0242958. 1153
- 113. Pu, R.; Liu, S.; Ren, X.; Shi, D.; Ba, Y.; Huo, Y.; Zhang, W.; Ma, L.; Liu, Y.; Yang, Y.; et al. 1154 The screening value of RT-LAMP and RT-PCR in the diagnosis of COVID-19: systematic 1155 review and meta-analysis. Journal of virological methods 2022, 300, 114392. 1156
- 114. Bugalia, S.; Tripathi, J.P. Assessing potential insights of an imperfect testing strategy: 1157 Parameter estimation and practical identifiability using early COVID-19 data in India. Com-1158 munications in Nonlinear Science and Numerical Simulation 2023, 123, 107280. 1159
- 115. Aronna, M.S.; Guglielmi, R.; Moschen, L.M. Estimate of the rate of unreported COVID-1160 19 cases during the first outbreak in Rio de Janeiro. Infectious Disease Modelling 2022, 1161 7, 317-332. 1162
- 116. Chow, C.C.; Chang, J.C.; Gerkin, R.C.; Vattikuti, S. Global prediction of unreported 1163 SARS-CoV2 infection from observed COVID-19 cases. MedRXiv 2020. 1164
- 117. Hortaçsu, A.; Liu, J.; Schwieg, T. Estimating the fraction of unreported infections in 1165 epidemics with a known epicenter: An application to COVID-19. Journal of Econometrics 1166 **2021**, *220*, 106–129. 1167
- 118. Reis, R.F.; de Melo Quintela, B.; de Oliveira Campos, J.; Gomes, J.M.; Rocha, B.M.; Lobosco, 1168 M.; Dos Santos, R.W. Characterization of the COVID-19 pandemic and the impact of 1169 uncertainties, mitigation strategies, and underreporting of cases in South Korea, Italy, and 1170 Brazil. Chaos, Solitons & Fractals 2020, 136, 109888. 1171

- 119. Zhao, S.; Musa, S.S.; Lin, Q.; Ran, J.; Yang, G.; Wang, W.; Lou, Y.; Yang, L.; Gao, D.; 1172
 He, D.; et al. Estimating the unreported number of novel coronavirus (2019-nCoV) cases in 1173
 China in the first half of January 2020: a data-driven modelling analysis of the early outbreak. 1174
 Journal of clinical medicine 2020, 9, 388. 1175
- Huo, X.; Chen, J.; Ruan, S. Estimating asymptomatic, undetected and total cases for the COVID-19 outbreak in Wuhan: a mathematical modeling study. BMC infectious diseases 2021, 21, 476.
- 121. Oladipo, S.; Sun, Y.; Amole, A. Performance evaluation of the impact of clustering methods and parameters on adaptive neuro-fuzzy inference system models for electricity consumption prediction during COVID-19. *Energies* 2022, 15, 7863.
- 122. Ito, H.; Chakraborty, B. Social media mining with dynamic clustering: a case study by COVID-19 tweets. In Proceedings of the 2020 11th International Conference on Awareness Science and Technology (iCAST). IEEE, 2020, pp. 1–6.
- 123. Andrade, L.; Gomes, D.; Lima, S.; Duque, A.; Melo, M.; Góes, M.; Ribeiro, C.; Peixoto, M.;
 Souza, C.; Santos, A. COVID-19 mortality in an area of northeast Brazil: epidemiological
 characteristics and prospective spatiotemporal modelling. *Epidemiology & Infection* 2020, 1187
 148, e288.
- 124. Nazia, N.; Butt, Z.A.; Bedard, M.L.; Tang, W.C.; Sehar, H.; Law, J. Methods used in the spatial and spatiotemporal analysis of COVID-19 epidemiology: a systematic review. International Journal of Environmental Research and Public Health 2022, 19, 8267.
- 125. Harris, J.E. Geospatial analysis of a COVID-19 outbreak at the University of Wisconsin-Madison: potential role of a cluster of local bars. *Epidemiology & Infection* **2022**, *150*, e76.
- 126. Gomes, D.S.; Andrade, L.A.; Ribeiro, C.J.N.; Peixoto, M.; Lima, S.; Duque, A.; Cirilo, T.M.;
 1194 Góes, M.; Lima, A.; Santos, M.; et al. Risk clusters of COVID-19 transmission in northeastern
 Brazil: prospective space-time modelling. *Epidemiology & Infection* 2020, 148, e188.
- 127. Adam, D.C.; Wu, P.; Wong, J.Y.; Lau, E.H.; Tsang, T.K.; Cauchemez, S.; Leung, G.M.;
 Cowling, B.J. Clustering and superspreading potential of SARS-CoV-2 infections in Hong
 Kong. Nature Medicine 2020, 26, 1714–1719.
