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Abstract. This paper is devoted to the study of an age-structured population

system with Riker type birth function. Two time lag factors is considered
for the model. One time lies in the birth process and the another is in the

birth function. We investigate some dynamical properties of the equation by

using integrated semigroup theory, through which we obtain some conditions of
asymptotical stability and Hopf bifurcation occurring at positive steady state

for the system. The obtained results show how the two delays affect these

dynamical properties.

1. Introduction. In this work we study the problem of Hopf bifurcation in the
following system with delayed birth process,

∂

∂t
u(t, a) = − ∂

∂a
u(t, a)− µu(t, a), t > 0, a > 0,

u(t, 0) = αh

(∫ 0

−τ1
dξ(θ)

∫ +∞

0

β(a)u(t+ θ, a)da

)
, t > 0,

u(s, a) = u0(s, a), s ∈ [−τ1, 0], a > 0.

(1.1)

where u(t, a) represents the population density of certain species at time t with age
a, µ > 0, α > 0, β(·) ∈ L∞+ (0,+∞), ξ(·) : [−τ1, 0] → R is a function of bounded
variation, and the map h : R→ R is defined by

h(x) = xe−γx, for any x ∈ R. (1.2)

The model (1.1) is viewed as an age(size)-structured population system (with
delayed birth process), for example for the growth of trees or fish population,
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where a = 0 is the minimal size. The growth of individuals is described by the
term ∂

∂au(t, a), which represents the average growth rate of individuals. The term
−µ(t, a) describes the mortality process of individuals following an exponential law

with mean 1/µ. The birth function given by αh(
∫ +∞

0
β(a)u(t, a)da) is a Ricker type

birth function ([30, 31]). This type of birth function has been commonly used in
the literatures, to take into account some limitation of births when the population
increases. In particular, the birth rate function is β(a) when the total population
is close to zero. We refer to Arino [4], Arino and Sanchez [5], Calsina and Saldana
[9], Calsina and Sanchon [10], Webb [35], and Ackleh and Deng [1] (and references
therein) for studies on age-structured models in the context of ecology and cell
population dynamics.

As pointed out in [26], the existence of non-trivial periodic solutions in age struc-
tured models has been a very interesting and difficult problem. It is believed that
such periodic solutions in age structured models are induced by Hopf bifurcation,
but there is no general Hopf bifurcation theorem available for such models. Re-
cently a center manifold theory has been developed for non-densely defined Cauchy
problems in Magal and Ruan [26]. This center manifold theory allows us to obtain
an abstract Hopf bifurcation theorem (see Liu, Magal and Ruan [21]). This Hopf
bifurcation theorem has been successfully applied in [26] to the system (1.1) when

β(a) = (a− τ)neγ(a−τ)1[τ,+∞)(a) (1.3)

and there is no delay in the birth process. In Paper [11] Chu, Ducrot, Magal and

Ruan added a diffusion term ε2 ∂2

∂a2u(t, a) in this model to describe the stochas-
tic fluctuations around the tendency to growth. They have investigated how the
diffusion rate ε2 influences the stability and the Hopf bifurcation of the positive
equilibrium of the system. In addition, as it can be seen there, the formula (1.3)
indicates that there involves a time lag for the diffusion of the species. There are
other works on Hopf bifurcation for related models by applying the center manifold
theorem, see [27] and [32], for instance.

The aim of this paper is to consider the Hopf bifurcation problem for System
(1.1) under two delays. one delay is for the birth process denoting that the birth
process depends on the past population. In fact, there is often a time lag between
conception and birth like in the models for host-parasite interactions (see [8]). The
another delay appears in the birth function β(·) like in (6.1). This, as shown in
[11], reflects the time lag in the population of the species. It will be shown in our
results how the two delays affect the stability and Hopf bifurcations phenomenon
for System (1.1).

This paper is organized as: In Section 2, we collect some notations and results on
theory of C0−semigroup and integrated semigroup which will be used in the later
sections. In Section 3, we reformulate (1.1) as a non-densely defined Cauchy prob-
lem, and show the existence and uniqueness of solutions to this non-densely defined
Cauchy problem. The positive equilibrium of the system is studied in Section 4.
Then we linearize here the system at the positive equilibrium and discuss the spec-
tral properties of the linearized equation. The characteristic equation is also given
in this section. Based on the work of Section 4, in Section 5, we present the results
of stability and Hopf bifurcation of the system (1.1). In Section 6, considering α as
a parameter, we study the existence of Hopf bifurcation for System (1.1) when β(·)
is defined by (6.1). Finally, in Section 7 we present some numerical simulations of
the model to illustrate the obtained results.
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2. Preliminary. Firstly we state in this section some notations and basic facts
from the theory of semigroups and their asymptotic properties. For a closed linear
operator (A,D(A)) acting on a Banach space X, we denote by σ(A) the spectrum
of A, i.e.

σ(A) = {λ ∈ C : λ−A : D(A)→ X is not bijective} .
The spectral bound of A, s(A), is defined as

s(A) = sup {Reλ : λ ∈ σ(A)} .
The set

ρ(A) := C \ σ(A)

i.e. the complement of σ(A) in C is called the resolvent of operator A. Hence, for
every λ ∈ ρ(A), R(λ,A) = (λ−A)−1 exists and is continuous operator on X.

