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1 INTRODUCTION AND MAIN RESULTS 

In this paper we deal with non-monotone discrete time dynamical 
systems preserving a cone of a Banach space. Our aim is to obtain a 
generai resuit concerning the convergence of all solutions of the system 
to an equilibrium solution, which is what we call a global stabiliza- 
tion result. In Magal [5,6] results ere obtained on the existence and 
uniqueness of non-trivial fixed points, together with a global attractiv- 
ity result for the case when there is a unique non-trivial fixed point. In 
+L' MIS paper we extend the global sta"v1iizaiion result to the case where 
there are several non-trivial fixed points. 

Let K be a cone of a Banach space (X, I/.I/), i.e. K  is a closed convex 
subset of X such that (i) t K c  K for all t >0 ,  and (ii) - x $ K  if 
x E K\{O). Such cone K induces a partial order on X, denoted by < 
and defined by 

In the sequel, we denote by X* the dual space of X (i.e. the space of 
continuous linear forms on X), and we denote by K* the dual cone 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

hi
ca

go
 L

ib
ra

ry
] 

at
 1

2:
25

 2
6 

D
ec

em
be

r 
20

14
 



defined by 

K" = {f E X': f ( x )  > 0. 'vx t K } 

We will say that a cone K of a Banach space (X, / / . / I )  is normal if there 
exists an equivalent norm I / . / j i  on Xsuch that 

such norm is said to be monotonic. We will sag that (X, 5)  (where 5 is 
'l- -,- ' 1 -..>,.. 
L!!G pd~t ia l  uru t r  on Xinduced by K)  is a vecror lattice if sup(x,yj and 
inf!.~, :)) exist fnr all (x, y)  c X u X. Wher, this is the case we sei 

x+ = sup(x, O ) ,  x- = sup(-x, 0) and 1x1 = x+ t- x- 

for all x E X. One has x = xt - x- (see Schaefer [lo, Theorem 1 . 1 ,  
p. 2073). Given a cone K of a Banach space (X, //.)I) we set BK(O, 6) = 

{ X E  K: Ilxli 5 6 )  (for 5>0); f o r e a c h m a p g : A c  K+Xwese t  

A bounded linear operator L E C ( X )  is said to be positive if L(K) c K; 
we denote by ~ ( i j  the spectrum, and by r ( L )  the spectral radius of L. 
As usual, given a map T: M I  M on a metric space (M, d )  we define 
the iterates Tn' : M -+ M (rn E N) of T by T O  = Id and Tn'= T"'-' o T 
form 2 1 .  

In this paper we consider the following type of discrete time dynam- 
~ca!  systen;. Let K be a iioinid cone of a ija~iach space ( X ,  / / . / / j ,  such 
that (X, 5) is a vector lattice for the partial order 5 induced by K, and 
let (A, d )  be a metric space. Let F: A x K-+ K, (A, x) H F(X, x) = FA(x) 
be a continuous map, such that for each X E A the mapping FA : K-, K 
is asymptotically smooth (as defined by Hale [2, p. 1 I]) and satisfies 
FA(0) = 0. We consider then the following initial value problem (for 
each X E A): 
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DISCRETE DYNAMICAL SYSTEMS 7 3 3  

We will investigate global stabilization results for (2)  under the follow- 
ing assumptions: 

(H 1)  There exists some Xo E A such that zero is globally asymptoti- 
cally stable for FA,, and such that FA,, has a rlght derivativc 
D+FA,(0) t L ( X  j at zero (see DelmIing [ I ,  p 2251 for the corre- 
spondmg definltlon) 

(142) There exist v E K\(O) and 11" E K* \(O) such that v *(v) = 1 ,  
DLFx,iO\v - s, D ,  FA,lO\*vX - v* and 

r j ( I d  - P)Lf+t;,,(O)(id P)) < 1, 

where P E C ( X )  is the projection defined by 

P jx) = v*(x) V, VX E X 

(H3) The map g : A x K--, X defined by 

is such that 

(H4) For each X E A there exists ax > 0 such that BK(O, a x )  is posi- 
tively invariant for FA, and far all x E K with Ilxli 1 c r ~  there 
exists m = m(x) E N such that 

(H5) There exists a compact subset C c K such that 

where Ax c K is (for each X E A) the maximal compact invariant 
subset of FA, and where the distance S(Bl, B2) of Bl c X to 
B2 c Xis defined by S(B1, B2) = supgEB, ( in fxE~> I / x  - yll). 

