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Abstract

A SIR epidemic model is analyzed with respect to the identification
of its parameters and initial values, based upon reported case data from
public health sources. The objective of the analysis is to understand the
relationship of unreported cases to reported cases. In many epidemic
diseases the reported cases are a small fraction of the unreported cases.
This fraction can be estimated by the identification of parameters for the
model from reported case data. The analysis is applied to the Hong Kong
seasonal influenza epidemic in New York City in 1968-1969.
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1 Introduction

Mathematical models of epidemics have a long history [1, 4, 5, 6, 7, 11, 17, 19,
22, 28, 32]. One of the most important considerations of epidemic models is the
identification of parameters needed for applications. The parameter identifica-
tion problem for SIR model has been investigated by many researchers, including
[2, 3, 8, 9, 10, 12, 13, 14, 15, 16, 18, 20, 21, 23, 24, 25, 27, 29, 30, 31, 33]. Our
objective here is to continue the investigation in [26] of the parameter identi-
fication problem for the standard SIR ordinary differential equations model of
an outbreak epidemic: {

S′(t) = −τS(t)I(t),

I ′(t) = τS(t)I(t)− νI(t).
(1.1)

Here S(t) and I(t) denote the number of susceptible and infected individuals,
respectively, at time t > 0. The parameter τ > 0 corresponds to the disease

1



transmission rate and the parameter ν > 0 corresponds to the removal rate of
infected individuals. The initial conditions of the model are

S(0) = S0 > 0 and I(0) = I0 > 0. (1.2)

For specific applications, the parameters τ , ν, as well as the initial conditions,
S0, I0, are usually not known. Our objective here is to identity these values
from specific time data of reported infective cases.

Typically, the reported cases are only a small fraction of the total number of
cases, since only the most severe symptomatic cases are reported. Our approach
is based on knowledge of the data of new reported cases (typically weekly) over
the time-course of the epidemic. This known data consists of the cumulative
reported cases at time t, denoted by CR(t), that correspond to the total number
of reported infection cases up to time t. To handle these data we assume that
these cumulative reported cases at time t consist in a constant fraction along
time of the total number of infected cases up to to time t. In other words we
assume that the removal rate ν takes the following form ν = ν1 +ν2, where ν1 is
the removal rate of reported infected individuals, and ν2 is the removal rate of
infected individuals due to all other causes, such as mortality, recovery, or other
reasons. With this assumption and notation, the cumulative reported cases are
related to the number of infected by the following formula

CR(t) = ν1

t∫
0

I(s)ds, (1.3)

where ν1 > 0 is an unknown parameter. We formulate our problem as follows:

Problem 1.1 How can we identify the parameter set Θ = {(S0, I0, τ, ν, ν1)} ⊂
(0,∞)5 if we know the cumulative reported cases CR(t) for all time t > 0?

We will show that knowledge of the cumulative reported cases CR(t) is not
sufficient to recover the five-dimensional parameter set Θ. Roughly speaking,
this set is defined up to one degree of freedom. More precisely, under suitable
hypotheses on the reported case data CR(t), t ≥ 0, only the following combina-
tion of parameters and initial values can be reconstructed:

I0
S0
, S0τ, S0ν1 and ν. (1.4)

As a consequence, knowledge about the value of S0, the number of susceptibles
in the population before the epidemic outbreak, allows us to obtain precise
information about the values, I0, τ , and ν1. Then the basic reproductive number
of the epidemic

R0 =
S0τ

ν
, (1.5)

can be obtained from (1.4). The interpretation of R0 is that if R0 < 1, then the
epidemic subsides, and if R0 > 1, then the epidemic worsens. We will describe
a simple methodology to compute the parameter set in (1.4), and apply this
method to specific epidemic data.
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2 Parameter identifiability

In this section we show that the parameter set Θ is not identifiable from the
reported case data CR(t), t ≥ 0. We refer to to Evans et al. [13] for more results
on this topic. Here we use another approach.

