ERRATA \& NOTES

Theory and Applications of Abstract Semilinear Cauchy Problems

 by Pierre Magal and Shigui Ruan- p. xii replace $M: \mathbb{R} \times L^{1}\left((0,+\infty), \mathbb{R}^{n}\right) \rightarrow L^{1}\left((0,+\infty), \mathbb{R}^{n}\right)$ by $M: \mathbb{R} \times L^{p}\left((0,+\infty), \mathbb{R}^{n}\right) \rightarrow$ $L^{p}\left((0,+\infty), \mathbb{R}^{n}\right)$.
- p. xii replace $B: \mathbb{R} \times L^{1}\left((0,+\infty), \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ by $B: \mathbb{R} \times L^{p}\left((0,+\infty), \mathbb{R}^{n}\right) \rightarrow$ \mathbb{R}^{n}.
- p. 21 In Assumption 1.1.27 $\left(A+\partial_{x} F(\mu, 0)\right)_{0}$ should be replaced by $(A+$ $\left.\partial_{x} F(\mu, 0)\right)$.
- p. 22 In the Hopf bifurcation Theorem 1.1.28 $\varepsilon \rightarrow x_{\varepsilon}$ from $\left(0, \varepsilon^{*}\right)$ into \mathbb{R}^{n} should be renamed $\varepsilon \rightarrow x_{0 \varepsilon}$. Then the initial value $x_{\varepsilon}(0)=x_{0}$ should be replaced by $x_{\varepsilon}(0)=x_{0 \varepsilon}$ (twice in the text and in the equation).
- p. 92 l-8v $C_{b}([0,1), \mathbb{R})$ should be replaced by $\mathrm{BC}([0,1), \mathbb{R})$ (Bounded Continuous).
- p. 95 In Example 2.6.7. the notation $U B C(\mathbb{R}, \mathbb{R})$ should be replaced by $\operatorname{BUC}(\mathbb{R}, \mathbb{R})$ (Bounded Uniformly Continuous).
- p. $113 \mathrm{l}+4$ "scalar product" should be replaced by "duality product".
- p. $119 \mathrm{l}+8 d r d l$ should be $d l d r$
- p. $119 \mathrm{l}+9 d r d l$ should be $d r$.
- p. $119 \mathrm{l}+11$ The equation should be

$$
\left(S_{A} * f\right)(t)=\int_{0}^{t} S_{A}(s) f(0) d s+\int_{0}^{t} \int_{0}^{t-l} S_{A}(r) f^{\prime}(l) d r d l
$$

- p. 135 In the Proposition 3.7.1. the last formula should be

$$
\|\varphi\|_{L^{p}(J, Z)}=\sup _{\substack{\psi \in C_{c}^{\infty}\left(J, Z^{*}\right) \\\|\psi\|_{L^{q}\left(J, Z^{*}\right) \leq 1}}} \int_{J} \psi(s)(\varphi(s)) d s
$$

- p. $153 \mathrm{l}+1$ "Corollary 2.2.13" should be replaced by "Corollary 2.2.15"
- p. $\left.158 \mathrm{l}+6(\lambda I-\mathcal{A})^{-1}\right)$ should be replaced by $(\lambda I-\mathcal{A})^{-1}$
- p. 164 Kellermann and Hiber should be replaced by Kellermann and Hieber
- p. 189 There is a confusion between the index k used for the space E_{k} and T^{k} used in the part (b) of the proof of Theorem 4.3.16. There must be two different indexes. The proof reads as follows.
Proof. (b) We prove $\operatorname{dim}\left(E_{k_{0}}\right)<+\infty$ by induction. Clearly $E_{0}=\{0\}$. Thus,

$$
\operatorname{dim}\left(E_{0}\right)=0 .
$$

Assume that $\operatorname{dim}\left(E_{k}\right)<+\infty$. Let $u \in B_{E_{k+1}}(0,1)$, then from part (a) of the proof we know that there exists $v \in E_{k}$ such that

$$
T u=u-v .
$$

We have

$$
\|v\| \leq(1+\|T\|)=: \delta
$$

and

$$
T^{m}(u)=u-\sum_{l=0}^{m-1} T^{l}(v) \Leftrightarrow u=T^{m}(u)+\sum_{l=0}^{m-1} T^{l}(v) .
$$

