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Abstract

Forecasting when an epidemic wave is likely to end is an important component of disease manage-
ment, allowing deployment of limited control resources to be planned efficiently. Here, we report an
analysis that we conducted in real-time during the first COVID-19 epidemic wave in mainland China.
We developed a mathematical model to construct bounds on the end date of the first epidemic wave
there, assuming that strong quarantine and testing measures remained in place until the epidemic
wave was confirmed over. We used reported data on case numbers in China from January 20 to
April 9, 2020. We first developed an analytic approach, obtaining a formula describing the probabil-
ity distribution of the epidemic wave end date using a combination of deterministic modelling and
the theory of continuous-time Markov processes. Then, we ran simulations of an individual-based
model to demonstrate that our analytic predictions were accurate. We found that the predicted
end date of the first epidemic wave in China depended on the proportion of infected individuals
that are symptomatic and appear in case notification data, as opposed to remaining asymptomatic
throughout their courses of infection. We therefore provide an easy-to-use approach for predicting
the ends of epidemic waves, as well as a clear demonstration that predicted end-of-epidemic times
depend on the extent of asymptomatic infection. Our framework can be applied to predict the ends
of epidemic waves during future outbreaks of a wide range of pathogens.

Keywords: Mathematical modelling; COVID-19; end of epidemic; reported and unreported cases;
control measures.

1 Introduction
The COVID-19 pandemic has now spread worldwide, causing over one million deaths and 40 million

reported cases so far (as of 25 October, 2020 [37]). SARS-CoV-2, the virus that causes COVID-19,
emerged in China at the end of 2019. In early 2020, the Chinese government imposed strong public health
measures, including enhanced epidemiological surveys and surveillance, travel restrictions, quarantine,
contact tracing and isolation [27]. These intense interventions were sufficient to bring the epidemic wave
under control, and since mid-March case numbers have remained low.

A key challenge in infectious disease epidemiology is forecasting the progression of an epidemic.
Significant attention has been directed towards developing methods for estimating future numbers of cases
and deaths, as well as forecasting the timing of the epidemic peak [2, 3, 4, 5, 16, 17, 18, 19, 20, 28, 32].
Predicting the ends of epidemic waves, on the other hand, has received considerably less attention [23],
despite the fact that the end of an epidemic wave signals an opportunity to relax costly public health
measures. Some previous studies have estimated the probability that an epidemic is over as a function of
the time since the last observed case using renewal equation models [22, 14] or stochastic compartmental
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models [31]. However, predicting the end of the first COVID-19 epidemic wave in China was particularly
challenging for two key reasons. First, evidence emerged early in the COVID-19 pandemic that infected
individuals could transmit the virus prior to displaying symptoms ("presymptomatic infection"). Second,
some infected individuals never display symptoms or display only mild symptoms, and therefore do not
report disease ("asymptomatic infection"). It is now widely accepted that these presymptomatic and
asymptomatic hosts play a significant role in SARS-CoV-2 transmission [6, 29, 30, 12, 33].

Early evidence for asymptomatic transmission included a study by Nishiura et al. [24], which re-
ported early in the pandemic that 13 evacuees on charter flights from Wuhan (China) were infected and
four of these individuals never developed symptoms. Chowell et al. [21] estimated the proportion of
asymptomatic infections to be 17.9%. Research by Li et al. [15] generated an estimate that 86% of all
infections were undocumented (95% CI: [82%-90%]) prior to the introduction of travel restrictions in
China on January 23, 2020, and a team in China [35] suggested that there were 37,400 cases in Wuhan
that authorities were unaware of by February 18, 2020. More recently, Ferretti et al. [6] split the repro-
duction number into components corresponding to transmission from symptomatic, presymptomatic and
asymptomatic infectious individuals, as well as environmental transmission. Unreported cases, largely
due to presymptomatic and asymptomatic infections, were a key driver of the rapid geographic spread of
SARS-CoV-2 and explain why early containment of the virus was impossible (compared to, e.g. SARS
[7]). In [4], we consider the symptomatic reported and unreported patients and we prove that it is
hopeless to estimate the fraction of reported (or unreported) patients by using SI models. In other
words, several values of the fraction of reported symptomatic patients give the exact same fit to the
data. Finally, a study based on several cohorts of patients was conducted in Oran et al. [26].

