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Abstract

This work considers the linear Lotka-McKendrick system from population dynamics with con-
trol active on individuals in a prescribed age range. The main results assert that given τ large
enough (but possibly smaller than the life expectancy), there exists controls driving the system
to any equilibrium state or any uncontrolled trajectory in time τ . Moreover, we show that if
the initial and final states are positive then the constructed controls preserve the positivity of
the population density on the whole time interval [0, τ ]. The method is a direct one, in the
spirit of some early works on the controllability of hyperbolic systems in one space dimension.
Finally, we apply our method to a nonlinear infection-age model.

1 Introduction

The purpose of this work is the study of the controllability properties of an infinite dimensional
dynamical system issued of population dynamics. More precisely, we revisit from a control theo-
retical view point the linear Lotka-McKendrick model. We aim, in particular, answer to some open
questions raised in Barbu, Iannelli and Martcheva [8]. More precisely, let p(t, a) be the distribution
of individuals of age a > 0 at time t > 0. Let a† be the life expectancy of an individual and τ be a
positive constant. Let β(a) > 0 be the natural fertility-rate and µ(a) > 0 the natural death-rate of
individuals of age a. The system we consider, already studied from a control theoretic view point
in [8], is described by the equations



































∂p

∂t
(t, a) +

∂p

∂a
(t, a) + µ(a)p(t, a)

= m(a)u(t, a), (t, a) ∈ Qτ ,

p(t, 0) =

∫ a†

0

β(a)p(t, a) da, t ∈ (0, τ),

p(0, a) = p0(a), a ∈ (0, a†),

(1.1)

where u is a control function, m = 1[0,a0] is the characteristic function of the interval (0,a0) (where
0 < a0 < a†), p0 is the initial population density and Qτ = (0, τ)× (0, a†).

In [8] the main result asserts controllability of the above system to any quasi steady state by a
distributed control, except for a small interval of ages near zero. The main open questions raised
in the above mentioned reference are the possibility of controlling the whole range of ages and
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designing controls which preserve the positivity of the state trajectories. We give a positive answer
to both questions above, in the particular case when the age of individuals able to reproduce is
bounded away from zero.

To state our main results, we first recall the standard assumptions, used in particular in [8], on
the functions µ and β:

(H1) β ∈ L∞(0, a†), β(a) > 0 for almost every a ∈ (0, a†),

(H2) µ ∈ L1[0, a∗] for every a∗ ∈ (0, a†), µ(a) > 0 for almost every a ∈ (0, a†),

(H3)

∫ a†

0

µ(a) da = +∞.

The controllability result [8] asserts that if δ ∈ (0, a0] and if p̃ is a time-independant function which
satisfies the equations















∂p̃

∂a
(a) + µ(a)p̃(a) = m(a)w(a) (a ∈ (0, a†)),

p̃(0) =

∫ a†

0

β(a)p̃(a) da,
(1.2)

for some function w ∈ L2[0, a†], then for every p0 ∈ L2[0, a†] and every time

a† 6 τ < a† + δ, (1.3)

there exists u ∈ L2([0, τ ];L2[0, a†]) such that

p(τ, a) = p̃(a) (a ∈ [δ, a†]).

In other words, the above result from [8] asserts that we can control in a time τ satisfying (1.3)
the population of individuals of age at least equal to some δ > 0. Our main result asserts that this
restriction is not necessary, provided that we assume that the age of individuals able to reproduce
is bounded away from zero. More precisely, we have

Theorem 1.1. With the above notation and assumptions, suppose that there exists ab ∈ (0, a†)
such that

β(a) = 0 (a ∈ (0, ab) a.e.). (1.4)

Then for every τ > a† − a0, for every p0 ∈ L2([0, a†]) with p0(a) > 0 for almost every a ∈ (0, a†),
and for any positive function p̃ satisfying (1.2), there exists u ∈ L2([0, τ ];L2[0, a†]) such that the
solution p of (1.1) satisfies

p(τ, a) = p̃(a) (a ∈ (0, a†) a.e.),

and
p(t, a) > 0 a.e. (t, a) ∈ Qτ .

For an overview on age structured population dynamics models we refer to Webb [26], Iannelli
[13], Kunisch et al [18] and references therein. For related work on size structured population
dynamics we refer to Ackleh and Ito [1], Kappel and Ito [14]

The literature devoted to the associated control problems is less abundant but several impor-
tant results and methods are available. For optimal control problems (namely applied to human
population) we refer to Song and Yu [22]. The null-controllability of the age-dependant population
dynamics (1.1) with spatial dependance in the particular case when the control acts for all ages a
(the case corresponding to a0 = a†) was investigated by S. Aniţa (see [6], p 148). The case when
the control acts in a spatial subdomain ω and only for small age classes was investigated by B.
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Ainseba and S. Aniţa [3], for initial data p0 in a neighborhood of the target p̃. Related approxi-
mate and exact controllability issues have also been studied in Ainseba [2], Ainseba and Langlais
[5], Ainseba and Iannelli [4], Traore [24], Kavian and Traore [17]. Using a direct approach, the
approximate controllability by birth or boundary control is studied in Yu, Guo and Zhu [27].

The remaining part of this work is organized as follows. In Section 2 we recall some basic results
on the Lotka-McKendrick semigroup. Section 3 is devoted to the study of the reachable space of
(1.1). In Section 4 we investigate some controllability properties of the system (1.1). In particular,
we give the proof of Theorem 1.1. In Section 5 we discuss a singular perturbation problem. More
precisely we show that if the age interval on which our control is active shrinks to {0} the system
(including controls and state trajectories) converges to a direct birth controlled system (which can
be seen as an “impulse” control). In Section 6 we show how our results apply to a nonlinear system
arising in an infection-age model. We end up with an appendix, showing that the considered system
is still null controllable in an L1 setting.

2 Some background on the Lotka-McKendrick semigroup

In this section we recall, with no claim of originality, the formulation of equations (1.1) using
semigroup theory.

Denote X = L2[0, a†] and consider the operator A : D(A) → X defined by

D(A) =

{

ϕ ∈ L2[0, a†] | ϕ(0) =

∫ a†

0

β(a)ϕ(a) da; −
dϕ

da
− µϕ ∈ L2[0, a†]

}

,

Aϕ = −
dϕ

da
− µϕ (ϕ ∈ D(A)).

(2.1)

It is well known (see, for instance, Song et al. [23] or Kappel and Zhang [16]) that A generates a
C0 semigroup of linear operators in X which we denote by T = (Tt)t>0. This allows to define the
concept of (mild) solution of (1.1) in the following standard way: we say that p is a mild solution
of (1.1) if

p(t, ·) = Ttp0 +Φtu (t > 0, u ∈ L2([0,∞);X)), (2.2)

where the control operator B ∈ L(X) is defined by

Bu = mu (u ∈ X),

and where

Φtu =

∫ t

0

Tt−σBu(σ) dσ (t > 0, u ∈ L2([0,∞);X)). (2.3)

It is well known (see, for instance, [13] or [26]) that the semigroup T satisfies

(Ttf)(a) =







π(a)

π(a− t)
f(a− t) if t 6 a,

π(a)b(t− a) if t > a,

(2.4)

where π(a) = e−
∫

a

0
µ(σ) dσ is the probability of survival of an individual from age 0 to a and

b(t) = (Ttf)(0) =

∫ a†

0

β(a)(Ttf)(a) da is the total birth rate function. Moreover, according, for

instance, to [13, p.12], b is the unique continuous function satisfying the integral Volterra equation
of the second kind

b(t) =

∫ min(t,a†)

0

β(t− s)π(t − s)b(s) ds+

∫ a†

min(t,a†)

β(a)
π(a)

π(a − t)
f(a− t) da. (2.5)
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The state trajectory p of the controlled system (1.1) is given (see, for instance, [8]) by

p(t, a) :=











π(a)

π(a− t)
p0(a− t) + c(t, a), t 6 a,

π(a)b̃(t− a) + c(t, a), a < t,

(2.6)

where

c(t, a) :=















∫ a

a−t

π(a)

π(s)
m(s)u(s− (a− t), s) ds, t 6 a,

∫ a

0

π(a)

π(s)
m(s)u(s+ (t− a), s) ds, a < t,

(2.7)

where b̃(t) =
∫ a†

0
β(a)p(t, a) da is the flux of newly born individuals for the controlled system. It

is easy to check that b̃ is the unique continuous function satisfying the Volterra integral equation

b̃(t) =

∫ min(t,a†)

0

β(t− s)
[

π(t− s)b̃(s) + c(t, t− s)
]

ds

+

∫ a†

min(t,a†)

β(a)

[

π(a)

π(a− t)
p0(a− t) + c(t, a)

]

da.
(2.8)

Remark 2.1. The control u constructed in the following section will be of the form

u(t, a) = v(t− a) (a ∈ [0, a†], t ∈ [0, τ ]),

where v : [−a†, τ ] → R. In this case (2.6) becomes

p(t, a) =















π(a)

π(a− t)
p0(a− t) + v(t− a)

∫ a

a−t

π(a)

π(s)
m(s) ds, a > t,

π(a)b̃(t− a) + v(t− a)

∫ a

0

π(a)

π(s)
m(s) ds, a < t.

