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Abstract

The aim of this article is to derive explicit formulas for the projectors on the generalized eigenspaces asso-
ciated to some eigenvalues for linear functional differential equations (FDE) by using integrated semigroup
theory. The idea is to formulate the FDE as a non-densely defined Cauchy problem and obtain an explicit
formula for the integrated solutions of the non-densely defined Cauchy problem, from which we then de-
rive explicit formulas for the projectors on the generalized eigenspaces associated to some eigenvalues. The
results are useful in studying bifurcations in some semi-linear problems.
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1. Introduction

Since the state space for functional differential equations (FDE) is infinitely dimensional,
techniques and methods from functional analysis and operator theory have been further devel-
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oped and extensively used to study such equations (Hale and Verduyn Lunel [13], Diekmann
et al. [9], Engel and Nagel [10]). In particular, the semigroup theory of operators on a Banach
space has been successfully used to study the dynamical behavior of FDE (Adimy and Arino [3],
Diekmann et al. [8], Frasson and Verduyn Lunel [12], Thieme [21], Verduyn Lunel [26], Webb
[27–29]). In studying bifurcation problems, such as Hopf bifurcation, for FDE, we need to com-
pute explicitly the flow on the center manifold (Hassard et al. [14]). To do that, we need to know
detailed information about the underlying center manifold of the linearized equation. Frasson
and Verduyn Lunel [12] provided explicit formulas for the spectral projection on the unstable
or center subspace by using resolvent computations and Dunford calculus and studied the large
time behavior of autonomous and periodic functional differential equations.

The goal of this article is to obtain explicit formulas for the projectors on the generalized
eigenspaces associated to some eigenvalues for linear functional differential equations (FDE)

⎧⎨
⎩

dx(t)

dt
= Bx(t) + L̂(xt ), ∀t � 0,

x0 = ϕ ∈ C
([−r,0],Rn

)

by using integrated semigroup theory. This problem has been extensively studied since the 1970s
(see Hale and Verduyn Lunel [13] and the historical remarks at the end of Chapters 6 and 7), the
usual approach is based on the formal adjoint method. The method was recently further studied
in the monograph of Diekmann et al. [9] using the so-called sun-star adjoint spaces, see also
Kaashoek and Verduyn Lunel [15], Frasson and Verduyn Lunel [12], Diekmann et al. [8] and the
references cited therein.

The main question here is to formulate the problem as an abstract Cauchy problem. In the
1970s, Webb [27], Travis and Webb [24,25] viewed the problem as a non-linear Cauchy problem
and focused on many aspects of the problem by using this method. Another approach is a direct
method, that is to use the variation of constant formula and work directly with the system (see
Arino and Sánchez [6] and Kappel [16]).

We shall use an integrated semigroup formulation for the problem. It seems that Adimy [1,2],
Adimy and Arino [3], and Thieme [21] were the first to apply such an approach in the context of
FDE. This approach has been extensively developed by Arino’s team in the 1990s (see Ezzinbi
and Adimy [11] for a survey on this topic). Here we use a formulation of the FDE that is an
intermediate between the formulations of Adimy [1,2] and Thieme [21]. In fact, compared with
Adimy’s approach we do not use any Radon measure to give a sense of the value of xt (θ) at
θ = 0, while compared to Thieme’s approach we keep only one equation. Our approach is more
closely related to the one by Travis and Webb [24,25].

The rest of the paper is organized as follows. In Section 2 we demonstrate how to construct
the formulations in an “intuitive manner.” Then in Section 3, we recall some spectral theory and
obtain an explicit formula for the integrated solutions of the non-densely defined Cauchy prob-
lem. The goal is to check that the integrated solutions of the Cauchy problem are in fact solutions
of the FDE. In Section 4, which is in fact the main section of this article, we obtain an explicit
formula for the projectors on the generalized eigenspaces associated to some eigenvalues. As far
as we know this part is new. The projector for a simple eigenvalue is considered in Section 5.
In Section 6, we discuss some applications of the results to the semi-linear problem by focusing
specially on bifurcation aspects.
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2. Preliminary

For r � 0, let C = C([−r,0];Rn) be the Banach space of continuous functions from [−r,0]
to Rn endowed with the supremum norm

‖ϕ‖C = sup
θ∈[−r,0]

∥∥ϕ(θ)
∥∥

Rn .

Consider the retarded functional differential equations (FDE) of the form

{
dx(t)

dt
= Bx(t) + L̂(xt ) + f (t, xt ), ∀t � 0,

x0 = ϕ ∈ C,

(2.1)

where xt ∈ C satisfies xt (θ) = x(t + θ),B ∈ Mn(R) is an n × n real matrix, L̂ :C → Rn is a
bounded linear operator given by

L̂(ϕ) =
0∫

−r

dη(θ)ϕ(θ),

here η : [−r,0] → Mn(R) is a map of bounded variation, and f : R × C → Rn is a continuous
map.

In order to study the FDE (2.1) by using the integrated semigroup theory, we need to consider
FDE (2.1) as an abstract non-densely defined Cauchy problem. Firstly, we regard FDE (2.1) as a
PDE. Define u ∈ C([0,+∞) × [−r,0],Rn) by

u(t, θ) = x(t + θ), ∀t � 0, ∀θ ∈ [−r,0].

Note that if x ∈ C1([−r,+∞),Rn), then

∂u(t, θ)

∂t
= x′(t + θ) = ∂u(t, θ)

∂θ
.

Hence, we must have

∂u(t, θ)

∂t
− ∂u(t, θ)

∂θ
= 0, ∀t � 0, ∀θ ∈ [−r,0].

Moreover, for θ = 0, we obtain

∂u(t,0)

∂θ
= x′(t) = Bx(t) + L̂(xt ) + f (t, xt )

= Bu(t,0) + L̂
(
u(t, .)

)+ f
(
t, u(t, .)

)
, ∀t � 0.
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Therefore, we deduce formally that u must satisfy a PDE

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u(t, θ)

∂t
− ∂u(t, θ)

∂θ
= 0,

∂u(t,0)

∂θ
= Bu(t,0) + L̂

(
u(t, .)

)+ f
(
t, u(t, .)

)
, ∀t � 0,

u(0, .) = ϕ ∈ C.

(2.2)

In order to rewrite the PDE (2.2) as an abstract non-densely defined Cauchy problem, we
extend the state space to take into account the boundary conditions. This can be accomplished
by adopting the following state space

X = Rn × C

taken with the usual product norm

∥∥∥∥
(

x

ϕ

)∥∥∥∥= ‖x‖Rn + ‖ϕ‖C.