Here, we consider a compartmental model characterising SARS-CoV-2 transmission, and parameterise
it using data from the first (yet unique) epidemic wave in China. Our model incorporates key features
of this epidemic wave, including explicit inclusion of public health measures designed to mitigate the
severity of the epidemic, as well as presymptomatic and asymptomatic infections. When we conducted
our analysis in real-time, the proportion of infected individuals that were symptomatic and reported
disease was unknown (and, in fact, the precise value remains uncertain even now), so we consider a range
of values of that parameter (f). We derive an analytic expression for predicting when an epidemic wave
is likely to end, under the assumption that public health measures that are in place remain fixed until
the epidemic wave is over. We use this expression to show how the predicted end of epidemic wave date
changed as the epidemic wave continued, and compare these results to equivalent results obtained using
model simulations. Not only do we provide a framework for predicting the ends of epidemic waves, but
we also show that the times at which epidemic waves end depend on the proportion of detected cases.
This emphasises the importance of intense surveillance to find infectious cases, including those who do
not display clear symptoms.

2 Methods

2.1 Data
We use cumulative data describing daily numbers of cases in mainland China from January 20, 2020

to March 18, 2020, obtained from the National Health Commission of the People’s Republic of China
and Chinese Center for Disease Control and Prevention [38, 39]. Up until February 10 2020, cases in
the dataset were only those that were confirmed by laboratory testing. From February 11 to February
15, data were available not only for cases confirmed by laboratory testing, but also for cases that were
clinically diagnosed based on medical imaging. From February 16 onwards, these two data types were
combined in the dataset, so that it was impossible to distinguish between laboratory confirmed and
clinically diagnosed cases. Changing case definitions in response to changes in case numbers is necessary
and commonplace [34], however such changes make inferring epidemic trends based on case numbers
challenging. To account for this and remove the substantial jump in cases on February 16 due to changes
in testing practices, we calculated the cumulative number of clinically diagnosed cases between February
11 and February 15, and subtracted this from the cumulative numbers of cases from February 16 onwards.
We therefore obtained approximate numbers of confirmed cases throughout the period from January 20 to
March 18, 2020. The dataset, accounting for this adjustment, is shown in the Supplementary Information
(Table 4).

We note that, on January 23, mainland China began implementing lockdowns, beginning with a
lockdown in the city of Wuhan.
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2.2 Mathematical model
To characterise changes in observed case numbers from January 20 to March 18 in mainland China,

we considered a compartmental model in which we track the number of individuals that are either
susceptible to the virus (S(t)), in early infection and infectious (I(t)) and in later infection and reporting
disease (R(t)) or in later infection and not reporting disease (U(t)) [11, 17]. Individuals that are in later
infection and not reporting disease include those that are asymptomatic and those who develop only
mild symptoms and so do not adhere to interventions targeting symptomatic individuals. The model is
therefore given by: 

S′(t) = −τ(t)S(t)[I(t) + U(t)],

I ′(t) = τ(t)S(t)[I(t) + U(t)]− νI(t),

R′(t) = νfI(t)− ηR(t),

U ′(t) = ν(1− f)I(t)− ηU(t),

(2.1)

with initial data

S(t0) = S0 > 0, I(t0) = I0 > 0, R(t0) = R0 ≥ 0 and U(t0) = U0 ≥ 0. (2.2)

In this model, t ≥ t0 is time in days and t0 is the start date of the epidemic wave. A schematic illustrating
the different model compartments is shown in Figure 1 and the model parameters - including whether
the parameter values were assumed or obtained via model fitting - are listed in Table 1. It has previously
been demonstrated that the latent period for COVID-19 is short [18], and COVID-19 patients have
been found to have high viral loads early in infection [36, 13], so we do not include individuals who are
presymptomatic and not yet infectious in the model. However, explicit inclusion of individuals who are
infected but not yet infectious would be a straightforward extension of our model [19].
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Figure 1: Schematic showing the different compartments and transition rates in the model given by system
of equations (2.1).

Symbol Interpretation Method
t0 Epidemic start time fitted
S0 Number susceptible at time t0 fixed
I0 Number in early infection and infectious at time t0 fitted
U0 Number in later infection and not reporting disease at time t0 fitted
τ(t) Transmission rate at time t, accounting for public health measures fitted
1/ν Average duration of early infection fixed
f Fraction of infected individuals that go on to report disease fixed

1/η Average duration of later infection fixed

Table 1: Parameters and initial conditions of the model.