- Chan, J.F.W.; Yuan, S.; Kok, K.H.; To, K.K.W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, 1200
 C.C.Y.; Poon, R.W.S.; et al. A familial cluster of pneumonia associated with the 2019 novel 1201
 coronavirus indicating person-to-person transmission: a study of a family cluster. The lancet 1202
 2020, 395, 514–523.
- Ma, J. Estimating epidemic exponential growth rate and basic reproduction number. Infectious 1204 Disease Modelling 2020, 5, 129–141.
- Tat Dat, T.; Frédéric, P.; Hang, N.T.; Jules, M.; Duc Thang, N.; Piffault, C.; Willy, R.; Susely, 1206
 F.; Lê, H.V.; Tuschmann, W.; et al. Epidemic dynamics via wavelet theory and machine 1207
 learning with applications to COVID-19. *Biology* 2020, 9, 477.
- 131. Miyama, T.; Jung, S.m.; Hayashi, K.; Anzai, A.; Kinoshita, R.; Kobayashi, T.; Linton, N.M.;
 Suzuki, A.; Yang, Y.; Yuan, B.; et al. Phenomenological and mechanistic models for predicting
 early transmission data of COVID-19. *Math. Biosci. Eng* 2022, 19, 2043–2055.
- Attanayake, A.; Perera, S.; Jayasinghe, S. Phenomenological Modelling of COVID-19 epidemics in Sri Lanka, Italy and Hebei Province of China. *MedRxiv* 2020, pp. 2020–05.
- 133. Zuhairoh, F.; Rosadi, D. Data-driven analysis and prediction of COVID-19 infection in 1214
 Southeast Asia by using a phenomenological model. Pakistan Journal of Statistics and 1215
 Operation Research 2022, 18, 59–69.
- Calatayud, J.; Jornet, M.; Mateu, J. A phenomenological model for COVID-19 data taking into account neighboring-provinces effect and random noise. *Statistica Neerlandica* 2023, 77, 146–155.
- 135. Smith, B.A.; Bancej, C.; Fazil, A.; Mullah, M.; Yan, P.; Zhang, S. The performance of phenomenological models in providing near-term Canadian case projections in the midst of the COVID-19 pandemic: March-April, 2020. *Epidemics* 2021, 35, 100457.
- 136. Richards, F.J. A flexible growth function for empirical use. Journal of experimental Botany 1223
 1959, 10, 290–301.
- 137. Sari, G.L.; Hilmi, I.L.; Nurdiana, A.; Azizah, A.N.; Kasasiah, A. Infectious waste management
 as the effects of COVID-19 pandemic in Indonesia. Asian Journal of Social Science and
 Management Technology 2021, 3, 62–75.
- Elsaid, K.; Olabi, V.; Sayed, E.T.; Wilberforce, T.; Abdelkareem, M.A. Effects of COVID-19 1228 on the environment: an overview on air, water, wastewater, and solid waste. Journal of 1229 Environmental Management 2021, 292, 112694.

- Ai, Y.; Davis, A.; Jones, D.; Lemeshow, S.; Tu, H.; He, F.; Ru, P.; Pan, X.; Bohrerova, Z.;
 Lee, J. Wastewater SARS-CoV-2 monitoring as a community-level COVID-19 trend tracker
 and variants in Ohio, United States. Science of The Total Environment 2021, 801, 149757.
- 140. Bertrand, I.; Challant, J.; Jeulin, H.; Hartard, C.; Mathieu, L.; Lopez, S.; Obépine, S.I.G.;
 Schvoerer, E.; Courtois, S.; Gantzer, C. Epidemiological surveillance of SARS-CoV-2 by
 genome quantification in wastewater applied to a city in the northeast of France: Comparison
 of ultrafiltration-and protein precipitation-based methods. International Journal of Hygiene
 and Environmental Health 2021, 233, 113692.
- 141. Gragnani, L.; Monti, M.; Santini, S.A.; Marri, S.; Madia, F.; Lorini, S.; Petraccia, L.; Stasi,
 C.; Basile, U.; Luti, V.; et al. SARS-CoV-2 was already circulating in Italy, in early December
 2019. European Review for Medical & Pharmacological Sciences 2021, 25.
- 142. Wurtzer, S.; Waldman, P.; Levert, M.; Cluzel, N.; Almayrac, J.; Charpentier, C.; Masnada,
 1242. S.; Gillon-Ritz, M.; Mouchel, J.; Maday, Y.; et al. SARS-CoV-2 genome quantification
 1243 in wastewaters at regional and city scale allows precise monitoring of the whole outbreaks
 1244 dynamics and variants spreading in the population. Science of The Total Environment 2022,
 1245 810, 152213.
