ERRATA & NOTES

Theory and Applications of Abstract Semilinear Cauchy Problems BY PIERRE MAGAL AND SHIGUI RUAN

- p. xii replace $M : \mathbb{R} \times L^1((0, +\infty), \mathbb{R}^n) \to L^1((0, +\infty), \mathbb{R}^n)$ by $M : \mathbb{R} \times L^p((0, +\infty), \mathbb{R}^n) \to L^p((0, +\infty), \mathbb{R}^n)$.
- p. xii replace $B : \mathbb{R} \times L^1((0, +\infty), \mathbb{R}^n) \to \mathbb{R}^n$ by $B : \mathbb{R} \times L^p((0, +\infty), \mathbb{R}^n) \to \mathbb{R}^n$.
- p. 21 In Assumption 1.1.27 $(A + \partial_x F(\mu, 0))_0$ should be replaced by $(A + \partial_x F(\mu, 0))$.
- p. 22 In the Hopf bifurcation Theorem 1.1.28 $\varepsilon \to x_{\varepsilon}$ from $(0, \varepsilon^*)$ into \mathbb{R}^n should be renamed $\varepsilon \to x_{0\varepsilon}$. Then the initial value $x_{\varepsilon}(0) = x_0$ should be replaced by $x_{\varepsilon}(0) = x_{0\varepsilon}$ (twice in the text and in the equation).
- p. 92 l-8v $C_b([0,1),\mathbb{R})$ should be replaced by $BC([0,1),\mathbb{R})$ (Bounded Continuous).
- p. 95 In Example 2.6.7. the notation UBC(ℝ, ℝ) should be replaced by BUC(ℝ, ℝ) (Bounded Uniformly Continuous).
- p. 113 l+4 "scalar product" should be replaced by "duality product".
- p. 119 l+8 dr dl should be dl dr
- p. 119 l+9 dr dl should be dr.
- p. 119 l+11 The equation should be

$$(S_A * f)(t) = \int_0^t S_A(s)f(0)ds + \int_0^t \int_0^{t-l} S_A(r)f'(l)dr \, dl.$$

• p.135 In the Proposition 3.7.1. the last formula should be

$$\|\varphi\|_{L^p(J,Z)} = \sup_{\substack{\psi \in C_c^{\infty}(J,Z^*) \\ \|\psi\|_{L^q(J,Z^*)} \le 1}} \int_J \psi(s) \left(\varphi(s)\right) ds.$$

• p.153 l+1 "Corollary 2.2.13" should be replaced by "Corollary 2.2.15"

- p.158 l+6 $(\lambda I A)^{-1}$) should be replaced by $(\lambda I A)^{-1}$
- p.164 Kellermann and Hiber should be replaced by Kellermann and Hieber
- p.189 There is a confusion between the index k used for the space E_k and T^k used in the part (b) of the proof of Theorem 4.3.16. There must be two different indexes. The proof reads as follows.

Proof. (b) We prove dim $(E_{k_0}) < +\infty$ by induction. Clearly $E_0 = \{0\}$. Thus,

$$\dim(E_0) = 0.$$

Assume that dim $(E_k) < +\infty$. Let $u \in B_{E_{k+1}}(0,1)$, then from part (a) of the proof we know that there exists $v \in E_k$ such that

$$Tu = u - v$$

We have

$$\|v\| \le (1 + \|T\|) =: \delta$$

and

$$T^{m}(u) = u - \sum_{l=0}^{m-1} T^{l}(v) \Leftrightarrow u = T^{m}(u) + \sum_{l=0}^{m-1} T^{l}(v).$$

