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Abstract: In this review, we successively present the methods for phenomenological modeling 1

of the evolution of reported and unreported cases of COVID-19, both in the exponential phase 2

of growth and then in a complete epidemic wave. After the case of an isolated wave, we present 3

the modeling of several successive waves separated by endemic stationary periods. Then, we treat 4

the case of multi-compartmental models without or with age structure. Eventually, we review the 5

literature, based on 230 articles selected in 11 sections, ranging from the medical survey of hospital 6

cases to forecasting the dynamics of new cases in the general population. 7

Keywords: COVID-19 epidemic wave prediction; Epidemic models; Time series; Phenomenological 8

models; Social changes; Time dependent models; Contagious disease; Endemic phase; Epidemic 9

wave; Endemic/epidemic; Reported and unreported cases; Parameters identification; 10

I simply wish that, in a matter which so closely concerns the well-being of mankind, no 11

decision shall be made without all the knowledge which a little analysis and calculation can 12

provide, Daniel Bernoulli 1765. 13
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1. Introduction 81

The COVID-19 outbreak has been the catalyst for increased scientific activity, partic- 82

ularly in data collection and modeling the dynamics of new cases and deaths due to the 83

outbreak. 84

Such scientific excitement contemporary with a pandemic is not new. Several historical 85

epidemic episodes have led to significant advances in public health, biostatistics, databases, 86

and discrete or continuous mathematical modeling of disease evolution, considering the 87

mechanisms of contagion, host resistance, and mutation of the infectious agent. Histori- 88

cally, we can thus distinguish several epidemic outbreaks followed by important scientific 89

breakdowns: 90

A) The plague epidemic of 1348 saw the development of the beginnings of epidemiology 91

with the recording of cases at the abbey of St Antoine (Isère in France) and in the 92

network of hospitals managed by the Antonin monks; 93

B) During the London cholera epidemic of 1654, John Snow discovered the waterborne 94

transmission of cholera, which led to significant changes to improve public health, 95

notably by constructing improved sanitation facilities. This epidemic and its resolution 96

by Snow even before the discovery of the responsible germ was a founding event in 97

intervention epidemiology, with the validation of methods that can be applied to all 98

diseases, not just contagious (infectious or social), in particular the principle of coupling 99

the mapping of patients with that of sources of water for domestic consumption, which 100

would later lead to the development of Geographic Information Systems (GIS) in 101

epidemiology and to work such as the collection of water used as a COVID-19 tracer 102

in the French Obépine project (https://www.reseau-obepine.fr/); 103

C) The smallpox epidemic of 1760 led to the importation into Europe of the inoculation 104

practiced in Turkey (subsequently leading to vaccination by inert vaccine by Jenner) 105

and to the creation of the first models for predicting epidemic waves by Bernoulli and 106

d’Alembert. 107

In the tradition of these past discoveries, we will therefore present some recent progress 108

in modeling the dynamics of infectious diseases and their transmission mechanisms in this 109

article. 110

The plan of the paper is the following. Section 2 presents some background about 111

the reported data. We explain some phenomena related to data collection, such as contact 112

tracing, daily numbers of tests, and more. In section 3, we explain the main idea behind 113

the notion of a phenomenological model. In section 4, we introduce an epidemic model with 114

unreported cases and explain how to compare such a model with the data. In section 5, 115

we consider the exponential phase of an epidemic, where the phenomenological model will 116

be an exponential function. In section 6, we consider a single epidemic wave, where the 117

phenomenological model will be the Boulli-Verhulst model. We consider several successive 118

epidemic waves in section 7. In section 8, we present some new results to understand 119

how to compare the data and the epidemic models with several compartments during the 120

exponential phase. In section 9, we consider a model with age groups and explain how to 121

deal with data in large systems. Section 10 is a survey section where we try to give some 122

references for a selected number of important topics to model epidemic outbreaks. 123

2. Reported and unreported data 124

2.1. What are the unreported cases? 125

The unreported cases correspond to mild symptoms because people will only get tested 126

in case of severe symptoms. Unreported cases can result from a lack of tests or asymptotic 127

patients [1]. That is infected patients that do not show symptoms. Unreported cases are 128

partly due to a low daily number of tests. 129

https://www.reseau-obepine.fr/
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2.2. Example of unreported cases 130

A published study traced COVID-19 infections resulting from a business meeting in 131

Germany attended by a person who was infected but had no symptoms at the time [2]. Four 132

people were eventually infected from this single contact. 133

Figure 1. Timeline of Exposure to Index Patient with Asymptomatic 2019-CoV Infection in
Germany.

A team in Japan [3] reports that 13 people evacuated from Diamond Princess were 134

infected, 4 of whom, or 31 %, never developed symptoms. 135

On the French aircraft carrier Charles de Gaulle, clinical and biological data for all 136

1739 crew members were collected on arrival at the Toulon harbor and during quarantine: 137

1121 crew members (64%) were tested positive for COVID-19 using RT-PCR, and among 138

these, 24% were asymptomatic [4]. 139

2.3. Testing data for New York state 140

The goal of the figure below is to show that due to the changes in the method of 141

detecting the cases, a jump occurred on February 12 in Wuhan in, China. The testing 142

technology was not well developed at the early beginning of the epidemic, and such a 143

problem also occurs in other countries. 144
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Figure 2. Cumulative number of cases in Wuhan China.

The dynamic of the daily number of tests is connected to the dynamic of the daily 145

number of reported cases in a complex way [5]. 146

The large peak in the number of tests at the end of April 2020, shows that the number 147

of cases was strongly underestimated during the period. Because increasing the number 148

of tests increases the number of positive test. Later on, the epidemic wave passed and the 149

changes in the number of test had almost no influence on the number of positive test. 150
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80 000
Daily number of tests

Daily Positive tests

Daily Negative tests

Figure 3. In this figure, we plot the daily number of tests for the New York State. The black
curve, orange curve, and blue curve correspond respectively to the number of tests, the number of
positive tests, and the number of negative tests.

The number of reported cases is the consequence of the combination of the dynamic 151

of the number of tests (a complex dynamic which depends on human perceptions of the 152

epidemic outbreak), and the dynamic of the epidemic outbreak (which is also very complex 153

due the contact rate which depends on human perceptions) and the dynamic of transmission 154

(which can also be complex due to the changes of susceptibility in the population). 155

Figure 4 presents the flowchart of the model used in [5]. In Figure 5 (which was 156

obtained in [5]), we use the daily number of tests as an input of the model, and we fit the 157

output of the model to the cumulative number of cases. 158

Susceptible (S)

Exposed (E)

Asymptomatic infectious (I)

Undetected Infectious (U) Detectable Infectious (D)

Reported (R)Removed

τS(I +U +D)

αE

ν(1 − f)I νfI

ηU
ηD

n(t)σgD

n(t)(1 − σ)gD

ηR

Figure 4. Flow chart of the epidemic model. In this diagram n(t) is the daily number of tests at
time t is an input of the model. We consider a fraction (1−σ) of false negative tests and a fraction
σ of true positive tests. The parameter g reflects the fact that the tests are devoted not only to the
symptomatic patients but also to a large fraction of the population of New York state.
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Figure 5. The black curves are produced by using the New York state data only. The blue curves
are constructed by using the model with the testing data as input of the model.

In Figure 5, on the left-hand side, we consider the daily fluctuations of the number 159

of reported cases (epidemic dynamic) and the daily number of tests (testing dynamics). 160

Combining test dynamics and infection dynamics results in a complex time-parameterized 161

curve. Nevertheless, we obtain a good correspondence between the top and the bottom 162

left figures. The correspondence becomes excellent on the figures on the right, where we 163

consider the cumulative number of declared cases and the cumulative number of tests. 164

3. Phenomenological models 165

Along this note, we use phenomenological models to fit the data. 166

Definition 1. A phenomenological model is a mathematical model used to describe the data 167

without mechanistic description of the processes involved in the phenomenon. 168

In the next section, we will use exponential functions to get a continuous time repre- 169

sentation of the data. This will be our first example of a phenomenological model. Our 170

goal here is to replace the data by a function that captures the robust tendency of the 171

phenomenon. In some sense, we are trying to get rid of the noise around the tendency. 172

By using, for example, spline functions, we can always fit the data perfectly. Then the 173

fit is too precise to capture the significant information, and if we compute the derivatives of 174

such a perfect fit, we will obtain a very noisy signal that is not meaningful. 175

Therefore the underlying idea of the phenomenological model is to derive a robust 176

tendency with a limited number of parameters that will represent the data. Such a model is 177

supposed to reduce the signal’s noisy part and capture the robust part of the signal. 178

The phenomenological model can then replace the data, permitting analysis of some 179

consequences when injected into the models. For example, we will obtain a meaningful 180

range of parameters. 181
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Data
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(Limited number of parameters)
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EpidemicModel

(mechanistic)

- Estimations of parameters

- Basic reproduction number

- Forecasting

- etc . . .

Figure 6. We can apply statistical methods to estimate the parameters of the proposed phenomeno-
logical model and derive their average values with some confidence intervals. The phenomenological
model is used at the first step of the modelling process, providing regularized data to the epidemic
model and allowing the identification of its parameters.

4. Epidemic model with reported and unreported individuals 182

4.1. Mathematical model 183

Transmissions between infectious and susceptible individuals are described by 184

{
S′(t) = −τ (t)S(t)I(t),
I ′(t) = τ (t)S(t)I(t)− ν I(t),

(1)

where S(t) is the number of susceptible and I(t) the number of infectious at time t. 185

The system (1) is complemented with the initial data 186

S(t0) = S0 ≥ 0, and I(t0) = I0 ≥ 0, (2)

where t0 is a time from which the epidemic model (1) becomes applicable. 187

In this model, the rate of transmission τ (t) combines the number of contacts per unit 188

of time and the probability of transmission (see Section 6.1 for more information). 189

The number 1/ν is the average duration of the asymptomatic infectious period,
τ (t)S(t)I(t) is the flow of S-individuals becoming I-infected at time t. That is,∫ t2

t1

τ (σ)S(σ)I(σ)dσ

is the number of individual that became I during the time interval [t1, t2]. 190

Similarly, ν I(t) is the flow of I-individuals leaving the I-compartment. That is∫ t2

t1

ν I(σ)dσ

is the number of individual that became I during the time interval [t1, t2]. 191

The epidemic model associated with the flowchart in Figure 7 applies to the Hong 192

Kong flu outbreak in New York City [6,7]. 193
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(S)usceptibles (I)nfected
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f η
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(1− f) η I

Infectious Recovered

Figure 7. Flowchart.

We assume that the flow of reported individuals is a fraction 0≤ f ≤ 1 of the flow of 194

recovered individuals ν I. That is, 195

CR′(t) = f ν I(t), for t≥ t0, (3)

where CR(t) is the cumulative number of reported individuals, and f is the fraction of 196

reported individuals. The fraction f is the fraction of patients with severe symptoms, and 197

1− f the fraction of patients with mild symptoms. 198

4.2. Given Parameters 199

In this study, the following parameters will be given: 200

• Number of susceptible individuals when the epidemic starts

S0 = 67 millions for France.