- 143. Wurtzer, S.; Waldman, P.; Ferrier-Rembert, A.; Frenois-Veyrat, G.; Mouchel, J.M.; Boni, 1247
 M.; Maday, Y.; Marechal, V.; Moulin, L.; et al. Several forms of SARS-CoV-2 RNA can be detected in wastewaters: implication for wastewater-based epidemiology and risk assessment. 1249
 Water Research 2021, 198, 117183. 1250
- 144. Wurtzer, S.; Marechal, V.; Mouchel, J.; Maday, Y.; Teyssou, R.; Richard, E.; Almayrac, 1251
 J.; Moulin, e.L. Evaluation of lockdown effect on SARS-CoV-2 dynamics through viral 1252
 genome quantification in waste water, Greater Paris, France, 5 March to 23 April 2020. 1253
 Eurosurveillance 2020, 25, 2000776. 1254
- 145. Zhou, L.; Rong, X.; Fan, M.; Yang, L.; Chu, H.; Xue, L.; Hu, G.; Liu, S.; Zeng, Z.; Chen, M.; 1255
 et al. Modeling and evaluation of the joint prevention and control mechanism for curbing 1256
 COVID-19 in Wuhan. Bulletin of Mathematical Biology 2022, 84, 28.
- 146. Xue, L.; Jing, S.; Miller, J.C.; Sun, W.; Li, H.; Estrada-Franco, J.G.; Hyman, J.M.; Zhu, H. 1258
 A data-driven network model for the emerging COVID-19 epidemics in Wuhan, Toronto and 1259
 Italy. Mathematical biosciences 2020, 326, 108391.
- 147. Forien, R.; Pang, G.; Pardoux, É. Estimating the state of the COVID-19 epidemic in France using a non-Markovian model. medRxiv 2020, pp. 2020–06.
- Bacallado, S.; Zhao, Q.; Ju, N. Generation interval for COVID-19 based on symptom onset data. *Eurosurveillance* 2020, 25, 2001381.
- Demongeot, J.; Oshinubi, K.; Rachdi, M.; Hobbad, L.; Alahiane, M.; Iggui, S.; Gaudart, J.;
 Ouassou, I. The application of ARIMA model to analyze COVID-19 incidence pattern in several countries. J. Math. Comput. Sci. 2021, 12, Article–ID.
- Soubeyrand, S.; Demongeot, J.; Roques, L. Towards unified and real-time analyses of outbreaks at country-level during pandemics. One Health 2020, 11, 100187.
- Oshinubi, K.; Ibrahim, F.; Rachdi, M.; Demongeot, J. Functional data analysis: Application to daily observation of COVID-19 prevalence in France. AIMS Mathematics 2022, 7, 5347–5385.
- Benhamou, W.; Lion, S.; Choquet, R.; Gandon, S. Phenotypic evolution of SARS-CoV-2: a statistical inference approach. medRxiv 2022, pp. 2022–08.
- 153. Zhao, S.; Cao, P.; Gao, D.; Zhuang, Z.; Cai, Y.; Ran, J.; Chong, M.K.; Wang, K.; Lou, Y.; ¹²⁷⁴
 Wang, W.; et al. Serial interval in determining the estimation of reproduction number of the ¹²⁷⁵
 novel coronavirus disease (COVID-19) during the early outbreak. *Journal of travel medicine* ¹²⁷⁶
 2020, 27, taaa033.
- 154. Gaudart, J.; Landier, J.; Huiart, L.; Legendre, E.; Lehot, L.; Bendiane, M.K.; Chiche, L.; ¹²⁷⁸ Petitjean, A.; Mosnier, E.; Kirakoya-Samadoulougou, F.; et al. Factors associated with the ¹²⁷⁹ spatial heterogeneity of the first wave of COVID-19 in France: a nationwide geo-epidemiological ¹²⁸⁰ study. *The Lancet Public Health* **2021**, *6*, e222–e231.
- 155. Mizumoto, K.; Chowell, G. Transmission potential of the novel coronavirus (COVID-19) 1282 onboard the diamond Princess Cruises Ship, 2020. Infectious disease modelling 2020, 5, 264– 1283 270.
- Tang, B.; Bragazzi, N.L.; Li, Q.; Tang, S.; Xiao, Y.; Wu, J. An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infectious disease modelling 2020, 5, 248–255.

- Hart, W.S.; Abbott, S.; Endo, A.; Hellewell, J.; Miller, E.; Andrews, N.; Maini, P.K.; Funk,
 S.; Thompson, R.N. Inference of the SARS-CoV-2 generation time using UK household data.
 Elife 2022, 11, e70767.