Early infection (which corresponds to the incubation period, for individuals who develop clear symp-
toms) is assumed to last for an average period of 1/ν days. The infectious period is assumed to be
1/ν + 1/η days, although we assume that individuals that report disease do not transmit the virus dur-
ing their symptomatic infectious period (i.e. they adhere to public health measures that are effective at
reducing transmission). A fraction, f , of infected hosts report disease, whereas a fraction 1 − f do not
report disease at any stage of their infection.
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In the model, the transmission rate at time t, accounting for public health measures in place at that
time, is denoted by τ(t). During the exponential growth phase, we assume that τ(t) ≡ τ0 is constant.
We then use a time-dependent decreasing transmission rate τ(t) to incorporate the effects of the strong
measures taken by Chinese authorities to control the epidemic wave (see Introduction for a description
of the different measures that were introduced):{

τ(t) = τ0, 0 ≤ t ≤ N,

τ(t) = τ0 exp (−µ (t−N)) , t > N.
(2.3)

The date N and the value of µ are chosen so that daily numbers of cumulative reported cases in the
numerical simulation of the epidemic align with the analogous values in the dataset.

The cumulative number of reported cases at time t is given by

CR(t) = νf

∫ t

t0

I(σ)dσ, for t ≥ t0, (2.4)

and the cumulative number of unreported cases at time t is given by

CU(t) = ν(1− f)

∫ t

t0

I(σ)dσ, for t ≥ t0. (2.5)

The daily number of reported cases can be obtained by computing the solution of the following equation:

DR′(t) = ν f I(t)−DR(t), for t ≥ t0 and DR(t0) = 0. (2.6)

2.3 Parameter values
Since there is substantial uncertainty surrounding the proportion of cases that are symptomatic and

report disease for COVID-19, the value of f is unknown. Since intense interventions were introduced in
China during the first epidemic wave, and the full extent of asymptomatic transmission was unknown,
we assume in the baseline version of our analysis that f = 0.8. However, we checked the robustness of
our results to this assumption by also considering different values (f = 0.2, 0.4 and 0.6).

We assume that the durations of early and late infection are ν = 1/7 days and η = 1/7 days,
respectively. By assuming that the mean duration of early infection (i.e. duration of infection prior to
symptoms, for individuals that go on to develop symptoms) is 7 days, the expected generation time for
individuals that develop symptoms might be expected to be around 3.5 days. This lies within the range
of estimated generation times for COVID-19 (see e.g. [8]). COVID-19 patients have been found to shed
virus up to around one week after hospitalisation, thereby motivating our assumed value of η [36].

To determine the initial conditions (equations (2.2)), we assumed that in the initial exponential
growth phase of the epidemic wave (the earliest stages of the epidemic, which is assumed to be between
January 19 and January 26, 2020), CR(t) took the form:

CR(t) = χ1 exp(χ2 t)− χ3, t ≥ t0. (2.7)

Following [16], expressions for I0, U0, R0 can be obtained:

I0 =
χ2

f(νf + ν2)
, U0 =

(
(1− f)(νf + ν2)

η + χ2

)
I0, R0 = 0. (2.8)

Furthermore, the transmission rate during this exponential growth phase of the epidemic wave is given
by the constant value

τ(t) = τ0 =

(
χ2 + νf + ν2

S0

)(
η + χ2

ν(1− f) + η + χ2

)
, (2.9)

the epidemic start time is

t0 =
1

χ2

(
log(χ3) − log(χ1)

)
, (2.10)

and the value of the basic reproductive number is

R0 =

(
τ0S0

νf + ν2

)(
1 +

ν2
η

)
. (2.11)
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In the above, the value of χ3 = 30 is assumed and the values of χ1 and χ2 are obtained by fitting
equation (2.7) to data on the cumulative numbers of cases per day using least squares estimation.
Specifically, we use the "polyfit" Matlab function to estimate χ1 and χ2. The population size is assumed
to be large, so that the initial number of susceptible individuals, S0, corresponds to the total population
size.

3 Results

3.1 Fitting the model to data
We first estimated the values of χ1 and χ2 using data on the cumulative number of confirmed cases

in the earliest stages of the epidemic wave (January 19 to January 26, 2020). The values of τ0 and the
initial conditions (I0, U0 and t0) are then obtained using formulae (2.8)-(2.10). The fitted parameter
values are shown in Table 2. Analogous results for different values of the reporting fraction, f , are also
shown.

χ1 χ2 χ3 t0 f µ N I0 U0 S0 τ0

0.2601 0.3553 30 13.3617 0.8 0.1480 Jan. 26 93.2785 5.3494 1.40005× 109 3.3655× 10−10

0.2601 0.3553 30 13.3617 0.6 0.1531 Jan. 26 124.3550 14.2646 1.40005× 109 3.1920× 10−10

0.2601 0.3553 30 13.3617 0.4 0.1574 Jan. 26 186.5325 32.0953 1.40005× 109 3.0358× 10−10

0.2601 0.3553 30 13.3617 0.2 0.1612 Jan. 26 373.0650 85.5875 1.40005× 109 2.8942× 10−10

Table 2: Values of parameters obtained by fitting to cumulative data from the initial exponential phase
of the mainland China epidemic wave. The values of I0 U0, τ0, and t0 are obtained using formulae
(2.8)-(2.10). Here we take χ3 = 30 in order to obtain non-zero integer values of I0 and U0.

