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1 INTRODUCTION AND MAIN RESULTS

In this paper we deal with non-monotone discrete time dynamical
systems preserving a cone of a Banach space. Our aim is to obtain a
general result concerning the convergence of all solutions of the system
to an equilibrium solution, which is what we call a global stabiliza-
tion result. In Magal [5,6] results are obtained on the existence and
uniqueness of non-trivial fixed points, together with a global attractiv-
ity result for the case when there is a unique non-trivial fixed point. In
this paper we extend the global stabilization result to the case where
there are several non-trivial fixed points.

Let K be a cone of a Banach space (X, ||-]}), i.e. K is a closed convex
subset of X such that (i) (+KCK for all +>0, and (i) —x¢ K if
x € K\{0}. Such cone K induces a partial order on X, denoted by <
and defined by

x<y&ey—-xek

In the sequel, we denote by X™* the dual space of X (i.c. the space of
continuous linear forms on X'), and we denote by K~ the dual cone
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defined by
K'={feX":fix)z0,vxe K}

We will say that a cone K of a Banach space (X, ||-|) is normal if there
exists an equivalent norm ||-{|; on X such that

0<x<y =[xl <, "xryeK (1)

such norm is said to be monotonic. We will say that (X, <) (where < 1is
the partial order on X induced by X) is a vector lattice if sup(x, y) and
mf(x, y) exist for all {x, ¥y} € X x X. When this is the case we set

xT =sup(x,0)., x =sup(—x,0) and |x|=xT+x"

for all x€ X. One has x=x"—~x~ (see Schaefer [10, Theorem 1.1,
p. 207}). Given a cone K of a Banach space (X, ||-|) we set Bx(0,68) =
{x € K: ||x|| <&} (for § > 0); for each map g: 4 C K — X we set

lglip.s = sup llx =y llg(x) — g(»)I.

X yEAx#£y

A bounded linear operator L € £(X') is said to be positive if L(K) C K;
we denote by o(L) the spectrum, and by (L) the spectral radius of L.
As usual, given a map 7: M — M on a metric space (M, d) we define
the iterates T": M — M (meN) of T by T’=Idand 7" =T""oT
form>1.

In this paper we consider the following type of discrete time dynam-
that (X, <) i1s a vector lattice for the partial order < induced by K, and
let (A, d) be a metric space. Let F: A x K— K, (A, x) — F(A,x) = F)\(x)
be a continuous map, such that for each A € A the mapping Fy: K— K
is asymptotically smooth (as defined by Hale [2, p. 11]) and satisfies
F(0) =0. We consider then the following initial value problem (for
each A€ A):

x(t+1) = Fy(x(1)), VteN,

X(O) =xp €K 2)
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We will investigate global stabilization results for (2) under the follow-
ing assumptions:

(H1) There exists some Ay € A such that zero is globally asymptoti-
cally stable for F,,, and such that F,, has a right derivative
D, F\,(0) € L{X) at zero (see Deimling [1, p. 225] for the corre-
sponding definition).

(H2) There exist ve K\{0} and v* ¢ K*\{0} such that v*(v)=1,
D Fy,(0)y = v, D, F),(0)v = v, and

r{(Id — PYDLF,,(0)(Id - P)) < 1,
where P € L(X) is the projection defined by
P(x) = v"(x)v, V¥x€X.
(H3) The map g: A x K— X defined by
g x) = F(A\x)—D.F,,(0)x, VxeK, VA€A,
is such thét

im  sup el sos = O
60 AeAid(h o) <6 Lip,Bx(0,6)

(H4) For each Ae A there exists ay >0 such that Bg(0, a,) is posi-
tively invariant for Fy, and for all x€ K with ||x|| > a, there
exists m = m(x) € N such that

P ()| <

3
AN

(H5) There exists a compact subset C C K such that

Rlijlg_‘ 6(Userdiang)<r 4, C) = 0,

where 4, C K is (for each A € A) the maximal compact invariant
subset of F,, and where the distance 6(B;, B,) of By CX to
B, C X is defined by 6(B1, By) = sup,.ep, (infxes, [|x — »Il).

The following theorem is main result of this paper.
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THEOREM 1.1 Let K be a cone of a Banach space (X, ||-||) which is
normal, and such that (X, <) is a vector laitice for the order < induced
by K. Let (A,d) be a metric space. Let F: A x K— K be a continuous
map such that for each A€ A the mapping Fy is asymptotically smooth
and satisfies F)\(0) = 0. Assume also that the hypotheses (H1)—(HS) are
satisfied.