Define the linear operator A :D(A) ⊂ X → X by

A

(
0Rn

ϕ

)
=
(−ϕ′(0) + Bϕ(0)

ϕ′
)

, ∀
(

0Rn

ϕ

)
∈ D(A), (2.3)

with

D(A) = {0Rn} × C1([−r,0],Rn
)
.

Note that A is non-densely defined because

D(A) = {0Rn} × C 
= X.

We also define L :D(A) → X by

L

(
0Rn

ϕ

)
=
(

L̂(ϕ)

0C

)

and F : R × D(A) → X by

F

(
t,

(
0Rn

ϕ

))
=
(

f (t, ϕ)

0C

)
.

Set

v(t) =
(

0Rn

u(t)

)
.
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Now we can consider the PDE (2.2) as the following non-densely defined Cauchy problem

dv(t)

dt
= Av(t) + L

(
v(t)

)+ F
(
t, v(t)

)
, t � 0, v(0) =

(
0Rn

ϕ

)
∈ D(A). (2.4)

3. Some results on integrated solutions and spectrums

In this section we will first study the integrated solutions of the Cauchy problem (2.4) in the
special case

dv(t)

dt
= Av(t) +

(
h(t)

0

)
, t � 0, v(0) =

(
0Rn

ϕ

)
∈ D(A), (3.1)

where h ∈ L1((0, τ ),Rn). Recall that v ∈ C([0, τ ],X) is an integrated solution of (3.1) if and
only if

t∫
0

v(s) ds ∈ D(A), ∀t ∈ [0, τ ], (3.2)

and

v(t) =
(

0Rn

ϕ

)
+ A

t∫
0

v(s) ds +
t∫

0

(
h(s)

0

)
ds. (3.3)

In the sequel, we will use the integrated semigroup theory to define such an integrated solution.
We refer to Arendt [4], Thieme [22], Kellermann and Hieber [17], and the book of Arendt et al.
[5] for further details on this subject. We also refer to Magal and Ruan [19] for more results and
update references.

From (3.2) we note that if v is an integrated solution we must have

v(t) = lim
h→0+

1

h

t+h∫
t

v(s) ds ∈ D(A).

Hence

v(t) =
(

0Rn

u(t)

)

with

u ∈ C
([0, τ ],C([−r,0],Rn

))
.

In order to obtain the uniqueness of the integrated solutions of (3.1) we want to prove that A

generates an integrated semigroup. So firstly we need to study the resolvent of A.
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We introduce some notation. Let L :D(L) ⊂ X → X be a linear operator on a complex Ba-
nach space X. Denote by ρ(L) the resolvent set of L,N(L) the null space of L, and R(L) the
range of L, respectively. The spectrum of L is σ(L) = C \ ρ(L). The point spectrum of L is the
set

σP (L) := {λ ∈ C: N(λI − L) 
= {0}}.
The essential spectrum (in the sense of Browder [7]) of L is denoted by σess(L). That is, the set
of λ ∈ σ(L) such that at least one of the following holds: (i) R(λI − L) is not closed; (ii) λ is a
limit point of σ(L); (iii) Nλ(L) :=⋃∞

k=1 N((λI − L)k) is infinite dimensional. Define

Xλ0 =
⋃
n�0

N
(
(λ0 − L)n

)
.

Let Y be a subspace of X. Then we denote by LY :D(LY ) ⊂ Y → Y the part of L on Y , which
is defined by

LY x = Lx, ∀x ∈ D(LY ) := {x ∈ D(L) ∩ Y : Lx ∈ Y
}
.

Definition 3.1. Let L :D(L) ⊂ X → X be the infinitesimal generator of a linear C0-semigroup
{TL(t)}t�0 on a Banach space X. We define ω0(L) ∈ [−∞,+∞) the growth bound of L by

ω0(L) := lim
t→+∞

ln(‖TL(t)‖L(X))

t
.

The essential growth bound ω0,ess(L) ∈ [−∞,+∞) of L is defined by

ω0,ess(L) := lim
t→+∞

ln(‖TL(t)‖ess)

t
,

where ‖TL(t)‖ess is the essential norm of TL(t) defined by

∥∥TL(t)
∥∥

ess = κ
(
TL(t)BX(0,1)

)
,

here BX(0,1) = {x ∈ X: ‖x‖X � 1}, and for each bounded set B ⊂ X, κ(B) = inf{ε > 0:
B can be covered by a finite number of balls of radius � ε} is the Kuratovsky measure of non-
compactness.

We have the following result, the existence of the projector was first proved by Webb [28,
29], and the fact that there is a finite number of points of the spectrum is proved by Engel and
Nagel [10].

Theorem 3.2. Let L :D(L) ⊂ X → X be the infinitesimal generator of a linear C0-semigroup
{TL(t)}t�0 on a Banach space X. Then

ω0(L) = max
(
ω0,ess(L), max Re(λ)

)
.

λ∈σ(L)\σess(L)
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Assume in addition that ω0,ess(L) < ω0(L). Then for each γ ∈ (ω0,ess(L),ω0(L)], {λ ∈
σ(L): Re(λ) � γ } ⊂ σp(L) is nonempty, finite and contains only poles of the resolvent of L.
Moreover, there exists a finite rank bounded linear operator of projection Π :X → X satisfying
the following properties:

(a) Π(λI − L)−1 = (λI − L)−1Π , ∀λ ∈ ρ(L);
(b) σ(LΠ(X)) = {λ ∈ σ(L): Re(λ) � γ };
(c) σ(L(I−Π)(X)) = σ(L) \ σ(LΠ(X)).

In Theorem 3.2 the projector Π is the projection on the direct sum of the generalized
eigenspaces of L associated to all points λ ∈ σ(L) with Re(λ) � γ . As a consequence of Theo-
rem 3.2 we have the following corollary.

Corollary 3.3. Let L :D(L) ⊂ X → X be the infinitesimal generator of a linear C0-semigroup
{TL(t)}t�0 on a Banach space X, and assume that ω0,ess(L) < ω0(L). Then

{
λ ∈ σ(L): Re(λ) > ω0,ess(L)

}⊂ σP (L)

and each λ̂ ∈ {λ ∈ σ(L): Re(λ) > ω0,ess(L)} is a pole of the resolvent of L. That is, λ̂ is iso-
lated in σ(L), and there exists an integer k0 � 1 (the order of the pole) such that the Laurent’s
expansion of the resolvent takes the following form

(λI − L)−1 =
∞∑

n=−k0

(λ − λ0)
nBλ0

n ,

where {Bλ0
n }, n � k0, are bounded linear operators on X, and the above series converges in the

norm of operators whenever |λ − λ0| is small enough.