Hence

$$\kappa \left(B_{E_{k+1}}(0,1) \right) \le \kappa \left[T^m \left(B_X(0,1) \right) + B_{E_k}(0,\delta) + TB_{E_k}(0,\delta) + \dots + T^{m-1}B_{E_k}(0,\delta) \right],$$

and, since dim $(E_k) < +\infty$, we obtain

$$\kappa (B_{E_{k+1}}(0,1)) \leq \kappa (T^m (B_X (0,1))), \ \forall m \geq 1.$$

When m goes to $+\infty$, since $r_{\text{ess}}(T) < 1$, it follows that $\kappa (T^m (B_X (0, 1))) \rightarrow 0$. Thus,

$$\kappa\left(B_{E_{k+1}}\left(0,1\right)\right)=0.$$

It implies that $\overline{B_{E_{k+1}}(0,1)}$ is compact. But $(I-T)^{k+1}$ is bounded, we deduce that $E_{k+1} = \mathcal{N}((I-T)^{k+1})$ is closed, so is $B_{E_{k+1}}(0,1)$. Hence, $B_{E_{k+1}}(0,1)$ is compact. Now by applying the Riesz's theorem we obtain that dim $(E_{k+1}) < +\infty$.

- p.189 l-6 $X_n = \mathcal{R}\left((I-T)^n X\right)$, should be replaced by $X_n = \mathcal{R}\left((I-T)^n\right)$.
- p.189 l-4 $f \in \mathcal{R}((I-T)X_k)$ should be replaced by $f \in \mathcal{R}((I-T)|_{X_k})$.
- p.204 l-8 In Lemma 4.5.1. we mean $\forall \lambda \in \rho(A_Y)$.
- p.222 l-11 In the proof of Lemma 5.2.3 (Uniqueness) $\delta(t)$ should be replaced by $\delta(t t_0)$. Therefore the estimation should be

$$||u(t) - v(t)|| \le \delta(t - t_0) K(\tau + s, \xi) \sup_{l \in [t_0, t_0 + t]} ||u(l) - v(l)||.$$

• p.222-223 The statement of Lemma 5.2.4 and its proof is not correct. In $\delta(\gamma(\tau, \beta, \xi))$ we should drop some $\delta(.)$ which was not there in the original result (see Lemma 5.4. in ¹). The original result and its proof should be the following.

Lemma 0.1 (Local Existence) Let Assumptions 5.1.1, 5.1.2, and 5.2.1 be satisfied. Then for each $\tau > 0$, each $\beta > 0$, and each $\xi > 0$, there exists $\gamma(\tau, \beta, \xi) \in (0, \tau_0]$ such that for each $s \in [0, \tau]$ and each $x \in X_0$ with $|x| \leq \xi$, equation (5.1.1) has a unique integrated solution $U(., s)x \in C([s, s + \gamma(\tau, \beta, \xi)], X_0)$ which satisfies

$$|U(t,s)x| \le (1+\beta)\xi, \ \forall t \in [s,s+\gamma(\tau,\beta,\xi)].$$

Proof. Let $s \in [0, \tau]$ and $x \in X_0$ with $||x|| \leq \xi$ be fixed. Let $\gamma(\tau, \beta, \xi) \in (0, \tau_0]$ such that

$$\delta\left(\gamma\left(\tau,\beta,\xi\right)\right)M\left[\widehat{\xi}_{\tau+\tau_{0}}+\left(1+\beta\right)\xi K(\tau+\tau_{0},\left(1+\beta\right)\xi)\right]\leq\beta\xi$$

with $\widehat{\xi}_{\alpha} = \sup_{s \in [0, \alpha]} \|F(s, 0)\|, \forall \alpha \ge 0.$ Set