Consider the parameter set p := (τ, ν, S0, I0, ν1) ∈ (0,+∞)5. Define (S(t, p),
I(t, p)), as the unique solution of (1.1)-(1.2), and CR(t, p) as the output function
(1.3), for a given value of the parameter set p ∈ (0,+∞)5. We have the following
proposition:

Proposition 2.1 Suppose that (S(t, p), I(t, p)) and (S(t, p), I(t, p)) are the two
solutions of (1.1)-(1.2) for the parameter set p = (τ, ν, S0, I0, ν1) and the pa-
rameter set p = (τ̄ , ν̄, S̄0I0, ν̄1), respectively. Then

CR(t, p) = CR(t, p) (2.1)

for every t ≥ 0, if and only if

ν = ν̄,
τ

ν1
=

τ̄

ν̄1
, τS0 = τ̄S0, τI0 = τ̄ I0. (2.2)

Proof. (Proof of ⇒) Assume first that (2.1) holds and differentiate both sides
with respect to t to obtain

CR′(t, p) = CR′(t, p),∀t ≥ 0,

which is equivalent to

ν1I(t, p) = ν̄1I(t, p),∀t ≥ 0. (2.3)

Differentiate both sides of (2.3) with respect to t, to obtain

ν1I
′(t, p) = ν̄1I

′(t, p),∀t ≥ 0.

Replacing I ′(t) by its formula in (1.1) on both sides of the above equality, we
obtain

ν1I
′(t, p) = ν̄1I

′(t, p)

⇔ ν1

(
τS(t, p)I(t, p)− νI(t, p)

)
= ν̄1

(
τ̄S(t, p)I(t, p)− ν̄I(t, p)

)
⇔ ν1I(t, p)

(
τS(t, p)− ν

)
= ν̄1I(t, p)

(
τ̄S(t, p)− ν̄

)
,

and (2.3) implies that

τS(t, p)− ν = τ̄S(t, p)− ν̄,∀t ≥ 0. (2.4)

Differentiating both side of (2.4) with respect to t, we obtain

τS′(t, p) = τ̄S′(t, p)

⇔ τ
(
− τS(t, p)I(t, p)

)
= τ̄

(
− τ̄S(t, p)I(t, p)

)
⇔ τ2S(t, p)I(t, p) = τ̄2S(t, p)I(t, p)
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and by using again (2.3), we obtain

ν̄1
ν1
τ2S(t, p) = τ̄2S(t, p),∀t ≥ 0. (2.5)

Then, by using (2.4), and replacing S(t, p) in (2.5), we obtain

ν̄1
ν1
τ2S(t, p) = τ̄2(

ν̄ − ν + τS(t, p)

τ̄
).

Therefore,

(
ν̄1
ν1
τ − τ̄)S(t, p) =

τ̄

τ
(ν̄ − ν),∀t ≥ 0. (2.6)

Differentiating both sides of equation (2.3) with respect to t, we obtain

(
ν̄1
ν1
τ − τ̄)S′(t, p) = 0,

which implies that

(
ν̄1
ν1
τ − τ̄)(−τS(t, p)I(t, p)) = 0,∀t ≥ 0. (2.7)

Setting t = 0 in equations (2.3), (2.4), (2.6) and (2.7) we obtain the following
system of equations 

I0ν1 = I0ν̄1

τS0 − ν = τ̄S0 − ν̄
(
ν̄1
ν1
τ − τ̄)S0 =

τ̄

τ
(ν̄ − ν)

−τS0I0(
ν̄1
ν1
τ − τ̄) = 0

(2.8)

and (2.2) follows.
(Proof of ⇐) To prove the converse implication, let (S(t), I(t)) be a solution of
(1.1)-(1.2). Let S0 > 0, I0 > 0, and set

S(t) :=
S0

S0
S(t) and I(t) :=

I0
I0
I(t).