The following theorem is main result of this paper. 
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DISCRETE DYNAVICA L SYSTEMS 215 

that 2 is semi-ejective for T o n  M\,A if there exists a neighborhood I.' 
of 7 in M such that for each .x E V\\A we can find some in E W for 
which Tt"(x) E M\, I.'. In particular. if we take A = {.?) this reduces to 
the ejectivi ty of (2). 

We have rhen the foliowing coroilary to Theorem 1 . 1 .  

lirn FT (x) = 0. 
171-!X 

Then there exists u 6 > 0 such that i f 0  < d(&, A) < 5 and xo E M,,, tlzerl 
the sequeizce { F T ( X ~ ) } , , , ~  converges to afixedpoiizt of FA in M,,. 

As an illustration of Corollary 1.2 we consider a discrete time popu- 
lation dynamics model as introduced by Liu and Cohen [3]. Their model 
leads to the difference equation 

xl l ( t  + 1 )  = x,,- I ( t )  exp - 

for t E W, together with the initial condition 

the constants bi, ?ii, T,+l and Mk (with i ,j ,  l= 1,.  . . ,n  and k = 

1, .  . . , n - 1) are all non-negative. In their paper [3] Liu and Cohen 
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obtain an existence and uniqueness result for a non-trivial equilibrium 
solution of (3). In Magal 161 (scc Theorem 1.2) a different method is 
used to obtain the uniqueness of the non-trivia! fixed point, while in 
Magal [5] (see Theorem 1.4) the global attractivity of this non-trivial 
fixed point is investigated. We also would like to mention the local sta- 
bility result of Yicang and Cushing [ I  31. Their general stability result 
is applied (see Example 3 in [13]) to some simplified version of the Liu 
and Cohen [3]. To our knowledge no further results on the asymp- 
totical behavior of (3) arc available. 

We first introduce some notation: we set 

and 

I 1  i- l 

R ( A )  = hj4, with 1, = 1 and 1; = n exp(- M ~ ) ,  6i = 2, . . . , n , 
j= 1 j= 1 

We also define p, = exp(-Mi) (1 5 i < n - l), and denote by F : R: x 
RI: A R':, (A,  x) I- F(X, x) the mapping defined by the right-hand side 
of (3). 

Next fix some A0 = (by, h!, . . . , hjllT E R: such that R(Xo) = 1 ; let 
no = max{k / 1 < k 5 n,  b! > 0 )  and assume the following: 

(i) r,, > 0 for all i =  1,. . . ,n  for which hp > 0; 
(ii) the positive linear operator 

is primitive 

Finally, we set 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

hi
ca

go
 L

ib
ra

ry
] 

at
 1

2:
25

 2
6 

D
ec

em
be

r 
20

14
 



DiSCRkTE DYNAVIC4L SYSTEMS 

and 

for some C ,  > I .  One has then the following theorem. 

THEOREM I .3 Undcr- thc assu~nptions (i) and (ii) there exists some 
6 > G such that for all X E  A\,{Xo} wit11 / / A o  - X/ ia t2  5 6 slid for (111 
x o  E WT wc huve 

here 2 = 2(xo, A) E R'i_ denotes afixedpoint of FA wit11 QX # 0. 
Remark The main difference between the previous result and 
Theorem 6.2 of [5] is the simplication of the proof. Indeed, in [5] the 
uniqueness of the non-trivial equilibrium is necessary. Such a unique- 
ness result (proved in [6]) is in most cases difficult to prove. Here we 
do  not use such uniqueness result, so Corollary 1.2 is easier to apply. 

The foregoing result can be extended to  the population dynamics 
model introduced by Magal and Pelletier [7]. In this model one con- 
siders the difference equation 

x,(t + 1 )  = X I  ( t )  exp(-(MI + q ~ E ( t ) ) )  

x3 ( t  + 1 )  = X Z ( ~ )  exp(-(Mz + yzE( t ) ) )  D
ow
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for I E N, and with the initial condition 

x,(O) -- s, > 0 (Vi = 1,2, . . . , n )  and F(0) = Erl 2 0. 

