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Abstract: We model the COVID-19 coronavirus epidemic in China. We use early reported case data
to predict the cumulative number of reported cases to a final size. The key features of our model are
the timing of implementation of major public policies restricting social movement, the identification
and isolation of unreported cases, and the impact of asymptomatic infectious cases.
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1. Introduction

Many mathematical models of the COVID-19 coronavirus epidemic in China have been developed,
and some of these are listed in our references [1–9]. We develop here a model describing this epidemic,
focused on the effects of the Chinese government imposed public policies designed to contain this
epidemic, and the number of reported and unreported cases that have occurred. Our model here is
based on our model of this epidemic in [10], which was focused on the early phase of this epidemic
(January 20 through January 29) in the city of Wuhan, the epicenter of the early outbreak. During this
early phase, the cumulative number of daily reported cases grew exponentially. In [10], we identified
a constant transmission rate corresponding to this exponential growth rate of the cumulative reported
cases, during this early phase in Wuhan.

On January 23, 2020, the Chinese government imposed major public restrictions on the population
of Wuhan. Soon after, the epidemic in Wuhan passed beyond the early exponential growth phase, to a
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phase with slowing growth. In this work, we assume that these major government measures caused the
transmission rate to change from a constant rate to a time dependent exponentially decreasing rate. We
identify this exponentially decreasing transmission rate based on reported case data after January 29.
We then extend our model of the epidemic to the central region of China, where most cases occurred.
Within just a few days after January 29, our model can be used to project the time-line of the model
forward in time, with increasing accuracy, to a final size.

2. Model

We consider the following system of ordinary differential equations to describe the propagation of
the disease 

S ′(t) = −τ(t)S (t)[I(t) + U(t)],
I′(t) = τ(t)S (t)[I(t) + U(t)] − νI(t),
R′(t) = ν1I(t) − ηR(t),
U′(t) = ν2I(t) − ηU(t).

(2.1)

The initial conditions of system (2.1) are the following

S (t0) = S 0 > 0, I(t0) = I0 > 0, R(t0) = 0 and U(t0) = U0 ≥ 0. (2.2)

The onset of the epidemic is t0 in days. The population is compartmentalized at each time t ≥ t0

into susceptible S (t), asymptomatic infectious I(t), symptomatic infectious who are unreported U(t),
and finally symptomatic infectious individuals reported by the public health service R(t). We assume
that reported people will non longer participate into the infections because they are isolated. Therefore
only infectious individuals belonging to I(t) or U(t) spread the disease. The average time spent in the
asymptomatic infectious class is 1/ν days. We assume that once an individual becomes symptomatic
(reported or unreported), he will be infectious during an average period of 1/η days.

Remark 2.1. The transmission rate of asymptomatic infectious individuals is not known [11]. It has
been confirmed that asymptomatic transmission occurs [12]. We assume that the asymptomatic trans-
mission rate is the same as the rate for symptomatic individuals for simplicity. For the model simula-
tions it does not change the outcomes very much, as long as the two rates are not significantly different.
In future work we will address this issue.

The parameters of model (2.1) are listed in Table 1 and Figure 1 is a flow diagram describing the
model.
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Table 1. Parameters of the model.

Symbol Interpretation Method
t0 Time at which the epidemic started fitted
S 0 Number of susceptible at time t0 fixed
I0 Number of asymptomatic infectious at time t0 fitted
U0 Number of unreported symptomatic infectious at time t0 fitted
τ(t) Transmission rate at time t fitted
1/ν Average time during which asymptomatic infectious are asymptomatic fixed
f Fraction of asymptomatic infectious that become reported symptomatic infectious fixed
ν1 = f ν Rate at which asymptomatic infectious become reported symptomatic fitted
ν2 = (1 − f ) ν Rate at which asymptomatic infectious become unreported symptomatic fitted
1/η Average time symptomatic infectious have symptoms fixed
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τS[I + U ]

ν1
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ν
2I

Removed
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ηU

Figure 1. Flow chart of the model.