If, moreover, A is the generator of a strongly continuous semigroup etA, a crucial
quantity associated to it is the growth bound type of etA, ω0(A), which is defined
as

ω0(A) := lim
t→+∞

ln ‖etA‖
t

.

If ω0(A) < 0, then there exist γ > 0 and M ≥ 1 such that ‖etAx0‖ ≤ Me−γt for
each t ≥ 0 and any x0 ∈ X.

The essential growth bound ωess(A) of A is defined by

ω0,ess(A) := lim
t→+∞

ln(‖etA‖ess)
t

,

where ‖etA‖ess is the essential norm of etA given by

‖etA‖ess = κ
(
etAB(0, 1)

)
,

here B(0, 1) = {x ∈ X : ‖x‖ ≤ 1}, and κ(·) denotes the Kuratovsky measure of
non-compactness. It is known that (cf. [16, 35])

ω0(A) = max{ωess(A), s(A)}.
When an operator A is not densely defined but, nevertheless, satisfies the neces-

sary condition on the resolvent in order to be a generator, it is called a Hille-Yosida
operator. More precisely, we have the following definition:

Definition 2.1. A linear operator (A,D(A)) acting on a Banach space X is called
to be a Hille-Yosida operator if there exists ω ∈ R such that (ω,+∞) ⊂ ρ(A) and

sup
{
‖(λ− ω)n(λ−A)−n‖ : λ > ω, n ∈ N

}
< +∞.

If the constant ω can be chosen smaller than 0, then A is said of negative type.

Any Hille-Yosida operator gives rise to a strongly continuous semigroup on the
closure of the domain, that is, (cf. [29])

Proposition 1. Let (A,D(A))be a Hille-Yosida operator on Banach space X and

set X0 := (D(A), ‖ · ‖). then the part of A in X0, A0, which is defined as

A0x := Ax, for x ∈ D(A0),

with the domain

D(A0) = {x ∈ D(A) : AX ∈ X0)},
generates a strongly continuous semigroup on X0. Moreover, ρ(A) ⊆ ρ(A0) and
(λ−A0)−n is the restriction of (λ−A)−n to X0



4 X. FU, Z. LIU AND P. MAGAL

Meanwhile, a Hille-Yosida operator generates an integrated semigroup on space
X. We end this section by stating some notations and basic results on integrated
semigroup. For the theory of integrated semigroup we refer to Arendt [2], Thieme
[34], Kellermann and Hieber [19], and the book of Arendt et al. [3] for details on
this subject

Definition 2.2. Let X be a Banach space. An integrated semigroup is a family
(S(t))t≥0of bounded linear operators S(t) on X with the following properties:

(i) S(0) = 0;
(ii) t→ S(t) is strongly continuos;

(ii) S(t)S(s) =
∫ t

0
[S(s+ τ)− S(τ)]dτ , for all t, s ≥ 0.

Definition 2.3. An operator A is called to be the generator of an integrated semi-
group if there exits ω ∈ R such that (ω,∞) ⊂ ρ(A) and there exists a strongly
continuous exponently bounded family (S(t))t≥0 of bounded linear operators such

that S(0) = 0 and (λI −A)−1 = λ
∫∞

0
e−λtS(t)dt exists for all λ with λ > ω.

Proposition 2. Let A be the generator of an integrated semigroup (S(t))t≥0. Then
for all x ∈ X and t ≥ 0,∫ t

0

S(s)xds ∈ D(A), and S(t)x = A

∫ t

0

S(s)xds+ tx.

Definition 2.4. (i) An integrated semigroup (S(t))t≥0 is called Locally Lipschitz
continuous, if, for all τ > 0, there exists a constant L > 0 such that

‖S(t)− S(s)‖ ≤ L|t− s|, t, s ∈ [0, τ ].

(ii) An integrated semigroup (S(t))t≥0 is called nondegenerate if S(t)x = 0 for
all t ≥ 0 implies that x = 0.

Proposition 3. The following assertions are equivalent:
(i) A is the generator of non-degenerate, locally Lipschitz continuous integrated

semigroup;
(ii) A satisfies the Hille-Yosida condition.

For the existence of solutions of the following Cauchy problem:{
d

dt
x(t) = Ax(t) + f(t), t > 0,

x(0) = x0 ∈ X,
where A satisfies the Hille-Yosida condition without being densely defined, one has

Proposition 4. Let f : [0, a]→ X is a continuous function. Then for y0 ∈ D(A),
there is a unique continuous function y : [0, a]→ X such that

(i)
∫ t

0
y(s)ds ∈ D(A), t ∈ [0.a];

(ii) y(t) = y0 +A
∫ t

0
y(s)ds+

∫ t
0
f(s)ds, t ∈ [0.a];

(ii) ‖y(t)‖ ≤Meωt[‖y0‖+
∫ t

0
e−ωs‖f(s)‖ds], t ∈ [0.a].

3. Abstract equations. We will use the integrated semigroup theory to study
such a PDE (1.1), so in the sequel, we rewrite (1.1) into an abstract non-densely
defined Cauchy problem by several steps.

Consider the space

Y := R× L1(0,+∞)
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endowed with the usual product norm(
α
ϕ

)
= |α|+ ‖ϕ‖L1 .