The following result is due to Magal and Ruan [20, Lemma 2.1 and Proposition 3.6].

Theorem 3.4. Let (X,‖ .‖) be a Banach space and L :D(L) ⊂ X → X be a linear operator.
Assume that ρ(L) 
= ∅ and L0, the part of L in D(L), is the infinitesimal generator of a linear
C0-semigroup {TL0(t)}t�0 on a Banach space D(L). Then

σ(L) = σ(L0).

Let Π0 :D(L) → D(L) be a bounded linear operator of projection. Assume that

Π0(λI − L0)
−1 = (λI − L0)

−1Π0, ∀λ > ω,

and

Π0
(
D(L)

)⊂ D(L0) and L0|Π0(D(L)) is bounded.

Then there exists a unique bounded linear operator of projection Π on X satisfying the following
properties:
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(i) Π |D(L) = Π0;

(ii) Π(X) ⊂ D(L);
(iii) Π(λI − L)−1 = (λI − L)−1Π , ∀λ > ω.

Moreover, for each x ∈ X we have the following approximation formula

Πx = lim
λ→+∞Π0λ(λI − L)−1x.

Now we go back to consider the FDE (2.1). We first have the following property.

Theorem 3.5. For the operator A defined in (3.1), the resolvent set of A satisfies

ρ(A) = ρ(B),

where B is an n × n matrix defined in (2.1). Moreover, for each λ ∈ ρ(A), we have the following
explicit formula for the resolvent of A:

(λI − A)−1
(

α

ϕ

)
=
(

0Rn

ψ

)

⇔ ψ(θ) = eλθ (λI − B)−1[ϕ(0) + α
]+

0∫
θ

eλ(θ−s)ϕ(s) ds. (3.4)

Proof. Let us first prove that ρ(A) ⊂ ρ(B). We only need to show that σ(B) ⊂ σ(A). Let
λ ∈ σ(B). Then, there exists x ∈ Cn \ {0} such that Bx = λx. If we consider

ϕ(θ) = eλθx,

we have

A

(
0Rn

ϕ

)
=
(−ϕ′(0) + Bϕ(0)

ϕ′
)

=
(−λx + Bx

λϕ

)
=
(

0Rn

λϕ

)
.

Thus λ ∈ σ(A). This implies that σ(B) ⊂ σ(A). On the other hand, if λ ∈ ρ(B), for
(
α
ϕ

) ∈ X we

must have
(0Rn

ψ

) ∈ D(A) such that

(λI − A)

(
0Rn

ψ

)
=
(

α

ϕ

)

⇔
{

ψ ′(0) − Bψ(0) = α,

λψ − ψ ′ = ϕ

⇔
{

(λI − B)ψ(0) = α + ϕ(0),

λψ − ψ ′ = ϕ

⇔
{

(λI − B)ψ(0) = α + ϕ(0),

ψ(θ) = eλ(θ−θ̂ )ψ(θ̂) + ∫ θ
eλ(θ−l)ϕ(l) dl, ∀θ � θ̂ ,
θ̂
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⇔
{

(λI − B)ψ(0) = α + ϕ(0),

ψ(θ̂) = eλθ̂ψ(0) − ∫ θ̂

0 eλ(θ̂−l)ϕ(l) dl, ∀θ̂ ∈ [−r,0],

⇔ ψ(θ̂) = eλθ̂ (λI − B)−1[α + ϕ(0)
]−

θ̂∫
0

eλ(θ̂−l)ϕ(l) dl, ∀θ̂ ∈ [−r,0].

Therefore, we obtain that λ ∈ ρ(A) and the formula in (3.4) holds. �
Since B is a matrix on Rn, we have ω0(B) := supλ∈σ(B) Re(λ) and the following lemma.

Lemma 3.6. The linear operator A :D(A) ⊂ X → X is a Hille–Yosida operator. More precisely,
for each ωA > ω0(B), there exists MA � 1 such that

∥∥(λI − A)−n
∥∥
L(X)

� MA

(λ − ωA)n
, ∀n � 1, ∀λ > ωA. (3.5)

Proof. Let ωA > ω0(B). We can define the equivalent norm on Rn

|x| := sup
t�0

e−ωAt
∥∥eBtx

∥∥.
Then we have ∣∣eBtx

∣∣� eωAt |x|, ∀t � 0,

and

‖x‖ � |x| � MA‖x‖,
where

MA := sup
t�0

∥∥e(B−ωAI)t
∥∥

Mn(R)
.

Moreover, for each λ > ωA, we have

∣∣(λI − B)−1x
∣∣=
∣∣∣∣∣

+∞∫
0

e−λseBsx ds

∣∣∣∣∣� |x|
λ − ωA

.

We define ‖ .‖ the equivalent norm on X by∣∣∣∣
(

α

ϕ

)∣∣∣∣= |α| + ‖ϕ‖ωA
,

where

‖ϕ‖ωA
:= sup

∣∣e−ωAθϕ(θ)
∣∣.
θ∈[−r,0]
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Using (3.4) and the above results, we obtain

∣∣∣∣(λI − A)−1
(

α

ϕ

)∣∣∣∣
� sup

θ∈[−r,0]

[
e−ωAθeλθ

∣∣(λI − B)−1[ϕ(0) + α
]∣∣+ e−ωAθ

0∫
θ

eλ(θ−s)
∣∣ϕ(s)

∣∣ds

]

� sup
θ∈[−r,0]

[
e−ωAθeλθ 1

λ − ωA

[∣∣ϕ(0)
∣∣+ |α|]+ e−ωAθeλθ

0∫
θ

e−(λ−ωA)s ds ‖ϕ‖ωA

]

= 1

λ − ωA

|α| + sup
θ∈[−r,0]

[
e−ωAθeλθ

λ − ωA

∣∣ϕ(0)
∣∣+ e−ωAθeλθ [e−(λ−ωA)θ − 1]

λ − ωA

‖ϕ‖ωA

]

� 1

λ − ωA

[|α| + ‖ϕ‖ωA

]
= 1

λ − ωA

∣∣∣∣
(

α

ϕ

)∣∣∣∣.
Therefore, (3.5) holds and the proof is completed. �

Since A is a Hille–Yosida operator, A generates a non-degenerate integrated semigroup
{SA(t)}t�0 on X. It follows from Thieme [22] and Kellerman and Hieber [17] that the abstract
Cauchy problem (3.1) has at most one integrated solution.