Then there exists some 6> 0 such that for all X € A with d(Xy, ) <6
and for all x, € K the sequence {F"(x,)}
of F\inK.

N converges to a fixed point

me

Remark  Since Fy (0) = 0 the right derivative D, F) (0) is a positive
operator, and therefore one can use the theory of positive bounded
linear operators to verify assumption (H2). To be more precise, (H2)
can be replaced by the assumption that D, F) (0) is primitive.
(A positive operator 4 € L(X) is primitive if for each x € K\{0} there
exists some m € N such that A™x belongs to the quasi-interior of K.)
Theorems 19.3 (p. 228) and 19.5 (p. 235) of the book by Deimling [1]
give further conditions which imply assumption (H2). We also refer to
the books by Schaefer [10,11] for more results on the spectral proper-
ties of positive bounded linear operators on a Banach lattice.

In order to distinguish between orbits converging to zero and orbits
converging to a non-trivial fixed point we will next assume that we can
find a positive operator 0 € £(X') which is a projection (i.e. 0> = Q)
such that Q(K') # {0} and for which we have that lim,, . F{"(x) = 0
for all x € K such that Qx = 0. Our next result gives additional assump-
tions on Q which will imply that in fact we have for all A € A\{)\¢} and
all x € K that

Ox=0 & lim F"(x) =0.

For A# A\ we call then M, ={x € K: Qx#0} the zero unstable part,
and K= {x € K: Qx =0} the zero stable part.

In order to formulate our hypotheses on Q we need to extend the
classical notion of ejectivity. Recall that a subset 4 C M is ejective for
a mapping 7: M — M on a metric space (M, d) if there exists a neigh-
borhood V' of 4 in M such that of each x € V'\4 we can find some
m & N such that T"(x) € M\ V. Here we will assume that 7 has a fixed
point X € M; given a subset 4 C M such that ¥ € 4 N 94 we will say
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that X is semi-gjective for T on M\ A if there exists a neighborhood V
of ¥ in M such that for each x& V\4 we can find some meN for
which 77(x) € M\ V. In particular, if we take 4 = {X} this reduces to
the ejectivity of {x}.

We have then the following corollary to Theorem 1.1.

COROLLARY 1.2 Under the assumptions of Theorem 1.1 let Q € L{X)
be a positive operator which is a projection (ie 0*=0Q) such that
O(K)+#{0}. Let Kg {xe K. Ox=0} and M,={xe K. Ox+£0}, and
ssuine that for A the following holds:

that fo A the fo ig

1

; sitively invariant for F
i Ly I/UQLLLVCL)« ey lLu’ll.JI i /\.

) For X £ Ay the fixed point 0 of F is semi-ejective on M, = K\ Ks.
H8) We mve]or each x € Kg that

lim F{"(x) = 0.

HI— 00
Then there exists a 6 >0 such that if 0 < d(Xg, \) <6 and xo€ M, then
the sequence {F{"(xy)},,en converges to a fixed point of F in M,

As an illustration of Corollary 1.2 we consider a discrete time popu-
lation dynamics model as introduced by Liu and Cohen [3]. Their model
leads to the difference equation

xi(t+1) = i{bfxi(t)exp< S+ X )1
=1

Xﬂ([ + 1) = xn—l(t) exp(— |:Mn—l + i’)/n—l.jxj(z)}>
=

for r € N, together with the initial condition
X[(O) = Xj 20, V,‘Z 1,...,1’1

the constants b;, ¥, yw and My (with ij/=1,...,n and k=
1,...,n—1) are all non-negative. In their paper [3] Liu and Cohen
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obtain an existence and uniqueness result for a non-trivial equilibrium
solution of (3). In Magal [6] (sec Theorem 1.2) a different method 1s
used to obtain the uniqueness of the non-trivial fixed point, while in
Magal [5] (see Theorem 1.4) the global attractivity of this non-trivial
fixed point is investigated. We also would like to mention the local sta-
bility result of Yicang and Cushing [13]. Their general stability result
is applied (see Example 3 in [13]) to some simplified version of the Liu
and Cohen [3]. To our knowledge no further results on the asymp-
totical behavior of (3) are available.
We first introduce some notation; we set

A= (b1, b, ..., b)) € R
and

n i—1
RN = b, withhy =1 and ;= [Jexp(~M)), Vi=2,....n.

