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ABSTRACT. Center-unstable manifolds are very useful in
investigating nonlinear dynamics of nonlinear evolution equa-
tions. In this paper, we first present a center-unstable manifold
theory for abstract semilinear Cauchy problems with nondense
domain. We especially focus on the stability property of the
center-unstable manifold. Then we study the stability of Hopf
bifurcation, that is, stability of the bifurcating periodic orbits
for the nondensely defined Cauchy problem. Our goal is to
prove that the stability of a periodic orbit to the reduced sys-
tem (i.e., restricted to the center-unstable manifold) implies
the stability of the periodic orbit for the original system. As
an application, we demonstrate that these results apply to dif-
ferential equations with infinite delay.

1 Introduction The center manifold theory was first established
by Pliss [39] and Kelley [30] and was developed and completed in Carr
[7], Sijbrand [40], Vanderbauwhede [46, 47], etc. Due to its local in-
variance by the semiflow, the center manifold provides a considerable
reduction of the dimension which leads to simple calculations and a bet-
ter geometric insight on the dynamics. The center manifold theory has
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significant applications in studying other problems in dynamical sys-
tems, such as bifurcation, stability, perturbation, etc. See, for example,
Bates and Jones [6], Chicone and Latushkin [8], Chow and Hale [9],
Chow et al. [11, 12], Chow and Lu [13], Diekmann et al. [19], Faria et
al. [23], Henry [27], Hirsch et al. [28], Krisztin [31], Vanderbauwhede
and Iooss [49], Vanderbauwhede and van Gils [48], and the references
cited therein. It has also been used to study various applied problems in
biology, engineering, physics, etc. and we refer to Carr [7] and Hassard
et al. [26].

Given a nonhyperbolic equilibrium, the center-unstable manifold is a
locally invariant manifold by the semiflow and is tangent to the gener-
alized eigenspace associated to the corresponding eigenvalues with non-
negative real parts (Kelley [30]). The local center-unstable manifold
plays an important role in applications since it has some nice stabil-
ity properties. Compared to center manifold, it is also easier to use in
practice, since a point (locally around the equilibrium) belongs to the
center-unstable manifold “only” if there exists a negative orbit (stay-
ing in some small neighborhood of the equilibrium) passing through
the point at time t = 0, while for the center manifold a complete or-
bit is needed. Center-unstable manifolds in infinite dynamical systems
have been studied by many researchers. For example, Armbruster et
al. [4] investigated center-unstable manifolds in Kuramoto-Sivashinsky
equation. Chow and Lu [14] discussed the existence and smoothness
of global center-unstable manifolds for semilinear and fully nonlinear
differential evolution equations. Dell’Antonio and D’Onofrio [17] stud-
ied center-unstable manifolds for the Navier-Stokes equation. Nakanishi
and Schlag [38] established center-unstable and center-stable manifolds
around soliton manifolds for the nonlinear Klein-Gordon equation. Tu-
ryn [45] obtained a center-unstable manifold theorem for parametrically
excited surface waves. Stumpf [41] discussed center-unstable manifolds
for differential equations with state-dependent delay.

The goal of this paper is to establish a center-unstable manifold theory
for the abstract semilinear Cauchy problem with nondense domain:

(1.1)
du(t)

dt
= Au(t) + F (u(t)), t ≥ 0, u(0) = x ∈ D(A),

where A : D(A) ⊂ X → X is a linear operator on a Banach space
(X, ‖.‖), and F : D(A) → X is a k-time (k ≥ 1) continuous differentiable
map locally around some equilibrium u ∈ D(A), that is, Au+F (u) = 0.
Assume that

X0 := D(A) 6= X,
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i.e., the domain of the operator A is not dense in the phase space X, so
problem (1.1) is called a nondensely defined Cauchy problem.

Various examples of equations with nondense domain were given in
Da Prato and Sinestrari [16] and Thieme [42, 43]. In fact, many bi-
ological and epidemiological models, such as age-structured models in
population dynamics (Magal [34], Magal and Ruan [35, 36, 37]), pop-
ulation dynamic models described by reaction-diffusion equations with
nonlinear boundary conditions (Chu et al. [15] and Ducrot et al. [21]),
and models described by delay differential equations in Lp (Liu et al.
[32] and Ducrot et al. [20]), can be written as nondensely defined semi-
linear Cauchy problems in form of (1.1).

(a) Age-structured models in population dynamics. Let u(t, a)
denote the population density of some species at time t and with age a.
Consider the initial-boundary value problem (Magal and Ruan [37])

(1.2)





∂tv(t, a) + ∂av(t, a) = −µv(t, a), t > 0, a > 0,

v(t, 0) = f
(∫∞

0
β(a)v(t, a)da

)
,

v(0, .) = v0 ∈ L1
+(0,∞)

in the Banach space X = R × L1(0,∞) and assume that the linear
operator A : D(A) ⊂ X → X is defined by

A

(
0
ϕ

)
=

(
−ϕ(0)

−ϕ′ − µϕ

)
, ∀

(
0
ϕ

)
∈ D(A)

with D(A) = {0} × W 1,1(0,∞). By setting u(t) =

(
0

v(t, .)

)
, prob-

lem (1.2) can be reformulated as the Cauchy problem (1.1), where x =(
0
v0

)
∈ {0}×L1(0,∞) and the nonlinear map F : {0}×L1(0,∞) → X

is defined by

F

(
0
ϕ

)
=

(
f
(∫∞

0
β(a)ϕ(a)da

)

0

)
.

Notice that D(A) = {0}×L1(0,∞) 6= X, so (1.1) is an abstract Cauchy
problem with the nondensely defined linear operator A.

(b) Size structured population models. Assume that the popu-
lation density u(t, s) depends on time t and its size s. Consider (Chu et
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al. [15])

(1.3)





∂tv(t, s) + ∂s(g(s)v(t, s))

= d∂2
sv(t, s) − µv(t, s), t > 0, s > 0,

−d∂sv(t, 0) + g(0)v(t, 0) = f
(∫∞

0 β(s)v(t, s)ds
)
,

v(0, .) = v0 ∈ L1
+(0,∞),

where the diffusion term represents a fluctuation in the population growth
process. Consider the space X := R × L1 (0,+∞) endowed with the
product norm ∥∥∥∥

(
α

ϕ

)∥∥∥∥ = |α| + ‖ϕ‖L1(0,+∞) .

Define the linear operator A : D(A) ⊂ X → X by

A

(
0
ϕ

)
=

(
ε2ϕ′(0) − ϕ(0)

ε2ϕ′′ − ϕ′ − µϕ

)

with D(A) = {0}×W 2,1 (0,+∞) . Then X0 := D(A) = {0}×L1 (0,+∞)
6= X. Define F : X0 → X by

F

(
0
ϕ

)
=

(
αh(

∫ +∞

0
γ (x)ϕ(x)dx)

0

)
.

By identifying v(t) to u(t) =

(
0
v(t)

)
, the partial differential equa-

tion (1.3) can be rewritten as the nondensely defined Cauchy prob-
lem (1.1).

(c) Delay equations with infinite delay. Consider the weighted
space of continuous functions

Cη ((−∞, 0] ,Rn) :=

{
ϕ ∈ C ((−∞, 0] ,Rn) : sup

θ≤0
eηθ ‖ϕ (θ)‖ < +∞

}

which is a Banach space endowed with the norm

‖ϕ‖η := sup
θ≤0

eηθ ‖ϕ (θ)‖ .
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Let x ∈ C ((−∞, τ ] ,Rn) . Define xt ∈ C ((−∞, 0] ,Rn) , ∀t ≤ τ, by
xt (θ) = x(t+ θ), ∀θ ≤ 0. Consider an equation with infinite delay (Hale
and Kato [25], Hale and Verduyn Lunel [24], Auger and Ducrot [5]):

(1.4)





dx(t)

dt
= G(xt),

x (θ) = ϕ (θ) , ∀θ ≤ 0 with ϕ ∈ Cη ((−∞, 0] ,Rn) ,

where G : Cη ((−∞, 0] ,Rn) → Rn is k-time continuous differentiable
(with k ≥ 1), and G(0Cη

) = 0Rn . As in Liu et al. [32], by setting
u (t, θ) = xt (θ) , we can reformulate this problem as the following PDE
with nonlinear and nonlocal boundary condition

(1.5)





∂tv(t, θ) − ∂θv(t, θ) = 0 for θ ≤ 0 and t ≥ 0,

∂θv(t, 0) = G(v(t, .)) for t ≥ 0,

v (0, .) = ϕ ∈ Cη ((−∞, 0] ,Rn) .

In order to incorporate the boundary condition into the state space, we
consider the Banach space X = Rn × Cη ((−∞, 0] ,Rn) endowed with
the product norm

‖(α, ϕ)‖ = ‖α‖
Rn + ‖ϕ‖η .

Define the linear operator A : D(A) ⊂ X → X by

(1.6) A

(
0
ϕ

)
=

(
−ϕ′(0)

ϕ′

)

with D(A) = {0Rn} × C1
η ((−∞, 0] ,Rn) , where

C1
η ((−∞, 0] ,Rn) :=

{
ϕ ∈ C1 ((−∞, 0] ,Rn) : ϕ, ϕ′ ∈ Cη ((−∞, 0] ,Rn)

}
.

The closure of the domain is X0 := D(A) = {0Rn}×Cη ((−∞, 0] ,Rn) 6=
X. Therefore, A is nondensely defined. Consider the map F : X0 → X

defined by

F

(
0
ϕ

)
=

(
G (ϕ)
0Cη

)
.

By identifying v(t, .) = xt to u(t) =

(
0Rn

v(t, .)