Lemma 3.7. Let h ∈ L1((0, τ ),Rn) and ϕ ∈ C([−r,0],Rn). Then there exists a unique inte-
grated solution, t → v(t), of the Cauchy problem (3.1) which can be expressed explicitly by the
following formula

v(t) =
(

0Rn

u(t)

)

with

u(t)(θ) = x(t + θ), ∀t ∈ [0, τ ], ∀θ ∈ [−r,0], (3.6)

where

x(t) =
{

ϕ(t), t ∈ [−r,0],
eBtϕ(0) + ∫ t

0 eB(t−s)h(s) ds, t ∈ [0, τ ].

Proof. Since A is a Hille–Yosida operator, there is at most one integrated solution of the Cauchy
problem (3.1). So it is sufficient to prove that u defined by (3.6) satisfies for each t ∈ [0, τ ] the
following (

0Rn∫ t
u(l) dl

)
∈ D(A) (3.7)
0
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and

(
0Rn

u(t)

)
=
(

0Rn

ϕ

)
+ A

(
0Rn∫ t

0 u(l) dl

)
+
(∫ t

0 h(l) dl

0

)
. (3.8)

Since

t∫
0

u(l)(θ) dl =
t∫

0

x(l + θ) dl =
t+θ∫
θ

x(s) ds

and x ∈ C([−r, τ ],Rn),
∫ t

0 u(l) dl ∈ C1([−r,0],Rn). Therefore, (3.7) follows. Moreover,

A

(
0Rn

ϕ

)
=
(−ϕ′(0) + Bϕ(0)

ϕ′
)

whenever ϕ ∈ C1([−r,0],Rn). Hence

A

(
0∫ t

0 u(l) dl

)
=
(−[x(t) − x(0)] + B

∫ t

0 x(s) ds

x(t + .) − x(.)

)

= −
(

0

ϕ

)
+
(−[x(t) − ϕ(0)] + B

∫ t

0 x(s) ds

x(t + .)

)
.

Therefore, (3.8) is satisfied if and only if

x(t) = ϕ(0) + B

t∫
0

x(s) ds +
t∫

0

h(s) ds. (3.9)

By using the usual variation of constant formula, we deduce that (3.9) is equivalent to

x(t) = eBtϕ(0) +
t∫

0

eB(t−s)h(s) ds.

The proof is completed. �
Recall that A0 :D(A0) ⊂ D(A) → D(A), the part of A in D(A), is defined by

A0

(
0Rn

ϕ

)
= A

(
0Rn

ϕ

)
, ∀

(
0Rn

ϕ

)
∈ D(A0),

where

D(A0) =
{(

0Rn
)

∈ D(A): A

(
0Rn
)

∈ D(A)

}
.

ϕ ϕ
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From the definition of A in (2.3) and the fact that D(A) = {0Rn} × C([−r,0],Rn), we know that
A0 is the linear operator defined by

A0

(
0Rn

ϕ

)
=
(

0Rn

ϕ′

)
, ∀

(
0Rn

ϕ

)
∈ D(A0),

where

D(A0) =
{(

0Rn

ϕ

)
∈ {0Rn} × C1([−r,0],Rn

)
: −ϕ′(0) + Bϕ(0) = 0

}
.

Now by using the fact that A is a Hille–Yosida operator, we deduce that A0 is the infinitesimal
generator of a strongly continuous semigroup {TA0(t)}t�0 and

v(t) = TA0(t)

(
0Rn

ϕ

)

is an integrated solution of

dv(t)

dt
= Av(t), t � 0, v(0) =

(
0Rn

ϕ

)
∈ D(A).

Using Lemma 3.7 with h = 0, we obtain the following result.

Lemma 3.8. The linear operator A0 is the infinitesimal generator of a strongly continuous semi-
group {TA0(t)}t�0 of bounded linear operators on D(A) which is defined by

TA0(t)

(
0Rn

ϕ

)
=
(

0Rn

T̂A0(t)(ϕ)

)
, (3.10)

where

T̂A0(t)(ϕ)(θ) =
{

eB(t+θ)ϕ(0), t + θ � 0,

ϕ(t + θ), t + θ � 0.

Since A is a Hille–Yosida operator, we know that A generates an integrated semigroup
{SA(t)}t�0 on X, and t → SA(t)

(
x
ϕ

)
is an integrated solution of

dv(t)

dt
= Av(t) +

(
x

ϕ

)
, t � 0, v(0) = 0.

Since SA(t) is linear we have

SA(t)

(
x
)

= SA(t)

(
0Rn
)

+ SA(t)

(
x
)

,

ϕ ϕ 0
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where

SA(t)

(
0Rn

ϕ

)
=

t∫
0

TA0(l)

(
0Rn

ϕ

)
dl

and SA(t)
(
x
0

)
is an integrated solution of

dv(t)

dt
= Av(t) +

(
x

0

)
, t � 0, (0) = 0.

Therefore, by using Lemma 3.7 with h(t) = x and the above results, we obtain the following
result.

Lemma 3.9. The linear operator A generates an integrated semigroup {SA(t)}t�0 on X. More-
over,

SA(t)

(
x

ϕ

)
=
(

0Rn

ŜA(t)(x,ϕ)

)
,

(
x

ϕ

)
∈ X,

where ŜA(t) is the linear operator defined by

ŜA(t)(x,ϕ) = ŜA(t)(0, ϕ) + ŜA(t)(x,0)

with

ŜA(t)(0, ϕ)(θ) =
t∫

0

T̂A0(s)(ϕ)(θ) ds =
t∫

−θ

eB(s+θ)ϕ(0) ds +
−θ∫
0

ϕ(s + θ) ds

and

ŜA(t)(x,0)(θ) =
{∫ t+θ

0 eBsx ds, t + θ � 0,

0, t + θ � 0.

Now we focus on the spectrums of A and A + L. Since A is a Hille–Yosida operator, so is
A + L. Moreover, (A + L)0 :D((A + L)0) ⊂ D(A) → D(A), the part of A + L in D(A), is a
linear operator defined by

(A + L)0

(
0

ϕ

)
=
(

0

ϕ′

)
, ∀

(
0

ϕ

)
∈ D

(
(A + L)0

)
,

where

D
(
(A + L)0

)= {(0
)

∈ {0Rn} × C1([−r,0],Rn
)
: ϕ′(0) = Bϕ(0) + L̂(ϕ)

}
.

ϕ
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From Theorems 3.4 and 3.5, we know that

σ(B) = σ(A) = σ(A0) and σ(A + L) = σ
(
(A + L)0

)
.