=1 J=1

We also define p;=exp(—M;) (1<i<n—1), and denote by F: R’ x
R? — R, (A, x) — F(\, x) the mapping defined by the right-hand sidec

of (3).
Next fix some g = (6),53,...,69)7 € R" such that R(g)=1; let

ny = max{k |1 < k < n,bY > 0} and assume the following:

(i) 4, > Oforalli=1,...,n for which #? > 0;
(i1) the positive linear operator

- B -
V4 0 0

Ly = 0 D2 € Mﬂn(R)

1S primitive.

Finally, we set
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and
A= {A S Ri A €AL C1/\\g},

for some C; > 1. One has then the following theorem.

THEOREM 1.3 Under the assumptions (1) and (1) there exists some
6>0 such that for all A€ A\{Xo} with ||Ay ~ Alge <6 and for all
xo € R" we have

Flaan ETHMISOLN a2y Y S WA Y
m f{Xp) =0 Uxg = U,
T 00

lim F/'(xo) =% if Oxp #0;

m—oc

here X = X(xo, \) € R’ denotes a fixed point of Fy with QX # 0.

Remark The main difference between the previous result and
Theorem 6.2 of [5] is the simplication of the proof. Indeed, in [5] the
uniqueness of the non-trivial equilibrium is necessary. Such a unique-
ness result (proved in [6]) is in most cases difficult to prove. Here we
do not use such uniqueness result, so Corollary 1.2 is easier to apply.

The foregoing result can be extended to the population dynamics
model introduced by Magal and Pelletier {7]. In this model one con-
siders the difference equation

X +1) = (Z b,-xl-(t))

\ =1

x(t+ 1) = x1 (1) exp(— (M, + g1 E(1)))

xn(t + 1) = xn—](t> CXp(~—(M,1_1 + q:z—lE(t)))

n—1
E(t+1)=f <Z Wixi(£)gih(M; + ‘JfE(m)

i=1
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for 1 € N, and with the initial condition
x(0) =x;>0 (Vi=1,2,....n) and E(0) = E; > 0.

Again all constants appearing in (4) are non-negative, while the
function /2 : R, — R. is defined by

. 1 if x =0,
h(x) = ¢ 1 —exp(—x)

As for the func t;Oi“S R s R t-1 2) we assumne that they are
+ + \ } y
i

bounded, of clas A, and such that f;(0)=0; more in particular, we
assume that £ has the form fi(s) = sh;(s), with A, : R | — [0, 1] a strictly
decreasing C'-function satisfying /,(0)=1 and lim,_, /1 (s)=0. We
define A, R(A), [; (1<i<n) and p; (1<i<n—1) as in the previous
example. The state variable x=(xy,..., x,, £) in this case belongs to
R”*!, and the mapping F= F(), x) defined by the right-hand side of
(4) maps R x R™! into R"*!,

Consider again some Ay € R, such that R(Ao) = 1; let ng max{ki 1<
k < n, b0 > 0}, and define a projection Q on R™! by

Idgre 07
= i e M, 1(R).
0 [ 0 OJ +1(R)

Taking A C R’ as before we have then a result similar to Theorem 1.3.

THEOREM 1.4  Under the asvumptionv (i) there exists some §>0

such that for all e 1;\1/\0; with || “/\0 - /\”Rn < 6 and jU! all xo € R m’"“

we have

lim F{'(x0) =0, ifQOxo=0,

m—0C

and

lim F'(xy) =%, if Qxo#0,

m—o0

where X = x(x9, \) € R™' denotes a fixed point of Fy with Q% # 0.
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2 EXISTENCE OF AN ATTRACTOR

In this section we summarize some results proved in Magal [4] using
results on discrete time dissipative dynamical systems as found in the
book [2] by Hale.

PROPOSITION 2.1 Let K be a cone of a Banach space (X, {|-])), and let

(A,d) be a metric space. Let F:Ax K— K be a continuous map

such that F is asymptotically smooth for each A\ € A. Assume in addition

thar F satisfies ihe hypoihesis (H4). Then there exisls for each A€ A a

maximal compact subset Ay C By (0, ay) which is invariant under F»,

stable and attracting for compact subsets of K. Moreover, Ay s
d

connected.