)
, we can reformulate

the infinite delay differential equation (1.4) as the Cauchy problem (1.1)
with nondense domain.
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For the nondensely defined Cauchy problem (1.1), sinceX0 := D(A) 6=
X, the solutions of problem (1.1) become nonclassical whenever the
range of F is not included in D(A). Based on a variation of con-
stant formula obtained by using integrated semigroup theory, and by
using Perron’s method, a center manifold theory was obtained for non-
densely defined semilinear Cauchy problems in Magal and Ruan [37].
The first part of this article is devoted to the existence and the smooth-
ness of the center-unstable manifold for the nondensely defined semilin-
ear Cauchy problem (1.1). We especially focus on the stability property
of the center-unstable manifold. The second part of the paper deals with
the stability of Hopf bifurcation, that is, stability of the bifurcating peri-
odic orbits for the nondensely defined Cauchy problem (1.1). Our goal is
to show that the stability of a periodic orbit to the reduced system (i.e.
restricted to the center-unstable manifold) implies the stability of the pe-
riodic orbit for the original system. As an application, we demonstrate
that these results apply to differential equations with infinite delay.

2 Existence and stability of center-unstable manifolds Re-
call that A is called a Hille-Yosida operator (densely defined or not) if
there exists two constants, ωA ∈ R and MA ≥ 1, such that

(ωA,+∞) ⊂ ρ (A) (the resolvent set of A)

and ∥∥ (λI −A)
−n ∥∥

L(X)
≤

MA

(λ− ωA)
n , ∀λ > ωA, ∀n ≥ 1.

In the Hille-Yosida case, solutions of the abstract Cauchy problem (1.1)
was studied by Da Prato and Sinestrari [16] using an approach based on
the sum of operators. Problem (1.1) has also been studied by using in-
tegrated semigroup theory, we refer to Arendt [1, 2], Arendt et al. [3],
Kellermann and Hieber [29], and Thieme [42, 43] for related results.
When A is not a Hille-Yosida operator, some recent progresses also per-
mit us to use integrated semigroup theory to investigate the abstract
Cauchy problem (1.1), we refer to Magal and Ruan [35, 36, 37] and
Thieme [44] for more results on this topic.

Consider A0, the part of A in X0, which is the linear operator on X0

defined by
A0x = Ax, ∀x ∈ D (A0)

and
D (A0) := {x ∈ D(A) : Ax ∈ X0} .

We first make the following assumption.
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Assumption 2.1. Assume that ρ (A) is nonempty and A0 is the in-
finitesimal generator of a strongly continuous semigroup {TA0

(t)}t≥0 of
bounded linear operators on X0.

Since ρ (A) 6= ∅, we have

ρ (A) = ρ (A0) .

Therefore, we can find two constants, ωA ∈ R and MA ≥ 1, such that

‖TA0
(t)‖ ≤MAe

ωAt, ∀t ≥ 0.

The integrated semigroup {SA(t)}t≥0 ⊂ L (X) is the family of bounded
linear operators on X solving the Cauchy problem

dSA(t)y

dt
= ASA(t)y + y, t ≥ 0, SA(0)y = 0.

It can be shown that

SA(t)y = (µI −A0)

∫ t

0

TA0
(s) ds (µI −A)

−1
y

for each µ ∈ ρ (A) . One may observe that

SA(t)X ⊂ X0, ∀t ≥ 0.

Define

(SA ∗ f) (t) :=

∫ t

0

SA(t− s)f(s) ds

for each f ∈ L1 ((0, τ) , X) , and

(SA � f) (t) :=
d

dt
(SA ∗ f) (t)

whenever t→ (SA ∗ f) (t) is continuously differentiable.
We also make the following assumption.

Assumption 2.2. Assume that for each τ > 0 and each function f ∈
C ([0, τ ] , X) , the map t→ (SA ∗f)(t) is continuously differentiable, and
there exists a function δ : [0,+∞) → [0,+∞) with

lim
t(>0)→0

δ(t) = 0,

such that

‖(SA � f) (t)‖ ≤ δ(t) sup
s∈[0,t]

‖f(s)‖ , ∀t ∈ [0, τ ] .
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Remark 2.3. In applications, it is usually difficult to verify Assump-
tion 2.2. The problem has been studied in Magal and Ruan [35] and
Thieme [44] for the general hyperbolic case and by Ducrot et al. [21]
for the parabolic case (i.e., for almost sectorial operators).

Similar to the densely defined case, a weak solution of the problem
(1.1) will be a continuous function u ∈ C ([0, τ ] , X) satisfying the fol-
lowing two properties

∫ t

0

u(s) ds ∈ D(A), ∀t ∈ [0, τ ] ,

u(t) = x+A

∫ t

0

u(s) ds+

∫ t

0

F (u(s)) ds, ∀t ∈ [0, τ ] .

Moreover, it can be proved under the above assumptions that the notion
of weak solutions is equivalent to the notion of mild solutions, that is,

u(t) = TA0
(t)x + (SA � F (u(.))) (t), ∀t ∈ [0, τ ] .

The linearized equation around the equilibrium u is given by

dv(t)

dt
= Av(t) +DF (u)v(t), t ≥ 0, v(0) = x ∈ X0.

By using perturbation results, one may replace A by A+DF (u) and the
problem is unchanged. Therefore, we can assume that

u = 0X

and
F (0X) = 0X and DF (0X) = 0L(X).

The linearized equation becomes a Cauchy problem in X0, namely,

dv(t)

dt
= A0v(t), t ≥ 0, v(0) = x ∈ X0.

Therefore, by making some appropriate assumption on the spectrum of
A0 one obtains a state space decomposition of X0.

Assumption 2.4. Assume that X0 has a state space decomposition

X0 := X0s ⊕X0cu,



CENTER-UNSTABLE MANIFOLDS 143

where X0s corresponds to the stable subspace and X0cu corresponds to
the center-unstable subspace, and satisfies

(λI −A0)
−1
X0k ⊂ X0k, ∀k = s, cu and ∀λ ∈ ρ(A0).

More precisely, we assume that

(i) X0cu is a finite dimensional subspace of X0 and

X0cu = ⊕
λ∈σ(A0):Re(λ)≥0

Eλ,

where Eλ is the generalized eigenspace of A0 associated to λ ∈
σ (A0) .

(ii) The growth rate of A0s, the part of A0 in X0s, is strictly negative,
that is,

ω0 (A0s) := lim
t→+∞

ln
(
‖TA0

(t)‖L(X0s)

)

t
< 0.

Remark 2.5. The above assumption is also equivalent to that

σcu (A0) := {λ ∈ σ (A0) : Re (λ) ≥ 0}

is nonempty and the essential growth rate of {TA0
(t)}t≥0 is negative.

That is,

ω0,ess (A0) := lim
t→+∞

ln (‖TA0
(t)‖ess)

t
< 0,

where
‖L‖ess := κ ({Lx : x ∈ BX0

(0, 1)})

and

κ (B) := inf

{
ε > 0 : B can be covered by a finite number

of balls of radius ≤ ε

}

is the Kuratovsky measure of noncompactness. We refer to Webb [50]
and Engel and Nagel [22] for results on this topic.

Since the dimension of X0cu is finite, by using Proposition 3.5 in
Magal and Ruan [37], there exists a unique state space decomposition

X = Xs ⊕Xcu,
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where
X0cu = Xcu,

and
(λI −A)

−1
Xk ⊂ Xk, ∀k = s, cu, and ∀λ ∈ ρ(A).

One may observe that
Xcu ⊂ D(A0).

Consider the linear operator Acu : Xcu → Xcu defined by

Acux = Ax, ∀x ∈ Xcu.

Let Πcu ∈ L (X) be the bounded linear projector satisfying

Πcu(X) = Xcu and (I − Πcu) (X) = Xs.

Set
Πs := I − Πcu.

We now study the existence and exponential stability of the center-
unstable manifold for a nonlinear semiflow {UF (t)}t≥0 on X0 generated
by integrated solutions of (1.1). Since the existence completely parallels
the case for center manifold given in Magal and Ruan [37, Chapter 3],
we only give an outline of the theory for center-unstable manifold.

Recall that u ∈ C(R−, X0) is a negative orbit of {UF (t)}t≥0 if

(2.1) u(t) = UF (t− s)u(s), ∀t, s ∈ R− with t ≥ s.

Note that equation (2.1) is also equivalent to

u(t) = u(s) +A

∫ t−s

0

u(s+ r) dr +

∫ t−s

0

F (u(s+ r)) dr

for all t, s ∈ (−∞, 0] with t ≥ s, or to

(2.2) u(t) = TA0
(t− s)u(s) + (SA � F (u(s+ .))) (t− s)

for each t, s ∈ (−∞, 0] with t ≥ s.

Let (Y, ‖.‖Y ) be a Banach space. Let η ∈ R. Denote

BCη(R−, Y ) =

{
f ∈ C (R−, Y ) : sup

t≤0
e−η|t| ‖f(t)‖Y < +∞

}
.
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It is well known that BCη(R−, Y ) is a Banach space when it is endowed
with the norm

‖f‖BCη(R−,Y ) = sup
t≤0

e−η|t| ‖f(t)‖Y .

Moreover, the family
{(
BCη(R−, Y ), ‖.‖BCη((−∞,0],Y )

)}
η>0

forms a

scale of Banach spaces, that is, if 0 < ζ < η, then BCζ(R−, Y ) ⊂
BCη(R−, Y ), and the embedding is continuous. More precisely, we have

‖f‖BCη(R−,Y ) ≤ ‖f‖BCζ(R−,Y ) , ∀f ∈ BCζ(R−, Y ).

Let (Z, ‖.‖Z) be a Banach space. Denote by Lip(Y, Z) (resp. LipB(Y, Z))
the space of Lipschitz (resp. Lipschitz and bounded) maps from Y into
Z, and set

‖F‖Lip(Y,Z) := sup
x,y∈Y :x6=y

‖F (x) − F (y)‖Z
‖x− y‖Y

.