Again all constants appearing in (4) are non-negative, while the 
function I; : R+ --. R, is defined by 

4 9  fGr t"." L,,b f, ' "t'-*' , v,lJ I;.: R+ -i g ':- 1 2; we ass- u-.... + ( l -  > I L L =  that t h ~ y  sit 

bounded, of class c', and such that fi(O)=O; more in particular, we 
assume that f l  has the formfi(s) =shi(s), with hl : R, -+ [0, 11 a strictly 
decreasing c'-function satisfying hl(0) = 1 and lim,,, h,(s) = 0. We 
define A, R(X), li (1 < i < n) and pi (1 < i < n - 1 )  as in the previous 
example. The 'state variable x = (xl ,  , . . , x,,, E) in this case belongs to 
R ~ + I  + , and the mapping F= F(X,  x) defined by the right-hand side of 

(4) maps R: x R:+' into EX:+'. 
Consider again some Ao € R: such that R(&) = 1; let no rnax{k / 1 _< 

k < n, hi > 01, and define a projection Q on R"+' by 

Taking A c Rt as before we have then a result similar to Theorem 1.3. 

THEOREM 1.4 Under the assumptions (ii) there exists some 6 > 0 
Slii'/i tl$af a// \ ' " r \  ' ... :, 

A c i i  \ I A ~ (  wclh jiAO -- XIig; < 6 aizdfoi. all xo E R";tl 
we have 

and 

wlzere x = x(xo, A )  E JR?' denotes afixedpoint of FA with Qx # 0. 
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DISCRETE DYNAMIC41 SYSTEMS 239 

2 EXISTENCE OF AN ATTRACTOR 

In this section we summarize some results proved in Magal [4] using 
results on discrete time dissipative dynamical systems as found In the 
book [2] by Hale. 

PROPOSITION 2.1 Let K he a cone of a BanacA space (Af, / / . /I) ,  and let 
(A,d)  be a metric spacc. Let F :  A x K -  K he a continuous map 
such tlzat FA is a.synzp~oticallj~ .snzoothfor each X E A. Assume in addition 
rhur F .vali~/ie.s zhe 1~yputhw.i.r (34).  Then ihere e.wisls fur ~ L I C I I  X E A u 

maxinzai compact subset ' 4 ~  c BK(0,cux) ~z~hich is invarianr under FA, 
. " stahie and attractmg joy con.;pcc! :;uhsm (?r ri': Moreover, Ax is 

comwcted. 

PROPOSITION 2.2 Under the assumptions of Proposition 2.1  upp pose 
moreover that Fx(0) = 0 for all A E A, a~zd that F also satisfies (H 1 )  and 
(H5). Then for each E > 0 M.e canfind some q > 0 such tlzut Ax c BK ( 0 ,  E )  

for all A E A such tlzat d(X, Xo) < q. 

3 SOME REDUCTION RESULTS 

In this section we recall some results due to Vanderbauwhede [12] con- 
cerning the reduction of discrete time dynamical systems. Let ( X ,  I/.I/) 
be 2 Banach space. We denote by Lipb(X) the space of bounded 
Lipschitz continuous mapping from X into itself, and for each q > 0 
we denote by ( Y ; ( X ) ,  [I.JlyG(,y)) the Banach space of sequences 
y = {y - ,  : p  E Pi} c X such that 

Next consider a continuous map T: X+ X satisfying the following 
hypotheses: 

(hl)  T has the form T(x) - Ax + g(x), with A E L ( X )  and g E Liph(X); 
(h2) X admits a splitting X =  X I  ex2, where XI and X2 are closed 

subspaces invariant under A and such that 

a =  sup I X l < b =  inf I X I < l ,  
~ ( A I  ) X E ~ A ~ )  

where A,  = Al,, E C ( X ; ) ,  i = 1 ,2  
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240 P. MAGAI 

For cach v ,  0 we also define 

M ,  = { y o  E X / 3) E Yv-(X j. y 1s a negatlve T-orb~t through vo) 

Observe that T ( M , )  c M,.  
The following results were proven by Vanderbauwhede (see 

[12, Theorems 5 ,  p. 413 and 6, p. 4151). 