• Time from which the epidemic model starts to be valid, also called initial time of the 201

model t0. 202

Remark 2. The time t0 is a time where the epidemic phase started already. 203

• The average duration of the infectiousness 4.1
ν

= 3 days. 204

• The fraction of reported individuals f = 0.9. 205

4.3. Computed parameters 206

The following parameters will be obtained by comparing the output of the model and 207

the data: 208

• I0 the number of asymptomatic infectious patients at the start of the epidemic. 209

• τ (t) the rate of transmission. 210
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5. Modeling the exponential phase 211

At the early stage of the epidemic, we can assume that S(t) is constant, and equal
to S0. We can also assume that τ (t) remains constant equal to τ0 = τ (t0). Therefore, by
replacing these parameters into the I-equation of system (1) we obtain

I ′(t) = (τ0S0− ν)I(t).

Therefore 212

I(t) = I0e
χ2(t−t0), (4)

where 213

χ2 = τ0S0− ν. (5)

5.1. Initial number of infected and transmission rate 214

By using (3) and (4), we obtain 215

CR(t) = χ1
(
eχ2(t−t0)− 1

)
+χ3. (6)

We observe that
CR(t0) = χ3,

then χ3 is a parameter which must be estimated from the data. 216

By using (3) at t0, we obtain 217

I0 =
CR′(t0)
ν f

=
χ1χ2
ν f

, (7)

and by using (5)

τ0 =
χ2 + ν

S0
.

Note that the above estimations of I0 and τ0 are robust since we used the data over a period 218

(i.e., not only at t0) to evaluate χ1,χ2. 219

5.2. Application to COVID-19 in mainland China 220

The figures below are taken from [8] (see [9] for similar results). 221
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Figure 8. In this figure, we plot the best fit of the exponential model to the cumulative number
of reported cases of COVID-19 in mainland China between February 19 and March 1. We obtain
χ1 = 3.7366, χ2 = 0.2650 and χ3 = 615.41 with t0 = 19 Feb. The parameter χ3 is obtained by
minimizing the error between the best exponential fit and the data.

Remark 3. Fixing f = 0.5 and ν = 0.2, we obtain

I0 = 3.7366× 0.2650× exp(0.2650× 19)/(0.2× 0.5) = 1521,

and
τ0 =

0.2650+ 0.2
1.4× 109 = 3.3214× 10−10.

One may compare Figure 2 with Figure 9 and realize that there is no more jump in 222

Figure 9. Here, we canceled out the jump in Figure 2 due to a change of method in counting 223

the number of cases. More precisely, on February 16, 2020, the cumulative data in Figure 224

2 jumps by 17409 cases (the original data are available in [10, Table 2]). From that day, 225

public health authorities in China decided to include the patients showing symptoms. 226

Jan 19 Jan 29 Feb 08 Feb 18 Feb 28 Mar 090

20 000

40 000

60 000

Data

Figure 9. In this figure, the black dots represent the cumulative number of cases for China (with
correction for the jump presented in Figure 2). The period marked in red corresponds to the period
considered in Figure 8.

Remark 4. It is important to understand that, throughout this article, we fit the cumulative
reported data by using a phenomenological. The reason is simple: the cumulative data
are much smoother, while the daily number of reported cases are much more fluctuating.
Therefore, it is "in theory" much easier to fit the cumulative data with a phenomenological
model. Unfortunately, the problem is not that simple. So for example, in the exponential
phase, we obtain the parameters

CR(t) = χ1
(
eχ2(t−t0)− 1

)
+χ3

by using a best fit to the cumulative number of cases. 227

Next, when we compute the first derivative of the above model to the daily number of 228

cases, this gives a pretty reasonable approximation of the daily number of reported cases. 229

Another way to avoid the first derivative t→ CR(t), is to use the following model

D′(t) = fνI(t)−D(t).
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In this model, we use the same input flow of infected as for the model used to compute the
cumulative number of cases. But here, we assume that daily cases individuals only stay one
day in the D compartment. This model is also equivalent to

D(t) = e−(t−t0)D0 +

∫ t

t0

e−(t−σ)fνI(σ)dσ,

and by replacing fνI(σ) by the cumulative data CR(σ), we obtain a formula for the daily 230

number of cases. 231

So, during the exponential phase, once we obtain the best fit of the model to the
cumulative data, the daily number of cases is given by

D(t) = e−(t−t0)D0 +

∫ t

t0

e−(t−σ)χ1
(
eχ2(σ−t0)− 1

)
+χ3dσ.

The model’s advantage is that it avoids computing a derive of the cumulative number of 232

cases, which can be an issue. 233

5.3. Spectral method in epidemic time series 234

During the COVID-19 pandemic, most people viewed the oscillations around the 235

exponential growth at the beginning of an epidemic wave as the default in reporting the 236

data. The residual is probably partly due to the reporting data process (random noise). 237

Nevertheless, a significant remaining part of such oscillations could be connected to the 238

infection dynamic at the level of a single average patient. Eventually, the central question we 239

try to address here is: Is there some hidden information in the signal around the exponential 240

tendency for COVID-19 data? So we consider the early stage of an epidemic phase, and 241

we try to exploit the oscillations around the tendency in order to reconstruct the infection 242

dynamic at the level of a single average patient. We investigate this question in [11]. 243

The figures below are taken from [11, see Figures 13 and 14]. 244
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Figure 10. In this figure, we plot the cumulative number of reported cases data for Japan between
19 October and 19 November 2020 (black dots). We plot the best fit of the model (29) to the
cumulative data (red curve).

Then in the figure below we plot the first residual. That is,

Residual1(t) = CR(t)−
[
A1e

α1t+C1
]
.
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Figure 11. In this figure, we plot the first residual when subtracting the exponential tendency
obtained in Figure 9 to the cumulative reported cases data between 19 October and 19 November
2020 (black dots). We plot the best fit of the model to the first residual (red curve).

5.4. Monotone property of the cumulative distribution 245

The influence of the errors made in the estimations (at the early stage of the epidemic) 246

has been considered in the recent article [12]. To understand this problem, let us first 247

consider the case of the rate of transmission τ (t) = τ0 in the model (1). 248

From the epidemic model to the data Assume that the transmission rate τ (t) is 249

constant equal to τ > 0 in the model (1). Then by integrating the S-equation in model (1) 250

between t0 and t, we obtain 251

S(t) = S0e
τCI(t) (8)

where
CI(t) =

∫ t

t0
I(σ)dσ.

Moreover
I ′(t) = τS(t)I(t)− νI(t).

replacing S(t) by 8, and by integrating between t0 and t we obtain

I(t) = I0 +S0
(

1− e−τCI(t)
)
− νCI(t).

Remembering that CI(t)′ = I(t), we conclude that the cumulative number of cases should 252

follow a single ordinary differential equaton 253

CI(t)′ = I0 +S0
(

1− e−τCI(t)
)
− νCI(t). (9)

The system (9) is complemented with the initial distribution of the model

CI(t0) = CI0 ≥ 0.

This equation should be a good phenomenological model whenever t 7→ τ (t) is a constant 254

function. We refer to [13], and [14, Chapter 8] for a comprehensive presentation on the 255

monotone ordinary differential equations. 256

Theorem 5. Let t > t0 be fixed. The cumulative number of infectious CI(t) is strictly 257

increasing with respect to the following quantities 258

(i) I0 > 0 the initial number of infectious individuals; 259

(ii) S0 > 0 the initial number of susceptible individuals; 260

(iii) τ > 0 the transmission rate; 261
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(iv) 1/ν > 0 the average duration of the infectiousness period. 262

Error in the estimated initial number of infected and transmission rate

Assume that the parameters χ1 and χ2 are estimated with a 95% confidence interval

χ−1,95% ≤ χ1 ≤ χ+1,95%,

and
χ−2,95% ≤ χ2 ≤ χ+2,95%.

We obtain

I−0,95% :=
χ−1,95%χ

−
2,95%e

χ−
2,95% t0

ν f
≤ I0 ≤ I+0,95% :=

χ+1,95%χ
+
2,95%e

χ+2,95% t0

ν f
,

and

τ−0,95% :=
χ−2,95% + ν

S0
≤ τ0 ≤ τ+0,95% :=

χ+2,95% + ν

S0
.

263

Remark 6. By using the data for mainland China we obtain

χ−1,95% = 1.57, χ+1,95% = 5.89, χ−2,95% = 0.24, χ+2,95% = 0.28.

In Figure 12, we plot the upper and lower solutions CR+(t) (obtained by using 264

I0 = I+0,95% and τ0 = τ+0,95%) and CR−(t) (obtained by using I0 = I−0,95% and τ0 = τ−0,95%) 265

corresponding to the blue region and the black curve corresponds to the best estimated 266

values I0 = 1521 and τ0 = 3.3214× 10−10. 267

Recall that the final size of the epidemic corresponds to the positive equilibrium of (9)

0 = I0 +S0[1− exp(−τ0CI∞)]− νCI∞.

In Figure 12 the changes in the parameters I0 and τ0 (in (5.4)-(5.4)) do not affect significantly 268

the final size. 269

Figure 12. In this figure, the black curve corresponds to the cumulative number of reported
cases CR(t) obtained from the model (7) with CR′(t) = νfI(t) by using the values I0 = 1521 and
τ0 = 3.32× 10−10 obtained from our method and the early data from February 19 to March 1. The
blue region corresponds the 95% confidence interval when the rate of transmission τ (t) is constant
and equal to the estimated value τ0 = 3.32× 10−10.

Remark 7. Theorem 5 can be used day by day to fit the cumulative number of infected 270

CI(t). Indeed, if we assume that τ (t) is a day-by-day piece-wise constant, we can use the 271

monotone properties to find a unique daily value for τ to fit the cumulative data to obtain a 272

perfect match. Such an algorithm was developed in [8]. 273
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6. Modeling a single epidemic wave 274

6.1. What factors govern the transmission of pathogens 275

Estimating the average transmission rate is one of the most crucial challenges in the 276

epidemiology of communicable diseases. This rate conditions the entry into the epidemic 277

phase of the disease and its return to the extinction phase, if it has diminished sufficiently. 278

It is the combination of three factors, one, the coefficient of virulence, linked to the 279

infectious agent (in the case of infectious transmissible diseases), the other, the coefficient of 280

susceptibility, linked to the host (all summarized into the probability of transmission), and 281

also, the number of contact per unit of time between individuals (see [15]). The coefficient of 282

virulence may change over time due to mutation over the course of the disease history. The 283

second and third also, if mitigation measures have been taken. This was the case in China 284

from the start of the pandemic (see [16]. Monitoring the decrease in the average transmission 285

rate is an excellent way to monitor the effectiveness of these mitigation measures. Estimating 286

the rate is therefore a central problem in the fight against epidemics. 287

The transmission rate may vary over time, and it may significantly impact epidemic
outbreaks. As explained in [15], the transmission rate can be decomposed as follow

τ (t) =
the probability of transmission

the average duration of a contact .