3. Data

We use cumulative reported data from the National Health Commission of the People’s Republic of
China and the Chinese CDC for mainland China. Before February 11, the data was based on confirmed
testing. From February 11 to February 15, the data included cases that were not tested for the virus, but
were clinically diagnosed based on medical imaging showing signs of pneumonia. There were 17,409
such cases from February 10 to February 15. The data from February 10 to February 15 specified both
types of reported cases. From February 16, the data did not separate the two types of reporting, but
reported the sum of both types. We subtracted 17,409 cases from the cumulative reported cases after
February 15 to obtain the cumulative reported cases based only on confirmed testing after February 15.
The data is given in Table 2 with this adjustment.

Mathematical Biosciences and Engineering Volume 17, Issue 4, xxx–xxx



4

20 30 40 50 60

1000

2000

3000

4000

Daily reported cases

20 30 40 50 60

10000

20000

30000

40000

50000

60000

Cumulative reported cases

Figure 2. Daily reported cases data (left) and cumulative reported cases data (right). The
epidemic turning point of the reported case data is approximately February 4, 2020 (day 35,
day 1 = January 1, 2020).

Table 2. Cumulative daily reported case data from January 19, 2020 to March 6, 2020,
reported for mainland China by the National Health Commission of the People’s Republic of
China and the Chinese CDC. The data corresponds to cumulative reported cases confirmed
by testing.

Date (January) 19 20 21 22 23 24 25 26 27 28 29 30 31
Confirmed cases 198 291 440 571 830 1287 1975 2744 4515 5974 7711 9692 11791
Date (February) 1 2 3 4 5 6 7 8 9 10 11 12 13
Confirmed cases 14380 17205 20438 24324 28018 31161 34546 37198 40171 42638 44653 46472 48467
Date (February) 14 15 16 17 18 19 20 21 22 23 24 25 26
Confirmed cases 49970 51091 53139 55027 56776 57593 58482 58879 59527 59741 60249 60655 61088
Date (February) 27 28 29
Confirmed cases 61415 61842 62415
Date (March) 1 2 3 4 5 6
Confirmed cases 62617 62742 62861 63000 63143 63242

We plot the data for daily reported cases and the cumulative reported cases in Figure 2.

4. Model parameters

In the following we assume that f = 0.8. This means that 80% of symptomatic infectious cases are
reported while 20% are unreported and are still involved in the spread of the disease. We assume that
the incubation period is an average 7 days that is ν = 1/7. We also assume that symptomatic individuals
(reported or unreported) will be infectious during an average period of 7 days that is η = 1/7. The
values of these parameters can be readjusted according to the studies that will be carried out during the
pandemic.

As in our previous work [10], we start from the assumption that the cumulative number of cases has
an exponential growth in the early phase of the epidemic and satisfy

CR(t) = χ1 exp(χ2t) − χ3, t ≥ t0

with values χ1 = 0.15, χ2 = 0.38, χ3 = 1.0. These values of χ1, χ2, and χ3 are fitted to reported case
data from January 19 to January 28. We assumed the initial value S 0 = 11, 000, 000, the population
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of the city Wuhan, which was the epicenter of the epidemic outbreak where almost all cases in China
occurred in this time period. The other initial conditions are

I0 =
χ2χ3

f (ν1 + ν2)
= 3.3, U0 =

( (1 − f )(ν1 + ν2)
η + χ2

)
I0 = 0.18.

The time-dependent transmission rate τ(t) is supposed to be constant during the exponential growth
phase of the cumulative number of reported cases and is given by

τ0 =

(
χ2 + ν1 + ν2

S 0

) (
η + χ2

ν2 + η + χ2

)
= 4.51 × 10−8.

The initial time is
t0 =

1
χ2

(
log(χ3) − log(χ1)

)
= 5.

The value of the basic reproductive number is

R0 =

(
τ0S 0

ν1 + ν2

) (
1 +

ν2

η

)
= 4.16.

These parameter formulas were derived in [10].
After January 23, strong government measures in all of China, such as isolation, quarantine, and

public closings, strongly impacted the transmission of new cases. The actual effects of these measures
were complex, and we use an exponential decrease for the transmission rate τ(t) to incorporate these
effects after the early exponentially increasing phase. The formula for τ(t) during the exponential
decreasing phase was derived by a fitting procedure. The formula for τ(t) isτ(t) = τ0, 0 ≤ t ≤ N,

τ(t) = τ0 exp (−µ (t − N)) , N < t,
(4.3)

The date N and the value of µ are chosen so that the cumulative reported cases in the numerical
simulation of the epidemic aligns with the cumulative reported case data during a period of time after
January 19. We choose N = 25 (January 25) for our simulations. We illustrate τ(t) in Figure 3, with
µ = 0.16. In this way we are able to project forward the time-path of the epidemic after the government
imposed public restrictions, as it unfolds.