THEOREM 3.1 I A  T :  X--' Y he i~ continuowi mop ~ ~ t i s j T : ~ i i ~ g  (hl) and 
jh2j, rind lei q E ja, hi. Then there exists some C1 > 0 (depending only on 
A and T I )  such rho! ifCi / /g / l i ; ,  < ! then there exits s m w  ,h E L:pb(X2, XI) 
such thut 

Moreover, for each x E M, there exists a unique negative T-orbit 
y E Y;(X) through x. 

THEOREM 3.2 Under the assumptions of Theorem 3.1 there exists some 
CZ > 0 (again depending only on A and 77) .ruth that if C 2 / / g l l ~ i ~  < I MV 

Izavefor each x E X that 

where 

and with H : X--+ M ,  continuous. 

Under the hypothesis jh2j we denote by F E C ( X )  the bounded 
linear projection satisfying 

Im(P) = X2 and Ker(P) = X I .  

Also, given a continuous map T :  M--t M on a metric space (M, d )  and 
a subset B c M we denote by w(B)  the omega-limit set of B given by 
(see Hale [2]) 

We now consider some consequences of the Theorems 3.1 and 3.2. 
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P~o~osr r rov  3.3 Undc.r the hjpot11e.c.e.r of Theorem 3.1 i ~ t  M be o 
con~pacr und connected .suh.cet of X and assume the following conditions 
are suti.sfied: 

( i )  d im(X2)  = 1 ; 

69 CI ! Ig !11 , ,~  < 1 a d  C&g/l~,, ,  < 1; 
(iii) M is invariant under T ,  i.e. T ( M  ) = M ;  
( i v )  there exists some 2 E M with T(2)  = .? and such that P ( x )  is an 

extremal (bounda~y)  point o f  the interval P ( M ) .  

The  proof o f  this proposit~nn rquires the following lemma? whose 
proof we omir. 

LEMMA 3.4 Let J =  [c,  dl c R he a compact interval, and g : J ) J bc n 

continuous map. Assunie the following: 

( i )  J ix invariant under g,  i.e. g ( J )  = J; 
(ii) for each x E J there  exist,^ exactly one negative g-orhit through x; 

(iii) either g(c) = c or. g ( d )  = d. 

Then g is strictly increasing, g(c) = c and g ( d )  = d. 

LEMMA 3.5 Let g  : R -, R he a continuous map, and let J =  [c, dl  C IR 
(wit17 c 5 d )  he a conlpact interval such that g is strictly increasing 
on J ,  g(c) = c and g ( d )  = d. Then we I~ave for each zo E R for which 
w(zo) c J that there exuts  some 2  = i ( z o )  E J such that g ( 2 )  = i and 

n7 Iim,,,,, g ( z o )  = 2.  

Proof o f  Proposition 3.3 I t  follows from Theorem 3.1 that M ,  is the 
graph o f  some & E ELiph(X2, Xi ). Ey Theorem 3.2 there exists r contin- 
uous m a p  H :  X--, M ,  such that 

sup 77-'" 1 T 1 " ( x )  - T 1 " ( H ( x ) j  1 1  < +m, 'v'x E X;  
mEN 

since 0 < 77 < 1 this implies that 

lim 1 1  T n ' ( x )  - 
m-f x 

Since M is invariant under T each x E M has a pre-image in M ,  and 
hence there exists a negative T-orbit through x which is contained in M .  
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242 P M A C A L  

Sincc M 1s bounded such negative T-orbit belongs to I'; (Xj. We con- 
clude that M c M ,  and that 

Moreover, again by Theorem 3.1. there exists a unique negative T-orbit 
through each X E  M which is contained in M. Therefore, taking 
J=  P ( M )  C X2, we can apply Lemmas 3.4 and 3.5 to the mapping 
f :  X2 -' X2 defined by 

We cenc!ude that if y , , ~  X? is such :ha: ~ f ' i ( ; ~ " ~  F'(i2:) . . then there 
exists some 2 = ? ( y o )  E P ( M )  such that 

f  (2) = 2 and lirn f " ' ( y o )  -- 2. 111-+w 

Next fix some zo E X such that w(zo) c M. Since 

lim ~ ~ T n l ( z o )  - T1"(H(zO) ) IJ  = 0 m-++x ( 5 )  

it follows that also w(H(zO))  c M. But H(zO) E Mq = ( x 2  + 4(x2 ) :  x2 E X2) 
and T(M,) c M,; therefore we have for each m E N that 

and 

( Id  - P ) T n ' ( H ( z o ) )  = 4 ( f n 1 ( P H ( z o ) ) ) .  