Hence
$\kappa\left(B_{E_{k+1}}(0,1)\right) \leq \kappa\left[T^{m}\left(B_{X}(0,1)\right)+B_{E_{k}}(0, \delta)+T B_{E_{k}}(0, \delta)+\ldots+T^{m-1} B_{E_{k}}(0, \delta)\right]$, and, since $\operatorname{dim}\left(E_{k}\right)<+\infty$, we obtain

$$
\kappa\left(B_{E_{k+1}}(0,1)\right) \leq \kappa\left(T^{m}\left(B_{X}(0,1)\right)\right), \forall m \geq 1 .
$$

When m goes to $+\infty$, since $r_{\text {ess }}(T)<1$, it follows that $\kappa\left(T^{m}\left(B_{X}(0,1)\right)\right) \rightarrow$ 0 . Thus,

$$
\kappa\left(B_{E_{k+1}}(0,1)\right)=0 .
$$

It implies that $\overline{B_{E_{k+1}}(0,1)}$ is compact. But $(I-T)^{k+1}$ is bounded, we deduce that $E_{k+1}=\mathcal{N}\left((I-T)^{k+1}\right)$ is closed, so is $B_{E_{k+1}}(0,1)$. Hence, $B_{E_{k+1}}(0,1)$ is compact. Now by applying the Riesz's theorem we obtain that $\operatorname{dim}\left(E_{k+1}\right)<+\infty$.

- p. 189 l-6 $X_{n}=\mathcal{R}\left((I-T)^{n} X\right)$, should be replaced by $X_{n}=\mathcal{R}\left((I-T)^{n}\right)$.
- p. 189 l-4 $f \in \mathcal{R}\left((I-T) X_{k}\right)$ should be replaced by $f \in \mathcal{R}\left(\left.(I-T)\right|_{X_{k}}\right)$.
- p. 204 l-8 In Lemma 4.5.1. we mean $\forall \lambda \in \rho\left(A_{Y}\right)$.
- p. 222 l-11 In the proof of Lemma 5.2.3 (Uniqueness) $\delta(t)$ should be replaced by $\delta\left(t-t_{0}\right)$. Therefore the estimation should be

$$
\|u(t)-v(t)\| \leq \delta\left(t-t_{0}\right) K(\tau+s, \xi) \sup _{l \in\left[t_{0}, t_{0}+t\right]}\|u(l)-v(l)\| .
$$

- p.222-223 The statement of Lemma 5.2.4 and its proof is not correct. In $\delta(\gamma(\tau, \beta, \xi))$ we should drop some $\delta($.$) which was not there in the original$ result (see Lemma 5.4. in ${ }^{1}$). The original result and its proof should be the following.

Lemma 0.1 (Local Existence) Let Assumptions 5.1.1, 5.1.2, and 5.2.1 be satisfied. Then for each $\tau>0$, each $\beta>0$, and each $\xi>0$, there exists $\gamma(\tau, \beta, \xi) \in\left(0, \tau_{0}\right]$ such that for each $s \in[0, \tau]$ and each $x \in X_{0}$ with $|x| \leq \xi$, equation (5.1.1) has a unique integrated solution $U(., s) x \in$ $C\left([s, s+\gamma(\tau, \beta, \xi)], X_{0}\right)$ which satisfies

$$
|U(t, s) x| \leq(1+\beta) \xi, \forall t \in[s, s+\gamma(\tau, \beta, \xi)]
$$

Proof. Let $s \in[0, \tau]$ and $x \in X_{0}$ with $\|x\| \leq \xi$ be fixed. Let $\gamma(\tau, \beta, \xi) \in$ $\left(0, \tau_{0}\right]$ such that

$$
\delta(\gamma(\tau, \beta, \xi)) M\left[\widehat{\xi}_{\tau+\tau_{0}}+(1+\beta) \xi K\left(\tau+\tau_{0},(1+\beta) \xi\right)\right] \leq \beta \xi
$$

with $\widehat{\xi}_{\alpha}=\sup _{s \in[0, \alpha]}\|F(s, 0)\|, \forall \alpha \geq 0$. Set
$E=\left\{u \in C\left([s, s+\gamma(\tau, \beta, \xi)], X_{0}\right):|u(t)| \leq(1+\beta) \xi, \forall t \in[s, s+\gamma(\tau, \beta, \xi)]\right\}$.
Consider the map $\Phi_{x, s}: C\left([s, s+\gamma(\tau, \beta, \xi)], X_{0}\right) \rightarrow C\left([s, s+\gamma(\tau, \beta, \xi)], X_{0}\right)$
defined for each $t \in[s, s+\gamma(\tau, p, C)]$ by

$$
\Phi_{x, s}(u)(t)=T_{A_{0}}(t-s) x+\frac{d}{d t}\left(S_{A} * F(.+s, u(.+s))\right)(t-s)
$$