Since (S(t), I(t)) satisfies (1.1)-(1.2), we obtain by replacing S(t) and I(t) with
the above formulas,

S0

S0

S
′
(t) = −τ S0

S0

S(t)
I0

I0
I(t)

I0

I0
I
′
(t) = τ

S0

S0

S(t)
I0

I0
I(t)− ν I0

I0
I(t)

S(0) = S0

I(0) = I0.
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After simplifying, 

S
′
(t) = −τ I0

I0
S(t)I(t)

I
′
(t) = τ

S0

S0

S(t)I(t)− νI(t)

S(0) = S0

I(0) = I0

(2.9)

and by using (2.2) we deduce that τ
I0

I0
= τ

S0

S̄0
= τ̄ and ν = ν̄. Therefore,

(S(t), I(t)) satisfies (1.1)-(1.2) with the new parameter set p. Moreover, the
cumulative reported cases function for the parameter set p̄ satisfies

CR(t, p) := ν̄1

t∫
0

I(s)ds = ν̄1
I0
I0

t∫
0

I(s)ds,∀t ≥ 0,

and by using (2.2) we deduce that
τ

ν1
=
τ̄

ν̄ 1
, τI0 = τ̄ I0. Therefore,

CR(t, p) = CR(t, p),∀t ≥ 0.

Remark 2.2 The cumulative reported cases function CR(t) in (1.3) is uniquely
determined for the parameter set

p =
(τ
a
, ν, aS0, aI0,

ν1
a

)
,

whenever a > ν1/ν.

3 Computation of the combined parameter set

3.1 System of equations to identify the parameters

In this section, we consider the SIR model (1.1)-(1.2) in the case where the basic
reproduction number R0 = τS0/ν > 1. The cumulative reported case function

CR(t) := ν1
∫ t
0
I(s)ds, t ≥ 0 is assumed to be known. The goal is to provide a

simple method to identify the parameter set (1.4).
Recall that, since R0 > 1, the solutions of (1.1)-(1.2) have a typical outbreak

behavior [26]:

(i) The function t 7→ S(t) is nonincreasing on [0,∞) with S(0) = S0 and
S(∞) > 0;

(ii) There exists a unique turning point tp > 0 such that I ′(tp) = 0, with I
nondecreasing on [0, tp] and nonincreasing on [tp,∞). Moreover I(∞) = 0
and t 7→ I(t) is integrable on [0,∞).
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In addition to the turning point tp, the above properties allow us to defined
several important quantities related to the function CR:

CR(tp), CR
′(tp) and CR(∞). (3.1)

As it will be seen later, these four quantities will be sufficient to compute the
combined parameter set in (1.4). To compute these four combined parameters
we will provide four independent equations. Three of them has been derived in
[26]. Following the notations introduced in [26], we set

c := CR(∞), r :=
CR(tp)

CR(∞)
.

Next, by setting

X := c
τ

ν1
, (3.2)

and then by multiplying both sides by S0ν1 we deduce that

X × (S0ν1) = cS0τ. (3.3)

Moreover, by using respectively, equations (3.3), (3.7) and (3.9) in [26], we derive
the three following independent equations

e−X +Xe−rX = 1 +
I0
S0
, (3.4)

(S0ν1)×
[
1 +

I0
S0
− e−rX (1 + rX)

]
= CR′(tp) (3.5)

and
ν = (S0τ)× e−rX . (3.6)

We recall first, that by Proposition 3.1 in [26], equation (3.4) implies the
following compatibility condition with the data: r ∈ (0, 1/2) . Thus, for the
model (1.1)-(1.2) more than half of all cases occur after the turning point tp. As
noted in [26], some outbreak epidemics have more than half of all cases occurring
before the turning point, and the model (1.1)-(1.2) is not applicable to these
examples.

3.2 Derivation of the equation for the turning point

In order to define an equation for the turning point, we first introduce the
function

F (X) := e−X +Xe−rX − 1.