From (3.10), we have

T̂A0(t)(ϕ)(θ) = eB(r+θ)eB(t−r)ϕ(0), t � r, θ ∈ [−r,0].

Therefore,

T̂A0(t) = L2L1,

where L1 :C → Rn and L2 : Rn → C are linear operators defined by

L1ϕ = eB(t−r)ϕ(0), ϕ ∈ C, t � r,

and

L2(x)(θ) = eB(r+θ)x, x ∈ Rn, θ ∈ [−r,0],

respectively. Clearly L1 is compact. Hence, we have

ω0,ess(A0) = −∞ and σ(B) = σ(A) = σP (A0) = σ(A0).

Therefore,

ω0(A0) = sup
λ∈σP (A0)

Re(λ).

In the following lemma, we specify the point spectrum of (A + L)0.

Lemma 3.10. The point spectrum of (A + L)0 is the set

σP

(
(A + L)0

)= {λ ∈ C: det
(
Δ(λ)

)= 0
}
,

where

Δ(λ) = λI − B − L̂
(
eλ.I

)= λI − B −
0∫

−r

eλθ dη(θ). (3.11)

Proof. Let λ ∈ C. Then λ ∈ σP ((A + L)0) if and only if there exists
(0Rn

ϕ

) ∈ D((A + L)0) \ {0}
such that

(A + L)0

(
0Rn
)

= λ

(
0Rn
)

.

ϕ ϕ
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That is, λ ∈ σP ((A + L)0) if and only if there exists ϕ ∈ C1([−r,0],Cn) \ {0} such that

ϕ′(θ) = λϕ(θ), ∀θ ∈ [−r,0], (3.12)

and

ϕ′(0) = Bϕ(0) + L̂(ϕ). (3.13)

Eq. (3.12) is equivalent to

ϕ(θ) = eλθϕ(0), ∀θ ∈ [−r,0]. (3.14)

Therefore,

ϕ 
= 0 ⇔ ϕ(0) 
= 0.

By combining (3.13) and (3.14), we obtain

λϕ(0) = Bϕ(0) + L̂
(
eλ.ϕ(0)

)
.

The proof is completed. �
From the discussion in this section, we obtain the following proposition.

Proposition 3.11. The linear operator A + L :D(A) → X is a Hille–Yosida operator. (A + L)0
is the infinitesimal generator of a strongly continuous semigroup {T(A+L)0(t)}t�0 of bounded
linear operators on D(A). Moreover,

T(A+L)0(t)

(
0Rn

ϕ

)
=
(

0Rn

T̂(A+L)0(t)(ϕ)

)
(3.15)

with

T̂(A+L)0(t)(ϕ)(θ) = x(t + θ), ∀t � 0, ∀θ ∈ [−r,0],

where

x(t) =
{

ϕ(t), ∀t ∈ [−r,0],
eBtϕ(0) + ∫ t

0 eB(t−s)L̂(xs) ds, ∀t � 0.

Furthermore

ω0,ess
(
(A + L)0

)= −∞ and ω0
(
(A + L)0

)= max
λ∈σP ((A+L)0)

Re(λ),

σ (A + L) = σ
(
(A + L)0

)= σP

(
(A + L)0

)= {λ ∈ C: det
(
Δ(λ)

)= 0
}
,

and each λ0 ∈ σ((A + L)0) = σ(A + L) is a pole of (λI − (A + L))−1. For each γ ∈ R, the
subset {λ ∈ σ((A + L)0): Re(λ) � γ } is either empty or finite.
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Proof. The first part of the result follows immediately from Lemma 3.7 applied with h(t) =
L̂(xt ). So it remains to prove that ω0,ess((A + L)0) = −∞. But this property follows from the
fact that T(A+L)0(t) is compact for each t large enough. This is an immediate consequence of
Theorem 3 in Thieme [23] (which applies because LTA0(t) is compact for each t > 0, and TA0(t)

is compact for t � r). �
4. Projectors on the eigenspaces

Let λ0 ∈ σ(A + L). From the above discussion we already knew that λ0 is a pole of (λI −
(A + L))−1 of finite order k0 � 1. This means that λ0 is isolated in σ(A + L) and the Laurent’s
expansion of the resolvent around λ0 takes the following form

(
λI − (A + L)

)−1 =
+∞∑

n=−k0

(λ − λ0)
nBλ0

n . (4.1)

The bounded linear operator B
λ0
−1 is the projector on the generalized eigenspace of (A + L)

associated to λ0. The goal of this section is to provide a method to compute B
λ0
−1. We remark that

(λ − λ0)
k0
(
λI − (A + L)

)−1 =
+∞∑
m=0

(λ − λ0)
mB

λ0
m−k0

.

So we have the following approximation formula

B
λ0
−1 = lim

λ→λ0

1

(k0 − 1)!
dk0−1

dλk0−1

(
(λ − λ0)

k0
(
λI − (A + L)

)−1)
. (4.2)

In order to give an explicit formula for B
λ0
−1, we need the following results.

Lemma 4.1. For each λ ∈ ρ(A + L), we have the following explicit formula for the resolvent of
A + L:

(
λI − (A + L)

)−1
(

α

ϕ

)
=
(

0Rn

ψ

)

⇔ ψ(θ) =
0∫

θ

eλ(θ−s)ϕ(s) ds + eλθΔ(λ)−1

[
α + ϕ(0) + L̂

( 0∫
.

eλ(.−s)ϕ(s) ds

)]
.

(4.3)

Proof. We consider the linear operator Aγ :D(A) ⊂ X → X defined by

Aγ

(
0Rn
)

=
(−ϕ′(0) + (B − γ I)ϕ(0)

ϕ′
)

, ∀
(

0Rn
)

∈ D(A),

ϕ ϕ
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and

Lγ

(
0Rn

ϕ

)
=
(

L̂(ϕ) + γ ϕ(0)

0C

)
.

Then we have

A + L = Aγ + Lγ .

Moreover,

ω0(B − γ I) = max
λ∈σ(B−γ I)

Re(λ) = max
λ∈σ(B)

Re(λ) − γ = ω0(B) − γ.