PROPOSITION 2.2 Under the assumptions of Proposition 2.1 suppose
moreover that Fy\(0)=0 for all X€ A, and thar F also satisfies (H1) and
(HS). Then for each £ > 0 we can find some n > 0 such that A, C Bx (0, ¢)
Jor all X € A such that d(), Mg) <.

3 SOME REDUCTION RESULTS

In this section we recall some results due to Vanderbauwhede [12] con-
cerning the reduction of discrete time dynamical systems. Let (X, |i-|))
be a Banach space. We denote by Lip,(X) the space of bounded
Lipschitz continuous mapping from X into itself, and for each >0
we denote by (Y, (X), H'“YT,“(W) the Banach space of sequences
y={y_p,:p €N} C X such that

7y 00y = sup{n”lly-pll: p € N} < +o0.

Next consider a continuous map 7:X — X satisfying the following
hypotheses:

(h1) T hasthe form T(x)= Ax + g(x), with 4 € L(X ) and g € Lip,(X);
(h2) X admits a splitting X=X, & X,, where X and X, are closed
subspaces invariant under 4 and such that
a= sup [N <b= inf |A<I,
rea(4y) A€a(4z)
where 4, = A, € L(X}), i=1,2.
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For each 1> 0 we also define
M, ={yo € X|3y € Y, (X): yis a negative T-orbit through y,}.

Observe that T(M,) T M,
The following results were proven by Vanderbauwhede (sece
[12, Theorems 35, p. 413 and 6, p. 415)).

THEOREM 3.1 Let T: X — X he a continuous map satisfying (h1) and
(h2), and let n € la, b{. Then there exists some C1 >0 (depending only on
A and n) such that if Cliglh i, < 1 then there exits some ¢ € Lipp(Xs, X7)

such that
MTI = {XQ -+ (f)(Xz): Xy € Xg}.

Moreover, for each x & M, there exists a unique negative T-orbit
y € Y (X) through x.

THEOREM 3.2 Under the assumptions of Theorem 3.1 there exists some
C> >0 (again depending only on A and n) such that if Cof\g||Lip <1 we
have for each x € X that

My 0 My (x) = {H(x)},
where

W) = {% € X supn || T2(x) - TP(®)f < +o0 ),
PEN

and with H : X — M, continuous.
Under the hypothesis (h2) we denote by P € £(X ) the bounded
linear projection satisfying
Im(P) = X; and Ker(P) = X).
Also, given a continuous map T: M — M on a metric space (M, d) and
a subset B C M we denote by w(B) the omega-limit set of B given by
(see Hale [2])

w(B) = N0 Cl(Ur=nT*(B)).

We now consider some consequences of the Theorems 3.1 and 3.2.
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PrROPOSITION 3.3 Under the hypotheses of Theorem 3.1 let M be a
compact and connected subset of X and assume the following conditions
are satisfied:

(1) dim(X3)=1;

() Ciliglluip < 1 and Cyliglliip < 1
(1) M is invariant under T, i.e. T(M)=M
(iv) there exists some X € M with T(%) = X and such thar P(%) is an

extremal (boundary) point of the interval P(M).

Then we have for each zq€ X for which w(zg) C M that there exists
some X = ¥(zp) € M such that T(x) = X an llm,,,_% T"(z) = X
The proof of this proposition requires the following lemmas whose

proof we omit.

LEMMA 3.4 Let J=[c,d]CR be a compact interval, and g:J - J be a
continuous map. Assume the following:

(1) Jis invariant under g, i.e. g(J)=J,

(1) for each x € J there exists exactly one negative g-orbit through x;
(iii) either g(c)=cor g(d)=d.
Then g is strictly increasing, g(¢) = c and g(d) = d.
LEMMA 3.5 Let g:R— R be a continuous map, and let J={c,d]CR
(with ¢c<d) be a compact interval such that g is strictly increasing
on J, g(cy=c and g(d)=d. Then we have for each zo €R for which
w(zp) CJ that there exists some X = %(z9) € J such that g(X) = X and
M, 100 £™(20) = x.