(2.9)

Remark 2.2. If the state space X = L2[0, a†] is substituted by X = L1[0, a†], the operator A :
D(A) → X defined by

D(A) =

{

ϕ ∈ L1[0, a†] | ϕ(0) =

∫ a†

0

β(a)ϕ(a) da; −
dϕ

da
− µϕ ∈ L1[0, a†]

}

,

Aϕ = −
dϕ

da
− µϕ (ϕ ∈ D(A)),

(2.10)

generates a C0 semigroup of linear operators in X denoted by T = (Tt)t>0 (see, for instance, Banks
and Kappel [7]). This allows to define the concept of (mild) solution of (1.1) in the same way as
above : we say that p is a mild solution of (1.1) if

p(t, ·) = Ttp0 +Φtu (t > 0, u ∈ L1([0,∞);X)), (2.11)

where the control operator B ∈ L(X) is defined by

Bu = mu (u ∈ X),

and where

Φtu =

∫ t

0

Tt−σBu(σ) dσ (t > 0, u ∈ L1([0,∞);X)). (2.12)

The semigroup T satisfies the same formulas (2.4) as in the L2 setting.
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3 Study of the reachable space.

In this section, we study the reachable space of (1.1) by means of controls u ∈ L2([0, τ ];L2[0, a†]).
In other words, we study the space Ran Φτ , for every τ > 0, where the operator Φτ has been
defined in (2.3). In order to obtain controllability results, we focus on the case τ > a† − a0 since
in the oposite case, as shown below, we have neither approximate nor null controllability. For
the sake of completeness, we recall that the property of approximate controllability in some time
τ > 0 means that Ran Φτ is dense in X and that the null controllability in time τ means that
Ran Φτ ⊃ Ran Tτ (we refer, for instance, to [25] - Chapter 11 for a detailed description of these
concepts).

Proposition 3.1. Suppose that τ < a† − a0. Then the system (1.1) is neither approximatively
controllable, nor null controllable in time τ .

Proof. Let τ ∈]0, a† − a0[. Then for every u ∈ L2([0, τ ];L2[0, a†]) and for almost every a ∈ (a0 +
τ, a†), we have from (2.6) that

(Φτu)(a) =

∫ a

a−τ

π(a)

π(s)
m(s)u(s+ (τ − a), s) ds = 0, (3.1)

since m(s) = 0 if s > a − τ > a0. This clearly implies that the system (1.1) is not approximately
controllable in time τ .

On the other hand, (2.4) implies that there exists p0 ∈ X such that (Tτp0)(a) 6= 0 on [a0+τ, a†].
Consequently, RanΦτ 6⊃ RanTτ , so that (1.1) is not null controllable in time τ .

The main result in this section is:

Theorem 3.2. Under the assumptions of Theorem 1.1, define

R :=















p̃ ∈ X | a 7→
p̃(a)

π(a)
∈ X, a 7→

p̃(a)

π(a)
−

∫ a†−a

0

β(x)
π(x)

π(a + x)
p̃(a+ x) dx

∫ a

0

m(x)

π(x)
dx

∈ X















. (3.2)

Then for every τ > a† − a0 we have R ⊂ Ran Φτ .

Proof. We can assume, without loss of generality, that a0 6 ab (otherwise we simply control the
system for smaller ages). Let τ ∈ (a† − a0, a†).

We define the sets {P j
τ }j>−1 by

P−1
τ = {(t, a) ∈ (0,+∞)2 : τ − a† 6 t− a 6 0}

and for j > 0
P j
τ = {(t, a) ∈ (0,+∞)2 : jab < t− a 6 (j + 1)ab}.

Given p̃ ∈ R, we look for v ∈ L2[−a†, τ ] such that setting u(t, a) = v(t − a) for every t ∈ [0, τ ]
and a ∈ [0, a†] we have

Φτu(a) = p̃(a) (a ∈ [0, a†] a.e.). (3.3)

Case t−a < τ −a†: We first set v(s) = 0 for s ∈ [−a†, τ −a†] so that, according to (2.9) we have

(Φtu)(a) = 0 (t− a < τ − a†). (3.4)
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t

a0

ab

2ab

ab a†

a†

a0

τ

P 0
τ

P 1
τ

P 2
τ

P−1
τ

Figure 1: In this figure the control possibly acts in the subset of Qτ = [0, τ ]× [0, a†] delimited by the
line a = 0 and the red curve. The domain Qτ is decomposed into subregions P−1

τ , P 0
τ , P

1
τ , P

2
τ , . . .

which are delimited respectively by the characteristics lines t − a = τ − a†, t − a = 0, t − a = ab,

t − a = 2ab, . . . . For each subregion P j
τ (for j > 0) the values of b̃(t) =

∫ a†

0
β(a)p(t, a) da for

t ∈ [jab, (j +1)ab] depends only on the control in the previous subregions P−1
τ , . . . , P j−1

τ . This will
allow us, using an inductive method, to derive an explicit formula of the control functions in terms
of the targeted distribution of population.

Case τ − a† 6 t− a 6 0: By using again (2.9), it follows that

(Φτu)(a) = v(τ − a)

∫ a

a−τ

π(a)

π(s)
m(s) ds (a ∈ [τ, a†] a.e.).

Consequently, (3.3) is satisfied for a ∈ [τ, a†] iff

v(s) =

p̃(τ−s)
π(τ−s)

∫ τ−s

−s
m(x)
π(x) dx

(s ∈ [τ − a†, 0] a.e.). (3.5)
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Note that, since τ > a† − a0, s ∈ [τ − a†, 0] implies that −s < a0 therefore for every s ∈ [τ − a†, 0]
we have

∫ τ−s

−s

m(x)

π(x)
dx > 0.

Moreover by assumption we have a 7→
p̃(a)

π(a)
∈ L2[0, a†] hence

v ∈ L2[τ − a†, 0].

Case 0 < t− a < ab: According to (2.9) and (3.5), for almost every (t, a) ∈ P−1
τ we have

(Φtu)(a) = v(t− a)

∫ a

a−t

π(a)

π(s)
m(s) ds

= π(a)

∫ a

a−t

m(s)

π(s)
ds

∫ τ+(a−t)

a−t

m(s)

π(s)
ds

p̃(τ + (a− t))

π(τ + (a− t))
.

(3.6)

To determine v on [0, ab] we note that from (2.9) it follows that

(Φτu)(a) = π(a)b̃(τ − a) + v(τ − a)

∫ a

0

π(a)

π(s)
m(s) ds (a ∈ [τ − ab, τ ] a.e.), (3.7)

where

b̃(t) =

∫ a†

ab

β(a)(Φtu)(a) da (t ∈ [0, ab]). (3.8)

To determine b̃, after some simple calculations and using (3.4), (3.6) and (3.8) it follows that

b̃(t) =

∫ t+a†−τ

ab

β(a)π(a)
p̃(τ + (a− t))

π(τ + (a− t))
da (t ∈ [0, ab]). (3.9)

Inserting the above formula (3.9) in (3.7) it follows that

(Φτu)(a) = π(a)

∫ a†−a

ab

β(x)π(x)
p̃(a+ x)

π(a + x)
dx+ v(τ − a)

∫ a

0

π(a)

π(s)
m(s) ds (a ∈ [τ − ab, τ ] a.e.).

(3.10)
Thus, (3.3) is satisfied for a ∈ [τ − ab, τ ] iff

v(s) =
p̃(τ − s)− π(τ − s)χ(s)

π(τ − s)

∫ τ−s

0

m(x)

π(x)
dx

(s ∈ [0, ab] a.e.), (3.11)

where

χ(s) :=

∫ s+a†−τ

ab

β(x)π(x)
p̃(τ − (s− x))

π(τ − (s− x))
dx (s ∈ [0, τ ]). (3.12)

Since p̃ ∈ L2[0, a†], we clearly have that v ∈ L2[0, ab].