- Hart, W.S.; Miller, E.; Andrews, N.J.; Waight, P.; Maini, P.K.; Funk, S.; Thompson, R.N. 1291 Generation time of the alpha and delta SARS-CoV-2 variants: an epidemiological analysis. 1292 *The Lancet Infectious Diseases* 2022, 22, 603–610. 1293
- Morel, J.D.; Morel, J.M.; Alvarez, L. Learning from the past: a short term forecast method for the COVID-19 incidence curve. *PLOS Computational Biology* 2023, 19, e1010790.
- Roosa, K.; Lee, Y.; Luo, R.; Kirpich, A.; Rothenberg, R.; Hyman, J.M.; Yan, P.; Chowell, G. 1296 Real-time forecasts of the COVID-19 epidemic in China from February 5th to February 24th, 1297 2020. Infectious disease modelling 2020, 5, 256–263.
- Renardy, M.; Eisenberg, M.; Kirschner, D. Predicting the second wave of COVID-19 in Washtenaw County, MI. Journal of theoretical biology 2020, 507, 110461.
- Pullano, G.; Di Domenico, L.; Sabbatini, C.E.; Valdano, E.; Turbelin, C.; Debin, M.; Guerrisi, 1301
 C.; Kengne-Kuetche, C.; Souty, C.; Hanslik, T.; et al. Underdetection of cases of COVID-19 1302
 in France threatens epidemic control. Nature 2021, 590, 134–139.
- 163. Modeling COVID-19 scenarios for the United States. Nature medicine 2021, 27, 94–105.
- 164. Li, R.; Pei, S.; Chen, B.; Song, Y.; Zhang, T.; Yang, W.; Shaman, J. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science 2020, 368, 489–493.
 1307
- 165. Giordano, G.; Blanchini, F.; Bruno, R.; Colaneri, P.; Di Filippo, A.; Di Matteo, A.; Colaneri, M. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. *Nature medicine* 2020, 26, 855–860.
- 166. Prague, M.; Wittkop, L.; Collin, A.; Dutartre, D.; Clairon, Q.; Moireau, P.; Thiebaut, R.;
 Hejblum, B.P. Multi-level modeling of early COVID-19 epidemic dynamics in French regions
 and estimation of the lockdown impact on infection rate. *MedRxiv* 2020, pp. 2020–04.
- 167. Parolini, N.; Dede', L.; Antonietti, P.F.; Ardenghi, G.; Manzoni, A.; Miglio, E.; Pugliese, A.;
 ¹³¹⁴ Verani, M.; Quarteroni, A. SUIHTER: A new mathematical model for COVID-19. Application
 ¹³¹⁵ to the analysis of the second epidemic outbreak in Italy. *Proceedings of the Royal Society A* ¹³¹⁶ 2021, 477, 20210027.
- 168. Zhao, W.; Sun, Y.; Li, Y.; Guan, W. Prediction of COVID-19 Data Using Hybrid Modeling Approaches. Frontiers in public health 2022, 10, 923978.
- 169. Saiprasad, V.; Gopal, R.; Chandrasekar, V.; Lakshmanan, M. Analysis of COVID-19 in India using a vaccine epidemic model incorporating vaccine effectiveness and herd immunity. The European Physical Journal Plus 2022, 137, 1–11.
- 170. Thomas, D.M.; Sturdivant, R.; Dhurandhar, N.V.; Debroy, S.; Clark, N. A Primer on COVID-19 Mathematical Models. Obesity (Silver Spring, Md.) 2020, 28, 1375.
- 171. Alamo, T.; Reina, D.G.; Gata, P.M.; Preciado, V.M.; Giordano, G. Data-driven methods 1325 for present and future pandemics: Monitoring, modelling and managing. *Annual Reviews in Control* 2021, 52, 448–464.
- 172. Lin, Q.; Zhao, S.; Gao, D.; Lou, Y.; Yang, S.; Musa, S.S.; Wang, M.H.; Cai, Y.; Wang, W.;
 Yang, L.; et al. A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in
 Wuhan, China with individual reaction and governmental action. International journal of
 infectious diseases 2020, 93, 211–216.
- 173. Zanella, M.; Bardelli, C.; Dimarco, G.; Deandrea, S.; Perotti, P.; Azzi, M.; Figini, S.; Toscani,
 G. A data-driven epidemic model with social structure for understanding the COVID-19
 infection on a heavily affected Italian Province. Mathematical Models and Methods in Applied
 Sciences 2021, 31, 2533-2570.
- 174. Meng, L.; Zhu, W. Generalized SEIR epidemic model for COVID-19 in a multipatch environment. Discrete Dynamics in Nature and Society 2021, 2021, 1–12.