Moreover, P  is a bounded linear operator, and so 

It follows that limIn,+, f " ' ( P H ( z o ) )  = .Tr for some fixed point 2p  = 

y p ( z O )  E P ( M )  off; by construction we have then that 

lim T m ( H ( z o ) )  = Zp(zg )  + 4 ( X p ( z o ) )  = .%(zo),  
m-+m 

with T ( z o )  E M a  fixed point of T. Finally, (5) then implies that also 

which completes the proof. 
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4 PROOF OF THEOREM 1.1 AND COROLLARY 1.2 

In  this section we prove Theorem 1.1, starting with some auxiliary 
results. First we mention the following lemma from Nussbaum 
[8, Lemma 2.4, p. 561. 

LEMMA 4.1 Let K he a cone in a Banach space (X, /i./l). Then XK= 
K - K is a Bunaclz spuce when endowed with the norm / I .  I /  K dejined hy 

1 .  l t  i not diffizult to see that ;he criiioiiical injcc:ic;n of /XK, ]/./IK) into 
(A', / I .  I/) is continuous; indeed we have 

Therefore on K the two induced topologies coincide. 

LEMMA 4.2 Let K he a cone in a Banach space ( X ,  //./I). Assztme that 

(i) K is a normal cone of (X, /I.l/); 
(ii) (X, 5 )  is a vector lattice for thepartiai order < induced by K. 

Then the mappings x w x+ and x H x- are Lipschitz continuous. 

Proof Since K is normal cone we can without loss of generality 
assume that the norm I I . / /  on X 1s monotonic, 1.e. such that llxll < Ilyl; 
for all x, y E X satisfying 0 < x < y. Since for each x  E X we have that 
xi f 1x1 and x- 5 1x1 this monotonicity implies that 

Ilx+li f I 1  1x1 l l  and / / " - I /  5 I /  1x1 l l >  vx E X (6) 

Define a norm i i . l i K  on X= K -  K as in Lemma 4.i; from that 
lemma we know that (X, is a Banach space and that ( lx(l5 ( ( ~ ( 1 ~  
for all x  E X. By the bounded inverse theorem it follows that there 
exists some C >  0 such that / / x / / ~ <  CIIxII for all x? X, and the two 
norms I / . j l  and ~ / . I / K  on Xare equivalent. Therefore, to prove the lemma 
it is sufficient to prove that the mappings x  H xf and x  - x- are 
Lipschitz continuous in the Banach space (X, 

It  follows from the monotonicity of the norm / / . / I  that 
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Moreover, we know from Theorem I .  1 ,  p. 207 in Schaefer [lo] that 

Using (6)-(8) and the triangular inequality we find then for all x; y E X 
that 

This shows that the mapping x +-+ xt is continuous; the same holds for 
the mapping x ii x- = (-x)+, and the proof is complete. 

PROPOSITION 4.3 Under the assumptions of Lemma 4.2 let (A ,  d )  be a 
metric space, A(, E h and g : A x K -  X a continuous map. Assume in 
addition that 

Then the map g : A x X --t X defined by 

is continuous, and .such that 

Proof I t  follows from Lemma 4.2 that there exists some C> 0 such 
that 
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So, aswmmg that / / g x / l , ,  B K , O  R ,  .c -x. we have fnr all x, j .  E B ,  (0. R t C )  
that 

From this the conclusion rollows immediately. 

P~o~osrrroN 4.4 Let (x, [!.I!) be a Banach space. (A ,  d )  u metrlc 
SpUCE,  Xo E ?ti aiidg : ?I x X - X i ;  ro;ztinunu.i nxqi .~iir!? that 

Let x : R+ -+ R+ be a Lipschitz continuous map such that 

x ( s )  = 0 i f s  > 2,  

X ( S )  E [ O , l ]  i f  1 < s < 2,  

x ( s ) = 1  i f O < s < l .  

Then the continuous map : IR: x A x X --+ X i s  defined by 

has the followingproperties: 

(a) H p , X ( ~ )  = g ~ ( x )  for all x E BK(O, p), all X E A and all p > 0; 
(b) there exists some R > 0 such that gR,X E L i p h ( X )  for all X E A suclz 

that d(Xo, A) 5 R; 

(c)  l im~-n-  S u P ~ t n  ~ ( A ~ , A ) ~ R  [ i n , *  I , , =  0. 