Hence by Theorem 3.5, for λ ∈ C with Re(λ) > ω0(B) − γ, we have λ ∈ ρ(Aγ ) and

(λI − Aγ )−1
(

α

ϕ

)
=
(

0Rn

ψ

)

⇔ ψ(θ) = eλθ
(
λI − (B − γ I)

)−1[
ϕ(0) + α

]+
0∫

θ

eλ(θ−s)ϕ(s) ds. (4.4)

Therefore, for each λ ∈ C with Re(λ) > ω0(B)−γ , we deduce that [λI −(Aγ +Lγ )] is invertible
if and only if I − Lγ (λI − Aγ )−1 is invertible, and

(
λI − (Aγ + Lγ )

)−1 = (λI − Aγ )−1[I − Lγ (λI − Aγ )−1]−1
. (4.5)

We also know that [I − Lγ (λI − Aγ )−1](α
ϕ

)= (α̂
ϕ̂

)
is equivalent to ϕ = ϕ̂ and

α − [L̂(eλ.
(
λI − (B − γ I)

)−1
α
)+ γ

(
λI − (B − γ I)

)−1
α
]

= α̂ +
[

L̂(eλ.(λI − (B − γ I))−1ϕ̂(0) + ∫ 0
.

eλ(.−s)ϕ̂(s) ds)

+ γ (λI − (B − γ I))−1ϕ̂(0)

]
.

Because

α − L̂
(
eλ.
(
λI − (B − γ I)

)−1
α
)− γ

(
λI − (B − γ I)

)−1
α

= [λI − (B − γ I) − L̂
(
eλ.I

)− γ I
](

λI − (B − γ I)
)−1

α

= [λI − B − L̂
(
eλ.I

)](
λI − (B − γ I)

)−1
α

= Δ(λ)
(
λI − (B − γ I)

)−1
α,

we deduce that [I − Lγ (λI − Aγ )−1] is invertible if and only if Δ(λ) = [λI − B − L̂(eλ.I )] is
invertible. Moreover,

[
I − Lγ (λI − Aγ )−1]−1

(
α̂
)

=
(

α
)

ϕ̂ ϕ
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is equivalent to ϕ = ϕ̂ and

α = (λI − (B − γ I)
)
Δ(λ)−1

[
α̂ + L̂(eλ.(λI − (B − γ I))−1ϕ̂(0) + ∫ 0

.
eλ(.−s)ϕ̂(s) ds)

+ γ (λI − (B − γ I))−1ϕ̂(0)

]
.

(4.6)

Note that A + L = Aγ + Lγ . By using (4.4), (4.5) and (4.6), we obtain for each γ > 0 large
enough that

(
λI − (A + L)

)−1
(

α

ϕ

)
=
(

0Rn

ψ

)

⇔ ψ(θ) = eλθ
(
λI − (B − γ I)

)−1
ϕ(0) +

0∫
θ

eλ(θ−s)ϕ(s) ds

+ eλθΔ(λ)−1
[

α + L̂(eλ.(λI − (B − γ I))−1ϕ(0) + ∫ 0
.

eλ(.−s)ϕ(s) ds)

+ γ (λI − (B − γ I))−1ϕ(0)

]
.

Now by taking the limit when γ → +∞, the result follows. �
The map λ → Δ(λ) from C into Mn(C) is differentiable and

Δ(1)(λ) := dΔ(λ)

dλ
= I −

0∫
−r

dη(θ) θeλθ .

So the map λ → Δ(λ) is analytic and

Δ(n)(λ) := dnΔ(λ)

dλn
= −

0∫
−r

dη(θ) θneλθ , n � 2.

We know that the inverse function

ψ :L → L−1

of a linear operator L ∈ Isom(X) is differentiable, and

Dψ(L)L̂ = −L−1 ◦ L̂ ◦ L−1.

Applying this result, we deduce that λ → Δ(λ)−1 from ρ(A + L) into Mn(C) is differentiable,
and d

dλ
Δ(λ)−1 = −Δ(λ)−1( d

dλ
Δ(λ))Δ(λ)−1. Therefore, we obtain that the map λ → Δ(λ)−1 is

analytic and has a Laurent’s expansion around λ0

Δ(λ)−1 =
+∞∑

n=−k̂0

(λ − λ0)
nΔn.

From the following lemma we know that k̂0 = k0.
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Lemma 4.2. Let λ0 ∈ σ(A + L). Then the following statements are equivalent

(a) λ0 is a pole of order k0 of (λI − (A + L))−1;
(b) λ0 is a pole of order k0 of Δ(λ)−1;
(c) limλ→λ0(λ − λ0)

k0Δ(λ)−1 
= 0 and limλ→λ0(λ − λ0)
k0+1Δ(λ)−1 = 0.

Proof. The proof follows from the explicit formula of the resolvent of A + L obtained in
Lemma 4.1. �
Lemma 4.3. The matrices Δ−1, . . . ,Δ−k0 satisfy

Δk0(λ0)

⎛
⎜⎜⎜⎜⎝

Δ−1
Δ−2

...

Δ−k0+1
Δ−k0

⎞
⎟⎟⎟⎟⎠=

⎛
⎝0

...

0

⎞
⎠

and

(Δ−k0 Δ−k0+1 · · · Δ−2 Δ−1 )Δk0(λ0) = (0 · · · 0 ) ,

where

Δk0(λ0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

Δ(λ0) Δ(1)(λ0) Δ(2)(λ0)/2! · · · Δ(k0−1)(λ0)/(k0 − 1)!
0

. . .
. . .

. . .
...

... 0
. . .

. . . Δ(2)(λ0)/2!
...

. . .
. . . Δ(1)(λ0)

0 · · · · · · 0 Δ(λ0)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Proof. We have

(λ − λ0)
k0I = Δ(λ)

(+∞∑
n=0

(λ − λ0)
nΔn−k0

)
=
(+∞∑

n=0

(λ − λ0)
nΔn−k0

)
Δ(λ).

Hence,

(λ − λ0)
k0I =

(+∞∑
n=0

(λ − λ0)
n Δ(n)(λ0)

n!

)(+∞∑
n=0

(λ − λ0)
nΔn−k0

)

=
+∞∑
n=0

(λ − λ0)
n

n∑
k=0

Δ(n−k)(λ0)

(n − k)! Δk−k0

and

(λ − λ0)
k0I =

+∞∑
(λ − λ0)

n

n∑
Δk−k0

Δ(n−k)(λ0)

(n − k)! .
n=0 k=0
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By the uniqueness of the Taylor’s expansion for analytic maps, we obtain that for n ∈
{0, . . . , k0 − 1},

0 =
n∑

k=0

Δk−k0

Δ(n−k)(λ0)

(n − k)! =
n∑

k=0

Δ(n−k)(λ0)

(n − k)! Δk−k0 .