From now on, we fix β− ∈ (0,−ω0 (A0s)) .

Definition 2.6. Let η ∈ (0, β−). The η-center-unstable manifold of
(1.1), denoted by V cuη , is the set of all points x ∈ X0 such that there
exists u ∈ BCη (R−, X0) , a negative orbit of {UF (t)}t≥0 , such that
u(0) = x.

For each η > 0, V cuη is invariant under the semiflow {UF (t)}t≥0 , that
is,

UF (t)Vcu
η = Vcu

η , ∀t ≥ 0.

Moreover, we say that {UF (t)}t≥0 is reduced on V cuη if there exists a
map Ψcu : X0cu → X0s such that

Vcu
η = Graph (Ψcu) = {xcu + Ψcu (xcu) : xcu ∈ X0cu} .

The following lemma was proved in Magal and Ruan [37, Lemma 4.6].

Lemma 2.7. Let Assumptions 2.1, 2.2 and 2.4 be satisfied. Then

(i) For each η ∈ [0, β−) , each f ∈ BCη (R−, X) , and each t ∈ R,

Ks(f)(t) := lim
r→−∞

Π0s (SA � f(r + .)) (t− r) exists.
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(ii) For each η ∈ [0, β−) , Ks is a bounded linear operator from
BCη (R−, X) into BCη (R−, X0s) . More precisely, for each ν ∈

(−β−, 0) , there exists a constant Ĉs,ν > 0 such that

‖Ks‖L(BCη(R−,X),BCη(R−,X0s)) ≤ Ĉs,ν , ∀η ∈ [0,−ν] .

(iii) For each η ∈ [0, β−) , each f ∈ BCη (R−, X) , and each t, s ∈ R

with t ≥ s,

Ks(f)(t) − TA0s
(t− s)Ks(f)(s) = Π0s (SA � f(s+ .)) (t− s).

The following lemmas can be proved similarly as Lemmas 4.8 and 4.9
in Magal and Ruan [37].

Lemma 2.8. Let Assumptions 2.1, 2.2 and 2.4 be satisfied. Let η ∈
(0, β−) be fixed. For each xcu ∈ X0cu, each f ∈ BCη (R−, X) , and each
t ∈ (−∞, 0] , denote

K1(xcu)(t) := eAcutxcu, Kcu(f)(t) :=

∫ t

0

eAcu(t−s)Πcuf(s) ds,

where Πcu = Πc + Πu. Then K1 is a bounded linear operator from X0cu

into BCη (R−, X0cu) and

‖K1‖L(X0cu,BCη(R−,X)) ≤ sup
t≥0

∥∥e−(Acu+ηI)t
∥∥ < +∞,

‖Kcu‖L(BCη(R−,X)) ≤ ‖Πcu‖L(X)

∫ +∞

0

∥∥e−(Acu+ηI)l
∥∥dl < +∞.

Lemma 2.9. Let Assumptions 2.1, 2.2 and 2.4 be satisfied. Let η ∈
(0, β−) and u ∈ BCη (R−, X0) be fixed. Then u is a complete orbit of
{UF (t)}t≥0 if and only if for each t ∈ R,

(2.3) u(t) = K1(Π0cuu(0))(t) +Kcu(F (u(.)))(t) +Ks(F (u(.)))(t),

where Π0cu = Π0c + Π0u.

Let η ∈ (0, β−) be fixed. Rewrite equation (2.3) as the following fixed
point problem: To find u ∈ BCη (R−, X) such that

(2.4) u = K1(Π0cuu(0)) +K2ΦF (u),
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where the nonlinear operator ΦF ∈ Lip (BCη (R−, X0) , BC
η (R−, X))

is defined by
ΦF (u)(t) = F (u(t)), ∀t ∈ R,

and the linear operatorK2 ∈ L (BCη (R−, X) , BCη (R−, X0)) is defined
by

K2 = Kcu +Ks.

Moreover, we have the following estimates

‖K1‖L(X0cu,BCη(R−,X)) ≤ sup
t≥0

∥∥e−(Acu+ηI)t
∥∥,

‖ΦF ‖Lip ≤ ‖F‖Lip ,

and for each ν ∈ (−β−, 0) , we have

‖K2‖L(BCη(R,X)) ≤ γ (ν, η) , ∀η ∈ (0,−ν] ,

where

(2.5) γ (ν, η) := Ĉs,ν + ‖Πcu‖L(X)

∫ +∞

0

∥∥e−(Acu+ηI)l
∥∥dl.

Furthermore, by Lemma 2.9, the η-center-unstable manifold is given by

(2.6) Vcu
η =

{
x ∈ X0 : ∃u ∈ BCη (R−, X0)

a solution of (2.4) and u(0) = x
}
.

We state the existence of center-unstable manifolds for the abstract
semilinear Cauchy problem (1.1) with nondense domain which can be
proved similarly as Theorem 4.10 in Magal and Ruan [37].

Theorem 2.10 (Global Center-Unstable Manifold). Let Assumptions
2.1, 2.2 and 2.4 be satisfied. Let η ∈ (0, β−) be fixed and δ0 = δ0 (η) > 0
be such that

δ0 ‖K2‖L(BCη(R−,X)) < 1.

Then for each F ∈ Lip(X0, X) with ‖F‖Lip(X0,X) ≤ δ0, there exists a
Lipschitz continuous map Ψcu : X0cu → X0s such that

Vcu
η = {xcu + Ψcu(xcu) : xcu ∈ X0cu} .

Moreover, we have the following properties:
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(i) supxcu∈X0cu
‖Ψcu(xcu)‖ ≤ ‖Ks‖L(BCη(R−,X)) sup

x∈X0

‖ΠsF (x)‖ .

(ii) We have

(2.7) ‖Ψcu‖Lip(X0cu,X0s)

≤
‖Ks‖L(BCη(R−,X)) ‖F‖Lip(X0,X) ‖K1‖L(X0cu,BCη(R−,X0))

1 − ‖K2‖L(BCη(R−,X)) ‖F‖Lip(X0,X)

.

We now state and prove the existence of local center-unstable mani-
folds.

Theorem 2.11 (Local Center-Unstable Manifold). Let Assumptions
2.1, 2.2 and 2.4 be satisfied. Let r > 0 and F : BX0

(0, r) → X be a
map. Assume that there exists an integer k ≥ 1 such that F is k-time
continuously differentiable in BX0

(0, r) with

F (0) = 0 and DF (0) = 0.

Then there exists a neighborhood Ω of the origin in X0 and a map Ψcu ∈
Ckb (X0cu, X0s) with

Ψcu (0) = 0 and DΨcu (0) = 0,

such that
Mcu = {xcu + Ψcu (xcu) : xcu ∈ X0cu}

is a locally invariant manifold by the semiflow generated by (1.1) around
0.

More precisely, the following properties hold:

(i) If I is an interval of R and xcu : I → X0cu is a solution of

(2.8)
dxcu(t)

dt
= A0cuxcu(t) + ΠcuF (xcu(t) + Ψcu (xcu(t)))

(reduced equation) such that

u(t) := xuc(t) + Ψcu (xuc(t)) ∈ Ω, ∀t ∈ I,

then for each t, s ∈ I with t ≥ s,

u(t) = u(s) +A

∫ t

s

u(l)dl +

∫ t

s

F (u(l)) dl.
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(ii) If u : (−∞, 0]→X0 is a map such that for each t, s ∈ (−∞, 0] with
t ≥ s,

u(t) = u(s) +A

∫ t

s

u(l) dl +

∫ t

s

F (u(l)) dl

and

u(t) ∈ Ω, ∀t ∈ (−∞, 0] ,

then

Πsu(t) = Ψcu (Πcuu(t)) , ∀t ∈ (−∞, 0] ,

and Πcuu : (−∞, 0]→X0cu is a solution of (2.8).

Proof. In order to prove the local center-unstable manifold theorem,
we apply Theorem 2.10 to the Cauchy problem

du

dt
= Au(t) + Fr (u(t)) , t ≥ 0, u(0) = x ∈ X0,

where Fr : X0 → X is the following truncated function

Fr (x) = F (x)χcu
(
r−1Π0cu(x)

)
χs
(
r−1 ‖Π0s(x)‖

)
, ∀x ∈ X0,

χcu : X0cu → [0,+∞) is a C∞ map with χcu (x) ≤ 1 and

χcu (x) =





1, if ‖x‖ ≤ 1,

0, if ‖x‖ ≥ 2,

and χs : [0,+∞) → [0,+∞) is a C∞ map with χs (y) ≤ 1, ∀y ≥ 0, and

χs (y) =





1, if |y| ≤ 1,

0, if |y| ≥ 2.

The smoothness of Ψcu is obtained by applying the same arguments as
in Magal and Ruan [37] to the above truncated system, and the result
follows.

The following theorem is the main result of this section. This result
is proved for discrete time systems with bounded Lipschitz map F in
Vanderbauwhede [46] and for ordinary differential equations in Vander-
bauwhede [47] and Chow et al. [10].
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Theorem 2.12 (Stability of the Center-Unstable Manifold). Let As-
sumptions 2.1, 2.2 and 2.4 be satisfied. Let η ∈ (0, β−) be fixed. Then
there exists δ1(η) ∈ (0, δ0) (where δ0 > 0 is the constant introduced in
Theorem 2.10), such that for each F ∈ Lip(X0, X) with ‖F‖Lip(X0,X) ≤

δ1(η), there exists a continuous map Hcu : X0 → Vcu
η such that for each

x ∈ X0,

Vcu
η ∩ Ṽη(x) = {Hcu(x)} ,

where

Ṽη(x) =
{
y ∈ X0 : sup

t≥0
eηt ‖UF (t)y − UF (t)x‖ < +∞

}
.