5. Model simulation

We assume that exponentially increasing phase of the epidemic (as incorporated in τ0) is intrinsic
to the population of any subregion of China, after it is has been established in the epidemic epicenter
Wuhan. We also assume that the susceptible population S (t) is not significantly reduced over the course
of the epidemic. We set τ0 = 4.51 × 10−8, t0 = 5.0, I(t0) = 3.3, and U(t0) = 0.18, as in Section 4. We
set S (t0) in (2.2) to 1, 400, 050, 000 (the population of mainland China). We set τ(t) in (2.1) toτ(t) = τ0 S 0 / 1, 400, 050, 000, 0 ≤ t ≤ 25,

τ(t) = τ0 S 0 /1, 400, 050, 000 exp (−µ (t − 25)) , 25 < t,
(5.4)
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Figure 3. Graph of τ(t) with N = 25 (January 25) and µ = 0.16. The transmission rate is
effectively 0.0 after day 53 (February 22).

where S 0 = 11, 000, 000 (the population of Wuhan). We thus assume that the government imposed
restriction measures became effective in reducing transmission on January 25.

In Figure 4, we plot the graphs of CR(t), CU(t), R(t), and U(t) from the numerical simulation for
simulations based on six time intervals for known values of the cumulative reported case data. For each
of these time intervals, a value of µ is chosen so that the simulation for that time interval aligns with
the cumulative reported case data in that interval. In this way, we are able to predict the future values
of the epidemic from early cumulative reported case data.

In Figure 5, we plot the graphs of the reported cases R(t), the unreported cases U(t), and the infec-
tious pre-symptomatic cases I(t). The blue dots are obtained from the reported cases data (Table 2) for
each day beginning on January 26, by subtracting from each day, the value of the reported cases one
week earlier.

Our model transmission rate τ(t) can be modified to illustrate the effects of an earlier or later imple-
mentation of the major public policy interventions that occurred in this epidemic. The implementation
one week earlier (25 is replaced by 18 in (4.1)) is graphed in Figure 6A. All other parameters and the
initial conditions remain the same. The total reported cases is approximately 4, 500 and the total unre-
ported cases is approximately 1, 100. The implementation one week later (25 is replaced by 32 in (4.1))
is graphed in Figure 6B. The total reported cases is approximately 820, 000 and the total unreported
cases is approximately 200, 000. The timing of the institution of major social restrictions is critically
important in mitigating the epidemic.

The number of unreported cases is of major importance in understanding the evolution of an epi-
demic, and involves great difficulty in their estimation. The data from January 19 to February 15 for
reported cases in Table 2, was only for confirmed tested cases. Between February 11 and February 15,
additional clinically diagnosed case data, based on medical imaging showing signs of pneumonia, was
also reported by the Chinese CDC. Since February 16, only tested case data has been reported by the
Chinese CDC, because new NHC guidelines removed the clinically diagnosed category. Thus, after
February 15, there is a gap in the reported case data that we used up to February 15. The uncertainty
of the number of unreported cases for this epidemic includes this gap, but goes even further to include
additional unreported cases.

Mathematical Biosciences and Engineering Volume 17, Issue 4, xxx–xxx



7

20 30 40 50 60
0

10000

20000

30000

40000

50000

A: Data January 19 - January 31

μ = 0.16

Data

CR(t)

CU(t)

R(t)

U(t)

20 30 40 50 60
0

10000

20000

30000

40000

50000

60000

B: Data January 19 - February 7

μ = 0.14

Data

CR(t)

CU(t)

R(t)

U(t)

20 30 40 50 60
0

10000

20000

30000

40000

50000

60000

C: Data January 19 - February 14

μ = 0.14

Data

CR(t)

CU(t)

R(t)

U(t)