- 175. Volpert, V.; Banerjee, M.; Sharma, S. Epidemic progression and vaccination in a heterogeneous population. application to the COVID-19 epidemic. *Ecological Complexity* **2021**, *47*, 100940. 1339
- 176. Griffith, G.J.; Smith, G.D.; Manley, D.; Howe, L.D.; Owen, G. Interrogating structural inequalities in COVID-19 mortality in England and Wales. J Epidemiol Community Health 2021, 75, 1165–1171.
- Melo, A.M.; Santos, M.C. Final size and partial distance estimate for a two-group SEIRD model. Journal of Mathematical Biology 2023, 86, 56.

- 178. Reingruber, J.; Papale, A.; Ruckly, S.; Timsit, J.F.; Holcman, D. Data-driven multiscale 1345 dynamical framework to control a pandemic evolution with non-pharmaceutical interventions. 1346 PLoS One 2023, 18, e0278882. 1347
- 179. Olumoyin, K.; Khaliq, A.; Furati, K. Data-driven deep-learning algorithm for asymptomatic 1348 COVID-19 model with varying mitigation measures and transmission rate. Epidemiologia 1349 **2021**, 2, 471-489. 1350
- 180. Zhang, P.; Feng, K.; Gong, Y.; Lee, J.; Lomonaco, S.; Zhao, L. Usage of Compartmental 1351 Models in Predicting COVID-19 Outbreaks. The AAPS Journal 2022, 24, 98.
- 181. Anggriani, N.; Ndii, M.Z.; Amelia, R.; Suryaningrat, W.; Pratama, M.A.A. A mathematical 1353 COVID-19 model considering asymptomatic and symptomatic classes with waning immunity. 1354 Alexandria Engineering Journal 2022, 61, 113–124. 1355
- 182. Anguelov, R.; Banasiak, J.; Bright, C.; Lubuma, J.; Ouifki, R. The big unknown: The 1356 asymptomatic spread of COVID-19. Biomath 2020, 9, ID-2005103. 1357
- 183. Batistela, C.M.; Correa, D.P.; Bueno, A.M.; Piqueira, J.R.C. SIRSi compartmental model for 1358 COVID-19 pandemic with immunity loss. Chaos, Solitons & Fractals 2021, 142, 110388. 1359
- 184. Chen, X.; Huang, Z.; Wang, J.; Zhao, S.; Wong, M.C.S.; Chong, K.C.; He, D.; Li, J. Ratio of 1360 asymptomatic COVID-19 cases among ascertained SARS-CoV-2 infections in different regions 1361 and population groups in 2020: a systematic review and meta-analysis including 130 123 1362 infections from 241 studies. BMJ open 2021, 11, e049752. 1363
- 185. Aguiar, M.; Van-Dierdonck, J.B.; Mar, J.; Stollenwerk, N. The role of mild and asymptomatic 1364 infections on COVID-19 vaccines performance: a modeling study. Journal of Advanced 1365 Research 2022, 39, 157–166. 1366
- 186. Postnikov, E.B. Estimation of COVID-19 dynamics "on a back-of-envelope": Does the simplest 1367 SIR model provide quantitative parameters and predictions? Chaos, Solitons & Fractals 1368 2020, 135, 109841. 1369
- 187. Biswas, K.; Khaleque, A.; Sen, P. COVID-19 spread: Reproduction of data and prediction 1370 using a SIR model on Euclidean network. arXiv preprint arXiv:2003.07063 2020. 1371
- 188. Mehmood, K.; Bao, Y.; Petropoulos, G.P.; Abbas, R.; Abrar, M.M.; Mustafa, A.; Soban, 1372 A.; Saud, S.; Ahmad, M.; Hussain, I.; et al. Investigating connections between COVID-19 1373 pandemic, air pollution and community interventions for Pakistan employing geoinformation 1374 technologies. Chemosphere 2021, 272, 129809. 1375
- Smith, A.P.; Williams, E.P.; Plunkett, T.R.; Selvaraj, M.; Lane, L.C.; Zalduondo, L.; Xue, Y.; 189. 1376 Vogel, P.; Channappanavar, R.; Jonsson, C.B.; et al. Time-dependent increase in susceptibility 1377 and severity of secondary bacterial infections during SARS-CoV-2. Frontiers in Immunology 1378 2022, 13, 894534. 1379
- 190. Jenner, A.L.; Aogo, R.A.; Alfonso, S.; Crowe, V.; Smith, A.P.; Morel, P.A.; Davis, C.L.; 1380 Smith, A.M.; Craig, M. COVID-19 virtual patient cohort reveals immune mechanisms driving 1381 disease outcomes. *bioRxiv* **2021**. 1382