More precisely, for each x ∈ X0, there is a constant Mη = Mη (x) > 0
such that

‖UF (t)H(x) − UF (t)x‖ ≤ e−ηtMη ‖x−H(x)‖ , ∀t ≥ 0.

Before proving the theorem we give some preliminary lemmas. Recall
that

BC−η(R+, X) =
{
w ∈ C(R+, X) : ‖w‖η = sup

t∈R+

eηt ‖w(t)‖ < +∞
}
.

In order to determine Ṽη(x), we have to find all w ∈ BC−η(R+, X0) such
that t→ UF (t)x+ w(t) is a solution of

(2.9) u(t) = TA0
(t)x + (SA � F (u(.))) (t), ∀t ∈ [0, τ ] .

Lemma 2.13. Let Assumptions 2.1, 2.2 and 2.4 be satisfied. Let η ∈
(0, β−) be fixed and w ∈ BC−η(R+, X0). Then the map t → UF (t)x +
w(t) is a solution of (2.9) if and only if for each t ≥ 0,

w(t) = TA0s
(t)Π0sw(0) + (SAs

� Πs [F (U(.)x + w(.)) − F (U(.)x)]) (t)

−

∫ +∞

t

eA(t−s)Πcu [F (U(s)x + w(s)) − F (U(s)x)] ds.

Proof. Let w ∈ BC−η(R+, X0) be fixed. Assume first that t→ UF (t)x+
w(t) is a solution of (2.9). Then we have for each t, s ∈ [0,+∞) with
t ≥ s that
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UF (t)x+ w(t) = TA0
(t− s) (U(s)x+ w(s))

+ (SA � F (U(s+ .)x+ w(s+ .))) (t− s)

and

UF (t)x = TA0
(t− s)U(s)x+ (SA � F (U(s+ .)x)) (t− s).

Then

(2.10) w(t) = TA0
(t− s)w(s) + (SA � [F (U(s+ .)x+ w(s+ .))

− F (U(s+ .)x)])(t − s).

By projecting the above equation on Xcu, we obtain for each t, s ∈
[0,+∞) with t ≥ s that

Π0cuw(t) = eAcu(t−s)Π0cuw(s)

+

∫ t

s

eAcu(t−l)Πcu [F (U(l)x+ w(l)) − F (U(l)x)] dl.

Then

Π0cuw(s) = e−Acu(t−s)Π0cuw(t)

−

∫ t

s

eAcu(s−l)Πcu [F (U(l)x+ w(l)) − F (U(l)x)] dl.

We have ‖e−Acu(t−s)‖L(X0cu) ≤ min{e
η
2
|t−s|Mc,

η
2
, e−η1(t−s)Mu}, η1 > 0,

∀t ≥ s; here, η, Mc,
η
2

and Mu are constants (see Magal and Ruan [37]

for details). Since w ∈ BC−η(R+, X0), we obtain for each t, s ∈ [0,+∞)
with t ≥ s that

∥∥e−Acu(t−s)Π0cuw(t)
∥∥

≤ min
{
e

η
2
|t−s|Mc,η

2
, e−η1(t−s)Mu

}
‖Πcu‖L(X) ‖w‖η e

−ηt.

Then ∥∥e−Acu(t−s)Π0cuw(t)
∥∥→ 0 as t→ +∞.
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Thus,

Π0cuw(t) = −

∫ +∞

t

eAcu(t−l)Πcu(2.11)

× [F (U(l)x+ w(l)) − F (U(l)x)] dl, ∀t ≥ 0.

By projecting (2.10) on Xs we obtain for each t ≥ 0 that

Π0sw(t) = TA0s
(t)Π0sw(0)(2.12)

+ (SAs
� Πs [F (U(.)x + w(.)) − F (U(.)x)]) (t).

So by summing up (2.11) and (2.12), we obtain (2.13). Conversely,
assume that w satisfies (2.13). Then by projecting (2.13) on Xs we
obtain for each t ≥ 0 that

Πsw(t) = ΠsTA0
(t)w(0) + Πs (SA � F (U(.)x+ w(.)) − F (U(.)x)) (t).

Then

(2.13) Πs(UF (t)x+ w(t)) = ΠsTA0
(t) (w(0) + x)

+ Πs (SA � F (U(.)x + w(.))) (t).

Furthermore, by projecting (2.13) on X0cu we obtain for each t ≥ 0 that

Π0cuw(t) = −

∫ +∞

t

eA(t−s)Πcu [F (U(s)x+ w(s)) − F (U(s)x)] ds.

Thus,

Π0cuw(t) − eAcutΠ0cuw(0)

= −

∫ +∞

t

eA(t−s)Πcu [F (U(s)x + w(s)) − F (U(s)x)] ds

+

∫ +∞

0

eA(t−s)Πcu [F (U(s)x+ w(s)) − F (U(s)x)] ds

=

∫ t

0

eA(t−s)Πcu [F (U(s)x+ w(s)) − F (U(s)x)] ds.

Hence,
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(2.14) Π0cu(UF (t)x + w(t)) = eAcutΠ0cu(x+ w(0))

+

∫ t

0

eA(t−s)ΠcuF (U(s)x+ w(s)) ds.

By summing up (2.13) and (2.14), we deduce that t→ UF (t)x+w(t) is
a solution of (2.9).

Rewrite (2.13) in the following abstract form

w = K̃1(ws) + K̃2Φ̃(x,w),

where K̃1 : X0s → BC−η (R+, X0s) , K̃2 : BC−η (R+, X) → BC−η(R+,

X0), and Φ̃ : X0 × BC−η (R+, X0) → BC−η (R+, X) are defined as
follows

K̃1(xs)(t) = TA0s
(t)xs, t ∈ R+,

K̃2(f)(t) = (SAs
� Πsf) (t) −

∫ +∞

t

eAcu(t−s)Πcuf(s) ds, ∀t ∈ R+,

Φ̃(x, f)(t) = F (UF (t)x + f(t)) − F (UF (t)x), ∀t ∈ R+.

One has

∥∥Φ̃(x, f)(t)
∥∥ = ‖F (UF (t)x+ f(t)) − F (UF (t)x)‖

≤ e−ηt ‖F‖Lip ‖f‖η .

(2.15)

Lemma 2.14. Let Assumptions 2.1, 2.2 and 2.4 be satisfied. Let η ∈
(0, β−) be fixed. Then

K̃1 ∈ L(X0s, BC
−η (R+, X0))

and

K̃2 ∈ L(BC−η (R+, X) , BC−η (R+, X0))

with

∥∥K̃2

∥∥
L(BC−η(R+,X),BC−η(R+,X0))
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≤ γ(η) := Ĉs,−η + ‖Πcu‖L(X)

∫ +∞

0

∥∥e−(Acu+ηI)l
∥∥ dl,

where Ĉs,−η > 0 is a constant, and

Φ̃(x, 0) = 0,

Φ̃(x, .) ∈ Lip
(
BC−η (R+, X0) , BC

−η (R+, X)
)
, ∀x ∈ X0,

with ∥∥Φ̃(x, .)
∥∥

Lip
≤ ‖F‖Lip .

Proof. This proof is straightforward.

Proof of Theorem 2.12. Let η ∈ (0, β−) and x ∈ X0 be fixed. Let δ0 >
0 be the constant introduced in Theorem 2.10. Let δ∗1 ∈ (0, δ0) be such
that

(2.16) δ∗1γ(η) < 1.

Then for each F ∈ Lip (X0, X) with ‖F‖Lip ≤ δ∗1 , we obtain that for
each (x,ws) ∈ X0 ×X0s, there exists a unique solution w = w̃(x,ws) ∈
BC−η (R+, X0) such that

w = K̃1(ws) + K̃2Φ̃(x,w)

and

w = (Id− K̃2Φ̃(x, .))−1K̃1(ws).

We have

‖w̃(x,ws) − w̃(x, w̃s)‖η ≤ l ‖ws − w̃s‖ , ∀x ∈ X0, ∀ws, w̃s ∈ X0s,

where l depends on η and ‖F‖Lip but stays bounded as ‖F‖Lip → 0.
To see the continuous dependence of w̃(x,ws) on x ∈ X0, we remark
that (2.16) and the continuity of γ(η) imply that γ(ζ)δ∗1 < 1 for some
ζ ∈ (η, β). Replacing η by ζ in the above argument, we conclude that
w̃(x,ws) belongs in fact to the space BC−ζ(R+, X0), which is continu-
ously imbedded in BC−η(R+, X0). More precisely, we have

‖w̃(x,ws)‖ζ ≤
∥∥K̃1

∥∥
L(Xs,BC−ζ(R+,X))

‖ws‖
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+
∥∥K̃2

∥∥
L(BC−ζ(R+,X))

∥∥Φ̃(x+ x0, w)
∥∥
ζ

≤
∥∥K̃1

∥∥
L(Xs,BC−ζ(R+,X))

‖ws‖

+
∥∥K̃2

∥∥
L(BC−ζ(R+,X))

‖F‖Lip ‖w̃(x,ws)‖ζ .

Therefore, we obtain an estimate independent of x,

‖w̃(x,ws)‖ζ ≤

∥∥K̃1

∥∥
L(Xs,BC−ζ(R+,X))

‖ws‖

1−
∥∥K̃2

∥∥
L(BC−ζ(R+,X))

‖F‖Lip

< +∞.