Proof of Proposition 3.3 It follows from Theorem 3.1 that M, is the
graph of some ¢ € Lip,(X5, X;). By Theorem 3.2 there exists a contin-
uous map H: X — M, such that

sup " T (x) — T™(H(x))|| < +00, Vx € X:

meN
since 0 <7< 1 this implies that
lim ||77(x) - T"(H(x))|| =0, ¥Yxe€X.

m-—+0G

Since M is invariant under T cach x € M has a pre-image in M, and
hence there exists a negative T-orbit through x which is contained in M.
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Since M is bounded such negative 7-orbit belongs to ¥, (X). We con-
clude that A/ C M, and that

X = Px+ ¢(Px), Vxe M.
Moreover, again by Theorem 3.1, there exists a unigue negative T-orbit
through each x€ M which is contained in M. Therefore, taking

J=P(M)C X,, we can apply Lemmas 3.4 and 3.5 to the mapping
fIX2—>X2 defined by

S{y)y=P(T(y+o(Py))), VyeX,.
We conclude that if yy€ X, is such that we(yg) C P(M ) the

El
exists some ¥ = X(yg) € P(M) such that

f(X) =% and liT S (yo) = X.
Next fix some zo € X such that w(zg) C M. Since
lim [T (z0) = T7(H(z0))]| =0 (5)
it follows that also w(H(zq)) C M. But H(zg) € M, = {x2+ ¢(x2): X2 € X}
and T(M,) C M,; therefore we have for each m € N that
PT™(H(zo)) = f" (PH(z0))
and

(1d— P)T™(H(z0)) = ¢( S (PH(z0))).
Moreover, P is a bounded linear operator, and so
w(PH(zy)) C P(M).
It follows that lim,, ..o f™(PH(zo)) = Xp for some fixed point Xp =
Xp(z0) € P(M ) of f; by construction we have then that

lim T7(H(z)) = Xp(z0) + ¢(Xp(20)) = X(z0),

M- +00
with X(zg) € M a fixed point of T. Finally, (5) then implies that also

lim T7(zp) = %(z0),

m—+oc

which compiletes the proof.
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4 PROOF OF THEOREM 1.1 AND COROLLARY 1.2

In this section we prove Theorem 1.1, starting with some auxiliary
results. First we mention the following lemma from Nussbaum
[8, Lemma 2.4, p. 56].

LEmMMA 4.1 Let K be a cone in a Banach space (X, ||-|]). Then Xx=
K — K is a Banach space when endowed with the norm ||-|| x defined by

Ixlle =wmf{lufl + vh v e K, v=x}, ¥x& X
It is not difficult to see that the canonical injection of {Xg, k) into
(X, 11-1]) is continuous; indeed we have

x| < lix|l¢ if x€ Xk and |x|| = ||x||x if x € K.

Therefore on K the two induced topologies coincide.

LEMMA 4.2 Let K be a cone in a Banach space (X, ||-||). Assume that

() K is a normal cone of (X, ||-|);
(i) (X, <) is a vector lattice for the partial order < induced by K.

Then the mappings x — x* and x +— x™ are Lipschitz continuous.

Proof Since K is normal cone we can without loss of generality
assume that the norm ||| on X is monotonic, i.e. such that ||x]| <{|y]]
for all x, y € X satisfying 0 < x < y. Since for each x € X we have that
x* < |x}and x™ <{x| this monotonicity implies that

1< filxl 1] and fix7f} < [Hix[ ], ¥x€X. (6)

Define a norm ||||x on X=K—K as in Lemma 4.1; from that
lemma we know that (X, ||-||«) is a Banach space and that ||x|| <|/x||x
for all x& X. By the bounded inverse theorem it follows that there
exists some C> 0 such that ||x||x < Cljx|| for all x€ X, and the two
norms |- and ||-|| ¢ on X are equivalent. Therefore, to prove the lemma
it is sufficient to prove that the mappings x+ x* and x+ x~ are
Lipschitz continuous in the Banach space (X, ||| ).

It follows from the monotonicity of the norm ||| that

Ixlix =T+ 1Ix7l, vxe X (7)
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Moreover, we know from Theorem 1.1, p. 207 in Schaefer [10] that
Tyl Sy =yl Yxy e X (8)

Using (6)~(8) and the triangular inegquahty we find then forall x, y € X
that

R P N S (N
<27 =]
<2l -y
< 2] =)l + e = )]
= 2llx ~ I

This shows that the mapping x — x™ is continuous; the same holds for
the mapping x — x~ = (~x)", and the proof is complete.