 $E = \left\{ u \in C\left(\left[s, s + \gamma\left(\tau, \beta, \xi\right) \right], X_0 \right) : \left| u(t) \right| \le (1 + \beta) \xi, \forall t \in \left[s, s + \gamma\left(\tau, \beta, \xi\right) \right] \right\}.$ Consider the map $\Phi_{x,s} : C\left(\left[s, s + \gamma\left(\tau, \beta, \xi\right) \right], X_0 \right) \to C\left(\left[s, s + \gamma\left(\tau, \beta, \xi\right) \right], X_0 \right)$ defined for each $t \in \left[s, s + \gamma\left(\tau, p, C \right) \right]$ by

$$\Phi_{x,s}(u)(t) = T_{A_0}(t-s)x + \frac{d}{dt}(S_A * F(.+s,u(.+s)))(t-s).$$

We have $\forall u \in E$ that (using (5.2.1) repeatedly)

$$\begin{aligned} \Phi_{x,s}(u)(t)| &\leq \xi + M \left\| \frac{d}{dt} (S_A * F(.+s,u(.+s)))(t-s) \right\| \\ &\leq \xi + M\delta\left(\gamma\left(\tau,\beta,\xi\right)\right) \sup_{t \in [s,s+\gamma(\tau,\beta,\xi)]} \|F(t,u(t))\| \\ &\leq \xi + M\delta\left(\gamma\left(\tau,\beta,\xi\right)\right) \left[\widehat{\xi}_{\alpha} + K(\tau+\tau_0,(1+\beta)\xi) \sup_{t \in [s,s+\gamma(\tau,\beta,\xi)]} |u(t)| \right] \\ &\leq (1+\beta)\xi. \end{aligned}$$

Hence, $\Phi_{x,s}(E) \subset E$. Moreover, for all $u, v \in E$, we have (again using (5.2.1))

$$\begin{aligned} |\Phi_{x,s}(u)(t) - \Phi_{x,s}(v)(t)| \\ &\leq M\delta\left(\gamma\left(\tau,\beta,\xi\right)\right)K(\tau+\tau_0,(1+\beta)\xi)\sup_{t\in[s,s+\gamma(\tau,\beta,\xi)]}|u(t) - v(t)| \\ &\leq \frac{K(\tau+\tau_0,(1+\beta)\xi)\beta\xi}{1+\widehat{\xi}_{\alpha} + K(\tau+\tau_0,(1+\beta)\xi)\left(1+\beta\right)\xi}\sup_{t\in[s,s+\gamma(\tau,\beta,\xi)]}|u(t) - v(t)| \\ &\leq \frac{\beta}{1+\beta}\sup_{t\in[s,s+\gamma(\tau,\beta,\xi)]}|u(t) - v(t)| \,. \end{aligned}$$

 $^1{\rm P.}$ Magal, and S. Ruan (2007), On Integrated Semigroups and Age Structured Models in L^p Spaces, Differential and Integral Equations,2, 197-139.

Therefore, $\Phi_{x,s}$ is a $\left(\frac{\beta}{1+\beta}\right)$ -contraction on E and the result follows.

• p.229 The last inequality of Corollary 5.3.4. is only true for $x \in X_{0+}$. So it should be

$$\|U(t,s)x\| \le e^{\gamma(t-s)} \left[C_1 \|x\| + C_2\right], \forall x \in X_{0+}.$$

• p. 259 l-1 and p. 260 l+1. The end of the proof of Theorem 6.1.10 (i) should be By projecting on X_{0h} , we obtain

$$\Pi_{0h} u_{x_c} = \left[K_s + K_u \right] \Phi_{\Pi_h F} \left(u_{x_c} \right),$$

 \mathbf{SO}

$$\Psi(x_c) = [K_s + K_u] \Phi_{\Pi_h F}(u_{x_c})(0)$$
(0.1)

and (i) follows.

• p. 262 l-2 (and p. 263 l+1)

$$\alpha_n := d\left(H_1(x_0(n), \overline{x}_1), H_1(x_0(n), \overline{x}_1)\right)$$

should be replaced by

$$\alpha_n := d\left(H_1(x_0(n), \overline{x}_1), H_1(\overline{x}_0, \overline{x}_1)\right).$$

• p.313 l-11 In the proof of Lemma 7.1.2 it should be

$$M_A := \sup_{t \ge 0} \left\| e^{(B - \omega_A I)t} \right\|_{\mathcal{L}(\mathbb{R}^n)}.$$