Case jab < t−a < (j− 1)ab for some integer j > 1: The above calculations suggest as possible
control driving the zero initial state to u(t, a) = v(t− a) where

v(s) =



























0 for s ∈ [−a†, τ − a†],
p̃(τ−s)
π(τ−s)

∫
τ−s

−s

m(x)
π(x)

dx
for s ∈ [τ − a†, 0],

p̃(τ−s)−π(τ−s)χ(s)

π(τ−s)

∫ τ−s

0

m(x)

π(x)
dx

for s ∈ [0, τ ].
(3.13)
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where χ(s) is defined by (3.12).

To prove this fact we first note that v defined above is in L2[−a†, τ ] due to the fact that p̃ ∈ R.
Moreover, we have already seen that (3.13) gives

(Φτu)(a) = p̃(a) (a ∈ [τ − ab, a†] a.e.).

We next show by induction over j > 0 the following properties which we denote by (Pj) :

• b̃(t) = χ(t) for every t ∈ [jab, (j + 1)ab],

• (Φτu)(a) = p̃(a) for a.e. a ∈ (τ − (j + 1)ab, τ − jab).

We have seen above that (P0) is true.

Let j > 0 be an integer fixed, and suppose that (Pi) holds for every i ∈ {0, ..., j}. Then, for
every i ∈ {0, ..., j} and for almost every (t, a) ∈ P i

τ , from (2.9) and (3.13) we have

(Φtu)(a) = π(a)χ(t−a)











1−

∫ a

0

m(s)

π(s)
ds

∫ τ−(t−a)

0

m(s)

π(s)
ds











+π(a)

∫ a

0

m(x)

π(x)
dx

∫ τ−(t−a)

0

m(x)

π(x)
dx

p̃(τ − (t− a))

π(τ − (t− a))
. (3.14)

Combining (3.4), (3.6) and the above formula (3.14), we are in position to compute b̃(t) for t ∈

[(j + 1)ab, (j + 2)ab]. Indeed, since b̃(t) =

∫ a†

ab

β(a)(Φtu)(a) da for every t ∈ [(j + 1)ab, (j + 2)ab],

we can use (3.4) to obtain that

b̃(t) =

∫ t

ab

β(a)(Φtu)(a) da+

∫ t+a†−τ

t

β(a)(Φtu)(a) da (t ∈ [(j + 1)ab, (j + 2)ab]). (3.15)

Firstly, according to (3.14), the first integral in the above formula (3.15) writes

∫ t

ab

β(a)(Φtu)(a) da =

∫ t

ab

β(a)











π(a)χ(t− a)











1−

∫ a

0

m(s)

π(s)
ds

∫ τ−(t−a)

0

m(s)

π(s)
ds











+π(a)











∫ a

0

m(x)

π(x)
dx

∫ τ−(t−a)

0

m(x)

π(x)
dx











p̃(τ − (t− a))

π(τ − (t− a))











da.

We note that the term contained in the first bracket of the above formula involves only values of
a which are larger than a0, so it vanishes. Moreover the term in the second bracket of the last
formula is clearly equal to one. Consequently,

∫ t

ab

β(a)(Φtu)(a) da =

∫ t

ab

β(a)π(a)
p̃(τ + (a− t))

π(τ + (a− t))
da (t ∈ [(j + 1)ab, (j + 2)ab]). (3.16)

Moreover, by using (3.6) it is not difficult to check that for every t ∈ [(j + 1)ab, (j + 2)ab],

∫ t+a†−τ

t

β(a)(Φtu)(a) da =

∫ t+a†−τ

t

β(a)π(a)
p̃(τ + (a− t))

π(τ + (a− t))
da. (3.17)
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Using (3.15), (3.16) and (3.17) we have

b̃(t) =

∫ t+a†−τ

ab

β(a)π(a)
p̃(τ + (a− t))

π(τ + (a− t))
da = χ(t) (t ∈ [(j + 1)ab, (j + 2)ab]). (3.18)

Consequently, if (j + 1)ab < t− a ≤ (j + 2)ab, we obtain from (2.9), (3.13) and (3.18) that

(Φtu)(a) = π(a)χ(t− a)











1−

∫ a

0

m(s)

π(s)
ds

∫ τ−(t−a)

0

m(s)

π(s)
ds











+ π(a)

∫ a

0

m(x)

π(x)
dx

∫ τ−(t−a)

0

m(x)

π(x)
dx

p̃(τ − (t− a))

π(τ − (t− a))
.

The above formula implies that (Φτu)(a) = p̃(a) for almost every a ∈ (τ − (j+2)ab, τ − (j+1)ab),
which ends the induction proof.

Remark 3.3. Given τ ∈]a† − a0, a†[ and p̃ ∈ R, the proof of Theorem 3.2 gives an explicit
formula for a control u ∈ L2([0, τ ];L2[0, a†]) satisfying Φτu = p̃. More precisely, for almost every
(t, a) ∈ Qτ we have

u(t, a) =























































0 if t− a < τ − a†,

p̃(τ + (a− t))

π(τ + (a− t))
∫ τ+(a−t)

a−t

m(x)

π(x)
dx

if τ − a† 6 t− a 6 0,

p̃(τ − (t− a))− π(τ − (t− a))χ(t− a)

π(τ − (t− a))

∫ τ−(t−a)

0

m(x)

π(x)
dx

if 0 < t− a 6 τ,

where

χ(s) =

∫ s+a†−τ

ab

β(x)π(x)
p̃(τ − (s− x))

π(τ − (s− x))
dx (s ∈ [0, τ ]).

Moreover, for almost every (t, a) ∈ Qτ , we have

(Φtu)(a) =







































































































0 if t− a < τ − a†,

π(a)

∫ a

a−t

m(s)

π(s)
ds

∫ τ+(a−t)

a−t

m(s)

π(s)
ds

p̃(τ + (a− t))

π(τ + (a− t))
if τ − a† 6 t− a 6 0,

π(a)χ(t − a)











1−

∫ a

0

m(s)

π(s)
ds

∫ τ−(t−a)

0

m(s)

π(s)
ds











+ π(a)

∫ a

0

m(x)

π(x)
dx

∫ τ−(t−a)

0

m(x)

π(x)
dx

p̃(τ − (t− a))

π(τ − (t− a))
if 0 < t− a 6 τ.

Remark 3.4. For every ϕ ∈ D(A) with
ϕ

π
∈ X, we have ϕ ∈ R. Indeed, for every ϕ ∈ D(A),

there exists f ∈ X such that ϕ′ +µϕ = f , so that assuming the condition
ϕ

π
∈ X, for almost every
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a ∈ (0, a†) we have
ϕ(a)

π(a)
= ϕ(0) +

∫ a

0

ϕ′(s)π(s) + µ(s)π(s)ϕ(s)

π2(s)
ds

=

∫ a†

0

β(a)ϕ(a) da +

∫ a

0

f(s)

π(s)
ds.

(3.19)

Denoting by I :=

∫ a†

0

β(a)ϕ(a) da and i(a) =

∫ a†−a

0

β(x)
π(x)

π(a + x)
ϕ(a+ x) dx, it follows from the

above formula (3.19) that we have

ϕ(a)

π(a)
−

∫ a†−a

0

β(x)
π(x)

π(a + x)
ϕ(a+ x) dx =

∫ a

0

f(s)

π(s)
ds+ I − i(a).

Let us show that the map

a 7→

∫ a

0

f(s)

π(s)
ds+ I − i(a)

a
, (3.20)

is in L2[0, a†]. By Hardy’s inequality (see [12, p 240]), the map a 7→

∫ a

0

f(s)

π(s)
ds

a
lies in L2[0, a†].

For the second term at the numerator in (3.20) we note that for almost every a ∈ (0, a†) we have

d

da
(I − i(a)) = −β(a† − a)π(a† − a)

(

ϕ(0) +

∫ a†

0

f(s)

π(s)
ds

)

−

∫ a†−a

0

β(x)π(x)
f(a + x)

π(a + x)
dx,

so that the map a 7→ d
da (I − i(a)) is in L2[0, a†]. It follows that the map F : a 7→ I − i(a) satisfies

F ∈ H1[0, a†] with F (0) = 0, so that from Hardy’s inequality (see [12, p 240]) the map a 7→ F (a)
a

is in L2[0, a†]. Consequently, from (3.20) we have ϕ ∈ R.

4 Some controllability results

In this section we investigate some controllability properties of the system (1.1).

We first note that the following null controllability result holds.

Proposition 4.1. For every τ > a†−a0, we have Ran Tτ ⊂ R, where R has been defined in (3.2).
Consequently, if β satisfies (1.4) then the system (1.1) is null controllable in any time τ > a†−a0.