Define the linear operator B : D(B) ⊂ Y → Y by

B

(
0
ϕ

)
=

(
−ϕ(0)
−ϕ′ − µϕ

)
with the domain

D(B) = {0} ×W 1,1(0,+∞).

Then
Y0 := D(B) = {0} × L1(0,+∞).

Let

CB =

{(
α(·)
φ(·)

)
∈ C([−τ1, 0], Y ) : α(0) = 0

}
.

Define the operators H : Y0 → Y by

H

((
0
ϕ

))
=

(
αh
(∫ +∞

0
β(a)ϕ(a)da

)
0

)
,

and Ĥ : CB → Y by

Ĥ

((
α(·)
φ(·)

))
= H

((
0∫ 0

−τ1 dξ(θ)φ(θ)(a)

))

=

(
αh
(∫ 0

−τ1 dξ(θ)
∫ +∞

0
β(a)φ(θ)(a)da

)
0

)
.

Then by identifying u(t) with u(t, a) and y(t) =

(
0
u(t)

)
the equation (1.1) can

be rewritten as the following Cauchy problem{
d

dt
y(t) = By(t) + Ĥ (yt) , t > 0,

y(θ) = y0(θ) ∈ CB ,
(3.1)

here yt = yt(θ) = y(t+ θ) ∈ CB and y0(θ) =

(
0

u0(θ, ·)

)
.

This is a abstract (non-densely defined) functional differential equation. To apply
the integrated semigroup theory we need further to rewrite (3.1) to an abstract
Cauchy problem of ODE.

Define v ∈ C([0,+∞)× [−τ1, 0];Y ) by

v(t, θ) = y(t+ θ), for any t ≥ 0 and θ ∈ [−τ1, 0].

Note that
∂v(t, θ)

∂t
= y′(t+ θ) =

∂v(t, θ)

∂θ
,

we must have

∂v(t, θ)

∂t
− ∂v(t, θ)

∂θ
= 0, for any t ≥ 0 and θ ∈ [−τ1, 0].

Moreover, for θ = 0, we obtain

∂v(t, 0)

∂θ
= y′(t) = By(t) + Ĥ (yt) = Bv(t, 0) + Ĥ (v(t, ·)) , t ≥ 0.
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Therefore, we deduce formally that v must satisfy a PDE
∂v(t, θ)

∂t
− ∂v(t, θ)

∂θ
= 0,

∂v(t, 0)

∂θ
= Bv(t, 0) + Ĥ (v(t, ·)) , t ≥ 0,

v(0, ·) = y0(·) ∈ CB ,

(3.2)

In order to rewrite the PDE (3.2) as an abstract non-densely defined Cauchy prob-
lem, we extend the state space to take into account the boundary condition. This
can be accomplished by adopting the following state space

X = Y × C([−τ1, 0];Y )

taken with the usual product norm(
f
φ

)
= ‖f‖Y + ‖φ‖C .

Define the linear operator A : D(A) ⊂ X → X by

A

(
0Y
φ

)
=

(
−φ′(0) +Bφ(0)

φ′

)
, for any

(
0Y
φ

)
∈ D(A),

where the domain

D(A) = {0} ×
{
φ ∈ C1([−τ1, 0];Y ), φ(0) ∈ D(B)

}
.

Note that A is also non-densely defined because

X0 := D(A) = {0Y } × CB 6= X.

We define H̃ : X0 → X by

H̃

(
0Y
φ

)
=

(
Ĥ(φ)

0C

)
.

Finally, set

x(t) :=

(
0
v(t)

)
.

Then we can consider the PDE (3.2) as the following non-densely defined Cauchy
problem 

d

dt
x(t) = Ax(t) + H̃ (x(t)) , t > 0,

x(0) =

(
0Y
y0

)
∈ X0,

(3.3)

Putting
Ω = {λ ∈ C : Reλ > −µ} .

Then we have the following

Theorem 3.1. For the operators A and B defined above, there hold that

(i) For each λ ∈ Ω with Reλ > −µ, one has λ ∈ ρ(B) and

(λ−B)−1

(
α
ψ

)
=

(
0
ϕ

)
⇔ ϕ(a) = αe−(λ+µ)a +

∫ a

0

e−(λ+µ)(a−l)ψ(l)dl;

(ii) ρ(A) = ρ(B). Moreover, for each λ ∈ ρ(A), we also have the following explicit
formula for the resolvent of A:

(λ−A)−1

(
f
ψ

)
=

(
0Y
φ

)
⇔ φ(a) = eλθ(λ−B)−1[ψ(0)+f ]+

∫ 0

θ

eλ(θ−s)ψ(s)ds;
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(iii) The operators B and A are Hille-Yosida operators on Y and X, respectively.

Proof. Assertion (ii) and (iii) are proved in Theorem 3.5 and Lemma 3.6 of [15],
and Assertion (i) is proved in Section 6 of [15].

By using the results in Thieme [33], Magal [23], and Magal and Ruan [25], we
have the following theorem.

Theorem 3.2 (Existence). There exists a unique continuous semiflow X(t)t≥0 on

X0+ such that for any x ∈ X0+, t→ X(t)x is the unique integrated solution of{
dX(t)x

dt
= AX(t)x+ H̃(X(t)x)

X(0)x = x

or equivalently,

X(t)x = x+A

∫ t

0

X(l)xdl +

∫ t

0

H̃(X(l)x)dl, t ≥ 0.