We then used the mathematical model (2.1) with these parameter values and initial conditions to
project the cumulative number of reported cases forwards (black line in Figure 2 (left)), choosing µ so
that CR(t) matched the observed data (red dots in Figure 2 (left)). The inferred cumulative numbers
of unreported cases are also shown in Figure 2 (left), assuming that f = 0.8. Daily numbers of reported
cases corresponding to this forward projection are shown in Figure 2 (right).
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Figure 2: Comparison of the model output with the data for mainland China. The parameter values and
initial conditions are listed in Table 2, and f = 0.8. On the left hand side we plot the cumulative data
(red dots), the simulated cumulative reported cases CR(t) (black line) and unreported cases CU(t) (green
line). On the right hand side, we plot data on the daily numbers of cases (black dots) and the inferred
daily number of cases using the model, DR(t) (blue line).

3.2 Predicting the end of the epidemic wave
To predict the end of the epidemic wave, we are particularly interested in the time period in which

cases are fading out and very few new infections are occurring. We consider a scenario in which the
current time is day t1, and we are attempting to predict when the epidemic will end. As long as t1 is
sufficiently long after the peak of the epidemic wave that the quantity τ(t)S(t) ≤ τ(t)S0 is small, the
approximation

I ′(t) ' −νI(t),
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can be used instead of the second equation in system (2.1) when t > t1. For the parameter values
used in our model, temporal changes in S0τ(t) are shown in the Supplementary Information (Figure 6),
highlighting that τ(t)S(t) is small from the second half of March, 2020, onwards).

Hence, to obtain an analytic expression describing the predicted end of the epidemic wave, we con-
sidered the following approximate system of equations whenever t ≥ t1:

I ′(t) = −νI(t),

R′(t) = νf I(t)− ηR(t),

U ′(t) = ν(1− f) I(t)− ηU(t).

(3.1)

This system is supplemented by the initial data

I(t1) = I1, U(t1) = U1 and R(t1) = R1. (3.2)

where I1, U1 and R1 are the values of the solutions of the original system (2.1)-(2.2) on day t1. A
schematic for the approximate model (3.1) is shown in the Supplementary Information (Figure 7).

The error between the original model and the approximate model is shown in the Supplementary
Information (Figure 8), where the error is given by

err(t1) = sup
t≥t1

max
(
|I(t)− I1(t)|, |U(t)− U1(t)|

)
. (3.3)

In this expression, I(t) and U(t) are the solutions of the original system (2.1), and I1(t) and U1(t) are
solutions of the approximate model. In both cases, the models are fitted to observed data on cumulative
numbers of reported cases (hence, this error formula does not involve R(t) which is very similar for the
two models). When applied in the later stages of the epidemic wave, the approximate model is more
accurate than earlier in the epidemic wave.

By considering the analogous continuous-time Markov chain to the approximate model (3.1), the
probability that the epidemic is over on different future dates can be estimated analytically (see Sup-
plementary Information section 5 for additional details). Specifically, the probability that no individuals
remain in the I or U compartments can be calculated at different times in future:

P(I(s) + U(s) = 0 for s ≥ t | I(t1) = I1, U(t1) = U1)

=
(

1− e−η(t−t1)
)U1

×
(

1− e−ν(t−t1) − (1− f)ν(t− t1)e−η(t−t1)
)I1

. (3.4)

The predictions generated by equation (3.4) for different values of t1 are shown in Figure 3. We note
that, as t1 increases, the probability distribution of the date of extinction converges to a limit profile.

Feb 15 Mar 16 Apr 15 May 15 Jun 14 Jul 14
0

0.2

0.4

0.6

0.8

1

t1 = Jan 27
t1 = Feb 3
t1 = Feb 10
t1 = Feb 17
t1 = Feb 24
t1 = Mar 2
t1 = Mar 9
t1 = Mar 16

Figure 3: Estimated extinction probabilities (using equation (3.4)). The numerical values for I1 and U1

were computed from the ODE model, considering t1 values at 7 day intervals. In this figure, we assume
that f = 0.8 (other parameter values are listed in Table 2).