PROPOSITION 4.3 Under the assumptions of Lemma 4.2 let (A, d) be a
metric space, M€ A and g: A x K— X a continuous map. Assume in
addition that

lim sup el g0 R = 0.
R0 \end(Do <R DEREE

TFhen the map § © A x X = X defined by
Hx)=gT) —a(x7), Yxe X, VAeA,
is continuous, and such that

lim sup gL = 0.
R=0" sendioncr o EPBOF)

Proof It follows from Lemma 4.2 that there exists some C >0 such
that

I~y < Clx — ¥l and fx~ —y | < Cllx =yl YxyeX
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So, assuming that Hg;[[upﬂmm < +oc, we have for all x, v € By (0, R/C)
that

18,() = (1 < 1galx™) = aay )l + [lealx™) = 2207l

+ o - -
|=g/\!1L1p.BK(0.R (“X =3+ =y H)

} /\

| /\

’)CHg\HLlpB;\ OR\!"\ -yl

From this the conclusion follows immediately.

PROPOSITION 4.4 Let (X, Ii ) be a Banach space. (A.d) a metric
space, /\Or- A, uul’])s A X X — X g continuous map such that

lim sup Hg,\“!,ip..’};,-(O,R) =0.
R=0% seAd(he. M)

Let x : R, — R be a Lipschitz continuous map such that

x(s) =0 if s > 2,
x(s) €[0,1] 1 <s<?2,
x(s) =1 fo<s<l

Then the continuous map g R% x A x X — X is defined by

o) =x(p7x])2,(x), Vxe X, VA€ A, Vp>0,

\

(rqu

has the following properties:

(a) gm( x) = ga(x) for all x € Bx (0, p), all A€ A and all p > 0;

(b) there exzstv some R >0 such that gg , € Lipy(X) for all A€ A such
that d(X, M) < R; )

(c) limg_o- Sup)\eA:d(Ao,/\)gRHéR,/\HLip: 0.

Proof Lel R, > 0 be sufficiently small such that

Hg)\”LipoX(oyRQ < +OO, V)\ « /\Z d(AO,A) S Rl-

Let

Lip(éR,/\)(XO) = limsup ||x — xO”v1 Hé:’R,,\(x) - g’R\/\(x()) ‘, Vxp € X.

X— X0 XFEXq
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and p= R,/2. It follows immediately from the definition ofgrw that

12,506) = & (x| < &l Ix (o 1x) = x (o 1ol
+x (07 Ixoll) 182 (x) — &x(x0)]

bl

from the fact that x is null outside the ball of radius 2 one gets for all
A€ A with d(Ag, A) < Ry that

@,,)(x0) = 0. if |xoli > Ry, and
Z

pa) (X0) < (2xliLip + Vg lip 0.Ryys 1 I1%0l] < Ry

Let x,yeX, let A€ A be such that d(X, \) <R, and consider the

Lipschitzian map ¢: [0, 1]— R defined by

(p(l) = “ép,/\(‘x + [(y - X)) Méﬂ:/\(x) Is Vi€ [09 1]

From ¢(0)=0 and the Lipschitz continuity of ¢ it follows (see for

example Rudin [9]) that there exists an integrable map he L'(0, 1)
such that

o) = 9l0) = 50) = [ hs)ds and /()= h(), i€ 01N,

where N is a set of zero Lebesque measure. Using the properties of the
norm and the definition of ¢ we also have for each 1, 15 € {0, 1] that

(1) = @(10)] < [|goa(x + t(y = X)) = &ya(x + 10(y = X))|.

It follows that
()] < Lip(g,) (x+ t(y = )|y — x|, Vee 0, 1\N,
and by integrating this inequality we get
_ ~ 1
£ () = Eoa0)l = w1) < [ 1h9)1ds

< [ sup Lip(8,.2) (x + s(y — )| Iy — xl!.
s€{0,1]
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This further implhes

i |

Hz‘:’n,x(}’) - g/}./\(')‘:>” < {2“XHLip o l}Hg)\iiLip_B(().R‘)hy """ xf, x,y€ X,

and therefore
Eroa €LIp(X), YA€ Ard(\ o) < Ry

Moreover,

oo

) if ||| > Ry, and g,,

o

Ny (): =
Ry/Z,A\~)

and therefore
Zr j2a € Lip,(X), YA€ A d(MXo) < Ry
by using Eq. (9) one also gets

li g = 0.
R /\EA:S(&F,/\)SR“gR'/\ HL"’

This completes the proof of Proposition 4.4.