Proof Let R ,  > 0 be sufficiently small such that 

Let 

Lip(gR,A) (xo)  = lim sup llx - xoll-' IIBR,A(x) - ~ R , X ( X O )  I / ,  Vxn E X.  
X-xo~x#,q 
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and p = R l  i2 I t  follohs ~rnn~edmtely from the definition ofi,,, that 

from the fact that x is null outside the ball of radius 2 one gets for all 
X E 11 with d(Xo, A) < R ,  that 

Let x ,  y E X let A E i? be such that A(Xo, A) 5 Ri, and cmsider !he 
Lipschitzian map cp : [O, 17 --+ R defined by 

From p(0) = O  and the Lipschitz continuity of cp it follows (see for 
example Rudin [9 ] )  that there exists an integrable map h E ~ ' ( 0 ,  1) 
such that 

cp(t) = pi t )  - p(0)  =- / ' h ( r )  ds and d ( t )  = h i t ) ,  V l  E 10, l]\N, 
0 

where N is a set of zero Lebesque measure. Using the properties of the 
norm and the definition of cp we also have for each t ,  to E [O, 11 that 

I d t )  - cpito)I 5 ll ipXix + t ( y  - x?? - ip ,A(x+ toiy - x)) l l .  

Tt follows that 

and by integrating this inequality we get 
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This further implies 

and therefore 

Moreover, 

and therefore 

by using Eq. (9) one also gets 

This completes the proof of Proposition 4.4. 

Proof of Theorem 1.1 Let us first consider the map g :  A x K+ X 
defined by 

Under assumption (H3) of Theorem 1 .1  one can appiy Proposition 4.3 
to g, and then Proposition 4.4 to the map 2. Let g : R: x A x X + X 
be defined as in the Proposition 4.4. Then one knows that this map 
satisfies the following properties: 

Let P be defined as in assumption (H2), let a = r((1d - P) x 
D+Fx,(O)(M - P ) ) ,  and fix some 71 € ] a ,  I [. Let Ro > 0 be fixed such that 
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238 F M A G A I  

for all X E h wi~h  d(Xo, A) 5 Ro we have 

where C ;  .= C i ( D , F A , ( O j , ~ )  and C2 = C 2 ( D , f i , , ( 0 ) , q )  are the con- 
stants introduced in Theorems 3.1 and 3.2. 

Under the hypothesis (H4) the Proposition 2.1 applics. Then one 
knows that for each X E A there exists a connected subset A x  c 
B,(O, ax) which is compact rnaxirnal invariant under FA, stable for FA, 
and attracts all the compacts subsets of K by FA. Under assumptions 
(HI),  (H4j j  and (HSj Proposition 2.2 appiies; i i  Foiiows rhar one can 
find a 6G 2> 0  such that 

- 
Next consider for each X E A the mapping : X X defined by 

For each X E A\{&) such- that d(Xo, A) 5 6; = min(So, Ro) we may then 
apply Proposition 3.3 to F R , ] , ~ ,  with M = A x  and 2,-, = 0 (AA c K and P 
is a positive linear operator). It follows that for all such X and for all 
zo E X such that 

A * )  = Iim inf l lk i i i (ro)  - YIJ = 0,  
m-+x  J € A A  

- 
there exists a fixed point YA(zo) E A x  of FR,,?, such that 

By construction, and FA coincide on BK(O, Ro) ,  and since Ax C 
BK(O, Ro/2)  we conclude that is also a fixed point of FA. 

Fix some X E A\{&) with d(Xo, A) 5 5, and some zo E K. Since Ax 
attracts all the compact subsets of K one has 

lim 6 ( F F ( z o ) ,  A x )  = 0. 
m-+cc 
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Moreover, since ..I, c BK(O, Ri,:2) there exists in; ,  f X such that 

But F,?,,.x and FA coincide on RK (0. Ro), co 

and 

From this we deduce the there exists a fixed point Tx( zo )  E Ax  of FA 
such that 