Furthermore, we also computed the earliest dates that corresponded to at least 90%, 95% and 99%
probabilities that the epidemic was over, for different values of t1, using equation (3.4). The results of
this analysis are shown in Figure 4.
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Figure 4: For each panel, the x-axis corresponds to the day t1 and the y-axis corresponds to the dates
of epidemic wave extinction at different probability levels (90%, 95% and 99%) computed by using (3.4).
Different panels correspond to different values of the parameter f ((a) f = 0.8; (a) f = 0.6; (a) f = 0.4;
(a) f = 0.2). The values of I1 and U1 are computed by solving system of equations (2.1) numerically up
to the time t = t1. Parameter values are listed in Table 2.

3.3 Comparing the analytic predictions with stochastic simulations
To investigate the accuracy of our analytic predictions, we also estimated the end of epidemic time

using simulations of the analogous stochastic model to the system of equations (2.1). Specifically, as
before, the deterministic model was fitted to the data on cumulative numbers of confirmed cases and
used up until time t1. Then from time t1 onwards, stochastic simulations were run using the direct
method version of the Gillespie stochastic simulation algorithm [9].

In Figure 5, we plot the cumulative distribution for the epidemic wave extinction probability obtained
using the stochastic simulations. As can be seen in that figure, since the stochastic simulations involve
using the exact model (equations (2.1)) rather than the approximate model, the predicted end dates of
the epidemic wave are independent of t1. The graph in Figure 5 corresponds to the limit profile discussed
at the end of the previous section (i.e. the analytic prediction when t1 is sufficiently late in the epidemic
that the analytic prediction is accurate). From Figure 3, it can be seen that that this approximation is
accurate when t1 is February 17, 2020, or later.
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Figure 5: Estimated cumulative probability distribution for the end of epidemic wave date obtained using
stochastic simulations. Results are shown for different values of t1, although as expected the different lines
in this graph lie on top of each other. Initial conditions for the stochastic simulations were computed by
rounding the solutions of equations (2.1) at t = t1 to the nearest integers. 150,000 simulations were run
for each value of t1. In this figure, f = 0.8. Other parameter values are shown in Table 2.

We also computed the error between the analytic end of epidemic time prediction and the analogous
quantity using the stochastic simulations. More precisely, we computed the quantity

diff(t1) = sup
t≥t1
|fIBM (t)− fanalytic(t)| (3.5)

for each value of t1 presented in Figures 3 and 5, where fIBM is the cumulative distribution computed
by stochastic simulations (Figure 5) and fanalytic is the cumulative distribution given by equation (3.4)
(Figure 3). The results are shown in the Supplementary Information (Table 6).

Finally, we compared the mean outputs from the stochastic simulations to the numerical solutions
of the original model (system of equations (2.1)). Unsurprisingly, these quantities match closely (Figure
9). In Figure 10, we show the variability between different stochastic simulations obtained when the
stochastic simulations are run throughout the epidemic (i.e. starting on day t0). This high variability
observed between different simulations is largely due to the small number of individuals infected initially;
when instead stochastic simulations were run from day t1 onwards, the variability between different
stochastic simulations reduced (see Supplementary Information, Table 7).

4 Discussion
Despite receiving surprisingly little attention from epidemiological modellers, predicting the ends

of epidemic waves is important for estimating how long intense interventions are likely to be required
[22, 14, 31, 23]. In this study, we developed a framework for predicting the ends of epidemic waves
using compartmental epidemiological models. This involving fitting a compartmental model to case
notification data and using an analytic expression to estimate when the epidemic wave is likely to end.
We also compared our analytic prediction to analogous results obtained via model simulations, thereby
demonstrating that our results are accurate whenever the underlying epidemiological model provides a
realistic reflection of pathogen transmission.

In Table 3, we show the results that we obtained using this framework in real-time to predict the end
of the first COVID-19 epidemic wave in China. Specifically, the results in this table correspond to those
shown in Figure 3, after the end of epidemic wave probability converged to the limit profile (i.e. using
values of t1 from approximately mid-February onwards). Importantly, the predicted epidemic wave end
date depended on the assumed proportion of infectious cases that report disease (f). Since this quantity
was unknown, and remains uncertain even now, we conclude that accurate estimation of the reporting
fraction is essential to forecast the ends of epidemic waves accurately.
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Level of risk 10% 5% 1%
Extinction date (f = 0.8) May 19 May 24 June 5
Extinction date (f = 0.6) May 25 May 31 June 12
Extinction date (f = 0.4) May 31 June 5 June 17
Extinction date (f = 0.2) June 7 June 12 June 24

Table 3: The predicted end of epidemic wave date inferred when t1 was March 16, 2020, for different
levels of risk aversion. For example, assuming f = 0.8, our model predicted a 10% chance that the
epidemic wave would persist beyond May 19, 2020.