20 30 40 50 60
0

10000

20000

30000

40000

50000

60000

D: Data January 19 - February 21

μ = 0.139

Data

CR(t)

CU(t)

R(t)

U(t)

20 30 40 50 60
0

10000

20000

30000

40000

50000

60000

E: Data January 19 - February 28

μ = 0.139

Data

CR(t)

CU(t)

R(t)

U(t)

20 30 40 50 60
0

10000

20000

30000

40000

50000

60000

F: Data January 19 - March 6

μ = 0.139

Data

CR(t)

CU(t)

R(t)

U(t)

Figure 4. Graphs of CR(t), CU(t), U(t), R(t). The red dots are the reported case data. The
value of µ (indicated in each of the sub-figures) is estimated by fitting the model output
for each time interval to the cumulative reported case data for that time interval. The final
size of cumulative cases is approximately (A) 49, 600 reported, 12, 400 unreported; (B) and
(C) 62,700 reported, 15,700 unreported cases; and (D), (E), (F): 63, 500 reported, 15, 900
unreported.
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Figure 5. Graphs of R(t), U(t), I(t). The blue dots are the day by day weekly reported
data. The turning point of the asymptomatic infectious cases I(t) is approximately day 35
= February 4. The turning point of the reported cases R(t) and the unreported cases U(t) is
approximately day 41 = February 10. The turning point of the day by day weekly reported
data is approximately day 41.
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Figure 6. Graphs of CR(t), CU(t), U(t), R(t). A: The major public policy interventions were
implemented one week earlier (January 18). B: The major public policy interventions were
implemented one week later (February 1). The one week earlier turning point day is 33 =

February 2. The one week later turning point is day 46 = February 15.

Mathematical Biosciences and Engineering Volume 17, Issue 4, xxx–xxx



9

20 30 40 50 60
0

20000

40000

60000

80000

100000

A: f = 0.4

μ = 0.148

Data

CR(t)

CU(t)

R(t)

U(t)

20 30 40 50 60
0

10000

20000

30000

40000

50000

60000

B: f = 0.6

μ = 0.144

Data

CR(t)

CU(t)

R(t)

U(t)

Figure 7. Graphs of CR(t), CU(t), U(t), R(t). The red dots are the cumulative reported case
data from Table 2. A: f = 0.4. The basic reproductive number is R0 = 5.03. The final
size of the epidemic is approximately 157, 800 total cases. The turning point of the epidemic
is approximately day 41 = February 10. B: f = 0.6, The basic reproductive number is
R0 = 4.62. The final size of the epidemic is approximately 105, 500 total cases. The turning
point is approximately day 41 = February 10.

We assumed previously that the fraction f of reported cases was f = 0.8 and the fraction of un-
reported cases was 1 − f = 0.2. Our model formulation can be applied with varying values for the
fraction f . In Figure 7, we provide illustrations with the fraction f = 0.4 (Figure 7A) and f = 0.6
(Figure 7B). For f = 0.4, the formula for the time dependent transmission rate τ(t) in (4.1) involves
new values for τ0 = 4.08 × 10−8 and µ = 0.148. The initial conditions I0 = 6.65 and U0 = 1.09 also
have new values. The other parameters and initial conditions remain the same. For f = 0.4, the total
reported cases is approximately 63, 100 and the total unreported cases is approximately 94, 700. For
f = 0.6, the formula for the time dependent transmission rate τ(t) in (4.1) involves new values for
τ0 = 4.28× 10−8 and µ = 0.144. The initial conditions I0 = 4.43 and U0 = 0.485 also have new values.
The other parameters and initial conditions remain the same. For f = 0.6, the total reported cases is ap-
proximately 63, 300 and the total unreported cases is approximately 42, 200. From these simulations,
we see that estimation of the number of unreported cases has major importance in understanding the
severity of this epidemic.

The number of days an asymptomatic infected individual is infectious is uncertain. We simulate in
Figure 8 the model with ν = 1/3 (asymptomatic infected individuals are infectious on average 3 days
before becoming symptomatic), and ν = 1/5 (asymptomatic infected individuals are infectious on
average 5 days before becoming symptomatic). For ν = 1/3, τ0 = 5.75 × 10−8, I0 = 1.48, U0 = 0.18,
R0 = 2.78, µ = 0.0765, N = 24. For ν = 1/5, τ0 = 4.90 × 10−8, I0 = 2.38, U0 = 0.18, R0 = 3.45,
µ = 0.098, N = 24. Because the asymptomatic infectious periods are shorter, The date N of the
effective reduction of the transmission rate due to restriction measures, is one day earlier.