Proof. Without loss of generality, we can assume that a† − a0 < τ < a†. Indeed, for τ > a†, the
result follows using the semigroup property and replacing p0 by Tεp0 for some convenient ε > 0.
Let p̃ ∈ Ran Tτ . Then from (2.4) there exists p0 ∈ X such that

p̃(a) =







π(a)

π(a− τ)
p0(a− τ) if τ 6 a,

π(a)b(τ − a) if τ > a,

(a ∈ [0, a†] a.e.), (4.1)

with b(t) =

∫ a†

0

β(a)(Ttp0)(a) da. Consequently, for almost every a ∈ (0, τ) we have
p̃(a)

π(a)
=

b(τ − a) and for almost every a ∈ (τ, a†) we have
p̃(a)

π(a)
=

p0(a− τ)

π(a− τ)
. Hence, the function a 7→

p̃

π
is in L2[0, a†]. From that it is easy to check that

a 7→

p̃(a)

π(a)
−

∫ a†−a

0

β(x)
π(x)

π(a + x)
p̃(a+ x) dx

∫ a

0

m(x)

π(x)
dx

, (4.2)
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is in L2[ε, a†] for every ε > 0. To show that p̃ ∈ R, we still have to check that the map defined in
(4.2) is in L2[0, ε] for every ε > 0 small enough. To this aim, applying first (2.4) we note that, for
almost every a ∈ (0, ε),

p̃(a)

π(a)
−

∫ a†−a

0

β(x)
π(x)

π(a + x)
p̃(a+ x) dx

= b(τ − a)−

∫ a†−a

0

β(x)
π(x)

π(a + x)
(Tτp0)(a+ x) dx

= b(τ − a)−

∫ τ−a

0

β(x)
π(x)

π(a + x)
(Tτp0)(a+ x) dx −

∫ a†−a

τ−a

β(x)
π(x)

π(a + x)
(Tτp0)(a+ x) dx

= b(τ − a)−

∫ τ−a

0

β(x)π(x)b(τ − (a+ x)) dx −

∫ a†−a

τ−a

β(x)π(x)
p0(a+ x− τ)

π(a+ x− τ)
dx.

Moreover, using (2.5) it follows that for every a ∈ (0, ε) we have

b(τ − a) =

∫ τ−a

0

β(x)π(x)b(τ − (a+ x)) dx +

∫ a†

τ−a

β(x)π(x)
p0(a+ x− τ)

π(a+ x− τ)
dx.

We can thus combine the last two formulas to obtain that for almost every a ∈ (0, ε) we have

p̃(a)

π(a)
−

∫ a†−a

0

β(x)
π(x)

π(a + x)
p̃(a+ x) dx =

∫ a†

a†−a

β(x)π(x)
p0(a+ x− τ)

π(a+ x− τ)
dx.

Since β ∈ L∞[0, a†] and π is a decreasing function, it follows that for almost every a ∈ (0, ε),

∣

∣

∣

∣

p̃(a)

π(a)
−

∫ a†−a

0

β(x)
π(x)

π(a + x)
p̃(a+ x) dx

∣

∣

∣

∣

6 ‖β‖L∞[0,a†]

∫ a†−τ+a

a†−τ

|p0(s)| ds. (4.3)

On the other hand, Hardy’s inequality (see, for instance, [12, p. 240]) ensures that

a 7→

∫ a

0

|p0(s+ (a† − τ))| ds

a
∈ L2[0, ε],

hence p̃ ∈ R.

To obtain the null controllability assertion it suffices to combine the inclusions Ran Tτ ⊂ R
which we have just proved and R ⊂ Ran Φτ which was proved in Theorem 3.2.

The result below and the following one answer to an open question raised in [8] and it essentially
asserts that, with an extra assumption, the system can be “positively” steered from any positive
initial state in X to any positive state in R by means of a L2 control. More precisely, we have,

Theorem 4.2. Let the assumptions of Theorem 1.1 be satisfied. Let p0 ∈ X and p̃ ∈ R. Then for
every τ > a† − a0, there exists a control u ∈ L2([0, τ ];L2[0, a†]) such that the controlled solution p
of (1.1) satisfies

p(τ, a) = p̃(a) (a ∈ (0, a†) a.e.).

Moreover, if p0(a) > 0 and p̃(a) > 0 for almost every a ∈ (0, a†), then the control can be chosen
such that the controlled state trajectory remains positive, i.e., such that for every t ∈ [0, τ ] we have

p(t, a) > 0 (a ∈ [0, a†] a.e.).

Proof. We give the proof in the case τ ∈ (a† − a0, a†).
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We set z = p− p̃. The aim is to find a control function u ∈ L2([0, τ ];L2[0, a†]) such as z(τ) = 0
and p(t, a) > 0 for almost every (t, a) ∈ Qτ . To achieve this goal we set

z(t) = Ttp0 +Φtu− p̃ (t > 0).

Since from Theorem 3.2 and Proposition 4.1 we have p̃− Tτp0 ∈ R we can aply the construction
in Theorem 3.2 to obtain a control u ∈ L2([0, τ ];L2[0, a†]) such as

Φτu = p̃− Tτp0.

The corresponding state trajectory will satisfy, in particular, the condition p(τ, ·) = p̃.

To prove the positivity of the state trajectory constructed above we first assume that p0 and p̃ are
continuous on [0, a†]. Then the the control u described in Remark 3.3 is of the form u(t, a) = v(t−a),
with v continuous on each one of the intervals [−a†, τ − a†], [τ − a†, 0] and [0, τ ]. Moreover, the
corresponding state trajectory p, also described in Remark 3.3, is continuous on each one of the
domains Q1

τ , Q
2
τ and Q3

τ , where

Q1
τ = {(t, a) ∈ Qτ | − a† 6 t− a < τ − a†},

Q2
τ = {(t, a) ∈ Qτ | τ − a† 6 t− a 6 0},

Q3
τ = {(t, a) ∈ Qτ | 0 < t− a 6 τ}.

Since the initial condition p0 is supposed positive and the control u vanishes on Q1
τ , the solution

p of the controlled system (1.1) is positive on Q1
τ . Indeed, from (2.9) we have

p(t, a) =
π(a)

π(a− t)
p0(a− t) ((t, a) ∈ Q1

τ ). (4.4)

Moreover, if (t, a) ∈ Q2
τ with a > a0, using (2.9) we have

p(t, a) =
π(a)

π(a− t)
p0(a− t) + v(t− a)

∫ a0

a−t

π(a)

π(s)
ds ((t, a) ∈ Q2

τ , a > a0). (4.5)

It follows from the above formula that for every (t, a) ∈ Q2
τ with a > a0 we have

p̃(τ − (t− a)) = p(τ, τ − (t− a)) =
π(τ − (t− a))

π(a− t)
p0(a− t)

+ v(t− a)

∫ a0

a−t

π(τ − (t− a))

π(s)
ds ((t, a) ∈ Q2

τ , a > a0). (4.6)

By combining (4.5) and (4.6) we get

p(t, a) =
π(a)

π(τ − (t− a))
p̃(τ − (t− a)) ((t, a) ∈ Q2

τ , a > a0). (4.7)

Since the target p̃ is supposed positive, it follows from (4.7) that the solution p of the controlled
system (1.1) is positive on the subdomain {(t, a) ∈ Q2

τ , a > a0}.

If (t, a) ∈ Q3
τ with a > a0, using (2.9) we have

p(t, a) = π(a)b̃(t− a) + v(t− a)

∫ a0

0

π(a)

π(s)
ds ((t, a) ∈ Q3

τ , a > a0). (4.8)

It follows from the above formula that for every (t, a) ∈ Q3
τ with a > a0 we have

p̃(τ−(t−a)) = π(τ−(t−a))b̃(t−a)+v(t−a)

∫ a0

0

π(τ − (t− a))

π(s)
ds ((t, a) ∈ Q3

τ , a > a0), (4.9)
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so that using (4.8) and (4.9) we get

p(t, a) =
π(a)

π(τ − (t− a))
p̃(τ − (t− a)) ((t, a) ∈ Q3

τ , a > a0). (4.10)

Since the target p̃ is supposed positive, it follows from (4.10) that the solution p of the controlled
system (1.1) is positive on the subdomain {(t, a) ∈ Q3

τ , a > a0}. In particular, using (4.7) and
(4.10), the solution p is positive along the red curve represented in Figure 1.