Furthermore, since B and A are Hille-Yosida operators, they generate non-
degenerated integrated semigroups (SB(t))t≥0 and (SA(t))t≥0 on Y and X respec-
tively. Introduce their parts B0 and A0 on Y0 and X0 respectively, namely,

B0

(
0
ϕ

)
= B

(
0
ϕ

)
with D(B0) =

{(
0
ϕ

)
∈ D(B) : B

(
0
ϕ

)
∈ Y0

}
, and

A0

(
0Y
φ

)
= A

(
0Y
φ

)
with

D(A0) =

{(
0Y
φ

)
∈ D(A) : A

(
0Y
φ

)
∈ X0

}
.

Then the operators (B0, D(B0)) and (A0, D(A0)) generate, respectively, C0- semi-
groups (TB0

(t))t≥0 and (TA0
(t))t≥0 on Y0 and X0.

It follows from Thieme [34] and Kellerman and Hieber [19] that the abstract
Cauchy problem (3.3) has at most one integrated solution. The following theorem
indicates the relationship of solutions u(t, a), y(t) and x(t) to Systems (1.1), (3.1)
and (3.3).

Theorem 3.3. Let x0 =

(
0Y
y0(·)

)
with y0 =

(
0

u0(·)(a)

)
∈ C([−τ1, 0];Y ), then

there exists an unique integrated solution t → x(t) of the Cauchy problem (3.3)
given by

x(t) =


x0(t), t ∈ [τ1, 0],

TA0
(t)x0(0) +

d

dt

∫ t

0

SA(t− s)H̃(y(s))ds, t ≥ 0.

It can be expressed explicitly by the following formula

x(t) =

(
0Y
v(t)

)
with

v(t)(θ) = y(t+ θ), for t ≥ 0, θ ∈ [−τ1, 0],
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where

y(t) =

(
0

u(t, a)

)
=


y0(t), t ∈ [τ1, 0],

TB0(t)u0(0) +
d

dt

∫ t

0

SB(t− s)Ĥ(y(s))ds, t ≥ 0.

4. Equilibrium, linearized equation and spectral properties. Now we con-
sider the positive equilibrium solutions of Eq. (1.1).

Let

(
0Y
φ

)
∈ D(A)× C([−τ1, 0];Y ) with φ =

(
α(·)
u(·)(a)

)
, and set

A

(
0Y
φ

)
+ H̃

((
0Y
φ

))
= 0,

that is,(
−φ′(0) +Bφ(0)

φ′

)
+

 Ĥ

((
α(·)
u(·)(a)

))
0C


=

(
−φ′(0) +Bφ(0)

φ′

)
+

 H

((
0∫ 0

−τ1 dξ(θ)u(θ)(a)

))
0C


=

 −φ′(0) +

(
−u(0)(0)
−u′a − µu

)
φ′

+

 αh
(∫ 0

−τ1 dξ(θ)
∫ +∞

0
β(a)u(θ)(a)da

)
0

0C


= 0.

Then we get the equilibrium for (3.3)

x̄(a) =

 0Y
0

ce−µa

 , a > 0

and hence the (unique) positive equilibrium for (1.1) as

ū(t, a) = ce−µa, t ≥ −τ1, a > 0, (4.1)

where c, from the boundary condition, is determined by the equation

c = αh

(
c

∫ 0

−τ1
dξ(θ)

∫ +∞

0

β(a)e−µada

)
,

which, by expression (1.2), gives that

c =
1

γK
ln(αK),

with

K =

∫ 0

−τ1
dξ(θ)

∫ +∞

0

β(a)e−µada. (4.2)

Next we deduce the linearized system for System (1.1) around the positive equi-
librium ū. Actually, the linearized system for System (3.3) is given by

dx(t)

dt
= Ax(t) +DH̃ (x̄)x(t), t > 0,

x(t) = x̄|[−τ1, 0],
(4.3)
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where, for x =

(
0Y
φ

)
=

 0Y
α(·)
u(·)(a)

 ∈ X0,

DH̃ (x̄)x = DH̃ (x̄)

(
0Y
φ

)

=

 αh′
(∫ 0

−τ1 dξ(θ)
∫ +∞

0
β(a)ū(a)da

)
·
∫ 0

−τ1 dξ(θ)
∫ +∞

0
β(a)u(θ)(a)da

0L1

0C


=

 η(α)
∫ 0

−τ1 dξ(θ)
∫ +∞

0
β(a)u(θ)(a)da

0L1

0C


with

η(α) := αh′
(∫ 0

−τ1
dξ(θ)

∫ +∞

0

β(a)ū(a)da

)
=

1

K
[1− ln(αK)] . (4.4)

The Cauchy problem (4.3) corresponds to the following linear partial differential
equation 

∂

∂t
u(t, a) = − ∂

∂a
u(t, a)− µu(t, a), t > 0, a > 0,

u(t, 0) = η(α)

∫ 0

−τ1
dξ(θ)

∫ +∞

0

β(a)u(t+ θ, a)da, t > 0,

u(s, a) = ū(a), s ∈ [−τ1, 0], a > 0.