In this formula, the transmission probability may depend on climatic changes (temperature, 288

humidity, ultraviolet, and other external factors), and the average duration of contact depends 289

on human social behavior. It can be noted that the transmission rate is proportional to the 290

inverse of the average contact duration because the shorter the average contact duration, 291

the greater the number of contacts per unit of time. 292

Remark 8. A model was proposed by [17] to describe the evolution of the transmission rate
during a single epidemic wave. Namely, the model is the following

τ (t) =

{
τ0, if t0 ≤ t≤N ,
τ0
(
pe−µ(t−N) + (1− p)

)
, if t≥N ,

where N corresponds to the day when the public measures take effect, and µ is the rate at
which they take effect (this parameter describes the speed at which the public measures are
taking place). The fraction 0≤ p≤ 1 is the fraction by which the transmission rate is reduced
when applying public measures. We can rewrite this model shortly by using t+ = max(t,0),
the positive part of t. That is,

τ (t) = τ0
(
pe−µ(t−N)+ + (1− p)

)
,

Such a model was successfully used by [10,18–20] and others. 293

Nevertheless, the model for joining the end of an epidemic wave to the next epidemic 294

wave is still unknown. A tentative model was proposed in [18]. 295

Contact patterns are impacted by social distancing measures. The average number of 296

contacts per unit of time depends on the density of population [21,22]. The probability of 297

transmission depends of the virulence of the pathogen which can depend on the temperature, 298

the humidity, and the Ultraviolet [23,24]. In COVID-19 the level of susceptibility may 299

depend on blood group and genetic lineage. It is indeed suspected that the 300

• Blood group[25] : Blood group O is associated with a lower susceptibility to SARS- 301

CoV2; 302
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• Genetic lineage [26] A gene cluster inherited from Neanderthal has been identified as 303

a risk factor for severe symptoms. 304

6.2. More results and references about the time dependent transmission rate modeling 305

Throughout this section, the parameter S0 = 1.4× 109 will be the entire population 306

of mainland China (since COVID-19 is a newly emerging disease). The actual number of 307

susceptibles S0 can be smaller since some individuals can be partially (or totally) immunized 308

by previous infections or other factors. This is also true for Sars-CoV2, even if COVID-19 is 309

a newly emerging disease. 310

At the early beginning of the epidemic, the average duration of the infectious period 311

1/ν is unknown, since the virus has never been investigated in the past. Therefore, at the 312

early beginning of the COVID-19 epidemic, medical doctors and public health scientists used 313

previously estimated average duration of the infectious period to make some public health 314

recommendations. Here we show that the average infectious period is impossible to estimate 315

by using only the time series of reported cases, and must therefore be identified by other 316

means. Actually, with the data of Sars-CoV2 in mainland China, we will fit the cumulative 317

number of the reported case almost perfectly for any non-negative value 1/ν < 3.3 days. In 318

the literature, several estimations were obtained: 11 days in [27], 9.5 days in [28], 8 days in 319

[29], and 3.5 days in [30]. The recent survey by Byrne et al. [31] focuses on this subject. 320

Result

In Section 6.4, our analysis shows that
• It is hopeless to estimate the exact value of the duration of infectiousness by

using SI models. Several values of the average duration of the infectious period
give the exact same fit to the data.

• We can estimate an upper bound for the duration of infectiousness by using SI
models. In the case of Sars-CoV2 in mainland China, this upper bound is 3.3
days.

321

In [2], it is reported that transmission of COVID-19 infection may occur from an 322

infectious individual who is not yet symptomatic. In [32], it is reported that COVID-19 323

infected individuals generally develop symptoms, including mild respiratory symptoms and 324

fever, on average 5− 6 days after the infection date (with a confience of 95%, range 1− 14 325

days). In [33], it is reported that the median time prior to symptom onset is 3 days, the 326

shortest 1 day, and the longest 24 days. It is evident that these time periods play an 327

important role in understanding COVID-19 transmission dynamics. Here the fraction of 328

reported individuals f is unknown as well. 329

Result

In Section 6.4, our analysis shows that:
• It is hopeless to estimate the fraction of reported by using the SI models.

Several values for the fraction of reported give the exact same fit to the data.
• We can estimate a lower bound for the fraction of unreported. We obtain

3.83× 10−5 < f ≤ 1. This lower bound is not significant. Therefore we can say
anything about the fraction of unreported from this class of models.

330

As a consequence, the parameters 1/ν and f have to be estimated by another method, 331

for instance by a direct survey methodology that should be employed on an appropriated 332

sample in the population in order to evaluate the two parameters. 333

The goal of this section is to focus on the estimation of the two remaining parameters. 334

Namely, knowing the above-mentioned parameters, we plan to identify 335

• I0 the initial number of infectious at time t0; 336
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• τ (t) the rate of transmission at time t. 337

This problem has already been considered in several articles. In the early 70s, London and 338

Yorke [34,35] already discussed the time dependent rate of transmission in the context of 339

measles, chickenpox and mumps. More recently, [36] the question of reconstructing the rate 340

of transmission was considered for the 2002-2004 SARS outbreak in China. In [17] a specific 341

form was chosen for the rate of transmission and applied to the Ebola outbreak in Congo. 342

Another approach was also proposed in [37]. 343

6.3. Why do we need a time-dependent transmission rate? 344

In Figure 13, we observe that the SI model with a constant transmission rate initially 345

fits the data well. With this choice of parameters, the SI model is also supposed with the 346

exponential function. But the model and the exponential function diverge relatively rapidly 347

from the data. It is easy to understand that once people were informed about the COVID-19 348

outbreak, they tried to protect themself, and the number of contacts per unit of time then 349

reduced gradually. That is, the transmission rate gradually decreased. 350

Jan 19 Jan 29 Feb 08 Feb 18 Feb 28 Mar 090

20 000

40 000

60 000

80 000

Data
Exponential model
Autonomous SI

Figure 13. In this figure, the black dots represent the cumulative number of cases for China
(we a correction for the jump presented in Figure 2). The period marked in red corresponds to the
period considered in Figure 8. The yellow curve corresponds to the number of infected obtained
using model (1) with a constant rate of transmission τ (t). We observe a rapid divergence between
the epidemic model and the data whenever the transmission rate is constant with time.

6.4. Theoretical formula for τ (t) 351

By using the S-equation of model (1) we obtain

S(t) = S0 exp
(
−
∫ t

t0

τ (σ)I(σ)dσ
)

,

next by using the I-equation of model (1) we obtain

I ′(t) = S0 exp
(
−
∫ t

t0

τ (σ)I(σ)dσ
)
τ (t)I(t)− νI(t),

and by taking the integral between t and t0 we obtain a Volterra integral equation for the 352

cumulative number of infectious 353

CI′(t) = I0 +S0

[
1− exp

(
−
∫ t

t0

τ (σ)I(σ)dσ
)]
− νCI(t), (10)



Version October 12, 2023 submitted to Appl. Sci. 17 of 56

which is equivalent to (by using (3)) 354

CR′(t) = ν f

(
I0 +S0

[
1− exp

(
− 1
ν f

∫ t

t0

τ (σ)CR′(σ)dσ
)])

+ νCR0− νCR(t). (11)

The following result permits to obtain a perfect match between the SI model and the 355

time-dependent rate of transmission τ (t). 356

Theorem 9. Let S0, ν, f , I0 > 0 and CR0 ≥ 0 be given. Let t → I(t) be the second 357

component of system (1). Let ĈR : [t0,∞)→ R be a two times continuously differentiable 358

function satisfying 359

ĈR(t0) = CR0, (12)

360

ĈR
′
(t0) = ν f I0, (13)

361

ĈR
′
(t) > 0,∀t≥ t0, (14)

and 362

νf(I0 +S0)− ĈR
′
(t)− ν

(
ĈR(t)−CR0

)
> 0,∀t≥ t0. (15)

Then 363

ĈR(t) = CR0 + νf

∫ t

t0
I(s)ds,∀t≥ t0, (16)

if and only if 364

τ (t) =

νf

(
ĈR
′′
(t)

ĈR
′
(t)

+ ν

)
νf(I0 +S0)− ĈR

′
(t)− ν

(
ĈR(t)−CR0

) . (17)

Proof. Assume first (16) is satisfied. Then by using equation (10) we deduce that

S0 exp
(
−
∫ t

t0

τ (σ)I(σ)dσ

)
= I0 +S0− I(t)− νCI(t).

Therefore∫ t

t0

τ (σ)I(σ)dσ = ln
[

S0
I0 +S0− I(t)− νCI(t)

]
= ln(S0)− ln[I0 +S0− I(t)− νCI(t)]

therefore by taking the derivative on both side 365

τ (t)I(t) =
I ′(t) + νI(t)

I0 +S0− I(t)− νCI(t)
⇔ τ (t) =

I ′(t)

I(t)
+ ν

I0 +S0− I(t)− νCI(t)
(18)

and by using the fact that CR(t)−CR0 = νfCI(t) we obtain (17). 366

Conversely, assume that τ (t) is given by (17). Then if we define Ĩ(t) = ĈR
′
(t)/νf and

C̃I(t) =
(
ĈR(t)−CR0

)
/νf , by using (12) we deduce that

C̃I(t) =
∫ t

t0

Ĩ(σ)dσ,

and by using (13) 367

Ĩ(t0) = I0. (19)
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Moreover from (17) we deduce that Ĩ(t) satisfies (18). By using (19) we deduce that 368

t → C̃I(t) is a solution of (10). By uniqueness of the solution of (10), we deduce that 369

C̃I(t) = CI(t),∀t ≥ t0 or equivalently CR(t) = CR0 + νf
∫ t
t0
I(s)ds,∀t ≥ t0. The proof is 370

completed. 371

The formula (17) was already obtained by Hadeler [38, see Corollary 2]. 372

6.5. Explicit formula for τ (t) and I0 373

In 1766, Bernoulli [39] investigated an epidemic phase followed by an endemic phase. 374

This appears clearly in Figures 9 and 10 in [40] who revisited the original article of Bernoulli. 375

We also refer to [41] for another article revisiting the original work of Bernoulli. A similar 376

article has been re-written in French as well by [42]. In 1838, Verhulst [43] introduced the 377

same equation to describe population growth. Several works comparing cumulative reported 378

cases data and the Bernoulli–Verhulst model appear in the literature (see [44–46]). The 379

Bernoulli–Verhulst model is sometimes called Richard’s model, although Richard’s work 380

came much later in 1959. 381

Many phenomenological models have been compared to the data during the first phase 382

of the COVID-19 outbreak. We refer to the paper of [47] for a nice survey on the generalized 383

logistic equations. Let us consider here for example, the Bernoulli-Verhulst equation 384

CR′(t) = χ2CR(t)

(
1−

(
CR(t)
CR∞

)θ)
,∀t≥ t0, (20)

supplemented with the initial data

CR(t0) = CR0 ≥ 0.