Lemma 3.1 r ≥ 1

2
⇒ F (X) < 0,∀X > 0.
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Proof. We have F (0) = 0 and F ′(X) = e−rXG(x), with

G(X) := 1− rX − e−(1−r)X .

Then G(0) = 0 and G′(X) = −r + (1− r)e−(1−r)X . So if r ≥ 1/2 we have

G′(X) < 0,∀X > 0.

The result follows.

Lemma 3.2 Assume that r ∈ (0, 1/2). There exists a unique strictly positive
solution X(r) > 0 of equation

F (X) = 0⇔ e−X +Xe−rX − 1 = 0. (3.7)

Moreover, there exists Xmax ∈ (0, X(r)), such that the function F (X) is strictly
increasing on (0, Xmax) and strictly decreasing on (Xmax, X(r)).
Furthermore, {

F (X) > 0, if X ∈ (0, X(r)),
F (X) < 0, if X ∈ (X(r),∞).

(3.8)

Proof. We have F (0) = 0 and F ′(X) = e−rXG(x), with

G(X) := 1− rX − e−(1−r)X .

Then G(0) = 0 and G′(X) = −r + (1− r)e−(1−r)X . Moreover, we have

G′(X) = 0⇔ X =
1

1− r
ln

(
1

r
− 1

)
:= X∗ > 0.

Thus, G′(X) > 0 for X ∈ (0, X∗) and G′(X) < 0 for X > X∗. We also have

lim
X→∞

G(X) = −∞.

Let Xmax > X∗ be the unique value in (0,+∞) such that G(Xmax) = 0.
Moreover, F ′(X) > 0 on (0, Xmax), F ′(X) < 0 on (Xmax,∞), and F ′(0) =
F ′(Xmax) = 0. Hence, F (Xmax) > 0 is the maximum of F . Next we observe
that

lim
X→∞

F (X) = −1

Therefore there exists a unique X(r) ∈ (Xmax,∞) such that F (X(r)) = 0.
The above results are summarized in Figure 1.
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Figure 1: We plot X → F (X) whenever r = 0.1, 0.2, 0.3, 0.4 and 0.5 respectively
in blue, green, red, clear blue and purple.

Next, we derive an additional independent equation involving the turning
point tp. To that aim, recall that

CR′(t) = ν1I(t), ∀t > 0 and CR(0) = 0.

As a consequence, we obtain from (1.1)-(1.2),

d

dt

(
S(t) + I(t) +

ν

ν1
CR(t)

)
= 0, ∀t > 0,

so that
S(t) + I(t) +

ν

ν1
CR(t) = S0 + I0, ∀t ≥ 0.

Hence, we obtain

CR′(t) = ν1I(t) = ν1

[
S0 + I0 − S(t)− ν

ν1
CR(t)

]
, ∀t ≥ 0.

However, by using (1.1), we may eliminate S(t), since S(t) = S0e
− τ
ν1
CR(t). As

a consequence, CR(t) satisfies the equation

CR′(t) = ν1I(t) = S0ν1

[
1 +

I0
S0
− e−τCR(t) − ν

S0ν1
CR(t)

]
, ∀t ≥ 0.

Now note that since CR′(t) = ν1I(t) > 0, the function t → CR(t) must be
increasing on (0,∞). We thus have

1 +
I0
S0
− e−

τ
ν1
y − ν

S0ν1
y > 0, ∀y ∈ [0, CR(∞)).
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Remark 3.3 The above inequality gives a condition on the ultimate number of
cumulative cases c = CR(∞).

Integration of the differential equation for CR(t) above, from t = 0 to t = tp,
yields ∫ tp

0

CR′(t)

1 + I0
S0
− e−

τ
ν1
CR(t) − ν

S0ν1
CR(t)

dt = (S0ν1)tp.

Set s = CR(t) and we obtain∫ CR(tp)

0

1

1 + I0
S0
− e−

τ
ν1
s − ν

S0ν1
s
ds = (S0ν1)tp.