Moreover, we have

w̃(x+ x0, ws) − w̃(x0, ws)

= K̃1(ws) + K̃2Φ̃(x+ x0, w̃(x+ x0, ws))

−
[
K̃1(ws) + K̃2Φ̃(x0, w̃(x0, ws))

]

= K̃2

[
Φ̃(x+ x0, w̃(x + x0, ws)) − Φ̃(x0, w̃(x0, ws))

]

= K̃2

[
Φ̃(x+ x0, w̃(x + x0, ws)) − Φ̃(x+ x0, w̃(x0, ws))

]

+ K̃2

[
Φ̃(x+ x0, w̃(x0, ws)) − Φ̃(x0, w̃(x0, ws))

]
.

Then

‖w̃(x+ x0, ws) − w̃(x0, ws)‖η

≤
∥∥K̃2

∥∥
L(BC−η(R+,X))

‖F‖Lip ‖w̃(x+ x0, ws) − w̃(x0, ws)‖η

+
∥∥K̃2

∥∥
L(BC−η(R+,X))

∥∥Φ̃(x + x0, w̃(x0, ws)) − Φ̃(x0, w̃(x0, ws))
∥∥
η
.

Thus,

∥∥w̃(x+ x0, ws) − w̃(x0, ws)
∥∥
η

≤

∥∥K̃2

∥∥
L(BC−η(R+,X))

1 −
∥∥K̃2

∥∥
L(BC−η(R+,X))

‖F‖Lip

×
∥∥Φ̃(x+ x0, w̃(x0, ws)) − Φ̃(x0, w̃(x0, ws))

∥∥
η
.
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For fixed w ∈ BC−ζ(R+, X0) we claim that the mapping x → Φ̃(x,w)
is continuous from X0 into BC−η(R+, X). In fact, by using (2.16), we
have ∥∥Φ̃(x+ x0, w) − Φ̃(x0, w)

∥∥
η

= sup
t∈R+

eηt ‖H(t)‖ ,

where

H(t) := [F (UF (t) (x+ x0) + w(t)) − F (UF (t)x0 + w(t))]

− [F (UF (t) (x+ x0)) − F (UF (t)x0)] .

Thus,

∥∥Φ̃(x+ x0, w) − Φ̃(x0, w)
∥∥
η

= max

(
sup

0≤t≤T
eηT ‖H(t)‖ , 2e(η−ζ)T ‖F‖Lip ‖w‖ζ

)
.

By the continuity of x → UF (t) (x) uniformly with respect to t ∈ [0, T ] ,
we obtain

lim sup
x→0

∥∥Φ̃(x+ x0, w) − Φ̃(x0, w)
∥∥
η
≤ 2e(η−ζ)T ‖F‖Lip ‖w‖ζ , T ≥ 0.

So when T goes to +∞, we obtain

lim
x→0

∥∥Φ̃(x+ x0, w) − Φ̃(x0, w)
∥∥
η

= 0.

From this and the fact that w̃(x,ws) ∈ BC−ζ(R+, X0), it follows that
w̃ : X0 ×Xs → BC−η (R+, X0) is continuous.

Define a map Γ : X0 ×X0s → X0cu by

Γ (x,ws) = Πcu(Id− K̃2Φ̃(x, .))−1K̃1(ws)(0), ∀x ∈ X0, ws ∈ X0s.

Notice that Γ : X0 × X0s → X0cu is continuous and Γ is Lipschitz
continuous with respect to ws with

‖Γ(x, .)‖Lip ≤ ‖Π0cu‖L(X)

∥∥K̃1

∥∥
L(Xs,BC−η(R+,X))

1 −
∥∥K̃2

∥∥
L(BC−η(R+,X))

‖F‖Lip

.

We have by construction that

y ∈ Ṽη(x) ⇐⇒ y = x+ w with Π0cuw = Γ (x,Πsw) .
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Then

Ṽη(x) = {xs + ws + xcu + Γ (x,ws) : ws ∈ X0s}

= {z + xcu + Γ (x, z − xs) : z ∈ X0s} .

Consider the map Θ : X0 ×X0s → X0cu defined by

Θ (x, z) = xc + Γ (x, z − xs) , ∀x ∈ X0, z ∈ X0s,

we have Ṽη(x) = {z + Θ (x, z) : z ∈ X0s} . Since Γ : X0 ×X0s → X0cu is
continuous and Γ(x,ws) is Lipschitz continuous with respect to ws, so
is Θ, and ‖Θ‖Lip ≤ ‖Γ‖Lip . Finally, we look for y ∈ X0, such that

Π0sy = Ψcu (Π0cuy) and Π0cuy =: Θ (x,Π0sy) .

But by (2.7), we deduce that ‖Ψcu‖Lip → 0 as ‖F‖Lip → 0. So (2.7)
and (2.16) imply that there exists δ1 ∈ (0, δ∗1) such that for each F ∈
Lip (X0, X) with ‖F‖Lip ≤ δ1,

‖Θ(x, .)‖Lip ‖Ψcu‖Lip < 1.

Thus, there exists for each x ∈ X0 a unique ỹcu(x) ∈ X0cu such that

Θ (x,Ψcu (ỹcu(x))) = ỹcu(x)

and the map ỹc : X0 → X0cu is continuous. By setting Hcu(x) =
ỹcu(x) + Ψcu (ỹcu(x)) the result follows.

Theorem 2.15 (Local Uniform Convergence). Let Assumptions 2.1,
2.2 and 2.4 be satisfied. Let η ∈ (0, β−) be fixed. Then there exists
δ1(η) ∈ (0, δ0) (where δ0 > 0 is the constant introduced in Theorem
2.10), such that for each F ∈ Lip(X0, X) with ‖F‖Lip(X0,X) ≤ δ1(η), the
following holds: for each x̃ ∈ V cuη and for each ε > 0, there exists some
δ > 0 such that

(2.17) ‖UF (t)x − UF (t)Hcu(x)‖ ≤ εe−ηt, ∀t ≥ 0,

for all x ∈ X0 with ‖x− x̃‖ < δ.
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Proof. Let x̃ ∈ V cuη be fixed. The proof of Theorem 2.12 implies that

w̃(x,Ψcu (ỹc(x)) − Π0sx)(t)

= UF (t)(Hcu(x)) − UF (t)(x), ∀t ≥ 0, ∀x ∈ X0,

where

Hcu(x) = ỹc(x) + Ψcu (ỹc(x)) ∈ V cuη .

It is clear that Hcu(x̃) = x̃ if x̃ ∈ V cuη and hence,

w̃(x̃,Ψcu (ỹc(x̃)) − Π0sx̃)

= UF (t)(Hcu(x̃)) − UF (t)(x̃) = 0, ∀t ≥ 0, ∀x̃ ∈ V cuη .

Let x̃ ∈ V cuη and ε > 0. By the continuity of w̃ : X0 ×X0s → BC−η(R+,

X0) and ỹc : X0 → X0cu, we can find some δ > 0 such that

||w̃(x,Ψcu (ỹc(x)) − Π0sx) − w̃(x̃,Ψcu (ỹc(x̃)) − Π0sx̃)||η ≤ ε

whenever x ∈ X0 and ‖x− x̃‖ < δ. Therefore,

sup
t∈R+

eηt‖UF (t)(Hcu(x)) − UF (t)(x)‖

= sup
t∈R+

eηt‖w̃(x,Ψcu (ỹc(x)) − Π0sx)(t)‖

= sup
t∈R+

eηt‖w̃(x,Ψcu (ỹc(x)) − Π0sx)(t)

− w̃(x̃,Ψcu (ỹc(x̃)) − Π0sx̃)(t)‖

≤ ε if x ∈ X0 and ‖x− x̃‖ < δ.

The proof is complete.

Remark 2.16. Our presentations focused on center-unstable manifolds.
However, similar results can be established for center-stable manifolds.
In fact, we will use a center-stable result to discuss the stability of Hopf
bifurcation next section.
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3 Applications to stability of Hopf bifurcation The existence
of Hopf bifurcation and the stability of the bifurcating periodic orbits
was studied in Hassard et al. [26] for ordinary differential equations and
has been extended to various types of equations. We also refer to Desch
and Schappacher [18] for an interesting stability result for nonlinear
semigroups of continuous differential operators.

Recently, we [33] presented a Hopf bifurcation theorem for the non-
densely defined abstract Cauchy problem

du(t)

dt
= Au(t) + F (µ, u(t))

= f(µ, u(t)), ∀t ≥ 0, u(0) = x ∈ D(A),

(3.1)

where F : R × D(A) → X is Ck map with k ≥ 2, and µ ∈ R is the
bifurcation parameter. The goal of this section is to use the center-
stable theory to study the stability of Hopf bifurcation, i.e., stability of
the bifurcating periodic orbits for abstract semilinear Cauchy problem
(1.1) with nondense domain

In order to introduce the Hopf bifurcation theorem for parametrized
differential equation (3.1), we need the following assumption.

Assumption 3.1. Let ε > 0 and F ∈ Ck ((−ε, ε) ×BX0
(0, ε) ;X) for

some k ≥ 4. Assume that the following conditions are satisfied:

(a) F (µ, 0) = 0, ∀µ ∈ (−ε, ε) , and ∂xF (0, 0) = 0.
(b) (Transversality condition) For each µ ∈ (−ε, ε) , there exists a

pair of conjugated simple eigenvalues of (A + ∂xF (µ, 0))0, denoted
by λ (µ) and λ (µ), such that

λ (µ) = α (µ) + iω (µ) ,

the map µ→ λ (µ) is continuously differentiable,

ω (0) > 0, α (0) = 0,
dα (0)

dµ
6= 0,

and
σ (A0) ∩ iR =

{
λ (0) , λ (0)

}
.

(c) The essential growth rate of {TA0
(t)}t≥0 is strictly negative, that is,

ω0,ess (A0) < 0.
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The main result in [33] is the following Hopf bifurcation theorem.