Let us recall the explicit formula for the solution of (20) 385

CR(t) =
eχ2(t−t0)CR0[

1+ χ2θ

CRθ∞

∫ t
t0

(
eχ2(σ−t0)CR0

)θ
dσ

]1/θ =
eχ2(t−t0)CR0[

1+ CRθ0
CRθ∞

(
eχ2θ(t−t0)− 1

)]1/θ . (21)

The model’s main advantage is that it is rich enough to fit the data, together with a 386

limited number of parameters. To fit this model to the data, we only need to estimate four 387

parameters χ2,θ,CR0, and CR∞. 388

Remark 10. Plenty of possibilities exist to fit the data, including split functions (irreg-
ular functions with many parameters) and others. In [48], they proposed several possible
alternatives, including a generalized logistic equation of the form

CR′(t) = χ2CR(t)θ
(

1−
(
CR(t)
CR∞

))
,∀t≥ t0.

The above equation has no explicit solution. Therefore it is more difficult to use it than the 389

Bernoulli-Verhulst model. We also refer to [49,50] for more phenomenological model to fit 390

an epidemic wave. 391
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Figure 14. In this figure, we plot the best fit of the Bernoulli-Verhulst model to the cumulative
number of reported cases of COVID-19 in China. We obtain χ2 = 0.66 and θ = 0.22. The black
dots correspond to data for the cumulative number of reported cases and the red curve corresponds
to the model.

Estimated initial number of infected

By combining (10) and the Bernoulli-Verhulst equation (20) for t→ CR(t), we deduce
the initial number of infected

I0 =
CR′(t0)
ν f

=

χ2CR0

(
1−

(
CR0
CR∞

)θ)
ν f

. (22)

392

Remark 11. We fix f = 0.5, from the COVID-19 data in mainland China and formula
(22) (with CR0 = 198), we obtain

I0 = 1909 for ν = 0.1,

and
I0 = 954 for ν = 0.2.

By using (20) we deduce that

CR′′(t) = χ2CR′(t)

(
1−

(
CR(t)
CR∞

)θ)
− χ2θ

CRθ∞
CR(t)(CR(t))θ−1CR′(t)

= χ2CR′(t)

(
1−

(
CR(t)
CR∞

)θ)
− χ2θ

CRθ∞
(CR(t))θCR′(t),

therefore 393

CR′′(t) = χ2CR′(t)

(
1− (1+ θ)

(
CR(t)
CR∞

)θ)
. (23)
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Estimated rate of transmission

By using the Bernoulli-Verhulst equation (20) and substituting (23) in (17), we
obtain

τ (t) =

ν f

(
χ2

(
1− (1+ θ)

(
CR(t)
CR∞

)θ)
+ ν

)

ν f(I0 +S0) + νCR0−CR(t)

(
χ2

(
1−

(
CR(t)
CR∞

)θ)
+ ν

) . (24)

This formula (24) combined with (21) gives an explicit formula for the rate of
transmission.

394

Since CR(t) < CR∞, by considering the sign of the numerator and the denominator of 395

(24), we obtain the following proposition. 396

Proposition 12. The rate of transmission τ (t) given by (24) is non negative for all t≥ t0 397

if 398

ν ≥ χ2 θ, (25)

and 399

f(I0 +S0) + νCR0 > CR∞(χ2 + ν). (26)

Compatibility of the model SI with the COVID-19 data for mainland
China

The model SI is compatible with the data only when τ (t) stays positive for all
t≥ t0. From our estimation of the Chinese’s COVID-19 data we obtain χ2 θ = 0.14.
Therefore from (25) we deduce that model is compatible with the data only when

1/ν ≤ 1/0.14 = 3.3 days. (27)

This means that the average duration of infectious period 1/ν must be shorter than
3.3 days.

Similarly the condition (26) implies

f ≥ CR∞χ2 + (CR∞−CR0)ν

S0 + I0
≥ CR∞χ2 + (CR∞−CR0)χ2 θ

S0 + I0

and since we have CR0 = 198 and CR∞ = 67102, we obtain

f ≥ 67102× 0.66+ (67102− 198)× 0.14
1.4× 109 ≥ 3.83× 10−5. (28)

So according to this estimation the fraction of unreported 0< f ≤ 1 can be almost
as small as we want.

400

Figure 15 illustrates the Proposition 12. We observe that the formula for the rate of 401

transmission (24) becomes negative whenever ν < χ2θ. 402
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Figure 15. In this figure, we plot the rate of transmission obtained from formula (24) with f = 0.5,
χ2 θ = 0.14 < ν = 0.2 (in Figure (a)) and ν = 0.1 < χ2 θ = 0.14 (in Figure (b)), χ2 = 0.66 and
θ = 0.22 and CR∞ = 67102 which is the latest value obtained from the cumulative number of
reported cases for China.

In Figure 16 we plot the numerical simulation obtained from (1)-(3) when t→ τ (t) is 403

replaced by the explicit formula (24). It is surprising that we can reproduce perfectly the 404

original Bernoulli-Verhulst even when τ (t) becomes negative. This was not guaranteed at 405

first, since the I-class of individuals is losing some individuals which are recovering. 406
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Figure 16. In this figure, we plot the number of reported cases by using model (1) and (10),
and the rate of transmission is obtained in (24). The parameters values are f = 0.5, ν = 0.1 or
ν = 0.2, χ2 = 0.66 and θ = 0.22 and CR∞ = 67102 is the latest value obtained from the cumulative
number of reported cases for China. Furthermore, we use S0 = 1.4× 109 for the total population of
China and I0 = 954 which is obtained from formula (22). The black dots correspond to data for the
cumulative number of reported cases observed and the blue curve corresponds to the model.

6.6. Results 407

In [8], we designed an algorithm, based on the monotone property described in Theorem 408

5 to recover the transmission rate from the data. In this section, we reconsider the result 409

presented in [8] where several method was used to regularized the data. 410
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In Figure 17 we plot several types of regularized cumulative data in figure (a) and 411

several types of regularized daily data in figure (b). Among the different regularization 412

methods, an important one is the Bernoulli-Verhulst best fit approximation. 413
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Figure 17. In this figure, we plot the cumulative number of reported cases (left) and the daily
number of reported cases (right). The black curves are obtained by applying the cubic spline matlab
function "spline(Days,DATA)" to the cumulative data. The left-hand side is obtained by using the
cubic spline function and right-hand side is obtained by using the derivative of the cubic spline
interpolation. The blue curves are obtained by using cubic spline function to the day by day values
of cumulative number of cases obtained from the best fit of the Bernoulli-Verhulst model. The
orange curves are obtained by computing the rolling weekly daily number of cases (we use the matlab
function "smoothdata(DAILY,’movmean’,7)") and then by applying the cubic spline function the
corresponding cumulative number of cases. The yellow curves are obtained by Gaussian the rolling
weekly to the daily number of cases (we use the matlab function "smoothdata(DAILY,’gaussian’,7)")
and then by applying the cubic spline function to the corresponding cumulative number of cases.

In Figure 18 we plot the rate of transmission t→ τ (t) obtained by using Algorithm 414

2. We can see that the original data gives a negative transmission rate while at the other 415

extreme the Bernoulli-Verhulst seems to give the most regularized transmission rate. In 416

Figure 18-(a) we observe that we now recover almost perfectly the theoretical transmission 417

rate obtained in (24). In Figure 18-(b) the rolling weekly average regularization and in 418

Figure 18-(c) the Gaussian weekly average regularization still vary a lot and in both cases 419

the transmission rate becomes negative after some time. In Figure 18-(c) the original data 420

gives a transmission rate that is negative from the beginning. We conclude that it is crucial 421

to find a "good" regularization of the daily number of case. So far the best regularization 422

method is obtained by using the best fit of the Bernoulli-Verhulst model. 423
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Figure 18. In this figure we plot the transmission rates t→ τ (t) obtained by using Algorithm 2
with the parameters f = 0.5 and ν = 0.2. In figure (a) we use the cumulative data obtained by using
the Bernoulli-Verhulst regularization. In figure (b) we use the cumulative data obtained by using
the rolling weekly average regularization. In figure (c) we use the cumulative data obtained by using
the Gaussian weekly average regularization. In figure (d) we use the original cumulative data.

7. Modeling multiple epidemic waves 424

7.1. Phenomenological model used for multiple epidemic waves 425

Endemic phase: During the endemic phase, the dynamics of new cases appears to 426

fluctuate around an average value independently of the number of cases. Therefore the 427

average cumulative number of cases is given by 428

CR(t) =N0 + (t− t0)× a, for t ∈ [t0, t1], (29)

where t0 denotes the beginning of the endemic phase, N0 is the number of new cases at 429

time t0, and a is the average value of the daily number of new cases. 430

Epidemic phase: In the epidemic phase, the new cases are contributing to produce 431

secondary cases. Therefore the daily number of new cases is no longer constant, but varies 432

with time as follows 433

CR(t) =Nbase +
eχ(t−t0)N0[

1+ Nθ
0

Nθ
∞

(
eχθ(t−t0)− 1

)]1/θ , for t ∈ [t0, t1]. (30)

In other words, the daily number of new cases follows the Bernoulli–Verhulst equation. That 434

is, 435

N(t) = CR(t)−Nbase, (31)

we obtain 436

N ′(t) = χN (t)

[
1−

(
N(t)

N∞

)θ]
, (32)

completed with the initial value
N(t0) =N0.
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In the model, Nbase+N0 corresponds to the value CR(t0) of the cumulative number of cases 437

at time t= t0. The parameter N∞+Nbase is the maximal value of the cumulative reported 438

cases after the time t = t0. χ > 0 is a Malthusian growth parameter, and θ regulates the 439

speed at which CR(t) increases to N∞+Nbase. 440

Regularize the junction between the epidemic phases: Because the formula for τ (t) 441

involves derivatives of the phenomenological model regularizing CR(t) (see equations (8)), 442

we need to connect the phenomenological models of the different phases (epidemic and 443

endemic) as smoothly as possible. Let t0, . . . , tn denote the n+ 1 breaking points of the 444

model, that is, the times at which there is a transition between one phase and the next one. 445

We let C̃R(t) be the global model obtained by placing the phenomenological models of the 446

different phases side by side. 447

More precisely, C̃R(t) is defined by (30) during an epidemic phase [ti, ti+1], or during 448

the initial phase (−∞, t0] or the last phase [tn,+∞). During an endemic phase, C̃R(t) 449

is defined by (29). The parameters are chosen so that the resulting global model C̃R is 450

continuous. We define the regularized model by using the convolution formula: 451

CR(t) =
∫ +∞

−∞
G(t− s)× C̃R(s)ds= (G ∗ C̃R)(t), (33)

where
G(t) :=

1
σ
√

2π
e−

t2
2σ2

is the Gaussian function with mean 0 and variance σ2. The parameter σ controls the
trade-off between smoothness and precision: increasing σ reduces the variations in CR(t)
and reducing σ reduces the distance between CR(t) and C̃R(t). In any case the resulting
function CR(t) is very smooth (as well as its derivatives) and close to the original model
C̃R(t) when σ is not too large. Here, we fix

σ = 7 days.