(4.5)

Now let u(t, a) = eλtφ(a) in (4.5), one can easily obtain the characteristic equa-
tion as

∆(λ, α) = 1− η(α)

∫ 0

−τ1
eλθdξ(θ)

∫ +∞

0

β(a)e−(µ+λ)ada. (4.6)

To simplify the notation, we define Bα : D(Bα) ⊂ X → X as

Bαx = Ax+DH(x̄)x with D(Bα) = D(A),

and denote by (Bα)0 the part of Bα on X0. Then we have

Theorem 4.1. For each λ ∈ Ω, there hold

λ ∈ ρ(Bα)⇔ ∆(λ, α) 6= 0,

and the following explicit formula:

(λ−Bα)−1


β
f

β1(·)
ϕ(·)


=

 0Y

eλθ(λ−B)−1

[(
β1(0)
ϕ(0)(a)

)
+

(
β
f(a)

)]
+
∫ 0

θ
eλ(θ−s)

(
β1(s)
ϕ(s)

)
ds

 ,

for any


β
f

β1(·)
ϕ(·)

 ∈ X.
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Proof. Since λ ∈ Ω, from Theorem 3.1, we know that (λ−A) is invertible. Then

λ−Bα is invertible ⇔ I −DH(x̄)(λ−A)−1 is invertible,

and
(λ−Bα)−1 = (λ−A)−1[I −DH(x̄)(λ−A)−1]−1.

We also know by direct computation that

[I −DH(x̄)(λ−A)−1]


β̂

f̂

β̂1(·)
ϕ̂(·)

 =


β
f

β1(·)
ϕ(·)


is equivalent to f = f̂ , β1 = β̂1, ϕ = ϕ̂, and

β = β̂ − η(α)

∫ 0

−τ1
eλθdξ(θ)

∫ +∞

0

β̂β(a)e−(µ+λ)ada− β̃(ϕ̂, f̂),

where

β̃(ϕ̂, f̂) :=η(α)

∫ 0

−τ1
eλθdξ(θ)

∫ +∞

0

β(a)

(∫ a

0

e−(µ+λ)(a−l)[ϕ̂(0)(l) + f̂(l)]dl

)
da

+ η(α)

∫ 0

−τ1
dξ(θ)

∫ +∞

0

β(a)

(∫ 0

θ

eλ(θ−s)ϕ̂(s)(a)ds

)
da.

We deduce that [I − DH(x̄)(λ − A)−1] is invertible if and only if ∆(λ, α) 6= 0.
Moreover,

[I −DH(x̄)(λ−A)−1]−1


β
f

β1(·)
ϕ(·)

 =


β̂

f̂

β̂1(·)
ϕ̂(·)


is equivalent to f̂ = f , β̂1 = β1, ϕ̂ = ϕ, and

β̂ = ∆(λ α)−1[β + β̃(ϕ, f)].

Therefore,

(λ−Bα)−1


β
f

β1(·)
ϕ(·)



= (λ−A)−1[I −DH(x̄)(λ−A)−1]−1


β
f

β1(·)
ϕ(·)



= (λ−A)−1


∆(λ α)−1[β + β̃(ϕ, f)]

f
β1(·)
ϕ(·)


=

 0Y

eλθ(λ−B)−1

[(
β1(0)
ϕ(0)(a)

)
+

(
β
f(a)

)]
+
∫ 0

θ
eλ(θ−s)

(
β1(s)
ϕ(s)

)
ds

 ,

which is the desired result and the proof is completed.
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Further, we have the following result:

Theorem 4.2. For the operator (Bα, D(Bα)), the following statements are true.

(i) The linear operator Bα is a Hille-Yosida operator on X and its part (Bα)0 in
X0 satisfies

ω0, ess ((Bα)0) ≤ −µ. (4.7)

(ii) There holds

σ ((Bα)0) ∩ Ω = σp ((Bα)0) ∩ Ω = {λ ∈ Ω : ∆(λ, α) = 0} .

Proof. Bα is clearly a Hille-Yosida operator since DH(x̄) is linear and bounded.
Meanwhile, as DH(x̄) is one-dimensional, we get from ([14], Theorem 1.2) that

ω0, ess ((Bα)0) ≤ ω0, ess (A0) .

But (see formula (3.2) of [15])

ω0, ess (A0) ≤ ω0, ess (B0) ,

hence

ω0, ess ((Bα)0) ≤ ω0, ess (B0) ≤ −µ.
Assertion (ii) follows from Theorem 4.1 immediately.

5. Stability and bifurcation results. Based on the work of the previous section
(particularly, Theorem 4.2), we may apply the center manifold Theorem 4.21 and
Proposition 4.22 in Magal and Ruan [26] to reduce System (1.1) to a ODE system in
finite dimension. Thus, we can establish the results on stability and Hopf bifurcation
for System (1.1). First we have the local stability of the positive steady state ū.
That is

Theorem 5.1. The positive steady state ū of System (1.1) is (locally) stable if

1

K
< α ≤ e2

K
. (5.1)

Proof. Let λ ∈ C with Reλ ≥ 0, and ∆(α, λ) = 0. Then

1 =

∣∣∣∣η(α)

∫ 0

−τ1
e(Reλ)θdξ(θ)

∫ +∞

0

β(a)e−(µ+λ)ada

∣∣∣∣
≤ |η(α)|

∫ 0

−τ1
e(Reλ)θdξ(θ)

∫ +∞

0

β(a)e−µae−(Reλ)ada

≤ |η(α)|
∫ 0

−τ1
dξ(θ)

∫ +∞

0

β(a)e−µada

=
1

K
|1− ln(αK)| ·K = |1− ln(αK)| ,

which contradicts (5.1). So we must have Reλ < 0 and assertion is true (note that
(4) implies that α > 1

K is necessary for the existence of the equilibrium ū).