Theorem 3.2 (Hopf Bifurcation). Let Assumptions 2.1, 2.2 and 3.1
be satisfied. Then there exist ε∗ > 0, three Ck−1 maps, ε → µ(ε) from
(0, ε∗) into R, ε → xε from (0, ε∗) into D(A), and ε → γ (ε) from
(0, ε∗) into R, such that for each ε ∈ (0, ε∗) there exists a γ (ε)-periodic
function uε ∈ Ck (R, X0) , which is an integrated solution of (3.1) with
the parameter value equals µ(ε) and the initial value equals xε. So for
each t ≥ 0, uε satisfies

uε(t) = xε +A

∫ t

0

uε(l) dl +

∫ t

0

F (µ(ε), uε(l)) dl.

Moreover, we have the following properties

(i) There exist a neighborhood N of 0 in X0 and an open interval I in
R containing 0, such that for µ̂ ∈ I and any periodic solution û(t)
in N with minimal period γ̂ close to 2π

ω(0) of (3.1) for the parameter

value µ̂, there exists ε ∈ (0, ε∗) such that û(t) = uε(t+θ) (for some
θ ∈ [0, γ (ε))), µ(ε) = µ̂, and γ (ε) = γ̂.

(ii) The map ε → µ(ε) is a Ck−1 function and we have the Taylor
expansion

µ(ε) =

[ k−2

2
]∑

n=1

µ2nε
2n +O(εk−1), ∀ε ∈ (0, ε∗) ,

where [k−2
2 ] is the integer part of k−2

2 .

(iii) The period γ (ε) of t→ uε(t) is a Ck−1 function and

γ (ε) =
2π

ω(0)

[
1 +

[ k−2

2
]∑

n=1

γ2nε
2n

]
+O(εk−1), ∀ε ∈ (0, ε∗) ,

where ω(0) is the imaginary part of λ (0) defined in Assumption
3.1.

In order to apply the reduction technics, we first incorporate the
parameter into the state variable by considering the following system

(3.2)





dµ(t)

dt
= 0,

du(t)

dt
= Au(t) + F (µ(t), u(t)) ,

(µ(0), u(0)) = (µ0, u0) ∈ (−ε, ε) ×D(A).
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Note that F is only defined in a neighborhood of (0, 0) ∈ R×X. In order
to rewrite (3.2) as an abstract Cauchy problem, consider the Banach
space X := R×X endowed with the usual product norm

∥∥∥∥
(
µ

x

)∥∥∥∥ = |µ| + ‖x‖ ,

and the linear operator A : D(A) ⊂ X → X defined by

A

(
µ

x

)
=

(
0

Ax+ ∂µF (0, 0)µ

)
=

(
0 0

∂µF (0, 0) A

)(
µ

x

)

with
D(A) = R×D(A).

Then
X0 := D(A) = R×D(A).

Observe that by Assumption 3.1-(a) we have ∂xF (0, 0) = 0, and the
linear operator A is the generator of the linearized equation of system
(3.2) at (0, 0) . Consider the function F : (−ε, ε)×BX0

(0, ε) → X defined
by

F

(
µ

x

)
=

(
0

F (µ, x) − ∂µF (0, 0)µ

)
.

Using the variable v(t) =

(
µ(t)
u(t)

)
, we can rewrite system (3.2) as the

following abstract Cauchy problem

(3.3)
dv(t)

dt
= Av(t) + F (v(t)) , t ≥ 0, v(0) = v0 ∈ D(A).

We first observe that F is defined on BX (0, ε) and is k-time continuously
differentiable with k ≥ 4. Moreover, by using Assumption 3.1-(a), we
have

F (0) = 0 and DF (0) = 0.

We now study the spectral properties of the linear operator A. From
Assumption 3.1-(b) and (c), we know that

σ (A0) ∩ iR =
{
λ (0) , λ (0)

}
and ω0,ess (A0) < 0.

The following results are obtained in Liu et al. [33].
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Lemma 3.3. Let Assumptions 2.1 and 2.2 be satisfied. Then

σ (A) = σ (A0) = σ (A0) ∪ {0} = σ (A) ∪ {0} ,

and for each λ ∈ ρ (A) ,

(λI −A)
−1

(
µ

x

)
=

(
λ−1µ

(λI −A)−1 [
x+ ∂µF (0, 0)λ−1µ

]
)
.

Lemma 3.4. Let Assumptions 2.1 and 2.2 be satisfied. The linear op-
erator A : D(A) ⊂ R×X → R×X satisfies Assumptions 2.1 and 2.2.
Moreover, we have

TA0
(t)

(
µ

x

)
:=

(
µ

TA0
(t)x + SA(t)∂µF (0, 0)µ

)

and

SA(t)

(
µ

x

)
:=

(
tµ

SA(t)x +
∫ t
0 SA(l)∂µF (0, 0)µ dl

)
.

Furthermore,
ω0,ess (A0) = ω0,ess (A0) .

Lemma 3.5. Let Assumptions 2.1, 2.2 and 3.1 be satisfied. We have
the following:

(i) The projector on the generalized eigenspace of A associated to

λ0 ∈ {λ ∈ σ (A) : Re (λ) > 0} ,

a pole of order k0 of the resolvent of A, is given by

BA
−1,λ0

(
µ

x

)
=




0

BA−1,λ0
x+

−1∑
j=−k0

(−1)−1−j

λ
−j
0

BAj,λ0
∂µF (0, 0)µ


 .

(ii) λ (0) and λ (0) are nonnull simple eigenvalues of A and the projec-
tors on the generalized eigenspace of A associated to λ (0) and λ (0)
are given by

BA
−1,γ

(
µ

x

)
=

(
0

BA−1,γ

[
x+ γ−1∂µF (0, 0)µ

]
)

for γ = λ (0) or γ = λ (0).
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The projector on the generalized eigenspace of A associated to 0 is
given in the following lemma.

Lemma 3.6. 0 is a simple eigenvalue of A and the projector on the
generalized eigenspace of A associated to 0 is given by

BA
−1,0

(
µ

x

)
=

(
µ

(−A)−1
∂µF (0, 0)µ

)
.

From the above results, we obtain a state space decomposition with
respect to the spectral properties of the linear operator A. More pre-
cisely, the projector on the unstable linear manifold is given by

ΠA
u =

∑

λ∈σ(A):Re(λ)>0

BA
−1,λ

and the projector on the linear center manifold is defined by

ΠA
c = BA

−1,0 +BA
−1,λ(0) +BA

−1,λ(0)
.

Moreover, we have

ΠA
c

(
µ

x

)
=

(
µ

(−A)−1
∂µF (0, 0)µ

)

+

(
0

BA−1,λ(0)

[
x+ λ (0)−1

∂µF (0, 0)µ
]
)

+

(
0

BA
−1,λ(0)

[
x+ λ (0)

−1
∂µF (0, 0)µ

]
)

=

(
µ

ΠA
c x+ µh

)
.

Hence,

ΠA
c

(
µ

x

)
=

(
µ

ΠA
c x+ µh

)
,

where
ΠA
c = BA−1,λ(0) +BA

−1,λ(0)

and
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h = (−A)
−1
∂µF (0, 0) + λ (0)

−1
BA−1,λ(0)∂µF (0, 0)

+ λ (0)
−1
BA

−1,λ(0)
∂µF (0, 0) .

Since ΠA
c is a projector, we must have ΠA

c h = 0. Therefore,

h ∈ R(I − ΠA
c ).

Set

ΠA
s := I −

(
ΠA
c + ΠA

u

)
, ΠA

h = ΠA
s + ΠA

u ,

X0c = ΠA
c

(
R×D(A)

)
and X0h =

(
I − ΠA

c

)(
R×D(A)

)
.

For each r > 0 we set

Nr :=
{
v ∈ X0 :

∥∥ΠA
c v
∥∥ ≤ r,

∥∥ΠA
h v
∥∥ ≤ r

}
.

Since F is k-time continuously differentiable on BR×X0
(0, ε) with k ≥ 4,

we can find some r0 > 0 such that N2r0 ⊂ BR×X0
(0, ε) . Set

%(r) := sup
v∈Nr

‖DF(v)‖ , ∀r ∈ [0, 2r0] .

Then we have
%(r) → 0 as r → 0

and
‖F(v)‖ ≤ 2r%(r) for v ∈ Nr.

Let χc : X0c → [0,+∞) be a Ckb map with χc (vc) ≤ 1 and

χc (vc) =





1, if ‖vc‖ ≤ 1,

0, if ‖vc‖ ≥ 2,

and χh : [0,+∞) → [0,+∞) be a C∞
b map with χh (y) ≤ 1, ∀y ≥ 0, and

χh (y) =





1, if |y| ≤ 1,

0, if |y| ≥ 2.

Set
χ(v) := χc

(
ΠA
c (v)

)
χh
(∥∥ΠA

h (v)
∥∥) , ∀v ∈ X0.
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We see that χ ∈ C0
b (X0; R) ∩ Lip(X0; R). Set

Fr (v) = χ(r−1v)F(v), ∀x ∈ X0, ∀r > 0.

Then Fr ∈ C0
b (X0;X ) ∩ Lip(X0;X ). Since Fr(v) = F(v)χc

(
r−1ΠA

c (v)
)

for x ∈ Vr =
{
x ∈ X0 :

∥∥ΠA
h (x)

∥∥ ≤ r
}
, we conclude that Fr |Vr

∈ Ckb (Vr ;
X ) for each r ∈ (0, r0]. One can also verify that

|Fr|0 ≤ 4r%(2r) |χ|0 and |Fr|Lip ≤ %(2r)
(
|χ|0 + 4 |χ|Lip

)
.