It remains to show the positivity of the controlled solution p into the subregions {(t, a) ∈ Q2
τ , a 6

a0} and {(t, a) ∈ Q3
τ , a 6 a0}. To this aim, note first that if (t, a) ∈ Q2

τ with a 6 a0, then from
(2.9) we have

p(t, a) = π(a)

(

p0(a− t)

π(a− t)
+ v(t− a)

∫ a

a−t

m(s)

π(s)
ds

)

((t, a) ∈ Q2
τ , a 6 a0). (4.11)

Let us show that the density p(t, a) is positive along each characteristic line t − a = c, with
c ∈ [τ − a†, 0] and a 6 a0. Note first that if c ∈ [τ − a†, 0], then for every (t, a) ∈ Q2

τ with a 6 a0
and t− a = c, from (4.11) we have

p(a+ c, a) = π(a)

(

p0(−c)

π(−c)
+ v(c)

∫ a

−c

m(s)

π(s)
ds

)

. (4.12)

If v(c) > 0, then from the above formula (4.12), the density p(t, a) is clearly positive along the
characteristic line t−a = c. If v(c) < 0, the control acts like a retrieval of individuals so that along
the characteristic line t− a = c , the population density decreases and must achieve its minimum
value on the red vertical line represented in Figure 1, minimum which is positive due to (4.7) and
the fact that the solution p is continuous on Q2

τ . In fact, with c fixed in [τ − a†, 0], in the case
where v(c) < 0, the quantity

p0(−c)

π(−c)
+ v(c)

∫ a

−c

m(s)

π(s)
ds

is a decreasing expression of a which attains its positive minimum for a = a0. It follows that
p(t, a) > 0 for almost every (t, a) ∈ Q2

τ with a 6 a0.

Similar arguments can be used to show the positivity of the solution p on {(t, a) ∈ Q3
τ , a 6 a0}.

Indeed, if (t, a) ∈ Q3
τ with a 6 a0, then from (2.9) we have

p(t, a) = π(a)

(

b̃(t− a) + v(t− a)

∫ a

0

m(s)

π(s)
ds

)

((t, a) ∈ Q3
τ , a 6 a0), (4.13)

with

b̃(t) =

∫ a†

ab

β(a)p(t, a) da (t ∈ [0, τ ]). (4.14)

From (4.4), (4.7), (4.10) and (4.14) it follows that we have b̃(t) > 0 for every t ∈ [0, τ ], since
the density p(t, a) is positive for a > ab > a0. Distinguish again the cases v(t − a) > 0 and
v(t − a) < 0 in (4.13) and using the positivity and the continuity of p along the red and green
lines represented in Figure 1 provides the positivity of the controlled solution p on the subdomain
{(t, a) ∈ Q3

τ , a 6 a0}.

The case where p0 ∈ X and p̃ ∈ R are not necessarily continuous can be deduced from a density
argument. Indeed, it suffices to note that from Remark 3.3 it follows that if (p0,n)n>1 ⊂ X and
(p̃n)n>1 ⊂ R are such that p0,n → p0 and p̃n → p̃ then the corresponding state trajectories satisfy
pn → p in L2(Qτ ).

Remark 4.3. The control and the state trajectory constructed in the above proof can be explicitly
written in terms of p0 and p̃. Indeed, applying the formulas in Remark 3.3, with p̃− Tτp0 instead
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of p̃ and after some calculations, it can be checked that, for almost every (t, a) ∈ Qτ we have

u(t, a) =























































0 if t− a < τ − a†,

p̃(τ + (a− t))

π(τ + (a− t))
−

p0(a− t)

π(a− t)
∫ τ+(a−t)

a−t

m(x)

π(x)
dx

if τ − a† 6 t− a 6 0,

p̃(τ − (t− a))− π(τ − (t− a))η(t− a)

π(τ − (t− a))

∫ τ−(t−a)

0

m(x)

π(x)
dx

if 0 < t− a 6 τ,

where

η(s) =

∫ s+a†−τ

ab

β(x)π(x)
p̃(τ − (s− x))

π(τ − (s− x))
dx+

∫ a†

s+a†−τ

β(x)π(x)
p0(x− s)

π(x− s)
dx (s ∈ [0, τ ]).

Moreover, for almost every (t, a) ∈ Qτ , we have

p(t, a) =























































































































































π(a)

π(a− t)
p0(a− t) if t− a < τ − a†,

π(a)

π(a− t)
p0(a− t)











1−

∫ a

a−t

m(x)

π(x)
dx

∫ a+(τ−t)

a−t

m(x)

π(x)
dx











+ π(a)

∫ a

a−t

m(s)

π(s)
ds

∫ τ+(a−t)

a−t

m(s)

π(s)
ds

p̃(τ + (a− t))

π(τ + (a− t))
if τ − a† 6 t− a 6 0,

π(a)η(t − a)











1−

∫ a

0

m(s)

π(s)
ds

∫ τ−(t−a)

0

m(s)

π(s)
ds











+ π(a)

∫ a

0

m(x)

π(x)
dx

∫ τ−(t−a)

0

m(x)

π(x)
dx

p̃(τ − (t− a))

π(τ − (t− a))
if 0 < t− a 6 τ.

We show below that the result in Theorem 4.2 applies for target states which are stationary
solutions of (1.1), which is the case investigated in [8].

Proof of Theorem 1.1. According to Theorem 4.2, we only have to show that any solution p̃ of
(1.2) satisfies p̃ ∈ R.

From [8] it follows that any solution p̃ of (1.2) is given by

p̃(a) = Cπ(a) +

∫ a

0

π(a)

π(σ)
m(σ)w(σ) dσ (a ∈ (0, a†)), (4.15)

where C is determined through

(1 −R)C =

∫ a†

0

β(x)π(x)

∫ x

0

m(σ)

π(σ)
w(σ) dσ dx, (4.16)
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and R is the reproductive number of the population given by

R =

∫ a†

0

β(a)π(a) da.

From (4.15) it follows that for almost every a ∈ (0, a†) we have

p̃(a)

π(a)
= C +

∫ a

0

m(σ)

π(σ)
w(σ) dσ,

so that p̃
π ∈ L2[0, a†]. Moreover, for almost every a ∈ (0, a†) we have from (4.15) that

p̃(a)

π(a)
−

∫ a†−a

0

β(x)
π(x)

π(a + x)
p̃(a+ x) dx

= C +

∫ a

0

m(σ)

π(σ)
w(σ) dσ −

∫ a†−a

0

β(x)π(x)

[

C +

∫ a+x

0

m(σ)

π(σ)
w(σ) dσ

]

dx

=

∫ a

0

m(σ)

π(σ)
w(σ) dσ + C

(

1−

∫ a†−a

0

β(x)π(x) dx

)

−

∫ a†−a

0

β(x)π(x)

∫ a+x

0

m(σ)

π(σ)
w(σ) dσ dx.

(4.17)

Define G :=

∫ a†

0

β(x)π(x)

∫ x

0

m(σ)

π(σ)
w(σ) dσ dx such that from (4.16) we have (1 − R)C = G.

Define r(a) :=

∫ a†−a

0

β(x)π(x) dx and g(a) :=

∫ a†−a

0

β(x)π(x)

∫ a+x

0

m(σ)

π(σ)
w(σ) dσ dx. Then

(4.17) yields that for almost every a ∈ (0, a†), we have

p̃(a)

π(a)
−

∫ a†−a

0

β(x)
π(x)

π(a + x)
p̃(a+ x) dx

=

∫ a

0

m(σ)

π(σ)
w(σ) dσ + C(1 − r(a)) − g(a)

=

∫ a

0

m(σ)

π(σ)
w(σ) dσ + C(R − r(a)) + (G − g(a)).

(4.18)

Let us show that the map

a 7→

∫ a

0

m(σ)

π(σ)
w(σ) dσ + C(R− r(a)) + (G − g(a))

a
, (4.19)

is in L2[0, a†]. By Hardy’s inequality (see [12, p 240]), the map

a 7→

∫ a

0

m(σ)

π(σ)
w(σ) dσ

a

lies in L2[0, a†]. For the second term at the numerator in (4.19) we note that for almost every
a ∈ (0, a†) we have

|R− r(a)| =

∫ a†

a†−a

β(x)π(x) dx

6 a‖β‖L∞[0,a†],

so that the map a 7→
R− r(a)

a
is in L2[0, a†].

We still have to tackle the third term at the numerator in (4.19). To this aim we note that for
almost every a ∈ (0, a†) we have

d

da
(G − g(a)) = −β(a† − a)π(a† − a)

∫ a†

0

m(σ)

π(σ)
w(σ) dσ −

∫ a†−a

0

β(x)π(x)
m(a + x)

π(a + x)
w(a+ x) dx,
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so that the map a 7→ d
da (G − g(a)) is in L2[0, a†]. It follows that the map F : a 7→ G − g(a) satisfies

F ∈ H1[0, a†] with F (0) = 0, so that from Hardy’s inequality (see [12, p 240]) the map a 7→ F (a)
a

is in L2[0, a†]. Consequently, from (4.19) we have p̃ ∈ R.