Then, by the Hopf bifurcation theorem (Hassard et al. [18]), we have the following
Hopf bifurcation result.

Theorem 5.2. Assume that there is a number α∗ > e2

K such that

(i) if λ ∈ Ω and ∆(α∗, λ) = 0, then Re
(
∂∆(α∗,λ)

∂λ

)
6= 0;
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(ii) there exists θ∗ > 0 such that ∆(α∗, iθ∗) = 0 and ∆(α∗, iθ) 6= 0 for any
θ ∈ (0, ,+∞) \ {θ∗}.

Then for this α∗ > e2

K , System (1.1) undergoes a Hopf bifurcation at the equilibrium
ū. Particularly, a non-trivial periodic solution bifurcates from the equilibrium ū.

6. Hopf bifurcation. In this section, as an application of Theorem 5.2, we study
the bifurcation problem for System (1.1) under the following assumptions:

(i) The function ξ(·) is given by

ξ(θ) =

{
0, θ ∈ (−τ1, 0],
−1, θ = −τ1.

(ii) The birth function β(·) is given by

β(a) =

{
β0(a− τ2)neχ(a−τ2), a ≥ τ2,

0, a < τ2,
(6.1)

where β0 > 0, χ ≥ 0 and n ∈ N.
By Theorem 5.1 we already knew that the positive equilibrium ū of the system

(1.1) is locally asymptotically stable if 1
K < α ≤ e2

K , hence we will study the

existence of a bifurcation value α > e2

K . Recalling (4.4), we must have

η(α) < 0. (6.2)

Since the function β(a) must be bounded, we consider the following two cases:
(a) n = 0, χ = 0;
(b) n ≥ 1, χ > 0.

As a first step, we prove the existence of purely imaginary eigenvalues.

Case a. Under Assumption (i), (ii) and (a) the characteristic equation (4.6)
turns out to be

∆(λ, α) = 1− β0η(α)e−λτ1
e−(λ+µ)τ2

λ+ µ
= 0, (6.3)

or

λ+ µ = β0η(α)e−µτ2e−(τ1+τ2)λ. (6.4)

Let λ̂ = (τ1 + τ2)λ, then (6.4) becomes

λ̂+ µ(τ1 + τ2) = β0η(α)(τ1 + τ2)e−µτ2e−λ̂. (6.5)

Thus, from ([17], Theorem A.5) we get a sufficient and necessary condition for local
asymptotic stability as follows.

Theorem 6.1. For case (a), The positive equilibrium ū of the system (1.1) is local
asymptotically stable if and only if

− β0η(α)(τ1 + τ2)e−µτ2 < φ sinφ− µ(τ1 + τ2) cosφ, (6.6)

where φ satisfies that

φ = µ(τ1 + τ2) tanφ. (6.7)

Let λ̂ = ωi in (6.5) with ω > 0, then

[ωi+ µ(τ1 + τ2)] eωi = β0η(α)(τ1 + τ2)e−mτ2 .

Now we can fix (note (6.2))

η(α) = − c1e
µτ2

β0(τ1 + τ2)
,
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for some constant c1 > 0, to obtain

ωi+ µ(τ1 + τ2) = −c1e−ωi = −c1[cosω − i sinω].

We must have

c1 =
√
µ2(τ1 + τ2)2 + ω2,

and

tanω = − ω

µ(τ1 + τ2)

and impose that

sinω =
ω

c1
> 0.

From the above computation we obtain the following proposition.

Proposition 5. Let τ1, τ2 > 0 and µ > 0 be fixed. Then the characteristic equation
(6.3) has a pair of imaginary solutions ±iω with ω > 0 if and only if there exists
ω > 0 which is a solution of equation

tanω = − ω

µ(τ1 + τ2)
(6.8)

with

sinω =
ω

c1
> 0, (6.9)

and

η(α) = − c1e
µτ2

β0(τ1 + τ2)

with

c1 =
√
µ2(τ1 + τ2)2 + ω2.

Moreover, for each k ∈ N, there exists a unique ωk ∈ ((2k+ 1
2 )π, (2k+ 1)π) (which

is a function of τ1, τ2 and µ) satisfying (6.8) and (6.9).

Case (b). If n ≥ 1 and χ > 0, then

∆(λ, α) = 1− η(α)e−λτ1
∫ +∞

τ2

β0(a− τ2)ne−χ(a−τ2)e−(µ+λ)ada

= 1− η(α)e−λτ1e−(µ+λ)τ2β0

∫ +∞

0

ane−(µ+λ+χ)ada

= 1− β0η(α)e−µτ2
n!

(µ+ λ+ χ)n+1
e−(τ1+τ2)λ

= 0.