Proof of Theorem 1.1 Let us first consider the map g:Ax K— X
defined by

ghx)=F(A\x)—-D,F)(0)x, ¥x€K, YAeA.

Under assumption (H3) of Theorem 1.1 one can apply Proposition 4.3
to g, and then Proposition 4.4 to the map g. Let g : R xAxX—X
be defined as in the Proposition 4.4. Then one knows that this map
satisfies the following properties:

(@) g,(x) = g:(x), Vx € Bk (0, p), VAE A, Vp > 0;
(b) 3R > 0: gp € Lipy(X), VA€ A: d(X, \) < R; and
gR‘f\HLip =0.

Let P be defined as in assumption (H2), let a = r((Jd— P) x
D.F,(0)(Id — P)), and fix some n € ]a, 1[. Let Ry > 0 be fixed such that

(€) im rso- SUP)ep-d(rg 1)< R]
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for all A A with d{Ag, A) < Ry we have
£r,s € Lip,(X), € [lé:’Ro,AHLgp <1 and sz!ékn,/\\r!up< I,

where C; = Ci(D.F,,(0),n) and Cy = Co(D.F,,(0),n) are the con-
stants introduced in Theorems 3.1 and 3.2.

Under the hypothesis (H4) the Proposition 2.1 applies. Then one
knows that for each A€ A there exists a connected subset A, C
B« (0, o) which is compact maximal invariant under F,, stable for £,
and attracts all the compacts subsets of K by F,. Under assumptions
(H1), (H4), and (H35) Proposition 2.2 applies; it follows that one can
find a §3 > 0 such that

R
Ay C BK(O, —f) YA € By(Ao, o).

Next consider for each A € A the mapping ]ZTRO’,\ : X — X defined by

Froa(x) = Dy Fyy(0)x + gp, 2 (x), ¥x€X.

For each A € A\{Ao} such that d(Ay, A} < é; =min(éy, Ry) we may then
apply Proposition 3.3 to ijO.A, with M= A4, and ¥ =0 (A, C Kand P
is a positive linear operator). It follows that for all such A and for all
zg € X such that

mM—+oc m-—+00 pEA,

lim 6<ﬁ;’;A<zo), A) = lim inf H%,';;A(zo) -y =0,
there exists a fixed point %5(zg) € A, of ;‘RQ,,\ such that

mErToc ﬁ;;:"’\ (ZO) =X (ZO)'
By construction, ;:Ro.,A and F) coincide on Bg(0, Ry), and since A, C
B (0, Ry/2) we conclude that X, is also a fixed point of F,.
Fix some Ae A\{)\g} with d(Xo, N) <é; and some zyo€ K. Since 4,
attracts all the compact subsets of K one has
lim &6(F"(z0), Ax) = 0.

m——+oc
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Moreover, since 4, C Bx (0, Ry/2) there exists my < N such that

2R
Fl'(z0) € Bg (0. TO> V> .

But ;:,?(,.A and F, coincide on Bg (0, Ry), so
FIE™(z0) = FL(F™(z20)) = Fy, J(F{™(z)), ¥p €N,

and

lim §(F2 (F™(z9)), 4,) = 0.
p—rtoc \ Ko, AVT A A ;i ;

From this we deduce the there exists a fixed point ¥,(zq) € Ay of F,
such that

lim F{"(z0) = lim Fg \(F{"(20))(20) = %x(20)-

m-—~+00 p—+oc

This completes the proof of Theorem 1.1.

Proof of Corollary 1.2 As hypotheses (H1)-(HS5) are verified we can
apply Theorem 1.1; it follows that there exists some & > 0 such that for
all Ae A\{X\o} such that d(Xg, A) <6, and for all zo € K the sequence
{F{"(20)}men converges to a fixed point Z of Fy in K. If z0€ M, =
{x€ K: Ox+#0} this fixed point must also belong to M,; indeed, if
7 € K\M, then the hypothesis (H8) implies that Z = 0, which contra-
dicts the hypotheses (HS) and (H6).