Now recalling that CR(tp) = rc, the change of variable s = cσ yields∫ r

0

1

1 + I0
S0
− e−

cτ
ν1
σ − cν

S0ν1
σ
dσ = (S0ν1)

tp
c
.

By (3.2), that is X = cτ
ν1

, we deduce that∫ r

0

1

1 + I0
S0
− e−Xσ − ν

τS0
Xσ

dσ = (S0ν1)
tp
c
.

By (3.6), that is ν = S0τe
−rX , we have∫ r

0

dσ

1 + I0
S0
− e−Xσ −Xe−rXσ

= (S0ν1)
tp
c
.

By (3.5), that is S0ν1

[
1 + I0

S0
− e−rX (1 + rX)

]
= CR′(tp), we obtain

[
1 +

I0
S0
− e−rX (1 + rX)

]
×
∫ r

0

dσ

1 + I0
S0
− e−Xσ −Xe−rXσ

= CR′(tp)
tp
c
.

Finally, by (3.4), that is e−X + Xe−rX = 1 + I0
S0

and Lemma 3.2, we deduce
that

0 < X < X(r) (3.9)

and that X must satisfy the turning point equation

T (X, r) =
CR′(tp)tp

c
, (3.10)

where the mapping T is defined by

T (X, r) :=

∫ r

0

H(X, r)

H(X,σ)
dσ, (3.11)

where the right hand side is an improper integral and the function H is defined
by

H(X,σ) := e−X +Xe−rX − e−Xσ −Xe−rXσ. (3.12)

Remark 3.4 We observe that H(X, 0) = e−X +Xe−rX − 1 = F (X).
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3.3 Analysis of the turning point equation

Lemma 3.5 If r ∈ (0,
1

2
), and X ∈ (0, X(r)), then

0 < F (X) = H(X, 0) 6 H(X,σ) 6 H(X, r)

for every σ ∈ [0, r].

Proof. Suppose that r ∈ (0,
1

2
), X ∈ (0, X(r)), and consider

∂σH(X,σ) = X(e−σX − e−rX) > 0,∀σ ∈ [0, r],

which means that H(X,σ) is increasing with respect to σ.

Lemma 3.6 The function X → T (X, r) is well-defined on the open interval
(0, X(r)). Moreover,

lim
X→X(r)−

T (X, r) =∞, (3.13)

and

lim
X→0+

T (X, r) =
r − 1

2
ln(1− 2r). (3.14)

Proof. Proof of (3.13): By Lemma 3.5, T (X, r) is well-defined on the interval
(0, X(r)). Since X(r) is the unique positive solution of the equation (3.7), it
follows that H(X(r), r) = 1−e−rX(r)− r(1−e−rX(r)). Let k(x, r) = 1−e−rx−
r(1− e−x) on [0,∞). Then, ∂xk(x, r) = r(e−rx− e−x) > 0 for every x ∈ [0,∞),
and r ∈ (1, 12 ). This means that k(x, r) > k(0, r) = 0 for every x ∈ (0,∞), and

r ∈ (1, 12 ). Therefore, H(X(r), r) = 1− e−rX(r) − r(1 − e−rX(r)) > 0 for every
r ∈ (1, 12 ).

Moreover,

lim
σ→0+

H(X(r), σ)

σ
= lim
σ→0+

1− e−σX(r) − rX(r)e−rX(r)σ

σ

= lim
σ→0+

1− e−σX(r)

σ
− rX(r)e−rX(r)

=X(r)−X(r)e−rX(r) = X(r)(1− e−rX(r)) > 0.

This means that

r∫
0

lim
X→X(r)−

H(X, r)

H(X,σ)
dσ =∞, and by Fatou’s Lemma, we have

limX→X(r)− T (X, r) =∞.