- 191. Nordström, P.; Ballin, M.; Nordström, A. Risk of SARS-CoV-2 reinfection and COVID-1383 19 hospitalisation in individuals with natural and hybrid immunity: a retrospective, total 1384 population cohort study in Sweden. The Lancet Infectious Diseases 2022, 22, 781-790. 1385
- 192. Huang, L.; Lai, F.T.T.; Yan, V.K.C.; Cheng, F.W.T.; Cheung, C.L.; Chui, C.S.L.; Li, X.; 1386 Wan, E.Y.F.; Wong, C.K.H.; Hung, I.F.N.; et al. Comparing hybrid and regular COVID-19 1387 vaccine-induced immunity against the Omicron epidemic. npj Vaccines 2022, 7, 162. 1388
- 193. Pilz, S.; Theiler-Schwetz, V.; Trummer, C.; Krause, R.; Ioannidis, J.P. SARS-CoV-2 rein-1389 fections: Overview of efficacy and duration of natural and hybrid immunity. Environmental 1390 research 2022, 209, 112911. 1391
- 194. Stein, C.; Nassereldine, H.; Sorensen, R.J.; Amlag, J.O.; Bisignano, C.; Byrne, S.; Castro, E.; 1392 Coberly, K.: Collins, J.K.: Dalos, J.: et al. Past SARS-CoV-2 infection protection against 1393 re-infection: a systematic review and meta-analysis. The Lancet 2023, 401, 833-842. 1394
- 195. Ruan, S. Likelihood of survival of coronavirus disease 2019. The Lancet Infectious Diseases 1395 **2020**, *20*, 630–631. 1396
- 196. Soubeyrand, S.; Ribaud, M.; Baudrot, V.; Allard, D.; Pommeret, D.; Roques, L. COVID-1397 19 mortality dynamics: The future modelled as a (mixture of) past (s). Plos one 2020, 1398 15, e0238410. 1399
- 197. Kobayashi, T.; Jung, S.m.; Linton, N.M.; Kinoshita, R.; Hayashi, K.; Miyama, T.; Anzai, A.; 1400 Yang, Y.; Yuan, B.; Akhmetzhanov, A.R.; et al. Communicating the risk of death from novel 1401 coronavirus disease COVID-19, 2020. 1402

- 198. Jung, S.m.; Akhmetzhanov, A.R.; Hayashi, K.; Linton, N.M.; Yang, Y.; Yuan, B.; Kobayashi, 1403
 T.; Kinoshita, R.; Nishiura, H. Real-time estimation of the risk of death from novel coronavirus (COVID-19) infection: inference using exported cases. Journal of clinical medicine 2020, 1405
 9, 523.
- 199. Ioannidis, J.P. Global perspective of COVID-19 epidemiology for a full-cycle pandemic.
 European journal of clinical investigation 2020, 50, e13423.
- 200. Ioannidis, J.P. Infection fatality rate of COVID-19 inferred from seroprevalence data. *Bulletin* of the world health organization **2021**, 99, 19.
- 201. Ioannidis, J.P. Reconciling estimates of global spread and infection fatality rates of COVID-19: 1411
 an overview of systematic evaluations. European journal of clinical investigation 2021, 1412
 51, e13554.
- Ioannidis, J.P.; Zonta, F.; Levitt, M. What Really Happened During the Massive SARS-CoV-2 1414 Omicron Wave in China? JAMA Internal Medicine 2023.
- 203. Mehraeen, E.; Karimi, A.; Barzegary, A.; Vahedi, F.; Afsahi, A.M.; Dadras, O.; Moradmand Badie, B.; Alinaghi, S.A.S.; Jahanfar, S. Predictors of mortality in patients with COVID-19–a
 systematic review. European journal of integrative medicine 2020, 40, 101226.
- Demongeot, J.; Griette, Q.; Magal, P.; Webb, G. Modeling vaccine efficacy for COVID-19 1419 outbreak in New York city. *Biology* 2022, 11, 345.
- 205. Jarumaneeroj, P.; Dusadeerungsikul, P.O.; Chotivanich, T.; Nopsopon, T.; Pongpirul, K. An
 epidemiology-based model for the operational allocation of COVID-19 vaccines: A case study
 of Thailand. Computers & industrial engineering 2022, 167, 108031.
- 206. Marinov, T.T.; Marinova, R.S. Adaptive SIR model with vaccination: Simultaneous identification of rates and functions illustrated with COVID-19. Scientific Reports 2022, 12, 15688. 1425
- 207. Ioannidis, J.P. COVID-19 vaccination in children and university students. *European journal* of clinical investigation **2021**, 51, e13678.
- Ioannidis, J.P. Estimating conditional vaccine effectiveness. European Journal of Epidemiology 1428
 2022, 37, 885–890.
- 209. He, D.; Ali, S.T.; Fan, G.; Gao, D.; Song, H.; Lou, Y.; Zhao, S.; Cowling, B.J.; Stone, L.