Our intention here was to develop a basic modelling approach for predicting when an epidemic wave
is likely to end. To improve the accuracy of predictions, this approach would require adjustments to
account for important features of real-world epidemic waves. As well as uncertainty in the reporting
fraction, another key assumption was that public health measures remained in place until the end of
the epidemic wave. Of course, if measures such as isolation of infectious cases are relaxed before an
epidemic wave has ended, then the epidemic end date is likely to be different to the one predicted using
our modelling framework. In that scenario, relaxation of interventions could in theory be integrated
explicitly into the underlying model, and model simulations used to predict the end of epidemic waves.
Since interventions are often included in compartmental models [3, 5, 32, 28], this is a straightforward
extension of the research presented here. We also note that, if interventions are relaxed following the
end of an epidemic wave, then additional cases could begin a second wave - a phenomenon that is now
arguably being observed in a range of countries worldwide for COVID-19.

We note that there were very few cases in mainland China after mid-March, 2020. As a result, our
modelling framework tended to estimate later end of epidemic wave dates than turned out to be the case.
The most likely explanation for this is that, by characterising the impacts of control interventions using
equation (2.3), public health measures did not have a sufficiently strong effect in the model. Testing
the effects of different possible characterisations of the effects of public health measures is left as future
work.

Since the precise method of parameter inference was not central to our framework, we used a basic
approach to estimate the values of pathogen transmission parameters here, namely least squares estima-
tion. Many different methods are used to estimate transmission parameters in real-time during epidemics
[25, 1], and our modelling framework could be extended to use these more sophisticated methods.

Despite the many simplifications in our modelling approach as presented here, we have provided an
initial framework for predicting the ends of epidemic waves, and demonstrated the key principle that
the end date of an epidemic wave depends sensitively on the proportion of infectious cases that report
disease. Extending this framework to include additional epidemiological realism, so that ends of epidemic
waves can be forecasted as accurately as possible, is an important target for future research. This will
allow public health decision makers to plan control interventions effectively during infectious disease
epidemics.
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5 Supplementary Information

5.1 Formula to compute the probability distribution of the extinction date
We use continuous-time Markov processes to compute the exact distribution of the date of end of the

epidemic after the transmission rate is effectively taken as zero. We start on t1 with initial values I1, U1,
and R1 for I-individuals, U -individuals and R-individuals, respectively. The evolution of each individual
is guided by independent exponential processes, and we have the following:

(i) Each individual I will change state following an exponential clock of rate ν. When I changes its
state, it will be transferred to the class of R-individuals with probability f and to the class of
U -individuals with probability (1− f);

(ii) Each individual in the state U will change state following an exponential clock with rate η and
become removed individual;

(iii) Each individual in the state R will change state following an exponential clock with rate η and
become removed individual

Since the class I has only outgoing fluxes, the law of extinction for the I-individuals is

P(I(t) = 0 | I(t1) = I1) =

(∫ t

t1

νe−ν(s−t1)ds

)I1
=
(

1− e−ν(t−t1)
)I1

,

and the probability to have some I-individual left at time t is

P(I(t) = I | I(t1) = I1) = (1− e−ν(t−t1))I1−Ie−νI(t−t1).

For the U -individuals and the R-individuals, the situation is more intricate. Indeed, the U -individuals
and the R-individuals vanish at a constant rate η but new individuals appear from the I class at rate
(1− f)ν and fν, respectively, depending on the remaining stock of I. Therefore the probability that U
gets extinct before t also depends on the number of remaining I. It is actually easier to compute directly
the extinction property for the sum I + U , which is our aim anyways.
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When ν 6= η, we obtain

P(I(s) + U(s) = 0 ∀s ≥ t | I(t1) = I1, U(t1) = U1)

=
(

1− e−η(t−t1)
)U1

×
(∫ t

t1

P(U → RR before t | I → U at s)P(I → U at s) + P(I → R at s)ds
)I1

=
(

1− e−η(t−t1)
)U1

×
(∫ t

t1

(
1− e−η(t−s)

)
× (1− f)νe−ν(s−t1) + fνe−ν(s−t1)ds

)I1
=
(

1− e−η(t−t1)
)U1

×
(

(1− f)

(
1− e−ν(t−t1) − ν e

−ν(t−t1) − e−η(t−t1)
η − ν

)
+ f(1− e−ν(t−t1))

)I1
=
(

1− e−η(t−t1)
)U1

×
(

1− e−ν(t−t1) − (1− f)ν
e−ν(t−t1) − e−η(t−t1)

η − ν

)I1
,

where the RR-individuals are the removed individuals.
Similarly when η = ν, we obtain

P(I(s) + U(s) = 0 ∀s ≥ t | I(t1) = I1, U(t1) = U1)

=
(

1− e−η(t−t1)
)U1

×
(

1− e−ν(t−t1) − (1− f)ν(t− t1)e−η(t−t1)
)I1

. (5.1)

5.2 Cumulative distribution of the date of end of the epidemic
The stochastic simulations introduced in section 3.3 can be used, in particular, to precisely estimate

the cumulative probability distribution of the date of end of the epidemic, defined as the last time at
which the quantity I + U is positive.