Now fix r∗ ∈ (0, r0] sufficiently small such that Fr∗ satisfies the condition
|Fr∗ |Lip < δ1 in Theorem 2.12 and that

(3.4)
dv(t)

dt
= Av(t) + Fr∗ (v(t)) , t ≥ 0, v(0) = v0 ∈ D(A),

has the unique global center manifold

(3.5) Mψ = {xc + ψ (xc) : xc ∈ X0c} , ψ ∈ Ckb (X0c,X0h)

with the properties described in Theorem 2.10. Let

Ωr∗ :=

{(
µ

x

)
∈ X0 :

∥∥∥∥Π
A
c

(
µ

x

)∥∥∥∥ ≤ r∗,

∥∥∥∥Π
A
h

(
µ

x

)∥∥∥∥ ≤ r∗

}
.

Then
Fr∗(x) = F(x) for each x ∈ Ωr∗ ,

and (3.5) is the local center manifold of (3.3) with the properties de-
scribed in Theorem 2.11.

Note that (3.4) can be written as the following form

(3.6)





dµ(t)

dt
= 0,

du(t)

dt
= Au(t) +G (µ(t), u(t)) ,

(µ(0), u(0)) = (µ0, u0) ∈ R × Rn.

By applying formally ΠA
c to both sides of (3.3), we obtain the reduced

system in X0c = ΠA
c (R×X) :
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(3.7)
d

dt

(
µ(t)
uc(t)

)

= A0c

(
µ(t)
uc(t)

)
+ ΠA

c F

((
µ(t)
uc(t)

)
+ ψ

(
µ(t)
uc(t)

))
,

where (
µ(t)
uc(t)

)
= ΠA

c

(
µ(t)
u(t)

)
.

We denote the reduced system (3.7) as

(3.8)




µ′ = 0,

u′c(t) = A0cuc(t) +Gc(µ, uc(t)) =: f(µ, uc).

Similarly, by applying ΠA
c to both sides of (3.4), we obtain the (globally)

reduced system of (3.4) as

d

dt

(
µ(t)
uc(t)

)
= A0c

(
µ(t)
uc(t)

)
+ ΠA

c Fr∗

((
µ(t)
uc(t)

)
+ ψ

(
µ(t)
uc(t)

))
.

As before, this system can be rewritten as

(3.9)




µ′ = 0,

u′c(t) = A0cuc(t) +Gc,r∗(µ, uc(t)) =: fr∗(µ, uc).

By the local invariance property of the center manifold, a family of
bifurcating periodic solutions for (3.3) necessarily belongs to the center
manifold and therefore corresponds to bifurcating periodic solutions for
(3.8).

In the remaining part of this paper, we investigate how to relate the
stability of the bifurcating periodic solutions for (3.3) to the stability
of those solutions for its reduced system. Before presenting the main
result, we first introduce the following definitions.

Definition 3.7. Let {V (t)}t≥0 be a continuous semiflow on the Banach
space (E, ‖.‖E) . Assume that {V (t)}t≥0 admits a nontrivial ω-periodic
orbit {p(t)}t∈R

(with ω > 0), that is,

p(t) = V (t− s)p(s), ∀t ≥ s,
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p(t+ ω) = p(t), ∀t ∈ R,

and
p(t) 6= p(0), ∀t ∈ (0, ω) .

Consider the orbit
γ :=

⋃

t∈R

{p(t)} .

Recall that the Haussdorff semi-distance is defined by

δ (x, γ) := inf
y∈γ

‖x− y‖E.

If there exists ς > 0 such that for each ε > 0, there exists η > 0, such that
for each x ∈ N (γ, η) := {x ∈ E : δ (x, γ) < η} , there exists t̂ ∈ [0, ω] ,
such that ∥∥V (t)x − p(t+ t̂)

∥∥ ≤ εe−ςt, ∀t ≥ 0,

then p(t) is said to be exponentially asymptotically stable.

The main result of this section is the following theorem. Here we
consider the center-stable case and investigate the relationship between
the asymptotic stability of the periodic orbit of (3.3) close enough to the
origin and the asymptotic stability of the corresponding periodic orbit
for its reduced system. In the context of ordinary differential equations,
this result is similar to the Pliss’s reduction principle theorem (see Chow
et al. [10, Theorem 4.13, p. 45]).

Theorem 3.8. Let Assumptions 2.1, 2.2 and 3.1 be satisfied. Assume
in addition that

σ (A0) ⊂ {λ ∈ C : Re (λ) ≤ 0} .

Let µ ∈ R. Assume that there exists an ω-periodic orbit t→ pµ(t) of the
abstract Cauchy problem

(3.10)
du(t)

dt
= Au(t) + F (µ, u(t)) , t ≥ 0, u(0) = x ∈ D(A),

and define (
µ

pµc (t)

)
:= ΠA

c

(
µ

p(t)

)
, ∀t ∈ R.

Then t→ pµc (t) is an ω-periodic orbit of the reduced system

(3.11) u′c(t) = f (µ, uc(t)) .
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Moreover, if µ, t → pµ(t) and t → pµc (t) are close enough to 0, then
t → pµ(t) is exponentially asymptotically stable for (3.10) if and only if
t→ pµc (t) is exponentially asymptotically stable for (3.11).

Proof. Proof of the first implication (⇒). Suppose that pµ(t)
is exponentially asymptotically stable for system (3.10) (which is close
enough to 0). Then

(
µ

pµc (t)

)
= ΠA

c

(
µ

pµ(t)

)

is a solution of the reduced system and t → pµc (t) is a periodic orbit of
(3.11). Moreover, assume that

(
µ

pµc (t) + vc(t)

)
for t ≥ 0

is a positive orbit of the reduce system (which stays in some small neigh-
borhood of 0 for any positive time), then

(
µ

pµ(t) + v(t)

)
=

(
µ

pµc (t) + vc(t)

)

+ ψ

((
µ

pµc (t) + vc(t)

))
for t ≥ 0

is a solution of the system (3.3). Now since

(
µ

pµc (t) + vc(t)

)
−

(
µ

pµc (t)

)

=

(
µ

pµ(t) + v(t)

)
−

(
µ

pµ(t)

)

−

[
ψ

((
µ

pµc (t) + vc(t)

))
− ψ

((
µ

pµc (t)

))]

and ψ is Lipschitz continuous, we have

∥∥∥∥
(

µ

pµc (t) + vc(t)

)
−

(
µ

pµc (t)

)∥∥∥∥

≤

∥∥∥∥
(

µ

pµ(t) + v(t)

)
−

(
µ

pµ(t)

)∥∥∥∥
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+ ‖ψ‖Lip

∥∥∥∥
(

µ

pµc (t) + vc(t)

)
−

(
µ

pµc (t)

)∥∥∥∥ .

By using the fact that the Lipschitz norm

‖Fr∗‖Lip → 0 as r∗ → 0,

we deduce by Theorem 2.5 that

‖ψ‖Lip → 0 as r∗ → 0.

Therefore, we can fix r∗ > 0 such that

‖ψ‖Lip < 1.

This implies that

∥∥∥∥
(

µ

pµc (t) + vc(t)

)
−

(
µ

pµc (t)

)∥∥∥∥

≤
(
1 − ‖ψ‖Lip

)−1
∥∥∥∥
(

µ

pµ(t) + v(t)

)
−

(
µ

pµ(t)

)∥∥∥∥ .

Then it becomes clear that the exponentially asymptotic stability of the
periodic orbit for the original system implies the exponentially asymp-
totic stability of the periodic orbit for the reduced system.

Proof of the converse implication (⇐). We first observe that since

σ (A0) ⊂ {λ ∈ C : Re (λ) ≤ 0} ,

and by Assumption 3.1
∂xF (0, 0) = 0,

we have
σ (A) ⊂ {λ ∈ C : Re (λ) ≤ 0} .

Therefore,
ΠA
u = 0

and the center and the center-unstable manifold coincide, that is,

V cη = V cuη .
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It follows that we can apply Theorems 2.12 and 2.15 to system (3.4) by
using V cη instead of V cuη .

Suppose pµc (t) is an exponentially asymptotically stable ω-periodic
solution (which is close enough to 0) for system (3.11). Then

(
µ

pµ(t)

)
=

(
µ

pµc (t)

)
+ ψ

((
µ

pµc (t)

))

is an ω-periodic orbit of system (3.10). Note that when µ is small enough
and pµ(t) is close enough to the origin, pµ(t) is also the solution of the
second equation in (3.6); that is,

(3.12)
du(t)

dt
= Au(t) +G (µ, u(t)) .

In fact, we only need to prove that pµ(t) is exponentially asymptotically
stable as a solution of (3.12). Then restricting to Ω, we obtain that pµ(t)
is exponentially asymptotically stable as a solution of (3.10).

In the following we will prove that pµ(t) is exponentially asymptot-
ically stable as a solution of (3.12) by two steps. Firstly, we will prove
that pµ(t) is exponentially asymptotically stable on the space restricted
to the center manifold V cη . Then we prove that pµ(t) is exponentially
asymptotically stable on the whole space X0.

Step 1 (Exponential stability on the center manifold). In this
part we consider the semiflow restricted to the center manifold and inves-

tigate the stability of the periodic orbit γ :=
⋃

t∈R

{pµ(t)} on the center-

unstable manifold V cuη (see Figure 1).

Let u0 ∈ X0 with v̂ =

(
µ

u0

)
∈ V cη . Since v̂ =

(
µ

u0

)
∈ V cη ,

UFr∗
(t)v̂ = ΠA

c UFr∗
(t)v̂ + ψ

(
ΠA
c UFr∗

(t)v̂
)
. Notice that UFr∗

(t)v̂ =(
µ

uµ(t, u0)

)
, where uµ(t, u0) is the solution of (3.12) satisfying u(0) =

u0.We have ΠA
c UFr∗

(t)v̂ = ΠA
c

(
µ

uµ(t, u0)

)
=

(
µ

ΠA
c u

µ(t, u0) + µh

)
.