 Evaluation of effectiveness of global COVID-19 vaccination campaign. *Emerging Infectious* Diseases 2022, 28, 1873.
- 210. Hale, T.; Angrist, N.; Hale, A.J.; Kira, B.; Majumdar, S.; Petherick, A.; Phillips, T.; Sridhar, 1433
 D.; Thompson, R.N.; Webster, S.; et al. Government responses and COVID-19 deaths: Global 1434
 evidence across multiple pandemic waves. *PLoS One* 2021, *16*, e0253116.
- Acuña-Zegarra, M.A.; Santana-Cibrian, M.; Velasco-Hernandez, J.X. Modeling behavioral tase change and COVID-19 containment in Mexico: A trade-off between lockdown and compliance. Mathematical biosciences 2020, 325, 108370.
- 212. Wu, J.; Tang, B.; Bragazzi, N.L.; Nah, K.; McCarthy, Z. Quantifying the role of social 1439 distancing, personal protection and case detection in mitigating COVID-19 outbreak in 1440 Ontario, Canada. *Journal of mathematics in industry* 2020, 10, 1–12.
- 213. Rozhnova, G.; van Dorp, C.H.; Bruijning-Verhagen, P.; Bootsma, M.C.; van de Wijgert, J.H.;
 Bonten, M.J.; Kretzschmar, M.E. Model-based evaluation of school-and non-school-related
 measures to control the COVID-19 pandemic. Nature communications 2021, 12, 1614.
- 214. Teslya, A.; Pham, T.M.; Godijk, N.G.; Kretzschmar, M.E.; Bootsma, M.C.; Rozhnova, 1445
 G. Impact of self-imposed prevention measures and short-term government-imposed social 1446
 distancing on mitigating and delaying a COVID-19 epidemic: A modelling study. *PLoS* 1447
 medicine 2020, 17, e1003166.
- Liu, K.; Lou, Y. Optimizing COVID-19 vaccination programs during vaccine shortages. 1449 Infectious Disease Modelling 2022, 7, 286–298.
- Coccia, M. Optimal levels of vaccination to reduce COVID-19 infected individuals and deaths: 1451 A global analysis. *Environmental research* 2022, 204, 112314.
- 217. Halim, M.; Halim, A.; Tjhin, Y. COVID-19 vaccination efficacy and safety literature review.
 J Clin Med Res 2021, 3, 1–10.
- 218. Zhou, W.; Wang, A.; Xia, F.; Xiao, Y.; Tang, S. Effects of media reporting on mitigating spread of COVID-19 in the early phase of the outbreak. *Mathematical Biosciences and Engineering* 2020, 17, 2693–2707.
- Monod, M.; Blenkinsop, A.; Xi, X.; Hebert, D.; Bershan, S.; Tietze, S.; Baguelin, M.; Bradley, V.C.; Chen, Y.; Coupland, H.; et al. Age groups that sustain resurging COVID-19 epidemics in the United States. *Science* 2021, 371, eabe8372.

- Tran Kiem, C.; Bosetti, P.; Paireau, J.; Crepey, P.; Salje, H.; Lefrancq, N.; Fontanet, A.; ¹⁴⁶¹ Benamouzig, D.; Boëlle, P.Y.; Desenclos, J.C.; et al. SARS-CoV-2 transmission across age ¹⁴⁶² groups in France and implications for control. *Nature communications* **2021**, *12*, 6895. ¹⁴⁶³
- 221. Van Zandvoort, K.; Jarvis, C.I.; Pearson, C.A.; Davies, N.G.; Ratnayake, R.; Russell, T.W.; 1464 Kucharski, A.J.; Jit, M.; Flasche, S.; Eggo, R.M.; et al. Response strategies for COVID-19 1465 epidemics in African settings: a mathematical modelling study. *BMC medicine* **2020**, *18*, 1–19. 1466
- 222. Ghafari, M.; Hejazi, B.; Karshenas, A.; Dascalu, S.; Kadvidar, A.; Khosravi, M.A.; Abbasalipour, M.; Heydari, M.; Zeinali, S.; Ferretti, L.; et al. Lessons for preparedness and reasons for concern from the early COVID-19 epidemic in Iran. *Epidemics* **2021**, *36*, 100472. 1469
- 223. Anderson, S.J.; Garnett, G.P.; Enstone, J.; Hallett, T.B. The importance of local epidemic transformation of the international AIDS Society 2018, 21, e25203.
- 224. Kombe, I.K.; Munywoki, P.K.; Baguelin, M.; Nokes, D.J.; Medley, G.F. Model-based estimates 1473 of transmission of respiratory syncytial virus within households. *Epidemics* **2019**, *27*, 1––11. 1474
- Prem, K.; Liu, Y.; Russell, T.W.; Kucharski, A.J.; Eggo, R.M.; Davies, N. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. *The Lancet Public Health* **2020**, 5, e261–e270.