In order to get a measure of the precision we remark that the values taken by the cumulative proba-
bility distribution f(t) can be estimated by the average of independent measures of the random variable

X = 1text≤t,

which follows an Bernouilli distribution of parameter f(t). Consecutive runs of the individual-based
simulations yield independent observations Xn of this distribution. By Hoeffding’s inequality we have
for all ε > 0 and n ∈ N

P

(∣∣∣∣∣ 1n
n∑
i=1

Xn − f(t)

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
−2ε2n

)
=: α,

and we achieved an error of at most ε = 10−3 at risk α ≤ 10−3 by running n = − 2
ε2 ln

(
α
2

)
≈ 15201805

independent individual-based simulations to estimate the probability distribution of the extinction time
(Figure 5, t1 = 82 i.e. March 23). Other curves are esimated on the basis of 152019 independent
simulations, which amouts to an error of at most 10−2 at risk 10−3.

Since the curves presented in Figure 3 are so similar that it is difficult to see any difference between
them, we computed the absolute error between each curve and the “reference” of t1 = 82. We present
the numerical values in Table 5. Notice that the error is actually below the estimated precision of the
approximation.
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5.3 Supplementary figures

Jan 19 Feb 02 Feb 16 Mar 01 Mar 15 Mar 29 Apr 12

2020   

0

0.1

0.2

0.3

0.4

0.5

Figure 6: Graph of τ(t)S0 = τ0S0 exp (−µmax (t−N, 0)) with S0 = 1.40005× 109, τ0 = 3.3655× 10−10,
N = Jan. 26, and µ = 0.148. The transmission rate is very small in the second half of March onwards.
The parameter values correspond to the baseline case that we considered (f = 0.8) see Table 2.
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Figure 7: Schematic of the model (3.1).
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Figure 8: In this figure the x-axis corresponds to t1 and the y-axis correponds to the error err(t1) defined
in (3.3). We observe that the smaller f , the larger the error. Parameter values are listed in Table 2.
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Figure 9: In figure (a) we plot a comparison between the average S (susceptible) computed from the IBM
and the S component of the solution of (2.1). In figure (b) we plot a comparison between the average I
(asymptomatic), R (reported) and U (unreported) computed from the IBM and the components I, R and
U of the solution of (2.1). In figure (c) we plot a comparison between the average RR (removed) computed
from the IBM and the components RR of the solution of (2.1). In figure (d) we plot a comparison between
the average CR (cumulative reported cases) computed from the IBM and the curve CR computed by
(2.1)-(2.4). In this figure 500 independent runs of the IBM simulations are used and the corresponding
components of the ODE model start from the same initial condition (at t = t0). The parameters we
used for both computations are the following: I0 = 93, U0 = 5, S0 = 1.40005 × 109 − (I0 + U0),
R0 = RR0 = CR0 = 0 and f = 0.8, τ0 = 3.3655 × 10−10, N = 26, µ = 0.148, ν = 1

7 , η = 1
7 ,

t0 = 13.3617.

15



(a) (b)

Jan 14 Feb 13 Mar 14 Apr 13

1.4

1.4

1.4

1.4

1.4

·109

95% probability

68% probability
average

Jan 14 Feb 13 Mar 14 Apr 13
0

1

2

3

·104

I
R
U

(c) (d)

Jan 14 Feb 13 Mar 14 Apr 13
0

0.2

0.4

0.6

0.8

1
·105

Jan 14 Feb 13 Mar 14 Apr 13
0

2

4

6

8
·104

Figure 10: In figure (a) we plot the mean value and variance of S (susceptible) computed from the IBM.
The dark blue area contains 68% of the trajectories, and the light blue area 95%. In figure (b) we plot
the mean value and variance of I (infected), R (reported) and U (unreported) computed from the IBM.
The dark areas contains 68% of the trajectories, and the light areas 95%. In figure (c) we plot the
mean value and variance of RR (removed) computed from the IBM. The dark green area contains 68%
of the trajectories, and the light green area 95%. In figure (d) we plot the mean value and variance of
CR (cumulated reported) computed from the IBM. The dark gray area contains 68% of the trajectories,
and the light gray area 95%. We use 500 independent runs of the IBM simulations. The parameters
we used for both computations are the following: I0 = 93, U0 = 5, S0 = 1.40005 × 109 − (I0 + U0),
R0 = RR0 = CR0 = 0 and f = 0.8, τ0 = 3.3655 × 10−10, N = 26, µ = 0.148, ν = 1

7 , η = 1
7 ,

t0 = 13.3617.