Remark 4.4. The method employed above to prove Theorem 1.1 cannot be adapted to the case in
which the state space X = L2[0, a†] is substituted by X = L1[0, a†]. Indeed, if w and p̃ are in L1

the fact that p̃ is in R no longer holds, in general. Indeed, the map

a 7→

∫ a

0

m(σ)

π(σ)
w(σ) dσ

a

does not necessarily belong to L1[0, a†] for any w ∈ L1[0, a†] (see Hardy’s inequality [12]). However,
the inclusion Ran Tτ ⊂ Ran Φτ remains true for every τ > a† − a0 - see Appendix A.

5 A singular perturbation problem

In this section we study the behavior of the null controls constructed in Section 4, together with the
behavior of the corresponding state trajectories, when the age interval where the control is active
shrinks to the singleton {0}. Not surprisingly, we show that the null controls converge to a null
control for a system in which the input appears in an additive manner in the formula giving the
birth rate. The control in this limit system can be seen as an “impulse” (in the age domain) type
control or, simpler, as a direct control of the birth rate. Similar singular perturbation problems
for the wave or for the Schrödinger equations have been studied in Fabre [11, 9], Fabre and Puel
[10] and Joly [15].

To be more precise, we consider the control system (1.1) for a0 = ε ∈ (0, a†). According to
Proposition 4.1, given ε > 0, for every p0 ∈ X = L2[0, a†] there exists u

ε ∈ L2([0, a†];X) such that
the solution of























ṗε(t, a) +
∂pε

∂a
(t, a) + µ(a)pε(t, a) = 1[0,ε](a)u

ε(t, a), (t, a) ∈ (0, a†)
2,

pε(t, 0) =

∫ a†

0

β(a)pε(t, a) da, t ∈ (0, a†),

pε(0, a) = p0(a), a ∈ (0, a†),

(5.1)

satisfies
pε(a†, a) = 0 (a ∈ (0, a†)). (5.2)

Moreover, by a slight variation of the calculations used to derive the formula in Remark 4.3, it is
easy to check that the control uε defined by

uε(t, a) =



























−

∫ a†

t−a

β(x)π(x)
p0(x− (t− a))

π(x− (t− a))
dx

∫ a†−(t−a)

0

1[0,ε](x)

π(x)
dx

((t, a) ∈ (0, a†)
2, t− a > 0),

0 ((t, a) ∈ (0, a†)
2, t− a < 0),

(5.3)

satisfies the above conditions. With uε defined by (5.3), the controlled density pε solution of (5.1)
is given by

pε(t, a) =



































π(a)

π(a− t)
p0(a− t) if t− a < 0,

π(a)η(t− a)











1−

∫ a

0

1[0,ε](x)

π(x)
dx

∫ a†−(t−a)

0

1[0,ε](x)

π(x)
dx











if 0 < t− a 6 a†,

(5.4)
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where

η(s) =

∫ a†

s

β(x)π(x)
p0(x− s)

π(x − s)
dx (s ∈ [0, a†]).

We also consider the following boundary controlled system, already studied in [8]:























ṗ(t, a) +
∂p

∂a
(t, a) + µ(a)p(t, a) = 0, (t, a) ∈ (0, a†)

2,

p(t, 0) =

∫ a†

0

β(a)p(t, a) da+ v(t), t ∈ (0, a†),

p(0, a) = p0(a), a ∈ (0, a†),

(5.5)

where v ∈ L2([0, a†]). Using a recursive argument as in the proof of Theorem 3.2, it can be easily
shown that taking

v(t) := −

∫ a†

t

β(a)
π(a)

π(a − t)
p0(a− t) da (t ∈ [0, a†]), (5.6)

the solution p of (5.5) satisfies

p(a†, a) = 0 (a ∈ (0, a†)). (5.7)

More precisely, with v defined by (5.6), the controlled density p solution of (5.5) is given by

p(t, a) =







π(a)

π(a− t)
p0(a− t) if t 6 a,

0 if t > a.

(5.8)

The main result of this section is:

Theorem 5.1. Given p0 ∈ L2([0, a†]), consider the family of distributed controls (uε)ε∈(0,a†) in
L2([0, a†];L

2([0, a†])) and the boundary control v in L2[0, a†] respectively defined by (5.3) and (5.6).
Then we have

1. limε→0+ uε
1[0,ε] = vδ0 weakly in L2([0, a†],D(A∗)′), where δ0 stands for the Dirac mass

concentrated at the origin;

2.
lim

ε→0+
‖pε − p‖C([0,a†];L2([0,a†])) = 0,

where p is the solution of (5.5).

Proof. Let ε ∈ (0, a†/2). It is easy to check that every function in D(A∗) belongs to H1(0, a∗) for
every a∗ ∈ (0, a†∗). In particular, for every ϕ ∈ L2([0, a†],D(A∗)) and every t ∈ [0, a†], we have
ϕ(t, ·) ∈ L∞(0, a†/2).

We introduce the following notations:

f(t, a) :=











−

∫ a†

t−a

β(x)π(x)
p0(x− (t− a))

π(x − (t− a))
dx ((t, a) ∈ (0, a†)

2, t− a > 0),

0 ((t, a) ∈ (0, a†)
2, t− a < 0),

(5.9)

and

kε(t, a) :=

∫ a†−(t−a)

0

1[0,ε](x)

π(x)
dx ((t, a) ∈ (0, a†)

2), (5.10)

so that from (5.3), (5.9) and (5.10) we have

uε(t, a) =
f(t, a)

kε(t, a)
((t, a) ∈ (0, a†)

2).
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Let ϕ ∈ L2([0, a†],D(A∗)), and denote by

gε(t) :=

∫ a†

0

1[0,ε](a)u
ε(t, a)ϕ(t, a) da =

∫ ε

0

f(t, a)

kε(t, a)
ϕ(t, a) da (t ∈ [0, a†]). (5.11)

The aim is to show that limε→0 gε = vϕ(·, 0) in L2[0, a†]. To this aim, we use the Lebesgue’s
Dominated Convergence Theorem. Firstly, let us show that for every t ∈ [0, a†] we have the
following pointwise convergence:

lim
ε→0+

gε(t) = v(t)ϕ(t, 0) (t ∈ [0, a†]). (5.12)

For every t ∈ [0, a†), take ε < a† − t small enough so that ε < a† − (t − a) for every a ∈ (0, ε).
It follows from (5.10) that we have

kε(t, a) =

∫ ε

0

dx

π(x)
(a ∈ (0, ε)), (5.13)

so that from (5.11) and (5.13) we have

gε(t) =
1

∫ ε

0

1

π(x)
dx

∫ ε

0

f(t, a)ϕ(t, a) da,

and, using the last formula and the fact that f(t, 0) = v(t), we have

lim
ε→0

gε(t) = v(t)ϕ(t, 0) (t ∈ [0, a†[). (5.14)

For t = a†, it follows from (5.10) that we have

kε(a†, a) =

∫ a

0

dx

π(x)
(a ∈ (0, ε)), (5.15)

so that from (5.11) and (5.15) we have

gε(a†) =

∫ ε

0

f(a†, a)
∫ a

0

1

π(x)
dx

ϕ(a†, a) da,

and, using the above formula, together with the fact that v(a†) = 0, we obtain that

lim
ε→0

gε(a†) = v(a†)ϕ(a†, 0), (5.16)

Consequently, it follows from (5.14) and (5.16) that the pointwise convergence (5.12) holds for
every t ∈ [0, a†].

Secondly, let us find a function h ∈ L2[0, a†] such that

|gε(t)| 6 h(t) (ε ∈ (0, a†/2), t ∈ [0, a†]). (5.17)

It is easy to check that for every t ∈ [0, a† − ε] we have

kε(t, a) =

∫ ε

0

dx

π(x)
if a ∈ (0, ε)), (5.18)

and for every t ∈ [a† − ε, , a†] we have

kε(t, a) =



















∫ a†−(t−a)

0

dx

π(x)
if a ∈ (0, ε+ t− a†),

∫ ε

0

dx

π(x)
if a ∈ (ε+ t− a†, ε).

(5.19)
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It follows from (5.11), (5.18) and (5.19) that we have

gε(t) =



































1
∫ ε

0

1

π(x)
dx

∫ ε

0

f(t, a)ϕ(t, a) da, (t ∈ [0, a† − ε]),

∫ ε+t−a†

0

f(t, a)ϕ(t, a)
∫ a†−(t−a)

0

1

π(x)
dx

da+
1

∫ ε

0

1

π(x)
dx

∫ ε

ε+t−a†

f(t, a)ϕ(t, a) da, (t ∈ [a† − ε, a†]).