5 PROOF OF THEOREMS 1.3 AND 1.4

Proof of Theorem 1.3 We give the principal arguments of the proof.
For this particular application of our general results we work in the
space X =R" with the norm ||x||,.=max{|x;}: i=1,...,n}; we take
K=TR", and we recall that A = {A=(by,...,b,)  €R™: }g <A<
Ci1)o}, for some C,>1. The mapping F associated to the Eq. (3)
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can be written as
FAx) =LA x)x, ¥xe€ R, VAe€A,

where L: A x RT — M,(R.) is a continuous map from A x R into
the set of non-negative matrices which has the form

[Li(Ax) 0]

|, with Lx(/\, ,.\Tj) S ]W”U(R)
l I, (A.)ﬂ L), x) %
L \ e \ Ay A

The choice of A € R, and the definition of ny imply that
H{Ly( Ao, 0)) =1 (since R(Ao) = >0, 8% = 1) and r(L3i(A,0))=0. For
A€ A\{Ag} we have A > A, and hence R(A\) > 1 and r(L1(A,0)) > 1; also
r(L3(A, 0)) =0 for all such A. The assumption (ii) implies that L;(A,0)
is primitive; since for all x € R} and all A€ A we can find some
sufficiently small constant C= C(\, x)>0 such that L;(A\x)>
CLi(Xo, 0) it follows that L,(A, x) is primitive for all (A, x) € A x R,

The hypothesis (H1) can be verified using the assumption (i) in
combination with the Liapunov function

Vix) = max{?: i= 1,..‘,n}.
To verify (H2) we observe that F()\, -) is clearly right differentiable at
zero, with
Li(X,0 0
D+F(A0,0)={ 1(%0.0) J
L2(X0,0)  L3(),0)

It follows then from our preceding remarks that 1 is a simple eigen-
value of D, F()\y,0), and that there are no other eigenvalues in the
peripheral spectrum of D F(Ay,0). The theory of non-negative mat-
rices then implies (H2). Assumption (H3) is an immediate conse-
quences of the regularity of the exponential map. It follows from the
assumption (i) that
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setting

. bi . o .
az()\):max{géz1:1,..‘,110}, ‘V/\:(b],.‘.,hn)TEA,

!
we have then that

exp(—-1)

X

an{N)xexp(—aix) < ax(N) Vx> 0.

FI(x) € Bgr (o, ar(\) 93‘—"%) C Intg: [ Ba: (0, ()], vxeRl,

where we have put

) exp(—1)

23}

M(\) = o +1.

Since the ball Bgr (0, M(\)) = {x € R": ||x|l, < M(\)} is positively
invariant under F(},-) it follows that (H4) is satisfied by taking a;, =
M()). Proposition 2.1 then implies that Ax C Bg: (0, M) if 4y is a
compact and maximal invariant subset under F(},); it follows that
(H5) is satisfied by taking

C = Unena-no| <5 Brr (0, M(X)).

Assumption (H6) is a direct consequence of the fact that the block
matrix Li(\, x) € M, (R) is primitive for all A€ A and for all x € R7,..

Next we prove assumption (H7). Fix some A& A/{)\y}; since
r(L1(\,0)) > 1 we can also fix some v €10, 1[ such that r(L,(A, 0))y> 1.
The continuity of the map L implies that there exists some 7 > 0 such
that

Li(\0) 0

x, Vx € By (0,7n).
0 O}Q (0, 7)

OF(A x) 2 7QL(A,0)x = 7{
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Suppose that x € Bg-(0,n) is such that Qxs0 and F7(A x)¢€
Bg: (0,7) for all m€ N, then we must have
m
0F”(x,x) 2 | HHEMO) 8} 0x,

and from r(L,(\,0))y > 1 and the fact that Li(X 0) is primitive we
conclude that

m-soc

This contradiction shows that 0 a semi-gjective fixed point of F(A, ")
on M,.
It remains to verify the assumption (H8). We have

0 0

AR P

n. —
,0)}6’ Vx e RL: Ox =0,

and since r(L3) =0 we conclude that

lim F™(),x) = 0.

We conclude that under the hypotheses (i) and (ii) the Corollary 1.2
applies, and the proof of Theorem 1.3 is compilete.

Proof of Theorem 1.4 The proof of this theorem uses the same kind
of arguments as inr the proof of Theorem 1.3; we leave the detail to the
reader.
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