This completes the proof of Theorem 1.1 

Proof of Corollary 1.2 As hypotheses (H 1)-(H5) are verified we can 
apply Theorem 1.1; it follows that thcrc exists some b > 0 such that for 
all X E A\{Xo) such that d(Xo, A) 5 6, and for all zo E K the sequence 
{F~(Z~))~,, converges to a fixed point 2 of FA in K. If z~ E M,,= 
{x E K: Qx #0} this fixed point must also belong to M,,; indeed, if 
2 E K\M, then the hypothesis (H8) implies that 2 = 0, which contra- 
dicts the hypotheses (HS) and (Hh) 

5 PROOF OF THEOREMS 1.3 AND 1.4 

Proof of Theorem 1.3 We give the principal arguments of the proof. 
For this particular application of our general results we work in the 
space X=R"  with the norm ~ixII,=max{ix,~: i =  1,.  . . , n ) ;  we take 
K = R:, and we recall that A = { A  = ( h , , .  . . ,hi,)= E R:: X o  5 X < 
CIXo), for some C ,  > I .  The mapping F associated to the Eq. (3) 
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can be written as 

where L h x !Rt -- i\ll,,(B&I 1s 3 contlnuouS map from ,2 x R: into 
the set of non-negat~ve matrices which has the form 

Thc choice of Xo E R: arid the defniiion of no imply that 
r.(i,(Xo, 0) )  = 1 (since i i (Xo )  = x:.:! h:li = I )  and r(,L3(Xa, 0)) -- 0. For 
X E A\{&> we have X > Xo, and hence R(X) > 1 and r(LI(X, 0)) > 1 ; also 
r(L3(X, 0)) = 0 for all such A. The assumption (ii) implies that LI(Xo, 0) 
is primitive; since for all x E IW: and all X E A we can find some 
sufficiently small constant C = C(X, x) > 0 such that Ll(X, x) 2 
CLl(Xo, 0) it follows that L,(X, x) is primitive for all (A, x) E A x R:. 

The hypothesis (Hl) can be verified using the assumption (i) in 
combination with the Liapunov function 

- 
1 o verlty (H2) we observe that F(Xo, .) is clearly right differentiable at 
zero, with 

It follows then from our preceding remarks that I is a simple eigen- 
value of D+F(Xo,O), and that there are no other eigenvalues in the 
peripheral spectrum of D+ F(X,, 0). The theory of non-negative mat- 
rices then implies (H2). Assumption (H3) is an immediate conse- 
quences of the regularity of the exponential map. I t  follows from the 
assumption (i) that 
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setting 

we have then that 

It then follows that 

expi-i)' 
F: ( x )  t BR1 (0 ,  ai ( A )  ---) c IntRT [ B ~ ;  (0, M ( A ) ) ]  , Vx E W: , 

Q I  

where we have put 

Since the ball BRn (0, M ( x ) )  = {x E R:: lixlirx: 5 M ( x ) )  is positively 
invariant under F(X, .) it follows that (H4) is satisfied by taking crx = 

M ( x ) .  Proposition 2.1 then implies that Ax  c B q ( 0 ,  M ( x ) )  if Ax is a 
compact and maximal invariant subset under F(X, .); it follows that 
(H5) is satisfied by taking 

Assumption (H6) is a direct consequence of the fact that the block 
matrix L1 (A, x) E M,, (R) is primitive for all X E A and for all x E R:. 

Next we prove assumption (H7). Fix some X E A / { X ~ ) ;  since 
r(LI(X, 0)) > 1 we can also fix some -1 E 10, I [ such that r(L1(X, 0j)y > 1. 
The continuity of the map L implies that there exists some 7 > 0  such 
that 
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Suppose that v E BR1(O, 7) 1s such thar Qx f 0 and Fm(X,x) E 

BRL ( 0 , ~ )  for all nz E X, then we must have 

and from r(L1(X, 0 ) ) ~  > i and the fact that IA1(X, 0)  i s  primitive we 
conclude that 

T h ~ s  contradiction shows that 0 a ~em-ejeciive fixcd point of F(X. ) 
on id,,. 

It remains to verify the assumption (H8). We have 

and since r(L3) = 0 we conclude that 

lim Fn'(X, x) = 0. 
l l 7 - - 1 a 3  

We conclude that under the hypotheses (i) and (ii) the Corollary 1.2 
applies, and thc proof of Theorem I .3 is complete. 

Proof of Theorem 1.4 The proof of this theorem uses the same kind 
of arguments as in the proof of Theorem 1.3; we leave the detail to the 
reader. 
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