(5.20)
For every t ∈ [0, a† − ε], since f ∈ L∞([0, a†]

2) and ϕ(t, ·) ∈ L∞([0, a†/2]), from (5.20) we get

|gε(t)| 6 ‖f‖L∞([0,a†]2)‖ϕ(t, ·)‖L∞([0,a†/2]). (5.21)

For every t ∈ [a† − ε, a†], from (5.20) we have

|gε(t)| 6

∫ ε

0

f(t, a)ϕ(t, a)

a† − (t− a)
da+

1

ε

∫ ε

0

f(t, a)ϕ(t, a) da. (5.22)

Since p0 ∈ L2[0, a†], Cauchy-Schwartz inequality gives

|f(t, a)| 6 K‖p0‖L2(0,a†)

√

a† − (t− a), (5.23)

for some constant K > 0. It follows from (5.22) and (5.23) that we have

|gε(t)| 6 K‖p0‖L2(0,a†)‖ϕ(t, ·)‖L∞([0,a†/2])

∫ a†/2

0

da
√

a† − (t− a)
+‖f‖L∞([0,a†]2)‖ϕ(t, ·)‖L∞([0,a†/2]),

(5.24)
and the following majoration holds:

|gε(t)| 6 2K‖p0‖L2(0,a†)‖ϕ(t, ·)‖L∞([0,a†/2])

√

3a†/2 + ‖f‖L∞([0,a†]2)‖ϕ(t, ·)‖L∞([0,a†/2]). (5.25)

Define, for every t ∈ [0, a†],

h(t) := 2K‖p0‖L2(0,a†)‖ϕ(t, ·)‖L∞([0,a†/2])

√

3a†/2 + ‖f‖L∞([0,a†]2)‖ϕ(t, ·)‖L∞([0,a†/2]). (5.26)

It follows from (5.21) and (5.25) that for every ε ∈ (0, a†/2) and every t ∈ [0, a†], we have

|gε(t)| 6 h(t) (ε ∈ (0, a†/2), t ∈ [0, a†]), (5.27)

with h ∈ L2([0, a†]). The pointwise convergence (5.12) and the above domination (5.27) gives

lim
ε→0

gε = vϕ(·, 0) in L2[0, a†], (5.28)

so that we have
lim

ε→0+
uε
1[0,ε] = vδ0 weakly in L2([0, a†],D(A∗)′). (5.29)

Concerning the convergence of the state trajectories, it follows from (5.4) and (5.8) that for every
t ∈ [0, a†],

∫ a†

0

|pε(t, a)− p(t, a)|2 da 6 ‖η‖L∞[0,a†]

∫ ε

0











1−

∫ a

0

1[0,ε](x)

π(x)
dx

∫ a†−(t−a)

0

1[0,ε](x)

π(x)
dx











2

da

6 ‖η‖L∞[0,a†]ε.

(5.30)

The convergence stated in Theorem (5.1) easily follows from (5.30).
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6 Control of an infection-age model

The methodology developed in the previous sections is essentially applicable to linear systems.
However, the fact that controls are explicitly determined by calculations along characteristics,
allows, in some particular, situations to tackle nonlinear systems. The aim of this section is thus
to provide an example of application of our methods for a nonlinear controlled infection-age model
which writes:































dS

dt
(t) = −S(t)

∫ a†

0

β(a)i(t, a) da,

∂i

∂t
(t, a) +

∂i

∂a
(t, a) = −µ(a)i(t, a)−m(a)u(t, a),

i(t, 0) = S(t)

∫ a†

0

β(a)i(t, a) da,

(6.1)

with the initial condition

S(0) = S0 > 0 and i(0, ·) = i0 ∈ L2
+[0, a†].

In the model (6.1), the population is decomposed into the class (S) of susceptible individuals and
the class (I) of infected individuals. The number of individuals in the class (S) at time t is S(t). The
age of infection a ∈ [0, a†] is the time since the infection began (where a† denotes the maximum age
of the epidemic), and i(t, a) is the density of infected individuals with respect to the age infection.
That is to say that for two given age values a1, a2 : 0 6 a1 < a2 6 a† the number of infected
individuals with age of infection a between a1 and a2 is

∫ a2

a1

i(t, a) da.

The function β(a) is the force of infection at the age of infection a. We assume that there exists
ab ∈ (0, a†) such that

β(a) = 0 (a ∈ (0, ab) a.e.), (6.2)

that is to say we interpret infection age to an exposed period (infected, but not yet infectious)
from a = 0 to a = ab and an infectious period from a = ab to a = a†. The quantity

∫ a†

0

β(a)i(t, a) da

is the number of infectious individuals within the subpopulation (I). Finally, µ(a) is the exit (or
(and) mortality or (and) recovery) rate of infected individuals with an age of infection a > 0. As
a consequence the quantity

π(a) := exp

(

−

∫ a

0

µ(σ) dσ

)

is the probability for an individual to stay in the class (I) after a period of time a > 0.

System (6.1) can be seen as a semilinear Cauchy problem in an appropriate Banch space, in which
the closed linear operator is not densely defined (see, for instance, Magal and Ruan [19, 20, 21]. In
the above references, the existence and the uniqueness of solutions, for a given L2 input function
u, is proved by using a step by step procedure which preserves the positivity of solutions. The
global in time existence and uniqueness follows since no finite time blowup occurs. Here, we aim
to find a control function u such as the density of infected individuals in the age-infection model
(6.1) becomes null in finite time. We suppose that m = 1[0,a0] is the characteristic function of the
interval (0,a0), with a0 6 ab: this means that we are able to control infected individuals that are
still not infectious. The below proposition show that by controlling the infected individuals (i.e. by
using quarantine) before their infectiousness period we can eradicate the epidemic in finite time.
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Proposition 6.1. Let assumption (6.2) be satisfied. Let i0 ∈ L2[0, a†] with i0(a) > 0 for al-
most every a ∈ (0, a†) and let S0 > 0. Then for every τ > a† − a0, there exists a control
u ∈ L2([0, τ ];L2[0, a†]) such that the controlled density of infected individuals i given by (6.1)
satisfies

i(τ, a) = 0 (a ∈ (0, a†) a.e.).

Moreover the controlled density of infected individuals remains positive that is to say

i(t, a) > 0 a.e. (t, a) ∈ Qτ .

By a slight variation of the calculations in Section 2 we can check the solution of (6.1) satisfies:

S(t) = S0exp

(

−

∫ t

0

∫ a†

0

β(a)i(s, a) da ds

)

, (6.3)

and

i(t, a) :=











π(a)

π(a− t)
i0(a− t) + c(t, a), t 6 a,

π(a)b̃(t− a) + c(t, a), a < t,

(6.4)

where

c(t, a) :=















∫ a

a−t

π(a)

π(s)
m(s)u(s− (a− t), s) ds, t 6 a,

∫ a

0

π(a)

π(s)
m(s)u(s+ (t− a), s) ds, a < t,

(6.5)

and t 7→ b̃(t) is the unique continuous function satisfying the Volterra integral equation

b̃(t) = S(t)

{

∫ min(t,a†)

0

β(a)
[

π(a)b̃(t− a) + c(t, a)
]

da

+

∫ a†

min(t,a†)

β(a)

[

π(a)

π(a− t)
i0(a− t) + c(t, a)

]

da

}

. (6.6)

Proof of Proposition 6.1. The remark suggesting the approach below is that, assuming that S is
a given function, the construction of the control in Theorem 4.2 and, more precisely, in Remark
4.3, adapts to the controllability of the system formed by the last two equations in (6.1). This
motivates the below construction of the control function for the system (6.1).

As previously, we focus on the case where τ ∈]a† − a0, a†[.

Case t− a < 0: We first set

u(t, a) =



























0 if t− a < τ − a†,

i0(a− t)

π(a− t)
∫ τ+(a−t)

a−t

m(x)

π(x)
dx

if τ − a† 6 t− a 6 0,
(6.7)

so that from (6.4) and (6.7) we have

i(t, a) =



































π(a)

π(a− t)
i0(a− t) if t− a < τ − a†,

π(a)

π(a− t)
i0(a− t)











1−

∫ a

a−t

m(x)

π(x)
dx

∫ a+(τ−t)

a−t

m(x)

π(x)
dx











if τ − a† 6 t− a 6 0.