Therefore, the result follows. �
Now we look for an explicit formula for the projector B

λ0
−1 on the generalized eigenspace

associated to λ0. Set

Ψ1(λ)(ϕ)(θ) :=
0∫

θ

eλ(θ−s)ϕ(s) ds

and

Ψ2(λ)

((
α

ϕ

))
(θ) := eλθ

[
α + ϕ(0) + L̂

( 0∫
.

eλ(.−s)ϕ(s) ds

)]
.

Then both maps are analytic and

(
λI − (A + L)

)−1
(

α

ϕ

)
=
(

0Rn

Ψ1(λ)(ϕ)(θ) + Δ(λ)−1Ψ2(λ)
(
α
ϕ

)
(θ)

)
.

We observe that the only singularity in the last expression is Δ(λ)−1. Since Ψ1 and Ψ2 are
analytic, we have for j = 1,2 that

Ψj (λ) =
+∞∑
n=0

(λ − λ0)
n

n! L
j
n(λ0),

where |λ − λ0| is small enough and L
j
n(.) := dnΨj (.)

dλn ,∀n � 0,∀j = 1,2. Hence we get

lim
λ→λ0

1

(k0 − 1)!
dk0−1

dλk0−1

(
(λ − λ0)

k0Ψ1(λ)
)

= lim
λ→λ0

1

(k0 − 1)!
+∞∑
n=0

(n + k0)!
(n + 1)!

(λ − λ0)
n+1

n! L1
n(λ0)

= 0

and
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lim
λ→λ0

1

(k0 − 1)!
dk0−1

dλk0−1

[
(λ − λ0)

k0Δ(λ)−1Ψ2(λ)
]

= lim
λ→λ0

1

(k0 − 1)!
dk0−1

dλk0−1

[( +∞∑
n=−k0

(λ − λ0)
n+k0Δn

)(+∞∑
n=0

(λ − λ0)
n

n! L2
n(λ0)

)]

= lim
λ→λ0

1

(k0 − 1)!
dk0−1

dλk0−1

[(+∞∑
n=0

(λ − λ0)
nΔn−k0

)(+∞∑
n=0

(λ − λ0)
n

n! L2
n(λ0)

)]

= lim
λ→λ0

1

(k0 − 1)!
dk0−1

dλk0−1

[+∞∑
n=0

n∑
j=0

(λ − λ0)
n−jΔn−j−k0

(λ − λ0)
j

j ! L2
j (λ0)

]

= lim
λ→λ0

1

(k0 − 1)!
dk0−1

dλk0−1

[+∞∑
n=0

(λ − λ0)
n

n∑
j=0

Δn−j−k0

1

j !L
2
j (λ0)

]
=

k0−1∑
j=0

1

j !Δ−1−jL
2
j (λ0).

From the above results we can obtain the explicit formula for the projector B
λ0
−1 on the gener-

alized eigenspace associated to λ0, which is given in the following proposition.

Proposition 4.4. Each λ0 ∈ σ((A+L)) is a pole of (λI − (A+L))−1of order k0 � 1. Moreover,
k0 is the only integer such that there exists Δ−k0 ∈ Mn(R) with Δ−k0 
= 0, such that

Δ−k0 = lim
λ→λ0

(λ − λ0)
k0Δ(λ)−1.

Furthermore, the projector B
λ0
−1 on the generalized eigenspace of (A + L) associated to λ0 is

defined by the following formula

B
λ0
−1

(
α

ϕ

)
=
[

0Rn∑k0−1
j=0

1
j !Δ−1−jL

2
j (λ0)

(
α
ϕ

)] , (4.7)

where

Δ−j = lim
λ→λ0

1

(k0 − j)!
dk0−j

dλk0−j

(
(λ − λ0)

k0Δ(λ)−1), j = 1, . . . , k0,

L2
0(λ)

(
α

ϕ

)
(θ) = eλθ

[
α + ϕ(0) + L̂

( 0∫
.

eλ(.−s)ϕ(s) ds

)]
,

and

L2
j (λ)

(
α

ϕ

)
(θ) = dj

dλj

[
L2

0(λ)

(
α

ϕ

)
(θ)

]

=
j∑

k=0

Ck
j θkeλθ dj−k

dλj−k

[
α + ϕ(0) + L̂

( 0∫
eλ(.−s)ϕ(s) ds

)]
, j � 1,
.
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here

di

dλi

[
α + ϕ(0) + L̂

( 0∫
.

eλ(.−s)ϕ(s) ds

)]
= L̂

( 0∫
.

(. − s)ieλ(.−s)ϕ(s) ds

)
, i � 1.

5. Projector for a simple eigenvalue

In studying Hopf bifurcation it usually requires to consider the projector for a simple eigen-
value. In this section we study the case when λ0 is a simple eigenvalue of (A + L). That is, λ0
is pole of order 1 of the resolvent of (A + L) and the dimension of the eigenspace of (A + L)

associated to the eigenvalue λ0 is 1.
We know that λ0 is a pole of order 1 of the resolvent of (A + L) if and only if there exists

Δ−1 
= 0, such that

Δ−1 = lim
λ→λ0

(λ − λ0)Δ(λ)−1.

From Lemma 4.3, we have Δ−1Δ(λ0) = Δ(λ0)Δ−1 = 0. Hence

Δ−1
[
B + L̂

(
eλ0.I

)]= [B + L̂
(
eλ0.I

)]
Δ−1 = λ0Δ−1.

From the proof of Lemma 3.10, it can be checked that λ0 is simple if and only if
dim[N(Δ(λ0))] = 1. In that case, there exist Vλ0 ,Wλ0 ∈ Cn \ {0} such that

WT
λ0

Δ(λ0) = 0 and Δ(λ0)Vλ0 = 0. (5.1)

Hence, by Lemma 4.3 (replacing Vλ0W
T
λ0

by δVλ0W
T
λ0

for some δ 
= 0 if necessary), we can
always assume that

Δ−1 = Vλ0W
T
λ0

. (5.2)

Then we can see that B
λ0
−1B

λ0
−1 = B

λ0
−1 if and only if

Δ−1 = Δ−1

[
I + L̂

( 0∫
.

eλ0. ds

)]
Δ−1. (5.3)

Therefore, we obtain the following corollary.

Corollary 5.1. λ0 ∈ σ((A + L)) is a simple eigenvalue of (A + L) if and only if

lim
λ→λ0

(λ − λ0)
2Δ(λ)−1 = 0

and

dim
[
N
(
Δ(λ0)

)]= 1.
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Moreover, the projector on the eigenspace associated to λ0 is

B
λ0
−1

(
α

ϕ

)
=
[

0Rn

eλ0θΔ−1[α + ϕ(0) + L̂(
∫ 0
.

eλ0(.−s)ϕ(s) ds)]
]

, (5.4)

where

Δ−1 = Vλ0W
T
λ0

,

in which Vλ0 ,Wλ0 ∈ Cn \ {0} are two vectors satisfying (5.1) and

Δ−1 = Δ−1

[
I + L̂

( 0∫
.

eλ0. ds

)]
Δ−1.