In Figure 9, we illustrate the importance of the level of government imposed public restrictions by
altering the value of µ in formula (4.1). All other parameters and initial conditions are the same as in
Figure 4. In Figure 9A we set µ = 0.0, corresponding to no restrictions. The final size of cumula-
tive reported cases after 100 days is approximately 1,080,000,000 cases, approximately 270,000,000
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unreported cases, and approximately 1,350,000,000 total cases. The turning point is approximately
day 65 = March 6. In Figure 9B we set µ = 0.17, corresponding to a higher level of restrictions than
in Figure 4. The final size of cumulative reported cases after 70 days is approximately 45,300 cases,
approximately 11,300 unreported cases, and approximately 56,600 total cases. The turning point is ap-
proximately day 38 = February 7. The level and timing of government restrictions on social distancing
is very important in controlling the epidemic.
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Figure 8. Graphs of CR(t), CU(t), U(t), R(t). The red dots are the cumulative reported case
data from Table 2. A: ν = 1/3. B: ν = 1/5. The turning point is approximately day 40 =

February 9 for both cases. The final sizes of CR(t) and CU(t) are approximately the same as
for ν = 1/7 in both cases.
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Figure 9. Graphs of CR(t), CU(t), U(t), and R(t). case data from Table 2. A: µ = 0.0
The orange horizontal line is the population of mainland China. B: µ = 0.17. A significant
reduction of cases occurs compared to the cumulative reported case data (red dots).

6. Discussion

We have developed a model of the COVID-19 epidemic in China that incorporates key features
of this epidemic: (1) the importance of the timing and magnitude of the implementation of major
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government public restrictions designed to mitigate the severity of the epidemic; (2) the importance of
both reported and unreported cases in interpreting the number of reported cases; and (3) the importance
of asymptomatic infectious cases in the disease transmission. In our model formulation, we divide
infectious individuals into asymptomatic and symptomatic infectious individuals. The symptomatic
infectious phase is also divided into reported and unreported cases. Our model formulation is based on
our work [10], in which we developed a method to estimate epidemic parameters at an early stage of
an epidemic, when the number of cumulative cases grows exponentially. The general method in [10],
was applied to the COVID-19 epidemic in Wuhan, China, to identify the constant transmission rate
corresponding to the early exponential growth phase.

In this work, we use the constant transmission rate in the early exponential growth phase of the
COVID-19 epidemic identified in [10]. We model the effects of the major government imposed public
restrictions in China, beginning on January 23, as a time-dependent exponentially decaying transmis-
sion rate after January 24. With this time dependent exponentially decreasing transmission rate, we are
able to fit with increasing accuracy, our model simulations to the Chinese CDC reported case data for
all of China, forward in time from February 15, 2020.

Our model demonstrates the effects of implementing major government public policy measures. By
varying the date of the implementation of these measures in our model, we show that had implemen-
tation occurred one week earlier, then a significant reduction in the total number of cases would have
resulted. We show that if these measures had occurred one week later, then a significant increase in
the total number of cases would have occurred. We also show that if these measures had been less
restrictive on public movement, then a significant increase in the total size of the epidemic would have
occurred. It is evident, that control of a COVID-19 epidemic is very dependent on an early implemen-
tation and a high level of restrictions on public functions.

We varied the fraction 1− f of unreported cases involved in the transmission dynamics. We showed
that if this fraction is higher, then a significant increase in the number of total cases results. If it is
lower, then a significant reduction occurs. It is evident, that control of a COVID-19 epidemic is very
dependent on identifying and isolating symptomatic unreported infectious cases. We also decreased the
parameter ν (the reciprocal of the average period of asymptomatic infectiousness), and showed that the
total number of cases in smaller. It is also possible to decrease η (the reciprocal of the average period
of unreported symptomatic infectiousness), to obtain a similar result. It is evident that understanding
of these periods of infectiousness is important in understanding the total number of epidemic cases.