Proof of (3.14): Next, taking the Taylor’s expansions of the functions e−X , e−rX , e−hX

at X = 0, and letting σ ∈ [0, r] ⊂ (0, 12 ), we obtain

e−σX = 1− σX +
1

2
σ2X2 + o((σX)3) = 1− σX +

1

2
σ2X2 + o(X3),

e−rX = 1− rX +
1

2
r2X2 + o(X3), and e−X = 1−X +

1

2
X2 + o(X3),
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where o(X3) does not depend on σ. Thus,

H(X,σ) =
1− 2r − σ2 + 2rσ

2
X2 + o(X3), H(X, r) =

(1− r)2

2
X2 + o(X3).

Hence,

H(X, r)

H(X,σ)
=

(1− r)2

2
X2 + o(X3)

1− 2r − σ2 + 2rσ

2
X2 + o(X3)

=
(1− r)2 + o(X)

1− 2r − σ2 + 2rσ + o(X)
.

Since o(X) does not depend on σ, when X tends to 0+ the function
H(X, r)

H(X,σ)

is uniformly convergent to h(σ) =
(1− r)2

1− 2r − σ2 + 2rσ
on [0, r]. Thus,

lim
X→0+

T (X, r) =

r∫
0

(1− r)2

1− 2r − σ2 + 2rσ
dσ

= (1− r)2
r∫

0

1

(2r − 1− σ)(σ − 1)
dσ =

(1− r)
2

ln(
1

1− 2r
).

In Figure 2 we plot the mapping r → X(r), where X = X(r) is the solution
of (3.7), as r varies in (0, 12 ). In Figure 3 we plot the mapping x→ T (xX(r), r),
where T is defined by (3.11), as x varies in (0, 1), for different values of r.
From Figure 3 we observe that numerically, the mappings X → T (X, r) are all
monotone increasing for each value of r. As a consequence we can conclude
(numerically) that equation (3.10) has a unique solution X ∈ (0, X(r)).

Remark 3.7 From Figure 3 we can also visualize the minimum value for T (X, r),
which is given by (3.14). By using (3.10) we deduce that we must have

CR′(tp)tp
CR(∞)

>
r − 1

2
ln(1− 2r).

where r =
CR(tp)

CR(∞)
. Therefore, we obtain a new relationship constraining the

values tp, CR(tp), CR
′(tp), CR(∞).
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Figure 2: The mapping r → X(r), where r varies in (0, 12 ).
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Figure 3: The mapping x → T (xX(r), r), where x varies in (0, 1). The blue,
green, red, clear blue and purple curves correspond (from the bottom to the top)
to r = 0.1, r = 0.2, r = 0.3, r = 0.4 and r = 0.49, respectively.

As a consequence of Proposition 2.1 we have the following theorem.

Theorem 3.8 Assume that the equation (3.10) has a unique solution X in
(0, X(r)). Then the function t → CR(t) is uniquely determined by the turning
point tp, CR(tp), CR

′(tp) and CR(∞).

Remark 3.9 Assume that the equation (3.10) has a unique solution X in
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(0, X(r)). Then the basic reproduction number R0 is uniquely determined by
the turning point tp, CR(tp), CR′(tp) and CR(∞).

4 An identification method and an application
to an outbreak epidemic

4.1 Description of the method

By Proposition 2.1, the combination of parameters
I0
S0

, ν1S0, S0τ , ν1I0, and ν for

the system (1.1)-(1.2) are uniquely determined by the cumulative reported cases
function CR(t), t ≥ 0 for the parameter set p = (τ, ν, S0, I0, ν1). Moreover, the
analysis in Section 3 allows us to derive a method to compute this combination
by the following four steps: Assume the values of tp, CR(tp), CR

′(tp), and

CR(∞) are known, and set c = CR(∞) and r =
CR(tp)

CR(∞)
.

Step 1: Solve the equation (3.7), e−X +Xe−rX − 1 = 0, to obtain the unique
positive solution X(r).
Step 2: Solve the turning point equation (3.10)

r∫
0

e−X +Xe−rX − e−rX − rXe−rX

e−X +Xe−rX − e−σX − σXe−rX
dσ =

CR′(tp)tp
c

,

with the condition (3.9), 0 < X < X(r), to obtain the value X = c
τ

ν1
.