Remark 5.2. Eq. (5.4) can be rewritten as

B
λ0
−1

(
α

ϕ

)
=
[

0Rn

eλ0θVλ0[WT
λ0

α + 〈〈e−λ0.WT
λ0

, ϕ〉〉]
]

,

where 〈〈·,·〉〉 is the formal adjoint product defined by

〈〈χ,ϕ〉〉 = χ(0)ϕ(0) −
0∫

−r

θ∫
0

χ(ξ − θ) dη(θ)ϕ(ξ) dξ

with χ ∈ C([0, r],Cn∗) and ϕ ∈ C([−r,0],Cn).

6. Comments on the semi-linear problem

In this section we give a few comments and remarks concerning the results obtained in this
paper. In order to study the semi-linear FDE⎧⎨

⎩
dx(t)

dt
= Bx(t) + L̂(xt ) + f (xt ), ∀t � 0,

x
ϕ
0 = ϕ ∈ C

([−r,0],Rn
)
,

(6.1)

we considered the associated abstract Cauchy problem

dv(t)

dt
= Av(t) + L

(
v(t)

)+ F
(
v(t)

)
, t � 0, and v(0) =

(
0Rn

ϕ

)
∈ D(A), (6.2)

where

F

(
0

ϕ

)
=
(

f (ϕ)

0

)
.

By using Lemma 3.7 we can check that the integrated solutions of (6.2) are the usual solutions
of the FDE (6.1).
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Now we are in the position to investigate the properties of the semiflows generated by the FDE
by using the known results on non-densely defined semi-linear Cauchy problems. In particular
when f is Lipschitz continuous, from the results of Thieme [21], for each ϕ ∈ C we obtain a
unique solution t → xϕ(t) on [−r,+∞) of (6.1), and we can define a non-linear C0-semigroup
{U(t)}t�0 on C by

U(t)ϕ = x
ϕ
t .

From the results in Magal [18], one may also consider the case where f is Lipschitz on bounded
sets of C. The non-autonomous case has also been considered in Thieme [21] and Magal [18]. We
refer to Ezzinbi and Adimy [11] for more results about the existence of solutions using integrated
semigroups.

In order to describe the local asymptotic behavior around some equilibrium, we assume that
x ∈ Rn is an equilibrium of the FDE (6.1), that is,

0 = Bx + L(x1[−r,0]) + f (x1[−r,0]).

Then by the stability result of Thieme [21], we obtain the following stability results for FDE.

Theorem 6.1 (Exponential stability). Assume that f :C → Rn is continuously differentiable in
some neighborhood of x1[−r,0], and that Df (x1[−r,0]) = 0. Assume in addition that each solution
of the characteristic equation Δ(λ) = 0 has strictly negative real part. Then there exist η,M,γ ∈
[0,+∞), such that for each ϕ ∈ C with ‖ϕ−x1[−r,0]‖C � η, the FDE (6.1) has a unique solution
t → xϕ(t) on [−r,+∞), which satisfies

∥∥xϕ
t − x1[−r,0]

∥∥
C

� Me−γ t‖ϕ − x1[−r,0]‖C, ∀t � 0.

The above theorem is well known in the context of FDE (see Hale and Verduyn Lunel [13]).
So here we do not need to prove such a result again. Nevertheless, as noticed first by Ovide Arino
in the early 1990s, the non-densely defined operator approach can be very useful in investigating
bifurcation problem in the context of FDE. Such an approach was extensively studied by Arino’s
team (see Adimy [1,2], Adimy and Arino [3], Ezzinbi and Adimy [11] and references therein).
More recently, the existence and smoothness of the center manifolds was also investigated for
abstract non-densely defined Cauchy problems by Magal and Ruan [20]. More precisely, if we
denote Πc : X → X, the bounded linear operator of projection

Πc = B
λ1−1 + · · · + B

λm

−1,

where {λ1, λ2, . . . , λm} = σC(A + L) := {λ ∈ σ(A + L): Re(λ) = 0}, then Xc = Πc(X) is the
direct sum of the generalized eigenspaces associated to the eigenvalues {λ1, λ2, . . . , λm}. More-
over,

Πc(X) ⊂ X0,
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and Πc commutes with the resolvent of (A+L). Set Xh = R(I −Πc) (� X0). Then we can split
the original abstract Cauchy problem (6.2) into the following system

⎧⎪⎨
⎪⎩

duc(t)

dt
= (A + L)cuc(t) + ΠcF

(
uc(t) + uh(t)

)
,

duh(t)

dt
= (A + L)huh(t) + ΠhF

(
uc(t) + uh(t)

)
,

(6.3)

where (A + L)c, the part of A + L in Xc, is a bounded linear operator (since dim(Xc) < +∞),
and (A + L)h, the part of A + L in Xh, is a non-densely defined Hille–Yosida operator. So the
first equation of (6.3) is an ordinary differential equation and the second equation of (6.3) is a
new non-densely defined Cauchy problem, with

σ
(
(A + L)h

)= σ
(
(A + L)

) \ σC(A + L).

If we assume that F is Ck in some neighborhood of the equilibrium, we can find (see [20])
a manifold

M = {xc + ψ(xc): xc ∈ Xc

}
,

where ψ : Xc → Xh ∩ D(A) is Ck, and M is local invariant by the semiflow generated by (6.2).
Consequently, we obtain the reduced system on the center manifold

duc(t)

dt
= (A + L)cuc(t) + ΠcF

(
uc(t) + ψ

(
uc(t)

))
,

which allows us, for example, to prove the classical Hopf bifurcation result for the FDE.
Let us finally consider the following class of functional partial differential equations⎧⎨

⎩
dx(t)

dt
= Bx(t) + L̂(xt ) + f (xt ), ∀t � 0,

x0 = ϕ ∈ C
([−r,0], Y ),

where B :D(B) ⊂ Y → Y is a linear operator on a Banach space Y, L̂ :C([−r,0], Y ) → Y is a
bounded linear operator, and f :C([−r,0], Y ) → Y is a continuous map. Assume that B is the
infinitesimal generator of compact linear C0-semigroup {TB(t)}t�0 on Y. Then we fall down into
the context of the book of Wu [30], and all the results from Sections 3 to 6 can be adapted to
such a context.
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