It is equivalent to

λ+ µ+ χ = β0η(α)n!e−µτ2
e−(τ1+τ2)λ

(λ+ µ+ χ)n
.
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Let λ = ωi with ω > 0, then

ωi+ µ+ χ

= β0η(α)n!e−µτ2
e−(τ1+τ2)ωi

(ωi+ µ+ χ)n

= β0η(α)n!e−µτ2
cos[−(τ1 + τ2)ω] + i sin[−(τ1 + τ2)]ω[√

ω2 + (µ+ χ)2(cos θ + i sin θ)
]n

=
β0η(α)n!e−µτ2(√
ω2 + (µ+ χ)2

)n (cos[−(τ1 + τ2)ω − nθ] + i sin[−(τ1 + τ2)ω − nθ]),

where

θ = arctan
ω

µ+ χ
.

Now we fix

η(α) = −c2

(√
ω2 + (µ+ χ)2

)n
β0n!e−µτ2

(6.10)

with c2 > 0, then we obtain that

µ+ χ+ ωi = −c2 (cos[−(τ1 + τ2)ω − nθ] + i sin[−(τ1 + τ2)ω − nθ]) ,

and we have

c2 =
√
ω2 + (µ+ χ)2,

tan[−(τ1 + τ2)ω − nθ] =
ω

µ+ χ
,

or

tan[(τ1 + τ2)ω + nθ] = − ω

µ+ χ
.

We must impose that

sin[(τ1 + τ2)ω + nθ] =
ω√

ω2 + (µ+ χ)2
> 0.

From the above computations we obtain the following proposition.

Proposition 6. Let τ1, τ2 > 0, µ > 0, β0 > 0, and n ∈ N be fixed. Then the
characteristic equation has a pair of purely imaginary solutions ±iω with ω > 0 if
and only if ω > 0 is a solution of equation

tan (Θ(ω)) = − ω

µ+ χ
(6.11)

with

sin (Θ(ω)) > 0, (6.12)

where

Θ(ω) = (τ1 + τ2)ω + nθ, θ = arctan
ω

µ+ χ
.

And η(α) is given by (4.4). Moreover, there exists a sequence ωk → +∞ as k →
+∞, k ∈ N (which is a function of τ1, τ2, µ, β0, and n) satisfying (6.11) and (6.12).
In particular, for each k, there exists a unique ωk ∈

(
Θ−1

(
2kπ + π

2

)
, Θ−1 ((2k + 1)π)

)
satisfying (6.11) and (6.12), where Θ−1 is the inverse function of Θ(ω) on (0,+∞).
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Proof. Note that if ω > 0 solves (6.11), then

tan (Θ(ω)) < 0,

so

Θ(ω) ∈
(
mπ +

π

2
, (m+ 1)π

)
, m ∈ Z.

Moreover, in order to ensure

sin Θ(ω) > 0,

we must take m = 2k, k ∈ Z. Now since Θ(ω) is a continuous function of ω, and

Θ(0) = 0, Θ(+∞) = +∞,

for any k ∈ N, there exist ω̂k1 , ω̂k2 > 0 such that Θ(ω̂k1) = 2kπ + π
2 , Θ(ω̂k2) =

(2k + 1)π. Observe that the right-hand side of Eq. (6.11) is a strictly monotone
decreasing function of ω, and since the function tan(Θ(ω)) can take any value
from −∞ to 0 when ω ∈ (ω̂k1 , ω̂k2), we deduce that Eq. (6.11) has a solution
ωk ∈ (ω̂k1 , ω̂k2). Thus there exists a sequence of ωk → +∞ satisfying (6.11) and
(6.12).

Furthermore, Θ(ω) is clearly a strictly monotone increasing function of ω. So
for anyk ∈ N, we have ω̂k1 = Θ−1(2kπ + π

2 ), ω̂k2 = Θ−1(K(2k + 1)π), and the
function tan(Θ(ω)) is increasing when ω ∈ (ω̂k1 , ω̂k2). Thus there exists a unique
ωk ∈ (2kπ+ π

2 ), K(2k+1)π) satisfying (6.11) and (6.12), and the result follows.

Next we verify the transversality conditions for the model with for the above
two cases. Since Case (a) is a special situation of (b), we only investigate the
transversality condition under Assumption (b).

Lemma 6.2. Let (b) be satisfied. If α > e2

K , λ ∈ Ω and ∆(λ, α) = 0, then

∂∆(λ, α)

∂λ
6= 0.

Proof. Under Assumption (b) we have

∆(λ, α) = 1− β0η(α)e−µτ2
n!

(λ+ µ+ χ)n+1
e−(τ1+τ2)λ

and

∂∆(λ, α)

∂λ
= β0η(α)e−µτ2n!

× (τ1 + τ2)e−(τ1+τ2)λ(λ+ µ+ χ)n+1 + (n+ 1)e−(τ1+τ2)λ(λ+ µ+ χ)n

(λ+ µ+ χ)2(n+1)

= β0η(α)e−µτ2n!

[
(τ1 + τ2)e−(τ1+τ2)λ

(λ+ µ+ χ)n+1
+

(n+ 1)e−(τ1+τ2)λ

(λ+ µ+ χ)n+2

]
.