- Kuo, C.L.; Pilling, L.C.; Atkins, J.L.; Masoli, J.A.; Delgado, J.; Tignanelli, C.; Kuchel, G.A.;
 Melzer, D.; Beckman, K.B.; Levine, M.E. COVID-19 severity is predicted by earlier evidence
 ndraw of accelerated aging. *Medrxiv* 2020.
- 227. Polidori, M.C.; Sies, H.; Ferrucci, L.; Benzing, T. COVID-19 mortality as a fingerprint of biological age. Ageing research reviews 2021, 67, 101308.
- 228. Cao, X.; Li, W.; Wang, T.; Ran, D.; Davalos, V.; Planas-Serra, L.; Pujol, A.; Esteller, M.;
 Wang, X.; Yu, H. Accelerated biological aging in COVID-19 patients. *Nature communications* 1484
 2022, 13, 2135.
- Alimohamadi, Y.; Taghdir, M.; Sepandi, M. Estimate of the basic reproduction number for 1486 COVID-19: a systematic review and meta-analysis. Journal of Preventive Medicine and 1487 Public Health 2020, 53, 151.
- 230. He, W.; Yi, G.Y.; Zhu, Y. Estimation of the basic reproduction number, average incubation 1499 time, asymptomatic infection rate, and case fatality rate for COVID-19: Meta-analysis and 1490 sensitivity analysis. *Journal of medical virology* 2020, *92*, 2543–2550.
- Billah, M.A.; Miah, M.M.; Khan, M.N. Reproductive number of coronavirus: A systematic review and meta-analysis based on global level evidence. *PloS one* 2020, 15, e0242128.
- 232. Zhao, S.; Lin, Q.; Ran, J.; Musa, S.S.; Yang, G.; Wang, W.; Lou, Y.; Gao, D.; Yang, L.; 1494
 He, D.; et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. International journal of infectious diseases 2020, 92, 214–217.
- White, L.F.; Moser, C.B.; Thompson, R.N.; Pagano, M. Statistical estimation of the reproductive number from case notification data. *American Journal of Epidemiology* 2021, 1499 190, 611–620.
- Demongeot, J.; Oshinubi, K.; Rachdi, M.; Seligmann, H.; Thuderoz, F.; Waku, J. Estimation 1501 of daily reproduction numbers during the COVID-19 outbreak. *Computation* 2021, 9, 109. 1502
- 235. Otto, S.P.; Day, T.; Arino, J.; Colijn, C.; Dushoff, J.; Li, M.; Mechai, S.; Van Domselaar, G.;
 Wu, J.; Earn, D.J.; et al. The origins and potential future of SARS-CoV-2 variants of concern
 in the evolving COVID-19 pandemic. Current Biology 2021, 31, R918–R929.
- Yang, W.; Shaman, J.L. COVID-19 pandemic dynamics in South Africa and epidemiological characteristics of three variants of concern (Beta, Delta, and Omicron). *Elife* 2022, 11.
- Miller, J.K.; Elenberg, K.; Dubrawski, A. Forecasting emergence of COVID-19 variants of concern. PLoS One 2022, 17, e0264198.
- 238. Hussein, T.; Hammad, M.H.; Surakhi, O.; AlKhanafseh, M.; Fung, P.L.; Zaidan, M.A.; Wraith,
 D.; Ershaidat, N. Short-Term and long-term COVID-19 pandemic forecasting revisited with
 the emergence of OMICRON variant in jordan. Vaccines 2022, 10, 569.
- 239. Hatami, F.; Chen, S.; Paul, R.; Thill, J.C. Simulating and forecasting the COVID-19 spread in 1513
 a US Metropolitan region with a spatial SEIR model. International Journal of Environmental 1514
 Research and Public Health 2022, 19, 15771.
- 240. Rashed, E.A.; Kodera, S.; Hirata, A. COVID-19 forecasting using new viral variants and vaccination effectiveness models. *Computers in Biology and Medicine* **2022**, *149*, 105986.

- 241. Du, H.; Dong, E.; Badr, H.S.; Petrone, M.E.; Grubaugh, N.D.; Gardner, L.M. Incorporating ¹⁵¹⁸ variant frequencies data into short-term forecasting for COVID-19 cases and deaths in the ¹⁵¹⁹ USA: a deep learning approach. *Ebiomedicine* **2023**, *89*, 104482. ¹⁵²⁰
- Ioannidis, J.P.; Cripps, S.; Tanner, M.A. Forecasting for COVID-19 has failed. International 1521 journal of forecasting 2022, 38, 423–438.