Step 3:

i. Compute the value of a1 :=
τ

ν1
=
X

c
by the formula (3.2);

ii. Compute the value of a2 :=
I0
S0

= e−X +Xe−rX − 1 by the formula (3.4);

iii. Compute the value of a3 := ν1S0 =
CR′(tp)

1 + a2 − e−rX (1 + rX)
by the formula

(3.5);

iv. Compute the value of a4 := τS0 = a3a1 by the formula (3.3);

v. Compute the value of a5 := ν1I0 = a2a3;

vi. Compute the value of a6 := ν = a4e
−rX by the formula (3.6).
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Remark 4.1 By the fact that ν1 < ν, we obtain the following evaluations:

S0 > S0
ν1
ν

=
a3
a6

I0 > I0
ν1
ν

=
a5
a6

τ < ν
τ

ν1
= a1a6.

(4.1)

Moreover, the basic reproduction number is

R0 =
τS0

ν
=
a4
a6
. (4.2)

Remark 4.2 If S0 is known, the epidemic final size is written as follows:

C(∞) = CR(∞) + CU(∞) = CR(∞) +
ν2
ν1
CR(∞)

=
ν

ν1
CR(∞) = ν

S0

ν1S0
CR(∞) = a6

c

a3
S0.

(4.3)

Denote by N = S0+I0, the number of individuals involved in the epidemic,which
is typically smaller than the total number individuals in the population, since
some people have immunity. Then S0 satisfies

a3
a6

< S0 ≤ N − I0 = N − S0
I0
S0
,

which implies
a3
a6

< S0 ≤
N

1 + I0
S0

=
N

1 + a2
. (4.4)

Moreover, the number of susceptible individuals at the end of epidemic can be
computed by the following formula:

S(∞) = S0 + I0 − C(∞) = S0

(
1 + a2 − a6

c

a3

)
. (4.5)

4.2 Application to Hong-Kong influenza in New York City
in 1968-1969

In this application, we have the values CR(∞) = 1080, CR(tp) = 500, tp = 6.15,
CR′(tp) = 190 (see [26]). The total population of New York City in 1968 is
7, 900, 000. Consider the equation

500
1080∫
0

e−X +Xe−
500
1080X − e− 500

1080X + 500
1080Xe

− 500
1080X

e−X +Xe−
500
1080X − e−σX − σXe− 500

1080X
dσ =

11685

10800
. (4.6)
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for X ∈ (0, X(r)) where X(r) = 0.89478 is the positive solution of the equation

e−X +Xe−
500
1080X − 1 = 0. (4.7)

First, solve the equation (4.7), and obtain the value of X(r) = 0.89478. This
value corresponds to the positive zero of the function in Figure 4 - left side.

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

4
x 10

−3

X

Y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

X

T
(X

,r
)

Figure 4: Left side: The graph of Y = e−X + Xe−
500
1080X − 1. Right side: The

intersection of Y = T (X, 500
1080 ) and Y =

tpCR
′(tp)

CR(∞) . We find X(r) = 0.89478,

X = 0.7869 and
I0
S0

= e−X +Xe−
500
1080X − 1 = 0.0019 .

Finally, by applying Step 4 of the method described above we obtain the
following table of values:

Variable Description Estimated value

X cτ/ν1 0.79
a1 τ/ν1 7.3× 10−4

a2 I0/S0 0.002
a3 ν1S0 3509.1
a4 τS0 2.56
a5 ν1I0 6.65
a6 ν 1.78

Table 1: List of a combination of parameters obtained for Hong-Kong influenza
in New York in 1968-1969.

Remark 4.3 From the reported case data for the Hong Kong influenza in New
York City in 1968-1969, there are at least three infected individuals at the be-
ginning of the epidemic.