Numerically, we will need to compute some t→ CR(t) derivatives. Therefore it is convenient 452

to take advantage of the convolution (33) and deduce that 453

dnCR(t)
dtn

=

∫ +∞

−∞

dnG(t− s)
dtn

× C̃R(s)ds, (34)

for n= 1,2,3. 454

7.2. Phenomenological Model apply to France 455

Figures 19-20 below is taken from [51]. In Figure 19, we present the best fit of our 456

phenomenological model for the cumulative reported case data of COVID-19 epidemic 457

in France. The yellow regions correspond to the endemic phases and the blue regions 458

correspond to the epidemic phases. Here we consider the two epidemic waves for France, 459

and the chosen period, as well as the parameters values for each period. 460
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Figure 19. The red curve corresponds to the phenomenological model and the black dots correspond
to the cumulative number of reported cases in France.

Figure 20 shows the corresponding daily number of new reported cases data (black 461

dots) and the first derivative of our phenomenological model (red curve). 462

Figure 20. The red curve corresponds to the phenomenological model and the black dots correspond
to the cumulative number of reported cases in France.

7.3. Phenomenological Model apply to several countries 463

Our method to regularize the data was applied to the eight geographic areas. The 464

resulting curves are presented in Figure 21. The blue background color regions correspond 465

to epidemic phases and the yellow background color regions to endemic phases. We added a 466

plot of the daily number of cases (black dots) and the derivative of the regularized model for 467

comparison, even though the daily number of cases is not used in the fitting procedure. The 468

figures generally show an excellent agreement between the time series of reported cases (top 469

row, black dots) and the regularized model (top row, blue curve). The match between the 470

daily number of cases (bottom row, black dots) and the derivative of the regularized model 471

(bottom row, blue curve) is also excellent, even though it is not a part of the optimization 472

process. Of course, we lose some information, like the extreme values (“peaks”) of the 473

daily number of cases. This is because we focus on an averaged value of the number of 474

cases. More information could be retrieved by statistically studying the variation around 475

the phenomenological model. However, we leave such a study for future work. The relative 476

error between the regularized curve and the data may be relatively high at the beginning of 477

the epidemic because of the stochastic nature of the infection process and the small number 478

of infected individuals but quickly drops below 1% (see the supplementary material in [52] 479

for more details). 480
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Figure 21. In the top rows, we plot the cumulative number of reported cases (black dots) and the
best fit of the phenomenological model (blue curve). In the bottom rows, we plot the daily number of
reported cases (black dots) and the first derivative of the phenomenological model (blue curve). This
figure is taken from [52].

7.4. Earlier results about transmission rate reconstructed from the data 481

This problem has already been considered in several articles. In the early 70s, London 482

and Yorke [34,35] discussed the time dependent rate of transmission in the context of measles, 483

chickenpox and mumps. Motivated by applications to the data for COVID-19 in [53] the 484

authors also obtained some new results about reconstructing the rate of transmission. 485

7.5. Instantaneous reproduction number 486

We use the formula (8) to compute the transmission rate, and we consider the instan-
taneous reproduction number

Re(t) = τ (t)S(t)/ν,

and the quasi-instantaneous reproduction number

R0
e (t) = τ (t)S0/ν,

We compare the above indicators with RC
e (t) the classical notion of instantaneous re- 487

production number [54–56]. 488

Remark 13. The standard method to compute RC
e (t) (see [54–56]) proposes another form 489

of regularization of the data, which consists of computing the instant of contamination 490

backward in time. This instant is random and follows a standard exponential law. 491

7.6. Results 492

In Figure 22, our analysis allows us to compute the transmission rate τ (t). We use this 493

transmission rate to calculate two different indicators of the epidemiological dynamics for 494

each geographic area, the instantaneous reproduction number and the quasi-instantaneous 495

reproduction number. Both coincide with the basic reproduction number R0 on the first 496

day of the epidemic. The instantaneous reproduction number at time t, Re(t), is the basic 497

reproduction number corresponding to an epidemic starting at time t with a constant 498

transmission rate equal to τ (t) and with an initial population of susceptibles composed 499

of S(t) individuals (the number of susceptible individuals remaining in the population). 500
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The quasi-instantaneous reproduction number at time t, R0
e(t), is the basic reproduction 501

number corresponding to an epidemic starting at time t with a constant transmission rate 502

equal to τ (t) and with an initial population of susceptibles composed of S0 individuals (the 503

number of susceptible individuals at the start of the epidemic). The two indicators are 504

represented for each geographic area in the top row of Figure 22 (black curve: instantaneous 505

reproduction number; green curve: quasi-instantaneous reproduction number). 506

One interpretation for Re(t) and another for R0
e(t). The instantaneous reproduction 507

number indicates if, given the current state of the population, the epidemic tends to 508

persist or die out in the long term (note that our model assumes that recovered individuals 509

are perfectly immunized). The quasi-instantaneous reproduction number indicates if the 510

epidemic tends to persist or die out in the long term, provided the number of susceptible is 511

the total population. In other words, we forget about the immunity already obtained by 512

recovered individuals. Also, it is directly proportional to the transmission rate and therefore 513

allows monitoring of its changes. Note that the value of R0
e(t) changed drastically between 514

epidemic phases, revealing that τ (t) is far from constant. In any case, the difference between 515

the two values starts to be visible in the figures one year after the start of the epidemic. 516

We also computed the reproduction number using the method described in [55], which 517

we denoted Rce(t). The precise implementation is described in the supplementary material in 518

[52]. It is plotted in the bottom row of Figure 22 (green curve), along with the instantaneous 519

reproduction number Re(t) (green curve). 520

Remark 14. In the bottom of Figure 22, we compare the instantaneous reproduction 521

numbers obtained by our method in black and the classical method in [55] in green. We 522

observe that the two approaches are not the same at the beginning. This is because the 523

method of [55] does not consider the initial values I0 and E0 while we do. Indeed the 524

method of [55] assumes that I0 and E0 are close to 0 at the beginning when it is viewed as a 525

Volterra equation reformulation of the Bernoulli–Kermack–McKendrick model with the age 526

of infection. On the other hand, our method does not require such an assumption since it 527

provides a way to compute the initial states I0 and E0. 528
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Figure 22. In the top rows, we plot the instantaneous reproduction number Re(t) (in black) and
the quasi instantaneous reproduction number R0

e(t) (in green). In the bottom rows, we plot the
instantaneous reproduction number Re(t) (in black) and the one obtained by the standard method
[54,55] RCe (t) (in green). This figure is taken from [52].
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It is essential to “regularize” the data to obtain a comprehensive outcome from SIR 529

epidemic models. In general, the rate of transmission in the SIR model (applying identifica- 530

tion methods) is not very noisy and meaningless. For example, at the beginning of the first 531

epidemic wave, the transmission rate should be decreasing since peoples tend to have less 532

and less contact while to epidemic growth. The standard regularization methods (like, for 533

example, the rolling weekly average method) have been tested for COVID-19 data in [8]. 534

The outcome in terms of transmission rate is very noisy and even negative transmission 535

(which is impossible). Regularizing the data is not an easy task, and the method used is very 536

important in order to obtain a meaningful outcome for the models. Here, we tried several 537

approaches to link an epidemic phase to the next endemic phase. So far, this regularization 538

procedure is the best one. 539

Figure 23 illustrates why we need a phenomenological model to regularize the data. 540

On the left-hand side, we observe the τ (t) becomes negative almost immediately. Therefore, 541

without regularization, the fit may not make sense. 542

(a) (b)

Figure 23. In this figure, we plot the instantaneous R0. On the left-hand side, we use our smoothing
method (with Bernoulli-Verhulst model (endemic) line (endemic) together with a convolution with a
Gaussian). On the right-hand side, we use the original cumulative data and our algorithm to fit the
cumulative number of cases.

7.7. Consequences of the results 543

In Figure 22, we saw that the population of susceptible patients is almost unchanged
after the epidemic passed. Therefore, the system behaves almost like the non-autonomous
system

I ′(t) = τ (t)S0I(t)− νI(t),∀t≥ t0, and I(t0) = I0,

This means that I(t) depends linearly on I0. That is, if we multiply I0 by some number, 544

the result I(t) will be multiply by the same number. 545

Figure 24 shows two things. The initial number of infected is crucial when we try to 546

predict the number of infected. The average daily number of cases during the endemic 547

phases have strong impact on the amplitude of the next epidemic waves [51]. 548

Aug Sep Oct Nov

2020   

200 000

400 000

600 000

800 000

1 000 000

1 200 000

1 400 000

1 600 000

1 800 000

2 000 000
Data
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Figure 24. We start the simulation at time t0 =July 5, 2020 with the initial value I0 =
CR′(t2)
νf

for red curve and with I0 = 0.41CR
′(t2)
νf

for yellow curve).
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In this section, we obtained a model that covert the changes of regimen (from endemic 549

to epidemic and conversely). Moreover the detection of the changes of regimen between 550

epidemic wave and endemic period is still difficult to detect. An attempt to study this 551

question can be found in [57]. 552

8. Exponential phase with more compartments 553

8.1. A model with transmission from the unreported infectious 554

We consider a model with unreported infection individuals. 555
S′(t) = −τ (t)S(t)(I(t) +U(t)),

I ′(t) = τ (t)S(t)(I(t) +U(t))− νI(t),

U ′(t) = ν (1− f)I(t)− ηU(t),

(35)

for t≥ t0, and with initial distribution 556

S(t0) = S0, I(t0) = I0, and U(t0) = U0. (36)

The epidemic model associated with the flowchart in Figure 25 applies to influenza 557

outbreaks in [58], hepatitis A outbreaks in [59], and COVID-19 in [9]. 558

(S)usceptibles (I)nfected

(R)eported

(U)nreported

(R)ecovered
τ S (I + U)

f η
I

(1− f) η I

νR

νU

Asymptomatic infectious Symptomatic infectious

Figure 25. Flowchart.

8.2. The exponential phase approximation 559

We assume that S(t) is constant, and equal to S0, and τ (t) remains constant equal to 560

τ0 = τ (t0). The consider for example the case of a single age group, we obtain the following 561

model which was first considered for COVID-19 562{
I ′(t) = τS0(I(t) +U(t))− νI(t),

U ′(t) = ν (1− f)I(t)− ηU(t),
(37)

for t≥ t0, and with initial distribution 563

I(t0) = I0, and U(t0) = U0. (38)

We can reformulate this system using a matrix formulation(
I ′(t)
U ′(t)

)
= A

(
I(t)
U(t)

)
,∀t ∈ [t0, t1],

where
A=

(
τ S0− ν τ S0
ν(1− f) −η

)
.