5.4 Supplementary tables
We use cumulative reported data from the National Health Commission of the People’s Republic of

China and the Chinese CDC for mainland China. Before February 11, the data was based on laboratory
confirmations. From February 11 to February 15, the data included cases that were not tested for the
virus, but were clinically diagnosed based on medical imaging (patients that showed signs of pneumonia).
There were 17,409 such cases from February 11 to February 15. The data from February 11 to February
15 specified both types of reported cases. From February 16, the data did not separate the two types of
reporting, but reported the sum of both types. We therefore subtracted 17,409 cases from the cumulative
reported cases after February 15 to obtain approximate data for the cumulative numbers of reported
cases based only on laboratory confirmations after February 15.The data is given in Table 4 with this
adjustment.
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January
19 20 21 22 23 24 25
198 291 440 571 830 1287 1975
26 27 28 29 30 31
2744 4515 5974 7711 9692 11791

February
1 2 3 4 5 6 7
14380 17205 20438 24324 28018 31161 34546
8 9 10 11 12 13 14
37198 40171 42638 44653 46472 48467 49970
15 16 17 18 19 20 21
51091 70548− 17409 72436− 17409 74185− 17409 75002− 17409 75891− 17409 76288− 17409
22 23 24 25 26 27 28
76936− 17409 77150− 17409 77658− 17409 78064− 17409 78497− 17409 78824− 17409 79251− 17409
29
79824− 17409

March
1 2 3 4 5 6 7
79824− 17409 79824− 17409 79824− 17409 80409− 17409 80552− 17409 80651− 17409 80695− 17409
8 9 10 11 12 13 14
80735− 17409 80754− 17409 80778− 17409 80793− 17409 80813− 17409 80824− 17409 80844− 17409
15 16 17 18
80860− 17409 80881− 17409 80894− 17409 80928− 17409

Table 4: Cumulative data describing confirmed cases in mainland China from January 20, 2020 to March
18, 2020.

t1 26 33 40 47 54 61
date Jan. 27 Feb. 3 Feb. 10 Feb. 17 Feb. 24 Mar. 2

diff(t1) 2.9× 10−3 2.1× 10−3 2.9× 10−3 1.8× 10−3 2.5× 10−3 1.4× 10−3

t1 68 75 82
date Mar. 9 Mar. 16 Mar. 23

diff(t1) 1.6× 10−3 1.2× 10−3 0.00

Table 5: Absolute difference between the cumulative distribution given by the stochastic simulations and
the reference simulation t1 = 82. For each t1 we computed the error as diff(t1) = supt≥t1 |ft1(t)−f81(t)|,
where ft1 is the estimated distribution computed simulations, for which the initial condition correspond
to the components of (2.1) at t = t1 rounded to the closest integer.

t1 26 33 40 47 54 61
date Jan. 27 Feb. 3 Feb. 10 Feb. 17 Feb. 24 Mar. 2

diff(t1) 8.6× 10−1 4.4× 10−1 1.7× 10−1 6.4× 10−2 2.5× 10−2 8.1× 10−3

t1 68 75 82
date Mar. 9 Mar. 16 Mar. 23

diff(t1) 3.5× 10−3 8.5× 10−4 5.7× 10−4

Table 6: Absolute difference between the cumulative distribution given by the stochastic simulations and
the analytic approximation using the approximate model (3.1), computed using equation (3.5).
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t1 t0 18 22 26 33 40
date Jan. 14 Jan. 19 Jan. 23 Jan. 27 Feb. 3 Feb.10

maxt≥t1 σ(t) 3717 1685 787 401 186 106

Table 7: Maximal standard deviation for the components I, R and U computed by stochastic simulations
started at date t1 with initial condition given by the solution to (2.1) with the parameters from Table
2. The ODE model (2.1) is solved up to t = t1, and we take the solution to (2.1) at t = t1 as initial
condition for the stochastic simulations. σ(t) is the maximum, at time t, of the standard deviations of
the quantities I(t), R(t) and U(t) in a sample of n = 1000 independent simulations started at t = t1,
and is expressed in number of individuals. We took f = 0.8 and other parameters are taken from Table
2.
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