Since ∆(λ, α) = 0, it yields that (note λ ∈ Ω)

∂∆(λ, α)

∂λ
= (τ1 + τ2) +

(n+ 1)

λ+ µ+ χ
6= 0.



16 X. FU, Z. LIU AND P. MAGAL

Theorem 6.3. Let Assumptions (b) be satisfied. For each k > 0 large enough,
let λk = iωk be the purely imaginary root of the characteristic equation associated

to αk > e2

K (defined in (6.10)), then there exists lδk > 0 (small enough) and a

C1-map.fλ̂k : (αk − δk, αk + δk)→ C such that

λ̂k(αk) = iωk, ∆(λ̂k(α), α) = 0, (6.13)

for each α ∈ (αk − δk, αk + δk), satisfying the transversality condition

Re

(
dλ̂k(αk)

dα

)
> 0.

Proof. By virtue of the implicit function theorem and Lemma 6.2, we obtain that

there is a C1− map λ̂k(·) verifying (6.13) and

dλ̂k(αk)

dα
= −∂∆(iωk, αk)

∂α

[
∂∆(iωk, αk)

∂λ

]−1

=
η′(αk)

η(αk)
· ωk + µ+ χ

(τ1 + τ2)(iωk + µ+ χ) + (n+ 1)

= − 1

αk(1− ln(αkK))
· 1

τ1 + τ2

·
ω2
k + (µ+ χ)

[
µ+ χ+ n+1

τ1+τ2

]
−
[
2(µ+ χ) + n+1

τ1+τ2

]
ωki

ω2
k +

[
µ+ χ+ n+1

τ1+τ2

]2 ,

which implies

Re

(
dλ̂k(αk)

dα

)
> 0.

By combining the results on the essential growth rate of the linearized equations
(Eq. (4.3)), the simplicity of the imaginary eigenvalues (Lemmas 6.2), the existence
of purely imaginary eigenvalues (Proposition 5 or Proposition 6), and the transver-
sality condition (Theorem 6.3 ), we are in a position to apply Theorem 5.2 to obtain
the following Hopf bifurcation results.

In the case (a), we obtain that

Theorem 6.4 (Hopf bifurcation). Let Assumption (a) be satisfied. Then for any
k ∈ N, the number αk (defined in Proposition 5) is a Hopf bifurcation point for
system (1.1) parameterized by α, and around the positive equilibrium point ū given
in (4.1).

For the case (b) we have

Theorem 6.5 (Hopf bifurcation). Let Assumptions (b) be satisfied. Then, there
exists k0 ∈ N (large enough) such that for each k ≥ k0, the number αk (defined
in Proposition 6) is a Hopf bifurcation point for System (1.1) parameterized by α,
around the equilibrium point ū given in (4.1).
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7. Numerical simulations. In this section, we present some numerical simula-
tions to illustrate the results obtained in the previous sections.

We take here the coefficients as

γ = β0 = 0.5, µ = 0.05, τ1 = 2, τ2 = 8.

Then K = β0

µ e
µτ2 = 14.9182.

I. From (6.7) we get φ = 1.1656, and then we choose α = 12.1222 to solve the
inequality (6.6). Thus by virtue of Theorem 6.1 we infer that the equilibrium of
System (1.1) is local asymptotically stable, see Fig 7.1 below.
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Figure 7.1. The case for α = 12.1222. “a” represents the station-
ary solution.

II. Take α = 0.2896 which satisfies (0.067 =) 1
K < α ≤ e2

K (= 0.4953). it follows
from Theorem 5.1 that the equilibrium of System (1.1) is local asymptotically stable,
see Fig 7.2.
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Figure 7.2. The case for α = 0.2896. “a” represents the station-
ary solution.



18 X. FU, Z. LIU AND P. MAGAL

III. Finally we determine ω = 1.8366 ∈
(
π
2 , π

)
and c1 = 1.9034 such that (6.8)

and (6.9) are verified, then we have α = 870.805. According to Proposition 5 and
Theorem 6.4 we deduce that for this α System (1.1) undergoes a Hopf bifurcation
at the equilibrium ū, see Fig. 7.3.
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Figure 7.3. The case of Hopf bifurcation (with α = 870.805).

8. Conclusions. Age-structured models with delayed process have rich background
in practical fields. In this study we have investigated the existence of a positive
equilibrium for System (1.1), then applying the center manifold theorem founded
in [26] we have established the results of locally asymptotic stability of this equilib-
rium (Theorem 5.1 and Theorem 6.1) and theorems of the Hopf bifurcation at this
equilibrium (Theorem 5.2, Theorem 6.4 and Theorem 6.5). Particularly, Formulas
(5.1), (6.6), (6.8) and (6.11) reflect clearly the influences of the delays τ1 and τ2 on
the stability and Hopf bifurcations. The numerical simulations manifest explicitly
the obtained results on stability and Hopf bifurcation of System (1.1) (see Fig 7.1-
7.3). As we know, age-structured models have been used to study many biological
and epidemiological problems, such as the evolutionary epidemiology of type A in-
fluenza, the epidemics of schistosomiasisin human hosts and population dynamics.
We expect that our methods here can be applied to those practical models with time
lags to achieve some more interesting and meaningful results for their asymptotic
behaviors (than the cases without delay).
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