Then the matrix A is irreducible if and only if

ν(1− f) > 0 and τ S0 > 0.
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Remember the model (37) to connect the data and the epidemic model

CR′(t) = f ν I(t), for t≥ t0.

Consider the exponential phase of the epidemic. That is,

CR′(t) = χ1χ2e
χ2t,∀t ∈ [t0,τ + t0],

for some τ > 0. Combining the two previous equations, we obtain

f ν I(t) = χ1e
χ2(t−t0),∀t ∈ [t0,τ + t0],

Remember that χ1 and χ2 are computed by using the data. More precisely, these parameters 564

are obtained by fitting t→ χ1eχ2t−χ3 to the cumulative number of cases data during a 565

period of time [t0,τ + t0]. 566

We can rewrite f ν I(t) = χ1eχ2t by using an inner product〈
y0,
(

I(t)
U(t)

)〉
= χ1e

χ2t, with y0 =

(
ν f

0

)
,

where 〈., .〉 is the Euclidean inner product defined in dimension 2 as

〈x,y〉= x1y1 + x2y2.

The following theorem is proved in Appendix A. 567

Theorem 15. Let χ1 > 0, χ2 > 0, and τ > 0. Let A be a n by n real matrix. Assume that 568

the off-diagonal elements of A are non-negative, and A is irreducible. Assume that there 569

exist two vectors y0 > 0, and x0 > 0 such that 570

(Linear model) ẋ(t) = Ax(t), and x(0) = x0,

satisfies
(Connection with the data) 〈y0,x(t)〉= χ1e

χ2t,∀t ∈ [0,τ ],

where 〈x,y〉 is the Euclidean inner product. 571

Then χ2 must be the dominant eigenvalue A (i.e., the one with the largest real part).
Moreover, we can choose a vector x0 � 0 (i.e., with all its components strictly positive),
satisfying

Ax0 = χ2x0.

Multiplying x0 by a suitable positive constant, we obtain 〈y0,x0〉= χ1, and we obtain 572

〈y0,x(t)〉= χ1e
χ2t,∀t ∈ [0,τ ].

Returning back to the example of epidemic model with unreported cases, we must find
I(0) > 0 and U(0) > 0 such that(

τ S0− ν τ S0
ν(1− f) −η

)(
I(0)
U(0)

)
= χ2

(
I(0)
U(0)

)
.

After a few computations (see the supplementary in Liu et al. [9]), we obtain 573

τ =
χ2 + ν

S0

η+χ2
ν(1− f) + η+χ2

, (39)
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and 574

U0 =
ν(1− f)
η+χ2

I0 =
(1− f)ν
η+χ2

I0. (40)

Remark 16. Let χ1 > 0, χ2 > 0, φ1 > 0, φ2 > 0, and τ > 0. Assume that x0 > 0, y0 > 0
and z0 > 0 satisfy

ẋ(t) = Ax(t), and x(0) = x0,

and
〈y0,x(t)〉= χ1e

χ2t,∀t ∈ [0,τ ],

〈z0,x(t)〉= φ1e
φ2t,∀t ∈ [0,τ ].

If χ2 , φ2 the matrix A must be reducible. That is, up to a re-indexation of the components
of x(t), the matrix A reads as

A=

(
A11 0
A21 A22

)
where Aij are block matrices. The matrix A presents a weak coupling between the last block’s 575

components and the first block’s components. 576

8.3. Uncertainty due to the period chosen to fit the data 577

The principle of our method is the following. By using an exponential best fit method
we obtain a best fit of (6) to the data over a time [t1, t2] and we derive the parameters χ1
and χ2. The values of I0 U0, and τ0 are obtained by using (7), (36) and (37). Next, we use

τ (t) = τ0e
−µ(t−N)+ ,

we fix N (first day of public intervention) to some value and we obtain µ by trying to get 578

the best fit to the data. 579

In the method the uncertainty in our prediction is due to the fact that several sets of
parameters (t1, t2,N ,f) may give a good fit to the data. As a consequence, at the early
stage of the epidemics (in particular before the turning point) the outcome of our method
can be very different from one set of parameters to another. We try to solve this uncertainty
problem by using several choices of the period to fit an exponential growth of the data
to determine χ1 and χ2 and several choices for the first day of intervention N . So in this
section, we vary the time interval [t1, t2], during which we use the data to obtain χ1 and χ2
by using an exponential fit. In the simulations below, the first day t1 and the last day t2
vary such that

Earliest day ≤ t1 ≤ t2 ≤ Latest day.

We also vary the first day of public intervention:

Earliest first day of intervention≤N ≤ Latest first day of intervention.

We vary f between 0.1 to 0.9. For each (t1, t2,ν,f ,η,µ,N) we evaluate µ to obtain the 580

best fit of the model to the data. We use the mean absolute deviation as the distance to 581

data to evaluate the best fit to the data. We obtain a large number of best fit depending on 582

(t1, t2,ν,f ,η,µ,N) and we plot smallest mean absolute deviation MADmin. Then we plot 583

all the best fit graphs with mean absolute deviation between MADmin and MADmin + 40. 584

The figure below is taken from Liu et al. [60]. 585
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Figure 26. In this figure, we consider the data for Germany. We plot the cumulative number of
cases of the left hand side and the daily number of cases on the right hand side. In (a) and (b) we
use the data until March 22. In (c) and (d) we use the data until April 11. (e) and (f) we use the
data until June 10.

9. Modeling COVID-19 epidemic with age groups 586

This section considers an epidemic whenever the population is divided into age groups. 587

Here, age means the chronological age, which is nothing but the time since birth. 588

9.1. Epidemic model with age groups 589

The epidemic model with age structure and unreported cases reads as follows, for each
t≥ t0, 

S′1(t) = −τ1S1(t)

[
φ11

I1(t) +U1(t)

N1
+ . . .+φ1n

In(t) +Un(t)

Nn

]
,

...

S′n(t) = −τnSn(t)
[
φn1

I1(t) +U1(t)

N1
+ . . .+φnn

In(t) +Un(t)

Nn

]
,


I ′1(t) = τ1S1(t)

[
φ11

I1(t) +U1(t)

N1
+ . . .+φ1n

In(t) +Un(t)

Nn

]
− νI1(t),

...

I ′n(t) = τnSn(t)

[
φn1

I1(t) +U1(t)

N1
+ . . .+φnn

In(t) +Un(t)

Nn

]
− νIn(t),

and 
U ′1(t) = ν1

2 I1(t)− ηU1(t),
...

U ′n(t) = νn2 In(t)− ηUn(t),
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with the initial values

Si(t0) = S0
i ,Ii(t0) = I0

i , and Ui(t0) = U0
i ,∀i= 1, . . . ,n.

9.2. Cumulative reported cases with age structure in Japan 590

We first choose two days d1 and d2 between which each cumulative age group grows
like an exponential. By fitting the cumulative age classes [0,10[,[10,20[, . . . and [90,100[
between d1 and d2, for each age class j = 1, . . .10 we can find χj1, χ

j
2 and χj3

CRdataj (t) ' χj1 e
χj2t−χj3.

We obtain 591
CR1(t) = χ1

1 e
χ1

2t−χ1
3,

...
CRn(t) = χn1 e

χn2 t−χn3 ,
(41)

where
χij ≥ 0,∀i= 1, . . . ,n, ∀j = 1,2,3.

In Figures 27-28, the growth rate of the exponential fit depends on the age group [61]. In 592

Figures 27-28, we see the similarity of dynamical behavior at the two extreme age groups 593

[0,20] and [70,100]. 594
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Figure 27. In this figure, we plot an exponential fit to the cumulative data for each age groups
[0,10[,[10,20[, . . . and [90,100[ in Japan.

Figure 28. In this figure, we plot an exponential fit to the cumulative data for each age groups
[0,10[,[10,20[, . . . and [90,100[ in Japan.
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9.3. Method to Fit of the Age Structured Model to the Data 595

By assuming that the number of susceptible individuals remains constant we have for
each t≥ t0,

I ′1(t) = τ1S1

[
φ11

I1(t) +U1(t)

N1
+ . . .+φ1n

In(t) +Un(t)

Nn

]
− νI1(t),

...

I ′n(t) = τnSn

[
φn1

I1(t) +U1(t)

N1
+ . . .+φnn

In(t) +Un(t)

Nn

]
− νIn(t),

and 596
U ′1(t) = ν1

2 I1(t)− ηU1(t),
...

U ′n(t) = νn2 In(t)− ηUn(t),
(42)

with the initial values

Ii(t0) = I0
i , and Ui(t0) = U0

i ,∀i= 1, . . . ,n.

9.4. Rate of contact 597

The values in Figure 29 describe the contact rates between age groups. The values 598

used are computed from the values obtained in [62]. 599
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Figure 29. For each age class in the y-axis we plot the rate of contacts between one individual of
this age class and another individual of the age class indicated on the x-axis. The figure represents
the rate of contacts before the start of public measures (April 11).

We assume that 
CR1(t)′ = ν1

1I1(t),
...

CRn(t)′ = νn1 In(t),

where
νi1 = ν fi, and νi2 = ν (1− fi),∀i= 1, . . . ,n.

Therefore, we obtain
Ij(t) = I?j e

χj2t,

where

I?j :=
χj1χ

j
2

νj1
.

If we assume that the Uj(t) have the following form

Uj(t) = U?j e
χj2t,
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then by substituting in (42) we obtain

U?j =
νj2I

?
j

η+χj2
.

The cumulative number of unreported cases CUj(t) is computed as

CUj(t)′ = νj2Ij(t),

and we used the following initial condition:

CUj(0) = CU?j =
∫ 0

−∞
νj2I
∗
j e
χj2sds=

νj2I
?
j

χj2
.

We define the error between the data and the model as follows
I ′1(t) = τ1S1

[
φ11

I1(t) +U1(t)

N1
+ . . .+φ1n

In(t) +Un(t)

Nn

]
− νI1(t) + ε1(t),

...

I ′n(t) = τnSn

[
φn1

I1(t) +U1(t)

N1
+ . . .+φnn

In(t) +Un(t)

Nn

]
− νIn(t) + εn(t),

or equivalently
ε1(t) =

(
χ1

2 + ν
)
I?1e

χ1
2t− τ1S1

[
φ11

I?1 +U?1
N1

eχ
1
2t+ . . .+φ1n

I?n+U?n
Nn

eχ
n
2 t
]
,

...

εn(t) = (χn2 + ν)I?ne
χn2 t− τnSn

[
φn1

I?1 +U?1
N1

eχ
1
2t+ . . .+φnn

I?n+U?n
Nn

eχ
n
2 t
]
.