We have $\forall u \in E$ that (using (5.2.1) repeatedly)

$$
\begin{aligned}
\left|\Phi_{x, s}(u)(t)\right| & \leq \xi+M\left\|\frac{d}{d t}\left(S_{A} * F(.+s, u(.+s))\right)(t-s)\right\| \\
& \leq \xi+M \delta(\gamma(\tau, \beta, \xi)) \sup _{t \in[s, s+\gamma(\tau, \beta, \xi)]}\|F(t, u(t))\| \\
& \leq \xi+M \delta(\gamma(\tau, \beta, \xi))\left[\widehat{\xi}_{\alpha}+K\left(\tau+\tau_{0},(1+\beta) \xi\right) \sup _{t \in[s, s+\gamma(\tau, \beta, \xi)]}|u(t)|\right] \\
& \leq(1+\beta) \xi .
\end{aligned}
$$

Hence, $\Phi_{x, s}(E) \subset E$. Moreover, for all $u, v \in E$, we have (again using (5.2.1))

$$
\begin{aligned}
& \left|\Phi_{x, s}(u)(t)-\Phi_{x, s}(v)(t)\right| \\
& \quad \leq M \delta(\gamma(\tau, \beta, \xi)) K\left(\tau+\tau_{0},(1+\beta) \xi\right) \sup _{t \in[s, s+\gamma(\tau, \beta, \xi)]}|u(t)-v(t)| \\
& \quad \leq \frac{K\left(\tau+\tau_{0},(1+\beta) \xi\right) \beta \xi}{1+\widehat{\xi}_{\alpha}+K\left(\tau+\tau_{0},(1+\beta) \xi\right)(1+\beta) \xi} \sup _{t \in[s, s+\gamma(\tau, \beta, \xi)]}|u(t)-v(t)| \\
& \quad \leq \frac{\beta}{1+\beta} \sup _{t \in[s, s+\gamma(\tau, \beta, \xi)]}|u(t)-v(t)| .
\end{aligned}
$$

[^0]Therefore, $\Phi_{x, s}$ is a $\left(\frac{\beta}{1+\beta}\right)$-contraction on E and the result follows.

- p. 229 The last inequality of Corollary 5.3.4. is only true for $x \in X_{0+}$. So it should be

$$
\|U(t, s) x\| \leq e^{\gamma(t-s)}\left[C_{1}\|x\|+C_{2}\right], \forall x \in X_{0+}
$$

- p. $259 \mathrm{l}-1$ and p. $260 \mathrm{l}+1$. The end of the proof of Theorem 6.1.10 (i) should be By projecting on $X_{0 h}$, we obtain

$$
\Pi_{0 h} u_{x_{c}}=\left[K_{s}+K_{u}\right] \Phi_{\Pi_{h} F}\left(u_{x_{c}}\right)
$$

so

$$
\begin{equation*}
\Psi\left(x_{c}\right)=\left[K_{s}+K_{u}\right] \Phi_{\Pi_{h} F}\left(u_{x_{c}}\right)(0) \tag{0.1}
\end{equation*}
$$

and (i) follows.

- p. 262 l-2 (and p. $263 \mathrm{l}+1$)

$$
\alpha_{n}:=d\left(H_{1}\left(x_{0}(n), \bar{x}_{1}\right), H_{1}\left(x_{0}(n), \bar{x}_{1}\right)\right)
$$

should be replaced by

$$
\alpha_{n}:=d\left(H_{1}\left(x_{0}(n), \bar{x}_{1}\right), H_{1}\left(\bar{x}_{0}, \bar{x}_{1}\right)\right)
$$

- p. 313 l-11 In the proof of Lemma 7.1.2 it should be

$$
M_{A}:=\sup _{t \geq 0}\left\|e^{\left(B-\omega_{A} I\right) t}\right\|_{\mathcal{L}\left(\mathbb{R}^{n}\right)}
$$

[^0]: ${ }^{1}$ P. Magal, and S. Ruan (2007), On Integrated Semigroups and Age Structured Models in L^{p} Spaces, Differential and Integral Equations,2, 197-139.