(6.8)
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The above formula (6.8) clearly implies that

i(τ, a) = 0 (a ∈ (τ, a†) a.e.). (6.9)

Case 0 < t− a < ab: using (6.8), we are able to compute S(t) for every t ∈ [0, ab]. Indeed, after
an easy calculation using (6.8) it follows that for every t ∈ [0, ab] ,

∫ a†

0

β(a)i(t, a) da =

∫ a†

ab

β(a)i(t, a) da =

∫ a†

t+a†−τ

β(a)
π(a)

π(a− t)
i0(a− t) da. (6.10)

In the sequel, we set

f(t) :=

∫ a†

t+a†−τ

β(a)
π(a)

π(a − t)
i0(a− t) da (t ∈ [0, τ ]), (6.11)

so that using (6.3), (6.10) and (6.11) we have

S(t) = S0e
−

∫
t

0
f(s)ds (t ∈ [0, ab]). (6.12)

Then for every t ∈ [0, ab], using (6.2), (6.6), (6.10) and (6.12) we have

b̃(t) = S(t)

∫ a†

ab

β(a)i(t, a) da = S0f(t)e
−

∫
t

0
f(s)ds (t ∈ [0, ab]). (6.13)

Denoting by

χ(t) := S0f(t)e
−

∫
t

0
f(s)ds (t ∈ [0, τ ]), (6.14)

it follows from (6.13) and (6.14) that we have b̃(t) = χ(t) for every t ∈ [0, ab]. Then we set for
almost every (t, a) ∈ Qτ with 0 < t− a 6 ab:

u(t, a) =
χ(t− a)

∫ τ−(t−a)

0

m(x)

π(x)
dx

, (6.15)

so that from (6.4) we have

i(t, a) = π(a)χ(t − a)











1−

∫ a

0

m(s)

π(s)
ds

∫ τ−(t−a)

0

m(s)

π(s)
ds











if 0 < t− a 6 ab. (6.16)

It follows from (6.16) that we have

i(τ, a) = 0 (a ∈ (τ − ab, τ) a.e.). (6.17)

Case jab < t− a < (j− 1)ab for some integer j > 1: The above calculations suggest as possible
control driving the initial state to u(t, a) where

u(t, a) =























































0 if t− a < τ − a†,

i0(a− t)

π(a− t)
∫ τ+(a−t)

a−t

m(x)

π(x)
dx

if τ − a† 6 t− a 6 0,

χ(t− a)
∫ τ−(t−a)

0

m(x)

π(x)
dx

if 0 < t− a 6 τ,

(6.18)
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where χ is defined by (6.14). With u defined by (6.18), it can be checked using a recursive argument
as in the proof of Theorem 3.2 that we have

S(t) = S0e
−

∫
t

0
f(s)ds (t ∈ [jab, (j + 1)ab]), (6.19)

which implies that
b̃(t) = χ(t) (t ∈ [jab, (j + 1)ab]), (6.20)

so that using (6.4), (6.18) and (6.20) we get

i(t, a) = π(a)χ(t− a)











1−

∫ a

0

m(s)

π(s)
ds

∫ τ−(t−a)

0

m(s)

π(s)
ds











if jab < t− a 6 (j + 1)ab, (6.21)

and it follows from the above formula (6.21) that we have

i(τ, a) = 0 (a ∈ [τ − (j + 1)ab, τ − jab] a.e.). (6.22)

Finally, with u defined by (6.18) we have

i(t, a) =











































































π(a)

π(a− t)
i0(a− t) if t− a < τ − a†,

π(a)

π(a− t)
i0(a− t)











1−

∫ a

a−t

m(x)

π(x)
dx

∫ a+(τ−t)

a−t

m(x)

π(x)
dx











if τ − a† 6 t− a 6 0,

π(a)χ(t − a)











1−

∫ a

0

m(s)

π(s)
ds

∫ τ−(t−a)

0

m(s)

π(s)
ds











if 0 < t− a 6 τ,

where we recall that we have defined for every t ∈ [0, τ ]:

χ(t) := S0f(t)e
−

∫
t

0
f(s)ds,

so that the positivity of the controlled density i is clear. Moreover, it can be checked that we have
u ∈ L2([0, τ ];L2[0, a†]) thanks to Hardy’s inequality [12].

A Null-controllability in L1[0, a†].

In this Appendix, we investigate the null controllability of system (1.1) when the state space X is
chosen to be L1[0, a†] instead of L2[0, a†].

Proposition A.1. For τ > 0 we denote by (Tτ )τ>0 and (Φτ )τ>0 the semigroup acting on L1[0, a†]
and the control to state maps, defined on L1[0, τ ] with values in L1[0, a†], defined according to
Remark (2.2). Then for every τ > a† − a0 we have Ran Tτ ⊂ Ran Φτ , i.e., the system (1.1), with
state space X = L1[0, a†] and input space U = L1[0, τ ] is null-controllable in any time τ > a†− a0.

Proof. We can assume, without loss of generality, that a0 6 ab. Let τ ∈ (a† − a0, a†). Given
p0 ∈ X , we look for a control u ∈ L1([0, τ ];L1[0, a†]) such that the solution p of (1.1) satisfies
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p(τ, ·) = 0. To this aim, we use the control constructed in Remark 3.3 (with p̃ = 0) with a slight
modification (see Figure 2 for an illustration of the modification). Let δ ∈ (a† − a0, τ). We set

u(t, a) =



































































0 if t− a < δ − a†,

−

p0(a− t)

π(a− t)
∫ τ+(a−t)

a−t

m(x)

π(x)
dx

if δ − a† 6 t− a 6 0,

−
η(t− a)

∫ τ−(t−a)

0

m(x)

π(x)
dx

if 0 < t− a 6 δ,

0 if δ < t− a 6 τ,

(1.23)

where

η(s) =

∫ a†

s+a†−δ

β(x)π(x)
p0(x− s)

π(x − s)
dx (s ∈ [0, δ]).

With u defined by (1.23), it can be checked using a recursive argument as in the proof of Theorem
3.2 that we have

p(t, a) =
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∫ a

a−t

m(x)

π(x)
dx

∫ a+(τ−t)
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m(x)

π(x)
dx











if δ − a† 6 t− a 6 0,

π(a)η(t − a)











1−

∫ a

0

m(s)

π(s)
ds

∫ τ−(t−a)

0

m(s)

π(s)
ds











if 0 < t− a 6 δ.

(1.24)

It follows from the above formula (1.24) that we have

p(τ, a) = 0 (a ∈ [a† − δ, a†] a.e.). (1.25)

If t ∈ [δ, a†], it follows from (1.24) that we have

b̃(t) =

∫ a†

ab

β(a)p(t, a)da = 0,

so that from (2.9) and (1.23) we get

p(t, a) = 0 (δ < t− a 6 τ). (1.26)
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t

a0

ab

2ab

ab a†

a†

a0

τ

δ

a† − δ

{b̃(t) = 0

Figure 2: In this Figure, the control acts in the subset of Qτ = [0, τ ] × [0, a†] delimited by the
line a = a0 and the red curve. The hatched region corresponds to the slight modification of the
control region (compared to the control pictured in Figure 1). Due to this modification, the value of
b̃(t) =

∫ a†

0 β(a)p(t, a) da is null for every t ∈ [δ, a†], and we can choose u(t, a) = 0 for δ 6 t−a 6 a†
to avoid the singularity in the neighborhood of the point (τ, 0).

It follows from (1.24) and (1.26) that the controlled density of population p is given by

p(t, a) =
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π(a− t)
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1−

∫ a

a−t

m(x)

π(x)
dx

∫ a+(τ−t)

a−t

m(x)

π(x)
dx











if δ − a† 6 t− a 6 0,

π(a)η(t − a)











1−

∫ a

0

m(s)

π(s)
ds

∫ τ−(t−a)

0

m(s)

π(s)
ds











if 0 < t− a 6 δ,

0 if δ < t− a 6 τ,
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so that we have p(τ, ·) = 0 and the control u defined by (1.23) is in L1([0, τ ];L1[0, a†]).
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[6] S. Aniţa, Analysis and control of age-dependent population dynamics, vol. 11 of Mathematical
Modelling: Theory and Applications, Kluwer Academic Publishers, Dordrecht, 2000.

[7] H. T. Banks and F. Kappel, Transformation semigroups and L1-approximation for size
structured population models, Semigroup Forum, 38 (1989), pp. 141–155. Semigroups and
differential operators (Oberwolfach, 1988).

[8] V. Barbu, M. Iannelli, and M. Martcheva, On the controllability of the Lotka-
McKendrick model of population dynamics, J. Math. Anal. Appl., 253 (2001), pp. 142–165.

[9] C. Fabre, Exact boundary controllability of the wave equation as the limit of internal con-
trollability, SIAM J. Control Optim., 30 (1992), pp. 1066–1086.

[10] C. Fabre and J.-P. Puel, Behavior near the boundary for solutions of the wave equation,
J. Differential Equations, 106 (1993), pp. 186–213.

[11] , Pointwise controllability as limit of internal controllability for the wave equation in one
space dimension, Portugal. Math., 51 (1994), pp. 335–350.

[12] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Mathematical
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