Hence,
∣∣∣∣Π

A
c UFr∗

(0)v̂ − ΠA
c

(
µ

pµ(t)

)∣∣∣∣ ≤
∥∥ΠA

c

∥∥
∣∣∣∣v̂ −

(
µ

pµ(t)

)∣∣∣∣ .

Let γc :=
⋃

t∈R

{pµc (t)} . By using the stability property of pµc (t), we obtain

that there exists ς > 0 such that for each ε > 0, there exists η > 0, such
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FIGURE 1: Schematic representation of a neighborhood of the periodic
orbit γ on the center-unstable manifold V cuη .

that for each ΠA
c u0 + µh ∈ N (γc, η) , there exists t̂ ∈ [0, ω] , such that

∣∣∣∣Π
A
c UFr∗

(t)v̂ −

(
µ

pµc (t+ t̂)

)∣∣∣∣ <
εe−ςt

2(1 + ‖ψ‖Lip)
for each t ≥ 0.

Thus, for each u0 ∈ NV c
η

(
γ, η

‖ΠA
c ‖

)
with v̂ =

(
µ

u0

)
∈ V cη , there exists

t̂ ∈ [0, ω] , such that

∣∣uµ(t, u0) − pµ(t+ t̂)
∣∣ =

∣∣∣∣UFr∗
(t)v̂ −

(
µ

pµ(t+ t̂)

)∣∣∣∣

≤

∣∣∣∣∣∣

ΠA
c UFr∗

(t)v̂ + ψ
(
ΠA
c UFr∗

(t)v̂
)

−

((
µ

pµc (t+ t̂)

)
+ ψ

(
µ

pµc (t+ t̂)

))
∣∣∣∣∣∣

≤ (1 + ‖ψ‖Lip)

∣∣∣∣Π
A
c UFr∗

(t)v̂ −

(
µ

pµc (t+ t̂)

)∣∣∣∣

<
εe−ςt

2
for each t ≥ 0.

Step 2 (Exponential stability on the whole space). Now we con-
sider the general case. Since Fr∗ satisfies the conditions in Theorem
2.12, there exists a Lipschitz continuous mapping Hcu : X0 → V cη . Note
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FIGURE 2: Schematic representation of the fact that Hcu : X0 → V cuη
maps a neighborhood of the periodic orbit γ in X0 into a neighborhood
of γ on the center-unstable manifold V cuη .

that

Hcu

(
µ

pµ(t)

)
=

(
µ

pµ(t)

)
, t ∈ [0, ω].

We deduce that there exists δ1 > 0 such that

Hcu

(
µ

NX0
(γ, δ1)

)
@

(
µ

NV c
η

(
γ, η

‖ΠA
c ‖

)
)
.

Let u0 ∈ X0 and u0 ∈ NX0
(γ, δ1) with v =

(
µ

u0

)
∈ X0. Then

Hcu(v) = v̂ =

(
µ

u0

)
∈ V cη and u0 ∈ NV c

η

(
γ, η

‖ΠA
c ‖

)
. Furthermore, for

any

(
µ

pµ(τ)

)
, τ ∈ [0, ω], we can find a δτ > 0 such that

‖UF (t)v − UF (t)Hcu(v)‖ ≤
ε

2
e−ηt, ∀t ≥ 0,
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for all v =

(
µ

u

)
∈ X0 with

∥∥∥∥v −
(
µ

pµ(τ)

)∥∥∥∥ = ‖u− pµ(τ)‖ < δτ . By

the compactness of γ there exists a finite subsystem {N
(
pµ(τi), δτi

)
;

i = 1, 2, · · · , s} which covers γ. Then there exists 0 < δ < δ1 such that

NX0
(γ, δ) ⊂

s⋃
i=1

N
(
pµ(τi), δτi

)
. Now we obtain that for any u0 ∈ X0 and

u0 ∈ NX0
(γ, δ) with v =

(
µ

u0

)
∈ X0, there exists t̂ ∈ [0, ω] , such that

∣∣uµ(t, u0) − pµ(t+ t̂)
∣∣

=

∣∣∣∣UFr∗
(t)v −

(
µ

pµ(t+ t̂)

)∣∣∣∣

≤
∣∣UFr∗

(t)v − UFr∗
(t)v̂

∣∣+
∣∣∣∣UFr∗

(t)v̂ −

(
µ

pµ(t+ t̂)

)∣∣∣∣

=
∣∣UFr∗

(t)v − UFr∗
(t)v̂

∣∣+
∣∣uµ(t, u0) − pµ(t+ t̂)

∣∣

≤
ε

2
e−ηt +

ε

2
e−ςt ≤ εe−κt for t ≥ 0,

where κ = min{η, ς} and UFr∗
(t)v =

(
µ

uµ(t, u0)

)
and uµ(t, u0) is the

solution of (3.12) satisfying u(0) = u0. This gives the stability property
of pµ(t) as a solution of (3.12).

4 Application to equations with infinite delay In Section 1,
we showed that the infinite delay equation (1.4) can be written as an ab-
stract semilinear Cauchy problem (1.1) with nondense domain. Consider
the linear operator A defined in (1.6) for the delay differential equation
(1.4). The resolvent of A satisfies the following properties

(0,+∞) ⊂ ρ (A)

and for each λ > 0,

(λI −A)
−1

(
α

ϕ

)
=

(
0
ψ

)
⇐⇒

ψ (θ) = eλθ
[ϕ(0) + α]

λ
+

∫ 0

θ

eλ(θ−s)ϕ(s) ds.
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Moreover, we have for each λ > 0 that

∥∥∥∥(λI −A)
−1

(
α

ϕ

)∥∥∥∥

≤
‖α‖

λ
+ sup
θ≤0

e(η+λ)θ

[
‖ϕ(0)‖

λ
+

∫ 0

θ

e−λs ‖ϕ(s)‖ ds

]

≤
‖α‖

λ
+ sup
θ≤0

e(η+λ)θ

[
‖ϕ(0)‖

λ
+

∫ 0

θ

e−(λ+η)sds ‖ϕ‖η

]

=
‖α‖

λ
+ sup
θ≤0

e(η+λ)θ

[
1

λ
+
e−(λ+η)θ − 1

(λ+ η)

]
‖ϕ‖η

≤
‖α‖

λ
+ sup
θ≤0

e(η+λ)θ

[
1

λ
+
e−(λ+η)θ − 1

λ

]
‖ϕ‖η .

Hence, ∥∥∥∥(λI −A)
−1

(
α

ϕ

)∥∥∥∥ ≤
1

λ

∥∥∥∥
(
α

ϕ

)∥∥∥∥ .

Lemma 4.1. The linear operator A : D(A) ⊂ X → X is a Hille-Yosida
operator.

Since A is Hille-Yosida, the abstract Cauchy problem (1.1) admits at
most one weak solution, and by using the same arguments as in Liu et
al. [32], we deduce that if x : (−∞, τ ] → Rn is a solution of (1.4), then

t→

(
0Rn

xt

)

satisfies

(
0Rn

xt

)
=

(
0Rn

ϕ

)
+A

∫ t

0

(
0Rn

xs

)
ds

+

∫ t

0

(
G (xs)
0Cη

)
ds for all t ≥ 0.

Therefore, the problems (1.4) and (1.1) coincide.
The linear operator A0 is defined by

A0

(
0
ϕ

)
=

(
0
ϕ′

)
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with
D (A0) = {0Rn} × C1

η,0 ((−∞, 0] ,Rn) ,

where

C1
η,0 ((−∞, 0] ,Rn) :=

{
ϕ ∈ C1

η ((−∞, 0] ,Rn) : ϕ′(0) = 0
}
.

Lemma 4.2. The linear operator A0 is the infinitesimal generator of a
strongly continuous semigroup {TA0

(t)}t≥0 of bounded linear operators
on X0. Moreover,

TA0
(t)

(
0
ϕ

)
=

(
0

T̂A0
(t)ϕ

)
,

where

T̂A0
(t) (ϕ) (θ) =




ϕ(0), if t+ θ ≥ 0,

ϕ (t+ θ) , if t+ θ ≤ 0.

The only difference compared with the finite delay differential equa-
tions is the following property.

Lemma 4.3. The essential growth rate of {TA0
(t)}t≥0 satisfies

ω0,ess (A0) ≤ −η.

Proof. The linear operator B : Cη ((−∞, 0] ,Rn) → Cη ((−∞, 0] ,Rn)
defined by

B (ϕ) = ϕ (0)

is compact. Therefore,
∥∥T̂A0

(t)
∥∥

ess
=
∥∥T̂A0

(t) −B
∥∥

ess
≤
∥∥T̂A0

(t) −B
∥∥
L(Cη)

.

Now we have
∥∥T̂A0

(t)ϕ −Bϕ
∥∥
L(Cη)

= sup
θ≤−t

eηθ
∥∥ϕ (t+ θ) − ϕ (0)

∥∥.

Set σ := t+ θ, we obtain
∥∥T̂A0

(t)ϕ−Bϕ
∥∥
L(Cη)

= sup
σ≤0

eη(σ−t)
∥∥ϕ (σ) − ϕ (0)

∥∥.

Hence, ∥∥T̂A0
(t) −B

∥∥
L(Cη)

≤ 2e−ηt

and the result follows.
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Therefore, by using similar arguments as in Liu et al. [32], we can
provide a spectral theory for this class of problems. In particular, we
can apply the center manifold theory in Magal and Ruan [37] and the
center-unstable theory presented in section 2 around the equilibrium

0X =

(
0Rn

0Cη

)

of system (1.1). One can also obtain a Hopf bifurcation theorem as in
Liu et al. [33] for the infinite delay equation (1.4), an example was
presented in Auger and Ducrot [5], and the stability of Hopf bifurcation
in such equations can be obtained using the results in Section 3.
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