Lemma 17. Assume that the matrix φ be fixed. If we consider the errors ετ1(t), . . . ,ετn(t)
as a function of τ , then we can a unique value τ∗ = (τ?1 , . . . ,τ?n) which minimizes that L2

norm of the errors. That

∑
j=1,...,n

∫ d2

d1

ετ
?

j (t)2dt. = min
τ∈Rn

∑
j=1,...,n

∫ d2

d1

ετj (t)
2dt.

Moreover,

τ?j =

∫ d2
d1
Kj(t)Hj(t)dt∫ d2
d1
Hj(t)2dt

,

with
Kj(t) :=

(
χj2 + ν

)
I?j e

χj2t,∀j = 1, . . . ,n,

and
Hj(t) := Sj

[
φj1

I?1 +U?1
N1

eχ
1
2t+ . . .+φjn

I?n+U?n
Nn

eχ
n
2 t
]
,∀j = 1, . . . ,n.

Proof. We look for the vector τ = (τ1, . . . ,τn) which minimizes of

min
τ∈Rn

∑
j=1,...,n

∫ d2

d1

εj(t)
2dt.

Define for each j = 1, . . . ,n
Kj(t) :=

(
χj2 + ν

)
I?j e

χj2t
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and
Hj(t) := Sj

[
φj1

I?1 +U?1
N1

eχ
1
2t+ . . .+φjn

I?n+U?n
Nn

eχ
n
2 t
]
,

so that
εj(t) =Kj(t)− τjHj(t).

Hence for each j = 1, . . . ,n∫ d2

d1

εj(t)
2dt=

∫ d2

d1

Kj(t)
2dt− 2τj

∫ d2

d1

Kj(t)Hj(t)dt+ τ2
j

∫ d2

d1

Hj(t)
2dt,

and the minimum of
∫ d2
d1
εj(t)2dt is obtained for τj satisfying

0 =
∂

∂τj

∫ d2

d1

εj(t)
2dt= −2

∫ d2

d1

Kj(t)Hj(t)dt+ 2τj
∫ d2

d1

Hj(t)
2dt

whenever

τj =

∫ d2
d1
Kj(t)Hj(t)dt∫ d2
d1
Hj(t)2dt

.

Under this condition, we obtain∫ d2

d1

εj(t)
2dt=

∫ d2

d1

Kj(t)
2dt− τ2

j

∫ d2

d1

Hj(t)
2dt.

600

Remark 18. It does not seem possible to estimate the matrix of contact φ by using similar
optimization method. Indeed, if we look for a matrix φ= (φij) which minimizes

min
φ∈Mn(R)

∑
j=1,...,n

∫ d2

d1
εj(t)

2dt,

it turn out that ∑
j=1,...,n

∫ d2

d1

εj(t)
2dt= 0

whenever φ is diagonal. Therefore the optimum is reached for any diagonal matrix. Moreover 601

by using similar considerations, if several χ2
j are equal, we can find a multiplicity of optima 602

(possibly with φ not diagonal). This means that trying to optimize by using the matrix φ 603

does not yield significant and reliable information. 604

In the Figure below, we present an example of application of our method to fit the 605

Japanese data. We use the period going from 20 March to 15 April. 606
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Figure 30. We plot a comparison between the model (without public intervention) and the age
structured data from Japan (black dots).

In the Figure below, we present an example of application of our method to fit the 607

Japanese data. We use the period going from 20 March to 15 April. 608
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Figure 31. We plot a comparison between the model (without public intervention) and the age
structured data from Japan (black dots).

10. A survey for COVID-19 mathematical modeling 609

During the COVID-19 pandemic, scientific workforces in different fields published 610

COVID-19-related papers. The number of articles published increased considerably during 611

this period. For example, on August 23, 2023, the WHO COVID-19 Research Database 612

[63] contains 724288 full texts of articles concerning the COVID-19 outbreak. Consequently, 613

providing an extensive review on the subject is hopeless. Here, we make some arbitrary 614

choices that can always be discussed. Our main goal is to give extra references on the topics 615

mentioned earlier and highlight topics not considered in the previous sections. Several 616

articles have attempted to do systematic reviews on COVID-19. We refer to [64,65] for more 617

results and a broader overview of the subject. 618

The idea of this survey was mostly to collect references from the Infectious Disease 619

Outbreak webinar, which took place from 2020 to 2022 [66]. 620

10.1. Medical survey 621

Mathematical models alone do not provide reliable information. In Figure 13, we show 622

the divergence of the mathematical model from the data. It is therefore fundamental to 623

bring medical results into the models. 624

It is therefore fundamental to integrate medical facts into mathematical models. We 625

have tried throughout this text to explain how to make maximum use of the data either 626

as input (test data) or as output (reported case data). But the dynamics of infection can 627
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be understood much better by examining concrete case studies in hospitals. For example, 628

modeling the dynamics of infectious clusters is crucial in preventing the spread of disease. 629

We refer to [67–81] for more results and references. 630

The early development of an epidemic are very important, and an interesting retrospect 631

of the first weeks of COVID-19 in China was presented by Zhao in [82]. 632

10.2. Incubation, Infectiousness, and Recovery Period 633

The infectious dynamic has three phases: 634

(i) The emission of the infectious agent, which depends on its concentration during its 635

expulsion (remotely by air transportation or directly by secretion contact) from the 636

contagious person; 637

(ii) Transmission of the infectious agent (through an intermediate fluid or on a contact 638

surface); 639

(iii) The reception of the infectious agent by a future host who becomes infected and 640

whose symptomatology and secondary emission capacities will depend on the infectious 641

agent’s pathogenic nature and the host’s immune defenses. 642

These defenses are set up in two successive stages, corresponding to innate immunity, then 643

to acquired immunity. It is, therefore, conceivable that the transmission capacity of an 644

infectious person depends on the individual infection age. That is, the time since this person 645

was infected. We refer to [3,83–89] for more results on the subject. In [90], we proposed a 646

method to understand the average individual dynamic of infection by clusters data. When 647

considering epidemic exponential phase data, a time series approach is proposed in [11]. We 648

refer to [91] for more results on the subject. 649

10.3. Data 650

An essential aspect of epidemics outbreaks is understanding the biases in the data. 651

That is the different causes, such as unreported case data, tests, false positive PRC tests, 652

and other factors that may bias our understanding of the data. Clusters of infected also 653

provide another kind of data that may give another angle to examine the same problem. We 654

should also mention the data provided by the wasted water that offers a helpful complement 655

to the existing reported case data. 656

10.3.1. Contact tracing 657

Contact tracing has been the main tool of public health authorities, for example, in 658

South Korea when the COVID-19 pandemic started. In France, a dedicated digital tool 659

called Stop-Covid has been developed. In [92], authors estimate that this digital approach 660

was adopted not because digital solutions (to contact tracing) are superior to traditional 661

ones but by default due to alienation and lack of interdisciplinary cooperation, which could 662

be due to the fact that contact tracing is balancing personal privacy and public health, 663

causing significant biases in classical inquiries with questionnaires [93]. We refer to [91–104] 664

for more results on the subject. 665

10.3.2. Testing data 666

A mathematical model to understand the bias in PCR tests was proposed first by 667

[105,106]. Diagnostic tests, particularly the PCR test, have been of considerable importance 668

in most countries’ follow-up of new cases. We refer [107–113]. Mathematical models, 669

including testing data as an input of the model, were proposed by [5,114]. 670

10.3.3. Unreported and uncertainty in the number of reported case data 671

The origin of unreported cases of COVID-19 is multiple. It may be due to 672

(i) a poor organization of the reporting system by the medical profession or recording by 673

the administrative staff (especially at weekends); 674

(ii) The presence of asymptomatic cases; 675
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(iii) The non-consultation and/or the non-taking of medication in the symptomatic case, for 676

reasons related to the patient or his entourage (presence of an intercurrent pathology 677

or an existing chronic disease masking the symptoms, reasons financial, religious, 678

philosophical, social, etc.). 679

We refer to [5,9,10,60,115–120] for more results on the subject. 680

10.3.4. Clusters 681

The detection and monitoring of clusters are difficult to achieve and the discovery of 682

patient zero, in a given geographical area, is always a delicate challenge. Nevertheless, there 683

are a number of studies regarding this problem. We refer to [121–128] for more results on 684

the subject. 685

10.3.5. More phenomenological model to fit the data 686

Since Daniel Bernoulli’s classic primordial model [39–42], a number of phenomenological 687

models have emerged, such as that of Richards that Ma cited [129] just before the beginning 688

of Covid-19 outbreak. The COVID-19 pandemic was an opportunity to recall this princeps 689

work and to propose new approaches along the same lines, namely minimal modeling 690

integrating the basic mechanisms of infectious transmission. We refer to [51,129–136] for 691

more results and references on the subject. 692

10.3.6. Wasted water data 693

The French national Obepine project has shown the value of monitoring the COVID-19 694

pandemic in wastewater, where the concentration of viral RNA fragments can serve as 695

an early indicator of the onset of new waves of cases. An Italian study (Gragnani et al.) 696

has even suggested that SARS-Cov-2 RNA was present in wastewater from Milan, Turin 697

(December 18, 2019) and Bologna (January 29, 2020) long before the first Italian case was 698

described (February 20 2020). We refer to [137–144] for more results on the subject. 699

10.3.7. Discrete and random modeling 700

Some modeling approaches are discrete and play with daily data. The equations of the 701

contagion dynamics can be of two types: 702

(i) They can be difference equations modeled on the differential equations of the continuous 703

SIR model; 704

(ii) or they can be stochastic in nature, with generally additive Gaussian noise in the 705

second member. 706

They generally lend themselves well to the statistical estimation of their parameters from 707

the data. We refer to [145–148] for more results and references on the subject. 708

10.3.8. Time series and wavelet approaches 709

If we consider the data recorded on the size of the different sub-populations involved 710

in the contagion process (susceptible, infected, cured, immune, etc.), a possible approach is 711

that of the signal theory, with its classical methods data processing (time series, Fourier 712

transformation, wavelet transformation, etc.). This approach is generally an excellent 713

introduction to the implementation of prediction methods. We refer to [11,130,149–152] for 714

more results and references on the subject. 715

10.3.9. Transmission estimation and spatial modeling 716

Estimating the transmission parameter and studying its spatio-temporal variations is 717

fundamental because it conditions the epidemic waves’ location, shape, and duration. The 718

spatial heterogeneity of this parameter, often due to geo-climatic (such as temperature) 719

and/or demographic (such as susceptible population density), are crucial factors in the 720

existence of natural barriers to the spread of a pandemic. We refer to [153–156] for more 721

results and references on the subject. 722
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The generation time characterizes the speed at which infections occur and differs in 723

different populations and between SARS-CoV-2 variants. This is a key epidemiological 724

factor that was estimated for SARS-CoV-2 in [96,157,158]. 725

10.3.10. Forecasting methods 726

The prediction of epidemics is one of the major objectives of modeling. It can be carried 727

out by the continuation, in time and space, of the solutions of the spatio-temporal equations 728

of the chosen model or the extrapolation of a statistical description of the evolution of 729

the observed variables. We refer to [53,60,159–161] for more results and references on the 730

subject. 731

10.4. SIR like models 732

Since 2020, many articles have appeared on using the SIR model in modeling the 733