Our model was specified to the COVID-19 outbreak in China, but it is applicable to any outbreak
location for a COVID-19 epidemic.

Acknowledgments

This research was partially supported by NSFC and CNRS (Grant Nos. 11871007 and
11811530272) and the Fundamental Research Funds for the Central Universities. Research was
also partially supported by CNRS and National Natural Science Foundation of China (Grant
No.11811530272).

Conflict of interest

The authors declare there is no conflicts of interest.

Mathematical Biosciences and Engineering Volume 17, Issue 4, xxx–xxx



12

References

1. D. S. Hui, E. I. Azhar, T. A. Madani, F. Ntoumi, R. Kock, O. Dar, et al., The continuing 2019-
nCoV epidemic threat of novel corona viruses to global health - The latest 2019 novel corona virus
outbreak in Wuhan, China, Int. J. Infect. Dis., 91 (2020), 264–266.

2. H. Nishiura, N. M. Linton, A. R. Akhmetzhanov, Initial cluster of novel coronavirus (2019-nCoV)
infections in Wuhan, China Is consistent with substantial human-to-human transmission, J. Clin.
Med., 9 (2020), 488.

3. K. Roosa, Y. Lee, R. Luo, A. Kirpich, R. Rothenberg, J. M. Hyman, et al., Real-time forecasts
of the COVID-19 epidemic in China from February 5th to February 24th, Infect. Dis. Model., 5
(2020), 256–263.

4. Y. Shao, J. Wu, IDM editorial statement on the 2019-nCoV, Infect. Dis. Model., 5 (2020), 233–234.

5. B. Tang, N. L. Bragazzi, Q. Li, S. Tang, Y. Xiao, J. Wu, An updated estimation of the risk of
transmission of the novel coronavirus (2019-nCov), Infect. Dis. Model., 5 (2020), 248–255.

6. B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao, et al., Estimation of the transmission
risk of the 2019-nCoV and its implication for public health interventions, J. Clin. Med., 9 (2020),
462.

7. R. N. Thompson, Novel coronavirus outbreak in Wuhan, China, 2020: Intense surveillance Is vital
for preventing sustained transmission in new locations, J. Clin. Med., 9 (2020), 498.

8. J. T. Wu, K. Leung, G. M. Leung, Nowcasting and forecasting the potential domestic and inter-
national spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study, The
Lancet, 395 (2020), 689–697.

9. S. Zhao, S. S. Musa, Q. Lin, J. Ran, G. Yang, W. Wang, et al., Estimating the unreported number
of novel Coronavirus (2019-nCoV) cases in China in the first half of January 2020: A data-driven
modelling analysis of the early outbreak, J. Clin. Med., 9 (2020), 388.

10. Z. Liu, P. Magal, O. Seydi, G. Webb, Understanding unreported cases in the 2019-nCov epidemic
outbreak in Wuhan, China, and the importance of major public health interventions, Biology, 9
(2020), 50.

11. Centers for Disease control and prevention, Healthcare Professionals: Frequently Asked Questions
and Answers, 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/
faq.html.

12. ARIA BENDIX, A Person Can Carry And Transmit COVID-19 With-
out Showing Symptoms, Scientists Confirm, BUSINESS INSIDER,
24 February, 2020. Available from: https://www.sciencealert.com/
\researchers-confirmed-patients-can-transmit-the-coronavirus-without\
-showing-symptoms.

c© 2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 17, Issue 4, xxx–xxx

https://www.cdc.gov/coronavirus/2019-ncov/hcp/faq.html. 
https://www.cdc.gov/coronavirus/2019-ncov/hcp/faq.html. 
 https://www.sciencealert.com/\researchers-confirmed-patients-can-transmit-the-coronavirus-without\-showing-symptoms
 https://www.sciencealert.com/\researchers-confirmed-patients-can-transmit-the-coronavirus-without\-showing-symptoms
 https://www.sciencealert.com/\researchers-confirmed-patients-can-transmit-the-coronavirus-without\-showing-symptoms
http://creativecommons.org/licenses/by/4.0

	Introduction
	Model
	Data
	Model parameters
	Model simulation
	Discussion