If the value of the initial susceptible individuals S0 is given, then all the
parameters can be obtained. The following table gives these values when S0 =
1, 976, S0 = 4, 000, 000, and S0 = 7, 885, 047:
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Variable Estimated value 1 Estimated value 2 Estimated value 3

S0 1976 4, 000, 000 7, 885, 047
I0 3.7472 7, 586 14, 953
τ 1.3× 10−3 6.4× 10−7 3.2× 10−7

ν1 1.78 0.88× 10−3 4.5× 10−4

ν2 3.1× 10−4 1.78 1.78
C(∞) 1080 2.19× 106 4.31× 106

S(∞) 899 1.82× 106 3.59× 106

Table 2: List of combinations of parameters obtained for Hong-Kong influenza
in New York in 1968-1969. In this table we vary the value of S0 between the
minimal value 1976 up to the maximal value 7, 885, 047 and we computed the
corresponding estimated parameters values.

In Figures 5,6, and 7 we provide model (1.1)-(1.2) output for the Hong Kong
influenza epidemic in New York City in 1968-1968 for the parameters in Table
4.2 and the values under S0 = 4, 000, 000 in Table 2 (see [26]). In Figure 5
we compare the model output to the reported case data (see [26]). In Figure
6 we illustrate the epidemic final size as a function of the initial number of
susceptibles S0. In Figure 7 we illustrate the epidemic final size as a function
of the turning point of the epidemic.

0 2 4 6 8 10 12
0

50

100

150

200

weeks

C
R

’(
t)

=
ν

1
 I

(t
)

Figure 5: Hong Kong influenza epidemic in New York City in 1968-1969. The
weekly reported mortality case data and cumulative reported case data (blue
stars), and the model output graph CR′(t) (red). To run this simulation we
fix S0 = 4, 000, 000.
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Moreover, the basic reproduction number is

R0 =
τS0

ν
=
a4
a6

= 1.4. (4.8)

From Remark 4.2 whenever S0 is known the final size of the epidemic C(∞) is
expressed linearly in function of S0

C(∞) =
a6CR(∞)

a3
S0, (4.9)

and we have the following upper and lower bounded for S0

a3
a6

< S0 ≤
N

1 + a2
. (4.10)

0 1 2 3 4 5 6 7 8

x 10
6

0

1

2

3

4

5
x 10

6

S
0

C
(∞

)

Figure 6: The relationship between the total case number at the end of epidemic
C(∞) and S0. Here S0 varies from 1, 976 (which is strictly larger than the
minimal value a3

a6
= 1, 975) up to the maximal value S0 = N

1+a2
= 7, 885, 047

which corresponds to I0 = 14, 953.

17



4 4.5 5 5.5 6 6.5 7
0

0.5

1

1.5

2

2.5
x 10

6

tp

C
(∞

)

Figure 7: In this figure we fix S0 = 4, 000, 000, vary the turning point tp and
plot the final size C(∞) of the epidemic as a function of the turning point.

4.3 Discussion

We have investigated the parameter identification problem for the well-known
SIR model (1.1)-(1.2). Although this model has a long history (see our refer-
ences), there is a need for further development of the role of parameters for
its applications. A major difficulty in applying this model is the lack of pre-
cise data for most epidemic outbreaks, including influenza, cholera, Ebola, and
other current epidemics. Epidemic data provided by public health agencies con-
sists of reported cases, which are typically only a fraction of all cases. We have
provided a methodology to estimate parameters and initial conditions for this
model, which allows realistic applications for its data input and output simu-
lations. One future goal will be to extend this simple model to more complex
formulations of an epidemic progression. In particular, the issues of disease
age progression, incomplete immunity, vaccination, quarantine, and social in-
terventions are all of vital importance in controlling an outbreak epidemic. A
second future goal will be to extend the analysis to real-time predictions of epi-
demic progression from early to final stages. With improved epidemic tracking
and mathematical model forecasting, the toll of future outbreak epidemics on
human society can be greatly reduced.
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