COVID-19 outbreak. After [9], several SIR with the symptomatic and asymptomatic 734

compartment, in order to model reported and unreported patients mechanisms. Several 735

article along this line were published [162–166]. 736

The major default of this study is the fact that they use a transmission rate constant 737

in time. This assumption allows, for example, [164] to estimate the fraction of unreported 738

patients. As explained in section 6, the transmission rate must be time-dependent. In [8], 739

we proved that it is hopeless to estimate the fraction of unreported patients since we can get 740

the exact same fit to the data for a large interval of values of this parameter. Several groups 741

realized that time-dependent transmission rate in an important issue in such a problems 742

[8,10,18–20,51–53,60,120]. 743

During COVID-19 pandemic, models progressively complexified to become SIAURDV 744

models, incorporating explicitly as ODE variables the numbers of asymptomatic (A), non- 745

reported (U), vaccinated (V), and deceased (D) patients. We refer to [167–172] for more 746

results and references on the subject. 747

10.4.1. Multigroups or multiscale models 748

The notion of multi-group and multi-scale appeared when the COVID-19 outbreak 749

appeared, with specific dynamics in several geographical regions of different scales and, in 750

one area, in several distinct groups (demographic, ethnic, economic, religious, social, etc.). 751

We refer to [166,173–178] for more results and references on the subject. 752

10.4.2. Model with unreported or asymptomatic compartment 753

Modeling the mechanisms of non-reporting of new cases or deaths due to an epidemic 754

makes it possible to compensate for the bias coming from a partial observation of the 755

infected, due to the existence of asymptomatic cases or a deficient administrative registration 756

mechanism. We refer to [179–185] for more results and references on the subject. 757

10.5. Connecting reported case data with SIR like model 758

Very few studies considered that problem in the literature, while again, it is interesting
to understand the bias induced by such a mechanism. For example, it would make sense to
consider a model including a delay in reporting the data

CR′(t) = fν

∫ τ

0
γ(s)I(t− s)ds

where s 7→ γ(s) is a non negative map. The quantity γ(s) is the probability of reporting s
units of time after the individual leaves the compartment I. This corresponds to patients
showing symptoms. We deduce that we must have∫ τ

0
γ(s)ds= 1.
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Unfortunately, people have not considered this issue in the literature. The consequence of 759

such a model for reported case data seems particularly important. We refer to [186–188] for 760

more results and references on the subject. 761

10.6. Re-infections, natural and hybrid immunity 762

The risk of reinfection with the SARS-Cov2 virus comes from two factors: 763

(i) One is due to the infectious agent and its mutagenic genius, modifying its contagiousness 764

and pathogenicity; 765

(ii) The other is due to the host, whose natural, innate, and acquired defenses by the 766

adaptive immune system or artificially by vaccination prevent or stop the infection. 767

The modeling of these two facets of the reinfection process makes it possible to understand 768

the mechanisms of eradication or, on the contrary, the continuation of a pandemic, thanks 769

to or despite collective public health measures. We refer to [189–194] for more results and 770

references on the subject. 771

10.7. Mortality 772

Mortality may appear as more robust data to be connected with epidemic models. The 773

bias for report cases data will also exist for the number of reported dead patients. Again, the 774

model to connect the data and the epidemic model might be more complex than a fraction 775

of the recovered. Nevertheless, there is evidence of an increased risk of death in the event 776

of co-infection. The mortality risk increases dramatically when a patient is infected with 777

another severe disease. This question of co-infection with severe diseases with COVID-19 778

was studied in [195]. We refer to [196–203] for more results and references on the subject. 779

10.8. Vaccination and mitigation measures 780

Vaccination and exclusion by temporary confinement or physical barriers (masks, anti- 781

viral protection, or anti-transmission intermediates) are the public health measures intended 782

to mitigate or stop an epidemic. The modeling of their gradual introduction and their 783

effects on the spread of the epidemic makes it possible to understand their effectiveness 784

or, on the contrary, their uselessness and, therefore, to adapt the coercive measures best, 785

whether collective or individual [204–218]. 786

10.9. Chronological age 787

The problem of age structure is crucial in epidemic modeling for three reasons: 788

(i) The immune system efficacy depends on age. Therefore, its adaptive component is 789

less and less able to resist a new pathogenic agent or react to a vaccine; 790

(ii) Age groups communicate differently with each other, with the most mobile (working age 791

group) having the greatest chance of transmission and the most dependent (elderlies) 792

on the care by younger caregivers having the greatest chance of being infected; 793

(iii) The prevalence of chronic diseases favoring infections is very unevenly distributed, 794

the age groups at both ends of life being the most susceptible: the young due to the 795

immaturity of the immune system and school promiscuity, and the elderly due to the 796

existence of chronic comorbidities (diabetes, respiratory pathologies, cardiovascular 797

diseases, and immune depression). 798

These disparities make it necessary to take age into account (through at least three 799

major classes, young people under 20, adults from 20 to 65, and seniors over 65), preventive 800

measures (education, vaccination, isolation) being taken according to this age stratification, 801

crossed with the risk factors linked to the occurrence of chronic pathologies. 802

Few papers combined epidemic model with age-structure and age structured data 803

[108,219–228]. The problem of understanding the relationships between data and models 804

is far from well understood. In Section 9, based on [61], we proposed an approach to 805

understanding how to connect the model and the data during the exponential phase. But 806

such a problem needs further investigation. 807
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10.10. Basic reproduction number 808

The basic reproduction number R0 is an essential parameter for predicting the occur- 809

rence of an epidemic wave. It can vary over time and depends on two main factors: 810

(i) In the infectious subject, the successive establishment of natural defense mechanisms 811

(innate and adaptive) explains the variations in daily R0 during his period of conta- 812

giousness; 813

(ii) In subjects who are not yet infected, their susceptibility is also dependent on their 814

immune status, but also on the collective public health measures taken at the population 815

level. 816

Methods for estimating daily R0 are therefore fundamental to understanding the 817

temporal and spatial evolution of a pandemic [229–234]. 818

10.11. Prediction of COVID-19 evolution 819

The difficulty of predicting the evolution of a pandemic is due to the adaptive capacities 820

of the infectious agent and the infected and transmitting host. On the one hand, the genetic 821

mutations of the infectious agent and its contagious power and pathogenic dangerousness 822

develop a highly infectious and low pathogenic variant, often signaling the natural end 823

of a pandemic. On the other hand, the permanent adaptation strategy of individual and 824

collective host defense measures makes it possible to anticipate the effects of changes in 825

the agent’s infectious strategy. In both cases, modeling the dynamics of mutation and 826

prevention is essential to predict and act in near real-time on the evolution of a pandemic 827

[12,235–242]. 828
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Appendix 829

Appendix A When the output is a single exponential function 830

Let X ∈Rn. We recall that 831

• X ≥ 0 if for each i ∈ {1, . . . ,n} such that Xi ≥ 0; 832

• X > 0 if X ≥ 0 and there exists i ∈ {1, . . . ,n} such that Xi > 0; 833

• X � 0 if Xi > 0 for each i ∈ {1, . . . ,n}. 834

Let A= (aij) ∈Mn(R) a n×n matrix with non-negative off-diagonal elements, and assume 835

that A+ δI is non-negative irreducible whenever δ > 0 is large enough. The projector 836

associated to the Perron-Frobenius dominant eigenvalue is defined by 837

Πx=
〈VL(A),x〉VR(A)
〈VL(A),VR(A)〉

,∀x ∈Rn, (A1)

where VR(A)� 0 (respectively VL(A)� 0) is a right eigenvector (resp. left eigenvector ) of
A associated with the dominant eigenvalue

s(A) = max{Reλ : λ ∈ σ(A)},

where σ(A) is the spectrum of A (i.e. the set of all eigenvalues of A). Then we have

AΠ=ΠA= s(A)Π.

Recall that the euclidean inner product is defined by

〈X,Y 〉=
n∑
i=1

XiYi.

The network associated with a non-negative matrix A corresponds to all the oriented 838

paths from the node i to the node j whenever aij > 0. 839

A non-negative matrix A is irreducible if the network associated with A is strongly 840

connected. That is, if we can join any two nodes i and j by using a succession of oriented 841

paths. 842

To understand irreducible matrices in epidemics, one may consider the contact matrix 843

in epidemic models. Then, the contact matrix is irreducible if any infected sub-group 844

has a non-zero probability of infecting any other group (by transmitting the pathogen to 845

intermediate sub-groups if needed). 846

Theorem A1. Let A = (aij) ∈Mn(R), and assume that the off-diagonal elements of A 847

are non-negative, and A+ δI is non-negative irreducible whenever δ > 0 is large enough. We 848

assume that there exists a vector X0 > 0 such that 849

X ′(t) = AX(t),∀t ∈ [0,τ ], with X(0) =X0, (A2)

and there exists a vector Y > 0 satisfying 850

n∑
i=1

YiXi(t) = χ1e
χ2t,∀t ∈ [0,τ ], (A3)

with χ1 > 0, χ2 > 0, and τ > 0. 851

Then we have
χ2 = s(A), and χ1 = 〈Y ,ΠX0〉.
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That is,
n∑
i=1

YiXi(t) = 〈Y ,ΠX0〉es(A)t,∀t≥ 0.

In other words, we can not distinguish the growth induced by 〈Y ,X0〉 and 〈Y ,ΠX0〉. There- 852

fore we can replace X0 with ΠX0, and the output 〈Y ,X(t)〉 will be the same. 853

Proof. The equation (A3) is equivalent to

〈Y ,eAtX0〉= χ1e
χ2t,∀t ∈ [0,τ ],

For each δ > 0 large enough such that A+ δI is non-negative and primitive, we have

〈Y ,e(A+δI)tX0〉= χ1e
(χ2+δ)t,∀t ∈ [0,τ ],

so by computing the derivatives on both sides of the above equation and taking t= 0, we
obtain

〈Y , (A+ δI)mX0〉= χ1(χ2 + δ)m,∀m ∈N.

But we have r(A+ δI) = s(A) + δ, and

〈Y , (A+ δI)m

r(A+ δI)m
X0〉= χ1

(χ2 + δ)m

(s(A) + δ)m
,∀m ∈N,

and since the right-hand side of the above equality converges to 〈Y ,ΠX0〉> 0 (where Π� 0
is the projector defined in (41)), we deduce that

lim
m→∞

(χ2 + δ)m

(s(A) + δ)m
=
〈Y ,ΠX0〉

χ1
> 0,

and the result follows. 854
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